
Towards an Interoperable Model-driven Automated Assessment
System for Computer Science Education

Markus Hamann
markus.hamann1@tu-dresden.de
Chair of Software Technology
Technische Universität Dresden

Dresden, Germany

Sebastian Götz
sebastian.goetz1@tu-dresden.de
Chair of Software Technology
Technische Universität Dresden

Dresden, Germany

Uwe Aßmann
uwe.assmann@tu-dresden.de
Chair of Software Technology
Technische Universität Dresden

Dresden, Germany

Abstract
In recent years, the number of computer science students has
steadily risen, but the time for educators to give feedback to the stu-
dents remains the same. Because of this predicament, many systems
for the automatic or semi-automatic assessment of student tasks
were developed. A fundamental problem of this development is that
most of these assessment systems deploy a different type of data
representation, which leads to a lack of interoperability between
the approaches. This hinders the reuse of teaching materials that
need to match the targeted system, leading to situations in which
instructors need to recreate their materials. In this work, we aim
to close this gap by introducing a model-driven approach called
Assisted Assessment. The approach uses a technology-independent
assessment model to bridge instructors’ and assessment systems’
technical spaces, helping instructors to transform their material for
various systems. We introduce Assisted Assessment by describing
the scenario of an undergraduate course for software technology
and how the approach can help to manage the different available
assessment systems.

CCS Concepts
• Applied computing → Interactive learning environments; •
Software and its engineering→ Design languages; Interoper-
ability; Model-driven software engineering.

Keywords
model-driven engineering, education, student assessment
ACM Reference Format:
Markus Hamann, Sebastian Götz, and Uwe Aßmann. 2024. Towards an
Interoperable Model-driven Automated Assessment System for Computer
Science Education. In ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems (MODELS Companion ’24), Sep-
tember 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3652620.3687775

MODELS Companion ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0622-6/24/09
https://doi.org/10.1145/3652620.3687775

1 Introduction
During the last years, the number of computer science students
is steadily increasing. At the same time, each instructor’s time for
giving feedback to their students remains the same. Moreover, in
some regions, the number of students willing to work as student
assistants in education also decreases due to the increasing compe-
tition with student jobs in the industry. As a result, many different
kinds of automatic or semi-automatic systems to support teachers
in their interactions with their students have been presented in
recent years [2, 3, 6, 7, 13]. These systems focus on automated as-
sessment of exercises, expressive feedback to the students, teaching
support, or a combination of the former.

A problem arising from this diversity is the lack of interoperabil-
ity between the approaches. Each system employs a different type
of data representation (i.e., meta-model). The data sets are often
created manually for each system and for each task at hand. Reuse
of teaching data sets across different approaches is often either im-
possible or implies extensive manual efforts. The process of creating
new or translating existing teaching material is time-consuming
and allows errors and inconsistencies.

To overcome this interoperability problem, we propose a model-
driven approach using an intermediate assessment model, called
Assisted Assessment. The intermediate assessment model serves as a
bridge between the technical space of assessment systems and the
problem space of instructors using these systems. By separating
these spaces and bridging them with a technology-independent
model, each space can be varied independently without interfering
with the others. In this work, we present the following vision:

• Defining an assessment model holding assessment-critical
information in a technology-independent format

• Using a meta-assessment model to minimize the effort of
creating the assessment model

• Describing a workflow how to use the assessment model in
the given approach

We exemplify our approach with a demonstration for the auto-
mated assessment of modeling tasks to be solved by students in the
field of domain models. In this case study the intermediate assess-
ment model is connected with multiple assessment systems. The
assessment model connects to a rule-based assessment engine, is
used to generate support artifacts for manual or machine-learning-
based assessment, and to generate documentation about the utilized
assessment and grading schemata.

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0009-0004-8346-1749
https://orcid.org/0000-0003-1537-7815
https://orcid.org/0000-0002-3513-6448
https://doi.org/10.1145/3652620.3687775
https://doi.org/10.1145/3652620.3687775
https://doi.org/10.1145/3652620.3687775
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652620.3687775&domain=pdf&date_stamp=2024-10-31

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Markus Hamann, Sebastian Götz, and Uwe Aßmann

2 State of the Art
The development of assessment systems for modeling and program-
ming tasks in education has been an active field of research for
many years. In 2023, a literature review from Ullrich et al. [13]
analyzed publications from 1998 to 2021. They found a total of 110
publications on automatic assessment of conceptual models and
identified several techniques for their technical realization.

The most common technique are model comparison approaches
(78), which compare an expert or ideal model to the student model.
A recent example for this class is the approach from Jebli et al. [6],
which directly compares the student with the tutor model.

Under normal conditions, migration between systems that fol-
low the model comparison approach consumes few resources since
the instructor only needs to recreate the expert model in the new
system’s model format. It is often assumed that the migration is
trivial if the model formats are standard formats like UML dia-
grams, but that might not always be the case. For example, problems
could occur if a highly specialized, non-standardized model, such
as domain models, or certain UML extensions, such as profiles, are
used in the task. While the migration process may not be overly
resource-intensive, switching systems necessitates to recreate all
expert models of a task collection. Then, instructors cannot directly
reuse their teaching materials from one system to another.

The disadvantage of the pure model comparison approach is that
only direct comparisons are possible, which are often not expressive
enough to represent enough of a task’s solution space. Therefore,
model comparison systems often utilize rule-based techniques, too.
Ullrich et al. [13] also mentioned an overlap between model com-
parison and rule-based approaches. Examples are the approach of
Bian et al. [2], which compares models with the help of multiple
rule-based algorithms, and Thomas et al. [12], which assess the
submitted models based on similarity rules.

Rule-based approaches were described in 41 of the publications
in [13]. They use rules of different complexity to assess student
models. A newer example, Boubekeur et al. [3], uses several simple
heuristics, like the number of classes and their relationships. Striewe
et al. [11] use graph queries to perform more complex checks on a
model instead. Alternatively, the rules themselves can be included
inside an implementation [3] or exist as separated artifacts [11].
Depending on the circumstances, these approaches can require an
extensive number of rules depending on the details and alternatives
that need to be checked. Most systems found in the literature use
their distinct rule format, generally with different limitations and
notations. Notably, also for rule-based systems there is no easy way
to migrate the teaching materials from one approach to another.

In recent years, there have also been a number of approaches to
include machine learning in the field of automatic assessment. One
example would be the modeling assessment system from the project
Artemis [7], which used past evaluations to present suggestions
for new solutions. Another example is again Boubekeur et al. [3],
who include machine learning to improve the performance of their
heuristic approach. Machine learning results often improve by hav-
ing consistently labeled and structured input parameters. Since
each approach comes with its own set of input parameters, instruc-
tors would need to prepare the learning data for each system anew.

Since creating consistent parameter sets can be time-consuming,
this can hinder the usage or migration between different systems.

Such approaches exist in the field of assessing programming
exercises, too. Xiang et al. [14] presented an approach to directly
match a student program with the program of a tutor. Calderon et
al. [4] presented an approach that uses rules for expected outputs
to assess programming assessments. Lastly, Artemis [8] and IN-
LOOP [9] are examples of programming assessment systems using
tests to assess the quality of a student’s programming skills. Since
these approaches are similar to their modeling counterparts, their
problems are similar, too. In the case of comparing two programs, an
instructor can migrate to different systems without recreating the
programs since the programming language stays the same. Target-
ing different languages is preferable when assessing an algorithm
with this approach. This leads to the same problem as in the model-
ing space since instructors must recreate their programs in the new
language and cannot directly reuse the existing materials. Also, the
rule-based programming assessment approaches are similar to their
model-space counterparts since the rule language would depend on
the system used. When employing tests for comparison (test-based
approach), instructors often face the same advantages and disad-
vantages as when using the comparing approach. When instructors
use the same implementation language, they can easily migrate the
examples and tasks to or use another system without any problems,
as described above. On the other hand, instructors must recreate
their teaching material for each system when providing the same
task for different implementation languages.

All these systems, which have been developed for several years,
use their own meta-model. This hinders the reuse of teaching ma-
terials since materials, programs, as well as models, need to match
the meta-model of the targeted system, so that instructors need to
recreate their materials. An approach does not yet exist that tries to
unify the different representations, for instance, by means of meta-
model mappings [10], or at least by the provision of support tools to
simplify the migration between the system. Even worse, if models
should be migrated between distinct technical spaces with different
meta-languages [1], no support exists. In this work, we aim to close
this gap by introducing a novel model-driven, generic approach
that enables the interoperability between existing systems, while
the instructor only specifies the teaching material once.

3 Assisted Assessment
3.1 Running Example: Domain Model
Teaching how to create domain models from a textual description
is part of many computer science curricula. To support the educa-
tors, a model assessment system providing automated feedback to
student solutions is used. Somewhen, the educators plan to switch
to two other assessment system. Until then, the old assessment
system used ideal or expert models, as shown in Figure 1. The new
assessment systems use a rule-based language as shown in Listing 1
and an instructor hint system shown in Listing 2 to check all rele-
vant model elements in a student’s solution. Without our approach,
the educators face considerable efforts to manually translate their
teaching materials from the old to the new assessment system.

Towards an Interoperable Model-driven Automated Assessment System for Computer Science Education MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 1: Visual representation of an expert or ideal model
that is used as a task-specific input material for the Assisted
Assessment workflow. The model represents a domain model
of a simplified domain of a social network.

3.2 A Model-driven Pipeline for Assisted
Assessment

This work introduces a three-staged approach using model-driven
concepts to assist instructors in generating assessment artifacts for
a wide variety of assessment systems, called Assisted Assessment.
Figure 2 depicts the workflow of the Assisted Assessment approach,
including the three technical spaces: one for the instructor, one for
each assessment system and one for the intermediate assessment
model. The approach separates the instructor’s technical space from
the assessment system’s technical space by isolating the assessment
system’s input representation from the task-specific information in
the instructor’s teaching material. For this purpose, the approach
introduces a new third, bridging technical space that centers around
the assessment model.

The assessment model (cf. Figure 2, result of stage 2), which
holds all relevant information for a specific assessment, plays the
central role in Assisted Assessment, since it serves as a bridge be-
tween the instructor’s and assessment system’s technical spaces.
Assessment models are task-specific but independent of the tech-
nology of the targeted assessment system. The assessment models
are generated in a task-specific second stage by the composition of
the available assessment rules. Assessment rules are atomic parts
of the assessment model that hold one assessment instruction each.
They are described in detail in the next section. This process of
creating assessment rules can be done manually for each task by
the instructor (cf. Figure 2, see Manual Creation) or with the help
of the first stage (cf. Figure 2, output ofMeta-Assessment Evaluator).
In the given example domain, the assessment model could store the
assessment instructions needed for the assessment of the domain
models submitted by students.

While the assessment model is task-specific, it also contains data
common for many tasks. Therefore, a first stage of the approach
was introduced which prepares, for all task-specific assessment in
a specific field, a common set of rules, experiences, and other stable
data. This common data can significantly reduce the effort required
to create the assessment model for each task and helps to maintain it

Listing 1: Simplified Epsilon Validation Language rule [5] for
the automatic assessment of a student‘s domain model.

1 ...
2 context Property{
3 constraint R_01_profile_age{
4 check{
5 var r1 = self.class <> null;
6 var r2 = self.name.compareLabel ("age");
7 var r3 = self.class.name.compareLabel (" Profile ");
8 var result = r1 and r2 and r3;
9 return not result;
10 }
11 message{
12 output(1, "The concept of 'age ' was found and is part of
13 the correct containing concept 'Profile '.");

14 return 'correct : R_01_profile_age ';
15 }
16 }
17 }
18 ...

Listing 2: Grading instruction in the format required formod-
eling tasks in the assessment system Artemis [8]. Multiple
instructions inside one criterion are possible, allowing in-
structions of several rule types for the target Property ’age’.

1 [criterion] Property 'age '
2 [instruction]
3 [credits] 1
4 [gradingScale] correct
5 [description] The property 'age ' must be part of a class
6 named 'Profile '.
7 [feedback] The concept of 'age ' was found and is part of
8 the correct containing concept 'Profile '.
9 [maxCountInScore] 1

if changes occur in the common data. As input to stage 1, we propose
a meta-assessment model that includes the data shared across all
tasks and uses it as a template in a model-driven pipeline. Combined
with task-specific information, from the meta-assessment model
most parts of the task-specific assessment model can be generated,
which is beneficial, when the instructor needs to check for common
task-unspecific errors or common convention mistakes. Though
there are other ways an instructor could create rules with similar
results, the meta-assessment model approach tends to create, in
our experience, more uniform and readable assessment models.
Defining meta-rules fosters reuse and enables the instructor to
establish a base rule library for a specific task type. In the given
example domain, existing expert domain models (cf. Figure 1) could
be used as task-specific input teaching material to generate most
of the assessment model.

The third stage produces the technology-dependent representa-
tion of the assessment model (cf. Figure 2, result of stage 3). This
representation can vary, depending on the employed meta-models
and meta-languages of the assessment system, and multiple repre-
sentations are possible. If a rule-based assessment system is used as
target system, the representation would be a rule-based language.
For documentation, an overview with examples can be generated.
In all these cases, a template engine can be utilized to generate
the technology-dependent representation. An advantage of this
approach is that, since the assessment model is stable, switching or
expanding to a new assessment system for another target language
or technical space can be done by supplying a new template. In the

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Markus Hamann, Sebastian Götz, and Uwe Aßmann

Figure 2: Description of the three-staged workflow of the
Assisted Assessment approach. The technical spaces (TS) of
the assessment system and the instructor lie primarily out-
side of the system boundaries and are bridged by the central
Assessment Model.

given example domain, both technology-dependent representations
of the assessment model candidates (cf. Listings 1 and 2) could be
created from the same assessment model.

The proposed pipeline has multiple advantages. First, the as-
sessment model and the generation of the assessment representa-
tion separate the instructor’s technical space from the assessment
system’s technical space. This reduces constraints and limitations
transferred from one space to the other. The stable bridging space
(i.e., the assessment model) also allows for changing the techni-
cal space of the assessment system while keeping the instructors
stable. Better reuse of existing teaching materials and the possibil-
ity of building up shared libraries of teaching materials, including
assessment models, are further advantages of this approach.

Naturally, there are disadvantages that come with every model-
driven technology stack, like the higher complexity of the approach
and especially the steeper learning curve for beginners. Also, minor
changes in the assessment model may be needed when changing
to a completely different assessment type. However, we believe
that increased flexibility, reuse, and effort reduction in a running
pipeline outweigh the drawbacks significantly.

3.3 The Assessment Model
The Assisted Assessment approach aims at minimizing the work

needed to create, maintain, and reuse assessment artifacts. For this
purpose, a central model is defined, the assessment model that
includes all the information needed to maintain the assessment

Listing 3: Example assessment rule of the assessment model
in textual form. The domain of this rule is a domain model.
The rule checks for a correctly modeled element in the stu-
dent solution. In this case it searches for a property named
’age’ in a class named ’Profile’.

1 Rule R_01_profile_age{
2 type: correct scope: single check: presence
3 query{
4 target: age:Property
5 query{
6 c:Class -:contains -> p:Property;
7 check{ (p.name == "age") and (c.name == "Profile ")
8 }
9 }
10 score: 1
11 feedback: "The concept of 'age ' was found and is part of
12 the correct containing concept 'Profile '."
13 }[
14 "The property 'age ' must be part of a class named 'Profile '."
15 author: "Markus Hamann"
16 diagram{ @startuml
17 class Profile{
18 age
19 }
20 @enduml}
21]

across multiple artifacts and assessment types. The assessment
model includes multiple assessment rules, and the entirety of all
rules form the assessment, when they are applied to a model. To
realize the assessment model, we investigated existing assessment
systems and their input formats, to design the assessment rules
to match most assessment systems. As first step, we have focused
on model assessment systems, but the approach is likely to be
transferable to programming assessment systems.

We found that assessments usually comprise four categories of
data. For better understanding, Listing 3 shows an example of an
assessment rule in form of a textual domain-specific language. This
assessment rule can be seen as the technology-independent version
of the assessment rule shown in the example domain (cf. Listings 1).

The first category describes the rules’ ’general’ attributes. The
first attribute is the name or identifier of the rule. In the example,
the rule is called ’R_01_profile_age’ (Line 1), a hint that this rule is
the first rule for a concept ’profile_age’. In Line 2 of the example,
there is also information about the type of rule, its scope, and if
the presence or absence of the rule query should be checked. To
understand these three attributes better, the second category needs
to be explained first.

The second category of a assessment rule in the assessment
model is the ’query’ (Lines 3 to 8). A query is comprised of a target
and a constraint to be checked. The target describes the element the
rule should check. That can be an element of an existing expert solu-
tion, a concept, or other goals. The target splits into an identifier and
a target type. The example rule describes the target as ’age:Property’.
That information tells the instructor that the rule does a check on
the concept ’Property’ and for the specific concept element named
’age’. The check itself is done on the solution a student submits. The
query then describes how the rule should try to match the elements
of the submitted solution. Generally, every language that can define
a constraint, test, or other types of assessment can be used inside
the query. Such languages include programming languages, test
frameworks, existing rule languages, graph query languages, or

Towards an Interoperable Model-driven Automated Assessment System for Computer Science Education MODELS Companion ’24, September 22–27, 2024, Linz, Austria

other executable languages. Since the approach’s primary goal is
to separate the technical space of the assessment system from the
instructor space, a technology-independent language, like graph
query languages, should be used to target different assessment sys-
tems. In our experience, a graph query language is the best choice
to define a query since it is the most versatile. They can be used for
model comparison by simply checking for the existence of expert
model elements in the student solution (similar to our example rule),
but they can also be complex enough to describe more complex
rules of rule-based languages. Tests for programming exercises can
also be described by using graph query languages. The query in
our example (cf. Listing 3, Lines 6 to 7) uses a simplified pseudo
query language to check whether the domain model submitted by
the student as solution contains a property named ’age’ within a
class ’Profile’. In rule-based assessment systems [11], a graph query
language is often used to define rules or constraints, but in these
cases, the language is always part of the technical space of the
assessment system. With the query language’s inclusion in the as-
sessment model rule, the language is now part of the new bridging
technical space described in Figure 2.

The first category’s last attributes (Line 2) can now be described
in detail with information on how the rules query works. First,
the instructor can define custom types, which specify the class of
problems the rule checks. In our example, the instructor defined the
type as ’correct’. This indicates that the query checks if an element in
the solution submitted by a student is defined in away the instructor
defines as correct. The instructor can freely define the types of a rule.
However, in our experience some types commonly used are correct,
alternative, incomplete, error, missing, and info. If the sequence of
rule execution is essential, these standard types can be used to plan
the rules’ execution time. Usually, this is done by executing the
rules first, which checks for a more complete solution. Next, the
instructor can define the scope as either single, global, or group.
In single-scope rules, the query stops on the submitted solution’s
first match and returns the rules feedback. A match is found if the
rules query returns a successful result for a submitted solution’s
element. This scope type also specifies that after a successful match,
all other single-scoped rules with the same target are stopped from
being executed. In the case of the given example, it means that
after the shown rule matches an element in the submitted solution,
all other single rules with the same target ’age:Property’ will not
be executed. An example of such a rule would be a single-scope
rule checking for an alternative (type: alternative) solution for the
same target. This prevents successfully matching elements in the
submitted solution multiple times with multiple rules, searching
for different variations of the same target concept. The scope type
also stops the execution of rules on the previously matched element
in the submitted solution. After a match, the rule of the example
would stop other single-scope rules from trying to match against
the ’age’ element in the submitted solution, for example, other
similar rules searching for the same target type of ’Property’. This
prevents multiple independent rules from matching against the
same element in the target solution. Global-scoped rules apply
to the whole submitted solution. They do not stop the execution
of other rules in any case and can not be blocked by other rules.
Examples of this rule type are info rules checking for mistakes in
conventions or bad practices and sending feedback on any match in

the submitted solution. Finally, group-scoped rules are special rules
that check if a group of other rules is satisfied. A rule that sends
feedback on a missing element in the submitted solution in case all
other rules with the same target fail to match is a prime example of a
group-scope rule. The query of a group-scoped rule only includes a
list of the rule identifiers; if one of these rules is matched, the group-
scoped rule ismatched, too. Inmost circumstances, these three types
should cover the typical rule applications in assessments.

Outside of this attributes, two optional features are supported.
Blocking attributes could be used to fine-tune rules if a rule needs to
operate outside the definition of the three scope types. The attribute
block can be used to define if the rule stops the execution of another
rule on a successful match. The options for this attribute are:

• none The rule does not stop the execution of other rules.
• target The rule does stop the execution of rules with the
same target.

• element The rule does stop the execution of rules trying to
match the element the rule matched against.

• both The rule behaves like the target, and the element option
is activated.

The other attribute called blocked can define if other rules can
stop the rules execution. A rule’s execution can be stopped by
no other rule (none), rules that stop by target (target or both), or
rules that stop by element (element or both). For example, single-
scoped rules, by default, are blocking both and are blocked by both.
Global-scoped rules are blocking none and are blocked by none.
If these two scope types do not fit a rule, instructors can use the
block and blocked attributes to override the scope behavior. The
check attribute, the last one, plays a crucial role in determining rule
matches. It defines whether the rule should be considered matched
if the query successfully returns on an element of the submitted
solution (presence) or if the rule is matched if the query has not
returned successfully even once in the entire solution (absence). The
example (cf. Listing 3) gives an example of a presence rule, which
should match with an element. An example of an absence rule would
be a rule that searches for a design pattern or best practice in the
submitted solution and returns feedback if the pattern is not found.

The third category includes ’feedback’, such as the score rewarded
for matching the rule and a feedback message. The ’documentation’
category, the last one for each rule, provides additional information
about the rule. A description or other documentation data could be
included here as key-value pairs. Examples are version information,
authors, or other details.

Which data available in the rules or assessment model is used,
and how it is used depends highly on the provided functionality of
the targeted assessment system. So, while some systems can not
use all the data provided by the model, the goal of the assessment
model is to provide enough information to be used with most of
the common assessment systems and assessment types. Since the
transformation to the input representation of the targeted system
(cf. Figure 2) is highly dependent on the targeted system features,
the transformation needs to be designed and implementedmanually
once for each targeted system.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Markus Hamann, Sebastian Götz, and Uwe Aßmann

Listing 4: Example rule of the meta-assessment model that
could be used to create the rule from Listing 3. The template
slots could be filledwith data extracted froma solutionmodel
prepared by the instructor.

1 Meta -Rule R_01{
2 type: correct scope: single check: presence
3 query{
4 target: Property
5 query{
6 c:Class -:contains -> p:Property;
7 check{ (p.name == "<target.name >")
8 and (c.name == "<target.container ().name >")}
9 }
10 score: 1
11 feedback: "The concept of '<target.name >' was found and
12 is part of the correct containing concept
13 '<target.container ().name >'."
14 }[
15 "The property '<target.name >' must be part
16 of a class named '<target.container ().name >'."
17 author: "Markus Hamann"
18 diagram{ @startuml
19 class <target.container ().name >{
20 <target.name >
21 }
22 @enduml }
23]

3.4 The Meta-Assessment Model
The meta-assessment model also includes all discussed data

but with some modifications to allow task-specific data to be in-
serted into its meta-rules. To better showcase the usage of a meta-
assessment rule, Listing 4 showcases a meta-rule with simple tem-
plate slots. Together with the expert domain model seen in the
example domain (cf. Figure 1), it could be used to generate the
task-specific assessment rule of Listing 3.

The target plays a pivotal role in the meta-assessment model,
serving as an anchor for the task-specific data. This key feature
allows for the effective integration of task-specific data into the
model. The meta-assessment model only includes the target type,
while the target element is left empty (cf. Listing 4, Line 4). During
the generation process, a task-specific rule is systematically gen-
erated for every task-specific data element corresponding to the
target type. It also forms the target of the assessment model rules
from the task-specific data element’s identifier and the previous
target type (cf. Listing 3, Line 4).

The second difference of the meta-assessment model is the exis-
tence of template slots in the query, feedback message, score, and
documentation fields (cf. Listing 4). The template slots follow the syn-
tax of <target.x>where x is an expression that can be an attribute,
a (self-defined) function, or a chain of both. The starting point for
each expression inside a template slot is the rule’s target, which is
computed as discussed in the previous paragraph. Then, the ele-
ment data will be inserted in the rule through the template slots by
computing the return value of the expression x. A template engine
can be used to do this step. In the example meta-assessment rule,
the expression target.name (Line 11) is computed to the property
name ’age and the expression target.container().name (Line
13) is computed to the name of the containing element ’Profile’.
Naturally, the expression x needs to follow the task-specific in-
put material’s data- and function structure. Also, more powerful
constructs like loops or if-clauses are possible depending on the

template engine. Large amounts of task-specific assessment rules
can so be created from a relatively low amount of meta-assessment
rules by this simple mechanism.

The task-specific data must be provided in a format that can be
used in the template engine. This requirement typically necessitates
the data to be in a structural form, which can include a wide range
of formats such as XML, XMI, JSON, or most programming or
model language data formats. Prime examples of such a format are
model files in the XMI format of the Eclipse Modeling Framework
(EMF). Figure 1 shows the visual representation of a domain model
created with the help of EMF and their meta-language Ecore. An
instructor can utilize such a model as input for the template engine
(cf. Figure 2, process ’Meta-Assessment Evaluator’). This process
will generate the rule of Listing 3 and other similar rules (username,
name, text for Posting and Comment, and description) from the
meta-rule from Listing 4.

Naturally, since the template engine needs to transform material
from the instructor’s technical space, the format of task-specific
material can vary greatly. Template engine implementations or
configurations would be prepared once for common storage formats
like XML, XMI, JSON, or EMF models. At the moment, a prototype
for EMF models is already being successfully tested. For specialized
data formats, an individual implementation of the template engine
or a transformation program to EMF or XML would be needed.

4 Assessing Domain Models with Multiple
Assessment Systems

The next section explains an example currently under evaluation
to show the possibilities of the proposed approach. It follows the
example domain introduced in Section 3.1. In an undergraduate
course for software technology, a large part of the course is ana-
lyzing and designing domain models and other analysis models.
These models follow a subset of the UML meta-model. For example,
technical details and model elements introducing them, such as
interfaces, generic classes, capabilities, and datatypes, are removed
from the meta-model. To help the students prepare for the exams,
multiple older exam tasks for domain models were revisited, and
are prepared as exercise and self-studying material. An infrastruc-
ture in the course already exists for the automatic assessment of
programming exercises. That infrastructure uses an assessment sys-
tem called Artemis [8]. Artemis also allows for the assessment of
modeling tasks, but only in a non- to semi-automatic way [7]. The
instructor can prepare grading instructions for the evaluators that
grade the assessments. These instructions can then quickly assess
an element in the student solution by dragging it onto the element.
The definition of an automatic assessment pipeline in Artemis is
flexible since it employs shell scripts. Therefore, we can exploit this
to easily integrate command-line applications. Thus, an automatic
assessment system for modeling tasks can be integrated.

To support the students and showcase the possibilities of the
approach, we discuss three possible use cases for the assessment of
the domain models:

(1) Automatic Assessment
To enable students to always access a feedback system, like
they are used to in the programming exercises, an automatic
feedback system is used via the exercise pipeline of Artemis.

Towards an Interoperable Model-driven Automated Assessment System for Computer Science Education MODELS Companion ’24, September 22–27, 2024, Linz, Austria

Figure 3: Visual representation of a student solution trying
to recreate the domain model of a simplified domain of a
social network (cf. Figure 1).

(2) Non-Automatic Assessment
Some people see automatic assessment skeptically, e.g., for
hands-on exercises or situations like exams and graded home-
work. For this, Artemis’s non-automatic modeling task
pipeline can be used.

(3) Documentation
For the assessment of paper exams, student questions in
meetings, and similar situations where information about
an assessment is needed, documentation should be provided
to ensure a common grading and assessment schema.

A rule-based validation engine for models is a common choice for
automatic assessment. The requirement is that it can be loaded
and called from the Artemis exercise command-line pipeline. We
chose EVL (Epsilon Validation Language), a scripting language for
model validation from the Epsilon language family [5], because
of its simplicity and low overhead. Listing 1 shows the generated
validation code from the rule shown in Listing 3. The representation
also includes a generated main script to run all validations and
generate an output in JSON format. The main script is then called
by the pipeline if a student solution is available. The assessment
pipeline then returns the results as feedback and a score to the
student via the Artemis user interface.

To showcase this process, we present a hypothetical scenario.
An instructor utilizes a meta-assessment model, including rules like
Listing 4 and the expert solution shown in Figure 1, to create an
assessment model for the task ’social networks’. Listing 3 shows a
rule checking for the existence of the property ’age’ in a student
solution. After generating an EVL script program with validation
rules like Listing 1 out of the assessment model and including it in
the automatic assessment pipeline, the instructor opens the task
for students. Figure 3 shows a student solution trying to recreate
the expert solution of Figure 1. After uploading it to Artemis, the
automatic assessment pipeline using the generated EVL program
assesses the solution and returns the feedback seen in Figure 4. In
the excerpt of the feedback seen in the figure, it can be seen that the
assessment models contain rules for checking the student solution
for correct, alternative, incomplete, and missing elements. It can also
be seen that the student was mostly right about their domain model

Figure 4: Excerpt of the feedback provided by Artemis for
the student solution of Figure 3. The feedback was generated
by a EVL representation of an provided assessment model.

and received a high score. With this feedback, the student can now
continue their work on the task.

Alternatively, student solutions can be assessed manually. The
model assessment system in Artemis works based on a grading
instructions system for evaluators. Here, the student’s solution
is shown to an evaluator. The evaluator can now drag and drop
prepared grading instructions to the student model elements or,
in edge cases, create their own on the fly. The instructions can be
prepared beforehand and are imported for each task by an instructor.
Our approach can be used to generate, from the same assessment
model as the example before, the list of usable instructions for the
evaluators. Listing 2 shows an example of the instructions generated
from rule shown Listing 3. As a further note, Artemis can also use
this process to train a similarity pipeline on the assessments to
achieve a semi-automatic assessment. Standardized instructions
can help to increase the learning speed and results of the training.

Lastly, on most occasions, having documentation for the assess-
ment on hand is advantageous. One occasion could be a student
asking questions about their assessment results. Another would
be giving out a guide for a new evaluator who needs to grade an
exam. Often, the creation of documentation artifacts for assess-
ments is skipped due to time constraints. In that case, Markdown
code can easily be created from the assessment model to create a
new documentation or integrate information into an existing one.

MODELS Companion ’24, September 22–27, 2024, Linz, Austria Markus Hamann, Sebastian Götz, and Uwe Aßmann

The compiled Markdown documentation can then be distributed
to tutors and exam evaluators, increasing the consistency of their
assessments and helping them guide their students.

To prove the usefulness of our approach, we are currently con-
ducting a case study in the context explained at the beginning of
this section. To help the students prepare for the undergraduate
course exams, the course instructors reworked three old exam tasks
into exercise tasks for the automatic pipeline of Artemis. Students
of undergraduate courses often struggle to use common UML mod-
eling tools while limiting themselves to the reduced feature set
of domain models. To resolve that problem, a custom modeling
editor was designed and distributed to the course students. It uses
a domain model meta-model defined in Ecore and allows the stu-
dents to create domain models natively (cf. Figure 3). These models
are stored in the EMF XMI format. As task-specific data, the in-
structor provides an expert solution designed on the given domain
description. Since the editor for domain models is already available,
instructors reuse it to create expert solution models. Figure 1 is an
example of such an expert solution model. The case study uses a
meta-assessment model of 80 rules. The meta-assessment evaluator
(cf. Figure 2) generates approximately 250-300 assessment rules for
the assessment model per task. This number is enough to cover
the task’s solution space without the need for manually generated
assessment rules. These generated rules define checks for correct,
alternative, incomplete, missing, and info solutions for each element
in the student model based on each element in the task-specific
expert solution. Also, a grading schema for domain models is pro-
vided to ensure consistent scoring and feedback on all tasks. The
main focus of the case study lies in Artemis’s automatic pipeline,
which is designed as mentioned in the paragraph on the rule-based
validation engine earlier in this section. Further publications will
present the case study’s results and the whole technological stack
implemented for it.

5 Conclusion
The automatic assessment of tasks in computer science education
is still an active research topic. With the still-rising number of stu-
dents enrolled in universities each year, new forms of education
support are developed constantly. However, the research often re-
sults in new assessment systems with their own technology stack.
In contrast, due to the resources needed to create assessment tasks,
instructors often strive to stick to one technology stack. This work
proposes a new model-driven approach to separate and bridge the
changing technical space of the assessment systems and the techni-
cal space of instructors. Separating the two technical spaces allows
each one to vary without interfering with the other, facilitating
reuse and the buildup of open resource databases. The work pro-
poses the use of an assessment model as a bridging technology.
This model holds all the information required for an assessment
task in a technologically independent way. The model can then be
used to generate technology-specific data sets for targeted assess-
ment systems. The instructors can use their technological stack to
fill the assessment model in the bridging technical space. Also, a
meta-assessment model was described that can be used to generate
task-specific assessment rules from common task-unspecific meta-
rules to help with the creation of a complete assessment model. An

example of the assessment of domain models was given to show-
case the usage of the approach. Here, the assessment systems, an
automatic rule-based assessment, a manual assessment via grading
instructions, and assessment documentation for other use cases are
discussed. The assessment model could be used to provide these
assessment systems with assessment data using their data repre-
sentation. We plan to provide details on the complete example
in connection with the full implementation and the results of an
ongoing case study in a future publication.

Acknowledgments
The European Social Fund (ESF Plus) and the German Federal
State of Saxony have funded this work within the project ProSECO
(100687967). This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) - SFB 1608 -
501798263.

References
[1] Jean Bezivin and Ivan Kurtev. 2005. Model-based Technology Integration with

the Technical Space Concept. In Proceedings of the Metainformatics Symposium.
Springer-Verlag, Berlin, Heidelberg.

[2] Weiyi Bian, Omar Alam, and Jorg Kienzle. 2019. Automated Grading of Class
Diagrams. 2019 ACM/IEEE 22nd International Conference on Model Driven En-
gineering Languages and Systems Companion (MODELS-C), 700–709. https:
//doi.org/10.1109/MODELS-C.2019.00106

[3] Younes Boubekeur, Gunter Mussbacher, and Shane McIntosh. 2020. Automatic
assessment of students’ software models using a simple heuristic and machine
learning. Proceedings - 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MODELS-C 2020 - Companion Proceedings,
84–93. https://doi.org/10.1145/3417990.3418741

[4] Kevin Calderon, Nicolás Serrano, Carmen Blanco, and Iñigo Gutierrez. 2024.
Automated and continuous assessment implementation in a programming course.
Computer Applications in Engineering Education 32 (1 2024). Issue 1. https:
//doi.org/10.1002/cae.22681

[5] Eclipse Foundation Inc. 2012. Eclipse Epsilon. https://eclipse.dev/epsilon/,
[Accessed: 01 June 2024].

[6] Rhaydae Jebli, Jaber El Bouhdidi, andMohamed Yassin Chkouri. 2024. A Proposed
Algorithm for Assessing and Grading Automatically Student UML Diagrams.
International Journal of Modern Education and Computer Science 16 (2 2024), 37–46.
Issue 1. https://doi.org/10.5815/ijmecs.2024.01.04

[7] Stephan Krusche. 2022. Semi-Automatic Assessment of Modeling Exercises
using Supervised Machine Learning. Proceedings of the 55th Hawaii International
Conference on System Sciences, 871–880. https://doi.org/10.24251/HICSS.2022.108

[8] Stephan Krusche and Andreas Seitz. 2018. ArTEMiS: An Automatic Assessment
Management System for Interactive Learning. Proceedings of the 49th ACM
Technical Symposium on Computer Science Education, 284–289. https://doi.org/
10.1145/3159450.3159602

[9] Martin Morgenstern and Birgit Demuth. 2018. Continuous Publishing of Online
Programming Assignments with INLOOP. Software Engineering (Workshops),
32–33.

[10] Steffen Staab, Tobias Walter, Gerd Gröner, and Fernando Silva Parreiras. 2010.
Model Driven Engineering with Ontology Technologies. In Reasoning Web.
Semantic Technologies for Software Engineering, 6th International Summer School
2010, Dresden, Germany, August 30 - September 3, 2010. Tutorial Lectures, Uwe
Aßmann, Andreas Bartho, and ChristianWende (Eds.). Lecture Notes in Computer
Science, Vol. 6325. Springer, 62–98. http://dx.doi.org/10.1007/978-3-642-15543-7

[11] Michael Striewe and Michael Goedicke. 2011. Automated checks on UML dia-
grams. Proceedings of the 16th annual joint conference on Innovation and technology
in computer science education, 38–42. https://doi.org/10.1145/1999747.1999761

[12] Pete Thomas, Kevin Waugh, and Neil Smith. 2007. Learning and automatically
assessing graph-based diagrams. Beyond Control: learning technology for the
social network generation. Research Proceedings of the 14th Association for Learning
Technology Conference, 61–74.

[13] Meike Ullrich, Constantin Houy, Tobias Stottrop, Michael Striewe, Brian Willems,
Peter Fettke, Peter Loos, and Andreas Oberweis. 2023. Automated Assessment
of Conceptual Models in Education: A Systematic Literature Review. https:
//doi.org/10.18417/emisa.18.2

[14] Chengguan Xiang, Ying Wang, Qiyun Zhou, and Zhen Yu. 2024. Graph semantic
similarity-based automatic assessment for programming exercises. Scientific
Reports 14 (12 2024). Issue 1. https://doi.org/10.1038/s41598-024-61219-8

https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1145/3417990.3418741
https://doi.org/10.1002/cae.22681
https://doi.org/10.1002/cae.22681
https://eclipse.dev/epsilon/
https://doi.org/10.5815/ijmecs.2024.01.04
https://doi.org/10.24251/HICSS.2022.108
https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1145/3159450.3159602
http://dx.doi.org/10.1007/978-3-642-15543-7
https://doi.org/10.1145/1999747.1999761
https://doi.org/10.18417/emisa.18.2
https://doi.org/10.18417/emisa.18.2
https://doi.org/10.1038/s41598-024-61219-8

	Abstract
	1 Introduction
	2 State of the Art
	3 Assisted Assessment
	3.1 Running Example: Domain Model
	3.2 A Model-driven Pipeline for Assisted Assessment
	3.3 The Assessment Model
	3.4 The Meta-Assessment Model

	4 Assessing Domain Models with Multiple Assessment Systems
	5 Conclusion
	Acknowledgments
	References

