
Optimization of AI Methods on
Distributed-Memory Computing

Architectures

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr. Ing.)

von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Daniel Coquelin

Tag der mündlichen Prüfung: 31. Oktober 2024

Erster Gutachter: Prof. Dr. Achim Streit, Karlsruhe Institute of Technology

Zweiter Gutachter: Prof. Dr. Håkan Grahn, Blekinge Institute of Technology

Declaration

Erklärung zur Selbstständigen Anfertigung der Dissertationsschrift
Hiermit erkläre ich, dass ich die Dissertationsschrift mit dem Titel

Optimization of AI Methods on Distributed-Memory Computing Architectures

selbstständig angefertigt und keine anderen als die angegebenen Quellen

und Hilfsmittel benutzt sowie die wörtlich oder inhaltlich übernommenen

Stellen Stellen als solche kenntlich gemacht und die Regeln zur Sicherung

guter wissenschaftlicher Praxis am Karlsruher Institut für Technologie (KIT)

beachtet habe.

Ort und Datum Daniel Coquelin

i

Abstract

The increasing complexity of deep learning models necessitates innovative

training techniques to overcome the bottlenecks inherent in large-scale dis-

tributed settings. This dissertation addresses these challenges by developing

novel methods that minimize communication overhead and exploit inherent

model redundancies without sacrificing accuracy.

First, I introduce Distributed, Asynchronous, and Selective Optimization

(DASO), a hierarchical data-parallel training approach that strategically in-

tegrates asynchronous communication and stale gradients. DASO reduced

communication overhead while maintaining convergence speed and accu-

racy, effectively mitigating the synchronization bottleneck in traditional

synchronous training, resulting in an average training speedup of more than

25%.

Building upon DASO, I investigate the internal dynamics of neural network

weights during training, revealing an early stabilization of the orthogonal

bases within weight matrices. This key observation motivates the develop-

ment of Orthogonality-Informed, Adaptive Low-Rank (OIALR) training. This

novel method dynamically compresses models by identifying and discard-

ing less informative components of weight matrices, resulting in significant

reductions in model size and training time without compromising accuracy.

Further advancing efficient distributed training, I propose 𝐴𝐵 training, a

hybrid approach that combines the low-rank representations of OIALR with

a hierarchical training scheme inspired by DASO. By training independent

worker subgroups on different components of decomposed weight matrices,

𝐴𝐵 training achieves a 70% reduction in communication volume across all ex-

periments while meeting or exceeding the accuracy of standard synchronous

training.

Finally, I explore the application of hyperparameter optimization (HPO) to

automate the discovery of high-performing model configurations. Using the

iii

Abstract

Propulate framework, I demonstrate its efficacy in efficiently navigating large

search spaces and finding optimal hyperparameters for image classification

tasks on the challenging BigEarthNet dataset.

This dissertation presents a shift towards more efficient, asynchronous, and

low-rank-aware distributed training. By embracing these innovative tech-

niques, my research unlocks new possibilities for scaling deep learning to

increasingly complex models and massive datasets, paving the way for ad-

vancements in a wide range of application domains.

iv

Zusammenfassung

In dieser Dissertation wird eine umfassende Untersuchung der Herausforde-

rungen und Chancen bei der Skalierung des Trainings neuronaler Netze in

verteilten Umgebungen präsentiert. Der Schwerpunkt liegt auf Datenparalle-

lität (DP), dem vorherrschenden Paradigma für das Training im großen Maß-

stab, und dem Kommunikationsengpass, mit dem es aufgrund der häufigen

Synchronisation von Modellparametern konfrontiert ist. Um diesen Engpass

zu beheben, stelle ich drei neue Methoden vor: Distributed Asynchronous and

Selective Optimization (DASO), Orthogonality-Informed Adaptive Low-Rank

(OIALR) Training und AB Training.

DASO nutzt hierarchische Kommunikation und asynchrone Updates, um den

Kommunikationsaufwand erheblich zu reduzieren, das Training zu beschleu-

nigen und gleichzeitig eine konkurrenzfähige Genauigkeit beizubehalten.

Durch theoretische Analysen und empirische Bewertungen demonstrieren

wir dieWirksamkeit von DASO sowohl bei der Bildklassifizierung als auch bei

semantischen Segmentierungsaufgaben. Meine Untersuchung der Gewichts-

dynamik während des Trainings zeigt die Stabilisierung orthogonaler Basen

in frühen Stadien, was zur Entwicklung des Orthogonality-Informed Adaptive

Low-Rank (OIALR) Trainings führt. Diese Methode nutzt die Gewichtsstabili-

sierung, um eine signifikante Modellkomprimierung zu erreichen, ohne die

Leistung zu beeinträchtigen.

AB Training, eine Kulmination unserer Erkenntnisse, kombiniert niedrigdi-

mensionale Darstellungen mit einem hierarchischen Trainingsschema, wo-

durch der Kommunikationsaufwand weiter reduziert und die Generalisierung

in DP verbessert wird. Umfangreiche Experimente auf Standard-Benchmarks

bestätigen die Effektivität von AB Training bei der Erzielung von Komprimie-

rung undGenauigkeit, obwohl Herausforderungen bei extremen Skalierungen

festgestellt werden.

Ich untersuche auch den Einsatz evolutionärer Hyperparameteroptimierung

(HPO) und neuronaler Architektensuche (NAS) zur automatisierten Mo-

v

Zusammenfassung

dellfindung und -optimierung. Ich demonstriere den Erfolg des Propulate-

Frameworks beim Auffinden leistungsstarker Architekturen und Hyperpa-

rameter für die Klassifizierung von Fernerkundungsbildern und betone das

Potenzial automatisierter Methoden, die Modellentwicklung zu beschleuni-

gen.

Meine Ergebnisse erweitern nicht nur das Verständnis der Trainingsdynamik

neuronaler Netze, sondern präsentieren auch praktische Lösungen zur Min-

derung von Kommunikationsengpässen und zur Verbesserung der Modelleffi-

zienz. Durch die Untersuchung asynchroner Updates, niedrigdimensionaler

Darstellungen und hierarchischer Kommunikation eröffne ich neue Wege

für ein skalierbares und effizientes verteiltes Training. Diese Arbeit hat das

Potenzial, den Zugang zu hochleistungsfähigem Deep Learning zu erwei-

tern, wissenschaftliche Entdeckungen zu beschleunigen und Innovationen in

verschiedenen Bereichen voranzutreiben.

Obwohl meine Forschung wichtige Herausforderungen angeht, zeigt sie

auch Bereiche für zukünftige Untersuchungen auf. Die Verfeinerung von

Modellzusammenführungsstrategien, die Entwicklung maßgeschneiderter

Hyperparameter-Zeitpläne und die Erforschung alternativer Update-Mechanismen

sind entscheidend, um das Potenzial von niedrigdimensionalem, verteiltem

Training bei extremen Skalierungen voll auszuschöpfen. Darüber hinaus ist

ein tieferes theoretisches Verständnis des Zusammenspiels zwischen Bat-

chgröße, niedrigdimensionalen Darstellungen und Generalisierung für die

Weiterentwicklung des Feldes unerlässlich. Diese Dissertation trägt zu den

laufenden Bemühungen bei, Deep Learning zugänglicher, effizienter und ska-

lierbarer zu machen, und ermöglicht es Forschern und Praktikern letztendlich,

immer komplexere und wirkungsvollere Probleme im Zeitalter von Big Data

und groß angelegten Modellen anzugehen.

vi

Acknowledgements

I hardly recognize the person who started this whole process. I know that I

wouldn’t be here without my supervisor Achim Streit. Thank you for your

unwavering support, guidance, and encouragement throughout my journey.

Your expertise, insightful feedback, and constructive criticism have been

instrumental in shaping my research.

To Markus Götz, who encouraged me to start this path, and who helped to

guide me along the way, I wish to express my deepest gratitude. Without

your guidance, I would not be here.

I would like to extend my sincere thanks to all of my colleagues at KIT

including: James Kahn, Julian Herold, Katharina Flg̈el, Jörg Mayer, Juan

Pedro Gutiérrez Hermosillo Muriedas, Arvid Weyrauch, Nicholas Kiefer, and

many more. You have made working here a genuine pleasure.

To Oskar Taubert, Jan Debus, Frank Schlegel, Markus Götz, and Charlie Debus,

thank you for the years of laughter. I always look forward to Thursdays.

To Marie Weiel, thank you for all of the conversations when we definitely

were not procrastinating. I dread that reality that soon I wont be able to drop

by your office to chat. To Kalep Phipps, thank you for taking so much time to

read over my drafts and for being a great friend.

I would like to express my heartfelt appreciation to my parents and brother

for their love and support throughout my life. I would also like to thank them

for the encouragement to follow my own path, even though it has led me far

from them. You are always in my thoughts.

To my cats, Milka and Snickers, for sometimes being there when I needed

comfort, if you felt like it. To my partner, Anne, thank you for your love and

support. I am who I am today because of you.

All of you have touched my life in ways that I could never fully express.

Because I knew you, I have been changed for good.

vii

List of Publications

During my doctoral studies, I published the following papers as the first

author, sorted in chronological order:

1. D. Coquelin, R. Sedona, M. Riedel, et al. “Evolutionary Optimization

of Neural Architectures in Remote Sensing Classification Problems”.

In: 2021 IEEE International Geoscience and Remote Sensing Sympo-

sium IGARSS. 2021, pp. 1587–1590. DOI: 10.1109/IGARSS47720.2021.

9554309.

2. D. Coquelin, C. Debus, M. Götz, et al. “Accelerating neural network

training with distributed asynchronous and selective optimization

(DASO)”. en. In: Journal of Big Data 9.1 (Feb. 2022), p. 14. ISSN:

2196-1115. DOI: 10.1186/s40537-021-00556-1.

3. D. Coquelin, B. Rasti, M. Götz, et al. “Hyde: The First Open-Source,

Python-Based, Gpu-Accelerated Hyperspectral Denoising Package”.

In: 2022 12th Workshop on Hyperspectral Imaging and Signal Process-

ing: Evolution in Remote Sensing (WHISPERS). 2022, pp. 1–5. DOI:

10.1109/WHISPERS56178.2022.9955088.

4. D. Coquelin, K. Flügel, M. Weiel, et al. “Harnessing Orthogonality to

Train Low-Rank Neural Networks”. In: ECAI 2024. IOS Press, 2024, pp.

2106–2113. DOI: 10.3233/FAIA240729.

5. D.Coquelin, K. Flügel, M.Weiel, et al. “AB-Training: ACommunication-

Efficient Approach for Distributed Low-Rank Learning”. In: (2024).

URL: https://arxiv.org/abs/2405.01067. arXiv: 2405.01067 [cs.LG].

ix

http://doi.org/10.1109/IGARSS47720.2021. 9554309
http://doi.org/10.1109/IGARSS47720.2021. 9554309
http://doi.org/10.1186/s40537-021-00556-1
http://doi.org/10.1109/WHISPERS56178.2022.9955088
http://doi.org/10.3233/FAIA240729
https://arxiv.org/abs/2405.01067

List of Publications

I have also assisted those around me and contributed to the following works

during my studies:

• M. Götz, C. Debus, D. Coquelin, et al. “HeAT – a Distributed and

GPU-accelerated Tensor Framework for Data Analytics”. In: 2020 IEEE

International Conference on Big Data (Big Data). 2020, pp. 276–287.

DOI: 10.1109/BigData50022.2020.9378050.

• M. Weiel, M. Götz, A. Klein, et al. “Dynamic particle swarm opti-

mization of biomolecular simulation parameters with flexible objective

functions”. In: NatureMachine Intelligence 3.8 (July 2021), pp. 727–734.

ISSN: 2522-5839. DOI: 10.1038/s42256-021-00366-3.

• C. Comito, D. Coquelin, M. Tarnawa, et al. helmholtz-analytics/heat:

Scalable SVD, GSoC‘22 contributions, Docker image, PyTorch 2 sup-

port, AMD GPUs acceleration (v1.3.0); 1.3.0. 2023. DOI: 10.5281/ZEN-

ODO.8060498.

• O. Taubert, M. Weiel, D. Coquelin, et al. “Massively Parallel Genetic

Optimization Through Asynchronous Propagation of Populations”. en.

In: High Performance Computing. Ed. by A. Bhatele, J. Hammond, M.

Baboulin, et al. Cham: Springer Nature Switzerland, 2023, pp. 106–124.

isbn: 978-3-031-32041-5. DOI: 10.1007/978-3-031-32041-5_6.

• O. Taubert, F. von der Lehr, A. Bazarova, et al. “RNA contact prediction

by data efficient deep learning”. In: Communications Biology 6.1 (Sept.

2023). ISSN: 2399-3642. DOI: 10.1038/s42003-023-05244-9.

• K. Flügel, D. Coquelin, M. Weiel, et al. “Feed-Forward Optimiza-

tion With Delayed Feedback for Neural Networks”. In: (2023). DOI:

10.48550/arXiv.2304.13372.

x

http://doi.org/10.1109/BigData50022.2020.9378050
http://doi.org/10.1038/s42256-021-00366-3
http://doi.org/10.5281/ZENODO.8060498
http://doi.org/10.5281/ZENODO.8060498
http://doi.org/10.1007/978-3-031-32041-5_6
http://doi.org/10.1038/s42003-023-05244-9
http://doi.org/10.48550/arXiv.2304.13372

Contents

Declaration . i

Abstract . iii

Zusammenfassung . v

Acknowledgements . vii

List of Publications . ix

List of Figures . xv

List of Tables . xix

Acronyms . xxv

1. Introduction . 1
1.1. Motivation . 1

1.2. Research Questions . 2

1.3. Outline . 3

2. Background . 5
2.1. Notation . 5

2.2. Fundamentals of Artificial Neural Networks 5

2.2.1. Activation Functions 7

2.2.2. Multilayer Perceptrons 8

2.2.3. Convolution Blocks and Convolutional Neural Net-

works . 9

2.2.4. Self-Attention and Transformers 11

2.3. Training a Neural Network 14

2.3.1. Data Partitioning, Generalization, and Overfitting . . 16

2.3.2. Optimization . 17

xi

Contents

2.4. Computing for Neural Networks 20

2.4.1. Frameworks . 23

2.5. Training Neural Networks on Distributed-Memory Architec-

tures . 24

2.5.1. Data Parallelism . 25

2.5.2. Model Parallelism . 30

2.6. Hyperparamter Optimization 32

2.6.1. Neural Architecture Search 34

2.7. Neural Network Compression 35

2.7.1. Pruning . 35

2.7.2. Quantization . 36

2.7.3. Knowledge Distillation 37

2.7.4. Efficient Architecture Design or Learning 38

2.7.5. Low-Rank Approximation 39

3. Data Parallel Training Informed by Network Topology 43
3.1. Related Work . 44

3.2. Distributed Asynchronous and Selective Optimization (DASO) 45

3.2.1. Theoretical Analysis of DASO 49

3.2.2. Implementation . 51

3.3. Experimental Evaluation and Discussion 53

3.3.1. DASO Hyperparameter Study 53

3.3.2. Performance Evaluation 55

3.4. Conclusion and Outlook . 59

4. Orthogonality in Neural Networks 61
4.1. Related Work . 63

4.2. Orthogonality in Neural Network Training 65

4.3. Orthogonality-Informed Adaptive Low-Rank (OIALR) Training 69

4.4. Experimental Evaluation and Discussion 71

4.4.1. Computational environment 72

4.4.2. Naive Testing: Transformers and ResNets 72

4.4.3. Comparison with related low-rank and sparse train-

ing methods . 74

4.4.4. Ablation study on a mini ViT on CIFAR-10 75

4.4.5. Ablation study on Autoformer on ETTm2 77

4.5. Conclusion . 79

xii

Contents

5. Using Low-Rank Representations in Data Parallel Training 81
5.1. Related Work . 82

5.1.1. Distributed Training of Neural Networks 82

5.1.2. Low-Rank Neural Network Training 83

5.2. AB Training . 84

5.3. Experimental Evaluation . 87

5.3.1. Computational Environment 90

5.3.2. Datasets and Models 90

5.3.3. Hyperparameter Considerations 90

5.3.4. Constant Local Batch Size Scaling 91

5.3.5. Constant Global Batch Size Scaling 92

5.4. Discussion . 93

5.5. Conclusion and Outlook . 100

6. Tuning Training Methods by Choosing Better Hyperparameters . . 101
6.1. Background and Related Work 102

6.1.1. Propulate’s Evolutionary HPO 104

6.1.2. BigEarthNet . 105

6.2. Experiments . 107

6.3. Discussion . 109

6.4. Multi-Rank Workers . 112

6.5. Conclusion . 113

7. Conclusion . 117
7.1. Key Findings and Contributions 117

7.2. Revisiting Research Questions 119

7.3. Outlook . 121

Bibliography . 123

A. Appendix . 147
A.1. OIALR Experimental Hyperparameters 147

A.1.1. ImageNet-2012 . 147

A.1.2. Mini-ViT on CIFAR-10 147

A.1.3. AutoFormer on ETTm2 147

A.2. AB Training Experiments . 148

xiii

List of Figures

1.1. The graphical abstract for this thesis. 3

2.1. A simple neural network composed of three linear layers without

bias terms which takes an input of size four and outputs a single

element. 7

2.2. Common Activation Functions. Note the changing scales of the

y-axes. 7

2.3. Visualization of the operations of a typical convolution layer

including the pooling operation at the end. Source: Li et al. [14]. 9

2.4. A basic residual learning building block. Source: He et al. [4]. . . 10

2.5. The original Transformer model architecture. Source: Vaswani

et al. [20]. 13

2.6. An example loss landscape and a possible path which Gradient

Descent (GD) may take to optimize the problem. Source: Hutson

[28]. 18

2.7. Typical distributed-memory cluster computing setup. Storage

not shown, all nodes connect to it independently. 22

2.8. Comparison of Different Parallel Programming Models. The com-

munication channels between workers are not shown. 23

2.9. Data parallel training of a neural network on a single mini-batch

where the aggregation method is an average. Aggregation of

the neural networks can represent either the aggregation of the

gradients or the model parameters. 26

2.10. Top-1 validation error for a ResNet-50 model on ImageNet vs the

global mini-batch size. Error range is two standard deviations.

Maximum learning rate set with a linearly function dependent

on the global batch size. A learning rate warmup of five epochs

was used. Source: Goyal et al. [31] 28

2.11. Tensor Parallelism: Horizontal partitioning of a neural network

across three devices. Each device processes a distinct portion of

the tensor operations within each layer. 31

xv

List of Figures

2.12. Pipeline Parallelism: Vertical partitioning of a neural network

across three devices. Each device processes a sequential segment

of the model. Data flows from left to right, with intermediate

activations and gradients exchanged between devices during

forward and backward passes. 31

2.13. Example workflow for tuning hyperparameters. Source: Avhale

[93] . 33

3.1. An overview of a common node-based computer cluster with 𝑃

nodes and four Graphics Processing Units (GPUs) per node. GPU

colors represent communication group membership. The dashed

lines indicate GPU-to-GPU communication channels. 46

3.2. Schematic of the local synchronization step for a single node with

four GPUs. The gradients from each GPU are averaged and each

GPU’s gradients are set to the result. 47

3.3. Schematic of the global synchronization step performed by the

global communication group consisting of GPU:A on each node.

The network parameters are averaged by each GPU in the group,
and the network parameters of each group member are set to the

result. 48

3.4. Schematic of the local update step to be performed after the global

synchronization step shown in Figure 3.3. The group member

responsible for the global communication, in this case GPU:A,

sends its network parameters to all other node-local GPUs, which

replace the old parameters on those GPUs. 48

3.5. Cycling Flow Process flow diagram of the synchronization steps

during the cycling phase where 𝑡 is the batch number and 𝑆 is

the batches to wait before global synchronization. The weighted

average is calculated as shown in Equation (3.2) 49

3.6. ImageNet ResNet-50 training times and top-1 accuracy results

on the ImageNet dataset when trained with DASO, Horovod, and

the classic algorithm for increasing node counts. Each node has

four GPUs. 57

3.7. Cityscapes Benchmarking results for the selected hierarchical

split level attention network [151] on the Cityscapes dataset with

DASO, Horovod, and the classic DPNN method for increasing

node counts, each with four GPUs. 58

xvi

List of Figures

4.1. A multivariate Gaussian distribution centered at (1,3) with a

standard deviation of 3 in roughly the (0.866, 0.5) direction and of

1 in the orthogonal direction. The arrows represent the principal

axes of this distribution, scaled by their respective spreads, and

originating from the center point. Source: Nicoguaro [156] . . . 62

4.2. Analysis of the orthogonal basis Stability (Equation (4.6)) and

linear mixing Euclidean similarity (Equation (4.7)) for ResNet

and ViT models during ImageNet-2012 training. Both metrics

compare the network’s current parameters with those of five

epochs prior. The x-axis denotes the training epoch, and the

y-axis denotes the network layer (layers nearest the input at

the top). Mean Stability and similarity are shown below each

heatmap, showing that most of the changes to the bases happen

early in training, while the linear mixing experiences the greatest

changes towards the middle or training. 68

4.3. Training of a ViT-B/16 network on ImageNet-2012 over 125 epochs. 73

4.4. Learning rate schedules for baseline and OIALR training for a

mini ViT on CIFAR-10. OIALR training learning rate schedule

determined by HP search. 76

4.5. MSE and the percentage of trainable parameters relative to the

full-rank model for the Autoformer trained on the ETTm2 dataset

using two different prediction lengths in 15min time steps. . . . 78

5.1. Visualization of communication groups and trainable matrices

during𝐴𝐵 training phases. Red shaded regions represent removed

matrix elements. 85

5.2. A UML diagram of the AB training procedure. 88

5.3. Highest top-1 accuracy for each training run on ImageNet-2012

for two network architectures with a constant local batch size of

256. Global batch sizes range from 2,048 to 32,768 in powers of 2.

Error bars are plotted, though not always visible. 91

5.4. Lowest binary cross-entropy (the loss function used during train-

ing) during each training run on ImageNet-2012 for two network

architectures with a constant local batch size of 256. Global batch

sizes range from 2,048 to 32,768 in powers of 2. Error bars are

plotted, though not always visible. 92

5.5. The average compression ratios for 𝐴𝐵 and baseline models

trained on ImageNet-2012 for two network architectures with a

constant local batch size of 256. 93

xvii

List of Figures

5.6. The highest top-1 accuracy for each training run on ImageNet-

2012 for two network architectures with a constant global batch
size of 4,096. Error bars are plotted, though not always visible. . 93

5.7. The compression ratios for 𝐴𝐵 and baseline trained models on

ImageNet-2012 for two network architectures with a constant

global batch size of 4,096. 94

5.8. Scaled interconnect traffic (Equation (5.9)) and job wall-clock

time for the ViT B/16 trained on ImageNet-2012. 94

6.1. Example patches and labels for Sentinel-2 tiles [200]. 106

6.2. The various orders of the activation, batch normalization, and

convolution layers within residual building blocks used in a net-

work. During the neural architecture search (NAS), the activation

function is defined by the hyperparameters [210]. 109

6.3. A simple overview of how Propulate modeled workers when

first implemented, (a), and how the same number of workers and

islands looks when workers each have two accelerators and two

ranks (b). In this diagram, each GPU is controlled by a single,

unique rank. 114

xviii

List of Tables

2.1. Common notations to be used through this thesis. 6

3.1. Parameter study results. 𝐵 is the number of forward-backward

passes between global synchronizations and 𝑆 is the number of

batches to wait for the global synchronization data. 54

3.2. Hyperparameters used to train ResNet-50 using the ImageNet-

2012 dataset. 56

3.3. Hyperparameters used to train the hierarchical multi-scale at-

tention network using the Cityscapes dataset. 58

4.1. Training ViT-B/16 and ResNet-RS 101 on ImageNet-2012 for 125

epochs with a batch size of 1024 with and without OIALR. Hy-

perparameters are identical in both cases. The final percentage

of trainable parameters relative to the baseline model is reported

in the last row. 72

4.2. Comparison of OIALR with various compression methods. ‘Diff.

to baseline’ refers to the difference in top-1 validation (ImageNet-

2012) or test (CIFAR-10) accuracy between the baseline and the

listed methods. Positive values indicate that the listed method

outperforms the traditionally trained network. Absence of data

indicated by ‘—’. For non-OIALR results see [129, 119]. 75

4.3. A mini ViT trained on CIFAR-10. ‘OIALR, tuned’ training runs

used tuned HPs, while ‘OIALR’ used the same HPs as the baseline.

Accuracies and loss values are determined on the test dataset. . 76

4.4. Training of the Autoformer model on the ETTm2 dataset. Base-

line and untuned OIALR hyperparameter (HP)s were the de-

fault parameters from [171]. Tuned OIALR HPs were found via

Propulate. Prediction lengths (PL) in the leftmost column are

in 15min time steps. The optimal value for mean squared error

(MSE) and mean absolute error (MAE) is zero. 77

xix

List of Tables

5.1. Results from the constant local batch size scaling experiments.

Scaled traffic reports the scaled interconnect traffic, as shown in

Equation (5.9). The scaled interconnect traffic is limited to the

bandwidth available on each node, 25GB/s. Compression results

show the final model compression ratio to the full-rank model.

Time to train shows job wall-clock time. Bold values indicate

the most favorable results between 𝐴𝐵, 𝐴𝐵 - No Groups, and

traditional DDP training. 95

5.2. Results from the constant global batch size scaling experiments.

Scaled traffic reports the scaled interconnect traffic, as shown in

Equation (5.9). The scaled interconnect traffic is limited to the

bandwidth available on each node, 25GB/s. Compression results

show the final model compression ratio to the full-rank model.

Time to train shows job wall-clock time. Bold values indicate

the most favorable results between 𝐴𝐵, 𝐴𝐵 - No Groups, and

traditional DDP training. 96

5.3. Comparison of low-rank and pruning methods for ResNet-50 on

ImageNet-2012 and VGG16 on CIFAR10. ’Difference to Baseline’

indicates validation top-1 performance relative to the original

full-rank model in each study, with positive values denoting

improved predictive performance over the baseline. 𝐴𝐵 train-

ing used a global batch size of 4,096 for ImageNet and 1,024 for

CIFAR10, achieving maximum top-1 accuracies of 75.67% and

91.87%, respectively. The estimated communication reduction

(estimated communication reduction (ECR)) is defined by Equa-

tion (5.10). 𝐴𝐵 training’s ECR assumes independent groups do not

utilize the compute system’s interconnect. OIALR’s and DLRT’s

ECR use the compression of the trainable parameters as they report. 98

6.1. Neural architecture and hyperparameter search space. The Acti-

vation Function column shows the activation functions. Figure 6.2

shows detailed activation orders. ELU is the exponential linear

unit, ReLU is the rectified linear unit, SELU is the scaled exponen-

tial linear unit, K-L divergence is the Kullback-Leibler divergence,

and tanh is the hyperbolic tangent. 108

6.2. Class-level 𝐹1 scores for the found network, ResNet-50, and the

best results per class in Sumbul et al. [200]. Class names are

abbreviated; for the full class name, see Sumbul et al. [200]. . . . 110

xx

List of Tables

A.1. Hyperparameters for training networks on ImageNet-2012 with

OIALR. Dataset parameters are referring to the dataset transforms

provided by [1]. LR k-decay is a parameter of the cosine learning

rate decay [2] . 148

A.2. Hyperparameters used for CIFAR10 training runs. General hy-

perparameters used for all runs, OIALR hyperparameters use

for all OIALR runs. Dataset parameters refer to implementation

options in timm [1] . 149

A.3. Propulate search parameters for the mini ViT on CIFAR-10 for

OIALR training. 150

A.4. Hyperparameters used for training AutoFormer models on the

ETTm2 dataset for OIALR training. 150

A.5. The search space and settings for the hyperparameter search for

OIALR using Propulate. 151

A.6. The HPs used for all experiments using 𝐴𝐵 training. Baseline

experiments use the same HPs. 151

A.7. The HPs used for the ResNet-50 scaling experiments in 𝐴𝐵 train-

ing. The constant global batch size experiments are marked with

an asterisk. 151

A.8. The HPs used for the Vision Transformer (ViT)-B/16 scaling

experiments in 𝐴𝐵 training. The constant global batch size ex-

periments are marked with an asterisk. 152

A.9. The HPs used for training VGG16 on CIFAR10 in 𝐴𝐵 training. . 152

xxi

List of Algorithms

1. The OIALR training method 70

2. The 𝐴𝐵 training method. 𝑾 is a parameter of the input model

𝑀 and𝑤𝑜𝑟𝑙𝑑𝑆𝑖𝑧𝑒 is the number of workers used for traditional

data parallel (DP) training, each with an individual ID 𝑝𝑟𝑜𝑐𝐼𝑑 . 89

xxiii

Acronyms

ELU exponential linear unit. 8

GELU gaussian error linear unit. 8

IoU intersection over union. 55, 57

MSE mean square error. 15

ReLU rectified linear unit. 8

AdamW Adam with decoupled weight decay. 20, 87

ASGD asynchronous stochastic gradient descent. 44

ASIC application-specific integrated circuit. 21

BF16 Brain Floating Point. 37

BGD Batch Gradient Descent. 17, 18

CNN convolutional neural network. 10, 30, 36, 67

CP Canonical Polyadic. 40

CPU Central Processing Unit. 21, 53

CUDA compute unified device architecture. 21

DASO Distributed, Asynchronous, and Selective Optimization. iii, xvi,

43, 44, 46, 47, 49–52, 55–59, 61, 83, 117, 120

DDP DistributedDataParallel. 27, 51, 88, 97

DNN deep neural network. 6

DP data parallel. xxiii, 25–27, 29, 30, 43, 45, 81, 82, 84–89, 96, 117,

118, 120

DPNN data parallel neural network. 43–45

ECR estimated communication reduction. xx, 98, 99

ETT Electricity Transformer Temperature. 77

FP16 16-bit floating-point format. 37

FP32 32-bit floating-point format. 36, 37

GD Gradient Descent. xv, 17, 18

GPU Graphics Processing Unit. xvi, xviii, 21, 23, 24, 27, 37, 43, 46–48,

51–59, 88, 89, 91, 92, 112, 114, 148

xxv

Acronyms

Heat Helmholtz Analytics Framework. 51

HP hyperparameter. xix, xxi, 3, 4, 8, 10, 13, 20, 32–34, 53, 57, 69, 71,

73, 74, 77, 85, 88, 101, 103, 113, 119, 148, 151, 152

HPC high-performance computing. 21, 22, 102, 104

HPO hyperparameter optimization. iii, 4, 32–34, 71, 75, 101–104,

111–114, 119

iid independent and identically distributed. 16, 46, 50, 117

LARS Layer-wise Adaptive Rate Scaling. 29

LR learning rate. 17, 19, 28, 29, 55, 56, 58, 76, 87, 148, 151, 152

ML machine learning. 82

MLP Multilayer Perceptron. 8, 9

MP model parallel. 30

MPI Message Passing Interface. 22, 23, 51, 52, 112

MPMD Multiple Program Multiple Data. 22, 23

NAS neural architecture search. xviii, 34, 102, 103, 105, 107–111

NCCL NVIDIA collective communications library. 23

NLP natural language processing. 11, 13

NN neural network. 1, 4–6, 8, 10, 19, 24, 28, 32, 35, 113

ODE Ordinary Differential Equation. 65

OIALR Orthogonality-Informed, Adaptive Low-Rank. iii, xix, xxi, 63,

69–80, 98, 117–119, 148–151

RCCL ROCm communication collectives library. 23

SGD Stochastic Gradient Descent. 17–19, 25, 50, 51, 66, 84, 111

SPMD Single Program Multiple Data. 22, 23

SVD singular value decomposition. 39, 40, 62, 64, 66, 69, 74, 79,

81–83, 85, 90, 97, 118

TPU Tensor Processing Unit. 21

ViT Vision Transformer. xxi, 72, 73, 75, 76, 79, 88, 90, 92, 97, 149,

152

xxvi

1. Introduction

1.1. Motivation

Neural networks (NNs) have emerged as a foundational tool within modern

artificial intelligence, driving breakthroughs across diverse domains including

natural language processing [3], computer vision [4], and scientific model-

ing [5]. Their success stems from their capacity to learn complex representa-

tions from vast amounts of data [6], enabling them to perform a wide array

of tasks with exceptional effectiveness, often surpassing human capabilities

in tasks like handwriting recognition, image classification, and language

understanding [7].

The performance of NNs is intrinsically linked to the size of the model

architecture and the training dataset [8]. As model size and data volume

increase, so do the computational demands, necessitating the adoption of

parallel, distributed-memory training techniques to efficiently utilize avail-

able resources. However, scaling the training process introduces significant

challenges that remain largely unsolved, hindering the development and

deployment of ever-larger and more powerful neural networks.

Different tasks exhibit varying degrees of inherent parallelism. Embarrass-

ingly parallel tasks, such as 3D video rendering, can be divided into indepen-

dent subtasks with minimal communication overhead, potentially leading

to near-linear speedups with increasing resources. Conversely, serial tasks

cannot be divided into independent parts and offer no opportunities for par-

allelization. Neural network training occupies a complex middle ground,

presenting unique challenges to efficient parallelization.

While neural network training can be parallelized in various ways, two pri-

mary approaches dominate: model parallelism and data parallelism. Model

parallelism distributes the operations within a network across multiple de-

vices, requiring communication during both the forward and backward passes.

1

1. Introduction

Although potentially effective for very large models, this approach often

requires a more complex implementation and can result in load-balancing is-

sues. Data parallelism, the more widely adopted approach, replicates identical

model instances across devices, each processing a distinct subset of the data

before aggregating gradients to maintain synchronized model parameters.

While conceptually more straightforward, data parallelism faces challenges

that limit its scalability. Communication overhead, especially the synchro-

nization of large model representations, can become a significant bottleneck

as model size increases. Furthermore, the large batch sizes stemming from

large-scale data parallelism can detrimentally impact a network’s ability to

generalize to unseen data, a phenomenon known as large batch effects [9].

Despite considerable research effort, these challenges persist due to their

inherent complexity. Optimizing communication patterns in distributed train-

ing involves navigating trade-offs between bandwidth usage, latency, and

computational efficiency. Mitigating large batch effects requires a deeper un-

derstanding of the interplay between optimization algorithms, batch size, and

generalization performance, an area where current theoretical understanding

remains incomplete. Moreover, the rapid evolution of neural network archi-

tectures and training methodologies necessitates continuous adaptation and

innovation in distributed training techniques.

Overcoming these computational and algorithmic barriers requires the de-

velopment of innovative distributed training methodologies that prioritize

communication efficiency, optimize resource utilization, and mitigate the

adverse effects of large-scale training. This thesis delves into these challenges,

exploring novel approaches to improve the scalability and efficiency of dis-

tributed neural network training. The key contributions and the structure of

this thesis are visually summarized in Figure 1.1.

1.2. Research Questions

In this thesis I address the following central research questions:

Understanding and Addressing Large Batch Effects: Can novel optimization

methods or training regimes be developed to counteract the detrimen-

tal effects of large batch training, leading to performance gains and

improved generalization in large-scale settings?

2

1.3. Outline

Full-Rank Training
Trainable

Group ATrainable

Frozen

Group B
Trainable

Frozen

Synchronous DP

AB Training 70% reduction

Interconnect traffic while training
1.00.3

Chapter 5

Reducing Communication with AB Training

SVD

 During Training

Chapter 4

Observing Orthogonality during Training

Accelerating Training with DASO
Ti

m
e

to
 T

ra
in

DASO

Synchronous DP

1.0

0.75

GPUs

Batch t

Batch t + 1

Batch t + S

Global Send

Global Recv.

Local Sync.

Local Sync.

Weighted Average

Local Sync.

Local Update

Batch t + ...

Chapter 3

Hyperparameter Optimization with an Island Model Chapter 6

Original Implementation

Island 2

GPU: 3
Worker 3

GPU: 4
Worker 4

GPU: 1
Worker 1

GPU: 2
Worker 2

Island 1

New Implementation

Island 1

GPU: 1
Worker 1

GPU: 2

GPU: 3
Worker 2

GPU: 4

Island 2

GPU: 7
Worker 4

GPU: 8

GPU: 5
Worker 3

GPU: 6

Original Hyperparameters

New HPs 90% reduction

Epochs until convergence
10010

Figure 1.1.: The graphical abstract for this thesis.

Efficiency in Distributed-Memory Training: Can distributed training algorithms

be designed to better balance computational and communication ef-

ficiency while scaling to accommodate the demands of ever-larger

neural networks and datasets?

Exploiting Low-Rank Representations: To what extent can low-rank repre-

sentations reduce the computational and communication requirements

of distributed neural network training?

Distributed Hyperparameter Optimization: New methods come with differ-

ent hyperparameters (HPs). How can the proper hyperparameters

for new methods be found to maximize performance in a distributed

setting?

1.3. Outline

The thesis is structured as follows:

3

1. Introduction

Chapter 2: “Background” introduces the fundamental knowledge for this

work. It includes information about how a neural network is trained

with and without parallelism as well as an introduction into network

compression methods and how hyperparameters are optimized.

Chapter 3: “Data Parallel Training Informed by Network Topology” presents

a hierarchical training method which utilizes the computing cluster’s

network topology to accelerate training without loss of accuracy.

Chapter 4: “Orthogonality in Neural Networks” presents a finding surround-

ing the orthogonal bases of a NN’s weights and how they evolve during

training. After this I show how to use the finding to train low-rank

neural networks which outperform traditional methods.

Chapter 5: “Using Low-Rank Representations in Data Parallel Training” uses

the findings of Chapter 3 and Chapter 4 to train low-rank NNs in

parallel to reduce network traffic without loss of accuracy. Further-

more, it studies large batch effects by analyzing how the low-rank

representations of a network’s weights change during scaling.

Chapter 6: “Tuning Training Methods by Choosing Better Hyperparameters”

demonstrates how to find well-performing HPs for any method using

evolutionary hyperparameter optimization (HPO) and how well the

configurations found can perform.

4

2. Background

2.1. Notation

Throughout this thesis, I will use a standard notation in formulae. Multi-

dimensional tensors will be in capital bold characters, i.e., 𝑨, while vectors
will be italicized bold characters, i.e., 𝒂. For the neural network specific

notation, I will use 𝑥 as a single input and 𝑿 as a set of inputs. A prediction

made by a network, i.e., the output, will be referred to as 𝑦, while the ground

truth is 𝑦. The sets of predictions and ground truths are �̂� and 𝒀 , respectively.
Variables representing individual numbers are italicized and will never be 𝑥

or 𝑦 to avoid confusion. A complete list of standard notations for this thesis

is shown in Table 2.1.

2.2. Fundamentals of Artificial Neural Networks

NNs are a powerful and versatile class of machine learning algorithms loosely

inspired by the structure of biological neural systems [10]. At their core, they

excel at learning complex hierarchical representations [6] through a series of

interconnected computational units called artificial neurons. These neurons

are typically composed of a mathematical function, typically multiplication

with a learned weight, and the optional addition of a learned bias term.

The first artificial neuron was the Perceptron [10]. The Perceptron was

designed to classify an image by taking multiple inputs, weighing them

linearly, and then applying a heavyside step-function to determine whether

the input belonged to a class. The mathematical formulation of the Perceptron

is

𝑧 = ℎ (𝒙 ·𝒘) (2.1)

5

2. Background

Table 2.1.: Common notations to be used through this thesis.

Symbol Meaning

∀ For all

∈ Is an element of

R Set of real numbers

𝑎 A variable

𝒂 A vector

𝑨 A matrix

𝑥 A single data element input to an NN

𝑿 A set of data elements input to an NN stacked on the first dimension

𝑦 A single prediction made by an NN

�̂� A set of predictions made by an NN

𝑦 The ground truth, or label, of a data element NN

𝒀 The set of ground truths for a given 𝑿
𝑤 An individual weight of a neural network

𝑾 A matrix of weights

𝑏 A bias value

𝑧 The activated output of an NN layer

L The loss function

𝜂 The learning rate

𝑼 An orthonormal matrix of left singular vectors∑𝑛
𝑖=1 Summation from 𝑖 = 1 to 𝑛

𝚺 A diagonal matrix of singular values sorted in descending order

𝑽 An orthonormal matrix of right singular values

where ℎ is the heavyside function and 𝒙 ·𝒘 is the dot product of the input

vector and the learned weights. While the Perceptron laid the groundwork

for artificial neural networks, its limitations spurred researchers to explore

more complex architectures.

To construct a neural network, individual neurons are organized into layers,

which are then arranged sequentially. The output of each layer serves as

the input to the subsequent layer, creating a chain-like flow of information.

Figure 2.1 shows a basic NN. deep neural network (DNN)s consist of an input

layer, multiple hidden layers, and an output layer, all computed consecutively.

The depth of a DNN is determined by its number of hidden layers. Nonlin-

earities are often introduced to assist in modeling complex functions. The

structure of DNNs promotes learning increasingly complex features of the

6

2.2. Fundamentals of Artificial Neural Networks

Layer (1)

Layer (3)
Layer (2)

Figure 2.1.: A simple neural network composed of three linear layers without bias terms which

takes an input of size four and outputs a single element.

−10 −5 0 5 10

Input, x

0

5

10

O
ut

pu
t,
f

(x
)

(a) ReLU

−10 −5 0 5 10

Input, x

0.0

0.5

1.0

O
ut

pu
t,
f

(x
)

(b) Sigmoid

−10 −5 0 5 10

Input, x

−1

0

1

O
ut

pu
t,
f

(x
)

(c) Tanh

−10 −5 0 5 10

Input, x

0

5

10

O
ut

pu
t,
f

(x
)

(d) Leaky ReLU

−10 −5 0 5 10

Input, x

0

5

10

O
ut

pu
t,
f

(x
)

(e) ELU

−10 −5 0 5 10

Input, x

0

5

10

O
ut

pu
t,
f

(x
)

(f) Softplus

Figure 2.2.: Common Activation Functions. Note the changing scales of the y-axes.

input data elements. Deep networks are more effective than shallow networks

(those with fewer layers) for specific problems [11].

Deep neural networks have many components. In the following subsections,

I will discuss those most widely used.

2.2.1. Activation Functions

In neural networks, activation functions are applied element-wise to the

output of individual neurons or entire layers. While the Perceptron initially

7

2. Background

employed the Heaviside step function for binary classification, the role of

activation functions has expanded significantly. By introducing non-linearity,

they enable NNs to model complex relationships within data. Without activa-

tion functions, a network would be limited to a simple linear transformation,

severely hindering its representational power.

The most common activation functions include rectified linear unit (ReLU),

exponential linear unit (ELU), gaussian error linear unit (GELU), sigmoid,

and hyperbolic tangent [12]. These functions all behave differently, and the

choice of activation function can greatly effect the network’s performance [13].

Figure 2.2 shows examples of common activation functions.

2.2.2. Multilayer Perceptrons

After the invention of the Perceptron, the field of artificial neural networks

advanced to the Multilayer Perceptron (MLP), a structure composed of se-

quential linear layers (also known as fully connected layers) interwoven with

nonlinear activation functions.

By establishing connections between every neuron in a layer to all neurons in

the preceding layer, they are adept at discerning intricate, global relationships

within input data. Each neuron in a linear layer receives input from all

neurons in the prior layer, enabling the layer’s parameters to concentrate

on capturing global interactions and learning complex mappings across the

entire input space.

The mathematical formulation of a linear layer with a nonlinear activation

starts with the matrix multiplication of the inputs with the weight matrix.

Then, optionally, a bias vector is added before the activation function is

applied. Assuming a single input, 𝒙𝑛 , which has 𝑛 features and an output, �̂�𝑝 ,
with 𝑝 features, this layer takes the form of

𝒛𝑝 = 𝒙𝑛𝑾𝑛 × 𝑝 + 𝒃𝑝 , �̂� = 𝑓 (𝒛) (2.2)

where𝑾𝑛 × 𝑝 is the matrix of the weights, 𝒃𝑝 is the vector of the bias values,

and 𝑓 is the nonlinear activation function. Figure 2.1 shows a simple diagram

of a deep neural network without bias terms.

The most critical HPs for MLPs are:

Output Features: The number of features that will come out of the MLP

8

2.2. Fundamentals of Artificial Neural Networks

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

recognition. Ajmal et al. [16] discussed CNN for image
segmentation. These reviews mentioned above mainly
reviewed the applications of CNN in different scenarios without
considering CNN from a general perspective. Also, due to the
rapid development of CNN, lots of inspiring ideas in this field
have been proposed, but these reviews did not fully cover them.

In this paper, we focus on analyzing and discussing CNN. In
detail, the key contributions of this review are as follows: 1) We
provide a brief overview of CNN, including some basic
building blocks of modern CNN, in which some fascinating
convolution structures and innovations are involved. 2) Some
classic CNN-based models are covered, from LeNet-5, AlexNet
to MobileNet v3 and GhostNet. Innovations of these models are
emphasized to help readers draw some useful experience from
masterpieces. 3) Several representative activation functions,
loss functions, and optimizers are discussed. We reach some
conclusions about them through experiments. 4) Although
applications of two-dimensional convolution are widely used,
one-dimensional and multi-dimensional ones should not be
ignored. Some of typical applications are presented. 5) We raise
several points of view on prospects for CNN. Part of them are
intended to refine existing CNNs, and the others create new
networks from scratch.

We organize the rest of this paper as follows: Section 2 takes
an overview of modern CNN. Section 3 introduces many
representative and classic CNN-based models. We mainly
focus on the innovations of these models, but not all details.
Section 4 discusses some representative activation functions,
loss functions, and optimizers, which can help readers select
them appropriately. Section 5 covers some applications of CNN
from the perspective of different dimensional convolutions.
Section 6 discusses current challenges and several promising
directions or trends of CNN for future work. Section 7
concludes the survey by giving a bird view of our contributions.

II. BRIEF OVERVIEW OF CNN

Convolutional neural network is a kind of feedforward neural
network that is able to extract features from data with
convolution structures. Different from the traditional feature
extraction methods [17], [18], [19] , CNN does not need to
extract features manually. The architecture of CNN is inspired
by visual perception [20]. A biological neuron corresponds to
an artificial neuron; CNN kernels represent different receptors
that can respond to various features; activation functions
simulate the function that only neural electric signals exceeding
a certain threshold can be transmitted to the next neuron. Loss
functions and optimizers are something people invented to
teach the whole CNN system to learn what we expected.
Compared with general artificial neural networks, CNN
possesses many advantages: 1) Local connections. Each neuron
is no longer connected to all neurons of the previous layer, but
only to a small number of neurons, which is effective in
reducing parameters and speed up convergence; 2) Weight
sharing. A group of connections can share the same weights,
which reduces parameters further. 3) Down-sampling
dimensionality reduction. A pooling layer harnesses the
principle of image local correlation to down-sample an image,

which can reduce the amount of data while retaining useful
information. It can also reduce the number of parameters by
removing trivial features. The three appealing characteristics
make CNN become one of the most representative algorithms
in the deep learning field.

To be specific, in order to build a CNN model, four
components are typically needed. Convolution is a pivotal step
for feature extraction. The outputs of convolution can be called
feature maps. When setting a convolution kernel with a certain
size, we will lose information in the border. Hence, padding is
introduced to enlarge the input with zero value, which can
adjust the size indirectly. Besides, for the sake of controlling the
density of convolving, stride is employed. The larger the stride,
the lower the density. After convolution, feature maps consist
of a large number of features that is prone to causing overfitting
problem [21]. As a result, pooling [22] (a.k.a. down-sampling)
is proposed to obviate redundancy, including max pooling and
average pooling. The procedure of a CNN is shown in Fig. 1.

Furthermore, in order for convolution kernels to perceive

larger area, dilated convolution [23] was proposed. A general 3
× 3 convolution kernel is shown in Fig. 2 (a), and a 2-dilated 3
× 3 convolution kernel and a 4-dilated 3 × 3 convolution kernel
are shown in Fig. 2 (b) and (c). Note that there is an empty value
(filling with zero) between each convolution kernel point. Even
though the valid kernel points are still 3 × 3, a 2-dilated
convolution has a 7 × 7 receptive field, and a 4-dilated
convolution has a 15 × 15 receptive field.

As shown in Fig. 3, deformable convolution [23] was

proposed to handle the problem that the shape of objects in the
real world are usually irregular. Deformable convolution is able
to only focus on what they are interested in, making the feature
maps are more representative.

Input

*
1 0 1
0 1 0
1 0 1

Padding Conv kernel

Stride = 2

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 1 0 1

0 0

00

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 00

0 0 0 0 0 00

0

0

0

0

0

0

0

×1 ×1×0

×0 ×0×1

×1 ×1×0
0 1 1 0

1 3 3 1

2 2 2 2

0 1 3 2

3 3

2 3

Max
Pooling

Fig. 1. Procedure of a two-dimensional CNN

(c)

. ..

. ..

. ..

. . .

. . .

. . .
(a)

. . .

. . .

. . .

(b)
Fig. 2. Comparison between general convolution kernel and dilated convolution
kernel. (a) A general 3 × 3 convolution kernel (b) A 2-dilated 3 × 3 convolution
kernel (c) A 4-dilated 3 × 3 convolution kernel

. . .

. . .

. . .

. . .

. . .

. . .

. .

.

.
.

. .
.

.

(a) (b)

Fig. 3. Comparison between general convolution kernel and deformable
convolution kernel. (a) A general 3 × 3 convolution kernel (b) A deformable 3
× 3 convolution kernel

Figure 2.3.: Visualization of the operations of a typical convolution layer including the pooling

operation at the end. Source: Li et al. [14].

Bias: Whether or not to add the learned bias terms to the output features

2.2.3. Convolution Blocks and Convolutional Neural Networks

Since the introduction of the MLP, the convolution (conv) layer has become

a cornerstone of neural networks. Convolution layers are specialized for

extracting spatially localized patterns from data possessing a grid-like topol-

ogy, such as images [15]. They employ learnable filters, known as kernels,

that ‘slide’ over the input, extracting intricate patterns within specific re-

ceptive fields. These filters can detect visually meaningful patterns such as

edges, corners, shapes, or textures, providing a strong foundation for image

classification or object detection tasks [16].

In the two-dimensional case, the output of a convolution layer at position

(𝑖, 𝑗) is

𝑦 (𝑖, 𝑗) = (𝑿 ★ 𝑲) (𝑖, 𝑗) =
𝑞−1∑︁
ℎ=0

𝑟−1∑︁
𝑤=0

𝑿 (𝑖 + ℎ, 𝑗 +𝑤) 𝑲 (ℎ,𝑤) (2.3)

for an input𝑿 and a convolution filter 𝑲𝑞 × 𝑟 . The operation involves element-

wise multiplication between corresponding elements of the filter and the

input, followed by summation over the filter’s receptive field. This process is

repeated for all spatial locations, effectively mapping the input to an output

feature map.

Crucially, the same learned filter, and thus the same set of weights, is applied

at every location in the input, a concept known as weight sharing. This

9

2. Background

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.4.: A basic residual learning building block. Source: He et al. [4].

results in enhanced computational efficiency and robustness when performing

the same task. Moreover, weight sharing instills a degree of translational

invariance, enabling the network to recognize features accurately regardless

of their position within the input – a vital property for computer vision

applications.

A convolutional neural network (CNN) is built with multiple convolution

blocks, commonly composed of convolution layers, normalization layers [17,

18], pooling layers [19], and a residual connection [4]. Pooling operations, e.g.,

max pooling or average pooling, downsample feature maps by aggregating

information over spatial regions, further improving computational efficiency

by reducing memory requirements while introducing robustness to minor

input transformations and distortions. An example of a convolution layer

followed by a max pooling operation is shown in Figure 2.3.

Normalization layers and residual connections, though applicable to various

NN architectures, play a particularly crucial role in the design of modern

CNNs. Normalization layers, like BatchNorm [17] and LayerNorm [18], nor-

malize the inputs to the layer. BatchNorm normalizes across the batch dimen-

sion, while LayerNorm directly estimates the normalization statistics from the

inputs and normalizes all features within each sample. Both of these methods

have learnable affine transform parameters. Residual, or skip, connections,

introduced to CNNs via ResNets [4], provide a path for data to reach the latter

parts of the neural network by skipping layers. A basic network building

block with a residual connection is shown in Figure 2.4.

Convolution layers have several important hyperparameters (HPs):

10

2.2. Fundamentals of Artificial Neural Networks

Kernel Size: The kernel size the filter’s receptive field (e.g., a 3 × 3 filter to
be convolved with the input). Smaller filters emphasize fine-grained,

localized features, while larger filters capture wider-ranging patterns.

Stride: The stride parameter controls the step size by which the filter is

shifted across the input. For example, with a stride of two (see Fig-

ure 2.3), the filter will move over by two elements instead of the default

one. Larger strides decrease output feature map dimensionality and

increase computational efficiency.

Padding: The padding parameter determine how many extra elements, usu-

ally of value zero, are concatenated around the input’s borders impacts

the output’s spatial dimensions and prevents the shrinkage of dimen-

sions with successive convolutions.

Output Channels: The number of output channels determines the depth of

the output feature map. Each output channel results from applying a

distinct filter across all input channels.

2.2.4. Self-Attention and Transformers

The self-attention mechanism [20] has revolutionized deep learning. Initially

designed for natural language processing (NLP), it is now widely applied

across diverse domains. Self-attention, also known as scaled dot-product

attention, operates on input data sequences, where each element (e.g., a word

in a sentence) is represented as a numerical vector, known as an embedding.

Self-attention enables a model to weigh the importance of different elements

in the sequence in relation to each other, facilitating the capture of complex

relationships and dependencies across the entire input, particularly those

spanning long distances.

At the core of self-attention is the computation of attention weights, which

quantify the relevance of each input element to every other element in the

sequence. These weights are derived through a series of transformations and

comparisons.

First, the input embeddings are projected into the query (𝒒), key (𝒌), and
value (𝒗) vector spaces through the learned transformations

𝒒 = 𝒙𝑾𝑞 𝒌 = 𝒙𝑾𝑘 𝒗 = 𝒙𝑾𝑣 (2.4)

11

2. Background

where𝑾𝑞 ,𝑾𝑘 , and𝑾𝑣 are the weight matrices for the query, key, and value

transformations, respectively, and 𝒙 is an input embedding.

After this, a similarity measure quantifies the relevance of each key to the

query. One of the most common choices for this is scaled dot-product atten-

tion [20]:

𝑺 =
𝒒𝒌⊤
√
𝑑

(2.5)

where 𝑑 is the number of elements in 𝒌 and 𝑺 is a matrix of un-normalized

compatibility scores of the query 𝒒 with the key 𝒌 .

Typically, scores are then normalized with softmax normalization to obtain

alignment scores as

𝜶 =
exp (𝒔)∑𝑑
𝑗 exp

(
𝒔 𝑗

) (2.6)

Higher alignment scores, 𝜶 , signify greater relevance of the corresponding

value to the task. Value vectors are weighted according to their alignment

scores and summed to generate the output: 𝒛 =
∑𝑑

𝑗 𝜶 𝑗𝒗 𝑗 . This aggregation
step allows the model to incorporate information from relevant elements

while decreasing the influence of less important ones. The output vector

serves as the output representation for a specific position in the sequence,

enriched with contextual information derived from the entire input [21].

The Transformer architecture [20], depicted in Figure 2.5, is a model structure

that leverages self-attention layers. It has emerged as a leading design for

state-of-the-art deep learning models. It follows an encoder-decoder struc-

ture, where the encoder processes the input sequence into a comprehensive

latent representation, and the decoder generates the corresponding output

sequence.

The Transformer has several vital features. First, it employs multi-head at-

tention, which consists of multiple parallel self-attention mechanisms that

operate independently. This enables each attention head to focus on differ-

ent aspects of the input sequence and potentially learn different concepts,

allowing the model to represent the relationships between elements more

effectively. Second, the Transformer relies on positional encoding [22], a

mechanism that injects information about the position of each element into

the input embeddings. This is crucial because the Transformer processes

all elements in parallel, and positional encoding allows it to maintain the

sequential order of the input.

12

2.2. Fundamentals of Artificial Neural Networks

Figure 2.5.: The original Transformer model architecture. Source: Vaswani et al. [20].

Overall, the Transformer’s combination of multi-head attention, positional

encoding, and self-attention allows it to dynamically weigh the relevance of

different sequence elements, granting it remarkable success in various tasks,

including NLP [23], image recognition [24], and speech processing [25].

The most essential HPs for self-attention and the Transformer are:

Number of Attention Heads: This defines the number of parallel attention

mechanisms, allowing the model to simultaneously focus on different

aspects of the input.

Size of the Embedding Dimension: This defines the dimensionality of the in-

put embeddings and the internal representations used in the attention

mechanism.

13

2. Background

2.3. Training a Neural Network

Neural networks are initialized with randomweights and are typically trained

using iterative, gradient-based optimization techniques. These gradients

quantify the impact of each weight on the network’s output or prediction. To

compute these gradients, one typically leverages backpropagation [26], an

application of the chain rule which propagates error information backward

from the output layer to the input layer.

To illustrate the mechanics of backpropagation, let us consider a simple

network comprising 𝐿 linear layers, akin to the structure depicted in Fig-

ure 2.1, with a continuous output. For this example, I will use the following

notation:

• 𝑤
(𝑙)
𝑗𝑘
: The weight connecting the 𝑗 th neuron in layer 𝑙 − 1 to the 𝑘 th

neuron in layer 𝑙 .

• 𝑏
(𝑙)
𝑘

: The bias of the 𝑘 th neuron in layer 𝑙 .

• 𝑎
(𝑙)
𝑘

: The activated output of the 𝑘 th neuron in layer 𝑙 .

• 𝑧
(𝑙)
𝑘

: The weighted sum of the inputs to the 𝑘 th neuron in layer 𝑙 before

applying the activation function.

• L: The loss function that quantifies the difference between the pre-

dicted output 𝑦 and the ground truth 𝑦.

In the forward pass, an input data element 𝑥 is propagated through the

network. For every neuron 𝑘 , each layer 𝑙 performs the computation

𝑧
(𝑙)
𝑘

=
∑︁
𝑗

𝑤
(𝑙)
𝑗𝑘
𝑎
(𝑙−1)
𝑗
+ 𝑏 (𝑙)

𝑘
where 𝑎

(𝑙)
𝑘

= 𝑓

(
𝑧
(𝑙)
𝑘

)
(2.7)

where 𝑓 is the activation function. For the first layer, 𝑎
(𝑙−1)
𝑗

is the input 𝑥 𝑗 . In

this example, I will assume that the last layer has no activation function. This

process continues until the last layer yields the predicted output𝑦 = 𝑧
(𝐿)
𝑘

. The

predicted output is then compared to the ground truth by the loss function

L.

To optimize a network using a gradient-based method to improve the predic-

tion quality, one must know how sensitive a prediction is to changes in each

14

2.3. Training a Neural Network

weight. Mathematically, this is represented as the partial derivative of the

loss function with respect to the individual weight,
𝜕L
𝜕𝑤𝑗𝑘

.

For the output layer, this is relatively straightforward. Using the chain rule,

we can find
𝜕L
𝜕𝑤
(𝑙)
𝑗𝑘

as

𝜕L
𝜕𝑤
(𝑙)
𝑗𝑘

=
𝜕L
𝜕𝑦

𝜕𝑦

𝜕𝑤
(𝐿)
𝑗𝑘

(2.8)

The derivative of the loss function defines the rate of change of the loss with

respect to the output. For example, with the mean square error (MSE) loss,

formulated as
1

𝑛

∑𝑛
𝑖=1 (𝒚𝑖 −𝒚𝑖)2 where 𝑛 is the number of predictions, 𝒚 is a

vector of the ground truths, and �̂� is a vector of predictions, this is

𝜕L
𝜕𝑦

= 𝛿
(𝐿)
𝑘

= (𝑦 − 𝑦) · 𝑓 ′ (𝑧 (𝐿)
𝑘
) (2.9)

The rate of change of the output with respect to the weights, the second term

in Equation (2.8), is the output of the previous layer or

𝜕𝑦

𝜕𝑤
(𝐿)
𝑗𝑘

= 𝑎
(𝐿−1)
𝑗

(2.10)

Putting this together, the gradients for the output layer using the MSE loss

function are

𝜕L
𝜕𝑤
(𝑙)
𝑗𝑘

= (𝑦 − 𝑦) · 𝑓 ′ (𝑦) · 𝑎 (𝐿−1)
𝑗

(2.11)

For the other layers of the network, the calculation changes slightly. Equa-

tion (2.8) becomes

𝜕L
𝜕𝑤
(𝑙)
𝑗𝑘

=
𝜕L

𝜕𝑧
(𝑙+1)
𝑘

𝜕𝑧
(𝑙+1)
𝑘

𝜕𝑤
(𝑙)
𝑗𝑘

(2.12)

where
𝜕L
𝜕𝑧
(𝑙)
𝑘

is how much a small change in the output of a neuron 𝑘 in layer 𝑙

would change the loss value and

𝜕𝑧
(𝑙)
𝑘

𝜕𝑤
(𝑙)
𝑗𝑘

captures how changes to the weight

𝑤
(𝑙)
𝑗𝑘

influence the output of the neuron 𝑘 .

15

2. Background

Using the chain rule and some substitutions, we can redefine Equation (2.12)

as

𝜕L
𝜕𝑤
(𝑙)
𝑗𝑘

=
𝜕L

𝜕𝑎
(𝑙+1)
𝑘

𝜕𝑎
(𝑙+1)
𝑘

𝜕𝑧
(𝑙+1)
𝑘

· 𝑎𝑙
𝑘
=

𝜕L
𝜕𝑎
(𝑙+1)
𝑘

𝑓 ′
(
𝑧
(𝑙+1)
𝑘

)
· 𝑎𝑙

𝑘
(2.13)

Using this, the gradients for the weights of layer 𝑙 can be found once the

gradients for the layer 𝑙 + 1 are found. Therefore, to calculate all the gradients,
one must move backward through the network and propagate the gradients

until the first layer, hence the name backpropagation. Although the gradients

represent how much a weight affects the loss function and in which direction

the weight should be adjusted to change the loss, it does not indicate how

much the weight should be changed to improve network performance.

2.3.1. Data Partitioning, Generalization, and Overfitting

A fundamental assumption in machine learning is the independent and iden-

tically distributed (iid) assumption. It posits that each data point in a dataset

is drawn independently from the same underlying probability distribution. In

practice, it is often assumed that a finite dataset provides a reasonably good

approximation of this true distribution, allowing us to treat the samples as

approximately iid.

Dataset partitioning is crucial to promoting generalization. Under the iid

assumption, the data elements which compose the training set can be con-

sidered representative samples of the underlying data distribution. This set

is directly used for model optimization. A validation set, disjoint from the

training set, is employed during training to periodically assess the model’s

performance on unseen data, quantifying how well the model has learned

generalizable patterns. Finally, a held-out test set provides an unbiased eval-

uation of the fully trained model, offering a more realistic estimate of its

expected performance in real-world deployment.

During model training, gradients guide the model towards a minima in the

loss landscape, ideally corresponding to high predictive accuracy. However,

given the substantial capacity of modern neural networks, models can eas-

ily overfit, memorizing the training data instead of learning generalizable

patterns. Overfitting occurs when a model becomes excessively specialized

to the training data, leading to poor generalization. A growing disparity

16

2.3. Training a Neural Network

between training and validation performance during training is a standard

indicator of overfitting. Achieving strong generalization is paramount for

models to have real-world impacts.

2.3.2. Optimization

Optimization algorithms aim to efficiently traverse an objective function’s

landscape to determine a configuration that minimizes the objective function.

In neural networks, the objective function is typically referred to as the

loss function. This is primarily due to their robustness to high-dimensional

problems, something with which other methods struggle [27].

Gradient Descent (GD) is a widely used iterative optimization algorithm that

aims to minimize a function by moving in the direction of the steepest descent,

shown in Figure 2.6, as indicated by the negative gradient. In the context of

neural networks, Gradient Descent (GD) is employed to update the model’s

trainable parameters in order to reduce the loss function. There are three

primary methods of GD: Batch Gradient Descent (BGD), Stochastic Gradient

Descent (SGD), and Mini-batch SGD.

In BGD, gradients are computed using the entire dataset. While this guaran-

tees convergence to the global minimum for convex functions, the computa-

tional cost of calculating gradients over the entire training set before each

weight update can be prohibitive. Additionally, BGD’s reliance on the full

training dataset makes it susceptible to overfitting, where the model achieves

high accuracy on training data but performs poorly on unseen validation and

test data.

SGD [29] updates model weights using gradients computed from a single,

randomly selected data point. While SGD often necessitates more iterations

due to the inherent noise in these updates, it offers superior computational

efficiency compared to BGD by eliminating the need to process the entire

dataset before each weight update.

Formally, SGD updates a weight𝑤𝑡 at a time in training 𝑡 as

𝑤𝑡+1 = 𝑤𝑡 − 𝜂∇𝑤L (𝑦,𝑦) (2.14)

where 𝜂 is the learning rate (LR), a hyperparameter governing the magnitude

of update steps, ∇𝑤𝑡
L (𝑦,𝑦) is the gradient of the loss functionL with respect

17

2. Background

Figure 2.6.: An example loss landscape and a possible path which GD may take to optimize the

problem. Source: Hutson [28].

to𝑤 , 𝑦 and 𝑦 are the network’s prediction and the ground truth respectively.

The magnitude of a weight’s gradient indicates the sensitivity of the loss

function to changes in that parameter. A positive gradient indicates that

increasing the parameter’s value should increase the loss, and vice versa for

a negative gradient [29].

Mini-batch Stochastic Gradient Descent (SGD) is a foundational optimization

algorithm widely used for training neural networks. It strikes a balance

between BGD and SGD. In mini-batch SGD, gradients are computed using a

randomly selected subset of the training data, referred to as a mini-batch or

simply batch. This approach offers improved stability compared to traditional

SGD and enhanced computational efficiency compared to BGD. Mini-batch

SGD updates a given weight as

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝐵

𝐵∑︁
𝑖=1

∇𝑤𝑡
L𝑖 (𝑦𝑡 , 𝑦𝑡) , (2.15)

where 𝐵 is the number of data elements in the batch.

Mini-batch SGD offers several advantages over single-element SGD. Modern

hardware and deep learning frameworks are highly optimized for parallelized

computations, and mini-batch SGD effectively leverages this, as the network

performs the same operations for each data element independently for signif-

icant speed gains. Additionally, while gradient estimates over batches exhibit

less noise than single examples, a moderate level of noise can actually help es-

cape shallow local minima and improve convergence [30]. The batch size thus

acts as a hyperparameter influencing both the optimization process and the

18

2.3. Training a Neural Network

model’s generalization behavior, providing a tool for balancing convergence

speed and regularization.

In this thesis, and in the NN community at large, mini-batch SGD is frequently

referred to as simply SGD.

The learning rate (LR) is a critical hyperparameter in the optimization process.

As the relative importance of individual parameters can vary depending on

the input data, an excessively high LR can lead to divergence, while an overly

small LR may result in slow convergence or premature stagnation in local

minima. Learning rate schedulers introduce dynamism to the LR throughout

the training process. A common strategy involves initializing the LR with a

relatively high value to facilitate rapid initial progress, followed by a gradual

reduction over time [31]. This allows the network to explore more broadly

early in training while later focusing on fine-tuning solutions within the

discovered region.

Momentum [32] is a technique commonly utilized with SGD to accelerate

convergence and overcome local minima. It modifies the update rule as

follows:

𝑣𝑡+1 = 𝛽𝑣𝑡 + (1 − 𝛽) ∇𝑤𝑡
L (𝑦𝑡 , 𝑦𝑡) (2.16)

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑣𝑡+1 (2.17)

where 𝑣𝑡 represents the accumulated momentum at iteration 𝑡 , and 𝛽 is

a hyperparameter. The gradients of previous iterations thus have an ex-

ponentially decaying effect on the most current update. This mechanism

introduces a degree of inertia, damping oscillations and potentially enabling

faster progress.

Weight decay [33] is a regularization strategy to prevent overfitting and

improve generalization. It introduces a penalty term into the update rule

which punishes larger weights:

𝑤𝑡+1 = (1 − 𝜆)𝑤𝑡 − 𝜂∇𝑤𝑡
L (𝑦𝑡 , 𝑦𝑡) (2.18)

where 𝜆 is a hyperparameter controlling the strength of the regularization.

Intuitively, weight decay favors simpler solutions by promoting weight magni-

tudes close to zero unless strong gradients from the data indicate otherwise.

SGD exhibits limitations stemming from its sensitivity to the LR and its

uniform update policy. Finding an optimal learning rate schedule can demand

19

2. Background

extensive experimentation. Additionally, a global learning rate may be sub-

optimal in scenarios with a high degree of feature frequency imbalance or

when the loss landscape exhibits significant anisotropies.

Adaptive optimizers have emerged to address these issues. The most famous

of these is the Adam [34] optimizer. Shortly after its introduction, Adam

with decoupled weight decay (AdamW) [35] was released. AdamWmaintains

distinct learning rates for each weight, dynamically adjusting them based on

the history of gradients. Much like momentum, AdamW incorporates expo-

nential averaging of past gradients, potentially speeding up convergence [36].

It also leverages information approximating the second moment of gradients,

enabling adaptive scaling of updates to handle varying parameter magnitudes

better. The update rule for AdamW is

𝑔𝑡+1 = ∇𝑤𝑡
L (𝑦𝑡 , 𝑦𝑡)

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1) 𝑔𝑡+1 𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2) 𝑔2𝑡+1
�̂�𝑡+1 =𝑚𝑡+1/

(
1 − 𝛽𝑡+1

1

)
𝑣𝑡+1 = 𝑣𝑡+1/

(
1 − 𝛽𝑡+1

2

)
𝑤𝑡+1 = 𝑤𝑡 −

𝜂𝑡�̂�𝑡+1(√
𝑣𝑡+1 + 𝜖

) + 𝛾𝑤𝑡

where 𝜂𝑡 is the learning rate at a given iteration 𝑡 of training, 𝛾 is the weight

decay HP, and 𝛽1 and 𝛽2 are HPs of the optimization algorithm determining

the decay rates of the moving averages 𝑚 and 𝑣 . To optimize a network

effectively, AdamW maintains an optimizer state, which tracks the𝑚 and 𝑣

throughout training. Multiple applications within this thesis use the AdamW

optimizer.

Despite the advancements offered by adaptive optimizers, there is no uni-

versally optimal optimizer. Factors influencing the best choice include the

dataset’s size, feature distributions, and inherent noise or anisotropy. The

network’s architecture (depth, width, and choice of nonlinearities) also plays

a role. Considerations about computational resources are essential, as some

optimizers have higher memory overhead than others, which becomes a

consideration with limited hardware and larger networks.

2.4. Computing for Neural Networks

Even at modest scales, neural networks comprise millions of parameters.

Each forward and backward pass involves numerous tensor operations, pri-

20

2.4. Computing for Neural Networks

marily matrix multiplications and vector-matrix products. These operations

exhibit inherent parallelism, with many element-wise computations being

performed independently. This fine-grained parallelism is well-suited for

modern hardware accelerators like Graphics Processing Unit (GPU)s and

Tensor Processing Unit (TPU)s.

Originally developed for graphics rendering, Graphics Processing Unit (GPU)s

possess thousands of cores optimized for the vector and matrix operations

prevalent in deep learning [37]. Their massively parallel architecture and high

memory bandwidth enable significant performance gains compared to tradi-

tional Central Processing Unit (CPU)s. In 2017, Google introduced the TPU,

an accelerator with custom application-specific integrated circuit (ASIC)s tai-

lored explicitly for tensor computations [38]. Custom ASICs designed for the

specific tensor operations in neural networks are now commonplace in accel-

erators. These accelerators are often optimized for fused multiply-add (FMA)

operations, a fundamental building block in neural network computations,

further enhancing performance gains through vectorization.

Modern data center GPUs incorporate specialized cores for tensor operations,

but efficient task scheduling is crucial to fully harness their computational

power. GPU task schedulers queue operations and optimize execution to

maximize throughput and minimize idle time, ensuring efficient resource

utilization. The compute unified device architecture (CUDA) framework

[39] is the most widely used platform for utilizing GPUs in deep learning,

offering libraries and tools optimized for NVIDIA GPUs. For AMD GPUs, the

open-source ROCm platform [40] provides a similar feature set.

While accelerators can significantly speed up computation on a single ma-

chine, many real-world applications demand computational resources that

surpass the capabilities of a single device. These applications necessitate the

use of parallel distributed-memory systems, where multiple interconnected

computational nodes work together to tackle large tasks.

Each node within a distributed-memory system can be viewed as a stan-

dalone computer with its own processors, memory, and potentially multiple

GPUs. A high-speed interconnect network connects the nodes, facilitating

the exchange of information. Figure 2.7 shows a basic diagram of this. With

sufficient nodes and computer power, the computing cluster becomes an

high-performance computing (HPC) cluster.

21

2. Background

Interconnect

CPU

Node 1

Socket 1 Socket 2

Main Memory

Node-Local SSD

GPU:A

GPU:C

GPU:B

GPU:D

Accelerators

CPU

Node N

Socket 1 Socket 2

Main Memory

Node-Local SSD

GPU:A

GPU:C

GPU:B

GPU:D

Accelerators

Figure 2.7.: Typical distributed-memory cluster computing setup. Storage not shown, all nodes

connect to it independently.

Specialized programming models are crucial to fully exploit the potential of

distributed-memory architectures. The Single Program Multiple Data (SPMD)

paradigm, illustrated in Figure 2.8a, is widely adopted. In Single Program

Multiple Data (SPMD), each processing unit executes the same program on a

distinct subset of the data, simplifying code design and synchronization. In

contrast, the Multiple Program Multiple Data (MPMD) paradigm, depicted in

Figure 2.8c, offers greater flexibility by enabling different workers to specialize

in specific tasks. However, this flexibility may come at the cost of increased

development complexity due to the need for explicit inter-process communi-

cation and coordination [41]. A common implementation of Multiple Program

Multiple Data (MPMD) is the master-worker paradigm, Figure 2.8b, where a

designated master process orchestrates the distribution of tasks to the worker

processes.

The Message Passing Interface (MPI) [42] standard, a staple in the HPC

community since its introduction, is often used to facilitate the efficient usage

of computing clusters. In this standard, the number of parallel workers is

known as the world size and each worker gets a numerical identifier known

as its rank. MPI implementations and bindings exist in several languages, and

22

2.4. Computing for Neural Networks

Data

Worker 1 Worker 2

Worker 4Worker 3

In
st

ru
ct

io
ns

(a) The SPMD model, where all

workers receive all instructions

and a subset of the data.

Data

Master Worker

Worker

Worker

In
st
ru
ct
io
ns

(b) The master-worker MPMD

model, where one worker

distributes the workload to the

others.

In
st

ru
ct

io
ns

Data

Worker 1 Worker 2

Worker 4Worker 3

(c) A general MPMD model,

where each worker receives a

subset of the instructions and a

subset of the data.

Figure 2.8.:Comparison of Different Parallel ProgrammingModels. The communication channels

between workers are not shown.

the nomenclature has permeated nearly all communication frameworks. In

addition to MPI, specialized communication libraries like NVIDIA collective

communications library (NCCL) [43] and ROCm communication collectives

library (RCCL) [44] are optimized for efficient communication between GPUs,

further accelerating distributed training workflows.

Most of the experiments presented in this thesis utilized the distributed-

memory, parallel hybrid supercomputer HoreKa at the Karlsruhe Institute of

Technology Scientific Computing Center [45]. Each node on this system is

equipped with two 38-core Intel Xeon Platinum 8,368 processors at 2.4GHz

base and 3.4GHz maximum turbo frequency, 512GB local memory, a local

960GB NVMe SSD disk, two network adapters, and four NVIDIA A100-40

GPUs with 40GB memory connected via NVLink [46] with 600GB/s. Inter-
node communication uses a low-latency, non-blocking NVIDIA Mellanox

InfiniBand 4X HDR interconnect with 200Gbit/s per port [47].

2.4.1. Frameworks

To facilitate the development and deployment of neural networks, several

powerful software frameworks have emerged. These frameworks offer a

high-level API for GPU computations, which includes a rich ecosystem of

tools, libraries, and abstractions that streamline model definition, training,

evaluation, and deployment. Most importantly, these frameworks provide

automatic differentiation tools to calculate derivatives efficiently. Automatic

differentiation constructs a computational graph representing the flow of

data through the operations in a model [48]. It then applies the chain rule to

23

2. Background

efficiently compute the gradient of the output with respect to each input, see

Section 2.3.

Popular NN frameworks include TensorFlow [49], PyTorch [50], and Keras [51].

The choice of framework typically depends on individual preferences and

specific project requirements.

2.5. Training Neural Networks on
Distributed-Memory Architectures

While the accelerator-based approach works well for small networks and

datasets, many applications, such as large-scale natural language process-

ing [3], high-resolution image recognition [24], and complex scientific simu-

lations [52], necessitate larger models and significantly more training data,

rendering single-GPU training infeasible. This challenge underscores the

critical need for algorithmic parallelism, where the training process is strate-

gically designed to distribute computational work and data across multiple

processing units, whether within a single machine or across a network of

interconnected devices.

Two fundamental principles guide the understanding of how parallelism

can enhance a program’s performance: Amdahl’s Law and Gustafson’s Law.

Amdahl’s Law posits that the potential speedup achievable by optimizing

a specific part of a system is inherently constrained by the proportion of

time that part is actively utilized [53]. In essence, the parts of the system

that necessitate serial execution impose a ceiling on the overall performance

gains attainable through parallelization. This concept is often illustrated

empirically through strong scaling measurements, where the problem size

remains constant while computational resources are increased.

Gustafson’s Law builds upon Amdahl’s Law by considering scenarios where

the execution workload expands in tandem with the availability of computa-

tional resources [54]. This principle underpins the concept of weak scaling

measurements, where the workload per resource is held constant while both

the number of resources and the problem size are increased proportionally.

This section delves into the various forms of algorithmic parallelism com-

monly employed in neural network training, with a particular focus on data

24

2.5. Training Neural Networks on Distributed-Memory Architectures

parallelism, given its widespread adoption and central relevance to the re-

search conducted within this work.

2.5.1. Data Parallelism

Due to its simplicity, data parallel (DP) training has emerged as the dominant

strategy for scaling neural network training [55]. Figure 2.9 shows a diagram

of a standard data parallel training workflow. The model architecture is

replicated across the available workers in the data parallel (DP) paradigm.

Each worker is responsible for processing a disjoint subset of the training

data for each forward-backward pass. However, the model representations

must be the same on all workers when each batch is processed to maintain the

standard mini-batch SGD update formula. Therefore, the gradients are either

aggregated before the optimization step or the model parameters after the

optimization step to maintain a synchronized model. As the synchronization

is typically an average operation, this has the effect of increasing the mini-

batch size by a factor of the number of workers.

The widespread adoption of DP training is due to several factors. First, its

implementation often requires minimal modifications to existing sequential

training code, rendering it a readily accessible solution for practitioners [56].

Second, DP exhibits favorable scalability with respect to dataset size, as

increasing the number of workers directly translates to increased data pro-

cessing capacity, to a certain threshold [55]. Lastly, DP training’s conceptual

simplicity allows it to be applied across a wide spectrum of model archi-

tectures, learning tasks, and hardware architectures, without the need for

intricate task partitioning or specialized communication patterns [4, 24, 57].

Despite its strengths, synchronous DP training suffers a significant drawback:

the synchronization bottleneck. The amount of communication required

to synchronize a model scales with the model’s size and, if not adequately

addressed, the number of workers. This synchronization can cause a commu-

nication bottleneck, becoming a critical limiting factor in achieving optimal

efficiency during training. [58].

Approaches like the Ring Allreduce algorithm [59], implemented in libraries

such as Horovod [60], mitigate this issue by reducing the number of concur-

rent communications. In this scheme, each worker communicates with two

neighbors at each step, unlike the all-to-all approach, where every worker

25

2. Background

Average

Worker 0
Local

mini-batch

Worker 1
Local

mini-batch

Worker 2
Local

mini-batch

Worker 3
Local

mini-batch

Global
mini-batch

Figure 2.9.: Data parallel training of a neural network on a single mini-batch where the ag-

gregation method is an average. Aggregation of the neural networks can represent either the

aggregation of the gradients or the model parameters.

communicates with every other. However, this reduction in per-step com-

munication comes at the cost of introducing additional communication steps.

This tradeoff is more optimal for bandwidth utilization than the all-to-all

communication strategy. However, the overall impact on training efficiency

depends on the specific hardware and network characteristics.

Alleviating this bottleneck is the goal of asynchronous DP methods. These

include centralized and decentralized algorithms [61]. A parameter server

aggregates gradients or model states in centralized methods to optimize

the model. In this architecture, workers operate independently, computing

forward-backward passes on their assigned data subsets. They then send

the resulting gradients to the parameter server, which is responsible for

aggregating these updates and updating the global model parameters accord-

ingly. Before a worker’s next forward-backward pass, it will receive the most

recent model parameters. A parameter server is a common approach for

asynchronous DP training setups [55]. The decoupling of computation and

communication in asynchronous parameter server methods allows for greater

parallelization and significantly reduces waiting times, improving hardware

utilization [62].

However, training with a parameter server is not without its challenges [63].

Since workers operate independently, they may send gradients based on

older, stale versions of the model parameters. The staleness of gradients and

26

2.5. Training Neural Networks on Distributed-Memory Architectures

model parameters can negatively impact convergence, potentially leading to

instability or even divergence in some cases [64].

In decentralized asynchronous methods, workers communicate directly with

other workers. This can lead to improved fault tolerance and resilience to

communication bottlenecks, as well as potentially faster convergence due to

reduced communication overhead [65]. However, ensuring consistent model

updates and managing gradient staleness without a central authority is a chal-

lenge [66]. Various algorithms, such as gossip-based communication [67] and

decentralized optimization [68] techniques, have been proposed to address

these challenges, and ongoing research continues to explore the potential of

decentralized asynchronous DP training for efficient and scalable large-scale

model training.

Despite these challenges, ongoing research into asynchronous methods, show

promise in addressing the communication bottlenecks inherent in large-

scale distributed training. By carefully managing gradient staleness [62] and

leveraging advanced optimization techniques [63], asynchronous DP training

and its variants can further improve training efficiency and scalability.

There are several prominent frameworks and libraries used for data-parallel

training. Horovod [60], an early open-source solution, gained recognition for

its efficient data parallelism implementation and user-friendly interface, lever-

aging the Ring Allreduce algorithm for inter-GPU communication. PyTorch’s

recommended data parallelismmethod is the DistributedDataParallel (DDP)

module [69]. This module provides a convenient and efficient way to paral-

lelize training across multiple workers. DDP automatically handles gradient

synchronization and model parameter updates, simplifying the implementa-

tion of synchronous data parallelism. TensorFlow offers the tf.distribute.Strategy

module, which provides a unified interface for various distributed training

strategies, including synchronous and asynchronous data parallelism [70].

With minimal code changes, researchers can scale their TensorFlow models

across multiple workers.

2.5.1.1. Large Batch Effects

DP training excels at scalability by distributing data across multiple work-

ers. Therefore, the effective batch size in typical synchronous DP training

scales with the number of workers. While larger batches can lead to faster

27

2. Background

64 128 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a
g
e
N

e
t
to

p
-1

 v
a
lid

a
ti
o
n
 e

rr
o
r

Figure 2.10.: Top-1 validation error for a ResNet-50 model on ImageNet vs the global mini-batch

size. Error range is two standard deviations. Maximum learning rate set with a linearly function

dependent on the global batch size. A learning rate warmup of five epochs was used. Source:

Goyal et al. [31]

per-iteration processing, batches which are too large result in poor generaliza-

tion [31]. A model trained on very large batches may achieve a low training

error but struggle to generalize effectively to unseen data. Figure 2.10 shows

how the validation error increases with the batch size. Significantly, where

this effect begins depends on the data, model, and optimizer.

This degradation is rooted in the tendency for models trained with large

batches to converge towards sharp minima in the loss landscape [71, 72].

These sharp minima often represent solutions that have overfit to the training

data, prioritizing the memorization of specific examples over the extraction of

broader, generalizable patterns [71, 73]. Conversely, smaller batch sizes inject

a degree of stochasticity into the optimization process, encouraging conver-

gence towards flatter minima. Empirically, flatter minima are associated with

superior generalization [72, 74].

The adverse impact of large batch sizes has motivated the development of

several mitigation strategies:

Learning Rate Warmup: The most common learning rate schedule starts with

a large learning rate, which then shrinks during training. In an attempt

to avoid sharp minima early in training, a learning rate schedule that

starts with a small LR and gradually increases it was proposed [31].

This approach showed moderate success and was able to increase the

global batch size of training significantly. The learning rate warmup

has since become commonly used when training NNs at all scales.

28

2.5. Training Neural Networks on Distributed-Memory Architectures

Layer-wise Adaptive Rate Scaling (LARS): The LARS algorithm [57] adaptively

adjusts each layer’s LR based on the ratio of weight norms to gradient

norms. This adaptive scaling mitigates the impact of large gradients,

often prevalent during the initial training phases. While learning rate

warmup techniques can also address this issue, layer-wise adaptive

learning rates have successfully improved convergence and stability,

particularly in smaller-scale settings [75].

The LAMB Optimizer: The LAMB optimizer builds upon LARS by incorpo-

rating layer-wise adaptive moments. These moments enhance the

optimizer’s stability and convergence properties, particularly in large-

batch training scenarios [3].

Despite the effectiveness of these mitigation strategies, large batch effects

remain an issue. Further theoretical and experimental investigation is needed

to show the intricate relationship between batch size, gradient averaging, op-

timization algorithms, and generalization behavior in DP training at scale.

2.5.1.2. Specialized Data-Parallel Methods

While traditional data parallel training offers straightforward scalability for

many scenarios, certain situations require specialized approaches to achieve

optimal performance. When individual data samples become too large to

fit within the memory of a single accelerator, as can occur in hyperspectral

imaging [76], video processing [77], or medical imaging [78], traditional

data-parallel methods become infeasible.

Domain-wise data splitting, or domain parallelism, offers an alternative dis-

tribution scheme for such scenarios. By partitioning data along its intrinsic

dimensions (e.g., separating an RGB image into color channels), this approach

enables parallel processing across multiple accelerators. While domain paral-

lelism has shown promise in certain domains [79, 80, 81], it incurs additional

computational and communication overhead during backpropagation. Care-

ful optimization is essential to mitigate these overheads and ensure overall

training efficiency.

Contemporary optimizers, notably those in the Adam family, maintain per-

parameter state tensors that can significantly increase the memory require-

ments of large-scale training. To mitigate this issue and leverage the paral-

lelism inherent in DP, ZeRO [82] distributes the optimization of model layers

29

2. Background

across the workers. Before each forward computation, each worker collects

the current model layers from the other workers. The forward and backward

computations are performed as is typical for DP training. Then, after the

gradients are calculated, each worker calculates the optimization updates

for only the subset of layers for which it is responsible. While effective for

large-scale training, this approach may be less efficient for smaller-scale de-

ployments due to the increased communication-to-computation ratio [83].

A similar strategy is implemented in PyTorch’s FullyShardedDataParallel

module [84].

2.5.2. Model Parallelism

Model performance scales with simultaneous increases in the number of data

elements and model parameters [8]. Data parallelism offers scalability by

distributing data across multiple workers. However, in its most basic form it is

limited to training models that fit in a single device’s memory. Model parallel

(MP) training partitions a model across multiple computational resources

allowing for the training of models with massive parameter counts. Model

parallel training encompasses two primary paradigms: tensor parallelism and

pipeline parallelism [55].

Tensor parallelism, illustrated in Figure 2.11, involves partitioning the ten-

sors and operations within an individual layer across multiple computational

devices. This approach is particularly advantageous for the large-scale ma-

trix operations prevalent in transformer-based architectures and CNNs, as

specific components of these operations, i.e., the attention heads [85] and

convolutional channels or kernels [86], can be parallelized without incur-

ring a sizeable inter-device communication overhead [87, 88]. Specialized

libraries and communication protocols can further enhance the efficiency

of tensor parallelism by optimizing the distribution and synchronization of

tensor fragments.

As depicted in Figure 2.12, pipeline parallelism partitions a model into sequen-

tial stages, each executed by a separate worker. Input data flows sequentially,

necessitating communication only of activations between stages. This allows

for very large internal network states, which are beneficial for massive inputs

or layers. However, varying computational demands across layers can lead

to worker load imbalances. Additionally, forward passes create dependencies

where downstream workers await upstream completion, while backward

30

2.5. Training Neural Networks on Distributed-Memory Architectures

Worker 1

Worker 3

Copy

Individual
Data Item

Worker 2

Data Item

Data Item

Data Item

Figure 2.11.: Tensor Parallelism: Horizontal partitioning of a neural network across three devices.

Each device processes a distinct portion of the tensor operations within each layer.

Worker 1 Worker 3

Individual
Data Item

Worker 2

Figure 2.12.: Pipeline Parallelism: Vertical partitioning of a neural network across three devices.

Each device processes a sequential segment of the model. Data flows from left to right, with

intermediate activations and gradients exchanged between devices during forward and backward

passes.

passes see upstream workers dependent on downstream stages. These depen-

dencies result in “bubbles” of worker idle time, impacting efficiency. While

pipeline parallelism enables the training of massive models, load imbalances

and bubble overheads require careful management and optimization [89].

A significant challenge in model parallelism lies in determining an effective

model partitioning strategy. The goal is to minimize communication overhead

while ensuring a balanced computational load across workers. Striking this

balance can be a non-trivial optimization problem, particularly for complex ar-

chitectures with varying computational demands across layers. Furthermore,

ensuring that the partitioned model retains its functionality and accuracy

can require careful consideration and adaptation of the training algorithm.

31

2. Background

Despite these complexities, various large-scale training scenarios have suc-

cessfully deployed model parallelism [90, 89, 86, 88]. Pipelining implementa-

tions, in particular, have shown promising results by dividing the model into

stages and allowing concurrent execution of different mini-batches across

these stages, thus improving throughput and reducing training time [90].

However, unlike data parallel training, which is often amenable to automa-

tion, model parallelism typically requires tailored solutions based on the

specific network architecture and underlying system configurations [91].

This lack of strong automation can present challenges in terms of develop-

ment and deployment. Nonetheless, specialized libraries and frameworks

such as Megatron-LM [87] and Mesh-TensorFlow [92] provide tools and ab-

stractions to facilitate model parallel implementations, easing the burden

of manually partitioning and coordinating complex model components. In

practice, hybrid parallelism, combining aspects of both data and model paral-

lelism, often provides the most effective solution for training extremely large

neural networks [55].

2.6. Hyperparamter Optimization

Hyperparameters (HPs) are non-learnable configuration settings set before

training begins. HPs encompass a wide variety of settings, including the

learning rate, batch size, weight decay coefficients, choice of optimization

algorithm, degree of data augmentation, and neural network’s architecture. In

contrast to the model’s internal weights and biases, which are learned directly

from the training data, hyperparameters must be set a priori. Identifying

optimal HP configurations is critical, given their substantial impact on final

model performance.

hyperparameter optimization (HPO) aims to discover the optimal configu-

ration of HPs that minimize an objective function. In the context of NN

tuning, this objective function is often the validation loss or other validation

metrics such as the prediction accuracy. The standard HPO cycle, as depicted

in Figure 2.13, involves the iterative training and evaluation of numerous

networks across a diverse range of HP combinations to assess their efficacy.

However, HPO remains computationally demanding and intricate, frequently

necessitating substantial computational resources and sophisticated search

strategies.

32

2.6. Hyperparamter Optimization

Figure 2.13.: Example workflow for tuning hyperparameters. Source: Avhale [93]

The challenge of HPO stems from several factors. First, hyperparameter

spaces are often high-dimensional and non-convex, meaning there can be

nonlinear dependencies between the parameters, and local minima may not

represent the best possible performance [94]. Second, although each HP

combination can be trained independently, training and evaluating each

combination is computationally expensive [95]. Finally, theoretical guidance

for selecting optimal hyperparameters is limited, as their effects can vary

significantly depending on the specific network architecture, dataset, and

optimization method employed [96].

A diverse array of methodologies has emerged to address the challenges

inherent in hyperparameter optimization. Grid search, a technique that

systematically explores the possible combinations of HP values within a

user-defined grid, offers transparency and straightforward implementation.

However, its computational cost scales exponentially with the dimensionality

of the hyperparameter space, limiting its applicability to high-dimensional

problems [97]. Random search tests random HP combinations and provides

a more computationally efficient alternative, often delivering surprisingly

good performance across various scenarios. [98].

33

2. Background

Bayesian optimization, a more sophisticated technique, constructs a proba-

bilistic model of the objective function, most typically model performance,

to guide the selection of promising hyperparameter configurations [99]. By

leveraging prior results and incorporating uncertainty, Bayesian optimiza-

tion can be more sample-efficient than random search, particularly when

evaluations are expensive [97].

Evolutionary optimization [100], particularly genetic algorithms, represents

another promising approach for hyperparameter optimization. Rooted in

the principles of natural selection, genetic algorithms simulate a process

wherein a “population” of candidate hyperparameter configurations is it-

eratively refined. This refinement is achieved through a cycle of selection

(favoring high-performing configurations), crossover (combining aspects of

different configurations), and mutation (introducing random variations). The

inherent diversity maintained by genetic algorithms through mutation can be

advantageous in practical scenarios, and they have outperformed Bayesian

optimization methods [101].

Practitioners often combine these automated search methods with manual

tuning based on domain knowledge and experience. This hybrid approach

leverages the strengths of algorithmic exploration and human intuition to

navigate the complex landscape of hyperparameter optimization.

2.6.1. Neural Architecture Search

HPO typically focuses on optimizing the hyperparameters of a fixed model

architecture to simplify the already complex search space. neural architecture

search (NAS), a subfield of HPO, expands this optimization process to include

the model architecture. This expansion significantly increases the search

space’s complexity due to the vast number of possible architectures and

the intricate interactions between the architectural choices and the training

hyperparameters.

Due to the dependencies of optimization HPs on network architectures, NAS

algorithms must navigate this complex landscape efficiently, often employing

specialized techniques to explore and evaluate different architectures. In

addition, since new architectures often require tailored hyperparameters,

effective NAS is an integral part of the development process to realize the

full potential of novel architectures.

34

2.7. Neural Network Compression

2.7. Neural Network Compression

The increased computation and memory requirements of modern NNs has

spurred the development of numerous compression techniques, broadly cate-

gorized as:

Pruning: Methods that focus on removing weights or neurons within a

model.

Quantization: Methods that aim to reduce the model size or the other tensors

used during training by representing network weights and/or other

tensors with lower bit precision.

Knowledge Distillation: Approaches involving training a smaller “student”

model to mimic a larger, pre-trained “teacher” model, thereby trans-

ferring knowledge while reducing complexity.

Efficient Architecture Design/Learning: Methods that either design specific

model architectures for specific tasks or methods that dynamically

learn a compact and efficient model architecture during training.

Low-Rank Approximation: Techniques that involve replacing the full-rank

weight tensors with lower-rank approximations.

Model compression techniques frequently come with a trade-off in predictive

performance [102]. However, when preserving full model accuracy is critical,

retraining the compressed model on the original dataset can often mitigate

or eliminate any performance degradation arising from the compression

process.

2.7.1. Pruning

Pruning is a widely adopted technique for reducing the size of neural networks

by selectively removing weights. It capitalizes on the over-parameterization

of large networks, where certain weights or neurons contribute minimally to

the overall performance. Pruning can be broadly classified into structured

and unstructured methods [102].

Structured pruning removes specific structures within the network, such

as entire convolutional filters, channels, or even layers. In the context of

35

2. Background

CNNs, studies have revealed that many filters or channels exhibit low acti-

vation magnitudes or minimal impact on the final output [103]. Removing

these redundant structures reduces the model size and directly translates

to fewer computations during inference, leading to tangible speed improve-

ments [104].

Unstructured pruning, in contrast, removes individual weights throughout

the network, regardless of their structural organization. This approach often

results in sparse weight matrices, where many elements are to zero. The

Lottery Ticket Hypothesis, which posits that dense, randomly initialized net-

works contain sparse subnetworks that can achieve comparable performance,

has fueled interest in unstructured pruning [105].

However, unstructured pruning introduces challenges in achieving compu-

tational efficiency. While reducing the number of active parameters, the

resulting sparsity patterns are often irregular, making it challenging to lever-

age optimized sparse matrix operations [106]. When sparse matrix operations

cannot be utilized due to the insufficient implementation of sparse functions

or incompatible sparsity, the inactive parameters are represented with zeros

in the model, and traditional dense operations are used.

Several other pruning methods have been proposed, each with different

strategies for identifying and removing redundant components. Movement

pruning eliminates weights that have exhibited minimal change during train-

ing, suggesting they are less relevant for learning [107]. Sensitivity-based

pruning analyzes the sensitivity of the loss function to weight perturbations

and removes weights with the lowest impact [108].

The effectiveness of pruning often depends on the pruning schedule and the

specific criterion used for selecting elements to remove. Iterative pruning,

where weights are removed iteratively during training, can lead to better

results than one-shot pruning [102]. Additionally, retraining the complete

model architecture can help recover any lost accuracy by allowing the re-

maining weights to compensate for the removed connections.

2.7.2. Quantization

Quantization relies on the observation that neural networks often exhibit

resilience to reduced numerical precision [109]. By representing weights

and activations with lower bit widths than the standard 32-bit floating-point

36

2.7. Neural Network Compression

format (FP32), quantization can significantly reduce a network’s memory

footprint and computational requirements without sacrificing predictive per-

formance [110].

Traditionally, neural networks have been trained using FP32 (single precision)

or 16-bit floating-point format (FP16) (half-precision) arithmetic. However,

recent advances have pushed the boundaries further. Brain Floating Point

(BF16) is a popular 16-bit format for training neural networks that allocates

more bits to the mantissa instead of the exponent (as is done for FP16), as

network weights are not expected to be high values. This bit allocation grants

it a wider dynamic range than traditional FP16. Moreover, mixed precision

training uses both FP32 and lower precision formats during training [111].

This maximizes computational throughput on hardware like GPUs, which

frequently have specialized cores for calculations using reduced bit-lengths

while maintaining model accuracy.

Intriguingly, research has demonstrated that networks can be quantized to

even lower precisions, such as 8-bit integers, or even extreme cases like binary

(1-bit) or ternary (3-bit) representations, with surprisingly little degradation in

performance on specific tasks [112]. These low-bit networks offer substantial

reductions in memory and computation.

Research has also explored quantizing gradients during training to reduce the

network traffic during distributed training. However, the discretization of the

gradients can adversely affect convergence [113]. Sophisticated techniques

like error feedback and gradient scaling have been proposed to mitigate this

noise and maintain training stability [114, 115].

2.7.3. Knowledge Distillation

Knowledge distillation [116] is a model compression technique where a

smaller “student” model is trained to replicate the behavior of a larger, pre-

trained “teacher” model. The student model typically has significantly fewer

parameters than the teacher model, making it more computationally efficient

and more accessible to deploy. The teacher model’s knowledge is transferred

to the student using the teacher’s output probabilities or intermediate repre-

sentations as soft targets during training. This allows the student to learn

from the teacher’s expertise while employing a more compact architecture.

The student model can sometimes surpass the teacher’s performance due to

37

2. Background

improved generalization capabilities [117]. Knowledge distillation has found

widespread application in various domains, particularly in compressing large

language models for faster and more efficient deployment [118].

2.7.4. Efficient Architecture Design or Learning

Efficient architecture design and learning represent multifaceted approaches

to neural network compression. They focus on either crafting a more efficient

model before training, or discovering model structures that are inherently

more efficient in terms of computation and parameter count during training.

These strategies are driven by the recognition that model architecture is

pivotal in determining a model’s computational demands and overall effi-

ciency [119].

Manual design of efficient architectures often involves carefully selecting layer

types, utilizing specialized components or incorporating sparsity-inducing

techniques. For instance, MobileNet models [120] leverage depth-wise sepa-

rable convolutions to drastically reduce parameter count and computational

complexity while maintaining competitive accuracy on image classification

tasks.

Sparse training aims to train efficient neural networks in a sparse paradigm.

This inherent sparsity can substantially reduce memory usage and computa-

tional overhead, especially during inference. However, effectively training

sparse networks requires specialized techniques to ensure convergence and

avoid performance degradation [121].

Rigging the Lottery [119] is a prominent sparse training algorithm that em-

ploys a dynamic pruning and growth strategy. It begins with a randomly

initialized sparse network and iteratively removes a fraction of the weakest

connections while simultaneously growing new connections based on their

gradient magnitudes. This allows the network to explore the space of sparse

architectures during training, potentially leading to highly efficient and per-

formant solutions. However, the training of these models take much longer

than traditional training methods.

Efficient architecture design and learning represent a promising frontier

for neural network compression. By tailoring model structures to specific

tasks and resource constraints or dynamically adapting architectures during

38

2.7. Neural Network Compression

training, the computational costs and memory footprints can substantially

reduce without sacrificing model performance [121].

2.7.5. Low-Rank Approximation

Low-rank approximations play a pivotal role throughout this thesis. To ensure

a solid foundation for subsequent analyses, this section will delve deeper into

their properties and applications. I will consider both tensors, representing

multidimensional data, and matrices, their two-dimensional counterparts.

A tensor is considered low-rank if it can be accurately approximated by a

sum of a small number of rank-one tensors (tensors formed by the outer

product of vectors). Intuitively, low-rank approximation techniques seek

to identify and isolate the most informative components within a tensor,

effectively compressing its essential information content into a more compact

representation. Mathematically, the low-rank approximation for a real matrix

𝑨 of shape 𝑚 ×𝑛 seeks to minimize the Frobenius norm of the difference

between the original matrix and its low-rank approximation:

min | |𝑨 − 𝑩𝑪 | |2𝐹 (2.19)

where 𝑩 and 𝑪 are real matrices of shapes𝑚 × 𝑘 and 𝑘 × 𝑛, respectively, and
𝑘 < min (𝑚,𝑛).

Tensor decomposition methods provide a principled framework for determin-

ing such low-rank approximations. Among these, the matrix decomposition

method singular value decomposition (SVD) is a fundamental technique with

widespread applications. For a matrix 𝑨, SVD yields a factorization:

𝑨𝑚×𝑛 = 𝑼𝑚×𝑘𝚺𝑘×𝑘𝑽
⊤
𝑘×𝑛 (2.20)

where 𝑼 and 𝑽 are orthonormal matrices containing the left and right singular

vectors of 𝑨, respectively, and 𝚺 is a diagonal matrix containing the singular

values. The singular values reflect the importance of the corresponding

singular vectors when reconstructing the original matrix. The combination

of the left singular vectors and the singular values are sometimes referred to

as the principle components.

A low-rank approximation of 𝑨 is obtained by retaining only the top-𝑘 singu-

lar values and associated singular vectors. This approximation captures the

39

2. Background

most significant information while reducing the number of parameters. How-

ever, it is essential to note that if 𝑘 > 𝑚 ·𝑛/(1+𝑚+𝑛), the SVD representation

requires more storage space than the original full-rank matrix.

Low-rank approximation methods are gaining prominence in neural network

compression because they can significantly reduce the model size and com-

putational overhead. The central idea is to replace full-rank weight matrices

within a neural network with their lower-rank approximations, thus reducing

the parameter count without altering the network’s architecture. This not

only leads to more compact models but can also accelerate computations [122].

Additionally, low-rank approximations have been observed to enhance gen-

eralization performance by acting as a form of regularization [123]. However,

these benefits often come at the cost of increased computational complexity

during training, potential accuracy degradation, or both [102].

While SVD is well-suited for matrices, deep learning models often employ

higher-order tensors, such as weight tensors in convolutional layers. Many

methods simply collapse the weight tensors to form a two dimensional rep-

resentation. To extend low-rank approximations to higher-order tensors,

techniques like Canonical Polyadic (CP) decomposition (expressing a tensor

as a sum of rank-one tensors) [124] and Tucker decomposition (represent-

ing a tensor as a core tensor multiplied by factor matrices) [125] can be

employed [126, 125]. Each of these decompositions, as well as collapsing

dimensions, presents distinct trade-offs in expressiveness, computational

complexity, and interpretability, necessitating careful selection based on the

specific application.

The naive approach of directly replacing weight matrices with low-rank

counterparts in pre-trained networks often leads to significant accuracy

degradation [127]. Therefore, low-rank neural networks must be trained

directly in their compressed form to maintain performance. However, this

poses challenges due to the optimization difficulties and potential for per-

formance degradation arising from the constraints imposed by low-rank

representations [128].

Ongoing research seeks to address these challenges through various strategies.

These include methods for selecting appropriate inner ranks for network lay-

ers during training, ranging from empirical heuristics to adaptive approaches

that adjust ranks based on validation performance or other criteria [102]. Ad-

ditionally, specialized optimization algorithms have been developed to handle

the specific optimization constraints of low-rank representations, ensuring

40

2.7. Neural Network Compression

stable and effective training [129]. Careful initialization of low-rank factors

also plays a crucial role in achieving good convergence and performance.

Despite these advancements, current low-rank training methods continue to

grapple with the trade-offs between compression, computational efficiency,

and model accuracy.

41

3. Data Parallel Training Informed
by Network Topology

The content of this chapter is based on:

D. Coquelin, C. Debus, M. Götz, et al. “Accelerating neural network train-

ing with distributed asynchronous and selective optimization (DASO)”.

en. In: Journal of Big Data 9.1 (Feb. 2022), p. 14. ISSN: 2196-1115. DOI:

10.1186/s40537-021-00556-1.

Modern neural networks have consistently demonstrated superior perfor-

mance as their complexity and size increase [4, 20, 8]. Data parallel (DP)

training has emerged as a dominant strategy to effectively train such large

models on massive datasets, distributing data across multiple GPUs to ac-

celerate computation. However, this scaling approach inherently relies on

large batch sizes, which can hinder generalization performance [31, 71], as

discussed in Section 2.5.1.1.

The communication overhead associated with the frequent synchronization

steps required in synchronous DP training further compounds this challenge.

As discussed in Section 2.5, this overhead can become a significant bottleneck,

particularly when scaling to large numbers of GPUs or for clusters without a

high-bandwith, high-speed interconnect.

In this chapter, I introduce Distributed, Asynchronous, and Selective Optimiza-

tion (DASO), a novel algorithm designed to mitigate this communication bot-

tleneck and accelerate data parallel neural network (DPNN) training. DASO

leverages the hierarchical structure of modern computer clusters, where mul-

tiple GPUs are grouped within compute nodes, and employs asynchronous

gradient updates to reduce communication overhead.

The key contributions of this chapter are:

43

http://doi.org/10.1186/s40537-021-00556-1

3. Data Parallel Training Informed by Network Topology

• A detailed presentation of the DASO algorithm, highlighting its hi-

erarchical communication strategy, asynchronous updates with stale

gradients, and the flexibility to synchronize parameters after multiple

batches.

• A thorough parameter study of DASO, providing insights into the

optimal configuration of its key hyperparameters.

• A theoretical analysis of DASO proving convergence.

• An extensive performance evaluation of DASO compared to Horovod

[60] and a traditional synchronous DPNN approach on image classifi-

cation and semantic segmentation tasks.

DASO aims to unlock significant speedup in distributed training scenarios

by reducing the time-consuming global synchronization step, utilizing stale

gradients, and adapting a communication strategy inspired by the underly-

ing cluster topology. DASO represents a promising direction towards more

efficient and scalable training of large-scale neural networks.

3.1. Related Work

When I conducted this research, state-of-the-art approaches included op-

timizing the communication patterns for a specific architecture [55]. One

notable example achieved training times of only 74.7 seconds on the ImageNet

dataset [130]. However, such methods were often highly architecture-specific

and did not generalize well to different network structures [55].

Asynchronous stochastic gradient descent (ASGD) [131, 132] offered an alter-

native approach where individual workers updated parameters without wait-

ing for global synchronization, potentially improving hardware utilization.

However, this introduced the challenge of using stale gradients (gradients

for old model states), which could hinder convergence. Several variants of

ASGD attempted to leverage stale gradients effectively [133] or accelerate

training with delayed parameter server updates [134].

Hierarchical algorithms, which leverage the structure of compute clusters,

were also explored to maximize resource utilization. Methods like Local SGD,

post-local SGD, and hierarchical SGD [135] introduced local and global update

steps but still relied on periodic global synchronization.

44

3.2. Distributed Asynchronous and Selective Optimization (DASO)

Several approaches focused on optimizing the global parameter synchro-

nization operation within MPI-based frameworks, exploring different net-

work topologies [136, 137]. However, these methods remained constrained

by the need for global synchronization after each forward-backward pass.

Horovod [60] emerged as a leading MPI-enabled DPNN framework. It em-

ployed techniques such as tensor fusion and data compression to reduce

communication overhead. While effective, its communication strategies were

primarily designed for synchronous updates.

Since this research was conducted, the field of distributed training has con-

tinued to advance rapidly. Modern approaches have explored techniques like

gradient compression [114] and bucketed communication to further mitigate

communication bottlenecks and improve scalability.

Current state-of-the-art DP training methods predominantly rely on the high-

speed interconnects available in high-end computing clusters and employ a

strategy of bucketing gradients, where communication of the gradients begins

eagerly during the backward pass as soon as a bucket is full. This strategy has

proven effective when high-bandwidth, low-latency communication chan-

nels are available but falters in environments with limited network capacity.

Furthermore, this approach may be unsuitable when gradient information

could potentially expose sensitive data, raising privacy concerns [138].

In scenarioswhere network constraints or privacy requirements are paramount,

recent developments have focused on utilizing stale gradients or model states

to train performant models while minimizing communication overhead [139].

These methods leverage the inherent robustness of neural networks to im-

perfect or delayed updates [140], demonstrating that significant progress can

still be made even with less frequent or less precise communication.

3.2. Distributed Asynchronous and Selective
Optimization (DASO)

The standard synchronous approach to DPNN training involves performing

a forward-backward pass on each worker with its assigned portion of the

distributed batch, followed by a global averaging operation to synchronize

model gradients (see Section 2.5). This averaging step approximates the true

gradient computed over the entire dataset, assuming that each portion of the

45

3. Data Parallel Training Informed by Network Topology

Interconnect Fabric

Node 1
GPU:A

GPU:C

GPU:B

GPU:D

Node P
GPU:A

GPU:C

GPU:B

GPU:D

Figure 3.1.: An overview of a common node-based computer cluster with 𝑃 nodes and four GPUs

per node. GPU colors represent communication group membership. The dashed lines indicate

GPU-to-GPU communication channels.

distributed batch is iid [141]. The traditional update function for distributed

SGD is given by:

𝑤𝑡+1 = 𝑤𝑡 −
𝜂

𝑃

𝑃∑︁
𝑖=1

𝑤𝑖 (3.1)

where 𝑤𝑡+1 is a weight for batch 𝑡 + 1, 𝜂 is the learning rate, and 𝑃 is the

number of processes.

Under iid, I make a further approximation: the average gradients for a subset

of the global minibatch do not significantly differ from those of the complete

minibatch, given that both sets are not dominated by the gradients for a single

data element [142]. This approximation, coupled with the observation that

modern compute clusters often have heterogeneous inter-node and intra-

node communication capabilities, provides an opportunity to reduce com-

munication overhead and alleviate the inherent bottleneck of synchronous

data-parallel training.

Based on these principles, I propose the Distributed, Asynchronous, and

Selective Optimization (DASO) method. DASO departs from the traditional

uniform communication model and employs a hierarchical network model

with two distinct levels: node-local and global networks.

The global network spans all GPUs across all nodes, while the node-local

networks comprise the GPUs within each individual node. The dotted lines

show the node-local communication paths in Figure 3.1. The global network

is further divided into multiple communication groups, each containing a

single GPU from every node, i.e., GPU ‘A’ on node 1 is in a group with the

GPU ‘A’ on all other nodes.

46

3.2. Distributed Asynchronous and Selective Optimization (DASO)

Node X

GPU:A GPU:CGPU:B GPU:D

Local Synchronization

Average

GPU:DGPU:CGPU:BGPU:A

Figure 3.2.: Schematic of the local synchronization step for a single node with four GPUs. The

gradients from each GPU are averaged and each GPU’s gradients are set to the result.

DASO utilizes a multi-step synchronization process. Local synchronization,

shown in Figure 3.2, occurs after each backward pass, averaging the gradients

within the node-local group. Global synchronization, shown in Figure 3.3,

occurs after one or more local synchronizations and involves averaging net-

work parameters among members of a single global group, i.e., all GPU ‘A’s.

This reduces the inter-node communication traffic by a factor equal to the

minimum number of GPUs per node. Following this global step, a local up-

date, shown in Figure 3.4, broadcasts the averaged parameters from the group

member used for global synchronization to all other local group members.

Global synchronization can be performed in either a blocking or non-blocking

fashion. In the former, training is paused during the communication steps,

whereas the latter allows training and communication to occur concurrently.

To mitigate the communication overhead associated with global synchro-

nization, parameters are quantized to a 16-bit floating-point format prior to

transmission, a technique demonstrated to maintain model accuracy while

significantly reducing communication volume [115].

The asynchronous nature of non-blocking communication introduces stale

gradients (updates computed using older parameter values). DASO compen-

sates for this by employing a weighted average of the stale global parameters

(𝑤𝑡) and current local parameters after 𝑆 − 1 steps (𝑤𝑡+𝑆−1):

𝑤𝑡+𝑆 =
2𝑆𝑤𝑙

𝑡+𝑆−1 +
∑𝑃

𝑖=1𝑤
𝑖
𝑡

2𝑆 + 𝑃 (3.2)

47

3. Data Parallel Training Informed by Network Topology

Node 1
GPU:A

GPU:C

GPU:B

GPU:D

Global Synchronization

Node 2

GPU:C

GPU:B

GPU:D

Node P
GPU:A

GPU:C

GPU:B

GPU:D

GPU:A

Node 2

GPU:C

GPU:B

GPU:D

GPU:A

GPU:A

Node 1

GPU:C

GPU:B

GPU:D

GPU:A

Node P

GPU:C

GPU:B

GPU:D

Average

Figure 3.3.: Schematic of the global synchronization step performed by the global communication

group consisting of GPU:A on each node. The network parameters are averaged by each GPU in

the group, and the network parameters of each group member are set to the result.

Node X

GPU:A GPU:CGPU:B GPU:D

Local Update

Broadcast

GPU:A GPU:B GPU:C GPU:D

Figure 3.4.: Schematic of the local update step to be performed after the global synchronization

step shown in Figure 3.3. The group member responsible for the global communication, in this

case GPU:A, sends its network parameters to all other node-local GPUs, which replace the old

parameters on those GPUs.

where 𝑆 is the number of training steps between the sending and receiving

of the global network state, 𝑡 is a total number of training steps, 𝑤𝑙
𝑡+𝑆 is a

weight on GPU 𝑙 after step 𝑡 + 𝑆 , and 𝑃 is the number of GPUs in the global

network. A detailed analysis of this update rule is provided in the following

section.

48

3.2. Distributed Asynchronous and Selective Optimization (DASO)

Batch t

Batch t + 1

Batch t + S

Global Send

Global Recv.

Local Sync.

Local Sync.

Weighted Average

Local Sync.

Local Update

Batch t + ...

Figure 3.5.: Cycling Flow Process flow diagram of the synchronization steps during the cycling

phase where 𝑡 is the batch number and 𝑆 is the batches to wait before global synchronization.

The weighted average is calculated as shown in Equation (3.2)

DASO training comprises three phases: warmup, cycling, and cooldown. The

warmup and cooldown phases employ blocking global synchronizations to

ensure initial stability and final convergence, respectively. The cycling phase,

shown in Figure 3.5, utilizes non-blocking synchronization, with the number

of training steps between global synchronizations (𝐵) and the number of

training steps to wait for global updates (𝑆) dynamically adjusted to optimize

training progress.

3.2.1. Theoretical Analysis of DASO

The following proof of DASO’s global synchronization method is heavily

based on the convergence analysis shown by Bottou, Curtis, and Nocedal

[143] and will demonstrate that the gradients determined with DASO are

bounded.

Proof. Let 𝑋 ⊂ R𝑛 be a known set, and 𝑓 : 𝑋 → R a differentiable, convex,

𝐿-smooth, and unknown function. The stochastic gradient estimator of 𝑓 (𝑥)

49

3. Data Parallel Training Informed by Network Topology

is a function 𝑔(𝑥) for inputs 𝑥 determined by a random variable 𝜁 , such that

E[𝑔(𝑥 ; 𝜁)] = ∇𝑓 (𝑥 : 𝜁). For brevity, I will omit the explicit dependence on 𝜁

moving forward.

In its most basic form, SGD updates a model’s state at step 𝑡 + 1 as 𝑤𝑡+1 =

𝑤𝑡−𝜂𝑔(𝑥𝑡), where𝜂 is the learning rate and𝑤 is the set of network parameters

being optimized.

In practice, minibatch SGD is often used for computational efficiency reasons.

In minibatch SGD, the true stochastic gradient is approximated by averaging

across 𝑚 input items 𝑥𝑖 , i.e. �̃� (𝑥𝑡) = 1

𝑚

∑𝑚
𝑖=1 𝑔(𝑥𝑡,𝑖). The set of network

parameters being optimized𝑤𝑡+1 for minibatch SGD is then

𝑤𝑡+1 = 𝑤𝑡 − 𝜂�̃� (𝑥𝑡) (3.3)

where �̃� (𝑥𝑡) is the estimator of ∇𝑓 (𝑥𝑡).

Let us now consider, that 𝑆 subsequent training steps are performed between

an update to the model’s weights. With this, a weight can be expressed as:

𝑤𝑡+𝑆 = 𝑤𝑡 − 𝜂
𝑆−1∑︁
𝑖=0

�̃� (𝑥𝑡+𝑖) (3.4)

One of the primary assumptions in SGD is that the objective function has

Lipschitz-continuous gradients, leading to:

𝑓 (𝑥𝑡+1) − 𝑓 (𝑥𝑡) ≤ −𝜂∇𝑓 (𝑥𝑡)𝑇 E [𝑔 (𝑥𝑡)] +
1

2

𝜂2𝐿E
[
∥𝑔 (𝑥𝑡)∥22

]
(3.5)

where the Lipschitz constant, 𝐿, is greater than zero. Equation (3.5) implies

that the expected decrease in the objective function, 𝑓 (𝑥), is bounded above,

irrespective of how the stochastic gradients arrived at 𝑥𝑡 [143].

In DASO, the local synchronization step is bound via the same assumptions

as minibatch SGD, so long as the iid assumption is upheld. However, the

non-standard global synchronization step in DASO, which utilizes both local

and global model states, requires further analysis.

DASO’s global synchronization is defined as:

𝑤DASO

𝑡+𝑆 =
2𝑆𝑤𝑙 :𝑡+𝑆−1 +

∑𝑃
𝑖=1𝑤

𝑖
𝑝 :𝑡

2𝑆 + 𝑃 (3.6)

50

3.2. Distributed Asynchronous and Selective Optimization (DASO)

where the 𝑙 and 𝑝 subscripts represent the node-local and global model states,

𝑆 is the number of local update steps before global synchronization, and 𝑃 is

the number of processes.

Similar to Equation (3.3), this can also be represented via the locally and

globally calculated gradients, 𝐺𝑙 (𝑥𝑙 :𝑡) and 𝐺𝑝

(
𝑥𝑝 :𝑡

)
respectively. The global

synchronization function in the gradient representation is as follows:

𝑤DASO

𝑡+𝑆 = 𝑤𝑡 − 𝛼
(
2𝑆

𝑆−1∑︁
𝑘=0

�̃�𝑙 (𝑥𝑙 :𝑡+𝑘) +
𝑃∑︁
𝑖=1

�̃�𝑝

(
𝑥𝑖𝑝 :𝑡

))
(3.7)

where 𝛼 = 𝜂/(2𝑆 + 𝑃). By utilizing this expression, the standard SGD update

rule, and the fact that the updates between 𝑡 and 𝑆 are local synchronizations

which take the form of repeated minibatch updates, we can derive the globally

calculated gradients to be:

�̃�DASO (𝑥𝑡+𝑆−1) = 𝑃

𝑆−1∑︁
𝛽=0

�̃�𝑙

(
𝑥𝑙 :𝑡+𝑆−𝛽

)
− 2𝑆�̃�𝑙 (𝑥𝑙 :𝑡+𝑆−1) −

𝑃∑︁
𝑖=1

�̃�𝑝

(
𝑥𝑖𝑝 :𝑡

)
(3.8)

As all gradient elements in this expression are bound under the Lipschitz

continuity assumption, it follows that �̃�DASO (𝑥𝑡+𝑆−1) is similarly bounded.

3.2.2. Implementation

A proof-of-concept implementation of the DASO algorithm has been de-

veloped within the versatile Helmholtz Analytics Framework (Heat) frame-

work [144]. Heat, an open-source Python library, is designed for distributed

and GPU-accelerated data analytics. Heat provides both low-level array oper-

ations and a suite of higher-level machine learning algorithms, making it a

suitable foundation for prototyping and evaluating the DASO method.

My implementation leverages the strengths of both Heat and PyTorch [50].

For local, intra-node communication, I utilize PyTorch’s DDP module and

Pytorch’s distributed package, which provide efficient mechanisms for syn-

chronizing model parameters and gradients within a single machine. Heat’s

MPI backend is employed for inter-node communication. This backend au-

tomatically handles the communication of PyTorch tensors, simplifying the

51

3. Data Parallel Training Informed by Network Topology

Listing 3.1: Simplified training script demonstrating the usage of DASO in HeAT for a PyTorch

neural network (net) and PyTorch optimizer (optimizer).

1 import heat as ht

2 import torch

3 ...

4 # create PyTorch distributed group

5 rank, world_size = ht.MPI_WORLD.rank, ht.MPI_WORLD.size

6 local_rank = rank % num_local_gpus

7 torch.distributed.init_process_group(

8 backend="nccl",

9 rank=local_rank,

10 world_size=world_size

11)

12 ...

13 # the DASO optimizer is created

14 daso_optimizer = ht.optim.DASO(

15 local_optimizer=optimizer,

16 total_epochs=num_epochs

17)

18 ...

19 # the hierarchical network is created

20 ht_model = ht.nn.DataParallelMultiGPU(net, daso_optimizer)

exchange of model parameters and gradients between nodes in a distributed

cluster.

To accommodate DASO’s hierarchical communication structure, MPI groups

are created to represent the local and global communication groups. As

mentioned, the global groups consist of one GPU from every node in the

cluster, facilitating efficient inter-node communication (Figure 3.3).

The implementation was designed to be minimally intrusive to existing Py-

Torch codebases. The data loaders must be adapted to distribute the dataset

across all available GPUs. This typically involves specifying the number of

GPUs and the global rank of each GPU. Four additional function calls are

required to initialize and manage the DASO training process (as illustrated in

Listing 3.1). These calls create the node-local groups, instantiate the DASO

object with a PyTorch optimizer, and specify the number of training epochs.

This straightforward integration allows researchers and practitioners to read-

ily experiment with DASO and assess its effectiveness in accelerating the

training of their existing PyTorch models in distributed environments.

52

3.3. Experimental Evaluation and Discussion

3.3. Experimental Evaluation and Discussion

All experiments were conducted on the JUWELS Booster supercomputer

at the Jülich Supercomputing Centre [145]. This high-performance cluster

comprises 936 GPU nodes, each equipped with two AMD EPYC Rome CPUs

and four NVIDIA A100 GPUs [146], interconnected via a high-speed NVIDIA

Mellanox HDR InfiniBand fabric. The software stack utilized for these experi-

ments included CUDA 11.0, Python 3.8.5, ParaStationMPI 5.4.7-1-mt, Horovod

0.21.1, PyTorch 1.7.1+cu110, and NCCL 2.8.3-1. ParaStationMPI 5.4.7-1-mt

has a CUDA-aware MPI implementation, enabling direct GPU-to-GPU com-

munication for efficient distributed training.

3.3.1. DASO Hyperparameter Study

To investigate the effects of delayed global synchronization and the resulting

use of stale gradients on both accuracy and training time, I conducted a com-

prehensive hyperparameter (HP) study. Specifically, I focused on parameters

𝐵, the number of forward-backward passes between global synchronizations,

and 𝑆 , the number of batches between the sending and receiving of global

parameters. For this study, I employed the ImageNet-2012 dataset [147] to

train a ResNet-50 neural network [4] across two different scales: 32 GPUs (8

nodes) and 128 GPUs (32 nodes). It is important to note that for this study, 𝐵

and 𝑆 were held constant throughout each experimental run.

The ImageNet-2012 dataset comprises 1.2 million labeled images. I evaluated

classification quality using the accuracy with which the model correctly

predicts the image labels in a single attempt, commonly known as the top-1

accuracy. I utilized the NVIDIA Data Loading Library (DALI)[148] for data

loading and preprocessing. The specific training HPs are adapted from the

work of Goyal et al. [31] for ResNet-50 on ImageNet. The results of the HP

study are shown in Table 3.1.

Examining the measurements with 𝑆 = 0 (no staleness in global parameters), a

clear anti-correlation between top-1 accuracy and the number of training steps

between global synchronizations (𝐵) is evident for both node configurations.

This effect is more pronounced for the larger-scale experiments with 128

GPUs. Considering that the expected accuracy of ResNet-50 on ImageNet

is around 76%, the results demonstrate a negligible loss of accuracy when

53

3. Data Parallel Training Informed by Network Topology

Table 3.1.: Parameter study results. 𝐵 is the number of forward-backward passes between global

synchronizations and 𝑆 is the number of batches to wait for the global synchronization data.

32 GPUs (8 nodes) 128 GPUs (32 nodes)

𝐵 𝑆 Runtime, h Val. Top-1, % Runtime, h Val. Top-1, %

1 0 4.56 76.77 1.21 76.54

1 1 4.25 76.09 1.16 74.92

2 0 4.04 76.88 1.08 76.30

2 1 3.89 75.81 1.04 74.89

2 2 3.89 75.92 1.05 75.09

4 0 3.70 76.43 0.98 74.35

4 1 3.66 75.83 1.01 73.30

4 2 3.72 75.50 0.98 71.96

4 4 3.71 75.71 0.98 73.86

8 0 3.49 75.26 0.91 69.27

8 4 3.53 74.61 0.92 65.47

8 8 3.58 75.26 0.93 69.67

16 0 3.32 73.13 0.86 58.54

16 4 3.34 73.18 0.86 56.89

16 8 3.39 73.21 0.87 54.53

16 16 3.48 74.21 0.89 62.37

32 0 3.22 70.75 0.82 43.69

32 4 3.23 70.28 0.82 44.06

32 16 3.30 69.58 0.84 41.25

32 32 3.41 72.55 0.87 50.95

𝐵 ≤ 4 while offering substantial reductions in training time. As 𝐵 increases

beyond this point, the training time decreases while the classification accuracy

declines.

The effect of stale gradients is observed when fixing 𝐵 and varying 𝑆 . As

𝑆 increases (introducing more staleness), the accuracy initially decreases,

aligning with the expectation that stale gradients can negatively impact

convergence [149]. However, an intriguing observation emerges: when 𝐵

equals 𝑆 , the accuracy tends to rebound, sometimes surpassing the accuracy

54

3.3. Experimental Evaluation and Discussion

achieved with 𝑆 = 0. This suggests a potential regularization effect of stale

gradients, a phenomenon that warrants further investigation.

3.3.2. Performance Evaluation

To assess the computational performance of DASO, I conducted experi-

ments on two challenging and data-intensive deep learning tasks: image

classification and semantic segmentation. For image classification, I chose

the established benchmark of training a ResNet-50 architecture [4] on the

ImageNet-2012 dataset [147]. This task is valuable due to the widespread use

of pre-trained ResNet-50 models as backbones in numerous computer vision

pipelines [150]. For semantic segmentation, I trained a state-of-the-art hier-

archical multi-scale attention network [151] on the Cityscapes dataset [152],

representing a challenging real-world scenario.

I compared DASO against two established baselines: Horovod [60] and a

“classic” synchronous data-parallel implementation without compression or

tensor fusion. This classic approach was also implemented within the Heat

framework to ensure a fair comparison, enabling direct comparison with

DASO. While Horovod shares a similar basic strategy of overlapping commu-

nication with computation, it also employs compression techniques, tensor

fusions, and other optimizations to further enhance training speed. As the

most popular choice for DP training on computer clusters when this work

was completed, Horovod is a vital reference point for evaluating DASO’s

efficacy.

The primary goal was to assess each approach’s strong scaling behavior.

Furthermore, I sought to evaluate how training time and the task-specific

target metric (top-1 accuracy for classification, intersection over union (IoU)

for segmentation) evolve as the number of GPUs increases.

The network hyperparameters were held constant across all experiments, and

a learning rate scheduler that reduces the LR upon training loss plateauing

was employed. The local optimizer settings were also identical for each use

case. Horovod was configured to use 16-bit floating-point compression for

message packaging, while DASO employed Brain Floating Point 16 (BF16)

compression. The classic method used 32-bit floating-point during communi-

cation. The training batch size per GPU was fixed across experiments, so the

total distributed batch size scaled linearly with the number of GPUs.

55

3. Data Parallel Training Informed by Network Topology

Table 3.2.: Hyperparameters used to train ResNet-50 using the ImageNet-2012 dataset.

Data Loader DALI [148]

Local Optimizer SGD

Local Optimizer Parameters Momentum: 0.9 Weight Decay: 0.0001

Epochs 90

LR Decay Reduce on Stable

LR Parameters Patience: 5 Decay Factor: 0.5

LRWarmup Phase 5 epochs, see Goyal et al. [31]

Maximum LR Scaled by number of GPUs [31]

Loss Function Cross Entropy

Based on the findings of the hyperparameter study in Section 3.3.1, I set

DASO’s maximum number of batches between global synchronizations (𝐵)

to four and the number of batches between sending and receiving global

parameters (𝑆) to one. These values were chosen to balance computational

speed and model accuracy as the number of training devices was scaled up.

3.3.2.1. Image Classification on ImageNet

This experiment used the ResNet-50 architecture on the ImageNet-2012

dataset and utilized the hyperparameters shown in Table 3.2. The train-

ing was conducted on 4, 8, 16, 32, and 64 nodes (16, 32, 64, 128, and 256 GPUs,

respectively). The results in Figure 3.6a demonstrate desirable strong scaling

behavior for DASO and Horovod up to 128 GPUs, where a doubling of GPUs

roughly halves training time. However, the classic method’s scaling slightly

deteriorates with increasing GPUs. DASO’s hierarchical communication and

reduced synchronizations result in up to 25% faster training than Horovod.

Regarding accuracy Figure 3.6b, DASO and Horovod achieve similar results up

to 128 GPUs, while the classic method slightly outperforms both. Beyond 128

GPUs, DASO and Horovod have at most 75% top-1 accuracy, a phenomenon

partially explained by the decreased accuracy typically observed with larger

batch sizes in traditional networks [31]. Since the per-GPU batch size is fixed,

a larger GPU count implies a larger overall batch size, leading to accuracy

degradation. This effect is amplified for DASO due to the additional impact

56

3.3. Experimental Evaluation and Discussion

16 32 64 128 256
GPUs

100

101

T
ra

in
in

g
T

im
e

[h
]

DASO

Horovod

Classic

4 8 16 32 64
Nodes

(a) Training Time

16 32 64 128 256
GPUs

0

10

20

30

40

50

60

70

80

90

100

V
al

id
at

io
n

T
op

-1
[

76.4 76.6 76.1 75.5
71.4

76.5 76.2 76.3 76.3 74.8
76.9 77.2 76.6 76.5 76.2

DASO Horovod Classic

(b) Validation Top-1

Figure 3.6.: ImageNet ResNet-50 training times and top-1 accuracy results on the ImageNet

dataset when trained with DASO, Horovod, and the classic algorithm for increasing node counts.

Each node has four GPUs.

of stale gradients. The classic method, which does not compress gradients,

maintains consistent accuracy across all node counts, suggesting a benefit of

full-precision communication.

3.3.2.2. Semantic Segmentation – Cityscapes

To further evaluate DASO’s performance, I trained a hierarchical multi-

scale attention network [151] for semantic segmentation on the Cityscapes

dataset [152]. This dataset consists of finely and coarsely annotated images

of streets from 50 cities. The network’s architecture includes an HRNet-OCR

backbone, a dedicated fully convolutional head, an attention head, and an

auxiliary semantic head.

I assessed segmentation quality using the mean IoU score [153]. I established

a baseline mIoU of 0.8258 by training the original network with four GPUs

on a single node using PyTorch’s DistributedDataParallel package. The

HPs used for these experiments are shown in Table 3.3.

Training times for varying node counts are shown in Figure 3.7a. Notably,

the classic algorithm was prohibitively slow and unable to complete within a

reasonable timeframe, highlighting the necessity of optimized methods like

DASO and Horovod for large-scale training. DASO outperforms Horovod by

approximately 35% for up to 128 GPUs, demonstrating the advantages of its

57

3. Data Parallel Training Informed by Network Topology

Table 3.3.: Hyperparameters used to train the hierarchical multi-scale attention network using

the Cityscapes dataset.

Data Loader PyTorch

Local Optimizer SGD

Local Optimizer Parameters Momentum: 0.9 Weight Decay: 0.0001

Epochs 175

Learning Rate (LR) Decay Reduce on Stable

LR Parameters Patience: 5 Decay Factor: 0.75

LRWarmup Phase 5 epochs, see Goyal et al. [31]

Maximum LR 0.4

Loss Function Region Mutual Information [154]

16 32 64 128 256
GPUs

100

101

102

T
ra

in
in

g
T

im
e

[h
]

DASO

Horovod

Classic*

4 8 16 32 64
Nodes

(a) Training Time As the classical network hit the

time limit, the values are estimated.

16 32 64 128 256
GPUs

0.0

0.2

0.4

0.6

0.8

1.0

V
al

id
at

io
n

IO
U

0.82 0.82 0.81
0.78

0.64
0.66

0.73
0.77 0.76

0.05

0.10 0.12 0.11 0.11 0.11

DASO Horovod Classic*

(b) Maximum IOU Classic network accuracy values

are the best results when training was stopped.

Figure 3.7.: Cityscapes Benchmarking results for the selected hierarchical split level attention

network [151] on the Cityscapes dataset with DASO, Horovod, and the classic DPNN method

for increasing node counts, each with four GPUs.

hierarchical communication and asynchronous updates. The time savings

diminish slightly at higher GPU counts because there are fewer batches per

epoch, reducing the impact of skipped global synchronizations.

Quality measurements (Figure 3.7b) indicate that while Horovod and DASO

underperform compared to the original implementation, DASO consistently

achieves higher mIoU scores than Horovod. This discrepancy is attributed to

the use of a naive learning rate scheduler, and I hypothesize that amore refined

58

3.4. Conclusion and Outlook

scheduler could close the gap. At 256 GPUs, Horovod fails to yield meaningful

results, possibly due to the lack of synchronized batch normalization and the

extremely large mini-batch size.

3.4. Conclusion and Outlook

In this chapter, I introduced the Distributed Asynchronous and Selective

Optimization (DASO) method, a novel approach designed to alleviate the

communication bottleneck that often impedes large-scale data-parallel neural

network training. By adopting a hierarchical communication scheme and

leveraging asynchronous updates with stale gradients, DASO reduced training

time by more than 25% while maintaining comparable accuracy to established

synchronous methods.

My parameter study revealed a nuanced interplay between the frequency of

global synchronization, gradient staleness, and model performance. While

increasing the number of batches between global synchronizations can ac-

celerate training, it can also degrade accuracy if not carefully managed. In-

terestingly, the study also suggested a potential regularization effect of stale

gradients under certain conditions, highlighting the need for further investi-

gation into the complex dynamics of asynchronous distributed training.

The empirical evaluation of DASO on image classification and semantic seg-

mentation tasks provided compelling evidence of its effectiveness. DASO

consistently outperformed Horovod, a leading distributed training frame-

work at the time of development, in terms of training time while achieving

competitive accuracy. These results underscore the potential of DASO to

unlock significant speedups in large-scale distributed training scenarios.

While DASO demonstrates considerable promise, several avenues for future

research remain open. The observed regularization effect of stale gradients

warrants a deeper theoretical and empirical analysis, potentially leading to

novel insights into the optimization landscape of neural networks. Addition-

ally, extending DASO to a broader range of model architectures and datasets

will further test its robustness and generalizability.

My experimental observations on the behavior of neural network weights

with stale updates prompted me to investigate the internal dynamics of these

models during training. In the next chapter, I delve into the phenomenon

59

3. Data Parallel Training Informed by Network Topology

of weight orthogonality stabilization, which emerges as a critical factor in

understanding the resilience of neural networks to stale gradients and the

potential for further optimization. This exploration will shed light on the

underlying mechanisms that enable efficient distributed training and pave

the way for future algorithmic innovations.

60

4. Orthogonality in Neural
Networks

The content of this chapter is based on:

D. Coquelin, K. Flügel, M. Weiel, et al. “Harnessing Orthogonality to

Train Low-Rank Neural Networks”. In: ECAI 2024. IOS Press, 2024, pp.

2106–2113. DOI: 10.3233/FAIA240729.

The previous chapter’s exploration of data, culminating in the DASO method,

sought to address the communication bottlenecks inherent to large-scale

neural network training. A key observation emerged: neural networks are

surprisingly robust to stale gradients during training. This robustness hints

at a fundamental structural property within neural network weights that

allows for efficient learning even under imperfect synchronization.

In this chapter, I shift my focus from the external challenges of distributed

training to the internal mechanisms governing how networks learn. My cen-

tral thesis of this chapter is that the iterative optimization process, typically

guided by gradient descent, imposes a specific structure on the network’s

weights. Specifically, I will provide evidence that the weight matrices within

a network tend to evolve towards low-rank representations, with the orthog-

onal basis of each matrix stabilizing during training.

As state-of-the-art neural networks often operate at the limits of computa-

tional feasibility, there has been a persistent drive toward model compression

and sparsification techniques. Low-rank approximations, a class of methods

that factorize matrices into smaller components, have proven particularly

effective for compressing neural networks [127]. Such approaches can sig-

nificantly reduce the model’s memory footprint and potentially accelerate

computations [129, 155].

61

http://doi.org/10.3233/FAIA240729

4. Orthogonality in Neural Networks

Figure 4.1.: A multivariate Gaussian distribution centered at (1,3) with a standard deviation of 3

in roughly the (0.866, 0.5) direction and of 1 in the orthogonal direction. The arrows represent

the principal axes of this distribution, scaled by their respective spreads, and originating from

the center point. Source: Nicoguaro [156]

SVD is a well-established tool for obtaining low-rank matrix approximations.

As a refresher, it decomposes a matrix 𝑨 of shape𝑚 × 𝑛 as

𝑨𝑚×𝑛 = 𝑼𝑚×𝑘𝚺𝑘×𝑘𝑽
⊤
𝑘×𝑛 (4.1)

where 𝑼 and 𝑽 are orthonormal matrices containing the left and right singular

vectors of 𝑨, respectively, 𝑘 is the inner rank, and 𝚺 is the diagonal matrix

of singular values, which represent the importance of the corresponding

singular vectors in the reconstruction of 𝑨. The left singular vectors 𝑼 and

the singular values 𝚺 form the principal components of 𝑨. SVD enables

the compression of a matrix by discarding smaller singular values and their

corresponding basis vectors. This compression, however, comes at the cost

of reduced reconstruction accuracy of the original matrix.

Principal components can be interpreted as the most dominant trends within a

dataset. As an illustrative example, Figure 4.1 depicts a multivariate Gaussian

distribution where the principal axes, scaled by their respective standard

deviations, align with the directions of greatest variance. Notably, a faithful

approximation of this dataset can be achieved using only a few singular

vectors and their corresponding values.

62

4.1. Related Work

I hypothesize that the orthogonal components of a network’s weight matrices

are learned early in training, opening the door for effective compression

during later stages. This chapter presents a comprehensive investigation into

this phenomenon and introduces a novel training method that leverages this

basis stabilization.

Specifically, my contributions are as follows:

• I provide evidence that the orthogonal basis 𝑼𝑽⊤ of each of a network’s
weights stabilizes during training.

• I propose Orthogonality-Informed, Adaptive Low-Rank (OIALR) neural

network training, a novel method harnessing this finding to achieve

model compression and computational efficiency.

• I demonstrate the seamless integration of OIALR into existing training

workflows with minimal accuracy loss, benchmarking its performance

across diverse datasets, modalities, architectures, and tasks.

• I showcase OIALR’s ability to outperform conventional full-rank and

other low-rank training methods, demonstrating its potential for im-

proving efficiency and effectiveness in deep learning.

For clarity and brevity, I refer to the set containing the orthogonal basis 𝑼𝑽⊤

of each of a network’s multidimensional weights as the network’s “orthogonal

bases” throughout this chapter. I provide open-source implementations of the

most common layer types, a method to wrap arbitrary model architectures

for any learning task, and the OIALR training method
1
.

4.1. Related Work

Various techniques exist to reduce the size and complexity of neural networks.

These include pruning, which removes unimportant weights; quantization,

which reduces the bit-precision of weights; sparse training, which encourages

sparsity during model initialization and training; and low-rank compression,

which reduces the memory required for storing the network itself [123].

1
https://github.com/Helmholtz-AI-Energy/oialr

63

https://github.com/Helmholtz-AI-Energy/oialr

4. Orthogonality in Neural Networks

These low-rank compression methods factorize a full-rank matrix𝑀 into the

product of two or more smaller matrices, reducing the number of parameters

required to represent the original matrix. Formally, such a factorization is

defined as 𝑀𝑚×𝑛 = 𝐴𝑚×𝑟𝐵𝑟×𝑛 , where 𝑟 < min(𝑚,𝑛), and 𝑟 is referred to as

the inner rank.

The application of low-rank approximations to neural networks dates back to

early work on SVD-NET [157], which demonstrated the feasibility of decom-

posing weight matrices into smaller components, specifically the low-rank

SVD of the weights and training these components directly. Subsequent

research has shown that low-rank representations can be beneficial for reduc-

ing computational complexity during both training and inference [129, 155].

Additionally, low-rank methods have been shown to enhance generalization

performance by mitigating overfitting [158, 159, 160].

The prevalence of large pre-trained models has spurred interest in applying

low-rank approximations after training for model compression and deploy-

ment. While direct application of low-rank decompositions to pre-trained

models can lead to performance degradation [161], fine-tuning low-rank mod-

els for specific tasks has shown promise. For example, LoRA [162] demon-

strates that large language models can effectively adapt to specialized tasks by

incorporating additional low-rank weight components during fine-tuning.

Training low-rank models from scratch while maintaining high accuracy

presents unique challenges. Initial experiments with training all network

weights directly in their low-rank form often had a negative impact on per-

formance [163, 164]. In response, sophisticated methods have been developed

that transition into low-rank representations gradually during training or

adaptively adjust the rank throughout the process [127].

Many low-rank training methods make use of orthogonality-based low-rank

representations like SVD. A matrix’s orthogonal basis can be viewed as the

coordinate system in which the matrix operates. The orthogonal bases of

the weights can provide valuable insights into the internal workings of an

otherwise opaque neural network. Intuitively, orthogonal networks can be

more interpretable, as each dimension of the basis represents an indepen-

dent feature. This concept has been leveraged in works like ExNN [165]

and the Bort optimizer [166], which employ orthogonality constraints or

regularizations to enhance model explainability.

64

4.2. Orthogonality in Neural Network Training

While many low-rank training methods utilize orthogonality, maintaining

this property during training is typically not a priority. However, recent re-

search suggests that explicity enforcing or encouraging orthogonality during

low-rank training can improve network performance [167, 129]. For instance,

the Deep Learning Low-Rank Training (DLRT) method [129] trains each com-

ponent of a singular-value decomposed weight matrix in separate forward-

backward passes while explicitly preserving orthogonality. These findings

underscore the potential value of integrating orthogonality constraints into

low-rank training methodologies, a direction that will be explored in depth

in the subsequent sections.

4.2. Orthogonality in Neural Network Training

The work of Schotthöfer et al. [129] formulates the training of a neural net-

work as a continuous-time gradient flow. Employing specialized low-rank

numerical integrators for matrix Ordinary Differential Equations (ODEs),

they create a training process with three forward and backward passes for

each batch to train low-rank neural networks. This training approach offers

insights into the impact of the factorization on gradients, although it intro-

duces additional computational complexity. Building upon this foundation,

I aim to simplify the low-rank training process by exploiting an observed

phenomenon: the orthogonal components of a network’s parameters stabilize

during training.

Consider a single weight matrix𝑾𝑘 (𝑡) of network layer, 𝑘 , of shape𝑚 × 𝑛
at training step 𝑡 , belonging to the manifold of matrices of rank 𝑟𝑘 denoted

asM𝑟𝑘 . The other networks weights are assumed to be ‘fixed in time’ and

treated as constants for gradient calculations. From Schotthöfer et al. [129],

the training can be formulated as the continuous process:

min{∥ ¤𝑾𝑘 (𝑡) + ∇𝑾𝑘
L (𝑾𝑘 (𝑡)) ∥ : ¤𝑾𝑘 (𝑡) ∈ T𝑾𝑘 (𝑡)M𝑟𝑘 } (4.2)

where L is the loss function, T𝑾𝑘 (𝑡)M𝑟𝑘 is the tangent space of M𝑟𝑘 at

position 𝑾𝑘 (𝑡), and ¤𝑾𝑘 (𝑡) denotes the temporal derivative of the weight

matrix. From a numerical analysis perspective, this optimization problem is a

Galerkin condition on the tangent space [168]

⟨ ¤𝑾𝑘 (𝑡) + ∇𝑾𝑘
L(𝑾𝑘 (𝑡)), 𝛿𝑾𝑘⟩ = 0 ∀𝛿𝑾𝑘 ∈ T𝑾𝑘 (𝑡)M𝑟𝑘 (4.3)

65

4. Orthogonality in Neural Networks

where 𝛿𝑾𝑘 is an element of the tangent space T𝑾𝑘 (𝑡)M𝑟𝑘 .

Using the SVD decomposition,𝑾𝑘 = 𝑼𝑘𝑺𝑘𝑽
⊤
𝑘
, this element can be described

as:

𝛿𝑾𝑘 = 𝛿𝑼𝑘𝑺𝑘𝑽
⊤
𝑘
+ 𝑼𝑘𝛿𝑺𝑘𝑽⊤𝑘 + 𝑼𝑘𝑺𝑘𝛿𝑽

⊤
𝑘

(4.4)

where 𝛿𝑼𝑘 and 𝛿𝑽𝑘 are elements of the tangent space of the Stiefel manifold

(the set of all orthonormal k-frames) with 𝑟𝑘 orthonormal columns at the

points 𝑼𝑘 and 𝑽𝑘 , and 𝑺𝑘 is a matrix of shape 𝑟𝑘 × 𝑟𝑘 .

Now, consider the QR decomposition of𝑾𝑘 as

𝑾𝑘 = 𝑸𝑘𝑹𝑘 (4.5)

where 𝑸𝑘 is an𝑚 ×𝑚 orthonormal matrix and 𝑹𝑘 is an𝑚 × 𝑛 upper trian-

gular matrix. Modifications to𝑾𝑘 can induce changes in the basis 𝑸𝑘 , the

mixing matrix 𝑹𝑘 , or both. Given that SGD operates through incremental

weight adjustments, I proposed that either the basis or the mixing matrix is

predominantly learned initially, followed by subsequent refinement of the

other component. Specifically, I hypothesize that the orthogonal component

of𝑾𝑘 stabilizes during the early stages of training.

To empirically validate this hypothesis, a uniquely-determined, memory-

efficient orthogonal basis must be tracked through training. The 2D weight

representations are chosen to be either square or with the leading dimension

as the largest, i.e.,𝑚 ≥ 𝑛.

For these weights, the full 𝑸 matrix is of size 𝑚 ×𝑚, making it memory

inefficient to track 𝑸 over multiple training steps, specifically when𝑚 ≫ 𝑛.

Therefore, the semi-orthogonal bases 𝑼𝑘𝑽
⊤
𝑘

as determined by the compact

SVD of𝑾𝑘 is used. This semi-orthogonal matrix is more memory efficient,

size𝑚 ×𝑚, and uniquely determined as it is the unitary factor in the polar

decomposition of𝑾𝑘 .

To find the similarity between two vectors, one can use the cosine similarity

(also referred to as the cosine distance). The average of the cosine distance

between each of the bases’ vectors can show how much the bases differ.

However, if two orthogonal bases are similar, most of the cosine distances

will be near zero with only a single value close to one. To determine the

66

4.2. Orthogonality in Neural Network Training

degree to which the orthogonal component of 𝑾𝑘 changes between two

timesteps 𝑖 and 𝑗 , I define its Stability as

𝑆𝑘,𝑖 𝑗 =

tr

((
𝑼𝑘𝑽

⊤
𝑘

)
𝑖

(
𝑽𝑘𝑼

⊤
𝑘

)
𝑗

)
𝑚

(4.6)

where tr is the trace of a matrix, i.e., the sum of its diagonal, and the product(
𝑼𝑘𝑽

⊤
𝑘

)
𝑖
is the orthogonal component of𝑾𝑘 at time step 𝑖 . This metric ranges

from zero to one, where a Stability of zero indicates that the two bases share

no similarities and a Stability of one indicates two identical bases.

The mixing matrix, 𝑹𝑘 , is tracked using a form of Euclidean similarity:

𝐷𝑘,𝑖 𝑗 = 1 −

√︄ (
𝑹𝑘,𝑖 − 𝑹𝑘,𝑗

)
2

𝑚𝑛
(4.7)

where 𝑹𝑘,𝑖 and 𝑹𝑘,𝑖 are the 𝑹 matrices for𝑾𝑘 at two different timsteps 𝑖 and

𝑗 . This similarity metric is chosen to maintain the same scale and behavior

as Stability.

Figure 4.2 shows how the mixing matrix and the orthogonal component of the

weights change during the training of two networks of different architectures:

the ResNet-RS 101 [169] CNN and the VisionTransformer (ViT) B/16 [24],

on ImageNet-2012 [170]. In both cases, the Stability (Figures 4.2a and 4.2b)

decreases in the first ten epochs, i.e. the parameters’ basis vectors are chang-

ing, as the networks move away from their random initialization. Then, the

Stability converges towards one, indicating that the basis is not changing

greatly between timesteps. This is in sharp contrast to the euclidean similarity

plots of the linear mixing matrix 𝑹, (Figures 4.2c and 4.2d), where the largest

changes occur towards the middle of training, while at the beginning and

end of training the changes are smaller.

These findings suggest that in later stages of training 𝛿𝑼𝑘 and 𝛿𝑽𝑘 tend

towards zero. This allows us to simplify the tangent space element (Equa-

tion (4.4)) as:

𝛿𝑾𝑘 = ����
𝛿𝑼𝑘𝑺𝑘𝑽

⊤
𝑘
+ 𝑼𝑘𝛿𝑺𝑘𝑽⊤𝑘 +����𝑼𝑘𝑺𝑘𝛿𝑽

⊤
𝑘

(4.8)

and by using the chain rule and these assumptions, the time derivative of𝑾𝑘

becomes

¤𝑾𝑘 =
𝑑

𝑑𝑡

{
𝑼𝑘𝑺𝑽

⊤
𝑘

}
= ����¤𝑼𝑘𝑺𝑘𝑽⊤𝑘 + 𝑼𝑘 ¤𝑺𝑘𝑽

⊤
𝑘
+����𝑼𝑘𝑺𝑘 ¤𝑽⊤𝑘 = 𝑼𝑘 ¤𝑺𝑘𝑽⊤𝑘 . (4.9)

67

4. Orthogonality in Neural Networks

F
ir

st
L

ay
er

s
L

a
st

L
ay

er
sN
et

w
or

k
la

ye
r

0.80

0.85

0.90

0.95

1.00

S
ta

b
il
it

y

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.8

1.0

M
ea

n
S
ta

b
il
it

y

(a) ResNet-RS 101,
Stability, Equation (4.6)

F
ir

st
L

ay
er

s
L

a
st

L
ay

er
s

N
et

w
or

k
la

ye
r

0.80

0.85

0.90

0.95

1.00

S
ta

b
il
it

y

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.8

1.0

M
ea

n
S
ta

b
il
it

y

(b) Vision Transformer B/16,

Stability, Equation (4.6)

La
st

La
ye

rs
Fi

rs
tL

ay
er

sN
et

w
or

k
la

ye
r

0.80

0.85

0.90

0.95

1.00
Si

m
ila

ri
ty

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.8

1.0

M
ea

n
Si

m
ila

ri
ty

(c) ResNet-RS 101,
Euclidean similarity, Equation (4.7)

La
st

La
ye

rs
Fi

rs
tL

ay
er

sN
et

w
or

k
la

ye
r

0.80

0.85

0.90

0.95

1.00

Si
m

ila
ri

ty

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Epoch

0.8

1.0

M
ea

n
Si

m
ila

ri
ty

(d) Vision Transformer B/16,

Euclidean similarity, Equation (4.7)

Figure 4.2.:Analysis of the orthogonal basis Stability (Equation (4.6)) and linear mixing Euclidean

similarity (Equation (4.7)) for ResNet and ViT models during ImageNet-2012 training. Both

metrics compare the network’s current parameters with those of five epochs prior. The x-axis

denotes the training epoch, and the y-axis denotes the network layer (layers nearest the input at

the top). Mean Stability and similarity are shown below each heatmap, showing that most of the

changes to the bases happen early in training, while the linear mixing experiences the greatest

changes towards the middle or training.

Thus, under these assumptions, the Galerkin condition as shown in Equa-

tion (4.3), is now

⟨𝑼𝑘 ¤𝑺𝑘𝑽⊤𝑘 + ∇𝑾𝑘
L(𝑾𝑘 (𝑡)), 𝛿𝑾𝑘⟩ = 0 ∀𝛿𝑾𝑘 ∈ T𝑾𝑘 (𝑡)M𝑟𝑘 (4.10)

and 𝑼𝑘 and 𝑽𝑘 can be treated as constants and with 𝑼
⊤
𝑘
𝑼𝑘 = 0 and 𝑽⊤

𝑘
𝑽𝑘 = 0,

⟨ ¤𝑺𝑘 + 𝑼⊤𝑘 ∇𝑾𝑘
L(𝑾𝑘 (𝑡))𝑽𝑘 , 𝛿𝑺𝑘⟩ = 0 (4.11)

finally, we arrive at

¤𝑺𝑘 = −𝑼⊤
𝑘
∇𝑾𝑘
L(𝑾𝑘 (𝑡))𝑽𝑘 . (4.12)

68

4.3. Orthogonality-Informed Adaptive Low-Rank (OIALR) Training

This simplification enables a significant reduction in the complexity of low-

rank training, as one can now focus solely on updating the low-rank matrix

𝑺𝑘 .

4.3. Orthogonality-Informed Adaptive Low-Rank
(OIALR) Training

I propose a novel algorithm, Orthogonality-Informed, Adaptive Low-Rank

(OIALR) training, to harness the observed stabilization of orthogonal bases

during neural network training. Unlike previous methods that often prioritize

either accuracy or training time, OIALR aims to maintain both by reducing

the number of trainable parameters while preserving model performance.

OIALR training begins in a traditional full-rank scheme to allow the network’s

orthogonal bases to stabilize(see Figure 4.2). After a predetermined number

of iterations 𝑑 (a hyperparameter of the algorithm), the network’s weight

matrices are converted to their 𝑼𝚺𝑽⊤ representation via SVD. Empirically,

setting𝑑 to one-third of the total number of training iterations yields favorable

results. I freeze the orthogonal matrices 𝑼𝑘 and 𝑽⊤
𝑘
at this transition point,

training only the square matrix 𝚺𝑘 .

With a user-specified frequency 𝜈 , the bases 𝑼𝑘 and 𝑽𝑘 are updated by recom-

puting the SVD of the trained 𝚺𝑘 matrix as

𝑼
′

𝑘
, 𝚺
′

𝑘
, 𝑽
′⊤
𝑘
← SVD(𝚺𝑘)

𝑼𝑘 ← 𝑼𝑘𝑼
′

𝑘
𝑽𝑇
𝑘
← 𝑽

′𝑇
𝑘
𝑽𝑇
𝑘

𝚺𝑘 ← 𝚺

′

𝑘
(4.13)

By discarding singular values whose absolute magnitude falls below a thresh-

old 𝛽 times the largest singular value in 𝚺𝑘 , the inner rank of the 𝑼𝚺𝑽⊤ is

reduced, where 𝛽 is a HP defaulting to 0.1.

As can be observed in Figure 4.2, the layers closest to the network input

tend to require more training steps before they stabilize. Therefore, the

update of 𝑼𝑘 and 𝑽⊤
𝑘

is initially limited to the last ℓ = 𝐿 · 𝛼 · 𝑢 weights of

the network, where 𝐿 is the total number of network weight tensors, 𝛼 is

a hyperparameter defaulting to 0.1, and 𝑢 is proportional to the number of

updates performed via Equation (4.13). As training progresses, more layers are

69

4. Orthogonality in Neural Networks

Algorithm 1: The OIALR training method

Inputs :Model𝑀 , training steps 𝑡max, delay steps 𝑑 , low-rank update

frequency 𝜈 , singular value cutoff fraction 𝛽 , percentage of

layers in each low-rank update step size 𝛼

Parameter :𝐿 ← Number of possible low-rank weight tensors in𝑀

Parameter : ℓ ← 𝐿 · 𝛼
1 for 𝑡 ← 1 to 𝑡max do
2 if 𝑡 < 𝑑 then
3 Train full-rank network.

4 else if 𝑡 = 𝑑 then
5 Convert network weights to 𝑼𝚺𝑽𝑇

representations.

6 Train 𝚺 of the 𝑼𝚺𝑽𝑇
representations (𝑼 and 𝑽 are frozen).

7 else if 𝑡 mod 𝜈 = 0 then
8 for 𝑖 ← 𝐿 − ℓ to 𝐿 do
9 Update 𝑼𝑖𝚺𝑖𝑽𝑇

𝑖 with Equation (4.13).

10 Remove singular values < 𝛽 · max(𝚺𝑖)
11 Reshape 𝑼𝑖 , 𝑽𝑖 , 𝚺𝑖 , and optimizer states.

12 ℓ ← ℓ + 𝐿 · 𝛼
13 Train 𝚺 of the 𝑼𝚺𝑽𝑇

representations (𝑼 and 𝑽 are frozen).

14 else
15 Train 𝚺 of the 𝑼𝚺𝑽𝑇

representations (𝑼 and 𝑽 are frozen).

gradually incorporated into the low-rank update scheme. A comprehensive

overview of the OIALR training procedure is provided in Algorithm 1.

Empirically, I found that training a network’s input and output layers in low

rank can negatively affect predictive performance. This was most often tied to

the shape of the layer weight. For example, the output layer of model trained

on CIFAR10, may only have ten output channels, but thousands of inputs.

Converting this matrix to low rank does not greatly benefit compression

or computation. Therefore, the first, last, and any other layers with weight

tensors of disadvantageous shapes can be excluded from low-rank training if

desired.

70

4.4. Experimental Evaluation and Discussion

4.4. Experimental Evaluation and Discussion

To evaluate the effectiveness of the OIALR training approach, I conducted

a series of experiments across diverse neural network architectures and

datasets. The primary objective was to demonstrate that OIALR can substan-

tially reduce the number of trainable parameters while maintaining or even

enhancing network performance and training time, unlike many existing

methods that prioritize one of these aspects at the expense of the other.

The experimental evaluation was performed in three stages. First, I aimed to

simulate the experience of a typical researcher by applying OIALR directly to

a well-established neural network configuration for a computer vision task

(Section 4.4.2). Second, I compared OIALR to other popular low-rank and

sparse training methods to assess its relative effectiveness in achieving model

compression and maintaining performance (Section 4.4.3). Finally, to gauge

OIALR’s efficacy in a more practical setting, I investigated its application on

a time-series forecasting application using the Autoformer model, an archi-

tecture deployed at the 2022 Winter Olympics for weather prediction [171]

(Section 4.4.5).

I employed identical HPs for baseline full-rank and OIALR training in the

initial experiments. However, recognizing that OIALR dynamically modi-

fies the network structure during training, I hypothesized that distinct HP

configurations might vary between applications. Therefore, in the final

two experiments (Sections 4.4.4 and 4.4.5), I employed Propulate [101], an

asynchronous evolutionary optimization package proven effective for hyper-

parameter optimization (HPO) [101], to identify hyperparameters specifically

tailored to OIALR.

In this section, I report the number of trainable parameters as a percentage

relative to the conventional model. Non-trainable parameters in traditional

models, e. g., running averages in batch normalization layers, typically make

up a minuscule percentage of the total network parameters. For OIALR-

trained models, the set of non-trainable parameters is dominated by the

orthogonal bases 𝑼 and 𝑽 .

To ensure that the experiments reflect real-world practices, I incorporated

state-of-the-art techniques and training protocols, including strong image

transformations [172], dropout [173], learning rate warm-up [174], and cosine

learning rate decay [175], following the implementations detailed in the timm

71

4. Orthogonality in Neural Networks

library [1]. All networks were trained using the AdamW optimizer [176].

The complete hyperparameter configurations for each experiment are pro-

vided in Appendix A.1. The reported results represent the average of three

independent runs with different random seeds.

4.4.1. Computational environment

I ran all experiments on the distributed-memory, parallel hybrid supercom-

puter HoreKa at KIT. Each compute node is equipped with two 38-core Intel

Xeon Platinum 8368 processors at 2.4GHz base and 3.4GHz maximum turbo

frequency, 512GB local memory, a local 960GB NVMe SSD disk, two network

adapters, and four NVIDIA A100-40 GPUs with 40GB memory connected

via NVLink. Inter-node communication uses a low-latency, non-blocking

NVIDIA Mellanox InfiniBand 4X HDR interconnect with 200Gbit/s per port.
All experiments used Python 3.10.6 with CUDA-enabled PyTorch 2.0.0 [50]. The

source code for the implementation is publicly available
2
.

4.4.2. Naive Testing: Transformers and ResNets

Table 4.1.: Training ViT-B/16 and ResNet-RS 101 on ImageNet-2012 for 125 epochs with a batch

size of 1024 with and without OIALR. Hyperparameters are identical in both cases. The final

percentage of trainable parameters relative to the baseline model is reported in the last row.

Model ViT-B/16 ResNet-RS 101

Training method Baseline OIALR Baseline OIALR

Loss 2.16 2.20 1.78 1.81

Top 1 Accuracy 71.64 % 70.30 % 78.75 % 77.95 %

Top 5 Accuracy 89.18 % 88.73 % 94.21 % 93.95 %

Runtime 3.29 h 3.26 h 5.55 h 5.92 h

Compression 1 : 1 1 : 1.011 1 : 1 1 : 0.955

Trainable Parameters — 16.56 % — 15.66 %

To assess OIALR’s performance in typical computer vision scenarios, I trained

the Vision Transformer (ViT)-B/16 [24] and ResNet-RS 101 [169] models on

2
https://github.com/Helmholtz-AI-Energy/oialr

72

https://github.com/Helmholtz-AI-Energy/oialr

4.4. Experimental Evaluation and Discussion

0 20 40 60 80 100 120

Epoch

0

25

50

75

100

P
er

ce
n
ta

ge
,

%

Baseline top-1

OIALR top-1 OIALR trainable parameters

Baseline Stability

OIALR Stability

(a) Top-1 validation accuracy, percentage of trainable parameters as compared to

the traditional network, and average Stability measured with a five-epoch

frequency.

40 50 60 70 80 90 100 110 120

Epoch

50

60

70

80

P
er

ce
n
ta

ge
,

%

Baseline train top-1

Baseline val top-1

OIALR train top-1

OIALR val top-1

(b) Top-1 accuracies for training and validation with baseline and OIALR training

methods.

Figure 4.3.: Training of a ViT-B/16 network on ImageNet-2012 over 125 epochs.

the ImageNet-2012 dataset, utilizing the ReaL validation labels [177] for a

more robust evaluation. The ViT-B/16 model, with 86 million trainable param-

eters, provided a rigorous test for the OIALR training method. I maintained

identical HPs for full-rank and OIALR training for this initial experiment to

test the ‘drop-in replacement’ performance. To reduce computational cost

and environmental impact, I limited training to 125 epochs, as validation

accuracy had largely stabilized by this point (see Figure 4.3a). Additionally, I

employed a reduced image resolution of 160 × 160 pixels to further reduce
energy consumption. Table 4.1 shows the results of these experiments.

Figure 4.3 illustrates the evolution of top-1 accuracy, the percentage of train-

able parameters relative to the full-rank model, and the average network Sta-

73

4. Orthogonality in Neural Networks

bility throughout training. Notably, the baseline model’s Stability increases

smoothly while OIALR’s Stability fluctuates due to the periodic reduction in

weight ranks. This fluctuation stems from the fact that the orthogonal bases

from earlier epochs contain more vectors than the current, reduced-rank

bases. For example, 𝑼 is of shape𝑚 × 𝑘1 in an earlier epoch, while later in

training, it is of shape𝑚 × 𝑘2 where 𝑘1 is larger than 𝑘2. As this is the inner

dimension for both 𝑼 and 𝑽⊤, more vectors are involved in creating 𝑼1𝑽⊤1
than in 𝑼2𝑽⊤2 .

As shown in Figure 4.3b, there is a temporary dip in accuracy when tran-

sitioning from full-rank to the 𝑼𝚺𝑽⊤ representation, likely due to residual

momentum states in the optimizer. However, the network quickly recovers

and performs comparably to the full-rank model. In this untuned scenario,

OIALR training required only 1% more time while maintaining accuracy

within 1.34 % of the baseline while drastically reducing the number of train-

able parameters to 16.56 % of the full-rank model. Crucially, Figure 4.3b also

shows that the full-rank model enters an overfitting regime, whereas the

OIALR-trained model does not, suggesting potential generalization bene-

fits.

4.4.3. Comparison with related low-rank and sparse training
methods

To show where OIALR fits into the landscape of full-to-low-rank, low-rank,

and sparse training methods, I performed a comparative analysis shown in

Table 4.2. In these experiments, the baseline and compression methods use

the same HPs.

OIALR andDLRT [129] are SVD-based low-rank factorizationmethods. LRNN

[178] uses a traditional two-matrix representation (𝑾 ≈ 𝑨𝑩). CP [179],

SFP [180], PP-1 [155], and ThiNet [103] are structured pruning methods

using either channel or filter pruning for convolution layers. GAL [181] and

RNP [182] are unstructured pruning methods. RigL [119] is a sparse training

method.

OIALR demonstrated competitive performance across multiple architectures

and datasets. Although achieving subpar results on ResNet-50, it marginally

improved accuracy over the baseline for VGG16 [183] on CIFAR-10. This

suggests that OIALR may be particularly effective for over-parameterized

74

4.4. Experimental Evaluation and Discussion

networks, where eliminating less useful basis vectors allows those remaining

to contribute more meaningfully to the overall performance.

Table 4.2.: Comparison of OIALR with various compression methods. ‘Diff. to baseline’ refers

to the difference in top-1 validation (ImageNet-2012) or test (CIFAR-10) accuracy between the

baseline and the listed methods. Positive values indicate that the listed method outperforms the

traditionally trained network. Absence of data indicated by ‘—’. For non-OIALR results see [129,

119].

Training

method

Diff. to

baseline

Compression

Trainable

parameters

R
e
s
N
e
t
-
5
0

I
m
a
g
e
N
e
t
-
2
0
1
2

OIALR [184] -1.72 % 1 : 1.21 15.15 %

DLRT [129] -0.56 % 1 : 1.85 14.20 %
PP-1 [155] -0.20 % 1 : 2.26 —

CP [179] -1.40 % 1 : 2.00 —

SFP [180] -0.20 % 1 : 2.39 —

ThiNet [103] -1.50 % 1 : 2.71 —

RigL [119] -2.20 % 1 : 5.00 —

V
G
G
1
6

I
m
a
g
e
N
e
t
-
2
0
1
2 OIALR [184] -1.53 % 1 : 2.74 4.77 %

DLRT [129] -2.19 % 1 : 1.16 78.40 %

PP-1 [155] -0.19 % 1 : 1.25 —

CP [179] -1.80 % 1 : 1.25 —

ThiNet [103] -0.47 % 1 : 1.45 —

RNP(3X) [182] -2.43 % 1 : 1.50 —

V
G
G
1
6

C
I
F
A
R
-
1
0 OIALR [184] 0.10 % 1 : 3.70 13.88 %

DLRT [129] -1.89 % 1 : 1.79 77.50 %

GAL [181] -1.87 % 1 : 1.30 —

LRNN [178] -1.90 % 1 : 1.67 —

4.4.4. Ablation study on a mini ViT on CIFAR-10

To assess the impact of HPO on OIALR’s performance, I trained a reduced-size

ViT model, termed a mini ViT, on the CIFAR-10 dataset both with and with-

out hyperparameter optimization. I used the same hyperparameters as the

baseline full-rank training for the untuned runs. In contrast, I employed the

Propulate framework [101] to search for hyperparameters tailored explicitly

to the OIALR training process for the tuned runs.

75

4. Orthogonality in Neural Networks

Table 4.3.: A mini ViT trained on CIFAR-10. ‘OIALR, tuned’ training runs used tuned HPs, while

‘OIALR’ used the same HPs as the baseline. Accuracies and loss values are determined on the

test dataset.

Training method Baseline OIALR OIALR, tuned

Loss 0.88 0.91 0.85
Top 1 Accuracy 85.17 % 83.05 % 86.33 %
Top 5 Accuracy 98.34 % 98.38 % 98.53 %
Time to Train 12.14 min 11.99 min 11.19 min
Compression 1: 1 1 : 0.68 1 : 1.82
Trainable Parameters — 30.98 % 9.97 %

0 50 100 150 200 250 300

Epoch

0

2

4

6

8

L
ea

rn
in

g
ra

te

×10−4

Baseline

OIALR

Figure 4.4.: Learning rate schedules for baseline and OIALR training for a mini ViT on CIFAR-10.

OIALR training learning rate schedule determined by HP search.

Given the demonstrated efficacy of reduced-size ViT models in achieving

strong performance with lower computational costs [185], I opted for a ViT-

B/16 variant with a patch size of eight, six layers, and six attention heads;

the original ViT-B/16 configuration uses a patch size of 16, 12 layers, and 12

attention heads.

The results of this experiment, presented in Table 4.3 and Figure 4.4, reveal

several interesting insights. Notably, the optimal learning rate schedule

discovered by Propulate for OIALR training involves increasing the LR as

the number of parameters decreases. This aligns with the intuition that

with fewer trainable parameters, the effective learning rate for the remaining

parameters can be increased without causing model degradation.

76

4.4. Experimental Evaluation and Discussion

In the untuned case, while OIALR reduced trainable parameters by 69.02%,

the top-1 test accuracy dropped by over 2%. In contrast, the tuned OIALR

model achieved a remarkable reduction of 90.03% in trainable parameters

while simultaneously improving predictive performance from 85.17% to

86.33 %. Moreover, the training time was reduced by 8.52 % compared to the

baseline.

4.4.5. Ablation study on Autoformer on ETTm2

Table 4.4.: Training of the Autoformer model on the ETTm2 dataset. Baseline and untuned

OIALRHPs were the default parameters from [171]. Tuned OIALRHPs were found via Propulate.

Prediction lengths (PL) in the leftmost column are in 15min time steps. The optimal value for

mean squared error (MSE) and mean absolute error (MAE) is zero.

PL Training method MSE MAE Compression

Trainable

parameters

96

Baseline 0.2145 0.2994 1 : 1.00 —

OIALR 0.2140 0.2974 1 : 0.55 46.16 %

OIALR, tuned 0.2112 0.2942 1 : 2.09 12.19 %

192

Baseline 0.2737 0.3356 1 : 1.00 —

OIALR 0.2773 0.3336 1 : 0.62 105.31 %

OIALR, tuned 0.2686 0.3305 1 : 0.95 27.15 %

336

Baseline 0.3277 0.3640 1 : 1.00 —

OIALR 0.3253 0.3863 1 : 0.56 45.67 %

OIALR, tuned 0.3212 0.3591 1 : 3.66 7.14 %

720

Baseline 0.4194 0.4157 1 : 1.00 —

OIALR 0.4213 0.4186 1 : 0.52 51.33 %

OIALR, tuned 0.4120 0.4147 1 : 7.38 4.46 %

The training of a time-series forecasting transformer serves as a critical test

for the OIALR method. The Electricity Transformer Temperature (ETT)

dataset [186] provides a valuable benchmark for time-series forecasting. It

comprises 70,000measurements at varying time granularities, eachwith seven

features, recording load and oil temperature data from electrical transformers.

I focus on the ETTm2 dataset, which offers a 15-minute resolution. Common

prediction horizons for this dataset include 96, 192, 336, and 720 time steps.

77

4. Orthogonality in Neural Networks

0 1 2 3 4

Epoch

0.26

0.28

0.30

0.32

0.34

0.36

M
S

E

0

10

20

30

40

50

T
ra

in
ab

le
p

ar
am

et
er

s,
%Baseline MSE

OIALR MSE

OIALR trainable parameters

(a) Prediction length 2 days, 192 15min time steps

0 2 4 6 8

Epoch

0.40

0.42

0.44

0.46

0.48

0.50

M
S

E

0

10

20

30

40

50

T
ra

in
ab

le
p

ar
am

et
er

s,
%Baseline MSE

OIALR MSE

OIALR trainable parameters

(b) Prediction length 7.5 days, 720 15min time steps

Figure 4.5.: MSE and the percentage of trainable parameters relative to the full-rank model for

the Autoformer trained on the ETTm2 dataset using two different prediction lengths in 15min

time steps.

For my experiments, I employed the Autoformer model [171], a well-known

Transformer-based architecture available in the HuggingFace [187] repos-

itory. The Autoformer distinguishes itself from other Transformer models

by incorporating auto-correlation layers and one-dimensional convolutions.

This design contributed to its successful deployment for weather forecasting

at the 2022 Winter Olympics.

As seen in Figure 4.5, the Autoformer is susceptible to rapid overfitting of

this dataset. To combat this, OIALR training was done without a full-rank

warm-up. While some overfitting was still observed in the OIALR results, it

was notably less severe than in the baseline. As shown in Table 4.4, the tuned

78

4.5. Conclusion

OIALR models consistently outperformed the baseline across all prediction

lengths while dramatically reducing the number of parameters.

The untuned OIALR models also demonstrated competitive performance,

surpassing the baseline in some instances and achieving an reducing per-

centage of trainable parameters to 45.72% on average. However, due to the

specific structure of the model’s 𝑼𝚺𝑽⊤ representation and the inability of the

model to adequately reduce the inner rank, these models required more total

parameters than the baseline. The tuned OIALR models, in contrast, generally

achieved a much higher compression ratio. Interestingly, the tuned OIALR

models required more parameters for shorter prediction horizons, highlight-

ing the nuanced interaction between model complexity, task requirements,

and the effectiveness of low-rank representations.

In contrast to the previous experiment with the ViT model, the optimal learn-

ing rate schedule identified for this use case closely resembled a traditional

schedule with a warm-up phase followed by gradual decay. This observation

may be related to the rapid overfitting exhibited by both low-rank and full-

rank models on this dataset (Figure 4.5), suggesting that aggressive learning

rate reduction might be beneficial in such scenarios.

4.5. Conclusion

In this chapter, I exposed aspects of the underlying mechanisms of neu-

ral network learning by examining the evolution of the network’s weights

throughout training. By employing SVD to analyze weight matrices, I ob-

served a striking phenomenon: the orthogonal component of a network

weight tends to stabilize early in the training process. This insight deep-

ens our understanding of the dynamics of neural network optimization and

provides a foundation for novel training methodologies.

Building upon this observation, I introduced Orthogonality-Informed, Adap-

tive Low-Rank (OIALR) training, a method designed to exploit this stabi-

lization for model compression and computational efficiency. My compre-

hensive evaluation across various neural network architectures and datasets

demonstrates OIALR’s effectiveness in significantly reducing the number of

trainable parameters while preserving, and in some cases enhancing, model

performance and training speed. While OIALR may not universally surpass

79

4. Orthogonality in Neural Networks

traditional full-rank training in all scenarios, my results show its potential to

outperform these methods with appropriate hyperparameter tuning.

The substantial reduction in trainable parameters achieved by OIALR holds

significant implications for practical deep-learning applications. Smaller

models facilitate fine-tuning, transfer learning, and deployment on resource-

constrained devices, making deep learning more accessible and adaptable.

Moreover, this reduction in model size directly translates to decreased com-

munication overhead during distributed training, potentially narrowing the

performance gap between high-end computing clusters and more affordable

alternatives.

However, OIALR represents a single step towards harnessing the power of

orthogonality in deep learning. In the following chapter, I broaden my scope

to investigate the integration of orthogonality-informed training methods

into a large-scale distributed data-parallel workflow. I aim to demonstrate that

the principles underlying OIALR can be effectively leveraged to address the

communication bottlenecks inherent in these settings, thus paving the way for

a new generation of efficient and scalable distributed training algorithms.

80

5. Using Low-Rank
Representations in Data Parallel
Training

The content of this chapter is based on:

D. Coquelin, K. Flügel, M. Weiel, et al. “AB-Training: A Communication-

Efficient Approach for Distributed Low-Rank Learning”. In: (2024). URL:

https://arxiv.org/abs/2405.01067. arXiv: 2405.01067 [cs.LG].

The pursuit of improved predictive accuracy in machine learning has driven

the development of increasingly complex and large-scale neural networks.

Training these models requires vast datasets and substantial computational

resources, pushing the boundaries of current hardware capabilities. Data

parallelism (DP) has emerged as the dominant paradigm for distributed train-

ing, enabling the distribution of the computational workload across multiple

devices. However, this approach introduces a significant communication bot-

tleneck, as maintaining a synchronized model across all workers necessitates

frequent exchange of large volumes of data. Furthermore, training with large

batch sizes, often employed in data parallel settings, can negatively impact

model generalization.

This chapter explores the potential of low-rank representations to address

these challenges. Building upon the previous chapter, which demonstrated

the stabilization of orthogonal bases in the singular value decomposition

(SVD) of weight matrices during training, and Chapter 3, I propose a novel

approach that leverages low-rank approximations and hierarchical indepen-

dently trained groups to reduce communication overhead and improve gen-

eralization in DP training. This approach seeks to capitalize on two key

advantages of low-rank representations: their inherent ability to compress

model information, leading to reduced communication volume, and their

81

https://arxiv.org/abs/2405.01067

5. Using Low-Rank Representations in Data Parallel Training

regularization properties, which can mitigate the detrimental effects of large

batch sizes.

My core contributions presented in this chapter are as follows:

• I introduce 𝐴𝐵 training, a novel low-rank training method based on

SVD and a hierarchical training scheme designed to reduce communi-

cation overhead in data-parallel training.

• I empirically demonstrate 𝐴𝐵 training’s ability to substantially reduce

network traffic (by an average of 70.31%) compared to traditional

synchronous DP training, enabling efficient training on systems with

limited bandwidth.

• I provide evidence that 𝐴𝐵 training improves regularization at smaller

scales, particularly for Vision Transformers, and enhances generaliza-

tion performance.

• I demonstrate 𝐴𝐵 training’s potential to achieve significant compres-

sion ratios (up to 44.14 : 1 in ideal scenarios) while maintaining com-

petitive accuracy. Compression ratios ranging from 1.19 : 1 to 2.54 : 1

are achieved in more realistic settings while surpassing the accuracy

of traditional DP training.

This chapter highlights the promise of low-rank training for large-scale

distributed learning, offering potential benefits for both distributed-memory

computing and the broader machine learning (ML) community. An open-

source implementation of my method is available at https://github.com/

Helmholtz-AI-Energy/AB-Training and the configurations to reproduce the

experiments is shown in the Appendix A.2.

5.1. Related Work

5.1.1. Distributed Training of Neural Networks

Data parallel (DP) training, the prevalent paradigm for distributed training,

replicates a model across multiple devices, each processing a disjoint subset

(the local batch) of the training data (Section 2.5.1). Gradients are typically

aggregated across all replicas after each forward-backward pass, ensuring

synchronous updates. However, as model size and compute requirements

82

https://github.com/Helmholtz-AI-Energy/AB-Training
https://github.com/Helmholtz-AI-Energy/AB-Training

5.1. Related Work

increase, the communication overhead associated with gradient synchroniza-

tion becomes a significant bottleneck, particularly in bandwidth-constrained

environments.

Various techniques have been proposed to mitigate this bottleneck, includ-

ing gradient accumulation, topology-aware communication patterns, asyn-

chronous methods, and gradient compression [114, 188]. Hierarchical meth-

ods like H-SGD [135] and DASO [140] leverage localized synchronization

within smaller groups before global updates, exploiting network topology to

reduce communication costs. Asynchronous approaches, often employing a

parameter server, can reduce waiting times but require careful hyperparame-

ter tuning and may face convergence challenges [64]. Despite these advance-

ments, scalability in data parallelism remains constrained by communication

bottlenecks and the adverse impact of large batch sizes on generalization

performance.

5.1.2. Low-Rank Neural Network Training

Low-rank training offers a promising avenue for reducing neural networks’

computational and memory footprint. The singular value decomposition

(SVD) plays a central role in this domain, enabling the factorization of weight

matrices into smaller components. By retaining only the 𝑘 largest singular

values and corresponding vectors, a low-rank approximation of the original

matrix can be obtained, significantly reducing the number of parameters for

a sufficiently large 𝑘 .

As detailed in Section 4.1, various methods have leveraged SVD for compress-

ing neural networks during training. Some directly train the 𝑼 , 𝚺, and 𝑽
matrices resulting from the SVD of a network’s weights [129, 184], while

others construct alternative representations based on SVD and train on those

[189, 190]. Both approaches have demonstrated potential regularization ef-

fects, improving generalization in specific scenarios [158, 160, 159].

While these techniques address various computational challenges in neural

network training, their explicit integration with distributed environments to

optimize communication remains an active area of research. More precisely,

existing approaches can train low-rank models in parallel, but they do not

attempt to use the distributed system to their advantage [184, 191, 192].

83

5. Using Low-Rank Representations in Data Parallel Training

5.2. AB Training

Data-parallel neural network training often faces two significant challenges

at scale: the communication bottleneck incurred by synchronizing large

model representations across compute nodes and the potential for degraded

generalization performance associated with large batch sizes. To address

these, I propose a novel training method, termed 𝐴𝐵 training, which inte-

grates low-rank weight representations within a hierarchical data-parallel

framework. 𝐴𝐵 training mitigates the limitations previously mentioned by

leveraging the reduced communication requirements of low-rank representa-

tions and the improved generalization potential of training worker subgroups

independently.

While often necessary for efficient data-parallel training, large batch sizes

can negatively impact model generalization. This stems from the reduced

gradient noise inherent in large-batch SGD. The standard SGD update rule

is:

𝑤𝑡 = 𝑤𝑡−1 −
𝜂

𝐵

𝐵∑︁
𝑖=1

∇𝑤L𝑡−1,𝑖
(
𝑦𝑡−1,𝑖 , 𝑦𝑡−1,𝑖

)
, (5.1)

where𝑤𝑡 represents a parameter at time step 𝑡 , 𝜂 is the learning rate, 𝐵 is the

batch size, and L𝑡−1,𝑖
(
𝑦𝑡−1,𝑖 , 𝑦𝑡−1,𝑖

)
is the loss for the 𝑖’th data element in the

mini-batch evaluated during time step 𝑡 − 1. Consequently, the parameter

value after 𝑘 iterations is

𝑤𝑘 = 𝑤0 −
𝜂

𝐵

𝑘−1∑︁
𝑠=1

𝐵∑︁
𝑖=1

∇𝑤L𝑠,𝑖

(
𝑦𝑠,𝑖 , 𝑦𝑠,𝑖

)
. (5.2)

Larger batch sizes reduce the magnitude of the summed gradients and the as-

sociated noise, potentially resulting in the convergence toward sharp minima

in the loss landscape, which result in overfitting and poor generalization [72,

30].

Motivated by ensemble methods’ success and noise’s beneficial role in gen-

eralization [30], 𝐴𝐵 training partitions the DP model replicas into smaller,

independently trained subgroups. Each subgroup trains independently on

a distinct data subset, effectively creating an ensemble of models. The in-

creased gradient noise within these smaller local batches encourages broader

exploration of the loss landscape and convergence towards diverse local min-

ima, enhancing the overall model’s generalization capabilities. Furthermore,

84

5.2. AB Training

Full-Rank Training

Trainable

GPU: 1 GPU: 2

GPU: 4GPU: 3

GPU: 5 GPU: 6

GPU: 8GPU: 7

Frozen

Group ATrainable

GPU: 1 GPU: 2

GPU: 4GPU: 3

Group BFrozen
Trainable

GPU: 5 GPU: 6

GPU: 8GPU: 7

Figure 5.1.: Visualization of communication groups and trainable matrices during 𝐴𝐵 training

phases. Red shaded regions represent removed matrix elements.

training independent groups reduces network traffic compared to traditional

DP synchronization.

To minimize communication overhead𝐴𝐵 training employs a low-rank repre-

sentation of the weight matrices derived from their SVD. For a weight matrix

𝑊𝑚×𝑛 in a given layer, the decomposition is

𝑾𝑚×𝑛 ≈ 𝑨𝑚×𝑘𝑩𝑘×𝑛 =

(
𝑼𝑚×𝑘𝚺

1/2
𝑘×𝑘

) (
𝚺
1/2
𝑘×𝑘𝑽

⊤
𝑘×𝑛

)
, (5.3)

where 𝑼 , 𝚺, and 𝑽 as determined by the SVD of𝑾 , and 𝑘 represents the inner

rank, determined by:

𝑘 = max ({𝑖 : 𝚺𝑖𝑖 > 𝚺11 · sigmaCutoff}) , (5.4)

where sigmaCutoff is a user-defined HP less than one, and 𝚺𝑖𝑖 is the 𝑖’th

diagonal element of 𝚺.

Weight tensors with more than two dimensions are flattened along their

trailing dimensions for decomposition. If the resulting matrix shape is com-

putationally unfavorable for SVD (i.e., 𝑛 > 𝑚), it is transposed before decom-

position.

Instead of training directly on the 𝚺matrix, whichwould lead to zero gradients

for off-diagonal elements, 𝐴𝐵 training operates on the 𝑨 and 𝑩 matrices as

defined in Equation (5.3). This ensures that the orthogonal components of

the weight matrix are updated indirectly, maintaining a dense representation

and avoiding “dead” connections during backpropagation.

85

5. Using Low-Rank Representations in Data Parallel Training

To expedite initial convergence, the 𝐴𝐵 training process commences with

a synchronous full-rank DP warmup phase. Subsequently, the workers are

split into independently trained groups. During this independent phase, half

of the subgroups (𝐴 groups) train the 𝑨matrix, while the remaining half (𝐵

groups) train the 𝑩 matrix (as illustrated in Figure 5.1).

The changes made to the 𝑨 and 𝑩 matrices on worker 𝑖 can be represented

as

𝑨𝑖 = 𝑨0𝑪𝐴,𝑖 𝑩𝑖 = 𝑪𝐵,𝑖𝑩0 (5.5)

where 𝑪𝐴,𝑖 and 𝑪𝐵,𝑖 are real matrices and 𝑨0 and 𝑩0 are the 𝑨 and 𝑩 matrices

from the last 𝐴𝐵 decomposition of𝑾 as shown in Equation (5.3). Therefore,

the changes to a weight matrix𝑾 on worker 𝑖 can be approximated as:

𝑾𝑖 ≈ 𝑨𝑖𝑩𝑖 = 𝑨0𝑪𝐴,𝑖𝑪𝐵,𝑖𝑩0. (5.6)

One of the 𝑪 matrices on each worker is the identity matrix, reflecting that

either 𝑨 or 𝑩 is fixed during the independent training phase.

For an example system with four workers, each of which represents an entire

group, the traditional averaging of the full-rank weight representation is

𝑾 ≈ 𝑨𝑩 =
1

4

(𝑨1𝑩0 +𝑨2𝑩0 +𝑨0𝑩3 +𝑨0𝑩4) (5.7)

where 𝑨𝑖 and 𝑩𝑖 are the learned 𝑨 and 𝑩 matrices on worker 𝑖 .

Unlike the traditional systems for averaging independently trained models,

𝐴𝐵 training averages the 𝑨 and 𝑩 matrices across all workers before recon-

structing the full-rank weight matrix. This results in the merging operation

𝑾 ≈ 𝑨𝑩 =
1

16

(
4𝑨0𝑩0 + 2𝑨1𝑩0 + 2𝑨2𝑩0 + 2𝑨0𝑩3 + 2𝑨0𝑩4+
𝑨1𝑩3 +𝑨1𝑩4 +𝑨2𝑩3 +𝑨2𝑩4

)
. (5.8)

By incorporating both the stale model states (𝑨0𝑩0), the independently

learned states (𝑨𝑖𝑩0 and𝑨0𝑩𝑖), and the mixed states (𝑨𝑖𝑩 𝑗 where 𝑖 ≠ 𝑗). This

aggregation method allows for a richer mixing of the information learned by

the independent subgroups.

The AB training procedure consists of the following phases:

Full-Rank DP Warmup: Initial training with traditional data parallelism al-

lows the weights to move quickly away from their random initializa-

tion. This phase helps to avoid early divergence for a given number of

iterations (warmupSteps).

86

5.3. Experimental Evaluation

Independent𝐴𝐵 Decomposition: Each model instance independently com-

putes an𝐴𝐵 decomposition of its weight matrices as per Equation (5.3).

The rank of the approximation is determined by a user-provided hy-

perparameter (sigmaCutoff) and Equation (5.4).

Group Training: For numABSteps iterations, half of the independent groups

train the 𝑨matrix (the 𝐴 groups) while the other groups train 𝑩 (the

𝐵 groups). Untrained matrices are frozen.

Synchronization and Update: The 𝑨 and 𝑩 matrices are averaged across all

workers, and the full-rank weight matrices are reconstructed.

Full-Rank DP Rebound: The reconstructed full-rank network is trained with

traditional data parallelism for fullRankReboundSteps to promote con-

vergence and mitigate potential accuracy degradation.

A formalized algorithm is shown in Algorithm 2, and a method diagram is

shown in Figure 5.2.

Many neural network optimizers, such as AdamW [176], rely on second-

order derivative approximations. Due to dimensionality changes, switching

between low-rank and full-rank representations can invalidate these ap-

proximations. Therefore, 𝐴𝐵 training will reset the optimizer states which

were invalidated. To repopulate the states with meaningful information, 𝐴𝐵

training utilizes a learning rate rebound strategy. The learning rate rebound

involves reducing the learning rate (LR) to near zero and gradually increasing

it back to its scheduled value over a user-specified number of steps, allowing

the optimizer to adapt to the new parameter representations. This rebound is

applied whenever the network’s parameters change shape.

5.3. Experimental Evaluation

A series of experiments were conducted on established neural network archi-

tectures to assess the effectiveness of𝐴𝐵 training. These experiments focus on

image classification tasks using the ImageNet-2012 [193] and CIFAR10 [194]

datasets. The primary goals were to demonstrate significant reductions in

communication overhead, potential regularization benefits, scalability, and

achievable compression during training. Specifically, the ResNet-50 [4] and

87

5. Using Low-Rank Representations in Data Parallel Training

Decompose weights into and Learning Rate
Rebound

[Training complete]
Full-Rank DP

Rebound

Learning Rate
Rebound

 Training

Synchronize
Models:

[groupTrainTarget is A]

[groupTrainTarget is B]

Model
Initialization

Train :

Train :

Full-Rank DP
Warmup

Figure 5.2.: A UML diagram of the AB training procedure.

Vision Transformer (ViT) B/16 [24] models were trained on ImageNet-2012,

and the VGG16 [195] model was trained on CIFAR10.

For comparison, I implemented a traditional DP training baseline using Py-

Torch’s DistributedDataParallel (DDP) class, referred to as “Traditional

DDP” or “Trad. DDP”. Additionally, I included an “𝐴𝐵 Training (No Group)”

variant where the 𝐵 matrix is trained using traditional DP instead of the full-

rank weights, allowing us to isolate the impact of the group training strategy.

The ViT and ResNet-50 experiments utilized HPs from Dosovitskiy et al. [24],

while VGG16 HPs were taken from Coquelin et al. [184]. All methods employs

the same hyperparameters.

I investigated two scaling strategies: constant local batch size scaling and con-

stant global batch size scaling. In the former, the global batch size increases

proportionally with the number of GPUs, simulating common practice in

large-scale training. In the latter, the global batch size is held constant while

88

5.3. Experimental Evaluation

Algorithm 2: The 𝐴𝐵 training method. 𝑾 is a parameter of the input

model𝑀 and𝑤𝑜𝑟𝑙𝑑𝑆𝑖𝑧𝑒 is the number of workers used for traditional DP

training, each with an individual ID 𝑝𝑟𝑜𝑐𝐼𝑑 .

Input :Model𝑀 , training data, 𝑛𝑢𝑚𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑡𝑒𝑝𝑠 , hyperparameters

𝑤𝑎𝑟𝑚𝑢𝑝𝑆𝑡𝑒𝑝𝑠 , 𝑛𝑢𝑚𝐴𝐵𝑆𝑡𝑒𝑝𝑠 , and 𝑓 𝑢𝑙𝑙𝑅𝑎𝑛𝑘𝑅𝑒𝑏𝑜𝑢𝑛𝑑𝑆𝑡𝑒𝑝𝑠

1 if workerId ≤ worldSize / 2 then
2 𝑔𝑟𝑜𝑢𝑝𝑇𝑟𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝐴

3 else
4 𝑔𝑟𝑜𝑢𝑝𝑇𝑟𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡 ← 𝐵

5 for 𝑖 ← 1 to warmupSteps do
6 traditionalFullRankDPTraining()

7 repeat
8 foreach𝑾 in𝑀 do
9 𝑨,𝑩 ← abDecomposition(𝑾) ⊲ Eq. 5.3

10 removeSmallSingularValues()

11 startLearningRateRebound()

12 𝑔𝑟𝑜𝑢𝑝𝑇𝑟𝑎𝑖𝑛𝑇𝑎𝑟𝑔𝑒𝑡.setTrainable(True)

13 for 𝑖 ← 1 to numABSteps do
14 independentSubgroupTraining()

15 𝑨← allReduce(𝑨/𝑤𝑜𝑟𝑙𝑑𝑆𝑖𝑧𝑒)
16 𝑩 ← allReduce(𝑩/𝑤𝑜𝑟𝑙𝑑𝑆𝑖𝑧𝑒)
17 foreach𝑾 in 𝑴 do
18 𝑾 ← 𝑨𝑩
19 startLearningRateRebound()

20 for 𝑖 ← 1 to fullRankReboundSteps do
21 traditionalFullRankDPTraining()

22 until numTrainingSteps == completed steps

the local batch size decreases proportionally with the number of GPUs, high-

lighting the communication reduction potential of my method. All reported

measurements represent the average of three runs with different random

seeds, and models were initialized using orthogonal initialization [196].

89

5. Using Low-Rank Representations in Data Parallel Training

5.3.1. Computational Environment

All experiments were conducted on HoreKa, a distributed-memory, parallel

hybrid supercomputer. Each compute node is equipped with two 38-core Intel

Xeon Platinum 8368 processors, 512GB of local memory, a 960GB NVMe

SSD, two network adapters, and four NVIDIA A100-40 GPUs interconnected

via NVLink. Inter-node communication utilizes a high-speed, low-latency

NVIDIA Mellanox InfiniBand 4X HDR interconnect. The software environ-

ment consisted of Python 3.10.6 and CUDA-enabled PyTorch 2.0.0 [50].

5.3.2. Datasets and Models

I employed the ImageNet-2012 dataset for the scaling experiments, compris-

ing 1.2 million images. Basic image augmentation techniques were applied,

including normalization, random resizing and cropping, and random hori-

zontal flipping. I trained the ResNet-50 and ViT-B/16 models on this dataset,

chosen for their widespread use and distinct architectural characteristics.

Additionally, I trained VGG16 on the CIFAR10 dataset, containing 50,000

images, with similar image augmentation applied. All models were trained

using the AdamW optimizer [176]. Comprehensive training hyperparameters

are detailed in Appendix A.2.

5.3.3. Hyperparameter Considerations

Careful hyperparameter tuning is essential to balance the communication

reduction achieved by𝐴𝐵 training with potential impacts on training stability

and accuracy. Key hyperparameters include warmup and full-rank rebound

durations, the number of𝐴𝐵 training iterations, the rank-reduction parameter

for𝐴𝐵 decomposition, and the frequency of SVD and synchronization steps.

My hyperparameter search on CIFAR100 with a smaller ViT variant using

Propulate [101] yielded the following guidelines, which were used for all

experiments:

• warmupSteps: 20% of the total training steps

• numABSteps: 3.33% of the total training steps

• fullRankReboundSteps: 0.25 · numABSteps

90

5.3. Experimental Evaluation

• Learning rate rebound steps: 0.5 · numABSteps

These guidelines offer a reasonable starting point for hyperparameter tuning.

However, optimal configurations may vary depending on the model, dataset,

and computational environment.

5.3.4. Constant Local Batch Size Scaling

2k 4k 8k 16k 32k

Global Batch Size

60

70

80

90

100

T
op

1
A

cc
ur

ac
y

(%
)

Higher is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(a) Vision Transformer B/16

2k 4k 8k 16k 32k

Global Batch Size

70

75

80

85

90

T
op

1
A

cc
ur

ac
y

(%
)

Higher is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(b) ResNet-50

Figure 5.3.: Highest top-1 accuracy for each training run on ImageNet-2012 for two network

architectures with a constant local batch size of 256. Global batch sizes range from 2,048 to

32,768 in powers of 2. Error bars are plotted, though not always visible.

In this experiment, I maintain a fixed local batch size while increasing the

number of GPUs, effectively scaling up the global batch size while decreasing

the number of training iterations per epoch. For instance, if a two-node

(8-GPU) run employs a global batch size of 2,048 and undergoes 600 iterations

per epoch, a corresponding four-node (16-GPU) run would have a global

batch size of 4,096 but only 300 iterations per epoch. This strategy enables

me to investigate the communication efficiency gains of 𝐴𝐵 training as com-

putational resources are increased while the potential negative impacts of

larger batch sizes become more prominent. This scenario is representative of

how users typically scale their training in practice.

The experiment aims to evaluate 𝐴𝐵 training’s effectiveness in reducing com-

munication requirements and assess whether independent training groups

can effectively learn diverse representations. The averaged model should

maintain accuracy while exhibiting increased compression if the groups learn

similar updates. In contrast, significant divergence between the groups should

lead to reduced accuracy and compression, as individual updates conflict. In

91

5. Using Low-Rank Representations in Data Parallel Training

such a case,𝐴𝐵 training without independent groups (the “No Group” variant)

would likely outperform 𝐴𝐵 training with groups.

Figure 5.3 presents the highest top-1 accuracy achieved during training for

ResNet-50 and ViT-B/16 models under constant local batch size scaling. Fig-

ure 5.4 illustrates the corresponding lowest binary cross-entropy loss values

across all epochs. Figure 5.5 depicts compression ratios achieved by 𝐴𝐵

training compared to the baseline.

2k 4k 8k 16k 32k

Global Batch Size

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

L
os

s

Lower is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(a) Vision Transformer B/16

2k 4k 8k 16k 32k

Global Batch Size

1.6

1.7

1.8

1.9

2.0

2.1

L
os

s

Lower is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(b) ResNet-50

Figure 5.4.: Lowest binary cross-entropy (the loss function used during training) during each

training run on ImageNet-2012 for two network architectures with a constant local batch size of

256. Global batch sizes range from 2,048 to 32,768 in powers of 2. Error bars are plotted, though

not always visible.

5.3.5. Constant Global Batch Size Scaling

In this experiment, I maintain a fixed global batch size of 4,096 while scaling

the number of GPUs. Deviating from the common practice of maintaining

constant local batch sizes, this approach accentuates the communication

overhead reductions achieved by𝐴𝐵 training. By reducing the computational

load on each GPU, the communication bottleneck becomes more apparent.

Additionally, it provides insights into the ability of independent training

groups to learn meaningful representations when their local batch sizes are

much smaller than the global batch. The results for these runs are shown in

Figures 5.6 and 5.7.

92

5.4. Discussion

2k 4k 8k 16k 32k

Global Batch Size

0.00 : 1

0.50 : 1

1.00 : 1

1.50 : 1

2.00 : 1

2.50 : 1

3.00 : 1
C

om
pr

es
si

on
R

at
io

2.
52

2.
09

2.
02

1.
89

1.
80

2.
83

2.
23

1.
98

1.
86

1.
84

1.
29 1.

39

1.
31

1.
19

1.
201.

27

1.
27

1.
16

1.
10

1.
12

Higher is better

Vision Transformer

Vision Transformer - No Groups

ResNet-50

ResNet-50 - No Groups

Figure 5.5.: The average compression ratios for 𝐴𝐵 and baseline models trained on ImageNet-

2012 for two network architectures with a constant local batch size of 256.

16 32 64 128

Number of GPUs

65

70

75

80

85

90

95

100

T
op

1
A

cc
ur

ac
y

(%
)

Higher is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(a) Vision Transformer B/16

16 32 64 128

Number of GPUs

70

75

80

85

90

T
op

1
A

cc
ur

ac
y

(%
)

Higher is better

AB - Train

AB - Val.

Trad. DDP - Train

Trad. DDP - Val.

AB - No Groups - Train

AB - No Groups - Val.

(b) ResNet-50

Figure 5.6.: The highest top-1 accuracy for each training run on ImageNet-2012 for two network

architectures with a constant global batch size of 4,096. Error bars are plotted, though not always

visible.

5.4. Discussion

To evaluate the impact of 𝐴𝐵 training on network traffic, I define the scaled

network traffic (𝑇) as

𝑇 =
𝑝 · 𝑠
𝑡𝑏

(5.9)

93

5. Using Low-Rank Representations in Data Parallel Training

16 32 64 128

Number of GPUs

0.00 : 1

0.50 : 1

1.00 : 1

1.50 : 1

2.00 : 1

2.50 : 1

3.00 : 1

C
om

pr
es

si
on

R
at

io

2.
09

2.
27

2.
54

2.
91

2.
21

2.
19

2.
20

2.
20

1.
38 1.

54

1.
72

1.
91

1.
27

1.
27

1.
27

1.
27

Higher is better

Vision Transformer

Vision Transformer - No Groups

ResNet-50

ResNet-50 - No Groups

Figure 5.7.: The compression ratios for 𝐴𝐵 and baseline trained models on ImageNet-2012 for

two network architectures with a constant global batch size of 4,096.

4 8 16 32

Node Count

0

5

10

15

20

25

In
te

rc
on

ne
ct

T
ra

ffi
c

(G
B

/s
)

3.46

6.41

9.89

14.64

5.61

10.31

17.14

21.81

8.93

13.09

25.00 25.00

Lower is better

Peak Bandwidth AB AB - No Groups Traditional DDP

(a) Scaled interconnect traffic (Equation (5.9)). The

‘Peak Bandwidth’ is that of each port of each node’s

Infiniband card.

4 8 16 32

Node Count

103

104

T
im

e
(s

)

Lower is better

AB Trad. DDP AB - No Groups Perfect Scaling

(b) Training wall-clock time.

Figure 5.8.: Scaled interconnect traffic (Equation (5.9)) and job wall-clock time for the ViT B/16

trained on ImageNet-2012.

where 𝑝 is the memory required to store the trainable parameters during

training in GB, 𝑠 is the number of synchronizations per epoch, and 𝑡𝑏 is the

proportion of training spent in the backward pass (measured to be 0.54). The

results consistently demonstrate a significant reduction in scaled network

traffic, averaging 70.31% across all scaling tests (Tables 5.1 and 5.2), high-

lighting the effectiveness of AB training in mitigating the communication

94

5.4. Discussion

Table 5.1.: Results from the constant local batch size scaling experiments. Scaled traffic reports

the scaled interconnect traffic, as shown in Equation (5.9). The scaled interconnect traffic is

limited to the bandwidth available on each node, 25GB/s. Compression results show the final

model compression ratio to the full-rank model. Time to train shows job wall-clock time. Bold

values indicate the most favorable results between 𝐴𝐵, 𝐴𝐵 - No Groups, and traditional DDP

training.

ViT B/16

Batch Size AB AB - No Groups Traditional DDP

2k

Scaled Traffic, GB/s 2.81 ± 0.08 5.14 ± 0.19 8.87 ± 0.00

Compression 2.52 : 1 2.83 : 1 1 : 1

Time to Train,min 435.80 ± 7.36 442.94 ± 8.52 436.38 ± 0.35

Validation Top-1, % 70.24 ± 0.36 68.31 ± 0.07 70.73 ± 0.44

4k

Scaled Traffic, GB/s 2.83 ± 0.06 5.72 ± 0.08 8.87 ± 0.10

Compression 2.09 : 1 2.22 : 1 1 : 1

Time to Train,min 220.85 ± 0.88 224.35 ± 1.22 249.03 ± 31.01

Validation Top-1, % 70.90 ± 0.44 67.81 ± 0.49 69.15 ± 0.00

8k

Scaled Traffic, GB/s 2.65 ± 0.04 5.93 ± 0.13 8.51 ± 0.00

Compression 2.02 : 1 1.98 : 1 1 : 1

Time to Train,min 115.65 ± 1.37 121.95 ± 1.95 121.78 ± 1.02

Validation Top-1, % 68.92 ± 0.10 65.70 ± 0.14 67.20 ± 0.07

16k

Scaled Traffic, GB/s 2.54 ± 0.03 4.91 ± 0.67 8.25 ± 0.18

Compression 1.86 : 1 1.86 : 1 1 : 1

Time to Train,min 64.83 ± 1.96 79.15 ± 9.31 63.53 ± 1.10
Validation Top-1, % 64.20 ± 0.01 61.17 ± 0.33 63.68 ± 0.09

32k

Scaled Traffic, GB/s 2.27 ± 0.41 4.63 ± 0.51 7.52 ± 0.36

Compression 1.80 : 1 1.84 : 1 1 : 1

Time to Train,min 39.53 ± 5.29 43.36 ± 3.90 36.56 ± 0.19
Validation Top-1, % 55.54 ± 0.34 53.89 ± 0.15 58.00 ± 0.17

ResNet-50

2k

Scaled Traffic, GB/s 1.11 ± 0.00 2.87 ± 0.01 3.83 ± 0.01

Compression 1.29 : 1 1.27 : 1 1 : 1

Time to Train,min 368.15 ± 0.80 364.91 ± 0.53 367.36 ± 0.36

Validation Top-1, % 75.67 ± 0.10 74.42 ± 0.04 74.43 ± 0.06

4k

Scaled Traffic, GB/s 1.04 ± 0.05 2.67 ± 0.04 3.85 ± 0.01

Compression 1.39 : 1 1.27 : 1 1 : 1

Time to Train,min 200.69 ± 10.30 195.46 ± 1.30 195.19 ± 0.59
Validation Top-1, % 74.61 ± 0.06 73.68 ± 0.12 73.67 ± 0.05

8k

Scaled Traffic, GB/s 0.91 ± 0.03 2.71 ± 0.02 3.71 ± 0.09

Compression 1.31 : 1 1.16 : 1 1 : 1

Time to Train,min 108.19 ± 4.94 104.70 ± 0.52 105.77 ± 1.69

Validation Top-1, % 73.66 ± 0.03 73.04 ± 0.15 73.02 ± 0.10

16k

Scaled Traffic, GB/s 0.87 ± 0.01 2.56 ± 0.04 3.63 ± 0.23

Compression 1.19 : 1 1.10 : 1 1 : 1

Time to Train,min 58.61 ± 0.07 59.54 ± 0.68 59.27 ± 0.10

Validation Top-1, % 72.66 ± 0.04 72.60 ± 0.10 72.32 ± 0.03

32k

Scaled Traffic, GB/s 0.78 ± 0.01 2.17 ± 0.04 3.00 ± 0.06

Compression 1.20 : 1 1.12 : 1 1 : 1

Time to Train,min 36.91 ± 0.07 37.48 ± 0.15 37.91 ± 0.73

Validation Top-1, % 70.49 ± 0.05 71.38 ± 0.07 71.47 ± 0.08

bottleneck inherent in data-parallel training. These findings underscore the

substantial bandwidth demands of distributed training, even with moderately

sized models, a challenge further amplified with larger architectures.

95

5. Using Low-Rank Representations in Data Parallel Training

Table 5.2.: Results from the constant global batch size scaling experiments. Scaled traffic reports

the scaled interconnect traffic, as shown in Equation (5.9). The scaled interconnect traffic is

limited to the bandwidth available on each node, 25GB/s. Compression results show the final

model compression ratio to the full-rank model. Time to train shows job wall-clock time. Bold

values indicate the most favorable results between 𝐴𝐵, 𝐴𝐵 - No Groups, and traditional DDP

training.

ViT B/16

Nodes AB AB - No Groups Traditional DDP

4

Scaled Traffic, GB/s 2.49 ± 0.49 5.61 ± 0.16 8.93 ± 0.09

Compression 2.09 : 1 2.21 : 1 1 : 1

Time to Train,min 259.44 ± 49.68 227.99 ± 5.29 224.97 ± 1.79
Validation Top-1, % 70.68 ± 0.56 68.66 ± 0.22 69.26 ± 0.18

8

Scaled Traffic, GB/s 4.89 ± 0.44 10.31 ± 0.32 13.09 ± 1.92

Compression 2.27 : 1 2.19 : 1 1 : 1

Time to Train,min 123.35 ± 5.81 124.85 ± 1.92 153.03 ± 17.77

Validation Top-1, % 69.66 ± 0.44 68.37 ± 0.15 69.38 ± 0.14

16

Scaled Traffic, GB/s 8.17 ± 0.17 17.14 ± 0.28 25.00 ± 0.31

Compression 2.54 : 1 2.20 : 1 1 : 1

Time to Train,min 77.68 ± 9.18 74.26 ± 0.76 76.95 ± 0.87

Validation Top-1, % 69.19 ± 0.68 68.67 ± 0.34 68.79 ± 0.40

32

Scaled Traffic, GB/s 9.84 ± 0.07 21.81 ± 2.66 25.00 ± 2.55

Compression 2.91 : 1 2.20 : 1 1 : 1

Time to Train,min 51.10 ± 0.29 81.41 ± 19.36 77.99 ± 18.29

Validation Top-1, % 66.13 ± 0.22 68.58 ± 0.57 68.99 ± 0.10

ResNet-50

4

Scaled Traffic, GB/s 1.07 ± 0.01 2.69 ± 0.03 3.83 ± 0.01

Compression 1.38 : 1 1.27 : 1 1 : 1

Time to Train,min 194.64 ± 0.91 195.76 ± 3.49 195.03 ± 0.74

Validation Top-1, % 74.75 ± 0.09 73.65 ± 0.13 73.74 ± 0.13

8

Scaled Traffic, GB/s 1.46 ± 0.18 3.98 ± 0.41 4.96 ± 0.09

Compression 1.54 : 1 1.27 : 1 1 : 1

Time to Train,min 135.98 ± 12.43 131.76 ± 12.52 139.82 ± 2.00

Validation Top-1, % 73.76 ± 0.19 73.60 ± 0.02 73.64 ± 0.09

16

Scaled Traffic, GB/s 1.91 ± 0.27 5.57 ± 0.09 6.09 ± 0.46

Compression 1.72 : 1 1.27 : 1 1 : 1

Time to Train,min 111.46 ± 12.41 92.52 ± 1.78 113.00 ± 7.23

Validation Top-1, % 72.41 ± 0.04 73.54 ± 0.04 73.72 ± 0.03

32

Scaled Traffic, GB/s 1.84 ± 0.42 5.70 ± 0.03 6.49 ± 1.85

Compression 1.91 : 1 1.27 : 1 1 : 1

Time to Train,min 110.09 ± 28.61 92.37 ± 3.35 121.55 ± 31.04

Validation Top-1, % 70.59 ± 0.08 73.73 ± 0.10 73.71 ± 0.04

In 13 out of 18 experiments,𝐴𝐵 training achieved validation accuracy compet-

itive with traditional DP training with identical hyperparameters and similar

training durations (Figures 5.3 and 5.6). Removing independent training

groups resulted in a noticeable decrease in validation accuracy (Figure 5.3a)

despite comparable compression levels (Figure 5.5). This suggests that the

performance benefits of AB training arise from the synergistic combination

of low-rank representations, independent subgroup training, and the merging

of the low-rank representations as𝑾 ≈ 𝑨𝑩.

96

5.4. Discussion

Large-scale experiments revealed a complex relationship between communi-

cation efficiency and model accuracy. In the ViT experiments with 32 nodes

and a constant global batch size (Figure 5.8), the classic communication bottle-

neck was observed for traditional data-parallel training, where training time

did not decrease despite increased computational resources. However, 𝐴𝐵

training continued to reduce training time due to decreased communication

demands, even with the added overhead of computing the SVD of all network

weights. Notably, 𝐴𝐵 training either maintained or reduced training time

compared to PyTorch’s DDP across all scaling measurements (Table 5.1 and

Table 5.2).

𝐴𝐵 training consistently achieved favorable compression ratios (Figures 5.5

and 5.7, and Tables 5.1 and 5.2). For runs matching or exceeding baseline

accuracy, compression ratios for the Vision Transformer ranged from 1.89:1

to 2.54:1. At the same time, ResNet-50 demonstrated more modest but still

noteworthy ratios of 1.19:1 to 1.72:1. This variation suggests a potential

interaction between model architecture and the effectiveness of 𝐴𝐵 training,

warranting further investigation.

Table 5.3 compares𝐴𝐵 training’s performance to other low-rank and pruning

methods on ResNet-50 (ImageNet-2012) and VGG16 (CIFAR10). On CIFAR10,

𝐴𝐵 training achieved a 44.14:1 compression ratio with negligible accuracy

loss, surpassing the compression of ICP [197] and ABCPrune [198]. Notably,

𝐴𝐵 training was the only method to outperform the baseline in the ResNet-50

benchmark.

The information to calculate the scaled network traffic with Equation (5.9) is

not available for other methods. To compare the communication efficiency

of each training method, I estimate the maximum communication savings

achievable.

As all training methods shown iteratively reduce the network size, I assume

they begin with the traditional network before removing parameters with a

linear decrease in parameter count during training. Inmy experiments, I found

that once the network started to compress, it quickly removed large portions

of parameters and then removed fewer parameters during the remaining

training steps. However, as the parameter removal rate is unknown, I assume

that models train close to full rank for 25% of training and close to their

97

5. Using Low-Rank Representations in Data Parallel Training

final model state for the remaining 75%. With this assumption, I define the

estimated communication reduction (ECR) metric as

ECR = 100% − 𝐹 − 𝐿𝑐, (5.10)

where 𝐹 and 𝐿 are the percentages of training spent at the full-rank and

most-compressed network state, respectively, and 𝑐 is the final compression

ratio as a fraction. For 𝐴𝐵 training, the percentage of training spent near the

final compression state, 𝐿, is reduced by the percentage time spent in the

independent group training phase.

Table 5.3.: Comparison of low-rank and pruning methods for ResNet-50 on ImageNet-2012 and

VGG16 on CIFAR10. ’Difference to Baseline’ indicates validation top-1 performance relative to

the original full-rank model in each study, with positive values denoting improved predictive

performance over the baseline. 𝐴𝐵 training used a global batch size of 4,096 for ImageNet and

1,024 for CIFAR10, achieving maximum top-1 accuracies of 75.67% and 91.87%, respectively. The

estimated communication reduction (estimated communication reduction (ECR)) is defined by

Equation (5.10). 𝐴𝐵 training’s ECR assumes independent groups do not utilize the compute

system’s interconnect. OIALR’s and DLRT’s ECR use the compression of the trainable parameters

as they report.

Method

Difference

to Baseline

Compression

Ratio

ECR

R
e
s
N
e
t
-
5
0

I
m
a
g
e
N
e
t
-
2
0
1
2

𝐴𝐵 +1.55 % 1.39 : 1 73.29 %
𝐴𝐵 (no groups) -0.02 % 1.27 : 1 15.94 %

OIALR [184] -1.72 % 1.21 : 1 63.64 %

DLRT [129] -0.56 % 1.85 : 1 64.35 %

PP-1 [155] -0.20 % 2.26 : 1 41.81 %

CP [179] -1.40 % 2.00 : 1 37.5 %

SFP [180] -0.20 % 2.39 : 1 43.62 %

ThiNet [103] -1.50 % 2.71 : 1 47.32 %

ABCPrune [198] -2.15 % 1.84 : 1 34.24 %

V
G
G
1
6

C
I
F
A
R
1
0

𝐴𝐵 -0.23 % 44.14 : 1 65.60 %

𝐴𝐵 (no groups) -0.89 % 36.63 : 1 72.95 %
OIALR [184] +0.10 % 3.70 : 1 64.59 %

DLRT [129] -1.89 % 1.79 : 1 16.88 %

ABCPrune [198] +0.06 % 8.83 : 1 66.51 %

ICP [197] -0.31 % 27.25 : 1 72.25 %

Regarding the ECR, 𝐴𝐵 training demonstrates superior performance to all

methods except OIALR and DLRT, which achieve compression by directly

98

5.4. Discussion

training the singular value matrix (𝚺). Notably, the most significant com-

munication reduction is observed for the ResNet-50 benchmark. However,

for VGG16 trained on CIFAR10, both ICP [197] and the “𝐴𝐵 Training (No

Group)” variant exhibit higher estimated communication reductions than

standard 𝐴𝐵 training. This suggests that while 𝐴𝐵 training offers excellent

communication efficiency, its advantage diminishes at extremely high com-

pression levels. These findings are corroborated by measured network traffic

reductions, which averaged 70.13% across all tested scenarios, aligning closely

with the estimated ECR.

The results reveal a complex relationship between low-rank representations,

large batch sizes, and generalization. Significantly improved generalization

was observed in all experiments, likely due to the regularization effect of

low-rank representations, as evidenced by its presence in the “No Groups”

measurements shown in Figure 5.6. However, accuracy degrades at larger

scales, particularly with a constant local batch size (Figure 5.3). This degra-

dation, coupled with decreasing compression ratios as the global batch size

increases (Figure 5.5), suggests challenges in maintaining the effectiveness of

averaging independently trained subgroups at extreme scales.

Specifically, I hypothesize that the generalizable patterns represented by the

singular values and their corresponding vectors in the center of the singular

value distribution are not consistently learned across all worker groups. Con-

sequently, when the independently trained models are merged, their presence

in the full-rank representation diminishes, leading to lower accuracy and

compression ratios at large scales. Similar trends in the fixed global batch

size scenario (Figures 5.6 and 5.7) further support this hypothesis.

The increasing compression and decreasing accuracy as the local batch size

decreases suggest an incompatibility between the large global batch size

during full-rank training and the smaller batches used during independent

training. This likely leads to divergences in smaller singular values across

groups, which are diminished during model aggregation.

While 𝐴𝐵 training demonstrates significant potential, these challenges high-

light the need for further research into tailored model merging strategies

and adaptive learning rate schedules. Investigating more alternative update

mechanisms, such as non-average or loss-weighted averaging schemes, could

mitigate the negative impacts of large batch sizes in this context.

99

5. Using Low-Rank Representations in Data Parallel Training

5.5. Conclusion and Outlook

My experimental results highlight the significant potential of 𝐴𝐵 training to

reduce communication overheads in distributed deep learning by leveraging

low-rank representations and independent training of worker subgroups. The

consistent 70% reduction in network traffic achieved across various models

and datasets opens up new possibilities for training in environments with

limited network bandwidth. This efficiency gain could prove invaluable for

the research and development of larger, more complex neural networks.

Furthermore, the pronounced regularization effects observed with 𝐴𝐵 train-

ing, particularly at smaller scales, offer a promising avenue for improving

generalization and model performance. The reduced overfitting demonstrated

in my experiments underscores the potential benefits of integrating low-rank

methods into standard training pipelines.

However, the challenges encountered at extreme scales, particularly the

degradation in accuracy and compression efficiency, emphasize the com-

plex interplay between low-rank representations, large batch effects, and

hyperparameter optimization. These findings underscore the need for fur-

ther research into tailored hyperparameter strategies that can effectively

navigate the unique optimization landscape of low-rank, distributed train-

ing. The development of novel update mechanisms, such as non-average or

loss-weighted averaging schemes, could also prove fruitful in mitigating the

negative impacts of large batch sizes in this context.

While this work represents a significant step towards communication-efficient

distributed training, it also reveals the importance of understanding the

intricate relationship between model architecture, hyperparameters, and

training dynamics. In the following chapter, I will delve deeper into the

challenges and opportunities of hyperparameter optimization and neural

architecture search, aiming to unlock its potential and pave the way for even

more efficient and scalable deep learning workflows.

100

6. Tuning Training Methods by
Choosing Better
Hyperparameters

The content of this chapter is based on:

D. Coquelin, R. Sedona, M. Riedel, et al. “Evolutionary Optimization of

Neural Architectures in Remote Sensing Classification Problems”. In: 2021

IEEE International Geoscience and Remote Sensing Symposium IGARSS.

2021, pp. 1587–1590. DOI: 10.1109/IGARSS47720.2021.9554309

The previous chapters have delved into various methods for training and

optimizing neural networks, including distributed training, low-rank approx-

imations, and hybrid approaches. Each of these introduced its own set of

non-learnable hyperparameters (HPs), which, combined with those governing

the network architecture, optimizer, and learning rate scheduler, create a vast

and complex configuration space to navigate.

The hyperparameters, established prior to the onset of training, exert a pro-

found influence on both the training process and the predictive capabilities

of the resultant model. The evaluation of individual configurations lends

itself naturally to an embarrassingly parallel paradigm, highly amenable to

exploitation within distributed-memory environments. This inherent paral-

lelism empowers hyperparameter optimization (HPO) packages to effectively

harness distributed-memory architectures, contingent upon the efficient gen-

eration of new hyperparameter combinations.

The task of HPO involves tuning hyperparameters to maximize a model’s

performance on a specified metric, such as validation accuracy. This is often

a formidable challenge, as the interplay between parameters can be complex

and highly dependent on the specific task, dataset, and model architecture.

101

http://doi.org/10.1109/IGARSS47720.2021.9554309

6. Tuning Training Methods by Choosing Better Hyperparameters

For instance, while the learning rate is typically considered a critical hyper-

parameter, its ideal value has been shown to depend on the global batch

size [199]. This exemplifies the broader challenge: hyperparameters are

highly interdependent, making discovering optimal model configurations

difficult.

This challenge lies at the heart of Neural Architecture Search (NAS), a sub-

field of HPO that seeks to automate the discovery of well-performing model

architectures. While manual tuning based on expertise and intuition remains

valuable, modern neural networks’ sheer scale and complexity necessitate

systematic, automated, and efficient approaches.

The search space for HPO is often vast, high-dimensional, and non-convex,

characterized by hidden correlations and interactions among parameters that

are difficult to discern. Evolutionary algorithms, which breed and mutate

sets of hyperparameters, have shown promise in effectively navigating this

complex landscape and discovering superior configurations [101].

In this chapter, I delve into the workings of Propulate [101], a robust asyn-

chronous evolutionary optimization framework designed to tackle HPO in

distributed settings. I will situate Propulate within the broader landscape

of HPO method, showcase its application for image classification on the

BigEarthNet [200] dataset, and discuss its extension to multi-rank worker

scenarios, something particularly important for HPC environments.

6.1. Background and Related Work

Hyperparameter optimization is a long-standing challenge in machine learn-

ing with roots in the broader field of optimization. Simple approaches often

involve manual trial and error, or systematic but computationally expensive

grid search. Grid search’s inherent limitations, particularly its inability to

efficiently explore high-dimensional hyperparameter spaces [201], led to

developing more sophisticated methods.

A simple yet surprisingly effective method is random search. This approach

randomly samples hyperparameter configurations from a predefined distri-

bution, offering a computational advantage over grid search. Given sufficient

random sampling, random search can also find more optimal configurations

than grid search [98].

102

6.1. Background and Related Work

As evaluating each hyperparameter set requires at least a partial model train-

ing, state-free methods like grid and random search can exceed available

compute resources. To efficiently explore high-dimensional hyperparameter

spaces, state-dependent strategies, like Bayesian and evolutionary optimiza-

tion, use information from previous evaluations to guide the search and find

the best possible combination with fewer evaluations.

Bayesian optimization, which has emerged as a prominent methodology in

HPO [97], constructs a probabilistic model (typically a Gaussian process) of

the objective function, which maps hyperparameter configurations to their

corresponding model performance. The model is updated iteratively based on

the results of past evaluations, guiding the algorithm to select new configura-

tions that balance the exploration of the search space with the exploitation

of promising regions. This approach can be particularly advantageous when

evaluations are computationally expensive, as it aims to minimize the num-

ber of function evaluations required to find high-performing solutions. The

Optuna framework [202] is a notable implementation of Bayesian optimiza-

tion, offering flexibility and ease of use. One of the significant benefits of

Bayesian optimization is the inherently existing importance metrics. The-

oretically, these denote how much a given hyperparameter influences the

objective function’s output. However, this approach struggles when its core

assumptions break down, e.g., when some HPs significantly affect others

non-linearly [101]. This can occur in neural architecture search (NAS), where

the network structure is part of the search space.

Inspired by natural evolution, evolutionary optimization algorithms provide

a powerful alternative to Bayesian optimization. These algorithms maintain

a population of candidate solutions, each representing a specific hyperparam-

eter configuration. The population is iteratively improved through processes

analogous to biological selection, crossover, and mutation. Candidate solu-

tions are known as individuals. Each individual’s fitness is evaluated using a

predefined metric, such as validation accuracy. The most successful individu-

als are selected to generate offspring by combining the hyperparameters from

two parents (crossover) and randomly perturbing some hyperparameters

(mutation). This process repeats, gradually guiding the population towards

more optimal solutions.

Evolutionary algorithms are metaheuristics, meaning they lack theoretical

convergence or optimality guarantees. Their stochastic nature can lead to con-

siderable variability in results, requiring multiple runs to ensure robustness.

103

6. Tuning Training Methods by Choosing Better Hyperparameters

However, they also offer several advantages. Firstly, evolutionary algorithms

are well-suited for navigating complex, non-convex, high-dimensional search

spaces, a common characteristic of HPO problems [203]. They can also dy-

namically adapt to the search space’s characteristics and the feedback from

evaluations, adjusting their search strategies as needed [204]. Furthermore,

evolutionary algorithms can readily parallelize the evaluation of individuals,

making them well-suited for large-scale, distributed HPO [205].

Propulate [101] is a state-of-the-art evolutionary optimization framework

designed for massively parallel HPO at scale. Evolutionary algorithms have

outperformed Bayesian optimization methods in various scenarios, achieving

faster convergence and superior predictive performance [101]. Furthermore,

Propulate’s asynchronous nature makes it well-suited for distributed envi-

ronments, enabling efficient parallelization of the evaluation process.

One of the challenges in distributed HPO lies in efficient information sharing.

While each worker can independently evaluate hyperparameter configura-

tions, they must all share and utilize the results of these evaluations to inform

the next generation of candidate solutions. A common approach uses a cen-

tralized database to store and aggregate proposed hyperparameters and their

corresponding results [202]. However, this can lead to a file-locking bottle-

neck when many workers attempt to access the database simultaneously, a

situation often encountered in HPC environments. Mitigating this bottleneck

requires careful design of the communication and coordination mechanisms

within the HPO framework, ensuring that information exchange does not

become a limiting factor in the search process.

6.1.1. Propulate’s Evolutionary HPO

Propulate is an evolutionary optimization framework, particularly designed

for hyperparameter optimization. It leverages the principles of natural se-

lection, crossover, and mutation to guide the search process toward optimal

hyperparameter configurations.

Typically, the process begins with a population of randomly initialized hy-

perparameter sets, each representing an individual. These individuals are

evaluated by training neural networks with the corresponding hyperparame-

ter configurations and assessing their performance on a validation set. The

most successful individuals are then selected to form a mating population.

104

6.1. Background and Related Work

New offspring are generated through crossover, combining hyperparameters

from two parents, and mutation, randomly perturbing some hyperparame-

ters. These new offspring are evaluated, and the process repeats for multiple

generations or until a desired performance level is reached.

Propulate employed a simplified version of this process in its initial versions,

with a single dedicated process managing the population and generating

offspring. However, recent developments have seen the adoption of an island-

based model with an improved communication strategy, offering enhanced

exploration and scalability.

The island model divides the population into multiple subpopulations, each

residing on a separate “island.” Each island independently evolves its sub-

population, with workers evaluating individuals and generating offspring.

Periodically, the islands exchange their best individuals. The goal of migra-

tion is to introduce genetic diversity and prevent premature convergence.

This decentralized approach promotes a balance between exploration and

exploitation, as each island explores a different search space region while

benefiting from the occasional influx of potentially superior solutions from

other islands.

Propulate uses asynchronous propagation of continuous populations. It soft-

ens the typically strict separation of generations to reduce the computational

overhead caused by synchronous evaluations. In each iteration, each worker

breeds and evaluates a new individual and informs all other workers on the

same island about its result. It then receives individuals evaluated by others

for a mutual update. Afterward, asynchronous migration happens between

islands with a certain probability. In the next generation, the worker breeds

a new individual from the continuous population of all evaluated individuals

from any generation on its island. The workers thus proceed asynchronously

without idle times despite the individuals’ varying evaluation times.

6.1.2. BigEarthNet

For my NAS experiments, I used the BigEarthNet [206] dataset. BigEarthNet

is a large-scale remote-sensing dataset containing patches extracted from

125 Sentinel-2 tiles (Level2A) acquired from June 2017 to May 2018 [206].

The archive comprises 590,326 patches, each is assigned one or more of the

19 available labels. The label nomenclature is an adaptation of the CORINE

105

6. Tuning Training Methods by Choosing Better Hyperparameters

Land Cover [207] consisting of labels from ten European countries updated

in 2018 [200]. Each patch has twelve spectral bands at various resolutions:

• three RGB bands and band eight at 10m resolution (120 by 120 pixels)

• bands 5, 6, 7, 8a, 11, and 12 at 20m resolution (60 by 60 pixels)

• bands 1 and 9 at 60m resolution (20 by 20 pixels)

I omitted the cirrus-sensitive band ten and patches covered with snow or

clouds [208]. Figure 6.1 shows example patches.

Figure 6.1.: Example patches and labels for Sentinel-2 tiles [200].

In Sumbul et al. [200], researchers trained multiple network types for multi-

class classification of the BigEarthNet dataset, achieving varying degrees

of success. Those experiments excluded bands 1 and 9, utilized the Adam

optimizer, the sigmoid cross-entropy loss, a learning rate of 0.001, and were

trained for 100 epochs.

The models were evaluated with the 𝐹1 score, a metric that measures the

accuracy of a model by considering both precision (the ability to avoid false

positives) and recall (the ability to find all relevant instances). In a multi-class

classification problem, the micro-𝐹1 score calculates the 𝐹1 score globally by

counting the total true positives, false negatives, and false positives across

106

6.2. Experiments

all classes, treating all classes equally [209]. Conversely, the macro 𝐹1 score

calculates the average 𝐹1 score of each class independently and then takes the

mean, giving equal weight to all classes. In the evaluation of the ResNet-50

on BigEarthNet, the micro-𝐹1 score of 77.11 indicates good overall accuracy

across all classes. In contrast, the macro-𝐹1 score of 67.33 suggests poten-

tial variability in performance across different classes, with possible lower

accuracy on poorly represented classes.

6.2. Experiments

To test Propulate’s single-island version and its NAS performance, I tasked

it with optimizing a ResNet-50-type model for multi-label classification of

the BigEarthNet dataset.

I systematically divided the hyperparameter search space into six categories:

optimizers, learning rate schedulers, activation functions, loss functions, the

number of filters per convolutional block, and the activation order. Table 6.1

details the specific options explored within each category, excluding the

number of filters. For this network, the number of filters in each convolutional

block is determined by a fixed ratio relative to the number of filters in the

first block. The search space also included the learning rate scheduler’s and

optimizer’s parameters. The order of activation, batch normalization (BN),

and convolution layers within residual building blocks can affect the accuracy

of a network [210]; therefore, I included these options in the search space

as well. I will use the test configurations in Figure 6.2 when referring to the

activation order.

The search space for the number of filters refers to the number of filters

in the first convolutional block and ranges from 2 to 256. The activation

functions considered were Exponential Linear Unit (ELU), exponential, hard

sigmoid, linear, Rectified Linear Unit (ReLU), Scaled Exponential Linear Unit

(SELU), sigmoid, Softmax, Softplus, Softsign, Swish, and hyperbolic tangent.

The loss functions included binary cross-entropy, categorical cross-entropy,

categorical hinge, hinge, Kullback-Leibler divergence, and squared hinge.

The selection of these functions was based on their prevalence within the

machine learning community [12].

107

6. Tuning Training Methods by Choosing Better Hyperparameters

Table 6.1.: Neural architecture and hyperparameter search space. The Activation Function

column shows the activation functions. Figure 6.2 shows detailed activation orders. ELU is the

exponential linear unit, ReLU is the rectified linear unit, SELU is the scaled exponential linear

unit, K-L divergence is the Kullback-Leibler divergence, and tanh is the hyperbolic tangent.

Optimizer [211, 212]

Adadelta AMSGrad Nadam

Adagrad Adamax RMSprop

Adam Ftrl SGD

Activation functions [12]

ELU ReLU Softplus

Exponential SELU Softsign

Hard sigmoid Sigmoid Swish

Linear Softmax tanh

Activation order [210] Loss [213, 214, 215] LR scheduler [216]

Original Binary cross-entropy Exponential decay

BN after addition Categorical cross-entropy Inverse time decay

Activation before addition Categorical hinge Polynomial decay

Activation-only pre-activation Hinge

Full pre-activation K-L divergence

Squared hinge

Data preparation followed the methodology outlined in Sumbul et al. [200],

but without image augmentation. The network was implemented in Ten-

sorFlow [49]. Experiments were conducted on varying numbers of NVIDIA

V100 GPUs on the ForHLR 2 cluster at KIT. Early stopping was employed to

terminate training if the validation loss did not improve for ten consecutive

epochs.

During the initial NAS runs, I observed that hyperparameter combinations

involving the Adam, Adamax, Nadam, and RMSprop optimizers frequently

resulted in training instability, leading to not-a-number (NaN) values. This

instability is likely due to the interaction between these optimizers’ adaptive

algorithms and specific loss functions or hyperparameter values. To address

this, I conducted separate NAS runs for each of these optimizers, isolating

them from the broader search space to prevent their premature exclusion

from the population due to instability.

108

6.3. Discussion

Figure 6.2.: The various orders of the activation, batch normalization, and convolution layers

within residual building blocks used in a network. During the NAS, the activation function is

defined by the hyperparameters [210].

6.3. Discussion

To gain insights into the effectiveness of different hyperparameters, I analyzed

their relative selection frequency across all completed NAS runs. This fre-

quency is a proxy for stability and accuracy, as poorly performing networks

are eliminated from the population.

Regarding selection frequency, binary cross-entropy and categorical hinge

were the most successful loss functions, while hinge, Kullback-Leibler di-

vergence, and squared hinge were the least effective. For the learning rate

schedulers, exponential decay, inverse time decay, and polynomial decay ex-

hibited similar frequencies, suggesting that all three can be effective choices

when appropriately parameterized.

The analysis of activation functions revealed a correlation between their

effectiveness and the chosen optimizer. For instance, Adamax performed best

with ELU, while Adadelta favored Softmax. Interestingly, the most frequently

selected activation function was the linear function, likely due to its initial

stability across various optimizers. During the initial optimization stages, the

algorithm most often chose the linear function before gradually replacing it

with more effective alternatives as the search progressed.

109

6. Tuning Training Methods by Choosing Better Hyperparameters

Table 6.2.: Class-level 𝐹1 scores for the found network, ResNet-50, and the best results per class

in Sumbul et al. [200]. Class names are abbreviated; for the full class name, see Sumbul et al.

[200].

Class Found Original

Urban fabric 75.86 74.84

Industrial or... 45.79 48.55
Arable land 84.82 83.85

Permanent crops 59.63 51.91

Pastures 74.54 72.38

Complex cultivation... 69.00 66.03

Land principally... 65.37 60.94

Agro-forestry areas 77.35 70.49

Broad-leaved forest 77.27 74.05

Coniferous forest 86.25 85.41

Mixed forest 82.15 79.44

Natural grassland... 47.77 47.55

Moors, heathland... 64.46 59.41

Transitional woodland... 64.72 53.47

Beaches, dunes, sands 44.09 61.46
Inland wetlands 61.99 60.64

Coastal wetlands 57.31 47.71

Inland waters 85.53 83.69

Marine waters 97.93 97.53

Like the linear activation function, the initial NAS stages predominantly

favored a small number of filters (four). As the search continued, the preferred

number of filters shifted towards 32 or 64. Regarding activation order, the full

pre-activation configuration (Figure 6.2) consistently emerged as the most

effective.

Due to the separate searches, the frequency-based analysis was less infor-

mative for the Adam, Adamax, Nadam, and RMSprop optimizers. Instead,

I assessed their effectiveness solely based on the 𝐹1 scores achieved by the

resulting networks.

Ftrl did not consistently yield competitive results and was gradually elim-

inated from the population in the general NAS run. Notably, the separate

searches for Adamax, RMSprop, and Adam produced networks that were

110

6.3. Discussion

competitive with the collective NAS results, suggesting that excluding these

optimizers due to instability concerns was unwarranted from a predictive

performance perspective.

Adadelta and SGD emerged as the most effective optimizers, each generating

multiple configurations that met or exceeded the target micro-𝐹1 score of

77.11. The best-performing configuration achieved a micro-𝐹1 score of 77.25

and a macro-𝐹1 score of 69.57 in just ten epochs, surpassing the accuracy and

significantly reducing the training time compared to the previously reported

results [200].

A detailed analysis at the class level, Table 6.2, revealed that the discovered

network notably outperformed the baseline models for certain classes, par-

ticularly coastal wetlands, moors, heathland and sclerophyllous vegetation,

and agro-forestry areas. However, performance on the beaches, dunes, and

sands class was significantly worse. These discrepancies are attributed to the

inclusion of additional spectral bands in the training data, highlighting the

potential impact of data representation on class-level accuracy.

My experiments on BigEarthNet showcase the efficacy of evolutionary NAS

in automating the discovery of optimal model architectures and hyperparame-

ters for remote sensing image classification. The superior performance of the

discovered architecture compared to manually tuned baselines demonstrates

the potential of this approach to improve classification accuracy while signif-

icantly reducing the time and effort required for hyperparameter tuning.

The observed variations in performance across different optimizers and ac-

tivation functions highlight the complex and often unpredictable interplay

between these components within the broader HPO landscape. The emer-

gence of the linear activation function as a frequent choice in early NAS

stages, followed by a gradual shift towards more specialized activations like

ELU and Softmax, suggests a potential strategy for balancing exploration and

exploitation during the search process.

However, excluding unstable optimizers early in the search process under-

scores the challenges inherent to HPO. The final results were influenced by

the initial stability of the search space rather than solely by the optimizers’

ultimate potential for achieving high performance.

The class-level analysis reveals the nuanced impact of data representation and

feature selection on model performance. While the discovered architecture

excelled in classifying certain land cover types, its performance on others was

111

6. Tuning Training Methods by Choosing Better Hyperparameters

notably worse than the baseline. This observation emphasizes the importance

of carefully considering the specific characteristics of the dataset and task

when designing and optimizing neural network architectures.

6.4. Multi-Rank Workers

A crucial step in HPO is distributing hyperparameter configurations to work-

ers for evaluation. This process is straightforward when each worker uses

a single MPI rank and GPU. However, when an individual’s evaluation re-

quires multiple ranks and GPUs, coordinating the distribution and evaluation

of hyperparameters becomes more intricate. This functionality, absent in

early versions of Propulate, is vital for effectively exploring hyperparameter

spaces for multi-rank worker configurations, e.g. the data-parallel training of

neural networks.

Initially, Propulate assumed a one-to-one correspondence between workers

and MPI ranks (Figure 6.3a). This assumption simplified the initial implemen-

tation but limited its applicability for multi-rank scenarios. Therefore, the

concept of a worker was broadened to encompass any number of sub-workers

to accommodate these cases. This change results in so-called multi-rank work-

ers (Figure 6.3b), and coordinated action is required among the ranks of each

worker.

To accommodate these cases, the concept of a worker was broadened to

encompass any number of sub-workers, resulting in so-called multi-rank

workers (Figure 6.3b). This requires coordinated action among the ranks

within each worker.

To achieve these modifications, I made the following changes to Propulate:

1. Workers were redefined as MPI groups, enabling efficient communica-

tion among ranks within a single worker.

2. I created additional MPI groups comprising each island’s multi-rank

workers’ rank 0 processes. As illustrated in Figure 6.3b, rank 0 of

worker 8, for instance, governs ’GPU:15’. This facilitates communica-

tion and coordination on an effective intra-island multi-rank worker

level.

112

6.5. Conclusion

3. A separate MPI group, consisting of all multi-rank workers’ rank 0

processes across the entire MPI world, was established. This group

mirrors Propulate’s original communication structure and is used for

migrating individuals between islands.

4. Only the designated rank 0 process of each worker actively partic-

ipates in the propagation of individuals to guarantee uniformity in

hyperparameter configurations across all ranks within a worker.

Within each multi-rank worker group, solely the rank 0 worker is responsible

for sampling individuals from the population and disseminating them to the

remaining ranks within the group. The other ranks contribute exclusively to

the evaluation of these individuals, playing no direct role in the optimization

of the HPs.

These modifications extend Propulate’s capabilities to effectively manage

multi-rank workers. By enabling coordinated evaluation and communication

within and across worker groups, the framework can explore hyperparameter

spaces for a broader range of distributed training scenarios. This has been

used successfully in the optimization of the 𝐴𝐵 training method presented in

Chapter 5.

6.5. Conclusion

My work presented in this chapter demonstrates the potential of evolutionary

HPO to automate and optimize NN architectures. When properly config-

ured, evolutionary HPO can uncover hyperparameter combinations that lead

to accelerated convergence rates and improved accuracy, as shown on the

BigEarthNet dataset and in the previous two chapters. However, my findings

also underscore the importance of carefully considering the stability and inter-

actions of hyperparameters within the search space. As demonstrated by the

need for separate HPO runs for specific optimizers, unstable configurations

can unduly bias the search process.

Notably, the evolutionary HPO approach yielded an architecture that sur-

passed the accuracy of manually tuned models and converged significantly

faster. The combination of Adadelta optimizer, polynomial learning rate

decay, Softmax activation, and binary cross-entropy loss proved particularly

113

6. Tuning Training Methods by Choosing Better Hyperparameters

Island 1

Island 2

Worker 1

GPU: 1

Worker 2

GPU: 2

Worker 3

GPU: 3

Worker 4

GPU: 4

Worker 5

GPU: 5

Worker 6

GPU: 6

Worker 7

GPU: 7

Worker 8

GPU: 8

Communication World

(a) Original worker design

Island 1

Island 2

Worker 1

GPU: 1 GPU: 2

Worker 2

GPU: 3 GPU: 4

Worker 3

GPU: 5 GPU: 6

Worker 4

GPU: 7 GPU: 8

Worker 5

GPU: 9 GPU: 10

Worker 6

GPU: 11 GPU: 12

Worker 7

GPU: 13 GPU: 14

Worker 8

GPU: 15 GPU: 16

Communication World

(b) Multi-rank worker design

Figure 6.3.: A simple overview of how Propulate modeled workers when first implemented, (a),

and how the same number of workers and islands looks when workers each have two accelerators

and two ranks (b). In this diagram, each GPU is controlled by a single, unique rank.

effective for the presented use-case of BigEarthNet classification. Further-

more, including additional spectral bands led to substantial accuracy gains

for several land cover classes, showcasing the importance of data representa-

tion.

However, the inherent limitations of any HPO approach must be acknowl-

edged. The defined search space bounds search effectiveness, and while

encompassing commonly used functions, my current work did not explore

cutting-edge or highly specialized techniques. Achieving substantial per-

formance gains beyond those demonstrated here requires more advanced

network architectures and loss functions tailored to the specific nuances of

remote sensing data.

My findings illuminate the potential of automated methods for hyperpa-

rameter and architecture optimization in remote sensing applications. The

discovered architecture and hyperparameter configurations offer a valuable

starting point for further research and practical deployment of deep learning

models in this domain.

114

6.5. Conclusion

In the broader context of my thesis, this chapter’s results reinforce the theme

that understanding and leveraging the intricacies of neural network training

can lead to significant advancements in model performance and compu-

tational efficiency. While I have focused on hyperparameter tuning and

architecture search here, my earlier explorations of low-rank representations

and distributed training emphasize the multifaceted nature of optimizing

deep learning workflows.

The final chapter will present the culmination of these investigations, where

I synthesize my findings and discuss their implications for deep learning

research and applications in general.

115

7. Conclusion

In this thesis, I investigated the challenges and opportunities inherent to train-

ing large-scale neural networks in distributed-memory environments. The

fundamental necessity of distributed training, driven by the ever-increasing

size and complexity of contemporary models and datasets, was firmly es-

tablished. Subsequently, a deep dive into the core principles of data parallel

(DP) training, the dominant paradigm for distributed training, was conducted,

highlighting its advantages and limitations. Particular emphasis was placed

on the communication bottleneck, a critical challenge that arises from the

frequent synchronization of model parameters.

7.1. Key Findings and Contributions

The Distributed, Asynchronous, and Selective Optimization (DASO) method,

presented in Chapter 3, showcased the potential for reducing training time by

over 25% compared to state-of-the-art methods at the time. DASO’s success

stemmed from its topology-aware, hierarchical synchronization structure,

which leveraged node-local communication and asynchronous updates with

stale gradients. This demonstrated that global synchronization after every

forward-backward pass is not strictly necessary for effective training under

the assumption of iid data items. Furthermore, the results highlighted the

potential of stale gradients in accelerating training and the effectiveness of

topology-aware communication in reducing overhead.

To understand the underlying reasons for the surprising resilience of neural

networks to stale gradients, I investigated the dynamics of weight matri-

ces during training at small scales in Chapter 4. I observed a consistent

stabilization of the weights’ orthogonal bases early in the training process.

This insight led to the development of Orthogonality-Informed, Adaptive

Low-Rank (OIALR) training. This novel method freezes the bases 𝑼 and 𝑽 ,

117

7. Conclusion

as determined by the SVD of the weights, and trains only on the singular

value matrix, 𝚺. While OIALR initially exhibited a slight decrease in accuracy

compared to full-rank training, hyperparameter optimization revealed its

potential to surpass full-rank performance in accuracy and training time.

This highlighted the importance of tailored hyperparameter configurations

for low-rank training methods as well as their potential for improved gener-

alization.

To leverage the inherent robustness of neural networks to delayed network

updates, topology-aware communication patterns, and the stabilization ob-

served in the orthogonal components of network weights, I introduced the

𝐴𝐵 training method in Chapter 5. This novel approach integrated hierarchical

synchronization and low-rank matrix approximations, enabling subgroups

of workers to train independently on distinct components of decomposed

weight matrices. Across a range of experiments and models, 𝐴𝐵 training

consistently achieved over 70% reduction in scaled network communication,

while matching or outperforming traditional DP training in terms of pre-

dictive accuracy without hyperparameter tuning. However, challenges in

preserving performance at large scales were noted, particularly arising from

the complex interactions between low-rank representations, large batch sizes,

and the merging of independently trained models.

This thesis investigated neural network optimization, particularly focusing

on distributed training and proposing novel methodologies. These method-

ologies, however, introduced new hyperparameters requiring tuning. For

DASO, a grid search was employed due to its simplicity, but even with a

limited search space, it proved computationally expensive, highlighting the

potential for further optimization. For OIALR and AB training, the power of

evolutionary algorithms, specifically leveraging the Propulate framework,

was showcased for automated hyperparameter discovery. This approach suc-

cessfully and efficiently identified robust hyperparameters, underscoring the

critical role of automated hyperparameter optimization in unlocking the full

potential of complex deep learning techniques. Such advancements enable

researchers to push the boundaries of model performance and efficiency.

118

7.2. Revisiting Research Questions

7.2. Revisiting Research Questions

Distributed Hyperparameter Optimization

New methods come with different HPs. How can the proper hyperparam-

eters for new methods be found to maximize performance in a distributed

setting?

My exploration of evolutionary HPO with Propulate in Chapter 6 highlights

its effectiveness as a powerful tool for automating the discovery of high-

performing neural network architectures and hyperparameters in distributed

environments. The successful application of Propulate in the OIALR and

𝐴𝐵 training methods further validates its versatility and potential to advance

the state of the art in deep learning. The ability to efficiently search vast,

high-dimensional spaces and adapt to the unique characteristics of different

datasets and tasks is crucial for continued progress in this field.

However, several open questions remain. Developing more efficient search

algorithms, incorporating multi-objective optimization to balance accuracy

with other factors like model size or inference speed, and exploring the

transferability of learned architectures to diverse domains are all promising

avenues for future investigation.

Exploiting Low-Rank Representations

To what extent can low-rank representations reduce the computational

and communication requirements of distributed neural network training?

My work demonstrates the efficacy of low-rank representations in reducing

the computational and communication demands of distributed neural network

training. OIALR and 𝐴𝐵 training achieved noteworthy compression ratios,

ranging from modest reductions to a remarkable 44.14 : 1 compression in

an idealized scenario. This highlights the potential for low-rank methods

to alleviate the communication bottleneck and facilitate the training and

deployment of larger models on resource-constrained devices.

Efficiency in Distributed-Memory Training

Can distributed training algorithms be designed to better balance compu-

tational and communication efficiency while scaling to accommodate the

demands of ever-larger neural networks and datasets?

119

7. Conclusion

Hierarchical trainingmethods, coupledwith low-rank representations, proved

highly effective in improving communication efficiency for data-parallel neu-

ral network training. 𝐴𝐵 training and DASO demonstrated substantial re-

ductions in network traffic (more than 70% for 𝐴𝐵 training) and training

time (more than 25% for DASO), validating the effectiveness of asynchronous

updates and localized synchronization in mitigating communication bottle-

necks.

However, achieving optimal efficiency in distributed training remains a com-

plex challenge. My work highlighted the importance of carefully balancing

communication and computation to avoid bottlenecks and maximize resource

utilization. Future research could explore adaptive synchronization schemes,

where synchronization frequency is dynamically adjusted based on factors

like model convergence and network bandwidth, to further optimize training

efficiency.

Understanding and Addressing Large Batch Effects

Can novel optimization methods or training regimes be developed to

counteract the detrimental effects of large batch training, leading to per-

formance gains and improved generalization in large-scale settings?

My research illuminates the intricate relationship between large batch sizes,

low-rank representations, and generalization performance. While smaller

batch sizes initially improved generalization in our independent group train-

ing in 𝐴𝐵 training, this trend reversed at extreme scales. This suggests that

averaging independently trained models, although beneficial for exploring the

loss landscape, can become detrimental when models diverge excessively.

The implications extend beyond optimization strategies. My findings suggest

that traditional synchronous DP training transfers redundant information by

synchronizing network gradients after every forward-backward pass. The

rapid stabilization of the weight matrices’ orthogonal components and the

robustness of methods to stale model states hint at a potential for streamlined

communication and computation in distributed training. While identifying

the essential information remains challenging, these findings suggest that

truly synchronous DP training is optional. Future research should investigate

asynchronous training methods, sparse updates, and adaptive communication

schemes to fully exploit these insights.

120

7.3. Outlook

A deeper theoretical understanding of the interplay between batch size, low-

rank representations, and optimization dynamics is crucial. This will enable

researchers to develop robust, scalable training methods that leverage large

batch sizes instead of simply dealing with them. This can open avenues to

explore fundamentally different approaches to distributed training, potentially

leading to significant gains in efficiency and performance.

7.3. Outlook

While this thesis presents significant advances in distributed training, several

limitations and avenues for future research remain. The effectiveness of my

methods could be further enhanced by developing more sophisticated model

merging strategies and exploring adaptive learning rate schedules tailored to

low-rank training. Additionally, investigating the theoretical underpinnings

of the observed regularization effects in low-rank training could provide

valuable insights into the generalization behavior of neural networks.

Implementing our methods in real-world production environments would

require careful consideration of system-specific constraints and potential

adaptations to diverse hardware configurations. Further investigation into

the impact of network bandwidth limitations and the efficacy of our methods

in heterogeneous computing environments would be crucial.

The challenge of mitigating large batch effects at extreme scales warrants

continued research. Exploring alternative update mechanisms, such as non-

average or loss-weighted averaging, or even developing new optimization

algorithms tailored for low-rank distributed training, could offer promising

solutions to this persistent problem. Overall, this thesis contributes to a

growing body of knowledge aimed at making deep learning more efficient

and scalable. The insights gained from this work lay a foundation for future

advancements in distributed training.

121

Bibliography

[1] R. Wightman, N. Raw, A. Soare, et al. rwightman/pytorch-image-
models: v0.8.10dev0 Release. Feb. 2023. doi: 10.5281/ZENODO.4414861.

[2] T. Zhang and W. Li. kDecay: Just adding k-decay items on Learning-
Rate Schedule to improve Neural Networks. arXiv:2004.05909 [cs]. Mar.

2022. doi: 10.48550/arXiv.2004.05909.

[3] Y. You, J. Li, et al. “Large Batch Optimization for Deep Learning:

Training BERT in 76minutes”. In: International Conference on Learning
Representations. 2020. url: https://openreview.net/forum?id=

Syx4wnEtvH.

[4] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for

Image Recognition”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2016, pp. 770–778. doi: 10.1109/
CVPR.2016.90.

[5] J. Jumper, R. Evans, et al. “Highly accurate protein structure prediction

with AlphaFold”. In: Nature 596.7873 (Aug. 2021), pp. 583–589. issn:
1476-4687. doi: 10.1038/s41586-021-03819-2.

[6] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. “Hierarchical Repre-

sentation Learning in Graph Neural NetworksWith Node Decimation

Pooling”. In: IEEE Transactions on Neural Networks and Learning Sys-
tems 33.5 (2022), pp. 2195–2207. doi: 10.1109/TNNLS.2020.3044146.

[7] D. Kiela, M. Bartolo, et al. Dynabench: Rethinking Benchmarking
in NLP. 2021. url: https://arxiv.org/abs/2104.14337. arXiv:

2104.14337 [cs.CL].

[8] J. Kaplan, S. McCandlish, T. Henighan, et al. “Scaling Laws for Neural

Language Models”. In: (2020). url: http://arxiv.org/pdf/2001.

08361. arXiv: 2001.08361 [astro-ph.IM].

123

https://doi.org/10.5281/ZENODO.4414861
https://doi.org/10.48550/arXiv.2004.05909
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1109/TNNLS.2020.3044146
https://arxiv.org/abs/2104.14337
https://arxiv.org/abs/2104.14337
http://arxiv.org/pdf/2001.08361
http://arxiv.org/pdf/2001.08361
https://arxiv.org/abs/2001.08361

7. Bibliography

[9] E. Hoffer, I. Hubara, and D. Soudry. “Train longer, generalize better:

closing the generalization gap in large batch training of neural net-

works”. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems. NIPS’17. Long Beach, California, USA:
Curran Associates Inc., 2017, pp. 1729–1739. isbn: 9781510860964.

[10] F. Rosenblatt. “The perceptron: A probabilistic model for information

storage and organization in the brain.” In: Psychological Review 65.6

(1958), pp. 386–408. issn: 0033-295X. doi: 10.1037/h0042519.

[11] D. Rolnick and M. Tegmark. “The power of deeper networks for

expressing natural functions”. In: International Conference on Learning
Representations. 2018. url: https://openreview.net/forum?id=

SyProzZAW.

[12] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall. “Activation

Functions: Comparison of Trends in Practice and Research for Deep

Learning”. In: arXiv preprint 1811.03378 (2018). url: http://arxiv.
org/abs/1811.03378.

[13] R. H. K. Emanuel, P. D. Docherty, H. Lunt, and K. Möller. “The effect

of activation functions on accuracy, convergence speed, and misclas-

sification confidence in CNN text classification: a comprehensive

exploration”. In: The Journal of Supercomputing 80.1 (June 2023),

pp. 292–312. issn: 1573-0484. doi: 10.1007/s11227-023-05441-7.

[14] Z. Li, F. Liu, et al. “A Survey of Convolutional Neural Networks:

Analysis, Applications, and Prospects”. In: IEEE Transactions on Neural
Networks and Learning Systems 33.12 (2022), pp. 6999–7019. doi:

10.1109/TNNLS.2021.3084827.

[15] M. Valueva, N. Nagornov, et al. “Application of the residue number

system to reduce hardware costs of the convolutional neural network

implementation”. In: Mathematics and Computers in Simulation 177

(2020), pp. 232–243. issn: 0378-4754. doi: https://doi.org/10.1016/

j.matcom.2020.04.031.

[16] T. Kobayashi. “Analyzing Filters Toward Efficient ConvNet”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2018.

124

https://doi.org/10.1037/h0042519
https://openreview.net/forum?id=SyProzZAW
https://openreview.net/forum?id=SyProzZAW
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1811.03378
https://doi.org/10.1007/s11227-023-05441-7
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/https://doi.org/10.1016/j.matcom.2020.04.031
https://doi.org/https://doi.org/10.1016/j.matcom.2020.04.031

7. Bibliography

[17] S. Ioffe and C. Szegedy. “Batch normalization: accelerating deep

network training by reducing internal covariate shift”. In: Proceedings
of the 32nd International Conference on International Conference on
Machine Learning - Volume 37. ICML’15. Lille, France: JMLR.org, 2015,

pp. 448–456.

[18] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. 2016. url:
https://arxiv.org/abs/1607.06450. arXiv: 1607.06450 [stat.ML].

[19] C.-Y. Lee, P. W. Gallagher, and Z. Tu. “Generalizing Pooling Functions

in Convolutional Neural Networks: Mixed, Gated, and Tree”. In: Pro-
ceedings of the 19th International Conference on Artificial Intelligence
and Statistics. Ed. by A. Gretton and C. C. Robert. Vol. 51. Proceed-

ings of Machine Learning Research. Cadiz, Spain: PMLR, May 2016,

pp. 464–472. url: https://proceedings.mlr.press/v51/lee16a.

html.

[20] A. Vaswani, N. Shazeer, et al. “Attention is all you need”. In: Pro-
ceedings of the 31st International Conference on Neural Information
Processing Systems. NIPS’17. Long Beach, California, USA: Curran

Associates Inc., 2017, pp. 6000–6010. isbn: 9781510860964.

[21] T. Luong, H. Pham, and C. D. Manning. “Effective Approaches to

Attention-based Neural Machine Translation”. In: Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing.
Ed. by L. Màrquez, C. Callison-Burch, and J. Su. Lisbon, Portugal:

Association for Computational Linguistics, Sept. 2015, pp. 1412–1421.

doi: 10.18653/v1/D15-1166.

[22] F. Huang, K. Lu, et al. “Encoding Recurrence into Transformers”.

In: The Eleventh International Conference on Learning Representations.
2023. url: https://openreview.net/forum?id=7YfHla7IxBJ.

[23] A. Gillioz, J. Casas, E. Mugellini, and O. A. Khaled. “Overview of the

Transformer-based Models for NLP Tasks”. In: 2020 15th Conference
on Computer Science and Information Systems (FedCSIS). 2020, pp. 179–
183. doi: 10.15439/2020F20.

[24] A. Dosovitskiy, L. Beyer, et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. arXiv:2010.11929 [cs]. June
2021. doi: 10.48550/arXiv.2010.11929.

125

https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://proceedings.mlr.press/v51/lee16a.html
https://proceedings.mlr.press/v51/lee16a.html
https://doi.org/10.18653/v1/D15-1166
https://openreview.net/forum?id=7YfHla7IxBJ
https://doi.org/10.15439/2020F20
https://doi.org/10.48550/arXiv.2010.11929

7. Bibliography

[25] O. Chang, H. Liao, et al. “Conformer is All You Need for Visual Speech

Recognition”. In: ICASSP 2024 - 2024 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). 2024, pp. 10136–
10140. doi: 10.1109/ICASSP48485.2024.10446532.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning represen-

tations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986),
pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0.

[27] G. Morse and K. O. Stanley. “Simple Evolutionary Optimization

Can Rival Stochastic Gradient Descent in Neural Networks”. In:

Proceedings of the Genetic and Evolutionary Computation Conference
2016. GECCO ’16. Denver, Colorado, USA: Association for Computing

Machinery, 2016, pp. 477–484. isbn: 9781450342063. doi: 10.1145/

2908812.2908916.

[28] M. Hutson. “Has artificial intelligence become alchemy?” In: Science
360.6388 (2018), pp. 478–478. doi: 10.1126/science.360.6388.478.

[29] H. Robbins and S. Monro. “A Stochastic Approximation Method”. In:

The Annals of Mathematical Statistics 22.3 (1951), pp. 400–407. doi:
10.1214/aoms/1177729586.

[30] S. Smith, E. Elsen, and S. De. “On the Generalization Benefit of

Noise in Stochastic Gradient Descent”. In: Proceedings of the 37th
International Conference on Machine Learning. Ed. by H. D. III and

A. Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,

July 2020, pp. 9058–9067. url: https://proceedings.mlr.press/

v119/smith20a.html.

[31] P. Goyal, P. Dollár, et al. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour. arXiv:1706.02677 [cs]. Apr. 2018. doi: 10.48550/
arXiv.1706.02677.

[32] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. “On the importance

of initialization and momentum in deep learning”. In: Proceedings
of the 30th International Conference on International Conference on
Machine Learning - Volume 28. ICML’13. Atlanta, GA, USA: JMLR.org,

2013, III–1139–III–1147.

[33] S. Hanson and L. Pratt. “Comparing Biases for Minimal Network Con-

struction with Back-Propagation”. In: Advances in Neural Information
Processing Systems. Ed. by D. Touretzky. Vol. 1. Morgan-Kaufmann,

1988. url: https://proceedings.neurips.cc/paper_files/paper/

1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf.

126

https://doi.org/10.1109/ICASSP48485.2024.10446532
https://doi.org/10.1038/323533a0
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1145/2908812.2908916
https://doi.org/10.1126/science.360.6388.478
https://doi.org/10.1214/aoms/1177729586
https://proceedings.mlr.press/v119/smith20a.html
https://proceedings.mlr.press/v119/smith20a.html
https://doi.org/10.48550/arXiv.1706.02677
https://doi.org/10.48550/arXiv.1706.02677
https://proceedings.neurips.cc/paper_files/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf

7. Bibliography

[34] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization.
2017. url: https://arxiv.org/abs/1412.6980. arXiv: 1412.6980

[cs.LG].

[35] I. Loshchilov and F. Hutter. “DecoupledWeight Decay Regularization”.

In: (2017). url: http://arxiv.org/pdf/1711.05101. arXiv: 1711.

05101 [astro-ph.IM].

[36] Y. Pan and Y. Li. “Toward Understanding Why Adam Converges

Faster Than SGD for Transformers”. In: OPT 2022: Optimization
for Machine Learning (NeurIPS 2022 Workshop). 2022. url: https:

//openreview.net/forum?id=Sf1NlV2r6PO.

[37] E. Buber and B. Diri. “Performance Analysis and CPU vs GPU Com-

parison for Deep Learning”. In: 2018 6th International Conference on
Control Engineering and Information Technology (CEIT). 2018, pp. 1–6.
doi: 10.1109/CEIT.2018.8751930.

[38] N. P. Jouppi, C. Young, et al. “In-Datacenter Performance Analysis of a

Tensor Processing Unit”. In: SIGARCHComput. Archit. News 45.2 (June
2017), pp. 1–12. issn: 0163-5964. doi: 10.1145/3140659.3080246.

[39] D. Luebke. “CUDA: Scalable parallel programming for high-performance

scientific computing”. In: 2008 5th IEEE International Symposium on
Biomedical Imaging: From Nano to Macro. 2008, pp. 836–838. doi:
10.1109/ISBI.2008.4541126.

[40] ROCm/ROCm. original-date: 2016-03-18T00:24:29Z. July 2024. url:

https://github.com/ROCm/ROCm (visited on 07/17/2024).

[41] M. J. Flynn. “Some Computer Organizations and Their Effectiveness”.

In: IEEE Transactions on Computers C-21.9 (1972), pp. 948–960. doi:
10.1109/TC.1972.5009071.

[42] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 3.1. 2015. url: https://fs.hlrs.de/projects/
par/mpi//mpi31/.

[43] NVIDIA/nccl. original-date: 2015-11-14T00:12:04Z. July 2024. url:

https://github.com/NVIDIA/nccl (visited on 07/17/2024).

[44] ROCm/rccl. original-date: 2017-12-06T18:36:05Z. July 2024. url:

https://github.com/ROCm/rccl (visited on 07/17/2024).

[45] Overview - NHR@KIT User Documentation. url: https://www.nhr.
kit.edu/userdocs/horeka/.

127

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/pdf/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=Sf1NlV2r6PO
https://openreview.net/forum?id=Sf1NlV2r6PO
https://doi.org/10.1109/CEIT.2018.8751930
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1109/ISBI.2008.4541126
https://github.com/ROCm/ROCm
https://doi.org/10.1109/TC.1972.5009071
https://fs.hlrs.de/projects/par/mpi//mpi31/
https://fs.hlrs.de/projects/par/mpi//mpi31/
https://github.com/NVIDIA/nccl
https://github.com/ROCm/rccl
https://www.nhr.kit.edu/userdocs/horeka/
https://www.nhr.kit.edu/userdocs/horeka/

7. Bibliography

[46] Y. Wei, Y. C. Huang, et al. “9.3 NVLink-C2C: A Coherent Off Package

Chip-to-Chip Interconnect with 40Gbps/pin Single-ended Signaling”.

In: 2023 IEEE International Solid-State Circuits Conference (ISSCC).
2023, pp. 160–162. doi: 10.1109/ISSCC42615.2023.10067395.

[47] Mellanox. Introducing 200G HDR InfiniBand Solutions. 2019. url:

https://network.nvidia.com/files/doc-2020/wp-introducing-

200g-hdr-infiniband-solutions.pdf.

[48] A. Paszke, S. Gross, et al. “Automatic differentiation in PyTorch”. en.

In: (Oct. 2017). url: https://openreview.net/forum?id=BJJsrmfCZ

(visited on 04/11/2024).

[49] Martín Abadi, Ashish Agarwal, et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Software available from
tensorflow.org. 2015. url: https://www.tensorflow.org/.

[50] J. Ansel, E. Yang, et al. “PyTorch 2: Faster Machine Learning Through

Dynamic Python Bytecode Transformation and Graph Compilation”.

In: 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2 (ASPLOS
’24). ACM, Apr. 2024. doi: 10.1145/3620665.3640366.

[51] F. Chollet et al. Keras. https://keras.io. 2015.

[52] M. Weiel, M. Götz, et al. “Dynamic particle swarm optimization of

biomolecular simulation parameters with flexible objective functions”.

In: Nature Machine Intelligence 3.8 (July 2021), pp. 727–734. issn: 2522-
5839. doi: 10.1038/s42256-021-00366-3.

[53] G. M. Amdahl. “Validity of the single processor approach to achieving

large scale computing capabilities”. In: Proceedings of the April 18-
20, 1967, spring joint computer conference on - AFIPS ’67 (Spring) Not
available (1967), Not available. issn: Not available. doi: 10.1145/

1465482.1465560.

[54] J. L. Gustafson. “Reevaluating Amdahl’s law”. In: Commun. ACM 31.5

(May 1988), pp. 532–533. issn: 0001-0782. doi: 10.1145/42411.42415.

[55] T. Ben-Nun and T. Hoefler. “Demystifying Parallel and Distributed

Deep Learning: An In-depth Concurrency Analysis”. In: ACM Com-
puting Surveys (CSUR) 52.4 (2019), pp. 1–43. doi: 10.1145/3320060.

128

https://doi.org/10.1109/ISSCC42615.2023.10067395
https://network.nvidia.com/files/doc-2020/wp-introducing-200g-hdr-infiniband-solutions.pdf
https://network.nvidia.com/files/doc-2020/wp-introducing-200g-hdr-infiniband-solutions.pdf
https://openreview.net/forum?id=BJJsrmfCZ
https://www.tensorflow.org/
https://doi.org/10.1145/3620665.3640366
https://keras.io
https://doi.org/10.1038/s42256-021-00366-3
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/3320060

7. Bibliography

[56] P. Liang, Y. Tang, et al. “A Survey on Auto-Parallelism of Large-

Scale Deep Learning Training”. In: IEEE Transactions on Parallel and
Distributed Systems 34.8 (2023), pp. 2377–2390. doi: 10.1109/TPDS.
2023.3281931.

[57] Y. You, I. Gitman, and B. Ginsburg. “Large Batch Training of Convo-

lutional Networks”. In: (2017). url: http://arxiv.org/pdf/1708.

03888. arXiv: 1708.03888 [astro-ph.IM].

[58] J. Keuper and F.-J. Preundt. “Distributed Training of Deep Neural

Networks: Theoretical and Practical Limits of Parallel Scalability”.

In: 2016 2nd Workshop on Machine Learning in HPC Environments
(MLHPC). 2016, pp. 19–26. doi: 10.1109/MLHPC.2016.006.

[59] A. Gibiansky. Bringing HPC Techniques to Deep Learning - Andrew
Gibiansky. 2017. url: https : / / andrew . gibiansky . com / blog /

machine-learning/baidu-allreduce/.

[60] A. Sergeev and M. D. Balso. Horovod: fast and easy distributed deep
learning in TensorFlow. [accessed on 2021-08-06]. 2018. url: https:

//arxiv.org/abs/1802.05799. arXiv: 1802.05799 [cs.LG].

[61] B. M. Assran, A. Aytekin, et al. “Advances in Asynchronous Parallel

and Distributed Optimization”. In: Proceedings of the IEEE 108.11

(2020), pp. 2013–2031. doi: 10.1109/JPROC.2020.3026619.

[62] S. Zheng, Q. Meng, et al. “Asynchronous Stochastic Gradient Descent

with Delay Compensation”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by D. Precup and Y. W. Teh.

Vol. 70. Proceedings of Machine Learning Research. PMLR, Aug.

2017, pp. 4120–4129. url: https://proceedings.mlr.press/v70/

zheng17b.html.

[63] A. Koloskova, S. U. Stich, and M. Jaggi. “Sharper Convergence Guar-

antees for Asynchronous SGD for Distributed and Federated Learn-

ing”. In: Advances in Neural Information Processing Systems. Ed. by
S. Koyejo, S. Mohamed, et al. Vol. 35. Curran Associates, Inc., 2022,

pp. 17202–17215. url: https://proceedings.neurips.cc/paper_fi

les/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-

Conference.pdf.

[64] F. Niu, B. Recht, C. Re, et al. “HOGWILD!: A Lock-Free Approach

to Parallelizing Stochastic Gradient Descent”. In: (2011). url: http:

//arxiv.org/pdf/1106.5730. arXiv: 1106.5730 [astro-ph.IM].

129

https://doi.org/10.1109/TPDS.2023.3281931
https://doi.org/10.1109/TPDS.2023.3281931
http://arxiv.org/pdf/1708.03888
http://arxiv.org/pdf/1708.03888
https://arxiv.org/abs/1708.03888
https://doi.org/10.1109/MLHPC.2016.006
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://arxiv.org/abs/1802.05799
https://doi.org/10.1109/JPROC.2020.3026619
https://proceedings.mlr.press/v70/zheng17b.html
https://proceedings.mlr.press/v70/zheng17b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6db3ea527f53682657b3d6b02a841340-Paper-Conference.pdf
http://arxiv.org/pdf/1106.5730
http://arxiv.org/pdf/1106.5730
https://arxiv.org/abs/1106.5730

7. Bibliography

[65] A. Nedić and A. Olshevsky. “Stochastic Gradient-Push for Strongly

Convex Functions on Time-Varying Directed Graphs”. In: IEEE Trans-
actions on Automatic Control 61.12 (2016), pp. 3936–3947. doi: 10.

1109/TAC.2016.2529285.

[66] M. S. Assran and M. G. Rabbat. “Asynchronous Gradient Push”. In:

IEEE Transactions on Automatic Control 66.1 (2021), pp. 168–183. doi:
10.1109/TAC.2020.2981035.

[67] M. Assran, N. Loizou, N. Ballas, and M. Rabbat. “Stochastic Gradient

Push for Distributed Deep Learning”. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by K. Chaudhuri

and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning

Research. PMLR, June 2019, pp. 344–353. url: https://proceedings.

mlr.press/v97/assran19a.html.

[68] M. Assran and M. Rabbat. “An empirical comparison of multi-agent

optimization algorithms”. In: 2017 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). 2017, pp. 573–577. doi:

10.1109/GlobalSIP.2017.8309024.

[69] S. Li, Y. Zhao, R. Varma, et al. PyTorch Distributed: Experiences on
Accelerating Data Parallel Training. [accessed on 2021-08-06]. 2020.

url: https://arxiv.org/abs/2006.15704. arXiv: 2006.15704

[cs.DC].

[70] N. Quang-Hung, H. Doan, and N. Thoai. “Performance Evaluation

of Distributed Training in Tensorflow 2”. In: 2020 International Con-
ference on Advanced Computing and Applications (ACOMP). 2020,

pp. 155–159. doi: 10.1109/ACOMP50827.2020.00031.

[71] S. Hochreiter and J. Schmidhuber. “Flat Minima”. In: Neural Compu-
tation 9.1 (Jan. 1997), pp. 1–42. issn: 1530-888X. doi: 10.1162/neco.

1997.9.1.1.

[72] P. Chaudhari, A. Choromanska, et al. “Entropy-SGD: biasing gradient

descent into wide valleys”. In: Journal of Statistical Mechanics: Theory
and Experiment 2019.12 (Dec. 2019), p. 124018. doi: 10.1088/1742-
5468/ab39d9.

[73] J. Rissanen. “Modeling by shortest data description”. In: Automatica
14.5 (Sept. 1978), pp. 465–471. issn: 0005-1098. doi: 10.1016/0005-

1098(78)90005-5.

130

https://doi.org/10.1109/TAC.2016.2529285
https://doi.org/10.1109/TAC.2016.2529285
https://doi.org/10.1109/TAC.2020.2981035
https://proceedings.mlr.press/v97/assran19a.html
https://proceedings.mlr.press/v97/assran19a.html
https://doi.org/10.1109/GlobalSIP.2017.8309024
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://doi.org/10.1109/ACOMP50827.2020.00031
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1162/neco.1997.9.1.1
https://doi.org/10.1088/1742-5468/ab39d9
https://doi.org/10.1088/1742-5468/ab39d9
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/0005-1098(78)90005-5

7. Bibliography

[74] W. Wen, Y. Wang, F. Yan, et al. “SmoothOut: Smoothing Out Sharp

Minima to Improve Generalization in Deep Learning”. In: (2018).

url: http : / / arxiv . org / pdf / 1805 . 07898. arXiv: 1805 . 07898

[astro-ph.IM].

[75] B. Singh, S. De, et al. “Layer-Specific Adaptive Learning Rates for Deep

Networks”. In: 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). 2015, pp. 364–368. doi: 10.1109/
ICMLA.2015.113.

[76] T. N. Mundhenk, G. Konjevod, W. A. Sakla, and K. Boakye. “A Large

Contextual Dataset for Classification, Detection and Counting of Cars

with Deep Learning”. In: Computer Vision – ECCV 2016. Ed. by B.

Leibe, J. Matas, N. Sebe, and M.Welling. Cham: Springer International

Publishing, 2016, pp. 785–800. isbn: 978-3-319-46487-9.

[77] S. Oh, A. Hoogs, et al. “A large-scale benchmark dataset for event

recognition in surveillance video”. In: CVPR 2011. 2011, pp. 3153–3160.
doi: 10.1109/CVPR.2011.5995586.

[78] G. Litjens, T. Kooi, et al. “A survey on deep learning in medical

image analysis”. In:Medical Image Analysis 42 (2017), pp. 60–88. issn:
1361-8415. doi: https://doi.org/10.1016/j.media.2017.07.005.

[79] N. Dryden, N. Maruyama, et al. “Improving Strong-Scaling of CNN

Training by Exploiting Finer-Grained Parallelism”. In: 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
2019, pp. 210–220. doi: 10.1109/IPDPS.2019.00031.

[80] X. Lyu. “The Impact of Input ImageData Size on The Training Speed of

Convolutional Neural Networks”. In: 2021 3rd International Conference
on Machine Learning, Big Data and Business Intelligence (MLBDBI).
2021, pp. 654–657. doi: 10.1109/MLBDBI54094.2021.00129.

[81] Y. Oyama, N. Maruyama, et al. “The Case for Strong Scaling in Deep

Learning: Training Large 3D CNNsWith Hybrid Parallelism”. In: IEEE
Transactions on Parallel and Distributed Systems 32.7 (2021), pp. 1641–
1652. doi: 10.1109/TPDS.2020.3047974.

[82] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. “ZeRO: memory

optimizations toward training trillion parameter models”. In: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’20. Atlanta, Georgia: IEEE

Press, Nov. 2020, pp. 1–16. isbn: 978-1-72819-998-6. (Visited on

04/11/2024).

131

http://arxiv.org/pdf/1805.07898
https://arxiv.org/abs/1805.07898
https://arxiv.org/abs/1805.07898
https://doi.org/10.1109/ICMLA.2015.113
https://doi.org/10.1109/ICMLA.2015.113
https://doi.org/10.1109/CVPR.2011.5995586
https://doi.org/https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/IPDPS.2019.00031
https://doi.org/10.1109/MLBDBI54094.2021.00129
https://doi.org/10.1109/TPDS.2020.3047974

7. Bibliography

[83] J. Wang, J. Ebert, O. Filatov, and S. Kesselheim. “Memory and Band-

width are All Your Need for Fully Sharded Data Parallel”. In: 2nd
Workshop on Advancing Neural Network Training: Computational Ef-
ficiency, Scalability, and Resource Optimization (WANT@ICML 2024).
2024. url: https://openreview.net/forum?id=qqVAsSh3Gc.

[84] Y. Zhao, A. Gu, et al. “PyTorch FSDP: Experiences on Scaling Fully

Sharded Data Parallel”. In: Proc. VLDB Endow. 16.12 (Aug. 2023),

pp. 3848–3860. issn: 2150-8097. doi: 10.14778/3611540.3611569.

[85] X. Lin, Y. Zhang, et al. Efficient LLM Training and Serving with Het-
erogeneous Context Sharding among Attention Heads. 2024. url:

https://arxiv.org/abs/2407.17678. arXiv: 2407.17678 [cs.CL].

[86] N. Dryden, N. Maruyama, et al. “Channel and filter parallelism for

large-scale CNN training”. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. SC ’19. Denver, Colorado: Association for Computing Ma-

chinery, 2019. isbn: 9781450362290. doi: 10.1145/3295500.3356207.

[87] M. Shoeybi, M. Patwary, R. Puri, et al. “Megatron-LM: Training Multi-

Billion Parameter Language Models Using Model Parallelism”. In:

(2019). url: http://arxiv.org/pdf/1909.08053. arXiv: 1909.08053

[astro-ph.IM].

[88] J. Du, X. Zhu, et al. “Model Parallelism Optimization for Distributed

Inference Via Decoupled CNN Structure”. In: IEEE Transactions on
Parallel and Distributed Systems 32.7 (2021), pp. 1665–1676. doi:

10.1109/TPDS.2020.3041474.

[89] D. Narayanan, A. Phanishayee, K. Shi, et al. “Memory-Efficient

Pipeline-Parallel DNN Training”. In: (2020). url: http://arxiv.

org/pdf/2006.09503. arXiv: 2006.09503 [astro-ph.IM].

[90] Y. Huang, Y. Cheng, A. Bapna, et al. “GPipe: Efficient Training of Giant

Neural Networks using Pipeline Parallelism”. In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A.

Beygelzimer, et al. Vol. 32. 2019. url: https://proceedings.neurips.

cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.

pdf.

[91] S. Moreno-Alvarez, J. M. Haut, M. E. Paoletti, and J. A. Rico-Gallego.

“Heterogeneous model parallelism for deep neural networks”. In:

Neurocomputing 441 (2021), pp. 1–12. issn: 0925-2312. doi: https:

//doi.org/10.1016/j.neucom.2021.01.125.

132

https://openreview.net/forum?id=qqVAsSh3Gc
https://doi.org/10.14778/3611540.3611569
https://arxiv.org/abs/2407.17678
https://arxiv.org/abs/2407.17678
https://doi.org/10.1145/3295500.3356207
http://arxiv.org/pdf/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://doi.org/10.1109/TPDS.2020.3041474
http://arxiv.org/pdf/2006.09503
http://arxiv.org/pdf/2006.09503
https://arxiv.org/abs/2006.09503
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.125
https://doi.org/https://doi.org/10.1016/j.neucom.2021.01.125

7. Bibliography

[92] N. Shazeer, Y. Cheng, et al. “Mesh-TensorFlow: deep learning for

supercomputers”. In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems. NIPS’18. Montréal, Canada:

Curran Associates Inc., 2018, pp. 10435–10444.

[93] K. Avhale. Understanding of Optuna-A Machine Learning Hyper-
parameter Optimization Framework. en. Aug. 2021. url: https :

//medium.com/@kalyaniavhale7/understanding- of- optuna- a-

machine - learning - hyperparameter - optimization - framework -

ed31ebb335b9 (visited on 07/24/2024).

[94] F. Karl, T. Pielok, et al. “Multi-Objective Hyperparameter Optimiza-

tion in Machine Learning—An Overview”. In: ACM Trans. Evol. Learn.
Optim. 3.4 (Dec. 2023). doi: 10.1145/3610536.

[95] J. Dodge, G. Ilharco, et al. Fine-Tuning Pretrained Language Models:
Weight Initializations, Data Orders, and Early Stopping. 2020. url:
https://arxiv.org/abs/2002.06305. arXiv: 2002.06305 [cs.CL].

[96] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for

Hyper-Parameter Optimization”. In: Advances in Neural Information
Processing Systems. Ed. by J. Shawe-Taylor, R. Zemel, et al. Vol. 24.

Curran Associates, Inc., 2011. url: https://proceedings.neurips.

cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc

635690-Paper.pdf.

[97] A. Morales-Hernández, I. Van Nieuwenhuyse, and S. Rojas Gonzalez.

“A survey onmulti-objective hyperparameter optimization algorithms

formachine learning”. In:Artificial Intelligence Review 56.8 (Dec. 2022),

pp. 8043–8093. issn: 1573-7462. doi: 10.1007/s10462-022-10359-2.

[98] J. Bergstra and Y. Bengio. “Random Search for Hyper-Parameter

Optimization”. In: Journal of Machine Learning Research 13.10 (2012),

pp. 281–305. url: http://jmlr.org/papers/v13/bergstra12a.html.

[99] M. Feurer, J. Springenberg, and F. Hutter. “Initializing Bayesian

Hyperparameter Optimization via Meta-Learning”. In: Proceedings
of the AAAI Conference on Artificial Intelligence 29.1 (Feb. 2015). doi:
10.1609/aaai.v29i1.9354.

[100] D. Fogel. “An introduction to simulated evolutionary optimization”.

In: IEEE Transactions on Neural Networks 5.1 (1994), pp. 3–14. doi:
10.1109/72.265956.

133

https://medium.com/@kalyaniavhale7/understanding-of-optuna-a-machine-learning-hyperparameter-optimization-framework-ed31ebb335b9
https://medium.com/@kalyaniavhale7/understanding-of-optuna-a-machine-learning-hyperparameter-optimization-framework-ed31ebb335b9
https://medium.com/@kalyaniavhale7/understanding-of-optuna-a-machine-learning-hyperparameter-optimization-framework-ed31ebb335b9
https://medium.com/@kalyaniavhale7/understanding-of-optuna-a-machine-learning-hyperparameter-optimization-framework-ed31ebb335b9
https://doi.org/10.1145/3610536
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1007/s10462-022-10359-2
http://jmlr.org/papers/v13/bergstra12a.html
https://doi.org/10.1609/aaai.v29i1.9354
https://doi.org/10.1109/72.265956

7. Bibliography

[101] O. Taubert, M. Weiel, et al. “Massively Parallel Genetic Optimization

Through Asynchronous Propagation of Populations”. en. In: High
Performance Computing. Ed. by A. Bhatele, J. Hammond, M. Baboulin,

and C. Kruse. Cham: Springer Nature Switzerland, 2023, pp. 106–124.

isbn: 978-3-031-32041-5. doi: 10.1007/978-3-031-32041-5_6.

[102] P. Wimmer, J. Mehnert, and A. P. Condurache. “Dimensionality

reduced training by pruning and freezing parts of a deep neural

network: a survey”. en. In: Artificial Intelligence Review (May 2023).

issn: 1573-7462. doi: 10.1007/s10462-023-10489-1.

[103] J.-H. Luo, J. Wu, and W. Lin. “ThiNet: A Filter Level Pruning Method

for Deep Neural Network Compression”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). 2017, pp. 5068–5076. doi:
10.1109/ICCV.2017.541.

[104] P. Molchanov, S. Tyree, et al. “Pruning Convolutional Neural Net-

works for Resource Efficient Inference”. In: International Conference
on Learning Representations. 2017. url: https://openreview.net/
forum?id=SJGCiw5gl.

[105] J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. 2019. arXiv: 1803.03635 [cs.LG].

[106] R. Ao, Z. Tao, et al. “Darb: A density-adaptive regular-block pruning

for deep neural networks”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34. 04. 2020, pp. 5495–5502.

[107] V. Sanh, T. Wolf, and A. Rush. “Movement pruning: Adaptive sparsity

by fine-tuning”. In: Advances in neural information processing systems
33 (2020), pp. 20378–20389.

[108] Y. Sakai, Y. Eto, and Y. Teranishi. “Structured pruning for deep neural

networks with adaptive pruning rate derivation based on connection

sensitivity and loss function”. In: Journal of Advances in Information
Technology 1 (2022).

[109] J. Choi, S. Venkataramani, et al. “Accurate and Efficient 2-bit Quan-

tized Neural Networks”. In: Proceedings of Machine Learning and
Systems. Ed. by A. Talwalkar, V. Smith, and M. Zaharia. Vol. 1. 2019,

pp. 348–359. url: https://proceedings.mlsys.org/paper_files/

paper/2019/file/c443e9d9fc984cda1c5cc447fe2c724d-Paper.pdf.

134

https://doi.org/10.1007/978-3-031-32041-5_6
https://doi.org/10.1007/s10462-023-10489-1
https://doi.org/10.1109/ICCV.2017.541
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://arxiv.org/abs/1803.03635
https://proceedings.mlsys.org/paper_files/paper/2019/file/c443e9d9fc984cda1c5cc447fe2c724d-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2019/file/c443e9d9fc984cda1c5cc447fe2c724d-Paper.pdf

7. Bibliography

[110] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev. “Low-bit quanti-

zation of neural networks for efficient inference”. In: 2019 IEEE/CVF
International Conference on Computer VisionWorkshop (ICCVW). IEEE.
2019, pp. 3009–3018.

[111] P. Micikevicius, S. Narang, et al. “Mixed Precision Training”. In:

International Conference on Learning Representations. 2018. url:

https://openreview.net/forum?id=r1gs9JgRZ.

[112] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training
Deep Neural Networks with binary weights during propagations. 2016.
arXiv: 1511.00363 [cs.LG].

[113] J. Guo, W. Liu, et al. “Accelerating Distributed Deep Learning By

Adaptive Gradient Quantization”. In: ICASSP 2020 - 2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, pp. 1603–1607. doi: 10.1109/ICASSP40776.2020.9054164.

[114] T. Vogels, S. P. Karimireddy, and M. Jaggi. “PowerSGD: Practical

Low-Rank Gradient Compression for Distributed Optimization”. In:

Advances in Neural Information Processing Systems. Vol. 32. Curran
Associates, Inc., 2019. url: https://proceedings.neurips.cc/

paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.

html (visited on 04/11/2024).

[115] D. Alistarh, D. Grubic, et al. QSGD: Communication-Efficient SGD
via Gradient Quantization and Encoding. [accessed on 2021-08-06].

2017. url: https://arxiv.org/abs/1610.02132. arXiv: 1610.02132

[cs.LG].

[116] G. Hinton, O. Vinyals, and J. Dean. “Distilling the Knowledge in a

Neural Network”. In: NIPS Deep Learning and Representation Learning
Workshop. 2015. url: http://arxiv.org/abs/1503.02531.

[117] G. Kaplun, E.Malach, P. Nakkiran, and S. Shalev-Shwartz. “Knowledge

distillation: Bad models can be good role models”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 28683–28694.

[118] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. DistilBERT, a distilled
version of BERT: smaller, faster, cheaper and lighter. 2020. arXiv:

1910.01108 [cs.CL].

[119] U. Evci, T. Gale, J. Menick, et al. “Rigging the Lottery: Making All

Tickets Winners”. In: Proceedings of the 37th International Conference
on Machine Learning. ICML’20. JMLR.org, 2020.

135

https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/1511.00363
https://doi.org/10.1109/ICASSP40776.2020.9054164
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d9fbed9da256e344c1fa46bb46c34c5f-Abstract.html
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
https://arxiv.org/abs/1610.02132
http://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1910.01108

7. Bibliography

[120] A. G. Howard, M. Zhu, et al. MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications. 2017. arXiv: 1704.04861

[cs.CV].

[121] T. Hoefler, D. Alistarh, T. Ben-Nun, et al. “Sparsity in deep learning:

Pruning and growth for efficient inference and training in neural

networks”. In: The Journal of Machine Learning Research 22.1 (2021),

pp. 10882–11005.

[122] Y. Idelbayev and M. A. Carreira-Perpinan. “Low-Rank Compression

of Neural Nets: Learning the Rank of Each Layer”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). June 2020.

[123] J. Ren and D. Xia. “Deep Learning Model Optimization”. In: Au-
tonomous driving algorithms and Its IC Design. Singapore: Springer
Nature Singapore, 2023, pp. 183–199. isbn: 978-981-99-2897-2. doi:

10.1007/978-981-99-2897-2_8.

[124] J. H. de M. Goulart, M. Boizard, et al. “Tensor CP DecompositionWith

Structured Factor Matrices: Algorithms and Performance”. In: IEEE
Journal of Selected Topics in Signal Processing 10.4 (2016), pp. 757–769.

doi: 10.1109/JSTSP.2015.2509907.

[125] H. Ding, K. Chen, et al. “A Compact CNN-DBLSTM Based Character

Model for Offline Handwriting Recognition with Tucker Decompo-

sition”. In: 2017 14th IAPR International Conference on Document
Analysis and Recognition (ICDAR). Vol. 01. 2017, pp. 507–512. doi:
10.1109/ICDAR.2017.89.

[126] V. Lebedev, Y. Ganin, et al. Speeding-up Convolutional Neural Networks
Using Fine-tuned CP-Decomposition. 2015. url: https://arxiv.org/
abs/1412.6553. arXiv: 1412.6553 [cs.CV].

[127] L. Deng, G. Li, et al. “Model Compression and Hardware Acceleration

for Neural Networks: A Comprehensive Survey”. In: Proceedings of
the IEEE 108.4 (Apr. 2020). Conference Name: Proceedings of the IEEE,

pp. 485–532. issn: 1558-2256. doi: 10.1109/JPROC.2020.2976475.

[128] T. N. Sainath, B. Kingsbury, V. Sindhwani, et al. “Low-rank matrix fac-

torization for Deep Neural Network training with high-dimensional

output targets”. In: 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. ISSN: 2379-190X. May 2013, pp. 6655–

6659. doi: 10.1109/ICASSP.2013.6638949.

136

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-981-99-2897-2_8
https://doi.org/10.1109/JSTSP.2015.2509907
https://doi.org/10.1109/ICDAR.2017.89
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/1412.6553
https://doi.org/10.1109/JPROC.2020.2976475
https://doi.org/10.1109/ICASSP.2013.6638949

7. Bibliography

[129] S. Schotthöfer, E. Zangrando, et al. “Low-rank lottery tickets: finding

efficient low-rank neural networks via matrix differential equations”.

en. In: Advances in Neural Information Processing Systems 35 (Dec.
2022), pp. 20051–20063. url: https://papers.nips.cc/paper_files

/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-

Conference.html.

[130] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, et al. Yet Another Accel-
erated SGD: ResNet-50 Training on ImageNet in 74.7 seconds. [accessed
on 2021-08-06]. 2019. url: https://arxiv.org/abs/1903.12650.

arXiv: 1903.12650 [cs.LG].

[131] X. Lian, W. Zhang, C. Zhang, and J. Liu. “Asynchronous Decentralized

Parallel Stochastic Gradient Descent”. In: Proceedings of the 35th
International Conference on Machine Learning (ICML). 2018, pp. 3043–
3052.

[132] S. Zhang, C. Zhang, Z. You, et al. “Asynchronous Stochastic Gradient

Descent for DNN Training”. In: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing. 2013, pp. 6660–6663. doi:
10.1109/ICASSP.2013.6638950.

[133] S. Dutta, J. Wang, and G. Joshi. Slow and Stale Gradients Can Win the
Race. [accessed on 2021-08-06]. 2020. url: https://arxiv.org/abs/

2003.10579. arXiv: 2003.10579 [stat.ML].

[134] N. Bogoychev, M. Junczys-Dowmunt, K. Heafield, and A. F. Aji. Ac-
celerating Asynchronous Stochastic Gradient Descent for Neural Ma-
chine Translation. [accessed on 2021-08-06]. 2018. url: https :

//arxiv.org/abs/1808.08859. arXiv: 1808.08859 [cs.CL].

[135] T. Lin, S. U. Stich, and M. Jaggi. “Don’t Use Large Mini-Batches, Use

Local SGD”. In: ArXiv abs/1808.07217 (2020).

[136] Y. Ueno and R. Yokota. “Exhaustive Study of Hierarchical AllReduce

Patterns for Large Messages Between GPUs”. In: 2019 19th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). 2019, pp. 430–439. doi: 10.1109/CCGRID.2019.00057.

[137] H. Mikami, H. Suganuma, P. U.-Chupala, et al. Massively Distributed
SGD: ImageNet/ResNet-50 Training in a Flash. [accessed on 2021-

08-06]. 2018. url: https://arxiv.org/abs/1811.05233. arXiv:

1811.05233 [cs.LG].

137

https://papers.nips.cc/paper_files/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/7e98b00eeafcdaeb0c5661fb9355be3a-Abstract-Conference.html
https://arxiv.org/abs/1903.12650
https://arxiv.org/abs/1903.12650
https://doi.org/10.1109/ICASSP.2013.6638950
https://arxiv.org/abs/2003.10579
https://arxiv.org/abs/2003.10579
https://arxiv.org/abs/2003.10579
https://arxiv.org/abs/1808.08859
https://arxiv.org/abs/1808.08859
https://arxiv.org/abs/1808.08859
https://doi.org/10.1109/CCGRID.2019.00057
https://arxiv.org/abs/1811.05233
https://arxiv.org/abs/1811.05233

7. Bibliography

[138] D. C. Nguyen, M. Ding, et al. “Federated learning for internet of

things: A comprehensive survey”. In: IEEE Communications Surveys
& Tutorials 23.3 (2021), pp. 1622–1658.

[139] H.Wang, X. Liu, J. Niu, and S. Tang. “SVDFed: Enabling Communication-

Efficient Federated Learning via Singular-Value-Decomposition”. In:

IEEE INFOCOM 2023 - IEEE Conference on Computer Communications.
2023, pp. 1–10. doi: 10.1109/INFOCOM53939.2023.10229042.

[140] D. Coquelin, C. Debus, M. Götz, et al. “Accelerating Neural Network

Training with Distributed Asynchronous and Selective Optimization

(DASO)”. en. In: Journal of Big Data 9.1 (Feb. 2022), p. 14. issn:

2196-1115. doi: 10.1186/s40537-021-00556-1.

[141] A. Clauset. A Brief Primer on Probability Distributions. [accessed

on 2021-08-06]. 2011. url: http://tuvalu.santafe.edu/~aaronc/

courses/7000/csci7000-001%5C_2011%5C_L0.pdf.

[142] J. Wang, S. Wang, R.-R. Chen, and M. Ji. “Demystifying Why Local

Aggregation Helps: Convergence Analysis of Hierarchical SGD”. en.

In: Proceedings of the AAAI Conference on Artificial Intelligence 36.8
(June 2022). Number: 8, pp. 8548–8556. issn: 2374-3468. doi: 10.1609/

aaai.v36i8.20832.

[143] L. Bottou, F. E. Curtis, and J. Nocedal. “Optimization Methods for

Large-Scale Machine Learning”. In: ArXiv (2018). [accessed on 2021-

08-06]. url: https://arxiv.org/abs/1606.04838.

[144] M. Götz, C. Debus, et al. “HeAT – a Distributed and GPU-accelerated

Tensor Framework for Data Analytics”. In: 2020 IEEE International
Conference on Big Data (Big Data). 2020, pp. 276–287. doi: 10.1109/
BigData50022.2020.9378050.

[145] D. Krause. “JUWELS: Modular Tier-0/1 Supercomputer at the Jülich

Supercomputing Centre”. In: Journal of Large-scale Research Facilities
5 (2019), p. 135. issn: 2364-091X. doi: 10.17815/jlsrf-5-171.

[146] NVIDIA A100 TENSOR CORE GPU. NVIDIA. 2021. url: https://www.
nvidia.com/en-us/data-center/a100/.

[147] J. Deng, W. Dong, R. Socher, L.-J. Li, et al. “ImageNet: A Large-scale

Hierarchical Image Database”. In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848.

138

https://doi.org/10.1109/INFOCOM53939.2023.10229042
https://doi.org/10.1186/s40537-021-00556-1
http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001%5C_2011%5C_L0.pdf
http://tuvalu.santafe.edu/~aaronc/courses/7000/csci7000-001%5C_2011%5C_L0.pdf
https://doi.org/10.1609/aaai.v36i8.20832
https://doi.org/10.1609/aaai.v36i8.20832
https://arxiv.org/abs/1606.04838
https://doi.org/10.1109/BigData50022.2020.9378050
https://doi.org/10.1109/BigData50022.2020.9378050
https://doi.org/10.17815/jlsrf-5-171
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://doi.org/10.1109/CVPR.2009.5206848

7. Bibliography

[148] NVIDIA Corporation. NVIDIA Data Loading Library (DALI). [accessed
on 2021-08-05]. 2021. url: https://developer.nvidia.com/DALI.

[149] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware Async-SGD
for Distributed Deep Learning. [accessed on 2021-08-06]. 2016. url:

https://arxiv.org/abs/1511.05950. arXiv: 1511.05950 [cs.LG].

[150] Y. Wu, A. Kirillov, F. Massa, et al. Detectron2. https://github.com/
facebookresearch/detectron2. 2019.

[151] A. Tao, K. Sapra, and B. Catanzaro. Hierarchical Multi-Scale Attention
for Semantic Segmentation. [accessed on 2021-08-06]. 2020. url:

https://arxiv.org/abs/2005.10821. arXiv: 2005.10821 [cs.CV].

[152] M. Cordts, M. Omran, S. Ramos, et al. “The Cityscapes Dataset for

Semantic Urban Scene Understanding”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2016, pp. 3213–
3223. doi: 10.1109/CVPR.2016.350.

[153] H. Rezatofighi, N. Tsoi, J. Gwak, et al. Generalized Intersection over
Union: A Metric and A Loss for Bounding Box Regression. [accessed on

2021-08-06]. 2019. url: https://arxiv.org/abs/1902.09630. arXiv:

1902.09630 [cs.CV].

[154] S. Zhao, Y. Wang, Z. Yang, and D. Cai. Region Mutual Information
Loss for Semantic Segmentation. [accessed on 2021-08-06]. 2019. url:

http://arxiv.org/abs/1910.12037. arXiv: 1910.12037 [cs.CV].

[155] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri. “Play and Prune:

Adaptive Filter Pruning for DeepModel Compression”. In: Proceedings
of the 28th International Joint Conference on Artificial Intelligence.
IJCAI’19. Macao, China: AAAI Press, 2019, pp. 3460–3466. isbn:

9780999241141.

[156] Nicoguaro. Principal component analysis. Page Version ID: 1232418328.
July 2024. url: https://en.wikipedia.org/w/index.php?title

=Principal_component_analysis&oldid=1232418328 (visited on

07/28/2024).

[157] D. Psichogios and L. Ungar. “SVD-NET: an algorithm that automati-

cally selects network structure”. In: IEEE Transactions on Neural Net-
works 5.3 (May 1994). Conference Name: IEEE Transactions on Neural

Networks, pp. 513–515. issn: 1941-0093. doi: 10.1109/72.286929.

139

https://developer.nvidia.com/DALI
https://arxiv.org/abs/1511.05950
https://arxiv.org/abs/1511.05950
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/2005.10821
https://arxiv.org/abs/2005.10821
https://doi.org/10.1109/CVPR.2016.350
https://arxiv.org/abs/1902.09630
https://arxiv.org/abs/1902.09630
http://arxiv.org/abs/1910.12037
https://arxiv.org/abs/1910.12037
https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=1232418328
https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=1232418328
https://doi.org/10.1109/72.286929

7. Bibliography

[158] G. I. Winata, S. Cahyawijaya, et al. “Lightweight and Efficient End-To-

End Speech Recognition Using Low-Rank Transformer”. In: ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). ISSN: 2379-190X. May 2020, pp. 6144–

6148. doi: 10.1109/ICASSP40776.2020.9053878.

[159] A.-H. Phan, K. Sobolev, K. Sozykin, et al. “Stable Low-Rank Tensor

Decomposition for Compression of Convolutional Neural Network”.

en. In: Computer Vision – ECCV 2020. Ed. by A. Vedaldi, H. Bischof,

T. Brox, and J.-M. Frahm. Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2020, pp. 522–539. isbn: 978-3-

030-58526-6. doi: 10.1007/978-3-030-58526-6_31.

[160] S. Cahyawijaya, G. I. Winata, H. Lovenia, et al. Greenformer: Factor-
ization Toolkit for Efficient Deep Neural Networks. arXiv:2109.06762
[cs]. Oct. 2021. doi: 10.48550/arXiv.2109.06762.

[161] Y. Xu, Y. Li, et al. “Trained Rank Pruning for Efficient Deep Neural

Networks”. In: 2019 Fifth Workshop on Energy Efficient Machine Learn-
ing and Cognitive Computing - NeurIPS Edition (EMC2-NIPS). 2019,
pp. 14–17. doi: 10.1109/EMC2-NIPS53020.2019.00011.

[162] E. J. Hu, Y. Shen, P. Wallis, et al. “LoRA: Low-Rank Adaptation of

Large Language Models”. In: International Conference on Learning
Representations. 2022. url: https://openreview.net/forum?id=

nZeVKeeFYf9.

[163] R. Waleffe and T. Rekatsinas. “Principal Component Networks: Pa-

rameter Reduction Early in Training”. In: CoRR abs/2006.13347 (2020).

url: https://arxiv.org/abs/2006.13347. arXiv: 2006.13347.

[164] M. M. Bejani and M. Ghatee. Adaptive Low-Rank Factorization to
regularize shallow and deep neural networks. arXiv:2005.01995 [cs,

stat]. May 2020. doi: 10.48550/arXiv.2005.01995.

[165] Z. Yang, A. Zhang, and A. Sudjianto. “Enhancing Explainability

of Neural Networks Through Architecture Constraints”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.6 (2021),

pp. 2610–2621. doi: 10.1109/TNNLS.2020.3007259.

[166] B. Zhang, W. Zheng, J. Zhou, and J. Lu. “Bort: Towards Explainable

Neural Networks with Bounded Orthogonal Constraint”. In: The
Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=My57qBufZWs.

140

https://doi.org/10.1109/ICASSP40776.2020.9053878
https://doi.org/10.1007/978-3-030-58526-6_31
https://doi.org/10.48550/arXiv.2109.06762
https://doi.org/10.1109/EMC2-NIPS53020.2019.00011
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2006.13347
https://arxiv.org/abs/2006.13347
https://doi.org/10.48550/arXiv.2005.01995
https://doi.org/10.1109/TNNLS.2020.3007259
https://openreview.net/forum?id=My57qBufZWs

7. Bibliography

[167] D. Povey, G. Cheng, Y. Wang, et al. “Semi-Orthogonal Low-Rank

Matrix Factorization for Deep Neural Networks”. en. In: Interspeech
2018. ISCA, Sept. 2018, pp. 3743–3747. doi: 10.21437/Interspeech.
2018-1417.

[168] O. Koch and C. Lubich. “Dynamical Low-Rank Approximation”.

In: SIAM Journal on Matrix Analysis and Applications 29.2 (2007),

pp. 434–454. eprint: https://doi.org/10.1137/050639703. doi:

10.1137/050639703.

[169] I. Bello, W. Fedus, X. Du, et al. Revisiting ResNets: Improved Training
and Scaling Strategies. arXiv:2103.07579 [cs]. Mar. 2021. doi: 10.

48550/arXiv.2103.07579.

[170] O. Russakovsky, J. Deng, H. Su, et al. “ImageNet Large Scale Visual

Recognition Challenge”. en. In: International Journal of Computer
Vision 115.3 (Dec. 2015), pp. 211–252. issn: 1573-1405. doi: 10.1007/

s11263-015-0816-y.

[171] H. Wu, J. Xu, J. Wang, and M. Long. “Autoformer: Decomposition

Transformers with Auto-Correlation for Long-Term Series Forecast-

ing”. In: Advances in Neural Information Processing Systems. 2021.

[172] H. Touvron, M. Cord, M. Douze, et al. “Training data-efficient image

transformers & distillation through attention”. In: Proceedings of the
38th International Conference on Machine Learning. Ed. by M. Meila

and T. Zhang. Vol. 139. Proceedings of Machine Learning Research.

PMLR, July 2021, pp. 10347–10357. url: https://proceedings.mlr.

press/v139/touvron21a.html.

[173] S. Nitish, G. Hinton, A. Krizhevsky, et al. “Dropout: A Simple Way to

Prevent Neural Networks from Overfitting”. In: Journal of Machine
Learning Research 15.56 (2014), pp. 1929–1958. url: http://jmlr.

org/papers/v15/srivastava14a.html.

[174] A. Gotmare, N. S. Keskar, C. Xiong, and R. Socher. “A Closer Look

at Deep Learning Heuristics: Learning rate restarts, Warmup and

Distillation”. In: International Conference on Learning Representations.
2019. url: https://openreview.net/forum?id=r14EOsCqKX.

[175] I. Loshchilov and F. Hutter. SGDR: Stochastic Gradient Descent with
Warm Restarts. arXiv:1608.03983 [cs, math]. May 2017. doi: 10.

48550/arXiv.1608.03983.

141

https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.21437/Interspeech.2018-1417
https://doi.org/10.1137/050639703
https://doi.org/10.1137/050639703
https://doi.org/10.48550/arXiv.2103.07579
https://doi.org/10.48550/arXiv.2103.07579
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.mlr.press/v139/touvron21a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://openreview.net/forum?id=r14EOsCqKX
https://doi.org/10.48550/arXiv.1608.03983
https://doi.org/10.48550/arXiv.1608.03983

7. Bibliography

[176] I. L. and F. H. Fixing Weight Decay Regularization in Adam. 2018. url:

https://openreview.net/forum?id=rk6qdGgCZ.

[177] L. Beyer, O. J. Hénaff, A. Kolesnikov, et al. Are we done with ImageNet?
arXiv:2006.07159 [cs]. June 2020. doi: 10.48550/arXiv.2006.07159.

[178] Y. Idelbayev and M. A. Carreira-Perpinan. “Low-Rank Compression

of Neural Nets: Learning the Rank of Each Layer”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). ISSN:
2575-7075. June 2020, pp. 8046–8056. doi: 10.1109/CVPR42600.2020.

00807.

[179] Y. He, X. Zhang, and J. Sun. “Channel Pruning for Accelerating Very

Deep Neural Networks”. In: 2017 IEEE International Conference on
Computer Vision (ICCV). 2017, pp. 1398–1406. doi: 10.1109/ICCV.
2017.155.

[180] Y. He, G. Kang, X. Dong, et al. “Soft Filter Pruning for Accelerating

Deep Convolutional Neural Networks”. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence. IJCAI’18. Stock-
holm, Sweden: AAAI Press, 2018, pp. 2234–2240. isbn: 9780999241127.

[181] S. Lin, R. Ji, C. Yan, et al. “Towards Optimal Structured CNN Pruning

via Generative Adversarial Learning”. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 2785–
2794. doi: 10.1109/CVPR.2019.00290.

[182] J. Lin, Y. Rao, J. Lu, and J. Zhou. “Runtime Neural Pruning”. In:

Advances in Neural Information Processing Systems. Ed. by I. Guyon,

U. V. Luxburg, et al. Vol. 30. Curran Associates, Inc., 2017.

[183] S. Liu and W. Deng. “Very deep convolutional neural network based

image classification using small training sample size”. In: 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR). 2015, pp. 730–
734. doi: 10.1109/ACPR.2015.7486599.

[184] D. Coquelin, K. Flügel, et al. “Harnessing Orthogonality to Train Low-

Rank Neural Networks”. In: ECAI 2024. IOS Press, 2024, pp. 2106–
2113. doi: 10.3233/FAIA240729.

[185] A. Hassani, S. Walton, N. Shah, et al. Escaping the Big Data Paradigm
with Compact Transformers. arXiv:2104.05704 [cs] version: 4. June
2022. doi: 10.48550/arXiv.2104.05704.

142

https://openreview.net/forum?id=rk6qdGgCZ
https://doi.org/10.48550/arXiv.2006.07159
https://doi.org/10.1109/CVPR42600.2020.00807
https://doi.org/10.1109/CVPR42600.2020.00807
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/CVPR.2019.00290
https://doi.org/10.1109/ACPR.2015.7486599
https://doi.org/10.3233/FAIA240729
https://doi.org/10.48550/arXiv.2104.05704

7. Bibliography

[186] H. Zhou, S. Zhang, J. Peng, et al. Informer: Beyond Efficient Transformer
for Long Sequence Time-Series Forecasting. arXiv:2012.07436 [cs]. Mar.

2021. doi: 10.48550/arXiv.2012.07436.

[187] T. Wolf, L. Debut, et al. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. 2020. url: https://arxiv.org/abs/
1910.03771. arXiv: 1910.03771 [cs.CL].

[188] L. Abrahamyan, Y. Chen, G. Bekoulis, and N. Deligiannis. “Learned

Gradient Compression for Distributed Deep Learning”. In: IEEE
Transactions on Neural Networks and Learning Systems 33.12 (2022),
pp. 7330–7344. doi: 10.1109/TNNLS.2021.3084806.

[189] L. Liebenwein, A. Maalouf, D. Feldman, and D. Rus. “Compressing

Neural Networks: Towards Determining the Optimal Layer-wise De-

composition”. In: Advances in Neural Information Processing Systems.
Ed. by M. Ranzato, A. Beygelzimer, et al. Vol. 34. Curran Associates,

Inc., 2021, pp. 5328–5344. url: https://proceedings.neurips.cc/pa

per_files/paper/2021/file/2adcfc3929e7c03fac3100d3ad51da26-

Paper.pdf.

[190] H. Yang, M. Tang, W. Wen, et al. “Learning Low-Rank Deep Neural

Networks via Singular Vector Orthogonality Regularization and Sin-

gular Value Sparsification”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops. June
2020.

[191] H. Wang, S. Agarwal, et al. “Cuttlefish: Low-Rank Model Training

without All the Tuning”. In: ArXiv abs/2305.02538 (2023). url: https:

//api.semanticscholar.org/CorpusID:258480187.

[192] H.Wang, S. Agarwal, andD. Papailiopoulos. “Pufferfish: Communication-

efficient Models At No Extra Cost”. In: ArXiv abs/2103.03936 (2021).

url: https://api.semanticscholar.org/CorpusID:232148049.

[193] A. Krizhevsky, I. Sutskever, andG. E. Hinton. “ImageNet Classification

with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 25. Curran Associates, Inc., 2012.

url: https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b

76c8436e924a68c45b-Abstract.html.

[194] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny

Images”. In: 2009. url: https : / / api . semanticscholar . org /

CorpusID:18268744.

143

https://doi.org/10.48550/arXiv.2012.07436
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.1109/TNNLS.2021.3084806
https://proceedings.neurips.cc/paper_files/paper/2021/file/2adcfc3929e7c03fac3100d3ad51da26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/2adcfc3929e7c03fac3100d3ad51da26-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/2adcfc3929e7c03fac3100d3ad51da26-Paper.pdf
https://api.semanticscholar.org/CorpusID:258480187
https://api.semanticscholar.org/CorpusID:258480187
https://api.semanticscholar.org/CorpusID:232148049
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744

7. Bibliography

[195] S. Liu and W. Deng. “Very deep convolutional neural network based

image classification using small training sample size”. In: 2015 3rd
IAPR Asian Conference on Pattern Recognition (ACPR). 2015, pp. 730–
734. doi: 10.1109/ACPR.2015.7486599.

[196] W. Hu, L. Xiao, and J. Pennington. “Provable Benefit of Orthogonal

Initialization in Optimizing Deep Linear Networks”. In: International
Conference on Learning Representations. 2020. url: https://openrev
iew.net/forum?id=rkgqN1SYvr.

[197] J. Chang, Y. Lu, et al. “Iterative clustering pruning for convolutional

neural networks”. In: Knowledge-Based Systems 265 (2023), p. 110386.
issn: 0950-7051. doi: https://doi.org/10.1016/j.knosys.2023.

110386.

[198] M. Lin, R. Ji, et al. “Channel Pruning via Automatic Structure Search”.

In: Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20. Ed. by C. Bessiere. Main track. In-

ternational Joint Conferences on Artificial Intelligence Organization,

July 2020, pp. 673–679. doi: 10.24963/ijcai.2020/94.

[199] D. Granziol, S. Zohren, and S. Roberts. “Learning Rates as a Function

of Batch Size: A RandomMatrix Theory Approach to Neural Network

Training”. In: Journal of Machine Learning Research 23.173 (2022),

pp. 1–65. url: http://jmlr.org/papers/v23/20-1258.html.

[200] G. Sumbul, J. Kang, et al. BigEarthNet Dataset with A New Class-
Nomenclature for Remote Sensing Image Understanding. 2020. url:
http://arxiv.org/abs/2001.06372.

[201] B. Bischl, M. Binder, et al. “Hyperparameter optimization: Founda-

tions, algorithms, best practices, and open challenges”. In: WIREs
Data Mining and Knowledge Discovery 13.2 (2023), e1484. doi: https:

//doi.org/10.1002/widm.1484.

[202] T. Akiba, S. Sano, et al. “Optuna: A Next-generation Hyperparameter

Optimization Framework”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
2019.

[203] A. Chatzimparmpas, R. M. Martins, K. Kucher, and A. Kerren. “Vi-

sEvol: Visual analytics to support hyperparameter search through

evolutionary optimization”. In: Computer Graphics Forum. Vol. 40. 3.

Wiley Online Library. 2021, pp. 201–214.

144

https://doi.org/10.1109/ACPR.2015.7486599
https://openreview.net/forum?id=rkgqN1SYvr
https://openreview.net/forum?id=rkgqN1SYvr
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110386
https://doi.org/https://doi.org/10.1016/j.knosys.2023.110386
https://doi.org/10.24963/ijcai.2020/94
http://jmlr.org/papers/v23/20-1258.html
http://arxiv.org/abs/2001.06372
https://doi.org/https://doi.org/10.1002/widm.1484
https://doi.org/https://doi.org/10.1002/widm.1484

7. Bibliography

[204] A. M. Vincent and P. Jidesh. “An improved hyperparameter optimiza-

tion framework for AutoML systems using evolutionary algorithms”.

In: Scientific Reports 13.1 (2023), p. 4737.

[205] P. C. Silva, P. d. O. e Lucas, H. J. Sadaei, and F. G. Guimaraes. “Dis-

tributed evolutionary hyperparameter optimization for fuzzy time

series”. In: IEEE Transactions on Network and Service Management
17.3 (2020), pp. 1309–1321.

[206] G. Sumbul, M. Charfuelan, B. Demir, and V. Markl. “BigEarthNet: A

Large-Scale Benchmark Archive For Remote Sensing Image Under-

standing”. In: arXiv preprint 1902.06148 (2019). url: http://arxiv.
org/abs/1902.06148.

[207] M. Bossard, J. Feranec, and J. Otahel. CORINE land cover technical
guide – Addendum 2000. Tech. rep. European Environment Agency,

2000.

[208] Scripts to Remove Cloudy and Snowy Patches. url: https://gitlab.
tubit.tu-berlin.de/rsim/bigearthnet-tools.

[209] A. Dudchenko and G. Kopanitsa. “Comparison of Word Embeddings

for Extraction from Medical Records”. en. In: Int J Environ Res Public
Health 16.22 (Nov. 2019).

[210] K. He, X. Zhang, S. Ren, and J. Sun. “Identity Mappings in Deep

Residual Networks”. In: arXiv preprint 1603.05027 (2016). url: http:

//arxiv.org/abs/1603.05027.

[211] S. Sun, Z. Cao, H. Zhu, and J. Zhao. “A Survey of Optimization

Methods from a Machine Learning Perspective”. In: arXiv preprint
1906.06821 (2019). url: http://arxiv.org/abs/1906.06821.

[212] H. B. McMahan. “Analysis Techniques for Adaptive Online Learning”.

In: arXiv preprint 1403.3465 (2014), pp. 76–89. doi: 10.1109/MGRS.

2020.2964708.

[213] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:

Ann. Math. Statist. 22.1 (Mar. 1951), pp. 79–86. doi: 10.1214/aoms/

1177729694.

[214] Q. Wang, Y. Ma, K. Zhao, and Y. Tian. “A Comprehensive Survey of

Loss Functions in Machine Learning”. In: Annals of Data Science (Apr.
2020). issn: 2198-5812. doi: 10.1007/s40745-020-00253-5.

145

http://arxiv.org/abs/1902.06148
http://arxiv.org/abs/1902.06148
https://gitlab.tubit.tu-berlin.de/rsim/bigearthnet-tools
https://gitlab.tubit.tu-berlin.de/rsim/bigearthnet-tools
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1603.05027
http://arxiv.org/abs/1906.06821
https://doi.org/10.1109/MGRS.2020.2964708
https://doi.org/10.1109/MGRS.2020.2964708
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1007/s40745-020-00253-5

7. Bibliography

[215] S. Jadon. “A survey of loss functions for semantic segmentation”. In:

2020 IEEE Conference on Computational Intelligence in Bioinformatics
and Computational Biology (CIBCB) (Oct. 2020). doi: 10.1109/cibcb
48159.2020.9277638.

[216] Y. Wu, L. Liu, J. Bae, et al. “Demystifying Learning Rate Polices for

High Accuracy Training of Deep Neural Networks”. In: arXiv preprint
1908.06477 (2019). url: http://arxiv.org/abs/1908.06477.

146

https://doi.org/10.1109/cibcb48159.2020.9277638
https://doi.org/10.1109/cibcb48159.2020.9277638
http://arxiv.org/abs/1908.06477

A. Appendix

A.1. OIALR Experimental Hyperparameters

Parameters not listed use the default values in the respective implementa-

tions.

A.1.1. ImageNet-2012

The non-default hyperparameters for all experiments on the ImageNet-2012

dataset are shown in Table A.1. We utilized the ViT implementation from

Torchvision [50] and the ResNet-RS 101 implementation from [1].

A.1.2. Mini-ViT on CIFAR-10

For training the mini-ViT we used most of the same parameters as listed in

Table A.1 except a lower learning rate. The utilized ViT for these experiments

was from [1]. The training parameters for these experiments are shown in

Table A.2. The search space for Propulate and the parameters for the search

itself are shown in Table A.3

A.1.3. AutoFormer on ETTm2

The learning rate schedule used in the original AutoFormer [171] is a step-

based schedule with fixed steps, it is denoted as ‘type1.’ The hyperparameters

used in our experiments are listed in Table A.4. The parameters for the

hyperparameter search are listed in Table A.5.

147

A. Appendix

Table A.1.: Hyperparameters for training networks on ImageNet-2012 with OIALR. Dataset

parameters are referring to the dataset transforms provided by [1]. LR k-decay is a parameter of

the cosine learning rate decay [2]

General Training Hyperparameters

Local batch size 128 Learning Rate Scheduler

Global batch size 1024 Learning rate (LR) 0.001

Autocast to bfloat16 True Minimum learning rate 0.00001

Epochs 125 Warmup LR 0.00001

Label smoothing 0.1 LR k-decay 1

Optimizer AdamW Warmup epochs 10

Sync batchnorm True

General dataset hyperparameters

Interpolation random Auto augment rand-m15-mstd0.5-inc1

Random erasing probability 0.25 crop pct 0.9

Random erasing mode pixel scale (0.08, 1)

Training crop size 160

OIALR hyperparameters

Full rank first layer False Delay 25000

Stability frequency 1000 Full rank last layer True

Sigma cutoff fraction 0.1

ResNet-RS 101 hyperparameters

Dropout 0.25 Validate crop size 224

ViT B/16 hyperparameters

Dropout 0.1 Hidden dim 768

Mlp dim 3072 Num layers 12

Num heads 12 Patch size 16

A.2. AB Training Experiments

All the 𝐴𝐵 experiments used a common set of HPs, shown in Table A.6. The

baseline experiments used the same HPs without 𝐴𝐵 training enabled.

For experiments using the ImageNet-2012 dataset, the crop size of the images

was set to 224 for training and validation. Furthermore, the maximum LR for

all of these experiments was 0.0035.

The constant global batch size scaling experiments all used a global batch

size of 4096 data samples. This means that the local batch sizes for 16, 32, 64,

and 128 GPUs are 256, 128, 64, and 32, respectively.

148

A.2. AB Training Experiments

Table A.2.: Hyperparameters used for CIFAR10 training runs. General hyperparameters used

for all runs, OIALR hyperparameters use for all OIALR runs. Dataset parameters refer to

implementation options in timm [1]

General Hyperparamters

Train crop size 32 Label smoothing 0.1

Local batch size 256 Optimizer AdamW

Global batch size 1024 auto_augment rand-m9-mstd0.5-inc1

Autocast to bfloat16 True Crop percent 1

Random erasing probability 0.25 Image scale (0.8, 1.0)

Random erasing mode pixel Interpolation random

ViT depth 6 ViT num heads 6

ViT qkv_bias False ViT patch_size 8

ViT embed_dim 768 ViT drop_path_rate 0.2

ViT mlp_ratio 4

Baseline Tuned

LR 0.0001 LR 0.0002

Minimum LR 0.00001 Minimum LR 0.0008

Warmup LR 0.00001 Warmup LR 0.00008

LR k-decay 1 LR k-decay 0.4

Warmup epochs 10 Warmup epochs 17

OIALR hyperparameters

Delay 4000 Stability frequency 1000

Full rank last layer True Sigma cutoff fraction 0.2

Full rank first layer False

The scaling experiments on ResNet-50 used the hyperparameters shown in

Table A.7. Furthermore, these experiments also used a dropout of 0.1 and

a weight decay of 0.01. The scaling experiments on ViT-B/16 are shown in

Table A.8. These experiments used a drop path rate of 0.1 and a weight decay

of 0.1.

The experiments on CIFAR10 with VGG16 used the parameters shown in

Table A.6 and Table A.9.

The learning rate schedulers utilized are from the timm library [1]. Unlisted

parameters utilized their default values.

149

A. Appendix

Table A.3.: Propulate search parameters for the mini ViT on CIFAR-10 for OIALR training.

Parameters to search over Search space Propulate parameter Value

LR (5e-5, 1e-3) Crossover probability 0.7

Minimum LR (5e-6, 1e-3) Mutation probability 0.4

Warmup LR (5e-6, 2e-4) Random init probability 0.1

LR k-decay (0.1, 2) Number of islands 8

Warmup epochs (1, 20) Migration probabilty 0.9

OIALR sigma cutoff fraction (0.01, 0.9)

OIALR stability frequency (200, 1000)

OIALR delay (10e2 10e3)

Table A.4.: Hyperparameters used for training AutoFormer models on the ETTm2 dataset for

OIALR training.

General Hyperparameters

Dimension of linear layers 2048 Number encoder layers 2

Loss function MSE Early stopping patience 3

Decoder input size 7 Start token length 48

Use distilling True Activation function gelu

Encoder input size 7 Batch size 32

Attention factor 1 Moving average window 25

Dimension of model 512 Maximum training epochs 20

Dropout 0.05 Output attention False

Number of heads 8 Number decoder layers 1

Default LR schedule Tuned LR schedule

LR schedule type1 LR schedule cosine

Learning rate 0.0004 learning_rate 0.01

lr_k_decay 0.85

min_lr 0.0004

warmup_lr 0.0001

warmup_epochs 3

OIALR Hyperparameters

Delay 600 Full rank first layer True

Full rank last layer True Stability frequency 400

Full rank warmup False Sigma cutoff fraction 0.4

150

A.2. AB Training Experiments

Table A.5.: The search space and settings for the hyperparameter search for OIALR using

Propulate.

Parameter Search Space Propulate Parameter Value

LR (1e-5, 5e-3) Crossover probability 0.7

Minimum LR (5e-6, 1e-3) Mutation probability 0.4

Warmup LR (5e-6, 2e-4) Random init probability 0.1

LR k-decay (1e-3, 2) Number of islands 4

Warmup epochs (2, 10) Migration probabilty 0.9

OIALR sigma cutoff fraction (0.01, 0.9)

OIALR stability frequency (50, 2000)

OIALR delay (250, 2500)

OIALR full rank first layer (False, True)

OIALR full rank last layer (False, True)

Table A.6.: The HPs used for all experiments using 𝐴𝐵 training. Baseline experiments use the

same HPs.

Autocast True

Training epochs 150

Loss function Cross Entropy

Label smoothing 0.1

LR schedule Cosine Decay

LR warmup epochs 10

Optimizer AdamW

Maximum gradient norm 1.0

Initialization method Orthogonal

AB full rank layers Input and Output layers

AB low rank cutoff 0.15

AB group size 4

Table A.7.: The HPs used for the ResNet-50 scaling experiments in 𝐴𝐵 training. The constant

global batch size experiments are marked with an asterisk.

Global batch size 2048 4096* 8192 16384 32768

𝐴𝐵 warmupSteps 24000 9300* 6150 3750 1900

𝐴𝐵 numABSteps 6000 3000* 1500 600 400

𝐴𝐵 fullRankReboundSteps 600 300* 150 75 38

LR rebound steps 1500 750* 325 188 94

Iterations per epoch 600 300* 150 75 38

151

A. Appendix

Table A.8.: The HPs used for the ViT-B/16 scaling experiments in 𝐴𝐵 training. The constant

global batch size experiments are marked with an asterisk.

Global batch size 2048 4096* 8192 16384 32768

𝐴𝐵 warmupSteps 24000 12300* 6150 3750 1520

𝐴𝐵 numABSteps 4360 2180* 1500 750 270

𝐴𝐵 fullRankReboundSteps 600 300* 150 75 38

LR rebound steps 1500 750* 325 188 94

Iterations per epoch 600 300* 150 75 38

Table A.9.: The HPs used for training VGG16 on CIFAR10 in 𝐴𝐵 training.

Training crop size 32

Epochs 150

LR 0.003

Weight decay 0.1

AB warmupSteps 4330

AB numABSteps 759

AB fullRankReboundSteps 60

AB LR rebound steps 267

AB group size 4

152

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Research Questions
	Outline

	Background
	Notation
	Fundamentals of Artificial Neural Networks
	Activation Functions
	Multilayer Perceptrons
	Convolution Blocks and Convolutional Neural Networks
	Self-Attention and Transformers

	Training a Neural Network
	Data Partitioning, Generalization, and Overfitting
	Optimization

	Computing for Neural Networks
	Frameworks

	Training Neural Networks on Distributed-Memory Architectures
	Data Parallelism
	Model Parallelism

	Hyperparamter Optimization
	Neural Architecture Search

	Neural Network Compression
	Pruning
	Quantization
	Knowledge Distillation
	Efficient Architecture Design or Learning
	Low-Rank Approximation

	Data Parallel Training Informed by Network Topology
	Related Work
	Distributed Asynchronous and Selective Optimization (DASO)
	Theoretical Analysis of DASO
	Implementation

	Experimental Evaluation and Discussion
	DASO Hyperparameter Study
	Performance Evaluation

	Conclusion and Outlook

	Orthogonality in Neural Networks
	Related Work
	Orthogonality in Neural Network Training
	Orthogonality-Informed Adaptive Low-Rank (OIALR) Training
	Experimental Evaluation and Discussion
	Computational environment
	Naive Testing: Transformers and ResNets
	Comparison with related low-rank and sparse training methods
	Ablation study on a mini ViT on CIFAR-10
	Ablation study on Autoformer on ETTm2

	Conclusion

	Using Low-Rank Representations in Data Parallel Training
	Related Work
	Distributed Training of Neural Networks
	Low-Rank Neural Network Training

	AB Training
	Experimental Evaluation
	Computational Environment
	Datasets and Models
	Hyperparameter Considerations
	Constant Local Batch Size Scaling
	Constant Global Batch Size Scaling

	Discussion
	Conclusion and Outlook

	Tuning Training Methods by Choosing Better Hyperparameters
	Background and Related Work
	Propulate's Evolutionary HPO
	BigEarthNet

	Experiments
	Discussion
	Multi-Rank Workers
	Conclusion

	Conclusion
	Key Findings and Contributions
	Revisiting Research Questions
	Outlook

	Bibliography
	Appendix
	OIALR Experimental Hyperparameters
	ImageNet-2012
	Mini-ViT on CIFAR-10
	AutoFormer on ETTm2

	AB Training Experiments

