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Abstract

Since the discovery of the Stuxnet cyber attack that damaged several nuclear
centrifuges in 2010, it has become evident that industrial control and automa-
tion systems are increasingly being targeted. Most of these attacks are executed
via the networks that connect Operational Technology (OT) components, such
as controllers and actuators. Since OT components are widely deployed and
serve as an interface between the network and the physical world, attacks on
them can cause damage to production assets and harm humans. In addition,
the accessibility of OT components has increased with the adoption of standard
internet communication protocols, reducing the need for specialized domain
knowledge. Therefore, OT components require particularly strong security
measures, especially with respect to their network interfaces.

To secure an OT component, security needs to be considered throughout the
entire development lifecycle, including system-level security testing of the OT
component. In practice, a tester may not have control over all parts of an OT
component, as they are often assembled from multiple third-party components.
Consequently, information internal to the OT component may be inaccessible,
making blackbox testing—where no internal knowledge is assumed—essential.

Industrial blackbox testing employs various testing techniques to assess the
interfaces of an OT component. Prominent approaches include Web Vul-
nerability Scanners (WVSs) and network protocol fuzzers. Similar to other
testing techniques, commercial and academic WVSs are primarily designed for
general-purpose Information Technology (IT) systems, which typically have
extensive resources that allow them to efficiently handle heavy workloads.
However, as WVSs are increasingly applied to web applications running on
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resource-constrained OT components, they exhibit several shortcomings. For
instance, WVSs are often unable to handle crashes caused by overloading
the OT component.

Network protocol fuzzing follows the general approach of sending potentially
malformed inputs to a System under Test (SuT) via its network interfaces,
while monitoring its behavior for crashes and anomalies. In contrast to existing
graybox approaches, the majority of blackbox fuzzing approaches do not
incorporate observations of the SuT’s behavior into their test case generation,
making blackbox testing generally less effective.

This dissertation advances the field of blackbox security testing for OT compo-
nents by presenting and evaluating novel approaches that leverage information
accessible before and during blackbox testing to enhance testing performance.
For instance, it leverages information on known vulnerabilities and generated
network traffic. The contributions of this dissertation are referred to by their
names, such as HitM, in the following. Key contributions include consoli-
dating knowledge from past tests to improve future blackbox fuzzing with
ClusterCrash, and utilizing network traffic or crashing services to advance
test case generation with Palpebratum and Smevolution. As a basis, NeDaP
introduces and assesses methods for preprocessing network traffic. HitM suc-
cessfully leverages information on the OT component’s behavior as expressed
by network responses and crashing services to transparently improve the per-
formance of existing WVSs. SWaTEval presents a framework for stateful web
application testing, utilizing network responses to gain information on the in-
ternal state machine of the OT component. Additionally, this work contributes
to graybox fuzzing with StateBandit, which leverages graybox information
to apply a reinforcement learning agent to stateful network fuzzing, and MEMA,
which examines the impact of performance metrics on fuzzer evaluations.

Through these contributions, this dissertation demonstrates how the limited
information that is accessible before and during blackbox testing can be lever-
aged to improve test performance, especially by applying graybox testing
techniques to a blackbox setting. The work resulted in the discovery and
disclosure of eight critical vulnerabilities in OT components.
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Kurzfassung

Seit der Entdeckung des Cyberangriffs Stuxnet, der 2010 mehrere Gaszen-
trifugen beschädigte, wird deutlich, dass industrielle Steuerungs- und Auto-
matisierungssysteme zunehmend Ziel komplexer Angriffe sind. Die meisten
dieser Angriffe erfolgen über Netzwerke, die Komponenten der Betriebstechnik
(engl. Operational Technology (OT)) wie Steuerungen und Aktoren miteinan-
der verbinden. Da OT-Komponenten weit verbreitet sind und als Schnittstelle
zwischen dem Netzwerk und der physischen Welt dienen, können Angriffe
auf sie Schäden an Produktionsanlagen verursachen und Menschen verletzen.
Darüber hinaus sind OT-Komponenten durch den zunehmenden Einsatz von
Standard-Internetprotokollen leichter zugänglich geworden, da weniger domä-
nenspezifisches Wissen vorausgesetzt ist. Daher erfordern OT-Komponenten
besondere Sicherheitsmaßnahmen, insbesondere im Hinblick auf ihre Netz-
werkschnittstellen.

Um eine OT-Komponente zu schützen, muss ihre Sicherheit während des
gesamten Entwicklungslebenszyklus berücksichtigt werden, was insbesondere
Schwachstellentests auf Systemebene einschließt. In der Praxis ist es jedoch
oft nicht möglich, dass während eines solchen Tests alle Bestandteile einer OT-
Komponente kontrolliert werden können, da diese oft aus Komponenten von
Drittanbietern zusammengesetzt sind. Folglich können interne Informationen
der OT-Komponente unzugänglich sein, was Blackbox-Tests – bei denen kein
internes Wissen vorausgesetzt wird – unerlässlich macht.

Beim industriellen Blackbox-Testen werden verschiedene Techniken einge-
setzt um die verschiedenen Schnittstellen einer OT-Komponente zu testen.
Gängige Ansätze sind Web-Verwundbarkeitsscanner (engl. Web Vulnerability
Scanners (WVSs)) und Netzwerkprotokoll-Fuzzer. Analog zu anderen Ansät-
zen sind kommerzielle und akademische WVS in der Regel für Systeme der
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Informationstechnik (engl. Information Technology (IT)) konzipiert, die über
umfangreiche Ressourcen verfügen und daher hohe Lasten effizient bewältigen
können. Da WVS jedoch zunehmend für Webanwendungen eingesetzt wer-
den, die lokal auf ressourcenbeschränkten OT-Komponenten laufen, werden
verschiedene Mängel deutlich. Beispielsweise reagieren WVS oft nicht auf
Abstürze einer OT-Komponente, die durch Überlastung verursacht werden.

Netzwerkprotokoll-Fuzzing folgt dem allgemeinen Ansatz, potenziell fehler-
hafte Eingaben über die Netzwerkschnittstelle an ein zu testendes System
(engl. System under Test (SuT)) zu senden und gleichzeitig dessen Verhalten
auf Abstürze und Anomalien zu überwachen. Im Gegensatz zu Ansätzen des
Graybox-Fuzzing, werden bei den meisten Ansätzen des Blackbox-Fuzzing Be-
obachtungen des Verhaltens des SuTs nicht in die Testfallgenerierung einbezo-
gen. Das führt dazu, dass Blackbox-Tests im Allgemeinen weniger effektiv sind.

Diese Dissertation leistet einen Beitrag zum Gebiet des Sicherheitstestens
von OT-Komponenten, indem sie neue Ansätze vorstellt und evaluiert, die
Informationen nutzen, die vor und während des Blackbox-Testens zugänglich
sind, um die Testleistung zu verbessern. Solche nutzbaren Informationen sind
zum Beispiel bekannte Schwachstellen oder der Netzwerkverkehr, der während
eines Tests erzeugt wird. Die Beiträge dieser Dissertation werden im Folgenden
mit ihren Namen, wie zum Beispiel HitM, bezeichnet.

Zu den wichtigsten Beiträgen zählt die Zusammenführung von Erkenntnis-
sen zur Verbesserung zukünftiger Blackbox-Tests, wie es mit ClusterCrash
vorgestellt wird. Ein weiterer Beitrag besteht aus der Nutzung von Informa-
tionen über das Verhalten der OT-Komponente, das sich im Netzwerkver-
kehr oder in abstürzenden Diensten äußert. Diese Informationen werden von
Palpebratum und Smevolution genutzt, um die Testfallgenerierung zu ver-
bessern. Als Grundlage hierfür führt NeDaP Methoden zur Vorverarbeitung des
Netzwerkverkehrs ein. HitM hingegen nutzt Informationen über das Verhalten
der OT-Komponente, in Form von Kommunikationspaketen und abstürzen-
den Diensten, um die Leistung bestehender WVS transparent zu verbessern.
SWaTEval ist ein Framework zum Testen von zustandsbehafteten Weban-
wendungen, das Kommunikationspakete der OT-Komponente verwendet, um
Informationen über die internen Zustände der OT-Komponente zu erhalten.
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Darüber hinaus leistet diese Dissertation mit StateBandit und MEMA einen
Beitrag zum Graybox-Fuzzing. StateBandit verwendet Informationen, die
nur in einem Graybox-Test verfügbar sind, um einen Reinforcement-Learning-
Agenten für Netzwerk-Fuzzing einzusetzen, während MEMA den Einfluss von
Metriken auf Fuzzer-Evaluationen untersucht.

Durch diese Beiträge zeigt die vorliegende Dissertation, wie die begrenzten
Informationen, die vor und während eines Blackbox-Tests verfügbar sind,
genutzt werden können, um die Testleistung zu verbessern, insbesondere
durch den Einsatz von fortgeschrittenen Techniken aus dem Graybox-Testen.
Die vorliegende Arbeit führte zur Entdeckung und Veröffentlichung von acht
kritischen Schwachstellen in OT-Komponenten.
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1 Introduction

Cyber attacks such as Stuxnet and Triton showcase that critical infrastruc-
ture and industrial automation and control systems are being targeted. While
Triton was detected in 2017 before any serious harm could be done [DiP18],
Stuxnet damaged several nuclear centrifuges in 2010 [Bae17]. For these at-
tacks to be successful, the Operational Technology (OT) components used
have to be vulnerable. Anton et al. analyzed six types of Programmable Logic
Controllers (PLCs) and found that 4,822 PLCs of these types were accessible
via the internet and that the majority of these PLCs are vulnerable to at least
one vulnerability [Ant21]. In addition, the industrial cybersecurity company
Dragos showed in their recent report that 80% of the vulnerabilities they
analyzed were vulnerabilities of low level OT components, including PLCs,
sensors, and industrial controllers [Dra23a].

One driver for an increased vulnerability of OT components is the advancing
connectivity in production plants. With higher connectivity, more possible
entry points are made available for external attackers and thus the attack
surface increases [Ant21]. The German Federal Office for Information Security
reports an increasing number of vulnerabilities that are concerned with the
connectivity of the OT components, such as intrusion via remote maintenance
access or infection with malware via internet and intranet [Fed22]. According
to Dragos, the number of findings with respect to external connections or
network segmentation decreased in 2022, but these findings are nevertheless
relevant in a significant portion of the analyses [Dra22]. In 2023, 16% of the
vulnerabilities analyzed by Dragos were exploitable over the network [Dra23a].
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In addition, communication protocols and hardware are becoming more stan-
dardized and more parts of an OT component, such as network stacks, are
shared by multiple manufacturers [Dou23]. While this development is bene-
ficial for interoperability and interchangeability, it also reduces the domain
knowledge required to design and execute cyber attacks with a broad target
scope. For example, the vulnerability group Ripple20 that includes 19 vulnera-
bilities of one specific network stack, affected a plethora of manufacturers and
devices since this stack is used very commonly. According to the researchers
who published this vulnerability group, 31 manufacturers confirmed that their
devices are affected by the vulnerabilities as of 25th October 2020 [Koh20a].
A research group at Forescout analyzed seven open source network stacks
and found 33 vulnerabilities in four of those stacks [San21c]. Furthermore,
they analyzed the use of these affected stacks and came to the conclusion that
millions of devices are potentially affected by the published vulnerabilities.
Most of these potentially affected devices are used in Information Technology
(IT) or Internet of Things (IoT) environments, but the authors also classify 19%
of the devices as OT components. This again shows how cyber attacks can be
used to target several types of devices, spanning a wide range of application
domains. It shows that the convergence of IT and OT leads to more vulnera-
bilities in OT components and thus increases the possibility for a successful
cyber attack [Haj21].

One approach to decrease the possibility of a successful attack is to reduce the
number of vulnerabilities in an OT component. To this end, there are several
approaches and starting points which are incorporated in the secure develop-
ment lifecycle as specified by the international standard IEC 62443 [Int19]. The
secure development lifecycle requires that the security of the developed OT
component is considered during the whole lifecycle. This includes avoiding
design vulnerabilities by security considerations during the design phase, and
avoiding implementation vulnerabilities by following secure coding practices.
Furthermore, one important part is to conduct tests to verify and validate the
security of an implemented OT component.
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1.1 Outline

For a tester, who has the task to automatically test an OT component for
vulnerabilities and other security related issues, several challenges arise that
are specific to the industrial setting. Of these challenges, three are the most
prominent. A tester (1) needs to perform blackbox security tests, (2) needs to
consider the special requirements of the industrial setting such as proprietary
communication protocols, and (3) needs to choose a Test Tool (TT) which
finds as many vulnerabilities as possible.

1.1 Outline

The overall objective of this doctoral work is to make blackbox security testing
of OT components more effective and efficient while considering the special
requirements of an industrial setting. In the following section, the motivation
for this objective as well as the three challenges of a tester mentioned above will
be detailed. Subsequently, we will discuss the research questions that drive this
doctoral work in Section 1.3, present the contributions in Section 1.4, clarify
the scope in Section 1.5, and introduce a running example OT component used
throughout this doctoral work in Section 1.6.

Following on the introduction presented in this chapter, Chapter 2 provides
background on industrial security testing and Machine Learning (ML). This
includes a general overview of industrial security (Section 2.1), and a presen-
tation of the methods employed in testing for security in industrial use cases
(Section 2.2). Moreover, details on the two testing techniques utilized in this
doctoral work, namely Web Vulnerability Scanners (WVSs) (Section 2.3) and
fuzzing (Section 2.4), are given. To establish the foundation for the ML-based
approaches proposed in this doctoral work, Section 2.6 introduces the relevant
concepts. Once this foundational background is set, Chapter 3 analyzes the
information sources that are accessible in a blackbox security test.

Chapters 4 to 8 elaborate on the contributions of this doctoral work. Each of
these chapters provides in-depth information on the specific problem state-
ment, related work, the approach(es), and the evaluation. Chapter 4 presents
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the contribution with respect to blackbox web security testing, HitM; Chap-
ter 5 provides more details on the usage of public vulnerability information,
ClusterCrash; Chapter 6 describes the analysis regarding network packet
data preprocessing, NeDaP; Chapter 7 is concerned with the ML-based ap-
proaches to leverage information accessible in blackbox security testing; and
Chapter 8 details the approaches to evaluating TT.

Following these detailed descriptions of the subtopics of this doctoral work,
Chapter 9 consolidates these subtopics, and discusses the contributions and
results with respect to the main research questions formulated in Section 1.3.
Possible future research directions are examined in Chapter 10, and Chapter 11
summarizes this dissertation.

1.2 Challenges of Industrial Security Testing

To motivate the objectives of this doctoral work, the following paragraphs
describe the key challenges of industrial security testing for OT components.

Blackbox Test Setting

In an ideal world, the tester of an OT component has full access to the OT
component, including the source code and accompanying materials. With all
the information given, the tester could perform efficient whitebox tests to find
vulnerabilities of the OT component.

However, in real test settings, the tester does not have access to or control
over all the components which are included in the OT component [Dou23].
Doumanidis et al. analyzed 48 firmwares of different PLCs from the four man-
ufacturers ABB, Schneider Electric, Siemens, and WAGO [Dou23]. The authors
dissected the firmwares to find out which third-party components are used
in the firmwares and which of the components are shared between different
firmwares of the same manufacturer and between different manufacturers.
One of their findings is that the two firmwares of WAGO PLCs that where
analyzed contain 302 and 343 third-party libraries, respectively. A Siemens
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1.2 Challenges of Industrial Security Testing

Test Device System under Test

Request
(Input) Response

(Output)

Figure 1.1: Basic setup of a blackbox security test via the Ethernet interface. The Test Device (TD)
uses a Testing Tool (TT) to generate test cases, send these to the System under Test
(SuT), and observe the SuT’s behavior in response to this input. For example, such
a test case or input could consist of a mutated File Transfer Protocol (FTP) packet.
Then, the observed behavior of the SuT could be the corresponding FTP response.

PLC firmware included 720 third-party libraries. To thoroughly test one of
these PLCs, a tester would have to test all of those libraries as well. For the
closed source third-party libraries included in a PLC, a tester has no possibility
to get enough information to perform a whitebox test. Thus, the tester needs
to perform blackbox tests of the OT component. Moreover, blackbox tests
are, for example, required by the international standard IEC 62443-4-2, which
defines requirements for securing OT components [Int19].

In general, blackbox tests of OT components consist of blackbox tests con-
ducted via the network interfaces provided by the System under Test (SuT).
Figure 1.1 shows a high level overview of the general testing approach, aiming
to set some of the terms used in the domain of industrial security testing. The
OT component that is to be tested during the security test is referred to as the
SuT, as opposed to the Test Device (TD), which is used to conduct the test
by running a Testing Tool (TT). The TD is usually an industrial computer or
a usual desktop computer. During testing, the TT sends some kind of input
to the SuT. For example, this input could be a network packet or a sequence
of network packets. Usually, the SuT reacts in some way to that input, for
example by sending a response via the network. Now, the TT can analyze this
response as well as the general behavior of the SuT in order to find anomalies
in the SuT’s behavior and to derive whether a vulnerability of the SuT was
discovered. As a basic approach to analyzing the SuT’s general behavior, the
TT can send an Internet Control Message Protocol (ICMP) ping network packet
to the SuT to check whether it is still responsive. If the SuT no longer responds
to such a packet, the TT can assume that the network stack of the SuT has
crashed, which is a strong indicator for a discovered vulnerability.
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One of the testing approaches this doctoral work focuses on is fuzzing (see also
Section 2.4). Fuzzing generally follows the approach to present inputs to the
SuT that are possibly semantically or syntactically malformed [Man19]. One
basic necessity of an efficient and effective fuzzing test is an optimization func-
tion to guide the test case generation. Generally speaking, this optimization
function takes the behavior of the SuT with respect to one input and decides
whether this input is interesting or not. An input, or test case, is deemed
interesting, if it leads to behavior that is different from those of previous test
cases. For further testing, usually only the interesting test cases are considered
as a basis for new test cases. With this, the exploration of the SuT’s behavior is
aspired in order to discover as many anomalies and vulnerabilities as possible.
To be more concrete, in whitebox fuzzing, the behavior of the SuT could be
represented by statement coverage or branch coverage [Cer23]. In graybox
fuzzing, in which the fuzzer usually has access to a binary of the SuT, usually
the code coverage is used as a representation of the SuT’s behavior [Böh21].
During blackbox fuzzing, only the behavior the SuT exhibits via its commu-
nication interfaces can be analyzed and used during the test. Even though
the SuT exhibits some behavior to the outside, blackbox fuzzers usually either
use only information on crashes to guide the test case generation or do not
take any feedback into account [Man19].

This doctoral work aims to utilize more of the information accessible in black-
box testing to guide the fuzzing and thus to make the testing more effective.
For this, we present several approaches which are, e.g., based on analyses of
known vulnerabilities (Chapter 5), transparent injection of additional con-
text information (Chapter 4), or automatic model inference (Chapter 7). See
Section 1.4 for an overview of the contributions of this doctoral work, and
Chapter 3 for an analysis of information accessible in blackbox testing.
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1.2 Challenges of Industrial Security Testing

Industrial Test Setting

The second challenge is based on the observation that TTs designed for tradi-
tional IT security testing might not fulfill the requirements of OT component
testing. In the following, we will discuss two main requirements that distin-
guish testing IT systems from testing OT components.

The first requirement of industrial security tests that needs to be considered
is concerned with the different interfaces an industrial SuT provides. An
IT TT might not be able to observe all the outputs from an OT component.
However, this is needed to thoroughly analyze the SuT’s behavior [Bor20].
A TT has the general goal to find those states of a SuT in which the SuT
does not behave as intended, i.e. in which it shows anomalous behavior. In
blackbox testing, the TT is limited to observing the external behavior exhibited
by the SuT. Anomalous behavior might, for example, be a different response
behavior, including different response messages, additional response delay,
or no response at all. The latter is usually a strong indicator of a crash. All
interfaces of an OT component should be monitored for anomalous behavior to
be able to decide whether a vulnerability has been discovered. This is especially
true for the digital I/O interfaces that some OT components have.

For example, a bus coupler tested during this doctoral work (see Section 1.6)
exhibits a vulnerability that can only be detected by observing the digital I/O
interfaces during testing. This vulnerability can be exploited with a malformed
Hypertext Transfer Protocol (HTTP) packet. When such a packet is sent to the
bus coupler, none of the Ethernet-based interfaces shows a strongly anomalous
behavior. Nevertheless, this packet leads to a crash of the digital I/O interface.
For TTs that only observe the Ethernet-based interfaces, this vulnerability is
not apparent. Upon discovery, this vulnerability was responsibly disclosed
and published in cooperation with the manufacturer1. See Section 4.4 for a
more detailed description.

1 As a result, the vulnerability was assigned a unique Common Vulnerabilities and Exposures
(CVE) identifier: CVE-2018-16994 [CVE18]
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The second requirement that needs to be considered is concerned with the
communication protocols that are used by industrial SuTs. An IT TT may not
support the proprietary communication protocols used by the OT component,
as those are not used in traditional IT environments [Kna14]. Nevertheless, a
monitoring and observation of these protocols might give interesting insights
into the behavior and the current state of the SuT.

The contributions of this doctoral work utilize two different approaches to
address this challenge. Some concepts utilize specialized tools like the in-
dustrial security testing framework ISuTest® [Pfr17][Pfr23], which supports
industrial communication protocols such as PROFINET. This framework was
developed at Fraunhofer IOSB, and was used and further improved by this
doctoral work (see Sections 4.3 and 7.4). Other contributions employ protocol
independent approaches such as the behavior approximation using Hidden
Markov Models (HMMs) presented in Section 7.5.

Choice of Testing Tool

The third challenge that arises for a tester of an OT component is the choice of
TTs to use for the tests. Especially regarding TTs targeting standard internet
communication protocols, a tester has to choose from a plethora of existing
TTs. This presents a challenging choice, especially when using the TTs in an
industrial setting, as shown by Pfrang et al. [Pfr19b]. The authors run five
blackbox WVSs against seven OT components which provide locally running
web servers. Blackbox WVSs are TTs which actively analyze Web Applications
(WAs) by sending inputs to the application and analyzing the output, aiming
to reveal, for example, Cross-site Scripting or SQL Injection vulnerabilities
(see also Section 2.3). Pfrang et al. analyze the performance of the WVSs and
come to the conclusion that each scanner finds at least one vulnerability that
all other scanners miss [Pfr19b]. In support of this, Poncelet et al. evaluate
several fuzzers against a network stack, showing that none of the evaluated
fuzzers is uniformly better than the others [Pon22].
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A conclusion is that a tester would need to employ all the scanners to find as
many different vulnerabilities as possible. Additionally, any new approaches
aiming to improve blackbox testing in general would need to be incorporated
by each of the scanners. Driven by these insights, this doctoral work proposes
approaches that improve the performance of TTs in a way that is transparent
to the TTs or the general testing approach. This holds, for example, for the
proxy-based approach to improve blackbox WVSs presented in Section 4.3
as well as for the behavior approximation using HMMs. The latter approach
allows to apply existing graybox fuzzing approaches to blackbox test settings
by transparently providing the information that would otherwise be missing
in a blackbox test.

1.3 Problem Statement and Research Questions

As detailed above, a tester of OT components faces the following five main
challenges.

Challenge 1 (Blackbox Testing). Blackbox testing needs to be performed caused
by restricted access to parts of the SuT and by requirements from standards.

Challenge 2 (Missing Information). In blackbox testing, information relevant
to perform efficient and effective tests is missing.

Challenge 3 (Insufficient Observations). Traditional TTs might not be able to
observe all communication interfaces of the SuT, which is necessary to detect as
many anomalies as possible.

Challenge 4 (Insufficient Protocol Support). Traditional TTs usually do not
support industrial communication protocols.

Challenge 5 (Choice of Testing Tool). Several TTs need to be used in conjunction
to achieve high vulnerability coverage.
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This dissertation proposes several approaches to utilize the limited informa-
tion that is available in blackbox testing. As underlying requirement, these
approaches consider the special requirements of OT components as presented
above, aim to be transparent to the underlying TTs if used and to be in-
dependent of the concrete communication protocol. However, some of the
approaches are specifically crafted to be used in the domain of WAs running
on OT components and thus focus on HTTP as underlying communication
protocol (Sections 4.3 and 8.3).

This doctoral work is driven by the following research questions. Furthermore,
based on these main research questions, more specific research questions are
formulated for the subtopics of this doctoral work. These specific research
questions are presented and discussed in the corresponding chapters (see Sec-
tions 4.1, 5.1, 6.1, 7.1, and 8.1). A discussion of the general research questions,
which consolidates the results of the subtopics, is presented in Chapter 9.

Research Question 1. What sources of information are available for blackbox
security testing?

As stated, blackbox testing assumes that the tester has no access to internal
information of the SuT, and thus is restricted to the information that the SuT
exposes. We analyze which information sources are utilized by approaches
from literature (see Chapter 3) and find that those information sources can be
categorized along two dimensions: (1) time of accessibility, and (2) temporal
variability. We differentiate between information sources that are accessible
prior to the test, such as information on past vulnerabilities, and information
sources that are accessible only during testing, such as the SuT’s response
to certain test cases. In addition, we differentiate between information that
remains constant over time, such as the communication endpoints of a SuT,
and information that changes over time, such as the network traffic observed
during testing.

Research Question 2. How can information that is accessible prior to the actual
test be used to improve a blackbox security test?
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Some information sources are accessible prior to the test, and this doctoral
work explores three approaches on how to utilize this information. First,
we leverage information on previously published vulnerabilities. We analyze
how this information can be structured with the objective to derive universal
insights on which test cases to use during testing (see Chapter 5). Bases
on these insights, we implement blackbox tests that lead to eleven findings
related to the security of OT components (see Chapter 5). In addition, we
utilize information on the communication endpoints of a SuT to transparently
improve the performance of blackbox WVS in Chapter 4, and network traffic
accessible before the test to train a model of the SuT in Section 7.5.

Research Question 3. How can models of the SuT be derived from information
sources during a blackbox security test?

In contrast to the information sources accessible prior to the test, some infor-
mation is only exposed during the test. This includes the behavior that the SuT
exhibits in response to given inputs. One of the approaches to use these infor-
mation sources during the test is to derive a model of the SuT which is then
directly used to guide and evaluate the testing process. We approach Research
Question 3 by analyzing several means to derive a model from the different
information sources and by evaluating their impact on the testing performance.
This includes training ML models on test data information, training an HMM
on network traffic data, and training a Reinforcement Learning (RL) agent on
graybox coverage information (see Chapter 7). Our experiments demonstrate
that the performance of blackbox testing can indeed be improved by some of
the models, showing that the models have the potential to successfully learn
and represent information on the SuT.

Research Question 4. How can TTs be evaluated and compared to competing
approaches?

Qualitative and quantitative evaluations are necessary to set newly proposed
approaches into context and to show their capabilities in comparison to the
current state-of-the-art. This doctoral work focuses on blackbox Stateful Web

11



1 Introduction

Application Testing (SWAT) and stateless graybox fuzzing by (1) presenting
an evaluation framework for SWAT in Section 8.3 and (2) showing that the
choice of performance metrics has an impact on the relative assessment of
graybox fuzzers in Section 8.4.

1.4 Contributions

In order to address the previously mentioned research questions, while also
considering the challenges of industrial security testing, this doctoral work
makes several contributions. An introduction to these contributions is given
below, whereas detailed explanations of the contributions, including a detailed
problem statement, the corresponding research questions, and information on
related work, are provided in the corresponding chapters (Chapters 4 to 8).
Thereafter, Chapter 9 summarizes the different subtopics and approaches of
this doctoral work and links the contributions to the general research questions
formulated above. Table 1.1 gives an overview on the contributions, their link
to the challenges of OT component security testing, and lists the chapters in
which more details are given on the respective contribution.

The publications produced over the course of this doctoral work are assigned
to the corresponding contributions in the paragraphs below and, like the theses
supervised during this doctoral work, are referenced in italics to make it easier
for the reader to distinguish between own work and that of others.

Industrial Web Security

The first contribution is concerned with improving industrial security testing
by facilitating efficient web security testing for industrial use cases. To that
end, we first analyze which limitations WVSs show with respect to their
applicability to OT component testing.

Contribution 1. Analysis of the limitations of blackbox WVSs with respect to
their applicability to OT component security testing.
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Based upon this analysis, we propose HitM, providing a proxy-based solu-
tion that modifies the input and output of existing blackbox WVSs, and adds
additional observation capabilities [Bor20]. All these modifications are trans-
parent to the underlying WVS, which makes it easy to apply HitM to arbitrary
blackbox WVS. For our evaluation of HitM, we run six WVSs against five
OT components. Then, we run the same configurations again, but enable the
additional features provided by HitM. We show that the additional features lead
to more true positive vulnerability reports and an increased Uniform Resource
Locator (URL) coverage. These advantages come at the cost of increasing
the time needed per test case, since each test case needs to be parsed and
processed by the proxy before being forwarded to the SuT or TD, respectively.
In addition, we run HitM against the bus coupler used as a running example
for this doctoral work (see Section 1.6), revealing one previously unknown
vulnerability that was only revealed by the features of HitM.

Contribution 2. Implementation and evaluation of the proxy-based solution
HitM which transparently facilitates the use of blackbox WVS in OT component
security testing.

HitM is designed for a blackbox test setting (Challenge 1 (Blackbox Testing))
and allows for observing all communication interfaces of the SuT (Challenge 3
(Insufficient Observations)). Due to its proxy-based design, HitM is transpar-
ent for the used WVS and such can be used together with arbitrary WVSs
(Challenge 5 (Choice of Testing Tool)). Amongst other features, HitM injects
additional information into the requests sent by the WVS. This information,
for example, includes additional URLs taken from the sitemap of the WA
(Challenge 2 (Missing Information)).

See Chapter 4 for details on HitM, its evaluation, and an in-depth discussion of
the results. The publication of HitM builds the foundation of Chapter 4 [Bor20].
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Table 1.1: Overview of the contributions of this doctoral work, including their link to the challenges that a tester of an OT component has
and the research questions. The approaches are discussed in more detail in the chapters referred to in the table. Most of the
contributions have been published, which is indicated by the corresponding reference. The abbreviation tbp indicates that the
respective contribution is going to be published in the future.

Name Description Questions Challenges Chapt. Ref.
1 2 3 4 1 2 3 4 5

HitM Proxy-based solution to improve
the performance of WVSs

� � � � � � � 4 [Bor20]

ClusterCrash Use of information on known vul-
nerabilities to improve future tests

� � � � � 5 [Bor22]

NeDaP Preprocessing of network packet
data

� � � � 6 tbp

Smevolution Use of ML models to improve
blackbox fuzzer guidance

� � � � � � � � 7 [Bor23b]

Palpebratum Use of HMMs to approximate the
SuT’s behavior

� � � � � � � 7 tbp

StateBandit Use of an RL agent for stateful net-
work fuzzing

� � � � 7 [Bor23a]

SWaTEval Evaluation framework for SWAT � � � � 8 [Bor23c]
MEMA Impact analysis for performance

metrics in fuzzing evaluations
� � � � 8 -
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Blackbox Network Fuzzing

The second contribution, ClusterCrash, aims to use publicly available vul-
nerability information to improve future blackbox security tests. For this, we
focus on communication protocol implementations used by OT components.
As mentioned above, OT components are increasingly using protocols building
upon standard internet protocols such as Internet Protocol (IP) and Trans-
mission Control Protocol (TCP). This includes, for example, communication
protocols such as HTTP, OPC Unified Architecture (OPC UA), and FTP (see
Section 2.1.2). Thus, the security and reliability of TCP/IP network stacks
built into an OT component is crucial and they need to be tested using black-
box tests. Literature shows several extensive graybox and whitebox tests of
TCP/IP network stacks [Koh20a, Koh20b, San21c, Ser19], which we leverage
to help improving future blackbox tests of OT component. We analyze the
findings of these studies, cluster them by their root causes, and formulate
Vulnerability Anti-Patterns (VAPs), which give details on the root causes of
vulnerabilities in TCP/IP stacks.

Contribution 3. Analysis and clustering of published TCP/IP stack vulnera-
bilities, and derivation of VAPs which formalize the underlying causes of these
vulnerabilities.

Then, we use this newly acquired knowledge to design and implement new
blackbox tests which specifically test for the VAPs. To evaluate the perfor-
mance of these new tests, we execute them against eight OT components of
five different device classes. This evaluation shows that the tests are indeed
able to reveal previously unknown vulnerabilities. Moreover, we show that
vulnerabilities rising from one VAP can be found in different communication
protocols and different device classes. We communicated the discovered vul-
nerabilities to the corresponding manufacturers, resulting in three publicly
confirmed vulnerabilities [CVE21c, CVE21a, CVE21b].

Contribution 4. Utilization of the newly developed VAPs to implement new
tests, and an evaluation of those tests which revealed three confirmed previously
unknown vulnerabilities of OT components.
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In summary, ClusterCrash shows how publicly available information on com-
munication stack vulnerabilities can be leveraged to improve future blackbox
tests (Challenge 1 (Blackbox Testing), Challenge 2 (Missing Information)). Fur-
thermore, the resulting tests were incorporated to ISuTest® (see Section 2.2.3)
and thus all communication interfaces of the SuT can be observed during
testing (Challenge 3 (Insufficient Observations)).

Chapter 5 presents more details on ClusterCrash, building upon the cor-
responding publication [Bor22].

Network Data Processing

Another data source that can be exploited during blackbox testing is the net-
work traffic generated by the SuT and the TT. We aim to make this information
available for further usage by employing ML models, for which we need to
preprocess the raw network packets first. With NeDaP, we analyze and evaluate
three different approaches to network packet preprocessing with respect to
the goal to perform model-based testing on the preprocessed data.

We base the preprocessing pipeline on two approaches from literature [Chi20,
Lot20], and include three different approaches for dimensionality reduction:
a Principal Component Analysis (PCA), an Autoencoder (AE), and a Convo-
lutional Autoencoder (CAE). Our experiments show that the CAE performs
better with respect to in-domain generalization, while the AE shows a better
performance for out-of-domain generalization. For the use case of HMM-based
fuzzing, the out-of-domain generalization is expected to be more important,
since the models will be trained on user data, but then will be used on fuzzing
data. This evaluation thus gives insights valuable for the further usage of the di-
mensionality reduction approaches, especially by Palpebratum, an approach
presented in the next paragraph.

Contribution 5. Analysis and evaluation of three approaches to network packet
preprocessing with the goal of model-based security testing.
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The proposed preprocessing pipeline is designed for blackbox testing (Chal-
lenge 1 (Blackbox Testing)) and is independent of the underlying network
protocol (Challenge 4 (Insufficient Protocol Support)).

Chapter 6 provides more details on our experiments with respect to network
packet preprocessing.

Machine Learning based Blackbox Fuzzing

This doctoral work proposes three approaches to model-based testing, espe-
cially applying ML-based models to a blackbox test setting. These models
exploit accessible information to improve the performance of blackbox testing
of OT components.

The first approach, Smevolution, is concerned with blackbox network fuzzing
and leverages information on test cases that have already been sent, and the
SuT’s reaction to those test cases [Bor23b]. Smevolution uses this information
to train an ML model that is updated and refined during the test. This model
is combined with an evolutionary testing algorithm and is used to improve
the mutation strategy and the selection of new test cases. For our evaluation,
we select three different ML models (namely Support Vector Machine (SVM),
Decision Tree (DT), and Neural Network (NN)) of which each has distinct
features that are beneficial for the testing process. Moreover, we integrate
Smevolution to the security testing framework ISuTest® (see Section 2.2.3)
and execute against an artificial OT component which incorporates known
vulnerabilities. The main result of this evaluation is that using Smevolution

leads to more crashes compared to a baseline employing a random approach.
This indicates that the models are indeed capable of learning and representing
information that can be used to improve blackbox testing.

Contribution 6. Proposal, implementation, and evaluation of Smevolution,
an approach to combine evolutionary fuzzing with ML models leveraging test
data to help guiding the test process.
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Smevolution is suited for a blackbox test setting (Challenge 1 (Blackbox
Testing)) and is independent of the tested network protocol (Challenge 4 (In-
sufficient Protocol Support)). The ML models analyze and process information
on past test cases to provide relevant information for test case generation
(Challenge 2 (Missing Information)), and could be used as external mutator by
mutation-based fuzzers (Challenge 5 (Choice of Testing Tool)). Due to the in-
tegration in ISuTest®, Smevolution is also able to observe all communication
interfaces of the SuT (Challenge 3 (Insufficient Observations)).

Details on Smevolution and the corresponding evaluation are pre-
sented in Section 7.4. These explanations are based on the publication
of Smevolution [Bor23b].

The second approach, Palpebratum, uses the results from the aforementioned
network packet preprocessing, NeDaP, and uses the preprocessed network
packets to train an HMM which approximates the behavior of the SuT. One
of the features of an HMM is that one can calculate the path through the
model’s states with the highest probability of leading to a given observation.
We use this path information as a representation of the SuT’s behavior and as
a substitute for code coverage used in graybox testing. With this approximated
information, we can facilitate the application of graybox fuzzing approaches in
a blackbox test setting. To evaluate this approach, we integrate Palpebratum
in the fuzzing library LibAFL [Fio22], and analyze how the performance of the
HMM-based fuzzer compares to a random fuzzer and a blackbox fuzzer.

Our experiments show that the HMM-based fuzzers generate test cases that
are more efficient that those generated by the baseline fuzzers. In this case,
efficiency is measured as the average coverage that is achieved by a test case
generated by the respective fuzzer. However, the final coverage achieved by
the baseline fuzzers significantly outperforms the coverage achieved by the
HMM-based fuzzers. Possible reasons for this is an underestimation of the
coverage achieved by the HMM-based fuzzers, and the overhead introduced
by the HMM. This overhead leads to a reduced number of test cases that are
generated in a fixed time frame and thus the HMM-based fuzzers are likely
to sent less test cases to the SuT than the baseline fuzzers. In addition, it
shows that the fuzzer that uses the AE for preprocessing performs significantly
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better than the fuzzer that uses the CAE. This supports the expectation that
the out-of-domain generalization of the AE, as demonstrated with NeDaP, is
beneficial for fuzzing.

Contribution 7. Proposal, implementation, and evaluation of Palpebratum,
an approach to approximate the SuT’s behavior based on preprocessed network
traffic, facilitating graybox fuzzing approaches in a blackbox test setting.

Palpebratum is designed to be used in a blackbox test setting (Challenge 1
(Blackbox Testing)) and is independent of the underlying network protocols
(Challenge 4 (Insufficient Protocol Support)). The HMM is used to approxi-
mate information that would otherwise be missing in a blackbox test scenario
(Challenge 2 (Missing Information)). This approximated information can be
used by graybox coverage-based fuzzers (Challenge 5 (Choice of Testing Tool)).

Section 7.5 details this approach and the evaluation that was conducted to
assess its performance.

The third approach, StateBandit, is concerned with the state selection prob-
lem of stateful network protocol fuzzing. Stateful fuzzing recognizes that
the network protocols typically behave in a stateful manner and explicitly
decides which state of the SuT to test in the next fuzzing iteration [Ba22].
One challenge that arises is to choose the next state in a way that the fuzzing
is efficient and effective (see also Section 2.5). We propose to approach this
challenge by modeling the state selection as a RL problem, more specifically as
a Multi-armed Bandit (MaB) problem. To this end, we deploy an agent which
has the task to select .the state to be used in the next fuzzing iteration. In order
to be able to give the agent some more information to base this selection on,
we first deploy this approach in a graybox test setting. The agent receives a
reward based on new coverage and on new crashes, which provides a more
fine-grained view on the problem.

We evaluate StateBandit using the industrial communication protocol OPC
UA in a graybox test setting and compare the results to the stateful fuzzer
AFLNet [Pha20], which bases its state selection on a heuristic. Our evaluation
shows that AFLNet leads to significantly better results than each of the analyzed
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agent policies. We deduced from this observation that a blackbox agent is
unlikely to have enough data to improve state selection, and decided not to
pursue this direction of research any further in this doctoral work.

Contribution 8. Proposal, implementation, and evaluation of StateBandit,
an approach to delegate the state selection problem to a MaB agent.

The agent’s decisions are independent of the network protocol that is be-
ing tested (Challenge 4 (Insufficient Protocol Support)), and aim to provide
additional guidance and information for the test (Challenge 2 (Missing In-
formation)).

Despite the negative results, the insights have been published at the EuroS&P
workshop on Re-design Industrial Control Systems with Security [Bor23a], and
are detailed in Section 7.6.

Evaluation of Test Tools

Besides proposing new approaches to security testing, it is equally important
to provide means to evaluate said approaches and to compare them to the
state-of-the-art. All of the above approaches have been evaluated in accordance
with general evaluation best practices and, where applicable, fuzzer evaluation
best practices [Kle18]. Furthermore, this doctoral work contributes directly
to the evaluation of TTs, namely on the evaluation of stateful WVSs and to
the evaluation of stateless fuzzers.

The first contribution to the evaluation of TTs, SWaTEval, is concerned with
blackbox WA testing of OT component. The main objective of SWaTEval is
to facilitate evaluation of TTs for SWAT, with a special focus on automatic
blackbox state machine inference. Such a state machine can build a vantage
point for stateful WVSs. The literature includes approaches for the blackbox
state machine inference of WAs, but it remains unclear how these approaches
perform in comparison and how different design choices of these approaches
impact the quality of the inferred state machine. Therefore, we develop an
evaluation framework for stateful WA testing, SWaTEval.
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Contribution 9. Proposal, implementation, and evaluation of SWaTEval, an
evaluation framework for SWAT.

For the evaluation of SWaTEval, we focus on one design choice of automated
state inference, namely the similarity measure used to decide whether two web
pages are to be considered the same. We evaluate SWaTEval’s performance
by comparing results produced by SWaTEval with results from the literature.
Moreover, we propose a new similarity measure and show that this newly
proposed similarity measure leads to the highest number of correctly identified
states in comparison to two similarity measures from literature.

Contribution 10. Development of a new similarity measure for web pages and
use of SWaTEval to analyze the impact of the choice of similarity measures on
the performance of state machine inference.

Section 8.3, which is based on the publication of SWaTEval [Bor23c], gives
more details on SWaTEval and the corresponding evaluation.

The second contribution, MEMA, is concerned with the evaluation of stateless
fuzzers. As a basis, we formulate the different dimensions of fuzzing evalua-
tions, and analyze how these dimensions have been considered by literature.

Contribution 11. Analysis and formulation of the dimensions of fuzzing eval-
uations.

Our analysis reveals that the majority of fuzzing evaluations, and also best
practices for fuzzing evaluations, use either the code coverage a fuzzer achieves
or the number of bugs a fuzzer reveals as metric for the evaluation [Sch24].
However, recent literature suggests that the relative performance of fuzzers can
differ, depending on which of those two metrics is chosen [Fio22]. In addition,
there are other metrics known from traditional software benchmarking (such
as e.g. memory utilization and CPU load), which have not been extensively
used for fuzzing evaluations. Thus, we implement several new metrics for
fuzzing evaluations, integrate them into a fuzzing benchmark tool, and evaluate
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how the selection of metrics influences the relative rating of fuzzers. For
this, we conduct an evaluation of three fuzzers against five targets, using six
different metrics.

Contribution 12. Integration of new metrics into an existing fuzzing benchmark
framework and use of this framework to analyze the impact of these metrics.

See Section 8.4 for more details on MEMA.

1.5 Research Scope

The overall objective of this doctoral work is to improve blackbox security
testing for OT components while considering the challenges defined in Chap-
ter 1. More specifically, this doctoral work focuses on blackbox testing for
OT components via the Ethernet interface using WVSs and Fuzzing. In the
following, we put this doctoral work into the context of other research direc-
tions to clarify the scope. Note that detailed discussions of related work are
presented in the corresponding chapters of this dissertation (see Sections 4.1,
5.1, 6.1, 7.1, and 8.1).

Software Testing vs. Security Testing Security testing is generally seen as
one part of a thorough testing strategy for software and hardware. The general
goal of security tests is to test a system’s vulnerabilities to threats [Ric16],
while general software testing aims to identify errors or to determine whether
the system fulfills certain requirements [Cer23]. The International Software
Testing Qualification Board (ISTQB) states that security testing differs from
other forms of software testing by two means [Ric16]: On the one hand, the
test cases used in general software testing might not be suitable to find security
issues. For example, software testing might aim to reach full code coverage
during testing, while security testing aims to reveal vulnerabilities as early as
possible [Wan20b]. On the other hand, the symptoms of security issues are
different from those monitored in other functional tests.
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However, for security testing of OT components, the border between general
software testing and security testing is not as clear as for other SuTs. For OT
components, one of the most important security requirements is the availabil-
ity [Sto23]. A crash of an OT component is therefore generally assumed to
be a security issue. Nevertheless, a crash of a SuT is also something general
software testing tests for.

Moreover, security testing, as defined by the ISTQB, encompasses activities
during the whole development lifecycle [Ric16]. Based on this definition, the
security tests conducted in this doctoral work are system tests as we focus on
testing OT components from a blackbox point of view (see also Section 2.2.1).

Web Vulnerability Scanners and Fuzzing. There are various approaches
and tools to choose from if one wants to perform security tests [Bor19]. Two
prominent approaches that also have a high relevance for finding vulnerabilities
in blackbox OT components are WVSs and fuzzing [San21c, Int19][Pfr19b],
which are also the focus of this doctoral work. The first testing technique, WVS,
probes a WA and tries to find the inputs necessary to expose a vulnerability
such as an SQL Injection or Cross-Site-Scripting (see e.g. [Pfr19b]). Applying
traditional WVSs in industrial test settings poses additional challenges (see
Section 4.3). The second testing technique, blackbox network fuzzing, applies
fuzzing to network protocols. Fuzzing, in general, is the approach of randomly
mutating given inputs to induce anomalous behavior in the SuT that may
reveal the existence of a vulnerability (see Section 2.4).

Although we focus on the two testing techniques mentioned above, we rec-
ognize that there are other relevant approaches to blackbox testing of OT
components, such as vulnerability scanning and penetration testing. Tools for
automated vulnerability scanning of OT components check whether the SuT
is likely to include known vulnerabilities. This can, for example, be deduced
from fingerprinting the SuT and then performing a lookup on known vulnera-
bilities of this device or libraries that it uses. Commercial tools for OT com-
ponent vulnerability scanning are available, for example, by Tenable [Ten23]
and Greenbone [Gre23]. In contrast, the testing methods considered in this
doctoral work, WVS and fuzzing, aim to find new and previously unknown
vulnerabilities of the SuT. Furthermore, it is particularly important not to rely
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solely on automated approaches, but to consider manual penetration testing to
ensure high quality test results. This is also required by relevant standards and
best practices [Int19, Cer23]. Note that during a penetration test, automated
vulnerability detection tools and automated penetration testing frameworks,
such as Metasploit [Met23], are used to support the manual analysis.

Ethernet Interfaces. In general, it is necessary to analyze the security of
each of the interfaces a SuT provides. For this doctoral work, however, we
focus on Ethernet-based network interfaces. This is based on the observation
that, caused by the convergence of IT and OT, more and more devices include
Ethernet-based communication interfaces which can possibly be reached from
the whole network of the facility [Haj21]. These Ethernet-based interfaces are
also the most approachable for attackers since they can be used and analyzed
with less specialized tools. As a result, we assume that these interfaces are
the ones that have the highest risk to be attacked, and thus focus on these
interfaces in the following. In contrast, other approaches to perform security
tests of industrial or embedded devices use side channel information [Spe19]
or the debug interface [Eis23].

Software. This doctoral work focuses on security tests of the software of the
OT component. In contrast, other works focus on the fuzzing the underlying
hardware [Su24][Lae18].

Models for Security Testing. Some of the approaches presented in this
doctoral work aim to derive a model of the SuT based on blackbox test data
such as the network traffic or previously seen test cases. The goal of these
models is to find a balance between a high level of detail and efficient training
and querying, with the main goal to improve the downstream security testing
procedure, e.g., by guiding the test case generation. Particularly, this means
that the models do not make the claim to be a fine-grained representation
of the SuT or the used network protocol. This marks the difference to the
research area of blackbox protocol reverse engineering (as e.g. used by Zheng
et al. [Zhe22] and Bytes et al. [Byt23]). In protocol reverse engineering, the
main goal is to find a model of the communication protocol that is as close to
the actual protocol as possible. Taking this approach would introduce a high
overhead before and possibly during testing.

24



1.6 Running Example OT Component

1.6 Running Example OT Component

To clarify the motivation and the setting of this doctoral work, we introduce
the running example of a bus coupler which should be tested for vulnerabilities.
Note that this example was chosen to showcase the concepts and challenges
discussed in this doctoral work. By no means is this type of OT component
the only one which should be tested, or was showing vulnerabilities during
the course of this doctoral work. Most of the devices that have been tested
during this doctoral work showed vulnerabilities, not limited to a type of OT
component or manufacturer.

The concrete OT component that is used as a running example is the bus
coupler shown in Figure 1.2, the AXL F BK PN bus coupler, manufactured
by Phoenix Contact GmbH & Co. KG . We refer to this bus coupler as BCex
throughout this doctoral work.

In general, a bus coupler is an industrial device which has the task to transfer
signals from one communication protocol to another. For example, a bus
coupler can receive packets from a controller via the Ethernet-based industrial

(a) Picture of BCex. (b) Screenshot of the WA provided by BCex.

Figure 1.2: The bus coupler (BCex) used as a running example for this doctoral work. It is typically
deployed in a setting where a controller is connected to the bus coupler via the Ethernet
interface (yellow cable on the left). The bus coupler will then translate the control
instructions it receives via Ethernet into digital I/O signals which are delivered by the
digital I/O interfaces at the bottom right.
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PLC

Bus coupler

Figure 1.3: An exemplary use case in which the bus coupler from the running example could be
deployed. The controller sends control signals to the bus coupler via an industrial
communication protocol such as PROFINET. The bus coupler then translates these
signals to digital signals, and sends them to the industrial robot.

protocol PROFINET and transform them into corresponding digital I/O signals
which then control an industrial robot (see Figure 1.3). With this setting, the
control instructions from the controller can be routed via Ethernet until a point
right before the industrial robot. Only then are the instructions translated
into digital I/O signals. In this setting, it is especially crucial that the digital
I/O interfaces work as expected and are resilient against cyber attacks, as
the availability and productivity of the bus coupler directly influences the
industrial robot. Although safety measures should prevent the industrial robot
from doing any harm to humans, an outage of the production steps performed
by the industrial robot could potentially result in a significant economic loss
to the production facility. See Section 2.1.1 for a more detailed discussion on
the differences of safety and security.

BCex is a PROFINET based bus coupler, meaning that it expects commands via
PROFINET, and translates these commands into digital I/O signals. In addition
to the features crucial for its operation, this bus coupler also provides a WA
and an FTP server. The WA displays information about the device and its
current status but does not accept any user input. Regarding security, this is
a good feature, since many vulnerabilities are based on faulty or unexpected
user input [OWA21]. A screenshot of this WA is shown in Figure 1.2b. The
FTP server provides access to some of the files on the bus coupler. BCex is
especially suited for safety relevant use cases as it fulfills the requirements of
the Safety Integrity Level (SIL) 3, which is the second highest SIL [Int10].
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The following sections establish the foundations relevant to the contributions
of this doctoral work. Section 2.1 begins with an overview of relevant topics in
the domain of industrial networks, emphasizing the distinction between safety
and security as well as the network protocols utilized in this doctoral work.
Section 2.2 explores industrial security testing, including a discussion of key
terminology and practical considerations, and introduces the industrial security
testing framework ISuTest®. Subsequent sections cover Web Vulnerability
Scanners (WVSs) in Section 2.3, fuzzing in Section 2.4, and stateful testing in
Section 2.5. Finally, Section 2.6 provides an overview of the Machine Learning
(ML) methods applied in this doctoral work.

2.1 Industrial Networks

Ensuring the safety and security of an industrial facility requires consideration
of all its components, including the Supervisory Control and Data Acquisition
(SCADA) system, Operational Technology (OT) components, sensors, actors,
and network components [Kna24]. Additionally, human factors that can lead
to data theft and sabotage need to be taken into account [Pot23].

2.1.1 Safety and Security

Safety generally focuses on preventing harm that may result from random
malfunctions or errors. In industrial environments, safety functionality is typi-
cally automated, ensuring that systems either operate correctly or transition to
a fail-safe state. This fail-safe state usually halts production safely, such as by
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stopping all moving parts in a safe position. This automated aspect of safety is
known as functional safety [Int10]. The primary objective of functional safety
is freedom of unacceptable risks of physical injury and of damage to people’s
health [Li18b]. Guidelines for implementing safety-relevant OT components
are outlined in the international Standard IEC 61508 [Int10].

In contrast, security aims to prevent harm caused by malicious attack-
ers [Pet20]. This requires addressing more targeted threats to mitigate
potential damage. Additionally, security must consider additional assets such
as confidential data and intellectual property. Generally, three key security
requirements are confidentiality, integrity, and availability. In industrial
environments, availability of systems is particularly critical [Sto23]. With
IEC 62443, a standard for security in industrial environments has been
published [Int19]. This standard includes several security measures for OT
components, especially blackbox security testing.

To clarify the difference between safety and security in industrial environ-
ments, we take the safety protocol IO-Link Safety, that is commonly used
in industrial environments, as an example. IO-Link Safety employs several
measures to meet safety requirements, including a sequence number called
MCount to ensure the correct order of the packets, and a Cyclic Redundancy
Check (CRC) to ensure that messages have not been altered during transmis-
sion [Int22]. The CRC adds additional redundancy bits to a network packet
that represent a checksum of the packet’s data. The receiver of a network
packet calculates the checksum of the received data and compares it to the
CRC provided with the packet. This process allows the receiver to detect any
data changes that occurred during transmission.

While both the sequence number and the CRC effectively detect transmission
errors, they do not prevent data manipulation by an attacker. An attacker
can intercept a network packet, alter the data, and then recalculate the CRC
for the modified packet. This is feasible because all information required to
compute the CRC is either publicly available, such as the generator polynomial,
or included in the packet itself, such as the sequence counter [Int22]. Then,
the attacker can include the recalculated CRC in the altered packet, making
the alternation undetectable for the receiver.
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With this attack, an attacker could alter the content of network packets ex-
changed between an emergency stop button and a Programmable Logic Con-
troller (PLC). When the button is pressed, this information is usually trans-
mitted via network to the PLC, which then instructs the production process
to transition to a fail-safe state. However, if an attacker can manipulate these
network packets, the emergency stop signal could be suppressed, effectively
preventing the production process from halting. This could potentially result
in physical injuries and damage to production facilities.

Although the measures provided by IO-Link Safety fulfill safety requirements,
they do not meet security requirements such as the integrity of the communi-
cation. Thus, the communication is not protected from deliberate attacks.

2.1.2 Network Protocols

OT components can be accessed by connecting to one of the communica-
tion interfaces they provide. Thus, these interfaces serve as potential entry
points for attackers and are therefore critical to the security of OT compo-
nents. This doctoral work focuses on Ethernet-based communication interfaces
and considers several network protocols. For each network protocol, a brief
introduction is provided in this section, and additional sources for further
reading are referenced.

Transmission Control Protocol (TCP)

TCP is a transport layer protocol of the internet protocol suite and is defined in
RFC 793 [Pos81b]. It builds upon the Internet Protocol (IP), which is a network
layer communication protocol defined in RFC 791 [Pos81a]. The corresponding
datagrams can be routed and thus can be sent between different networks,
which allows attackers to access systems remotely. As various modern proto-
cols build upon TCP, several OT components include a corresponding network
stack [San21c]. We analyze the security of TCP/IP stacks of OT components
with ClusterCrash (see Chapter 5).
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File Transfer Protocol (FTP)

FTP is an application layer protocol used for file transfer [Pos85]. It is a text-
based protocol, which means that it sends commands and data in plain text via
the network. In contrast to binary protocols such as OPC UA (see below), this
allows for an easier interpretation and generation of FTP data. Our experiments
on the preprocessing of network traffic and the blackbox fuzzing based on
Hidden Markov Models (HMMs) are based on FTP (see Sections 6.4 and 7.5).

Hypertext Transfer Protocol (HTTP)

HTTP is an application layer protocol of the internet protocol suite which is
used, for example, to provide Web Applications (WAs) [Fie99]. It is a stateless
request-response protocol, in which a client typically requests some content,
such as a web page, from a server. The server’s response includes a response
code which indicates the status of the request. For example, the status code
200 indicates that the request was processed successfully. The WVSs used
within HitM as well as the automatic state machine inference of WAs both
utilize HTTP (see Chapter 4).

OPC Unified Architecture (OPC UA)

OPC UA is a modern machine-to-machine communication protocol used in
industrial environments [OPC22]. It provides three security modes with in-
creasing security guarantees, and requires several steps to establish a full
communication channel. We use the open source OPC UA network stack
open62541 for our experiments on stateful fuzzing based on Multi-armed
Bandit (MaB) agents (see Section 7.6).
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2.2 Industrial Security Testing

Although industrial security needs to consider all systems within an industrial
environment, this doctoral work specifically focuses on the security of OT
components. Ensuring their security requires implementing a secure develop-
ment lifecycle, which addresses security considerations throughout each stage
of the development [Int19]. Aspects of this lifecycle include threat modeling,
secure coding standards, security testing, and secure update management.
This doctoral work specifically addresses security testing of OT components.

2.2.1 Terminology

In literature, the term security testing is used inconsistently. Based on the
definition provided by the International Software Testing Qualification Board
(ISTQB), security testing encompasses activities in each step of the develop-
ment lifecycle [Ric16]. For example, defined requirements should be evaluated
from a security perspective, and security-related design approaches should be
considered during the design phase. Caselli et al. use a similar definition, in-
cluding activities such as document-based design reviews and code reviews in
their definition of security testing [Cas16]. In contrast, Felderer et al. propose
a narrower definition, including only the dynamic verification of whether a
system correctly implements the intended security properties [Fel16a]

For this doctoral work, we adopt the definition presented by Felderer et al. Es-
tablished security properties that are considered in security testing include con-
fidentiality, integrity, availability, authorization, and non-repudiation [Fel16a].
In industrial environments, and especially for testing OT components, the
availability of the System under Test (SuT) is a crucial security property [Sto23].
If this property is not met by an OT component, an attacker could, for example,
crash the OT component, potentially halting the corresponding production
process.
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2.2.2 Practical Considerations

In addition to the general challenges in industrial security testing discussed
in Chapter 1, conducting industrial security tests involves several practical
considerations, which are discussed in the following sections.

2.2.2.1 Resilience of OT Components

The most prominent observation during industrial security tests is that OT
components are generally less resilient to high loads compared to Informa-
tion Technology (IT) systems. As a result, several Test Tools (TTs) impose
excessive load on OT components during testing, leading to overload and
crashes of the SuT [Pfr19b]. While this also marks a finding of the security
test, it prevents further testing. Therefore, for industrial security tests, TTs
that can manage crashes of the SuT and allow to adapt the load put onto the
SuT are more suitable.

2.2.2.2 Responsible Disclosure

If a security test reveals security-relevant findings, they should be responsibly
disclosed to the corresponding manufacturer. The term responsible disclosure
describes the approach of publishing findings while considering the manufac-
turer’s interests [Mou23]. Although specific procedures and requirements may
vary, responsible disclosure generally involves informing the manufacturer of
the finding and providing a reasonable amount of time to address the issue be-
fore making the finding public. For instance, the Open Worldwide Application
Security Project (OWASP) outlines rules for responsible disclosure, particularly
concerning findings related to WAs [OWA24b].

Since the findings revealed in this doctoral work may affect critical infrastruc-
ture, we disclose our findings to the manufacturers and refrain from publishing
them without the manufacturers’ consent. For some findings, we contact the
manufacturer directly, while for others, we choose to contact the manufacturer
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through CERT@VDE1, the Computer Emergency Response Team (CERT) of
the German Verband der Elektrotechnik, Elektronik und Informationstechnik
(VDE). This CERT acts as a general point of contact for reporting security
issues related to OT components.

2.2.2.3 Common Vulnerability Scoring System (CVSS)

The Common Vulnerability Scoring System (CVSS)2 is an established scoring
system used to quantify the severity of vulnerabilities. It considers the (1)
intrinsic characteristics of a vulnerability, (2) currently existing exploits, and
(3) the environment of the system exhibiting this vulnerability. CVSS scores
range from 0 to 10, where 0 represents no security issue and 10 denotes a
critical vulnerability.

The CVSS score is the de facto standard for quantifying vulnerabilities and
is widely used by institutions such as the National Vulnerability Database
(NVD) [Sca08]. However, it should be noted that Spring et al. call for a revised
approach to vulnerability scoring [Spr21]. The authors argue that there is
no evidence supporting the robustness of the CVSS calculation and that the
specification provides limited transparency on the formula used to calculate
the CVSS score.

As CVSS continues to be a standard for vulnerability scoring, we assign a CVSS
score to the vulnerabilities identified during this doctoral work. A summary
of these vulnerabilities and their respective scores is provided in Section 9.2.1.

2.2.3 ISuTest®

ISuTest® is a framework for industrial blackbox security tests developed at
Fraunhofer IOSB [Pfr23]. While the original version of ISuTest® was built
based on the vulnerability scanner OpenVAS [Pfr17, Pfr18], ISuTest® 2.0 was
built independently of other TTs.

1 https://cert.vde.com/en/
2 https://www.first.org/cvss/
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ISuTest® allows for blackbox network fuzzing of OT components, and supports
standard internet protocols, such as TCP, and industrial protocols, such as
PROFINET. In its base version, ISuTest® generates test cases independently
of the behavior of the SuT and uses fixed heuristics for test case mutation.
To account for Challenge 3 (Insufficient Observations), ISuTest® allows to
monitor the current status of the SuT via various Ethernet-based communica-
tion protocols and the digital I/O interface of the SuT if it provides one. This
monitoring is used to analyze whether a SuT exhibits anomalies or crashes
during the test. Moreover, ISuTest® supports using switch actuators which
allow for an automatic power reset of the SuT. With this, OT components
can be restarted automatically and thus can potentially recover from crashes
triggered by the tests to allow further testing.

From a high-level perspective, testing an OT component with ISuTest® involves
the following steps:

1 The tester connects and configures the SuT and ISuTest® such that
ISuTest® can connect to the communication endpoints required for
testing and monitoring. Then, the tester selects the network protocols
to be tested, along with the number of test cases to be generated for
each network packet field. Moreover, the tester determines the
monitoring interval, which specifies how many test cases are executed
before a monitoring cycle is conducted. During this monitoring cycle,
ISuTest® verifies whether all defined communication endpoints of the
SuT are functioning as expected. This might involve requesting a WA
served by the SuT, or checking whether the digital I/O signals continue
to output the expected values.

2 Then, ISuTest® generates the requested number of test cases for each
protocol field using predefined heuristics. After each batch of test cases,
as determined by the monitoring interval, a monitoring cycle is
performed. If the monitoring indicates that the SuT crashed, it is
restarted by performing a power reset. Anomalies and crashes observed
during the monitoring cycles are presented to the tester.
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3 Further, ISuTest® can analyze identified anomalies and crashes to
provide a minimal set of test cases necessary to reproduce the crash or
anomaly [Dil20].

For more detailed information on ISuTest®, refer to the corresponding pub-
lications [Pfr17, Pfr18] [Pfr19b, Pfr19a].

HitM and Smevolution, as presented in Sections 4.3 and 7.4, are implemented
using ISuTest®, taking advantage of its fuzzing framework and monitoring
capabilities. Additionally, the test scripts defined with ClusterCrash are
integrated into ISuTest®, enabling the novel insights to be applied in future
security tests with ISuTest®.

2.3 Web Vulnerability Scanners

The general approach of vulnerability scanners is to first scan a network to
identify any systems connected to the network, as well as the operating systems
and services they provide. Then, they compare this information to a database
of known vulnerabilities [Hol11]. With this approach, vulnerability scanners
identify whether systems incorporate known vulnerabilities, but they typically
do not analyze whether these vulnerabilities can be exploited for the specific
system. In addition, they do not test the systems for previously unknown
vulnerabilities.

In contrast, a Web Vulnerability Scanner (WVS) focuses on finding known and
previously unknown vulnerabilities in WAs by actively interacting with the
WA. A WVS typically approaches this by (1) crawling the WA, (2) finding
input possibilities, and (3) providing tailored inputs to the WA [Dou10]. Before
starting the test, the WVS is provided with at least one initial Uniform Resource
Locator (URL). It retrieves the corresponding web page, and then crawls the
WA by following links and redirects to identify all reachable pages [Dou12].
In addition, the crawling identifies possibilities to input content to the WA,
such as input fields. After the crawling, the acquired knowledge is used to
identify vulnerabilities in the WA. To this end, the WVS provides input to the
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WA, for example with the objective to reveal an SQL injection vulnerability.
Subsequently, the WVS analyzes the responses of the SuT to identify if a
vulnerability was found.

With this approach, WVSs potentially find both known and previously un-
known vulnerabilities. Moreover, some WVSs incorporate approaches to
identify the software libraries used by the WA and verify whether vulnera-
bilities are known for this specific software version. This corresponds to the
approach of general vulnerability scanners as described above.

In this doctoral work, we transparently improve the performance of WVSs in an
industrial test setting with HitM (see Section 4.3). Additionally, we introduce
the modular evaluation framework for stateful WA testing SWaTEval (see
Section 8.3).

We acknowledge that more diverse TTs are necessary for a thorough secu-
rity test of a WA. For instance, OWASP provides an extensive guide on web
security testing [Saa24], detailing various test approaches and TTs. Addition-
ally, OWASP curates a list of both established open source and commercial
WVSs [OWA20].

Terminology

While most authors, including OWASP, use the term Web Vulnerability Scanner
to describe the aforementioned TTs (see, e.g., [Dou10, OWA20, Urb22]), the
terminology is not consistent. For example, Fong et al. and Alassmi et al. use
the term Web Application Scanner [Fon07a, Ala12], while Bau et al. and Alazmi
et al. use the term Web Application Vulnerability Scanner [Bau10, Ala22].

For this doctoral work, we use the term Web Vulnerability Scanner (WVS) to
refer to TTs that crawl and analyze a WA to identify previously known and
unknown vulnerabilities, consistent with the majority of recent publications.
In addition, we use the term vulnerability scanner to denote automatic TTs that
analyze whether systems include known vulnerabilities by identifying provided
services and comparing this with information from a vulnerability database.
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Evaluation

Evaluating the performance of WVSs is an ongoing topic addressed by both
academia and community projects. Notable efforts include the Web Application
Vulnerability Scanner Evaluation Project (WAVSEP) by Chen [Che18], with
an updated version published by Urbano et al. [Urb22], as well as the OWASP
benchmark [OWA24a].

Section 6.4.1 provides an overview of evaluations conducted in the literature,
analyzing the WVSs considered, the target WAs used for the evaluations, and
the limitations of the WVS that were identified. Note that the novel framework
presented in this doctoral work, SWaTEval, focuses on evaluating stateful
WVSs (see Sections 2.5 and 8.3).

2.4 Fuzzing

Fuzzing is a testing technique that has been used for several years and con-
tinues to be relevant for revealing new bugs and vulnerabilities [Mil20]. It
is particularly effective in finding bugs within network stacks, which are
especially relevant for OT component security [San21c].

The general approach of fuzzing involves presenting inputs, which are called
test cases, to the SuT. These test cases may be semantically or syntactically
malformed. The behavior of the SuT in response to these test cases is monitored
to identify anomalies and crashes [Man19].

Section 2.4.1 provides an overview of fuzzing approaches, and Section 2.4.2
presents a general description of the fuzzing process, including the key steps
and decisions involved. For a comprehensive description of the fuzzing process,
we refer to the works of Manès et al. [Man19], Giraud [Gir20], and Jiang
et al. [Jia24]. Finally, we discuss methods to assess a fuzzer’s performance
(Section 2.4.3).
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2.4.1 Categorization of Fuzzers

Fuzzing approaches can be classified along several dimensions, the most promi-
nent of which are (1) the level of information available to the fuzzer, (2) its
approach to generating test cases, (3) and the guidance provided to the fuzzer.
As these three dimensions are particularly relevant to this doctoral work, we
discuss them in more detail. For an extensive taxonomy of fuzzers, refer to
the work by Mallissery et al. [Mal23].

Available Information

Fuzzers are classified into whitebox, graybox, and blackbox fuzzers [Man19].
Blackbox fuzzers have no access to any information internal to the SuT and
therefore rely primarily on randomly generating new test cases, and concur-
rently monitoring the SuT for anomalies or crashes [Böh21]. As blackbox
fuzzers also rely on potentially incomplete external information for this moni-
toring, they may reach inaccurate conclusions, such as failing to detect certain
anomalies of the SuT [Mue18].

In contrast, whitebox fuzzers have full access to internal information such as
the source code of the SuT. These fuzzers typically introduce more overhead
than blackbox fuzzers and are more tailored to one specific programming
language [Man19].

In between these two categories are graybox fuzzers, which have access to
some information about the SuT [Böh21]. Typically, graybox fuzzers rely
on program instrumentation to obtain feedback on which parts of the code
where executed by the SuT in response to a test case. If a test case covers code
that was not previously executed, it is used as a basis to generate new test
cases. This approach allows the fuzzer to gradually explore deeper parts of the
SuT’s code. To observe the SuT’s behavior to collect information used for this
guidance, such as memory accesses, graybox fuzzers utilize sanitizers [Öst20].
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In this doctoral work, we focus on a blackbox setting but aim to incorporate
approaches from graybox fuzzing. Nevertheless, we consider graybox fuzzing
for StateBandit to evaluate whether this novel approach can enhance fuzzing
assuming access to graybox information (Section 7.6). Additionally, we focus
our work with respect to fuzzing evaluations on graybox fuzzing, in order to
address a broader range of fuzzers (Section 8.4).

Test Case Generation

Based on their test case generation approach, fuzzers can be divided into two
categories: generational fuzzers and mutational fuzzers [Zha24b]. Generational
fuzzers rely on a specification of the test cases, such as a context-free grammar
or a format specification [Wan17]. This allows the fuzzers to generate test
cases that pass integrity checks that may be deployed by the SuT.

In contrast, mutational fuzzers generate test cases by mutating an initial set of
well-formed inputs, known as the corpus [Wan17]. Common mutations include
replacing or deleting parts, or appending parts from other test cases [Tri23].
In graybox fuzzing, the corpus is typically extended by test cases that lead to
new coverage during the fuzzing campaign, allowing subsequent test cases
to be derived from these newly generated test cases as well.

In this doctoral work, we use a mutational fuzzing approach for Smevolution,
Palpebratum, and StateBandit (Sections 7.4 to 7.6). The fuzzing test scripts
generated with ClusterCrash utilize the structures derived from the Vul-
nerability Anti-Patterns (VAPs) and therefore follow a generational fuzzing
strategy (Section 5.4).

Fuzzer Guidance

In graybox fuzzing, the two most prominent approaches to guide the fuzzing
process are coverage-guided fuzzing and directed fuzzing. Coverage-guided
fuzzing aims to maximize the code coverage achieved by the test cases sent
to the SuT, typically measured in block coverage or in line coverage [Mal23].
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Figure 2.1: General process of coverage-guided mutational graybox fuzzing. The elements of the
fuzzer are shown inside the dashed lines.

In contrast, directed fuzzing focuses on reaching a specific target location
within the SuT, using this location as the primary target to guide the fuzzing
process [Böh17].

2.4.2 Fuzzing Process

As we aim to improve blackbox fuzzing by incorporating methods from graybox
fuzzing, we utilize the terms and concepts of mutational coverage-guided
graybox fuzzing throughout this doctoral work, and present them below. We
describe the graybox fuzzing process at a level suited for understanding the
novel approaches presented in this doctoral work, while a more formalized
description of the fuzzing process can be found in the publications by Manès
et al. and Salls et al. [Man19, Sal20].

Figure 2.1 visualizes the general process of mutational coverage-guided gray-
box fuzzing. Usually, mutational graybox fuzzers assume access to a set of valid
input files for the SuT, which are called the seeds. Depending on the SuT, this
could be a set of PDF files or a set of network packets. However, it is also possi-
ble to start fuzzing without seeds. The initial seeds should be selected carefully,
as research shows that they influence the performance of the fuzzer [Kle18].

One run of a fuzzer is called a fuzzing campaign. Usually, the end of a campaign
is defined by a predetermined time budget [Böh21], although some approaches
stop after the first crash of the SuT [Kle18], and Liyanage et al. suggest an

40



2.4 Fuzzing

adaptive approach [Liy24]. During the fuzzing campaign, the fuzzer keeps
track of a set of inputs, called the corpus. This corpus is initialized with the
seeds and evolves during the campaign.

At the start of one fuzzing cycle, the fuzzer selects one input from the corpus
based on a selection strategy. Then, this input is mutated using a predetermined
or dynamic set of mutations to generate a new test case 𝑡. This test case 𝑡 is
then sent to the SuT. The behavior of the SuT is analyzed by two different
means. On the one hand, the fuzzer monitors the behavior of the SuT to identify
anomalies or crashes. For example, this can be supported by address sanitizers
which monitor memory accesses by the SuT and alert the fuzzer if the SuT
performs out-of-bounds accesses [Öst20]. Test cases leading to anomalies
and crashes are stored to be reported to the tester. On the other hand, the
fuzzer observes the code coverage achieved by 𝑡. If 𝑡 achieves coverage in
parts of the SuT that were not previously covered, 𝑡 is deemed interesting, as it
provides a way to reach new areas of the SuT’s code. Consequently, 𝑡 is added
to the corpus and can be selected as a starting point for further mutations
in subsequent fuzzing cycles.

In blackbox testing, the fuzzer’s ability to monitor and observe the SuT is
limited. As a result, most blackbox fuzzers do not incorporate observations of
the SuT’s behavior in the test case generation [Kle18], and only detect crashes
of the SuT that are externally visible [Mue18]. In contrast, Smevolution and
Palpebratum apply the graybox fuzzing process to a blackbox testing scenario
(see Sections 7.4 and 7.5), showing how ML-based approaches can be leveraged
for blackbox fuzzing.

2.4.3 Fuzzer Evaluation

Klees et al. [Kle18] defined best practices for fuzzing evaluations that are widely
accepted by the fuzzing research community and were explicitly confirmed
by Schloegel et al. [Sch24]. However, Schloegel et al. also highlight that
many publications featuring fuzzing evaluations still exhibit shortcomings
concerning these best practices. In Section 8.4.2, we discuss the dimensions
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of and methodologies of fuzzing evaluations in more detail. In this doctoral
work, we adhere to these best practices as far as they are applicable to the
industrial use cases and provide justifications for any deviations.

As discussed by Gopinath et al., fuzzing literature has no strong agreement
on what the terms effectiveness, efficiency, and efficacy mean in the context of
fuzzing evaluations [Gop22]. We follow the terminology by Gopinath et al. and
define the effectiveness of the test cases generated by a fuzzer as the average
coverage a test case achieved.

2.5 Stateful Testing

Many SuTs are stateful, meaning their behavior is determined by an internal
state machine, and their response to a specific input depends on the current
state. Typically, the state of the SuT is influenced by the inputs from the fuzzer.
If the fuzzer is unaware of the SuT’s statefulness and how its inputs impact
the SuT’s state, it becomes significantly more challenging to interpret and
utilize the SuT’s behavior [Dan24].

State-aware fuzzing is particularly relevant for both network proto-
col fuzzing [Rui15, Pha20, Nat22, Ba22, Liu22, Pfe22, Amu23] and WA
fuzzing [Dou12]. However, it also introduces additional challenges, as a
stateful fuzzer needs to handle individual inputs as well as traces of inputs
that potentially influence the state of the SuT [Dan24]. This doctoral work
addresses two of these challenges, which will be discussed below: (1) state
selection, and (2) state machine inference.

2.5.1 State Selection

Assuming that a fuzzer is aware of the statefulness of the SuT and has access
to a representation of the SuT’s states, the fuzzer needs to decide which states
to focus on during fuzzing. This decision can affect a fuzzer’s performance, as
bugs and new coverage might be unevenly distributed across different states.
Consequently, it is advantageous for the fuzzer to prioritize states that are
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more likely to reveal bugs and new coverage. However, since the fuzzer does
not have prior knowledge of which states will be most profitable, it must make
this decision dynamically during fuzzing. This challenge is known as the state
selection problem in stateful fuzzing [Liu22].

Typically, the fuzzer selects a state of the SuT and runs a predetermined number
of fuzzing cycles in that state before switching to another state. We refer to
the fuzzing cycles run before the next state selection as a fuzzing round.

We address the state selection problem in graybox fuzzing with StateBandit

(see Section 7.6).

2.5.2 State Machine Inference

In most cases, we cannot assume access to an existing representation of the
internal states of the SuT. Therefore, such a representation needs to be gener-
ated automatically during testing, for example by inferring a state machine
based on the SuT’s responses [Dou12]. The specific representation of the SuT’s
states depends on both the SuT and in which manner the fuzzer aims to utilize
this information [Dou12, Ba22] [Gir20].

As this doctoral work’s contribution to state machine inference, SWaTEval,
focuses on blackbox WA fuzzing, we explain the general approach to state
machine inference in this domain in more detail. The state machine inference
for WAs, as presented by Doupé et al., is based on the assumption that a WA is
deterministic and will generally send the same response to a given request if its
internal state has not changed [Dou12]. Suppose a fuzzer sends a request 𝐴1
to a WA and receives the response 𝑋. Then, the fuzzer sends different requests
and receives corresponding responses from the WA. Later, the fuzzer sends
the request 𝐴2, which has the same content as 𝐴1, and receives the response
𝑌 . If 𝑋 ≠ 𝑌 , the fuzzer received a different response to the same request and
thus can infer that a state change has happened between 𝐴1 and 𝐴2. Based
on this observation, the fuzzer can build and update an approximation of the
underlying state machine during the fuzzing process.
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The procedure for automatically inferring the state machine of a WA by moni-
toring the requests and responses during interactions with a fuzzer, as pre-
sented by Doupé et al., consists of the following steps. For detailed information
on these steps, refer to the original publication [Dou12].

1 Run a crawler and a fuzzer against a WA and monitor the resulting
request-response pairs to identify those pairs that have identical
requests but different responses. Assume that a state change occurred
between every two of these pairs.

2 Determine the state-changing request for every two pairs by using a
heuristic. This heuristic prioritizes HTTP POST requests over HTTP
GET requests, and favors requests that previously changed the state
over those that have not.

3 Add a new state to the state machine for each state-changing request
and collapse the state machine to avoid state explosion.

4 Continue with running the crawler and the fuzzer (step 1).

We utilize this approach to state machine inference to build the novel evaluation
framework for stateful WA testing, SWaTEval (see Section 8.3).

2.6 Machine Learning

Several approaches presented in this doctoral work apply Machine Learning
(ML) methods to security testing. The following sections provide background
information on the methodologies and models used. In this doctoral work, we
utilize methods from supervised ML, unsupervised ML, and Reinforcement
Learning (RL).

In supervised learning, the learning process is based on training data consisting
of pairs of data points and labels. The objective is to approximate a function
that maps the data points to their corresponding labels. For the approaches
presented in this work, specifically Smevolution and NeDaP, we employ a

44



2.6 Machine Learning

Support Vector Machine (SVM), a Decision Tree (DT), a Neural Network (NN),
an Autoencoder (AE), and a Convolutional Neural Network (CNN). These
methods are detailed in Sections 2.6.1 to 2.6.3.

In contrast, unsupervised learning relies solely on the data points, as no labels
are available. From this domain of ML, we utilize a Principal Component
Analysis (PCA) in NeDaP and an HMM in Palpebratum. The foundational
concepts of these methods are presented in Sections 2.6.4 and 2.6.5.

In RL, an agent interacts with an environment with the goal of maximizing the
cumulative reward [Mah20]. For StateBandit, we utilize a specific RL prob-
lem known as the MaB problem. Since we adapt the general MaB problem to
address the state selection problem in stateful network fuzzing, understanding
the specifics of the MaB problem is crucial for comprehending StateBandit.
Therefore, we present the foundational concepts of the MaB problem alongside
the descriptions of StateBandit in Section 7.6.1.1.

As we apply ML methods to new use cases rather than presenting novel
approaches to ML itself, the descriptions in the following sections focus on
the characteristics of the different ML methods that are important for their
application. Additionally, we provide information on further reading for each
presented ML method.

2.6.1 Support Vector Machine

In their basic form, SVMs are classifiers that can discriminate two classes, but
they can also be extended to support multi-class classification [Sut16]. A linear
SVM separates the two classes using a hyperplane, making it suitable only for
classes that are linearly separable. In contrast, a non-linear SVM first maps
the data into a space where the classes become linearly separable, and then
performs the linear separation in this new space.

According to Cervantes et al., SVMs are amongst the most commonly used
classification methods [Cer20]. This popularity is largely due to their strong
generalization capabilities, particularly with small training data sets. However,
SVMs are based on complex algorithms that can increase training time.

45



2 Background

(a) Neural Network (b) Autoencoder

Figure 2.2: Exemplary structures of an NN and an AE. A data point is fed into the input layer on
the far left (blue), passed through the hidden layers represented in purple, and the
output is given in the green output layer.

2.6.2 Decision Tree

DTs classify data points using a tree structure where each internal node repre-
sents a decision based on a specific attribute of the data point, and each leaf
node is associated with a class label [Mit97]. To classify a data point, fist, the
attribute at the root node of the tree is evaluated for the given data point.
Based on this evaluation, the corresponding branch of the tree is followed.
This process is repeated recursively for the subtree rooted at the subsequent
node, until a leaf node is reached. At this point, the associated class label is
assigned to the data point.

The tree-based structure allows for an interpretation and explanation of the
decisions of a DT [Mah21]. Specifically, it is possible to analyze the path
through the tree that was followed to classify a particular data point. By
examining this path, one can determine which attributes of the data point
need to be modified in order to alter its classification [App18].

2.6.3 Neural Network

In contrast to SVMs and DTs, NNs approximate a function that maps data
points to class labels that allows for efficient gradient calculations [She19].
In their basic form, NNs consist of a set of connected units, where each unit
takes an input and produces an output based on the input and an activation
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function [Mit97]. These units are typically arranged in a layered structure,
as illustrated in Figure 2.2a. To classify a data point, it is fed into the input
layer of the NN. The units are then progressively evaluated based on the input
they receive and their activation function. The predicted class label can be
obtained from the output layer of the NN.

NNs are particularly well-suited for tasks where the training data may contain
errors. They enable fast classification of data points, though they require
relatively long training times. In addition, the decisions of an NN are not
easily interpretable by humans [Mit97].

2.6.3.1 Autoencoder

AEs are an unsupervised variant of NNs where the input and output layer
have the same dimensionality, while the hidden layers have a smaller dimen-
sion [Gér22]. This structure is illustrated in Figure 2.2b. During training, the
AE is tasked to reconstruct the input values at the output layer. To achieve
this, the hidden layers force the AE to learn a compact representation of the
input, known as the latent representation. AEs are commonly used for tasks
such as dimensionality reduction and data generation.

2.6.3.2 Convolutional Neural Network

CNNs are designed specifically for image recognition and are based on the
concept of restricting the area of the input image a unit in the NN is connected
to [Gér22]. This is achieved through convolutional layers, where each unit is
connected to a subset of units in the previous layer. This localization allows
the units to focus on specific regions of the image or data. Additionally, pooling
layers aggregate information from the preceding layer, also focusing on a
localized area. For instance, in a max pooling layer, each unit outputs the
maximum value from the units it is connected to.
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This locality-focused structure enables CNNs to efficiently process large im-
ages and is particularly effective for pattern recognition tasks [Wu17]. More-
over, CNNs are also used in other domains, such as network traffic classi-
fication [Chi20].

Convolutional Autoencoders are constructed similarly to general AEs,
incorporating convolutional and pooling layers to leverage the benefits
of CNNs [Mao16].

2.6.4 Principal Component Analysis

PCA is a widely used technique for dimensionality reduction [Gér22]. It
operates by identifying a hyperplane close to the data and then projects the
data onto this hyperplane. The objective is to choose the hyperplane in such
a way that it preserves the maximum amount of variance from the original
data, thereby minimizing information loss during the projection. Since PCA
relies solely on deterministic calculations, it does not require a training phase
or involve any randomness.

2.6.5 Hidden Markov Model

HMMs are used to represent dynamic processes over time where the current
state is not directly observable [Suc15]. Instead, only the observation symbols
emitted by the states of the HMM are observable, resulting in an observation
sequence. Thus, HMMs account for two key aspects of a process’s uncertainty:
(1) the probability of the next state 𝑆𝑡+1 given the current state 𝑆𝑡, denoted
as 𝑃 (𝑆𝑡+1 | 𝑆𝑡), and (2) the probability of an observation 𝑂𝑡 given a state 𝑆𝑡,
denoted as 𝑃 (𝑂𝑡 | 𝑆𝑡).

In an HMM, the hidden, non-observable states of are modeled as a Markov
chain, which adheres to the Markov property. According to this property,
the next state 𝑆𝑡+1 depends only on the current state 𝑆𝑡 and not on any
preceding states:
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𝑃 (𝑆𝑡+1 | 𝑆𝑡, 𝑆𝑡−1,…) = 𝑃 (𝑆𝑡+1 | 𝑆𝑡). (2.1)

Formally, an HMM is defined by the following parameters [Rab86, Suc15],
where 𝑁 is the number of states, 𝑀 is the number of observation symbols,
and 𝑆𝑡 represents the state of the HMM at time 𝑡.

• States

𝑄 = {𝑞𝑖}, 𝑖 = 1,… , 𝑁

• Observations symbols

𝑉 = {𝑣𝑘}, 𝑘 = 1,… ,𝑀

• Initial probabilities

Π = {𝜋𝑖}, where 𝜋𝑖 = 𝑃 (𝑆0 = 𝑞𝑖), 𝑖 = 1,… , 𝑁

• Transition probabilities

𝐴 = {𝑎𝑖𝑗}, where 𝑎𝑖𝑗 = 𝑃 (𝑆𝑡+1 = 𝑞𝑗 | 𝑆𝑡 = 𝑞𝑖), 𝑖,𝑗 = 1,… , 𝑁

• Observation probabilities

𝐵 = {𝑏𝑖𝑘}, where 𝑏𝑖𝑘 = 𝑃 (𝑂𝑡 = 𝑣𝑘 | 𝑆𝑡 = 𝑞𝑖), 𝑖 = 1,… , 𝑁, 𝑘 = 1,… ,𝑀

Tasks

Given an HMM, we are usually interested the following three tasks [Rab86,
Suc15]. For each task, we assume a given observation sequence 𝑂 and an
HMM 𝜆.

Evaluation Compute the probability of the observation sequence: 𝑃 (𝑂 | 𝜆).
This task is addressed using the Forward algorithm.

Decoding Compute the most probable state sequence that leads to 𝑂. This
problem can be solved using the Viterbi algorithm.
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Learning Adjust the HMM parameters to maximize the probability of 𝑂:
𝑃 (𝑂 | 𝜆). This corresponds to training the HMM and is typically approached
with the Baum-Welch algorithm.

Multivariate HMMs

In domains such as speech recognition, univariate HMMs are used, which
emit scalar values. In contrast, multivariate HMMs are designed to handle
multidimensional observations [Liu10]. This allows them to model more
complex and richer patterns in the data.

Second-order HMMs

Typically, an HMM is based on a first-order Markov chain, where the state
transition probability depends only on the current state and not on previous
states (as described in Equation (2.1)). Second-order Markov chains extend
this concept by making the state transition probability dependent on both
the current state and the preceding state [Mar96]. This extension allows the
model to represent more complex relationships between the states. However,
a second-order Markov chain 𝑀2 with 𝑁 states can also be modeled by a
first-order Markov chain 𝑀1 with 𝑁2 states [Rus16]. To model 𝑀2, each state
of 𝑀1 is used to represents a pair of states of 𝑀2.
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Although blackbox testing assumes no access to the internal details of the
System under Test (SuT), a blackbox Test Tool (TT) may still have access
to certain external information. In the following, we analyze the types of
information that blackbox TTs have utilized, as documented in the literature,
and classify them to provide an overview of the available and commonly used
information in blackbox testing. Furthermore, we classify the approaches
presented in this doctoral work to contextualize them within the broader field.

In their basic form, blackbox TTs do not consider the behavior of the SuT
for test case generation. Instead, they solely monitor the SuT’s behavior to
identify test cases that result in crashes or anomalies in the SuT [God20].
This is demonstrated by TTs such as radamsa [Hel24] and the core version
of ISuTest® [Pfr17].

However, other blackbox TTs utilize the accessible information to guide their
testing process and test case generation. Table 3.1 provides an overview of
these approaches and the information they leverage. We also include the
general approach of (web) vulnerability scanners as presented in Section 2.3.

We classify the information used by blackbox TTs along two dimensions.
First, we distinguish between information accessible prior to testing a specific
SuT and information accessible only during testing. For instance, informa-
tion on vulnerabilities in network stacks, such as those presented by Kohl
et al. [Koh20a], are publicly accessible before testing a specific SuT. In contrast,
information on crashes encountered by a specific SuT can only be obtained
during or after testing. Second, we differentiate between static and dynamic
information. Static information refers to information that typically remains
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Table 3.1: Blackbox information used by blackbox TTs for test case generation or test guidance in
the literature and in this doctoral work. We classify the used information based on the
time of accessibility (before testing vs. during testing), and whether the information
changes over the course of the test (static vs. dynamic). Next to specific approaches
from literature, we also include the general approach of vulnerability scanning as
presented in Section 2.3.

Before Testing
Static Vulnerabilities ClusterCrash [Bor22], vulnerability scanners

Heuristics [Pfr17], vulnerability scanners
Network traffic [Gas15], Palpebratum (Section 7.5)
During Testing

Static Endpoints [Esp18, Ren19], HitM [Bor20], ISuTest®
Software versions Vulnerability scanners

Dynamic Crashes [Hou12, Gop20, Fer22], Smevolution [Bor23b]
Full response [Dou12, Duc14, Esp18, Ren19, Gop20, Aic21,

Sha21, Dra23b, Yin23, Liu24a],
SWaTEval [Bor23c], HitM [Bor20]

Response code [Lin21, Sas21, Kim20]
Response time [Kim20]
Firewall bypass [App18]
Network traffic [Gas15], Palpebratum (Section 7.5)
Side channels [Spe19], [Su24]

unchanged throughout a test, such as the endpoints exposed by a Web Appli-
cation (WA) or the open ports of an Operational Technology (OT) component.
Conversely, dynamic information changes during testing, such as the network
traffic generated by the SuT.

In Sections 3.1 and 3.2, we provide an overview of the types of information
utilized during and before blackbox testing and how this information is lever-
aged. Details on how the newly presented approaches of this doctoral work
utilize the different information is detailed in Section 3.3
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3.1 Information Accessible before Testing

Existing blackbox TTs make use of three types of information accessible before
testing: (1) published vulnerabilities, (2) heuristics, and (3) network traffic.

First, information on specific vulnerabilities potentially related to the SuT is
utilized. The general approach of vulnerability scanners uses information on
known vulnerabilities to verify whether the software presumed to be running
on the SuT contains any of those vulnerabilities (see Section 2.3).

Other TTs leverage expert knowledge through heuristics that are used for test
case generation. For example, this approach is employed by ISuTest® [Pfr17]
and by the general approach of vulnerability scanning.

PULSAR [Gas15] utilizes network traffic generated by the SuT prior to the test
to guide the testing process. Specifically, PULSAR analyzes a sample of the
SuT’s network traffic to infer a Markov chain that represents the state machine
of the communication protocol in use. The network traffic is leveraged to
define templates and rules that represent the format of the network packets.
These models are then employed (1) to generate traffic for the specific network
protocol, and (2) to guide the testing process.

3.2 Information Accessible during Testing

During testing, additional SuT-specific information becomes available that can
guide the testing process. On the one hand, static information on the SuT can be
utilized. This includes information on the communication endpoints exposed
by the SuT. For example, Esposito et al. and Rennhard et al. [Esp18, Ren19]
utilize the known Uniform Resource Locator (URL) endpoints of a WA, while
ISuTest® utilizes information on known communication endpoints of an OT
component. The approaches targeting WAs utilize the information on available
endpoints to implicitly provide it to Web Vulnerability Scanners (WVSs), for
them to be able to test all available endpoints [Esp18, Ren19]. Conversely,
ISuTest® uses the information on the open ports of an OT component to

53



3 Accessible Information

determine which test configurations and which test cases to apply. For instance,
Simple Network Management Protocol (SNMP) test cases are only sent if the
SuT provides an SNMP endpoint, or if they are explicitly requested. While
we classify this information as static, it is worth noting that the open ports
of a SuT may change during testing. For example, one OT component tested
during this doctoral work closed a port after encountering three unsuccessful
communication attempts on a different port. However, this information is
usually static and is thus classified as such.

On the other hand, a SuT exposes dynamic information. For instance, monitor-
ing the SuT for crashes provides valuable information for guiding future test
case generation. Householder et al. present an approach to utilize the crash in-
formation to guide seed selection and mutation parametrization [Hou12]. Fer-
nandez et al. propose a framework for a grammar-based fuzzer which utilizes
crash information to guide the grammar-based test case generation [Fer22].
Similarly, Gopinath et al. utilize crash information together with informa-
tion on which position of the test case lead to the crash to generate new
test cases [Gop20]. Shang et al. utilize information on which test cases were
successful in triggering anomalies to guide the mutation of test cases [Sha21].

Several approaches leverage the entire response from the SuT, but they uti-
lize this information in different ways. Doupé et al., Aichernig et al., and
Drakonakis et al. [Dou12, Aic21, Dra23b] use the full response of the SuT to
automatically derive a state machine, which is then employed for test case
generation. In contrast, JARVIS uses the responses to modify test cases of
existing WVSs to allow for authenticated requests, amongst others [Esp18,
Ren19]. Duchene et al. and Liu et al. use the full response of the SuT to guide
the test case generation as follows. Duchene et al. focus on reflected Cross-Site
Scripting vulnerabilities in WAs and analyze whether the response of the SuT
reflects the full test case or parts of it [Duc14]. Liu et al. also consider WAs
and approximate the code coverage based on the strings that are included
in the SuT’s responses [Liu24a].
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Kim et al. utilize the response in combination with the response time to de-
termine whether a test case is deemed interesting [Kim20]. ICPFuzzer and
R0fuzz also use the responses to guide the test case generation, but focus exclu-
sively on using the response code rather than the entire response [Lin21, Sas21].

Appelt et al. propose an evolutionary approach for testing WA firewalls, using
binary information on whether a test case successfully bypassed the fire-
wall [App18].

As previously mentioned, PULSAR utilizes network traffic in its testing ap-
proach [Gas15]. PULSAR leverages network traffic generated before the test
to train its model, but it also uses the network traffic generated during test-
ing to query this model. During the test, PULSAR analyzes network traffic
to determine the current state of the SuT and thus to decide which message
should be sent next.

Additionally, all approaches discussed and categorized above make use of
information on the test cases that lead to specific behavior of the SuT. This
information is crucial for generating, selecting, or mutating future test cases
based on previous observations, or for deriving a state machine of the SuT.
However, some approaches, such as scanner++ [Yin23] and the approach by
Salem et al. [Sal21], exclusively utilize information on the test cases. These
approaches were excluded from our categorization because they do not in-
corporate additional information available in blackbox testing or consider
SuT-specific information.

Additionally, some publications utilize side-channel information for test case
generation. Sperl et al. use the power consumption of the hardware running
the SuT to assess the interestingness of a test case [Spe19]. FUZZ-E, pro-
posed during the course of this doctoral work, focuses on fuzzing of Field
Programmable Gate Arrays (FPGAs) and utilizes voltage measurements to
approximate the SuT’s behavior [Su24].
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3.3 Utilized Information Sources

In the following, we detail which information sources are used by the ap-
proaches presented in this doctoral work.

HitM, a proxy-based approach to transparently improve existing WVSs, utilizes
the static information on existing endpoints and the dynamic information on
the responses of the SuT to the WVSs’ requests. The information on the
endpoints is used to explicitly provide it to the WVSs using the URL injection
add-on of HitM. With this, it influences the test case generation of the WVSs.
The responses of the SuT are used, amongst others, to identify whether the
requests of the WVSs are authenticated requests. If the requests are not
authenticated, the User Login add-on provides the necessary authentication
details. With this additional information, the test cases generated by the WVSs
are improved, and the future test case generation is influenced. See Chapter 4
and [Bor20] for more details.

ClusterCrash generalizes information on vulnerabilities revealed by past
whitebox and graybox tests, and subsequently defines Vulnerability Anti-
Patterns (VAPs). Based on these VAPs, we derive blackbox tests which test
for the underlying causes of the past vulnerabilities. Thus, it allows for more
targeted blackbox tests. See Chapter 5 or [Bor22] for more information.

Smevolution proposes an approach to utilize the information on crashed
services of the SuT to guide an evolutionary test case generation. With this,
it utilizes the dynamic information on which services of the SuT crash for a
certain test case during testing. See Section 7.4 or [Bor23b] for more details.

Palpebratum presents an approach to modeling the behavior of the SuT by
using a Hidden Markov Model (HMM). To train the HMM, Palpebratum
utilizes network traffic recorded before testing. During testing, Palpebratum
utilizes the dynamic network traffic generated by the SuT to query the HMM.
This query is then used to assess the interestingness of a test case. More details
on Palpebratum are given in Section 7.5.
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SWaTEval, the novel framework for Stateful Web Application Testing (SWAT)
evaluations, utilizes the responses of the SuT to automatically infer a state
machine of the SuT. This state machine is used to guide the fuzzing process.
See Section 8.3 or [Bor23c] for more details.

3.4 Analysis Conclusions

Our analysis of the information used in blackbox testing suggests the following
conclusions:

1 A variety of static and dynamic information, accessible
either before or during testing, can be utilized during the
blackbox testing process.

2 The novel approaches proposed in this doctoral work do not
consider new information sources, but utilize the
information in new ways.
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This chapter presents Helper-in-the-Middle (HitM), a proxy-based solu-
tion aimed at transparently improving the applicability of Web Vulnerability
Scanners (WVSs) within the domain of industrial security. We successfully
design, implement, and evaluate HitM, revealing several previously unknown
vulnerabilities in Web Applications (WAs) of Operational Technology (OT)
components. Notably, one of these vulnerabilities was assigned a Common
Vulnerabilities and Exposures (CVE) identifier [CVE18] with a high severity
(Common Vulnerability Scoring System (CVSS) score of 7.5). Moreover, our
evaluation shows that HitM increases the number of true positive reports,
and improves the Uniform Resource Locator (URL) coverage for most of the
Systems under Test (SuTs).

Testing the WAs of OT components presents several domain specific challenges
to WVSs, such as handling crashes of the SuTs, and monitoring diverse inter-
faces of the SuT during testing (see also Section 4.1). Moreover, our analysis
of prior studies highlights that a considerable portion of the identified limita-
tions of WVSs are concerned with their practical applicability (Section 4.3.2).
Thus, we introduce our new approach, HitM, designed to address several of
these limitations while focusing on an industrial test setting. HitM adopts a
proxy-based approach, facilitating a transparent enhancement of the WVSs.
Since this enhancement is transparent for the WVSs, the WVSs themselves
do not need to be altered (see Section 4.3.3). This is achieved by augmenting
the functionality of the proxy used within HitM through a combination with a
containerization of the WVSs and the security testing framework ISuTest® (see
Section 2.2.3). Through this integrated approach, HitM successfully addresses
several applicability challenges of WVSs.
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Our evaluation of HitM encompasses both qualitative and quantitative analy-
ses, involving testing five OT components with six WVSs integrated into HitM

(Section 4.3.4). The results of this evaluation illustrate that HitM addresses
nine of the previously identified limitations. Moreover, HitM improves the
number of true positive reports of the WVSs, and also increases their URL
coverage. However, consistent with existing literature, HitM also increases the
false positive rate for most SuTs. Furthermore, our evaluation reveals several
previously unknown vulnerabilities of WVSs within OT components.

4.1 Problem Statement

In addition to features that exclusively support the functionality of an OT com-
ponent, many OT components offer supplementary features. These features
are designed, for instance, to enhance user experience or to offer additional
information to users of the OT component. An example of this additional func-
tionality is WAs that run locally on an OT component. At the very least, such
a WA usually offers information on the current status of the OT component.
However, numerous WAs offer additional functionalities such as means for
configuring the OT component or updating its firmware, allowing for more
advanced user interaction [Pfr19b]. Considering that all interfaces of an OT
component serve as potential entry point for attackers, a locally running WA
is no exception. This is particularly true when the WA offers advanced features
such as configuration or file upload. With this, attackers could potentially
exploit the WA to attack the OT component and the physical process that is
connected with the OT component. Thus, a WA provided by an OT component
needs to be tested for vulnerabilities and these vulnerabilities need to be fixed.

Out of the diverse means to test a WA for vulnerabilities (see Section 2.3), this
dissertation focuses on tests with blackbox WVSs. As detailed in Section 2.3,
WVSs are automated Test Tools (TTs) which scan a WA for vulnerabilities
by crawling the WA, finding input possibilities, and providing certain inputs
to the WA [Dou10]. With most of the existing WVSs being designed to test
general-purpose WAs, they show several limitations when used in industrial
test settings [Pfr19b]. For example, typical WVSs often struggle to handle a
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crash of the tested WA. In test scenarios focusing on Information Technology
(IT), a tested WA usually has access to extensive resources that allow it to
efficiently handle the high workloads generated by a TT. However, in industrial
test settings, WAs are resource-constrained and thus the WA, and sometimes
the entire OT component, may crash due to a test’s load or specific test cases.

Based on a detailed analysis of the limitations of WVSs, especially with respect
to their applicability in industrial test settings (see Section 4.3.2), we suggest
a proxy-based solution which addresses these limitations while considering
the challenges of industrial security testing as formulated in Section 1.3. Since
our solution helps to improve the performance of WVSs transparently while
also acting as a Machine-in-the-Middle (MitM), we call this approach Helper-
in-the-Middle (HitM).

4.2 Contributions

This doctoral work makes the following two main contributions to the domain
of blackbox testing of WAs on OT components.

Contribution 1. Analysis of the limitations of blackbox WVSs with respect to
their applicability to OT component security testing.

Our analysis of prior studies reveals that a considerable portion of the identified
limitations are concerned with the practical applicability of WVSs. Especially,
it shows that aiming to use WVSs in industrial test settings adds additional
challenges in applicability.

We perform this analysis of the current state-of-the-art in two steps. On the
one hand, we analyze literature to identify general limitations of WVSs that
have already been mentioned by previous studies, including a preliminary
study conducted during the course of this doctoral work [Pfr19b]. We collect
these limitations and cluster them. On the other hand, we analyze whether
and how existing approaches from literature address these limitations. With
this, we identify the current limitations of WVSs, especially regarding their
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application in industrial test settings. Preliminary analyses and test results
were published in the journal at-Automatisierungstechnik [Pfr19b], and the
literature review and analysis were presented at SECRYPT 2020 [Bor20]. The
results of the analysis are presented in Section 4.3.2, which sets a special focus
on setting the results into the context of this doctoral work.

Contribution 2. Implementation and evaluation of the proxy-based solution
HitM which transparently facilitates the use of blackbox WVSs in industrial test
settings.

HitM consists of three parts: (1) a proxy which is located in between the WVS
and the SuT, (2) the security testing framework ISuTest® (see Section 2.2.3),
and (3) a containerization environment for the WVSs. We evaluate HitM in a
qualitative and a quantitative evaluation. The qualitative evaluation demon-
strates that HitM addresses three limitations with respect to the methodology
of WVSs, and six limitations that are concerned with the applicability of WVSs
(Section 4.3.4.2). The quantitative evaluation is conducted by integrating six
WVSs into HitM, and running each of them against five OT components, while
varying the level of support provided by HitM. It shows that an increased
support by HitM leads to more true positive findings of the WVSs, and to an
increased URL coverage (Section 4.3.4.3).

HitM considers several of the challenges of industrial security testing that are
formulated in Section 1.3. Especially, it considers the blackbox use case (Chal-
lenge 1 (Blackbox Testing)), and monitors all communication interfaces of the
SuT (Challenge 3 (Insufficient Observations)). Furthermore, HitM is transpar-
ent for the WVSs (Challenge 5 (Choice of Testing Tool)), and injects additional
information to the traffic of the WVS (Challenge 2 (Missing Information)).

First steps towards HitM were conducted during the Master’s thesis of the
author of this doctoral work [Bor18], which were subsequently published in
the journal at-Automatisierung [Pfr19b]. The approach of HitM as well as
the corresponding evaluations are based on the Master’s thesis by Albrecht
Weiche that was supervised during the course of this doctoral work [Wei19],
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and have been published at SECRYPT 2020 [Bor20]. During the work on HitM,
several previously unknown vulnerabilities were revealed, including a Denial
of Service (DoS) in BCex which was assigned a CVE identifier [CVE18].

The implementation of HitM’s proxy is based on mitmproxy1. In order to
provide the additional functionality required by HitM, several new addons
were implemented and the corresponding source code was published23.

4.3 Helper-in-the-Middle

This section details the work with respect to the transparent improvement of
WVSs in the context of industrial security testing conducted during the course
of this doctoral work. First, the methodology of HitM is detailed in Section 4.3.1.
Then, the analysis is presented (Section 4.3.2), and the approach of HitM is
described (Section 4.3.3). The qualitative and quantitative evaluation of HitM
is presented in Section 4.3.4, while Section 4.4 gives additional insights into
testing BCex. The content of this section is based on the respective publications
produced during the course of these doctoral work [Pfr19b, Bor20], as well
as the Master’s thesis by Albrecht Weiche which was supervised during this
doctoral work [Wei19].

4.3.1 Methodology

In order to approach the objective to transparently improve the performance
of WVSs, we perform the following steps.

1 Conduct a literature review to identify the current limitations of WVSs
in general, and with respect to OT components (Section 4.3.2).

2 Cluster these limitations and analyze which of these limitations are
addressed by the literature (Section 4.3.2).

1 https://mitmproxy.org/
2 https://github.com/mitmproxy/mitmproxy/pull/3961
3 https://github.com/mitmproxy/mitmproxy/pull/3962
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3 Design and implement HitM, which addresses several of the limitations
that are not yet addressed by literature (Section 4.3.3).

4 Integrate six WVSs into HitM.

5 Evaluate HitM qualitatively based on our experiments with five OT
components (Section 4.3.4.2), focussing on the limitations of WVSs that
are addressed by HitM.

6 Evaluate HitM quantitatively by using the integrated WVSs to test four
OT components and measuring number of true positive reports of the
WVSs, the false positive rate, and the total runtime of the tests.

Consistent with the approach of all evaluations carried out in this doctoral
work involving OT components, we follow a responsible disclosure policy for
the revealed vulnerabilities (see Section 2.2.2.2).

4.3.2 Analysis

We conduct a literature review with the objective to analyze which limitations
of WVSs have already identified by literature and which of those are addressed
by literature [Bor20]. This review includes a paper, published as part of this
doctoral work, which discusses of WVSs with respect to their applicability
in industrial test settings [Pfr19b]. Note that this analysis was conducted
prior to the work on HitM, which is why it only includes publications from
before 2019. Section 4.5 discusses recent publications related to HitM. The
analysis presented in this section is based on 15 papers which compare the
performance of several blackbox WVSs [Fon07b, McA08, Bau10, Dou10, Kho11,
Fer11, Dou12, Ala12, Sut13, Mak15, Idr17, Veg17, Dee18, Esp18, Pfr19b]. In
total, these papers evaluated 25 WVSs using 25 SuTs.

As a first step, we analyze which WVSs and which SuTs were used by the
papers. Figure 4.1 illustrates the relationship between the utilized WVSs and
the number of papers in which they are referenced. The diameter of the circles
corresponds to the number of SuTs the respective WVS has been evaluated
against in total. Additionally, the color of the circles represents the licence
under which the respective WVS is published. For example, the open source
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Figure 4.1: Frequency of WVSs that have been evaluated by the reviewed literature, and the
license they were published under. For each WVS, the diameter of the respective
circle corresponds to the number of SuTs the WVS was evaluated against. Various
WVS are considered by literature, while open source scanners are evaluated more
often.

WVS Arachni is represented by a blue circle at 𝑦 = 3, showing that this
WVS was used in three of the considered papers. The diameter of the circle
corresponds to the number eight, which is the number of SuTs Arachni was
tested against in the considered publications in total. Note that the evaluation
of Fonseca et al. is not integrated into this figure since the authors do not
reveal which scanners they evaluated [Fon07b].

The plot shows that open source scanners have been tested more thoroughly
than commercial scanners. We believe this discrepancy is mainly due to
financial reasons. Nevertheless, the choice of a WVS for productive testing
is also driven by financial considerations. Another point revealed by the

65



4 Industrial Web Security

DVWA PCI Testbed phpBB WackoPicko WAVSEP Wordpress
0

2

4

6

2

3

2

6

2 2

System under Test

N
um

be
r
of

Pa
pe
rs

Figure 4.2: SuTs that have been used more than once for the evaluations of WVSs. WackoPicko
by Doupé et al. [Dou10] is used the most.

review is the large amount of WVSs that are known enough to be considered
in such an evaluation. This point is also supported by the extensive lists of
WVSs that is presented by the Open Worldwide Application Security Project
(OWASP) [OWA20]. This highlights the complexity of selecting an appropriate
WVS for testing (Challenge 5 (Choice of Testing Tool)).

The SuTs used for the evaluations are also manifold. In total, 25 SuTs were
used, of which those SuTs that were used by more than one paper are displayed
in Figure 4.2. For this figure, papers using the same SuT with different versions
have been aggregated. Striking is the frequent use of WackoPicko, as six of
the considered papers use WackoPicko for their evaluation. WackoPicko is a
WA that has been presented by Doupé et al. as a test bed for WVSs [Dou10].
Except for Wordpress and phpBB, all the SuTs are willful vulnerable WAs.

4.3.2.1 Identified Limitations

As a basis for a deeper understanding of known limitations of WVSs, we
collect and classify the limitations that were identified by literature. Table 4.1
shows the results of this collection and our classification. We classify the
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Table 4.1: Classification of the limitations of blackbox WVSs identified by the literature as well
as publications that address the respective limitation (based on [Bor20]). The fourth
column identifies the limitations that are addressed by HitM.

Limitations Identified Addressed HitM

Vulnerability Classes
Stored XSS Injection [Bau10, Dou10,

Ala12]
[Li16, Gal10]

Persistent SQL Injection [Bau10, Dou10,
Kho11]

- -

Remote File Inclusion [Mak15, Dou10] - -
Local File Inclusion [Idr17] - -
Path Disclosure [Dou10] - -
Methodology
Crawling [Esp18, Dou10,

Idr17, Fer11,
Kho11]

[McA08, Esp18,
Dou12]

�

Fuzzing [Idr17] [McA08, Dou12] -
Periodically Changing Content [Pfr19b] - �
Attack Code Selection [Fer11, Kho11] - -
User Login [Dou10,

Kho11],[Pfr19b]
[McA08, Esp18] �

Second Order Vulnerabilities [Bau10, Dou10] - -
Application Logic [Dou10] [Dee18] -
JavaScript / Flash / HTML5 [Dou10, Idr17,

Dou12]
- -

Categorization of Findings [Kho11] - -
Applicability
Parameter Understandability [Esp18] [Esp18] -
Reproducibility [Pfr19b] - �
Conduction of Single Tests [Pfr19b] - �
Load Reduction [Pfr19b] - �
Pause and Resume a Scan [Pfr19b] - �
Behavior in Case of an Error [Pfr19b] - �
Different Scanners Necessary [Esp18,

Idr17],[Pfr19b]
[Esp18] �

Runtime [Dou10,
Sut13],[Pfr19b]

- -
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limitations that were identified by literature into the following four clusters:
Vulnerability Classes, Methodology, Applicability, and SUT. The following
explains the nature of these clusters as well some of the limitations categorized
within this cluster.

Vulnerability Classes This cluster encapsulates specific vulnerability classes
WVSs have demonstrated difficulty in addressing. For instance, multiple
studies have highlighted the challenges WVSs face in effectively identifying
Stored XSS and Stored SQL vulnerabilities [Bau10, Dou10, Kho11, Ala12].

Methodology In this cluster, we group those limitations that pertain the gen-
eral approach of WVSs. The cluster addresses various aspects of WVSs, such as
Crawling and Fuzzing capabilities, handling of Periodically Changing Content,
and Application Logic limitations. Application Logic limitations encompass the
identification and detection of application-specific vulnerabilities.

The limitation concerning Periodically Changing Content pertains to WAs
featuring regularly updated content, such as the current time. This dynamic
content can pose challenges to WVSs during probing for injections. To probe
for injections, a two-step process is typically employed. First, the WVS attempts
to inject code into the WA. Second, the WVS assesses whether there are changes
in the WA’s content subsequent to the injection attempt. If the WA’s content
exhibits alterations independent from the WVS, the WVS regularly assumes
that its code injection was successful. However, in reality, only the periodically
changing content, such as the current time, may have changed.

Applicability This cluster includes limitations of WVSs concerning their
practical applicability, especially when using them to test OT components.
Load Reduction refers to challenges in reducing the load that is sent to the SuTs.
Particularly when testing OT components, there is an increased risk of SuT
crashes due to high load. Behavior in Case of an Error is closely linked to the
previous limitation. If the SuT crashes and the WVS fails to detect this, the WVS
will continue sending its probes fruitlessly. Furthermore, literature suggests
that employing different scanners is necessary to achieve comprehensive
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coverage. Additionally, the Runtime of a WVS significantly influences the
frequency of SuT testing. Note that especially the limitations in this cluster
are more prominent when testing an OT component instead of a classic WA.

SUT This cluster encompasses the limitations of the SuTs utilized during the
evaluations. In particular, it encompasses two limitations: (1) the possibility
of unindented vulnerabilities in the SuTs [Mak15], and (2) the possibility of
outdated vulnerabilities in the SuTs [Sut13]. Although these limitations do
not pertain directly the WVSs, they are frequently mentioned in literature.
Consequently, we included these limitations in our categorization. However,
we will refrain from delving further into this cluster and instead concentrate
our analysis on the limitations directly associated with the WVSs.

4.3.2.2 Achieved Improvements

Building upon the identified limitations, researchers have endeavored to miti-
gate these limitations through various approaches. The following descriptions
highlight publications in this domain and correlates them with the limitations
described in the previous section (see Table 4.1).

McAllister et al. propose a WVS enhanced by techniques aimed at detecting
more entry points for scanning [McA08]. This includes strategies such as
recording and replaying user interactions, simultaneously fuzzing various
input forms to broaden test coverage, and employing stateful fuzzing. Note
that this stateful fuzzing assumes that the fuzzer is able to control the WA. With
this approach, McAllister et al. address the limitations regarding Crawling,
Fuzzing, and User Login. The experiments conducted by McAllister et al.
suggest that their solution identifies more entry points and bugs compared
to other evaluated WVSs.

Doupé et al. introduce a state-aware WVS that automatically builds a model
of the internal states of a WA by sending packets and interpreting the cor-
responding responses from the SuT [Dou12]. This model is then utilized to
derive and test new entry points as well as to generate new payloads for the
included fuzzer (see also Section 2.5). The newly proposed WVS addresses
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the limitations of Crawling and Fuzzing. The evaluation of Doupé et al. in-
dicates that their approach improves code coverage and the effectiveness of
vulnerability tests.

Deepa et al. present a WVS that leverages the data and control flow of a
WA to construct a model of its behavior [Dee18]. This model targets logic
vulnerabilities such as parameter manipulation, access control, and workflow
bypass vulnerabilities. With this, the authors address the limitation regarding
Application Logic. Deepa et al. demonstrate that their approach achieves high
precision and a high true positive rate.

In contrast to the aforementioned solutions, Esposito et al. introduce JARVIS,
a proxy-based solution aimed at enhancing the capabilities of existing WVSs
rather than creating a new one [Esp18]. The proxy enhances crawling capabili-
ties and authentication of the WVS against the target. Crawling is improved by
injecting known URLs into locations where the WVS is expected to crawl, and
the proxy authenticates initially unauthenticated requests sent by the WVS.
Their evaluation illustrates that JARVIS increases the number of detected vul-
nerabilities while simultaneously increasing the false positive rate for some of
the WVSs. Refer to Section 4.5 for a comparison of HitM and JARVIS.

Furthermore, several approaches addressing specific vulnerability classes have
been presented, and corresponding tools have been published. For exam-
ple, the publications by Li [Li16] and Galán et al. [Gal10] as well as XSSer1

address Stored XSS Injection vulnerabilities, while sqlmap2 tests for Stored
SQL Injections.

1 https://github.com/epsylon/xsser
2 https://sqlmap.org/
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4.3.2.3 Analysis Conclusions

The previous section reported the results of a literature review which analyzed
publications regarding blackbox WVSs before the publication of HitM. In
summary, 15 publications have been analyzed, which evaluated 25 WVSs
using 25 SuTs. The key takeaways of this analysis are as follows.

1 Various WVSs are relevant enough to be considered in
several studies, while these studies also show that there is no
WVS performing better than all other WVSs. This makes the
choice of an appropriate WVS harder (see also Challenge 5
(Choice of Testing Tool)).

2 The analysis shows that the limitations of WVSs that have
been identified by literature can be clustered in the
following clusters: Vulnerability Classes, Methodology,
Applicability, and SUT.

3 Most approaches from literature address limitations from the
clusters Vulnerability Classes and Methodology, while there
are only few publications concerned with the Applicability of
WVSs. However, this cluster is of high importance regarding
the adoption of blackbox WVSs. Furthermore, several of
these challenges are especially prominent when testing OT
components, such as the Behavior in Case of an Error.

4.3.3 Approach

The approach of HitM is to improve the performance of arbitrary blackbox
WVSs by providing a transparent Helper-in-the-Middle. This section introduces
the approach of HitM as well as the details on the extensions that we designed
and implemented. HitM aims to address several limitations of WVSs with
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respect to their Applicability, namely Crawling, Periodically Changing Content,
User Login, Reproducibility, Conduction of Single Tests, Load Reduction, Pause and
Resume a Scan, Behavior in Case of an Error, and Different Scanners Necessary.

4.3.3.1 Fundamental Approach

The fundamental approach of HitM is to combine the advantages of a proxy,
ISuTest®, and containers to support WVSs during their testing. Figure 4.3
shows how these three parts of HitM are connected. Even though the three
components of HitM are logically different, they run on the same computer,
the Test Device (TD).

WVS Proxy SuT

ISuTest®

al
er
t

interrupt /
resume

monitor

Network traffic Function call Containerization

Figure 4.3: Overview of HitM, based on [Bor20]. It consists of the WVSs running in containers,
ISuTest®, and a proxy which is located between the WVSs and the SuT. The proxy
analyses and manipulates the traffic between the WVSs and the SuT.

Proxy The proxy resides between the WVSs and the SuT, enabling it to
intercept, interpret, and modify the packets exchanged between these two.
The proxy’s extensions are implemented as add-ons, which will be elaborated
upon later in this section (Section 4.3.3.2).
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Containerization The WVSs are run within containers, offering two primary
advantages: Firstly, it facilitates the pausing and resuming of WVSs’ activities.
Secondly, scans can be executed in a more reproducible manner, as the WVSs
can be reset to a known state by resetting the container.

ISuTest® The third component of HitM, ISuTest® (see Section 2.2.3), is uti-
lized for orchestrating the WVSs and monitoring the SuT. To allow for the
orchestration of the WVSs, we implement the capability to integrate external
tools into ISuTest® [Pfr19b]. Moreover, ISuTest® aids in monitoring, supported
by the watchdog add-on of the proxy (see Section 4.3.3.2). In short, this watch-
dog alerts ISuTest® if the SuT appears to be unresponsive to HTTP requests,
prompting ISuTest® to initiate a monitoring cycle to verify the SuT’s status.

In summary, we present a comprehensive integration of blackbox WVSs into an
industrial security testing system without requiring modifications to the WVSs
themselves (Challenge 1 (Blackbox Testing), Challenge 2 (Missing Information),
Challenge 3 (Insufficient Observations), Challenge 5 (Choice of Testing Tool)).
This integration encompasses an extension of ISuTest®, deploying the WVSs
in containers, and implementing new proxy add-ons. We have made these
add-ons publicly available for further research1. It is worth noting that the
proxy can also function independently, allowing many of the enhancements
to be utilized simply by installing and configuring the proxy, without the need
to setup ISuTest® or a containerization.

4.3.3.2 Features

The following details the features of HitM. These features address several of
the limitations of WVSs.

Containerization and Transparent Proxy Mode We opted to utilize LXD2

for building the containers. Our decision was primarily influenced by the ease
of configuration and manipulation of packet forwarding for virtual network

1 https://github.com/mitmproxy/mitmproxy/pull/3961
https://github.com/mitmproxy/mitmproxy/pull/3962

2 https://linuxcontainers.org/
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bridges provided by LXD. This capability is essential for enabling the transpar-
ent proxy mode, which ensures that HitM can be used both with proxy-aware
and non-proxy-aware WVSs. The challenge in implementing the transparent
proxy mode lies in distinguishing between packets that should be routed to
the proxy and those that should not. Leveraging the containers in which the
WVSs operate, we introduced a virtual network bridge on the TD to direct
all container traffic to the proxy. This enables HitM to be utilized even with
non-proxy-aware WVSs.

Proxy As foundation for the proxy integrated into HitM, we utilize
mitmproxy1. We selected this proxy due to its extensibility, its open source
license, and its support for HTTP and HTTPS. Furthermore, mitmproxy is
fairly commonly used in research (see e.g. [Yin23, Dra23b]), which simplifies
adoption and comparison.

The following features are implemented as add-ons for the proxy. Figure 4.4
shows a graphical representation of the add-ons, their interaction with the
network traffic, and the information they require. In the figure, each add-on
is represented by a rectangle including the name of the corresponding add-
on. Each add-on covers either one or both directions of the network traffic
that is flowing trough the proxy. For example, the watchdog analyzes both
directions to search for indicators of a crash of the SuT or the WVS. In contrast,
the mapping add-on has the task to replace parts of the SuT’s responses and
thus only interacts with the traffic coming from the SuT. Some add-ons need
additional information, which is represented by the rounded rectangles in the
figure. For example, the mapping add-on needs information on which parts
of the SuT’s responses should be replaced. Note that the logging add-on is
excluded from the figure to simplify the visualization.

Watchdog The watchdog add-on addresses the limitation of handling a
SuT’s crashes during testing (Behavior in Case of an Error). It achieves this by
monitoring the SuT’s communication with the WVS for errors, and alerting
ISuTest® in the case of an error. The sequence of actions performed when
the watchdog detects an error is shown in Figure 4.5 and described in the

1 https://mitmproxy.org/
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Figure 4.4: Detailed view of HitM, focusing on the add-ons of the proxy: the watchdog, user
login, mapping, and URL injection. Each add-on is represented by one rectangle
which interacts with one or both directions of the network traffic flowing through the
proxy. Some of the add-ons need additional information, represented by the rounded
rectangles.

following. The watchdog add-on is implemented as an add-on of mitmproxy
and uses the error method provided by mitmproxy. This method is invoked
if an error occurs during the transmission or reception of an HTTP packet.
Acting as a bridge between mitmproxy and ISuTest®, the watchdog alerts
ISuTest® of any detected errors. Upon receiving an alert, ISuTest® interrupts
the WVS, which is possible due to the containerization of the WVS. ISuTest®
then initiates a monitoring cycle, which involves checking whether the SuT
responds to requests from different protocols, such as Internet Control Message
Protocol (ICMP) ping packets. If the SuT fails to respond, ISuTest® restarts the
SuT and verifies its status again. Subsequently, the WVS is resumed, and the
test continues. Note that this entire process remains transparent to the WVS.
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HitM Watchdog ISuTest® WVS Container

alert()

pause()

Ok

monitor_sut()

Not ok
restart_sut()

Ok
monitor_sut()

Ok
resume()

Ok

Figure 4.5: Sequence diagram showing the functionality of the watchdog add-on of the proxy
within HitM. The watchdog alerts ISuTest® as soon as a communication error is
detected. ISuTest® then pauses the WVS and runs a monitoring cycle, checking the
responsiveness of the SuT. Note that this monitoring is run via the network. In the
scenario shown, the SuT does not respond to the monitoring and is thus restarted by
ISuTest® through a power cycle. After the restart, the SuT becomes responsive again
and the test can continue.

Mapping The mapping add-on aims to mitigate false positives resulting from
changing content (Periodically Changing Content). It offers the capability to
replace or delete content on a web page, such as the current time. For this,
content identified by a CSS selector is replaced with fixed HTML code.

User Login We propose two distinct approaches to address the limitation
regarding user login and authentication (User Login).
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The first approach involves implementing various authentication schemes and
executing the authentication process when necessary. This enables transparent
authentication of the WVS’s requests. However, one drawback of this approach
is its lack of access to a browser instance, preventing a full rendering and
execution of the web page.

To overcome this limitation, the second approach incorporates Selenium1.
Selenium provides a browser instance, allowing for simulating user login
actions. Subsequently, the login information, such as cookies or session IDs,
can be transferred to the WVS’s requests.

Both approaches share the common requirement of first detecting whether
a request is authenticated or not. This automated detection is conduced for
both WVS requests and SuT responses.

URL Injection To enhance the Crawling capabilities of the WVSs, we intro-
duce the URL injection add-on. This add-on injects URLs into the responses
sent by the SuT. As demonstrated by Esposito et al., this injection can improve
the WVS’s ability to discover more links and pages within the WA signif-
icantly [Esp18]. Esposito et al. suggest four places to inject the additional
URL information into:

1 robots.txt

2 sitemap.xml

3 landing page of the WA

4 index page of the WA

We adopt these suggestions and inject the URLs in these places. Neverthe-
less, we choose a more thorough approach to URL extraction than Esposito
et al. [Esp18]. While Esposito et al. propose to either use whitebox endpoint
extraction, if applicable, or to use the results of the best crawler (Arachni in
their case), we use the aggregated crawling results of all used WVSs. These
crawling results can be collected automatically by using HitM. We initiated

1 https://selenium.dev/
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automated scans of all WVSs against a SuT and recorded all requests and
responses made. Subsequently, we extracted all requests to which the SuT
responded with a non-error code, thereby constructing the URL index auto-
matically. This index is then utilized for all WVSs, increasing the number of
possibly detected URL endpoints.

Logging In order to effectively verify and analyse a vulnerability, it is impor-
tant to have a comprehensive record of the requests and responses exchanged
between the WVS and the SuT. The logging add-on fulfills this requirement
by logging every response and request observed by the proxy.

4.3.3.3 Approach Conclusions

This section has introduced the approach of HitM. Its main insights and key
takeaways are as follows:

1 HitM is a proxy-based approach that combines a proxy in
between the WVSs and the SuT, a containerization of the
WVSs, and ISuTest®.

2 By leveraging the advantages of these three approaches,
HitM addresses several challenges that WVSs face when
they are examining OT components.

3 With its proxy-based structure, HitM is transparent for the
WVS.
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4.3.4 Evaluation

To assess the impact of HitM, we conduct both qualitative and quantitative
evaluations. The following outlines the evaluation setting in Section 4.3.4.1,
presents and discusses the outcomes of the qualitative evaluation in Sec-
tion 4.3.4.2, and presents and discusses the findings of the quantitative eval-
uation in Section 4.3.4.3.

In summary, the qualitative evaluation indicates that HitM effectively addresses
several limitations of WVSs, including Crawling, Periodically Changing Content,
User Login, Reproducibility, Pause and Resume a Scan, Conduction of Single
Tests, Load Reduction, Behavior in Case of an Error, and Different Scanners
Necessary. Meanwhile, the quantitative evaluation demonstrates an increase
of true positive reports of the WVSs and improved URL coverage. Notably, for
one of the SuTs, conducting a full scan was only feasible with the aid of HitM,
which successfully handled a reproducible crash of the SuT during the scan.

4.3.4.1 Evaluation Setting

The evaluation of HitM is based on six WVSs and five OT components. As
our evaluation focuses on evaluating the impact of HitM rather than the
resilience of specific OT components, we do not disclose the manufacturers of
the used OT components. Instead, we describe the device class and relevant
properties of each of the OT components to give an impression of the used
OT components. Nevertheless, we disclosed the vulnerabilities found during
the evaluation to the respective manufacturers. The following paragraphs
give an overview of the WVSs, OT components, and configurations of HitM
used during the evaluation.

Web Vulnerability Scanners

In order to give insights on HitM’s impact on WVSs, we select six open source
WVSs to be integrated into HitM and to be used during the evaluation. These
six WVSs are selected based on their popularity observed in evaluations from
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Table 4.2: WVSs that are integrated into HitM and are used for the evaluation.

WVS Version Reference
Arachni 1.5.1 https://arachni-scanner.com/
Nikto 2.1 https://github.com/sullo/nikto
Skipfish 2.10 https://github.com/spinkham/skipfish
Vega 1.0 https://subgraph.com/vega/
Wapiti commit 0bf7g7 https://git.code.sf.net/p/wapiti/git
ZAP 2.8.0 https://www.zaproxy.org/

Table 4.3: SuTs used for the evaluation, including the special challenges they pose for WVSs.

SuT Device Type Challenge
SuT1 PROFINET bus coupler Vulnerability of the WA that crashes the SuT
SuT2 OPC UA Gateway Form login with changing form field identifiers
SuT3 Firewall Only allows HTTPS and login only requires

password (no username)
SuT4 PROFINET bus coupler One page, dynamically loaded WA
SuT5 Thermometer WA displays current measurements which

change regularly

previous studies (see Figure 4.1). Table 4.2 gives an overview of the selected
WVSs as well as the specific versions of the WVSs used for this evaluation. A
detailed description of the WVSs can be found in the publications this section
is based on [Pfr19b, Bor20].

Systems under Test

We choose five OT components as SuTs for the evaluation. With this, we
can directly analyze how HitM impacts the performance of the WVSs when
targeting OT components. In the following, the SuTs are presented, while
Table 4.3 gives an overview of the used SuTs as well as the specific challenges
they pose for WVSs.

SuT1 (PROFINET Bus Coupler) SuT1 is a PROFINET bus coupler, just like
BCex, and such has the task to translate commands between PROFINET and
digital I/O (see Section 1.6). Moreover, it features a WA which allows for a
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configuration of SuT1 and uses HTTP Basic Authentication. This WA includes
a vulnerability that, when triggered, leads to a crash of SuT1, requiring a restart
of SuT1 to be fully functional again. With this, SuT1 poses a challenge for the
WVSs, as they usually do not detect such a crash and cannot automatically
restart the SuT after a crash.

SuT2 (OPC UA Gateway) SuT2 serves as a gateway, connecting various
communication protocols to OPC Unified Architecture (OPC UA). Its WA
implements a form-based login with changing identifiers for the login input
fields. This complicates access to the WA for WVSs that expect static identifiers
for the login fields.

SuT3 (Firewall) SuT3 is an industrial firewall and thus incorporates the
functionality to restrict traffic between two networks. It also features a WA,
which permits only HTTPS connections and requires solely a password for
user authentication, instead of a username and a password. This special login
requirement can prevent WVSs from accessing the WA, as they typically
expect both a username and a password field.

SuT4 (PROFINET Bus Coupler) SuT4 is, similar to SuT1 and BCex, a
PROFINET bus coupler. The provided WA is constructed in a different way
than the WAs of the other SuTs. It initially serves a JavaScript program which
then loads the actual user interface. This process complicates the utilization
of a proxy to analyze and modify the network packets effectively.

SuT5 (Thermometer) SuT5 is a sensor measuring the current temperature.
These measurements are then shared over various communication protocols
such as Message Queuing Telemetry Transport (MQTT), Simple Network
Management Protocol (SNMP), File Transfer Protocol (FTP), and mail. More-
over, the measurements are displayed on the local WA trough a dynamically
updated graph and a feed. Such periodically changing content can lead to mis-
understandings by WVSs since the WVSs might assume that they successfully
changed the content of a WA, while in reality only the current temperature
was updated in the background (see Section 4.3.2.1).
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HitM Configurations

As presented in Section 4.3.3, HitM is designed and implemented based on
various add-ons. In order to evaluate the impact of these add-ons, we define
seven configurations of HitM that include different subsets of the add-ons
(see Table 4.4). These configurations include the following two base cases:
(1) running the WVSs without HitM (denoted as bare), and (2) virtualized,
where the WVSs are containerized and configured by ISuTest®, without using
the proxy and its add-ons. The remaining configurations represent a full
application of HitM including an increasing subset of add-ons.

4.3.4.2 Qualitative Evaluation

HitM enhances the capabilities of WVSs transparently through three key
mechanisms: proxy add-ons, containerization, and ISuTest®. Below, we detail
and discuss qualitatively how these mechanisms help to address a subset of
the limitations identified above (Section 4.3.2). In summary, we show how
HitM addresses the limitations of Crawling, Periodically Changing Content, User

Table 4.4: Configurations of HitM used for the evaluation. bare corresponds to an execution of
the WVSs without HitM, virtualized to WVSs running in a container, and all other
configurations to an utilization of HitM, on using an increasing subset of add-ons.
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Login, Reproducibility, Pause and Resume a Scan, Conduction of Single Tests, Load
Reduction, Behavior in Case of an Error, and Different Scanners Necessary(see
Section 4.3.2 for explanations on these limitations).

Crawling The main mechanism that addresses the limitations with respect
to crawling is the URL injection add-on of the proxy (see Section 4.3.3.2). To
create the URL index, we conduct scans with all used WVSs and save each
URL that leads to a response of the SuT that does not include an error code.
With this approach, we share the knowledge and approaches of the different
WVSs between them. However, in certain scenarios, this approach my lead to
unnecessary URLs. For instance, if a WVS randomly modifies a URL parameter,
and the WA consistently responds with a non-error response to these requests,
each of these URL variations will be saved and injected later. Nevertheless, our
quantitative evaluation shows that the injection of crawled URLs increases the
URL the WVSs access during their test (see Section 4.3.4.3).

Periodically Changing Content This limitation is addressed by the Mapping
add-on of the proxy, which facilitates the replacement or removal of period-
ically changing content that could potentially mislead a WVS. The current
implementation requires manual user interaction to identify this periodically
changing content. A user needs to identify the periodically changing content
and needs to specify its CSS selector. The efficacy of the Mapping add-on
was validated through an evaluation using SuT5 and ZAP. As stated, the
WA of SuT5 includes an XML feed showing the measured temperatures (see
Section 4.3.4.1). Once a minute, this feed is updated and ZAP occasionally
interprets the changes of the WA’s content incorrectly as a successful injec-
tion attempt. However, when using the Mapping add-on of HitM, these false
positive findings are fully eliminated.

User Login Some SuTs grant logged-in users access to more features than
unauthenticated users. Despite most WVSs supporting various authentica-
tion mechanisms, they may struggle with authentication against certain OT
components. Amongst others, this is based on the observation that many OT
components use specialized authentication mechanisms which WVSs usually
do not encounter in IT WAs. To aid WVSs during scanning, two Login add-ons
have been developed for HitM. One of these add-ons, the Selenium add-on,
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is of special help with the OT components. First, a user records a manual
authentication process with Selenium. This process is required once for each
SuT. Afterwards, this recording is loaded into the add-on and can then be used
to enhance the scanning capabilities of all used WVSs.

Our evaluation shows that using the Selenium add-on enables WVSs to scan
WAs requiring only a password (such as SuT3) or those with dynamically
changing session IDs (such as SuT5). However, the add-on encounters diffi-
culties with WAs utilizing background logic relying on regular calls to check
the authentication status (such as SuT2 and SuT4). To overcome this issue,
one would need to implement SuT-specific add-ons. Nevertheless, due to the
proxy-based approach of HitM, one would only need to implement such a
solution once for each SuT.

Reproducibility HitM addresses the limitation of non-reproducible scans by
running the WVSs in containers and taking snapshots of these containers. As
a result, the containers can be reset to a certain snapshot and the scan can
be run again from the same starting point. However, some WVSs generate
random data for their scans on the fly, potentially leading to different test
outcomes even if a run was started from the same snapshot. This challenge
can only be addressed by the WVSs directly and thus is out of scope for HitM.

Pause and Resume a Scan Pausing a scan, particularly when targeting OT
components, may be necessary to allow for time to restart the SuT. Leveraging
containers with snapshots enables HitM to pause the WVSs and resume them
once all necessary steps have been completed.

Conduction of Single Tests The containerization of WVSs also allows for
the execution of subsets of security tests, enhancing the efficiency of WVSs
lacking native support for running individual tests.

Load Reduction High network traffic loads can overwhelm certain SuTs. The
containerization implemented by HitM enables stopping and resuming a scan
as needed. For example, this helps in situations in which the SuT only allows
for a limited number of Transmission Control Protocol (TCP) connections. If
the proxy of HitM identifies a situation in which too many concurrent TCP
requests are sent by a WVS, it can pause the WVS. This allows the SuT to
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process the TCP requests, thereby freeing up resources. Then, the SuT once
again has enough resources to respond to new requests from the WVS after
the WVS is resumed by HitM.

Behavior in Case of an Error In the event of a SuT crash, WVSs may become
stuck, hindering further vulnerability testing. HitM addresses this limitation
by leveraging the combination of ISuTest® and the containerization of the
WVSs. As stated in Section 2.2.3, ISuTest® conducts regular monitoring cycles
to check whether one or more of the SuT’s services have crashed. During these
monitoring cycles, the WVS is paused. If ISuTest® detects that one or more
services of the SuT have indeed crashed, it restarts the SuT by performing a
power cycle. Subsequently, ISuTest® checks whether all services of the SuT
are responsive again. If this is the case, the containerized WVS is resumed
and can continue its tests. The crash of the SuT is noted by ISuTest® and
reported as a finding.

In the specific example of SuT1, using HitM offers two key advantages: Firstly,
a crash of SuT1 is automatically detected and SuT1 is restarted afterwards.
With this, the scans of the WVSs can be fully completed. Secondly, HitM logs
detailed information about the packages sent during the test and generates a
report about the crash, using features of ISuTest®. This data enables a security
tester to understand and further analyze the reported findings.

Different Scanners Necessary HitM supports the use of several WVSs by
making use of the corresponding new feature of ISuTest® [Pfr19b]. With this,
it is possible to schedule multiple scans using different WVSs. Each of them
is transparently supported by the features of HitM.

4.3.4.3 Quantitative Evaluation

Following the qualitative evaluation with respect to the limitations of WVSs
that are addressed by HitM, we present the results of our quantitative evalua-
tion that analyzes the actual performance of the WVSs when used with OT
components as targets. For this evaluation, we execute each of the considered
WVSs against SuT1, SuT2, SuT3, and SuT4, using each of the configurations of
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HitM presented in Section 4.3.4.1. We measure and analyze the true positive
and false positive reports of the WVSs, the final URL coverage, the performance
of the watchdog, and HitM’s impact on the runtime of the scans of the WVSs.
In summary, the evaluation reveals the following key insights.

1 The utilization of HitM and its add-ons leads to a higher
number of true positive reports.

2 However, for most SuTs, the false positive rate of reports
also increases with the utilization of HitM and its add-ons,
which supports the findings by Esposito et al. [Esp18].

3 For most SuTs, the final URL coverage is increased by HitM

and its add-ons.

4 The proxy itself is the primary factor impacting runtime,
suggesting potential for runtime improvements through
proxy enhancements.

Reports

The first part of the evaluation focuses on the analysis of the reports that
the WVSs generate as a result of their scans. We evaluate the true positive
reports and the false positive rate.

True Positive Reports Figure 4.6 displays the cumulative number of true
positive reports generated by the WVSs for each SuT. It is important to note
that the displayed number excludes false positives, but still includes duplicates.
Due to our blackbox approach, we are unable to ascertain the exact number of
distinct vulnerabilities that lead to the observed anomalies that then lead to
the WVSs’ reports. It might be that a single part of vulnerable code leads to
observable issues in several web pages of the WA. Nevertheless, we manually
analyzed and reproduced the reports of the WVSs to find the reports that
are false positives.
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Figure 4.6: Number of the cumulative true positive reports generated by the six WVSs for the four
SuTs. For each SuT, the number of true positive reports increases with the inclusion
of more add-ons of HitM.

Figure 4.6 shows the results of the following configuration of HitM: (1) bare,
where the WVSs are run without HitM, (2) proxy_W , where we use HitM

including the logging and the watchdog add-on, and (3) proxy_WLI , where we
use proxy_W and the login and the URL injection add-on (see also Table 4.4).
For SuT2, SuT3, and SuT4, the number of true positive reports steadily increases
with the inclusion of more of the add-ons of HitM. For example, the number of
true positive reports for SuT3 are at 35 for the bare configuration, increase to
40 with proxy_W , and to 73 using proxy_WLI . For SuT1, the number of reports
remains constant between the bare configuration and proxy_W (both at 143),
but rises to 928 with the introduction of the user login and URL injection
add-ons (proxy_WLI ).

False Positive Reports In addition to the number of true positive reports,
we also report the false positive rate of the reports generated by the WVSs.
Figure 4.7 presents the cumulative false positive rate of the WVSs for each SuT.
It shows that using HitM increases the false positive rate in comparison to the
bare configuration for SuT1 and SuT4. For SuT3, using HitM in the proxy_W
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Figure 4.7: Cumulative false positive rate of the reports generated by the six WVSs for the four
SuTs. Utilization of the user login and URL injection add-ons (proxy_WLI ) increases
the false positive rate for most of the SuTs.

configuration decreases the false positive rate from 5.4 to 0, but proxy_WLI
increases the false positive rate again to 63.5. For SuT2, both configurations
using HitM decrease the false positive rate in comparison to bare.

Discussion The analysis shows that the utilization of HitM increases the
number of true positive reports given by the WVSs. Even though Figure 4.6
includes duplicates, we analyzed the reported vulnerabilities and showed that
the increased number of true positive reports also includes reports that point
to vulnerabilities that were not reported previously. That means that the usage
of HitM actually leads to improved testing results.

Nevertheless, the false positive rate is also an important metric to evaluate the
performance of a WVS. If a WVS reports many false positives, it is harder for
a tester to identify the true positive reports which are worthwhile to analyze
further. For most SuTs, the false positive rate increases with the usage of
more add-ons, especially with the usage of the URL injection and user login
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add-on. These observations align with the findings of Esposito et al., who
similarly observed that integrating URL injection and user login increases
the false positive rate [Esp18].

Furthermore, our analyses show that the proxy itself has an impact on the
false positive rate. In the case that the SuT sends no response or an response
that cannot be parsed correctly, the proxy sends a response to the WVS with
the status code 502 (Bad Gateway). With this, the WVS usually assumes that
it somehow triggered an server error. Even though this actually reveals an
error in the SuT, the WVS reports all consecutive requests as an error and
thus generates many false positives.

Notably, for SuT2, the false positive rate was decreased by the usage of HitM.
This is mainly caused by the increased number of true positive findings, while
the number of false positives stays roughly the same. SuT2 is not as affected by
the increased false negative rate caused by the proxy as the other SuTs since it
reliably sends responses to the requests. Thus, the watchdog and ISuTest® are
never triggered during the tests and false positives based on proxy’s responses
as described above do not occur.

URL Coverage

An important metric to analyse the performance of a security test is the cov-
erage that the test achieved [Li21]. In the case of blackbox WA scanning, we
measure the URL coverage by counting the number of distinct URLs that were
covered during a test. The intuition behind this metric is as follows. If a WVS
fails to call a certain URL, it inherently cannot identify vulnerabilities present
on this particular web page. Therefore, a broader scope of visited URLs gener-
ally corresponds to a higher likelihood of uncovering vulnerabilities [Dou12].

In the following, we assess the percentage of URLs on a SuT that were visited
by at least one WVS, and compare the URLs present on a SuT with those
visited by the WVSs. We define the set of URLs that are present on a SuT as
the set of URLs in the URL index generated by the Logging add-on of the proxy
(see Section 4.3.3.2). In the case of the proxy_WLI configuration, in which the
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Figure 4.8: Cumulative URL coverage of the scans performed by the WVSs for each SuT. Generally,
the URL injection add-on introduced with proxy_WLI leads to a higher URL coverage.

URL injection add-on is used and thus the URLs of the URL index are injected
to the traffic, this results in an evaluation of how many of the injected URLs
are actually visited by the WVSs.

Results Figure 4.8 shows the cumulative URL coverage of the WVSs for each
SuT. For example, for SuT1, the URL coverage using the bare configuration
is at 8%. Utilizing HitM with the watchdog add-on already increases the URL
coverage to 88%, and the introduction of the URL injection add-on (proxy_WLI )
increases it to 100%. Note that for SuT3 no value is displayed for the bare
configuration. This is due to SuT3 using encrypted HTTPS traffic which we
cannot analyze without the use of a proxy which acts as a Man-in-the-Middle
and enables packet analysis for encrypted packets. Since the proxy of HitM
supports HTTPS packet analysis, we can analyse the URL coverage of the
proxy_W and proxy_WLI configuration.
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For SuT1 and SuT2, the utilization of the URL injection add-on increases the
final URL coverage. For SuT3, the proxy itself allows for a URL coverage of
100%, and the activation of the URL injection add-on does not change the final
URL coverage. Interestingly, for SuT4, the application of the proxy decreases
the URL coverage, but the utilization of the URL injection add-on increases the
URL coverage again to a value close to the results of the bare configuration
(91% and 90%, respectively).

Discussion The results for SuT1 and SuT2 show that the utilization of the
proxy with only the watchdog add-on activated already leads to an increased
URL coverage. There are several reasons for this, but for SuT1 the most
apparent reason is the watchdog add-on which enables full scans of the SuT
which were not possible in the bare configuration due to the SuT’s crashes. For
SuT4, the evaluation shows that the proxy with the watchdog add-on decreases
the URL coverage, and the URL coverage achieved with the URL injection add-
on does not exceed the URL coverage achieved with the bare configuration.
These results highlight the challenge of automatically generating a URL index
using non-deterministic WVSs. Especially due to Skipfish, the URL index
generated for SuT4 contains some URLs with randomly generated parameter
values that the WVSs visited during the generation of the index, but not during
the evaluation. See also Section 4.6 for a discussion on the non-determinism
of WVSs. Nevertheless, the results of this evaluation show that the utilization
of the proxy and its add-ons increase the final URL coverage in most cases.

Runtime

In addition to HitM’s impact on the performance of the WVSs, we also evaluate
its impact on their runtime. Since HitM utilizes a proxy which intercepts and
processes each packet sent between the WVS and the SuT, it is expected to
increase the overall time that is needed for a test. To quantify this hypothesis,
we run Nikto with each configuration of HitM against SuT2. We choose
Nikto for this evaluation since it generates its test deterministically and thus
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Figure 4.9: Mean runtime of ten runs of Nikto against SuT2 to measure the impact of the different
configurations of HitM. The proxy itself introduces the highest runtime increase.

the runtime of Nikto itself is relatively stable. This stability allows for an
assessment of the impact of HitM on the runtime. Moreover, we repeat each
run of Nikto ten times to achieve reliable results.

Results Figure 4.9 displays the median value, along with the minimum and
maximum runtimes of the ten runs of Nikto for each configuration. Firstly,
it shows that the virtualization of Nikto has minimal impact on its runtime.
Furthermore, the evaluation reveals that the additional add-ons for the proxy
do not significantly affect runtime. However, as expected, the introduction of
the proxy itself increases the runtime of the scan. For Nikto, it results in an
increase from 261.5 seconds to 2,305.3 seconds (factor of 9).

Discussion For Nikto, the results reveal an increase in runtime, while the
proxy itself has the highest impact on the runtime. This suggests potential
for runtime improvement through proxy enhancements or a substitution of
the proxy implementation.
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However, for some combinations of WVSs and SuTs, HitM was able to even
reduce the runtime. For instance, this is the case for the combination of
Arachni and SuT4. Using the bare configuration, Arachni reaches the number
of maximum allowed simultaneous TCP connections of SuT4 within roughly
31 seconds. Subsequently, Arachni fruitlessly attempts to establish new con-
nections until the test’s maximum runtime is reached and the test is inter-
rupted. Leveraging HitM, the watchdog of HitM detects this issue, prompting
ISuTest® to restart SuT4. Consequently, SuT4 can once again accept new
TCP connections, enabling Arachni to complete its tests successfully. In this
scenario, the runtime was reduced by a factor of 68 when comparing the bare
configuration to proxy_W .

4.4 Testing BCex

The security of the WA provided by BCex is evaluated in the preliminary
work on HitM [Pfr19b, Bor18], there denoted as BK1 and PHOENIX Buskoppler,
respectively. In these publications, the WVSs are combined with ISuTest®
without including the containerization and the proxy proposed and imple-
mented with HitM. Nevertheless, the combination of the WVSs and ISuTest®
already improves the WVSs’ performance. Furthermore, a manual analysis
and verification of the findings of the WVSs is presented these publications,
including an analysis of BCex.

For BCex, the WVSs report that several security-related HTTP headers are not
set, i.e., the X-Frame Options Header, the X-Content-Type Options Header,
and the Anti-XSS Header [Bor18]. Additionally, the integration of WVSs with
ISuTest® uncovers three DoS vulnerabilities within BCex. When a WVS floods
BCex with TCP packets with a high throughput, the WA becomes unresponsive
under the high load (CVSS 5.3). Ceasing the high load restores the WA’s
availability. However, if the WVS opens around 400 TCP connections simulta-
neously without closing them, the WA of BCex crashes (CVSS 7.5). BCex needs
to be restarted in order to make the WA available again.
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For the third DoS vulnerability, first, one of the diagnostic pages of the WA
needs to be accessed in a browser. These pages have the property of repeatedly
sending new HTTP GET requests in the background to keep the diagnostic
data up to date. When these requests are running, one needs to send a specific
HTTP POST request to BCex. As a result, the WA initially reports that the
Ethernet connection to BCex has been interrupted. Subsequently, this message
disappears, and the WA can be used as usual. However, the digital I/O interface
of BCex visually reports an error, using the physical LEDs, and does no longer
send the signals that are expected. Once BCex is restarted, all interfaces work
again as expected. This DoS vulnerability could only be revealed due to
the consideration and monitoring of all communication interfaces of BCex
(Challenge 4 (Insufficient Protocol Support)). All of these vulnerabilities have
been reported to the manufacturer. It showed that the third DoS affected
several devices by two vendors, and it was assigned a CVE identifier [CVE18].

Since the WA of BCex itself does not require authentication or includes any
input fields, the advantages of the proxy of HitM do not come into play, and
the utilization of HitM did not reveal any additional vulnerabilities of BCex.

4.5 Related Work

HitM addresses several limitations of the applicability of WVSs while also
considering the challenges of industrial security testing. To this end, it imple-
ments a proxy-based approach which can be used with several WVSs. This
section presents publications which are related to this objective and approach.
None of these publications is concerned with the specific use case of industrial
security testing. Note that some of the publications presented in this section
have been published after the publication of HitM [Bor20]. To provide a full
picture of the related work and state of the art, they are nevertheless included
in this literature review.
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Transparent Improvement of Web Vulnerability Scanners

One of the main objectives of HitM is to improve the performance of WVSs
in a way that is transparent to the WVSs. Three approaches from literature
also aim to transparently improve the performance of blackbox WVSs, two of
which were published after the publication of HitM in 2020.

JARVIS Esposito et al. present JARVIS, a solution that uses a proxy to im-
prove the WVSs’ performance, similar to HitM. While JARVIS was origi-
nally published in 2018 [Esp18], the authors published an extended version
in 2019 [Ren19].

The authors utilize the proxy to inject known URLs of the WA to the content
of other pages of the WA to improve the WVSs’ crawling capabilities. Further-
more, they use the proxy to authenticate to the WA, helping those WVSs which
are not supporting the WA’s authentication scheme. In their evaluation, Es-
posito et al. show that JARVIS increases the number of detected vulnerabilities
while also increasing the number of false positives for some WVSs.

While the objective and basic approach of JARVIS and HitM are the same, the
scope of HitM is different. On the one hand, HitM especially targets the domain
of industrial security testing and considers the specific challenges of this
domain. For example, this includes the need to monitor the responsiveness of
the WA to detect crashes, and the need to stop and resume the WVSs to handle
those crashes. On the other hand, HitM incorporates additional functionality
into the proxy. For example, HitM allows to improve the determinism of the
tested WA by mapping periodically changing content to fixed values. While
working on HitM, we reached out to the authors of JARVIS in order to obtain
the source code of JARVIS for conducting a thorough comparison. However,
due to intellectual property concerns, the authors were unable to provide
access to the source code.

In summary, JARVIS adopts a similar idea as HitM, but it diverges in focus and
the features it encompasses from those proposed and implemented by HitM.
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Scanner++ Yin et al. also propose a proxy-based solution, Scanner++, which
was published after the publication of HitM [Yin23]. Scanner++ uses a proxy-
based architecture with the objective to combine and thus enhance the capa-
bilities of the used WVSs. To this end, Scanner++ first extracts the crawling
and attack input generated by the WVSs when run in their basic configuration
by observing the resulting network traffic. Then, the WVSs are run again
while their detection is enhanced with the previously collected information
by injecting the additional information to the network traffic.

For their evaluation, the authors integrate four WVSs, and use ten bench-
mark WAs and three real-world WAs as targets. This evaluation shows that
Scanner++ improves the performance of the used WVSs in terms of the fi-
nal coverage, the number of unique packets generated by the WVSs, and the
number of bugs found. In particular, combining the capabilities of the different
WVSs results in a greater number of discovered bugs compared to simply
summing up the bugs found by the individual WVSs.

With this approach, Yin et al. pursue a similar goal as HitM, and improve upon
one of the features proposed by HitM. HitM synchronizes the crawling inputs
of the WVSs, while Scanner++, advances this synchronization by additionally
combining attack inputs generated by the WVSs. As Scanner++ does not focus
on the domain of industrial web security testing, other features of HitM, like
monitoring of the WA or pausing and resuming a scan, are not implemented
in Scanner++.

ReScan Drakonakis et al. also pursue the goal to transparently improve
the performance of blackbox WVSs [Dra23b]. The authors also choose to
build their approach, ReScan, based on a proxy. In contrast to the previously
presented publications, ReScan incorporates a fully-fledged browser. As a
result, dynamic content and client-side events can be evaluated and analyzed
as well. Furthermore, ReScan constructs an explicit navigation model of the
WA, and considers the different endpoints of a WA in their common context.
For their evaluation, Drakonakis et al. use four different WVSs against ten
WAs. They show that ReScan improves the performance of the WVSs in terms
of code coverage and detected vulnerabilities. Despite the similar objective
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of transparently improving blackbox WVSs, ReScan chooses a different focus
than HitM. Thus, both approaches are complementary and could be used in
combination.

Although Yin et al. [Yin23] and Drakonakis et al. [Dra23b] share the general
objective with HitM [Bor20] and JARVIS [Esp18], neither of them cites the
latter two publications.

Utilizing Additional Information in Blackbox Web Application Testing

The overall objective of this doctoral work and especially of HitM is to use the
information that is accessible during a blackbox test to improve the general
test performance. Trickel et al. follow a similar approach by providing graybox
information to blackbox WA fuzzers [Tri23]. The difference to the approach of
HitM is that the approach by Trickel et al., Witcher, collects actual graybox
coverage information to be used by the fuzzers. Thus, they are enriching
the information of the blackbox fuzzers by actual graybox information and
Witcher is to be classified as a graybox approach, which is also stated by the
authors. Nevertheless, the approach of Witcher does not need the source
code of the WA that should be tested but is based on changes to the respec-
tive language’s interpreter. Furthermore, Witcher’s improvements are not
transparent to the fuzzer.

Web Application Scanning for OT Components

Despite various sources indicating that the WA of an OT component frequently
serves as an entry points for attackers (e.g. [Gon19, Dra23a]), research on the
effective utilization of WVSs for OT components remains limited.

The Master’s thesis preceding this doctoral work [Bor18] as well as the corre-
sponding paper [Pfr19b] presents the integration of WVSs into the industrial
security testing framework ISuTest® as well as an extensive evaluation on the
WVSs’ performance when targeting OT components. This evaluation shows
that WVSs targeting WAs on OT components show a similar vulnerability
detection rate as when targeting IT WAs, but with the drawback of a higher

97



4 Industrial Web Security

false positive rate. In addition, several challenges that arise when running
WVSs against OT components are identified, such as the necessity of pausing
and resuming a scan of a WVS if the tested OT component crashes during
a test. HitM builds upon these findings.

Considering a related domain, the security of Internet of Things (IoT), Jean-
notte et al. present a security testing framework, which also includes two
WVSs [Jea19]. However, this work does neither explicitly state the specific
challenges of the IoT domain, nor do provides specific solutions to this.

4.6 Discussion

Acknowledging that HitM is to be seen withing the broader context of OT
component security, the following discussion contextualizes the results and
explains their implications in Section 4.6.1. Furthermore, this section discusses
the limitations of HitM and the associated evaluation in Section 4.6.2, while
also outlining possible directions for future work in Section 4.6.3.

4.6.1 Implications

Our analysis of known limitations of WVSs shows that WVSs especially strug-
gle in applicability. This includes, for example, the behavior of the WVSs
if the SuT is no longer available due to a crash or the load that is given on
the SuT. These limitations are especially relevant for testing OT components,
since these are resource-restricted and less resilient, and thus require more
monitoring and fine grained tests. In summary, our analysis suggests that TTs
need to acknowledge the special requirements of OT components to effec-
tively reveal their vulnerabilities. This underscores the broader notion that
the special requirements of OT components needs to be taken into account
when applying general security measures and approaches. Several publica-
tions come to a similar conclusion, including publications focussing on OT
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security in general [Idr19, Idr21] as well as publications focussing on specific
parts of OT security such as honeypots [Mae22], Security by Design [Flu22],
and security testbeds [Ani21].

HitM addresses several of the limitations that were identified during our anal-
ysis. With this, HitM supports the application of WVSs to OT components.
Especially, HitM uses a transparent, proxy-based approach, which allows for
arbitrary WVSs to be integrated into HitM. With this, HitM is not restricted to
a specific set of WVSs, but can improve the performance of arbitrary WVSs,
especially those which are to be built in the future,. We made sure to make
the add-ons to mitmproxy developed during this work publicly available (see
Section 4.2). With this, future research and security analyses can built upon
the results of this work and improve upon the current state of HitM.

While primarily focussing on evaluating HitM, the evaluation conducted in
this work also revealed several vulnerabilities in the tested SuTs. All of these
vulnerabilities were responsibly disclosed to the respective manufacturers. One
of the DoS vulnerabilities with a high severity present in BCex was assigned
a CVE identifier [CVE18]. Although other vulnerabilities were confirmed
by the manufacturers, they received no CVE identifiers. In most cases, this
can be attributed to the internal vulnerability management processes of the
manufacturers.

The primary focus of this doctoral work lies within the domain of testing OT
components. However, the applicability of HitM extends beyond this specific
domain. Notably, HitM could be used to improve testing of embedded systems
in general. Such systems share similar requirements and show behavior similar
to OT components during testing [Yun22]. For instance, embedded systems
are also likely to crash as a whole if the WA encounters an error. This behavior
can be detected and handled by HitM.
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4.6.2 Limitations

While HitM addresses several of the identified limitations, it still requires some
manual actions of the tester. For example, for uncommon or SuT-specific
authentication approaches, the current implementation of the authentication
add-on cannot derive the necessary steps for the authentication automatically.
Thus, it is necessary that a tester manually performs the authentication while
recording the steps using Selenium. This recording is then used by the Login
add-on to perform the authentication automatically during testing.

Some of the used WVSs use non-deterministic randomness for their tests,
which results in non-deterministic test processes and results. Thus, replaying
the test from a given snapshot of one of these WVSs will not necessarily lead
to the same results each time, restricting the fulfilment of the requirement of
reproducible tests. However, this problem cannot be solved without changing
the specific WVS and as such is out of scope for HitM.

Nevertheless, the non-determinism might also have an influence on the results
of the quantitative evaluation. While this is not common practice in WVS
evaluations, several runs of each configuration could have been run to receive
more reliable results. This is already best practice for related research domains
such as blackbox fuzzing [Kle18]. During the course of the evaluation of HitM,
this was not possible due to time restrictions.

A prevalent challenge in blackbox evaluations is selecting a metric to analyze
the performance of the evaluated TTs [Li21]. For the evaluation of HitM, we
employed the following metrics: (1) number of false positive reports, including
duplicates, (2) false negative rate, and (3) URL coverage. These metrics allow
for a relative evaluation of the WVSs. For an absolute performance evaluation,
establishing a ground truth for the number of vulnerabilities and the URLs of
the WAs would have been necessary. However, the nature of blackbox evalu-
ations using OT components prevented the creation of such a ground truth,
since the internal structure and the vulnerabilities of the SuTs are not known.
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4.6.3 Future Work

Future work comprises the improvement of automated URL index generation,
which would help the WVSs to improve their crawling capabilities. With
respect to the current approach of URL index generation, this could include
a reduction and clustering of the currently collected URLs. With this, the
number of URLs in the URL index could be reduced and thus the tests of the
WVSs would be more focussed.

The current implementation of HitM mainly focuses on rather simple WAs,
which do not make use of modern web approaches such as dynamically gen-
erated DOM content and asynchronous requests. One possibility to achieve
this would be to combine HitM with the approach presented by Drakonakis
et al. [Dra23b]. However, up until now, only few WAs of OT components
include such modern features, but it is to be expected that they will be included
in more WAs in the future.

In order to improve the runtime of HitM, one could investigate whether a
different proxy implementation could be used as a basis for HitM. Furthermore,
the evaluation and analysis of HitM could be extended by integrating more
WVSs and by testing more OT components.

4.7 Summary

With HitM, we proposed, implemented, and evaluated an approach that trans-
parently improves the applicability of WVSs in the domain of industrial se-
curity. During our evaluation, we successfully utilized HitM to test OT com-
ponents, revealing several previously unknown vulnerabilities of the WAs
of the OT components. We disclosed these vulnerabilities to the respective
manufacturer and thus contributed to the overall security of OT components.

As a first step, we conducted a literature review to analyze which limitations
of WVSs have already been identified by literature. This literature review
identified 22 limitations of WVSs, which we then clustered into four clusters.
Subsequently, we analyzed which of these limitations have been addresses by
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literature. It shows that only few approaches address limitations with respect
to the applicability of WVSs. These limitations are specially critical when
testing OT components, since those are less resilient. Thus, WVSs need, for
example, to be able to handle crashes of SuTs.

Based on these insights, we propose HitM, a proxy-based approach that trans-
parently addresses the limitations of WVSs, while focussing on limitations
with respect to applicability. HitM consists of a proxy, located in between the
WVS and the SuT, the containerization of the used WVS, and an integration
of the industrial security testing framework ISuTest®. Furthermore, HitM
comprises several proxy add-ons, such as a watchdog add-on which concur-
rently monitors the SuT, and a Mapping add-on, dealing with periodically
changing content.

Our evaluation, which was based on six WVSs and five OT components, shows
that HitM addresses limitations with respect to a WVS’s methodology (Crawl-
ing, Periodically Changing Content, User Login), and limitations with respect to
a WVS’s applicability (Reproducibility, Conduction of Single Tests, Load Reduc-
tion, Pause and Resume a Scan, Behavior in Case of an Error, Different Scanners
Necessary). Moreover, it shows that the application of HitM increases the
number of true positive reports and the final URL coverage. However, the false
positive rate also increases, which supports results from literature [Esp18].
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This chapter covers the subtopic of utilizing information from previously
performed whitebox and graybox tests to improve future blackbox fuzzing
tests of network stacks used in Operational Technology (OT) components.
We base our analysis and approach on three vulnerability groups concerned
with open source and commercial network stacks for Transmission Control
Protocol (TCP)/Internet Protocol (IP), namely Ripple20 [Koh20a, Koh20b],
Amnesia:33 [San21c], and Urgent/11 [Ser19] (Section 5.1). Based on the
knowledge from these vulnerability groups, we formulate Vulnerability Anti-
Patterns (VAPs) (Section 5.4.2) and, subsequently, derive blackbox tests from
these VAPs (Section 5.4.3). Our evaluation of these tests using eight OT com-
ponents reveals several previously unknown vulnerabilities. Three of these
vulnerabilities were assigned a Common Vulnerabilities and Exposures (CVE)
identifier [CVE21a, CVE21b, CVE21c]. Moreover, our evaluation shows that
implementations of the VAPs that we formulated spread over different im-
plementations of the same protocol as well as over different protocols and
different device classes (Section 5.4.4).

5.1 Problem Statement

OT components support several communication protocols, including indus-
trial protocols as well as standard internet protocols, and thus incorporate
several network stacks [Mar19]. These network stacks potentially introduce
vulnerabilities to the OT component that could be exploited by attackers. To
avoid exploitation, identifying and fixing these vulnerabilities is crucial. How-
ever, for a tester of an OT component, these network stacks are oftentimes
blackboxes, since the network stacks are often purchased from third-party
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vendors [Mar19, Dou23]. This is why blackbox tests and especially blackbox
fuzzing tests of network stacks in OT components are necessary to improve
the overall security of OT components. Nevertheless, there are use cases in
which the source code of network stacks is available, either since the stack
is open source or since the testing is performed in cooperation with the de-
velopers of the network stack. In this case, whitebox and graybox testing can
be conducted. In the approach presented in this chapter, we aim to combine
both cases and leverage insights from whitebox and graybox tests to improve
future blackbox fuzzing tests of network stacks.

5.2 Contributions

This doctoral work makes the following two main contributions to the domain
of industrial blackbox fuzzing.

Contribution 3. Analysis and clustering of published TCP/IP stack vulnera-
bilities, and derivation of VAPs which formalize the underlying causes of these
vulnerabilities.

We analyze the vulnerabilities published with Ripple20, Amnesia:33, and
Urgent/11, and cluster and thus structure the vulnerabilities as well as the root
causes for these vulnerabilities. First, we classify the vulnerabilities based on
the packet field they are concerned with, in order to understand the packet field
types that are commonly vulnerable. Second, we cluster the vulnerabilities
based on their root causes to understand which common root causes are
responsible for the vulnerabilities. Third, we select the most common packet
field types and formulate corresponding VAPs in order to make the knowledge
of the root causes available in a structured format.

We show that more than 50% of the vulnerabilities of Ripple20, Amnesia:33,
and Urgent/11 are concerned with either (1) a length or offset field, or (2) the
domain name. Additionally, we show that the vulnerabilities show similarities
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within different implementations of the same protocol as well as within dif-
ferent protocols. A tabular representation of the derived six VAPs is available
on GitHub [Bor21].

Contribution 4. Utilization of the newly developed VAPs to implement new
tests, and an evaluation of those tests which revealed three confirmed previously
unknown vulnerabilities of OT components.

To allow for an evaluation of the practical applicability of the structured
knowledge derived from whitebox and graybox tests, we implement blackbox
fuzzing test scripts which test for these VAPs. Our evaluation reveals eleven
findings, including anomalies in the behavior of the Systems under Test (SuTs)
and crashes. We disclose all findings to the manufacturer of the affected SuT,
of which three findings were assigned a CVE identifier [CVE21a, CVE21b,
CVE21c]. Moreover, our evaluation shows that similar vulnerabilities occur in
different implementations of the same protocol as well as in different protocols,
and also in different device classes.

We achieve this by integrating the fuzzing test scripts into the security testing
framework ISuTest®, allowing for an orchestrated execution of the test scripts
and monitoring of the SuTs. Based on this implementation, we run the test
scripts against eight OT components from five device classes. The main ob-
jectives of this evaluation are as follows. With this, we first evaluate whether
the test scripts based on the VAPs are able to identify vulnerabilities in the
network stacks of the OT components. Second, we analyze the distribution of
the findings, in order to understand whether similar vulnerabilities are found
in (1) different implementations of the same protocol, (2) different protocols,
and in (3) different device classes.

The approach presented in this chapter shows how information on network
stack vulnerabilities accessible prior to a blackbox test can be leveraged to
improve blackbox testing (Challenge 1 (Blackbox Testing), Challenge 2 (Missing
Information)). Furthermore, the resulting test procedures were incorporated
to ISuTest® (see Section 2.2.3) and thus all communication interfaces of the
SuT can be observed during testing (Challenge 3 (Insufficient Observations)).
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The content of this section is based on the corresponding publication produced
during this doctoral work together with Philipp Takacs [Bor22]. The publication
focuses on the technical details of the vulnerabilities and the implementation,
while the content of this section focuses on the contextualization of the topic
as well as a description of the VAPs.

Based on the crashes that have been identified with the approach presented
in this chapter, we call it ClusterCrash.

5.3 Related Work

ClusterCrash is related to the domains of VAPs, vulnerability scanning, and
industrial blackbox fuzzing. The following gives an overview of related work
in these domains.

Anti-Patterns Anti-Patterns serve as descriptors for common errors encoun-
tered during software design or development [Tum19, Hec15], management
practices [Jul13], code review [Cho21], and identifying vulnerabilities in de-
sign and development [Naf18]. Examples of such VAPs include the use of
deprecated software or lack of proper authentication. Moreover, there are per-
formance Anti-Patterns used in areas such as communication [Wer14, Tru18],
cyber-physical systems [Smi20], and simulated models [Arr18]. Literature
on Anti-Patterns published before the publication of ClusterCrash does not
specifically address security or vulnerabilities in network protocols, industrial
devices, or cyber-physical systems.

A research report by Forescout and JSOF, released concurrently with
ClusterCrash and titled NAME:WRECK, focuses on DNS vulnerabilities and
formulates six DNS Anti-Patterns [San21b]. The focus of NAME:WRECK differs
from the focus of ClusterCrash since it analyzes DNS vulnerabilities and
formulates DNS Anti-Patterns, while ClusterCrash chooses a more general
approach and considers all the protocols analyzed by Ripple20, Amnesia:33,
and Urgent/11. Since this also includes DNS, there are some similarities in the
Anti-Patterns of NAME:WRECK and ClusterCrash. The Anti-Patterns AP#3
and AP#6 of NAME:WRECK correspond to VAP4 and VAP5 of ClusterCrash,
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respectively, while AP#5 is partly covered by the test scripts generated based
on VAP3. AP#1 of NAME:WRECK covers predictable random functions within
DNS, which is a vulnerability that is usually not detected by fuzzing, since it
has no direct impact on the behavior of the SuT, but rather allows for easier
DNS spoofing attacks [San21b]. AP#2 is concerned with the character set of
domain names, which is, as the authors state, not a direct vulnerability, but
can make crafting new DNS packets easier for attackers. Again, this is not a
vulnerability that is usually found with fuzzing. AP#4 describes the lack of
validation regarding the NULL-termination of domain names. This is closely
related to VAP4, but covers a more specific case.

In summary, NAME:WRECK follows a similar goal as ClusterCrash, but focuses
on DNS, while ClusterCrash includes more protocols in its analysis. Note
that both research works where conducted in parallel, and thus the results by
NAME:WRECK could not be included in ClusterCrash. However, it would be
interesting to generate new test scripts based on the Anti-Patterns presented
by NAME:WRECK, and to analyze which new vulnerabilities could be found
using these test scripts.

Vulnerability Scanning One approach to finding known vulnerabilities
is vulnerability scanning. It involves scanning the SuT to find vulnerabili-
ties by identifying the software versions running on the SuT (see also Sec-
tion 2.3). Especially, scanners to identify the network stacks associated with
the vulnerability groups considered in ClusterCrash have been developed.
JSOF developed a blackbox scanner for Ripple20, available upon request,
while Forescout and ArmisSecurity have published their blackbox scanners
for Amnesia:331 and Urgent/112. These scanners actively profile the SuT
to determine if it includes any of the network stacks that are known to be
vulnerable with respect to the respective vulnerability group. To this end,
the scanners need to solve the following two main challenges. On the one
hand, it is challenging to create and maintain a complete list of network stacks
that are affected by a vulnerability group. This is based on the observation

1 https://github.com/Forescout/project-memoriadetector
2 https://github.com/armissecurity/urgent11-detector
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that the affected components are used in various network stacks in different
versions. On the other hand, fingerprinting the communication stack that is
used on an OT component is especially hard [Cas13, Biß23]. Nevertheless,
the scanner give a good indication on whether a OT component might be
vulnerable. Thus, we use these scanners in ClusterCrash to ensure that none
of the used SuTs is known to be vulnerable to the respective vulnerability
group. For NAME:WRECK, a whitebox scanner was developed, which requires
access to the source code of the SuT [Wan21d].

Industrial Blackbox Fuzzing Fuzzing is a testing technique that is in-
creasingly used in the domain of industrial security. Lan et al. and Wei
et al. both present an extensive overview of fuzzing in the industrial do-
main [Lan21, Wei24]. The following focuses on those fuzzers closely related
to ClusterCrash.

Lan et al. show that most fuzzers focusing on the industrial domain base their
test case generation either on heuristics or on grammars. These heuristics are
usually built based on the general knowledge of the developers, but are not
formally founded. One example for such a fuzzer is ISuTest®, presented by
Pfrang et al. [Pfr18], which is also discussed in Section 2.2.3. To generate new
test cases, ISuTest® employs static heuristics to select values for packet fields
based on their data type. These heuristics are based on insights from previous
projects conducted by the authors. Our approach, ClusterCrash, adapts a
broader scope by identifying VAPs and using these to pinpoint promising
field types and values for testing. Nevertheless, we implement the test scripts
that we derive from these VAPs in ISuTest®, to make them available for the
users of this framework.

Sasi et al. present R0fuzz, a blackbox fuzzer for the industrial communication
protocols Modbus and DNP3 [Sas21]. R0fuzz incorporates three approaches
for test case generation: random, generational, and mutational. The muta-
tional approach utilizes the response code sent by the SuT to determine the
interestingness of a test case. In contrast to ClusterCrash, this approach does
not incorporate information sources available prior to testing.
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Zhao et al. address a different problem in industrial network fuzzing by propos-
ing an approach to automatically infer the structures of a proprietary in-
dustrial network protocol which applies techniques from Machine Learning
(ML) [Zha19]. Lv et al. train ML models on network traffic data which are
then used to generate test cases for the seen network protocols [Lv21]. Similar
to ClusterCrash, these approaches leverage information sources accessible
prior to testing, but they focus on different information sources and utilize
the information to achieve different goals.

5.4 Cluster Crash

This section describes the work leveraging information from graybox and
whitebox tests to be used in blackbox fuzzing tests of OT components. Sec-
tion 5.4.1 details our analysis of published vulnerabilities, while Section 5.4.2
describes the derived VAPs. Information on the newly implemented blackbox
fuzzing test scripts based on these VAPs is provided in Section 5.4.3. The
evaluation of ClusterCrash is detailed in Section 5.4.4.

5.4.1 Analysis

The goal of this analysis is to understand the root causes and the similari-
ties between the considered vulnerabilities, with the underlying objective of
formulating VAPs on the basis of this analysis. We base our analysis on the
vulnerabilities published with Ripple20, Amnesia:33, and Urgent/11. In
total, these three vulnerability groups include 63 vulnerabilities and affect nine
network stacks. Ripple20 is concerned with the closed source Treck TCP/IP
stack [Koh20a, Koh20b], Urgent/11 affects the closed source Interpeak IP-
Net stack [Ser19], and Amnesia:33 shows vulnerabilities of nine open source
network stacks [San21c]. Of the 63 vulnerabilities, one vulnerability is not
concerned with a specific protocol, but represents a general vulnerability of the
Treck stack (CVE-2020-13987). This is why we exclude this vulnerability from
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Figure 5.1: Classification of the considered vulnerabilities based on the affected protocol and
packet field type. More than 50% of the vulnerabilities are related to a length or offset
field, or the domain name.

our analysis. The vulnerability CVE-2020-13987, however, affects both TCP
and UDP, which is why we divide it into two vulnerabilities for our analysis.
In the end, we base our analysis on 63 vulnerabilities.

First, we classify the vulnerabilities based on the protocol that they affect as well
as the packet field type they are based on. For our classification, we consider
length and offset fields to be the same packet field type, since the use cases
and error cases are similar. An aggregated representation of our classification
is shown in Figure 5.1. It shows, for example, that the vulnerability groups
included 14 vulnerabilities in DNS, of which 4 are based on a length or offset
field, while 7 are based on the domain name. The remaining 3 vulnerabilities
are concerned with other packet field types.
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Our analysis reveals that out of the 63 vulnerabilities, 29 (46.03%) are based
on a length or offset field, while 9 (14.29%) are based on the domain name
field. After these two field types, the next most occurring packet field type,
the ID field, is the base for only two vulnerabilities. Moreover, it shows that
vulnerabilities concerning length or offset fields spread over almost all the
considered protocols. Issues with the domain name, however, only occur in
DNS, mDNS, and LLMR, even though the protocols DHCP, DHCPv6, and
ICMPv6 also include domain name fields.

It is apparent that both length or offset fields, and domain name fields pose
high challenges to the network stack that needs to parse these packets. One
reason for this might be that most network stacks are implemented in C,
which does not enforce boundary checks. This leads to less robust code with
respect to length and offset calculations and accesses [Fet02]. The domain
name complicates the challenge of correct offset and length calculations with
a feature called compression [Moc87a, Moc87b]. This feature allows for a
compressed representation of a domain name by conceptually using pointers
that reference parts of the domain name that has been seen before. With
this, it shortens the representation of the domain name, but adds additional
complexity to the parser. For more details on the vulnerabilities and underlying
mechanics of the protocols, please refer to the respective publication [Bor22]
or the relevant Requests for Comments [Moc87a, Moc87b].

In summary, our analysis of the vulnerabilities reveals that the vulnerabili-
ties show similarities across different implementations of the same protocol
and also across different protocols. For instance, CVE-2020-11912, part of
Ripple20, enables an out-of-bounds read using TCP. This out-of-bounds read
is possible due to the absence of validation concerning the TCP option length

field, thus failing to account for the actual length of the TCP options. Sim-
ilarly, CVE-2020-17441 allows for an out-of-bounds read caused by missing
validation regarding the IPv6 payload length, not considering the actual
length of the IPv6 payload.
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Our analysis comes to the following conclusions:

1 More than 50% of the vulnerabilities are based on length or
offset fields, or domain name fields.

2 Similar vulnerabilities affect different implementations of
the same protocol as well as different protocols.

5.4.2 Vulnerability Anti-Patterns

Based on our analysis, we derive six VAPs for the most vulnerable field types,
namely length or offset fields, and domain name fields. These VAPs repre-
sent the underlying common causes for those vulnerabilities from Ripple20,
Amnesia:33, and Urgent/11 that are concerned with these two field types.
Refer to We present the VAPs in a tabular form which is based on the tem-
plate introduced by Nafees et al. [Naf18]. In the following, one of the VAPs
is presented in more detail to give insights on how the VAP was created and
what the different parts of the VAP represent. The tabular representation of
the VAPs was published upon publication of the corresponding paper [Bor22],
and can be accessed on GitHub [Bor21].

In general, the tabular representation of the VAPs is divided into the three
parts General Information, Anti-Pattern, and Known Exploitation [Naf18]. The
first part includes information on the name of the VAP, an alternative name,
a mapping to a Common Weakness Enumeration (CWE) ID, and examples
of vulnerabilities that are related to this VAP. CWEs are commonly used to
identify software and hardware weakness types1. The second part is concerned
with the actual content of the VAP, thus detailing the development practices
that are described by this VAP. This includes an example of an exploitable
scenario as well as typical causes for this vulnerability. The third part gives
information on the exploitability of the VAP by giving examples of attacks.

1 https://cwe.mitre.org/
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Table 5.1: Tabular representation of VAP1: Assume validity of length / offset field. Representation
and content based on [Bor21].

Category Description
General Information
Anti-Pattern Name Assume validity of length / offset field
Also Known As Improper validation of length and offset field(s)
CWE Mapping CWE-130: Improper Handling of Length Parameter In-

consistency
CVE Examples CVE-2020-11912, CVE-2020-17441
Anti-Pattern
Anti-Pattern Example Consider the example code in Listing 1. In this case, the

parser trusts the supplied length input without checking
it against the real length of the given input. If an attacker
sends a packet which contains a length field with the
value of 255 and has option A set, but only contains 64
bytes of data, an out-of-bounds read will happen in line
8.

Typical Causes Lack of input validation, and missing range checks
Known Exploitation
Attack Patterns CAPEC-540

These attacks are referenced to with their Common Attack Pattern Enumera-
tion and Classification (CAPEC) ID. These CAPEC IDs are commonly used to
uniquely identify and structure known attack patterns which have been used
by attackers 1. With the usage of commonly used identification numbers, such
as CVE, CWE, and CAPEC, the VAPs developed in this doctoral work provide
links to existing knowledge bases and thus are contextualized.

One of the VAPs, VAP1, is concerned with the two vulnerabilities that have
been discussed briefly in Section 5.4.1: CVE-2020-11912 and CVE-2020-17441.
Both are based on improper validation of a length field in the corresponding
protocol. Thus, this VAP describes the Anti-Pattern of assuming the valid-
ity of length or offset fields. Table 5.1 shows the tabular form of VAP1. As

1 https://capec.mitre.org/
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Listing 5.1: Example code snippet to illustrate VAP1. Presentation and content based on [Bor21].

1 while (*pkg) {

2 len = *(pkg + 1);

3 switch (*pkg) {

4 case NOOP:

5 len = 1;

6 break;

7 case DATA:

8 memcpy(data, pkg + 2, len - 2);

9 break;

10 default:

11 break;

12 }

13 pkg += len;

14 }

can be seen in the first section of VAP1, we mapped this VAP to the corre-
sponding CWE, CWE-130, which is concerned with the improper handling of
length parameters [MIT24]. Out of the considered vulnerabilities, CVE-2020-
11912 (Ripple20) and CVE-2020-17441 (Amnesia:33) are to be contributed
to this VAP.

As suggested by Nafees et al. [Naf18], we include an example of a vulnerability
that could be produced by this VAP to clarify the nature and practical impact
of the VAP. This example is based on the C code snippet shown in Listing 5.1.
This code snippet shows a simplified packet parsing and processing routine
that continuously expects new network packets to be provided in the buffer
pkg. First, in Line 2, the parser reads the length of the packet from the second
byte of pkg. Then, it reads the type of the packet from the first byte of pkg,
and parses the packet based on this type (Line 3). If the type indicates that
the packet is of type DATA, the parser reads len bytes, starting from the third
byte of the buffer pkg, and writes it into the data buffer (Line 8). Note that
the parser does not check whether the length of the currently parsed packet
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is equal to or greater than the number of bytes that is read in Line 8. Thus, it
would read too much data if the length given in the second byte of pkg were
greater than the actual data, resulting in an out-of-bounds read. While this
is a simplified example, it illustrates the problem that VAP1 addresses to and
the two related vulnerabilities are based on.

Moreover, the tabular representation of VAP1 includes information on known
exploitations by referring to CAPEC-540 [MIT18]. This attack pattern is
concerned with the general approach of out-of-bound buffer reads.

Similar to VAP1, VAP2 through VAP6 represent VAPs that are common
in the considered vulnerabilities from the vulnerability groups Ripple20,
Amnesia:33, and Urgent/11. For the details on VAP1 through VAP6, refer to
the tabular representation of these VAPs on GitHub [Bor21].

5.4.3 Test Scripts

The main objective of ClusterCrash is to utilize information and knowledge
from previous whitebox and graybox analyses for blackbox fuzzing tests of OT
components. To this end, we use our analysis results and VAPs to implement
15 blackbox fuzzing test scripts. These test scripts are implemented and run in
a true blackbox manner, meaning that we have no access to the SuTs’ source
code during development and the test scripts interact solely via the Ethernet
interface with the SuTs. The primary goal of these test scripts is to induce
anomalies or crashes in the tested OT components.

To ensure the usability of these test scripts, we design them to integrate with
the security testing framework ISuTest® (see Section 2.2.3 and [Pfr18]). While
standalone implementations require manual analysis of the SuT’s behavior
during the test, integrating the test scripts into ISuTest® allows for automated
monitoring of the SuT.

Our test scripts target the communication protocols DHCPv4, DNS, IPv4, TCP,
and UDP. We select these protocols based on the number of vulnerabilities
within the considered vulnerability groups that concern the respective protocol,
and their practical relevance for OT components. Initially, we identify the
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Table 5.2: Packet fields of the different protocols that have been considered in the test scripts,
including their types (length/offset (l/o) or domain name (dn)).

Protocol Type Target
IPv4 l/o length

l/o internal header length (ihl)
l/o option length

TCP l/o data offset
l/o option length
l/o urgent pointer

UDP l/o length
DHCP l/o option length

dn search option
l/o option payload termination
l/o zero length option payload

DNS dn compression pointer
dn label length
l/o qdcount
l/o rdlength

protocols with the highest vulnerability counts, including DNS and IPv6 (14
vulnerabilities each), TCP (12 vulnerabilities), DHCPv4 (4 vulnerabilities), IPv4
and IPv4 in IPv4 (3 vulnerabilities each), and ICMPv4, ICMPv6 and IGMP (2
vulnerabilities each). Additionally, considering the widespread use of UDP and
its vulnerability related to length fields, we also include it in our test scripts.

From this initial set of protocols, we narrow down our selection to those
commonly found in OT components, aligning with the focus of our research.
As a result, we select DHCPv4, DNS, IPv4, TCP, ICMP, and UDP. Each of these
protocols, except ICMP, features testable length or offset fields and domain
names, making them suitable for our test scripts. Hence, we exclude ICMP
from our selection and our final set of protocols comprises DHCPv4, DNS,
IPv4, TCP, and UDP.

116



5.4 Cluster Crash

Table 5.2 outlines the packet fields that test scripts target. These packet fields
include the length or offset fields and domain name fields of the considered
protocols, as our analysis shows that these packet field types are most vul-
nerable. For instance, we include three test scripts for the TCP protocol. The
first one fuzzes the data offset, the second one fuzzes the option length,
and the third one fuzzes the urgent pointer. Moreover, we include two
additional test scripts for DHCP, which test for vulnerabilities in the packet
field length parsing. The first additional test script, targeting option payload

termination, adds a termination character at the middle of the option pay-
load string. This enables us to assess the SuT’s response to such unexpected
terminations. The second additional test script, targeting zero length option

payload, sends packets with an option payload with a length of zero. With
this, we examine the SuT’s capability to handle unexpected payload lengths.

We implement the fuzzing test scripts based on Scapy1. Details on the imple-
mentation of the test scripts as well as workarounds needed to set all necessary
packet fields are provided in the publication on ClusterCrash [Bor22].

5.4.4 Evaluation

The objective of our evaluation is to analyze whether the test scripts resulting
from our analysis and VAPs can be used to identify previously unknown
vulnerabilities in OT components. Moreover, we aim to analyze whether
similar vulnerabilities spread over different implementations, protocols, and
device classes.

5.4.4.1 Evaluation Setting

We utilize our test scripts to assess eight OT components. Throughout this pro-
cess, the OT components remain blackboxes, allowing us to realistically evalu-
ate the efficiency of our methods and test scripts within a blackbox setting. Note
that the OT components that we use as SuTs for our evaluation are not known

1 https://scapy.net
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to include any of the vulnerabilities published by Ripple20, Amnesia:33, or
Urgent/11. This supports our objective of determining whether the VAPs
and the derived test scripts can be used to find new vulnerabilities in other
network stacks and OT components.

Hypotheses

Our evaluation of ClusterCrash is driven by the following hypotheses.

H1 Blackbox test scripts derived from our VAPs help to identify previously
unknown vulnerabilities.

H2 Implementations of VAPs do not only spread over implementations of
the same protocol but also over different protocols.

H3 Implementations of VAPs spread over different device classes.

Systems under Test

For our evaluation, we use eight OT components from five different device
classes. This ensures that our evaluation results have the potential to provide
insights with respect to our hypotheses. Moreover, we perform a fingerprinting
analysis revealing that each SuT includes a unique TCP/IP stack, further
enhancing variability and coverage of the chosen SuTs. Below, we provide
a brief overview of the functions and characteristics of the device classes
considered in this evaluation. Consistent with the remainder of this doctoral
work, we refrain from disclosing manufacturer details.

Firewall (FW) Acting as a barrier between network segments, a firewall like
the SuT FW controls traffic flow. In addition, FW provides an HTTPS Web
Application (WA) for configuration purposes.

Controller (Ctl) Industrial controllers monitor and control industrial pro-
cesses. We select two controllers for our evaluation, namely Ctl1 and Ctl2.
Ctl1 is a safety controller and thus meets higher redundancy and reliabil-
ity standards.
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Gateway (GW) GW1 and GW2 serve as OPC Unified Architecture (OPC UA)
gateways, linking various communication protocols to OPC UA. With this,
they facilitate combining and analyzing data from various sources.

I/O Device (IO) Industrial I/O devices serve to bridge analog and digital
actuators and sensors with controllers. IO1 allows for a coupling of PROFINET,
IO-Link, and digital and analog signals, while IO2 translates a controller’s
PROFINET communication to digital or analog signals, similar to BCex.

Sensor (Sen) The sensor used for our evaluation, Sen, functions as a temper-
ature sensor. It provides its measurements through various communication
protocols such as File Transfer Protocol (FTP), Simple Network Management
Protocol (SNMP) and Message Queuing Telemetry Transport (MQTT). Ad-
ditionally, Sen offers a WA displaying current measurements and allowing
for configuration.

5.4.4.2 Results

This section presents the results of our evaluation, while Section 5.4.4.3 dis-
cusses the presented results. During our evaluation, we encountered crashes
of the SuTs, as well as anomalies in their behavior. In the following, we use
the term finding as an umbrella term for crashes and anomalies.

Findings

We identify a total of 11 findings. Figure 5.2 displays these findings by the
affected protocol and the affected field type (length or offset, or domain name).
It shows, for example, that our evaluation reveals 3 anomalies in DNS. Of these
anomalies, 2 are concerned with a length or offset field, while 1 is concerned
with the domain name. Notably, our test scripts reveal findings across all
considered protocols except UDP, with the majority of findings affecting IPv4.

A more comprehensive breakdown of our results, as detailed in Table 5.3,
reveals anomalies in IPv4 and TCP, as well as crashes caused by testing DHCPv4
and DNS. In Table 5.3, anomalies are denoted by A, while crashes are indicated
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Figure 5.2: Findings of our test scripts, grouped by the affected protocol and field type. Except
for UDP, the test scripts reveal findings in each protocol.

by C. Runs of our test scripts in which no findings occur are marked with
dashes (-), while empty cells signify untested combinations. The untested
combinations are due to lack of support of the respective protocol by the
SuT. With respect to the previously mentioned findings in DNS, Table 5.3
shows that all of the three findings are crashes. One crash occurred in Sen
while testing the rdlength, and the other two in GW2. Of those two, one
also occurred while testing the rdlength, while the other occurred during
the test of the compression pointer.

Crashes Two of the DNS-related crashes are triggered by an rdlength value
exceeding the available data. For Sen as well as for GW2, an unexpected value
for rdlength results in the SuT stopping to send DNS requests. This behavior
indicates that the DNS resolver of the SuT crashed. In both cases, the expected
rdlength values was 4. However, the concrete value needed to trigger the
crash differs between the two SuTs. The DNS resolver of Sen crashes for a
rdlength of 0x084a, while the DNS resolver of GW2 crashes for 0xfd8c.
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Table 5.3: Crashes (C) and anomalies (A) of the SuTs as revealed by the blackbox test scripts.
Dashes (-) represent runs that do not reveal an anomaly or a crash, and empty cells
represent combinations where the SuT does not support the corresponding protocol.

Sen FW Ctl1 Ctl2 IO1 IO2 GW1 GW2
IPv4 len - - - - - - - -

ihl - - - - - - - -
optlen A A - A - - - A

TCP len - - - - - - - -
optlen - - - - - - - -
urgent - - - A - - A A

UDP len - - - - - - - -
DHCP optlen C - - - -

search - - - - -
term - - - - -
zero - - - - -

DNS cptr - - C
labellen - - - -
qdcount - - - -
rdlen C - - C

The third crash was caused by the test script targeting the compression

pointer in DNS. GW2 stops sending DNS requests after receiving two DNS
responses with a compression pointer of 0x05 and 0x06, respectively.
However, the SuT is still up and running, and the web interface can still be
used to trigger a new DNS request. Our further analysis suggests that the NTPd
process, which is responsible to regularly generate and send DNS requests,
has crashed. A reboot restores normal functionality.

The DHCPv4 test script targeting the option length results in a full crash
of Sen. If the DHCP ACK packet lacks expected values, the DHCP client
as well as all other services of Sen crash. Following a reboot, Sen resumes
normal operation.

Anomalies Moreover, several anomalies are revealed by running the test
scripts against the SuTs. The test script targeting the TCP urgent pointer

reveals anomalies in three of the SuTs, namely Ctl2, GW1, and GW2. Based on
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Figure 5.3: Run time of the test scripts, aggregated by protocol and averaged over the SuTs. The
DNS test scripts take longer since the DNS test scripts need to wait for the SuT to
establish a connection before being able to start the actual tests.

the usual use cases of the TCP urgent pointer, setting the urgent pointer

to zero is unexpected, since the urgent data needs to include at least one byte
and thus the pointer should be equal or greater than one [Ser19]. Thus, one
would expect that an OT component treats a packet with the urgent flag

set and the urgent pointer set to zero the same as a packet in which the
urgent flag is not set and for which, thus, the urgent pointer is not parsed.
However, our experiments show that the responses of the SuTs differ. For
example, GW1 always responds with an HTTP status code 200 Ok to requests
without the urgent flag, but sometimes responds with an HTTP status code
of 400 Bad Request to HTTP requests having the urgent flag set and a
value of zero for the urgent pointer. With this, we show that the urgent

pointer influences the HTTP response code, which is not to be expected.

Regarding IP, anomalies emerge in four industrial devices when the option

length is set to an unexpected value. Even if the length being either too long
or too short, the affected SuTs still reflect the content of the options back to the
sender. This is true even if the options include non-parseable content. However,
our manual analyses suggest that this anomaly cannot be exploited directly.
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Duration

To provide insight into the duration required for the tests of each protocol,
we report the timing of the test scripts in Figure 5.3. In this figure, each bar
represents the duration of test script runs for each protocol, averaged over
the runs against the eight SuTs. It shows, for example, that the tests of DNS
took 3.36 ⋅ 105 seconds (almost four days).

Notably, the test scripts for DNS exhibit significantly longer run times com-
pared to the other protocols. This is attributed to the difference in connection
establishment that is necessary for DNS. Since we are testing the DNS client of
the SuTs, the test script needs to act as the DNS server. Thus, the SuT needs to
initiate the DNS connection. Depending on the SuT, this takes some additional
time (see the corresponding publication for more information [Bor22]).

5.4.4.3 Discussion of Results

Our evaluation provides valuable insights into the hypotheses outlined in
Section 5.4.4.1. In the following, we describe the implications of our find-
ings presented in Section 5.4.4.2 concerning these hypotheses. To improve
readability, the hypotheses are repeated above the corresponding discussion.

H1: Blackbox test scripts derived from our VAPs help to identify previously
unknown vulnerabilities.

Our evaluation supports H1 since we developed the test scripts using a true
blackbox approach, and our evaluation reveals several crashes of the OT
components during testing. However, our test scripts did not lead to findings
in the UDP network stack implementations. A possible explanation for this
is that UDP is the least complex protocol we tested, and therefore less likely
to be vulnerable. This is also reflected in the vulnerability groups on which
we based our analysis, as only one UDP vulnerability was reported by the
three vulnerability groups (see Section 5.4.1).

H2: Implementations of VAPs do not only spread over implementations of the
same protocol but also over different protocols.
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Santos et al. showed in their work that similar vulnerabilities occur in dif-
ferent implementations of the same stack [San21c]. Our evaluation supports
this observation. For example, Sen, FW , Ctl2, and GW2 all show the same
anomalous behavior for the IPv4 protocol when testing the option length.
Going one step further, our evaluation suggests that implementations of one
VAP also spread over different protocols, thus supporting H2. For instance,
our evaluation demonstrates this for VAP1 (see Section 5.4.2). On the one
hand, one of the crashes in DNS is caused by an rdlength value exceeding
the length of the available data. On the other hand, anomalies in IPv4 stem
from an option length exceeding the length of the available data.

H3: Implementations of VAPs spread over different device classes.

Our evaluation supports this hypothesis since our results show implemen-
tations of VAPs over several device classes. For instance, this holds for the
anomalous behavior triggered by the test script targeting the IPv4 option

length. These anomalies can be observed for Sen, FW , Ctl2, and GW2. Each
of these SuTs is from a different device class.

5.5 Testing BCex

In addition to the previously described evaluation, we also tested BCex, the bus
coupler used as a running example for this doctoral work (see Section 1.6). As
BCex does not support DHCP or DNS, we only run the test scripts regarding
IPv4, TCP, and UDP. We find that our IPv4 test scripts lead to a crash of BCex.
This crash happens when we send an ICMP echo request to BCex, where the
ipv4_len field is set to zero. Interestingly, if we send a TCP packet, also with
ipv4_len set to zero, BCex does not crash. Apparently, the crash is dependent
on the payload of the IPv4 packet.
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5.6 Discussion

This section puts the results of ClusterCrash into context and shows the
implications of the findings revealed by our evaluation in Section 5.6.1. More-
over, this section discusses the limitations of ClusterCrash in Section 5.6.2,
and outlines possible directions for future research in Section 5.6.3.

5.6.1 Implications

Following the previously described evaluation and the evaluation of BCex, we
used the test scripts and approaches to test other OT components. Especially,
we analyzed an industrial network switch regarding its behavior concerning
the vulnerabilities published in the considered vulnerability groups by using
our test scripts. Moreover, we included other known vulnerabilities, such
as CVE-2014-47271, in our analysis. Based on our test scripts and additional
manual analysis based on the aforementioned vulnerability, we found three
previously unknown vulnerabilities of the switch. These vulnerabilities are
based on TCP fragmentation [CVE21a], the urgent pointer [CVE21c], and
Cross-site Scripting (XSS) via the LLDP protocol [CVE21b].

As with the other evaluations and findings of this work, we responsibly dis-
closed our findings to the respective manufacturers (see Section 2.2.2.2). With
this, we ensure that the manufacturers are aware of the findings and can react
accordingly. The findings that we revealed during the work on ClusterCrash

affected the OT components of five manufacturers.

We contacted two of the manufacturers directly, and one of them acknowledged
the vulnerabilities, published the vulnerabilities accordingly, and assigned
them a CVE identifier [CVE21a, CVE21b, CVE21c]. The other manufacturer also
acknowledged the vulnerabilities and fixed them, but was neither willing to
publish the vulnerabilities, nor to assign a CVE identifier. The remaining three
manufacturers were contacted via CERT@VDE, the Computer Emergency

1 https://www.cve.org/CVERecord?id=CVE-2014-4727
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Response Team (CERT) of the German Verband der Elektrotechnik, Elektronik
und Informationstechnik (VDE). This CERT handles and coordinates vulnera-
bility reports in the industrial domain, especially if they concern one or more
of their members. We have discussed the anomalies with one of the developers
and as a result of this discussion we have found that for some anomalies the
source of the anomalous behavior is not the respective SuT, but the network
stack of the Test Device (TD). Therefore, we do not consider these anomalies
in our evaluation, but mention them in this discussion as it illustrates the
challenges of blackbox testing.

In summary, ClusterCrash shows how knowledge from whitebox and gray-
box analyses can be generalized and be used to perform blackbox testing of OT
components. This builds a solid base to implement new blackbox test scripts
and to improve blackbox network fuzzing. Note that these test scripts are
not limited to the domain of industrial security, but could be used to perform
blackbox tests against arbitrary network stack implementations.

Moreover, we run the newly developed test scripts against OT components
and revealed six vulnerabilities that have been acknowledged by the respective
manufacturer. However, we encountered some difficulties during reporting
these vulnerabilities caused by different maturity levels of the vulnerabil-
ity handling processes by the manufacturers. As a result, only three of the
acknowledged vulnerabilities were assigned a CVE identifier.

5.6.2 Limitations

One of the assumptions of ClusterCrash is the adoption of a realistic setting
in which we perceive the SuTs as blackboxes. This perspective allows us to
analyze and understand the requirements needed for blackbox tests of OT
components. Nevertheless, this assumption also imposes certain limitations
on our analysis and evaluation of vulnerabilities of the OT components.
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Firstly, we are unable to ascertain the specific network stacks utilized by the
SuTs. To address this limitation, we leverage fingerprinting techniques by
employing tools like nmap1 to identify the network stacks used by the SuTs.
With this, we are able to demonstrate that all SuTs used for our evaluation
use different network stacks.

Secondly, our ability to analyze the identified vulnerabilities is limited. Without
access to the source code, it is challenging to definitely attribute each finding to
its VAP and identify the underlying cause of an anomaly or crash. Nevertheless,
the observable behavior already provides valuable insights into the relationship
of findings and VAPs. To address this limitation, we report our findings to the
corresponding manufacturers and discuss the implications of these findings
with the developers (see Section 5.6.1).

5.6.3 Future Work

Future work comprises the extension of ClusterCrash into other domains
and the inclusion of additional vulnerability groups. For instance, it would be
interesting to explore the applicability of our VAPs and test scripts to Internet
of Things (IoT) and Industrial Internet of Things (IIoT) devices. Since our VAPs
and test scripts make no domain-specific assumptions about the SuTs, such an
evaluation would be possible without the need to make significant changes to
the VAPs and test scripts. In addition, the analysis that builds the base for the
VAPs and test scripts could be extended by additional vulnerability groups such
as INFRA:HALT [San21a] or NAME:WRECK [San21b] (see also Section 5.3). To
further advance the automation of our test scripts, the state machine necessary
for our DNS test scripts could be fully integrated into ISuTest®.

1 https://nmap.org/
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5.7 Summary

ClusterCrash structures general information on vulnerabilities in OT com-
ponents by formulating VAPs. In addition, ClusterCrash provides test scripts
that can be used to test OT components for implementations of the VAPs.
Moreover, the evaluation of the test scripts of ClusterCrash reveals sev-
eral vulnerabilities that now have been fixed by the manufacturers and thus
improving the security of OT components and the production facilities they
are used in.

To achieve this, ClusterCrash utilizes the knowledge of whitebox and gray-
box tests for blackbox fuzzing of OT components. More specifically, it analyzes
and clusters the vulnerabilities published within the vulnerability groups
Ripple20, Amnesia:33, and Urgent/11. It shows that more than 50% of the
vulnerabilities are concerned with a length or offset field, or a domain name
field. Based on this analysis, we derive six VAPs which summarize the under-
lying root causes for these vulnerabilities. These VAPs then are used to derive
15 blackbox fuzzing test scripts which test for implementations of these VAPs.

For our evaluation, we run these 15 test scripts against eight OT components
and report our findings with respect to anomalies and crashes. In total, we
report 11 findings affecting DHCPv4, DNS, IPv4, and TCP. We disclose the
findings to the respective manufacturers. Six of the findings are acknowledged
by the affected manufacturers, and three of them are assigned CVE identi-
fiers. Moreover, our evaluation shows that implementations of VAPs spread
over different implementations of the same protocol, different protocols, and
different device classes.
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This chapter covers the preprocessing of raw network traffic data for model-
based blackbox fuzzing in the industrial domain. In this use case, the objective
is to train Machine Learning (ML) models on network traffic generated during
fuzzing, and to leverage these models to enhance the fuzzing process. To
input the network traffic into ML models, the network traffic needs to be
preprocessed first.

Our use case presents two specific requirements for this preprocessing. First,
the preprocessing should be agnostic of the network protocols used, facilitating
adaption to the diverse protocols used in the industrial domain, particularly
proprietary protocols without accessible parsers. Second, although the prepro-
cessing is intended for network traffic generated during fuzzing, it cannot be
assumed that such data is always available for training purposes. Therefore,
our goal is to develop preprocessing methods that can be trained on small
datasets of user-generated network traffic and subsequently be applied to
fuzzing network traffic.

The work presented in this chapter focuses on the preprocessing of network
packets, with the downstream application being blackbox fuzzing using Hidden
Markov Models (HMMs), as outlined in Section 7.5.

We analyze existing preprocessing approaches from literature in Section 6.4.1
and propose our novel preprocessing pipeline, including three options for
dimensionality reduction, in Section 6.4.2. These options consist of a Principal
Component Analysis (PCA) (denoted as PCA), an Autoencoder (AE) (denoted
as AE), and the Convolutional Autoencoder (CAE) CAPC as proposed by Chiu
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et al. [Chi20]. We evaluate the performance of this preprocessing pipeline
with a special focus on the performance of the three dimensionality reduction
approaches in Section 6.4.3.

Our experiments demonstrate that CAPC achieves the smallest reconstruction
error when trained and validated on the same dataset. However, they also
reveal that AE yields smaller reconstruction errors in a scenario where the
dimensionality reduction approaches are trained on a small dataset with user-
generated network traffic, and validated on a fuzzing dataset. This suggests
that AE generalizes better. Moreover, our experiments confirm that the output
dimension chosen for the dimensionality reduction affects the reconstruction
error during training and validation, with the error decreasing as the output
dimension increases. As such, there is a trade-off between having a low-
dimensional encoding required for efficient data processing, and maintaining
as much packet information as possible.

6.1 Problem Statement

One valuable data source that is available during blackbox tests, particularly
during blackbox fuzzing, is the communication between the Test Device (TD)
and the System under Test (SuT) as captured on the network. However, this
network traffic must undergo preprocessing before it is usable by downstream
ML models [Chi20]. Given the industrial focus of this doctoral work, it is crucial
to recognize the unique demands of this domain. Specifically, the diverse, often
proprietary communication protocols supported by the Operational Tech-
nology (OT) components pose significant challenges for leveraging network
traffic efficiently (Challenge 4 (Insufficient Protocol Support), Challenge 3
(Insufficient Observations)).

Analyzing the specific contents of network packets, as achieved through deep
packet inspection methods (see e.g. [Mag17, Ant12]), requires parsing each
individual network protocol. In contrast, this doctoral work presents an ap-
proach that is protocol-agnostic, facilitating network traffic preprocessing
without assuming parsers for each network protocol.
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Raw packet bytes

Preprocessing

Dimensionality reduction from 𝑑𝑖 to 𝑑𝑜

Preprocessed packets

ML model

Model output

Figure 6.1: Overview of the general approach to preprocessing network packets for ML models.

Preprocessing only serves as the foundational step for subsequent data pro-
cessing tasks, as presented in Figure 6.1. In the context of this doctoral work,
the primary goal is to utilize preprocessed network data for model-based test-
ing, with a particular focus on training multivariate HMMs (Section 7.5). The
number of parameters of an HMM is directly linked to the dimensionality
of its inputs, and minimizing the number of HMM parameters is essential
for improving training efficiency [Cad22]. Therefore, one key objective of
preprocessing the network data is to reduce the dimensionality of the data.

The approach presented in this chapter aims to preprocess network packets
independently of specific communication protocols, ensuring suitability for
ML models while prioritizing dimensionality reduction.
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6.2 Contributions

This doctoral work makes the following contribution to the topic of network
packet preprocessing. Based on the topic it contributes to, we call the newly
presented approach NeDaP.

Contribution 5. Analysis and evaluation of three approaches to network packet
preprocessing with the goal of model-based security testing.

We analyze three different approaches for network packet preprocessing and
evaluate their performance. Specifically, we use a pipeline of preprocessing
steps based on the work by Chiu et al. [Chi20] and Lotfollahi et al. [Lot20], and
then reduce the dimensionality of the resulting data with three different means:
(1) a PCA, (2) a basic AE, and (3) the CAE presented by Chiu et al. [Chi20],
denoted as PCA, AE, and CAPC, respectively. We evaluate the performance
of these approaches by measuring their reconstruction errors. In summary,
our experiments show that CAPC outperforms PCA and AE if we train and
evaluate the dimensionality reduction approaches on a single dataset, while AE
outperforms the other two approaches if we train the approaches on user data
but validate them on fuzzing data. The latter use case is the more realistic one,
since we assume access to a small user data dataset, but the dimensionality
reduction approaches are then used on fuzzing data.

NeDaP does not assume information on the used communication protocol and
thus can be applied to blackbox testing as well as to industrial communi-
cation protocols (Challenge 1 (Blackbox Testing), Challenge 4 (Insufficient
Protocol Support)).

6.3 Related Work

The work presented in this chapter, NeDaP, generally relates to the domain of
traffic analysis and specifically network traffic classification. In this research
domain, the objective is to classify the network traffic into certain categories,
such as normal or abnormal traffic, or the application type [Pac18]. This
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classification can, e.g., serve the tasks of intrusion detection [Zen19], cyber
attack classification [Spe24] and quality of service management [Hir09]. For
this classification, the network traffic needs to be preprocessed first, linking
it to the work presented in this chapter.

In the past, traffic classification relied on port-based methods, identifying appli-
cations by their registered Transmission Control Protocol (TCP) ports [Pac18].
However, this approach becomes unreliable if applications use random or
unregistered ports. Going one step further, deep packet inspection analyzes the
payload of network packets [Mag17]. However, this approach is restricted to
use cases in which a parser for the considered protocol is available and the
payload is not encrypted. To address these challenges, ML has emerged as
a viable solution, enabling not only traffic classification but also prediction
and new knowledge discovery [Pac18]. The ML-based approaches can be di-
vided into (1) flow-based approaches, and (2) packet-based approaches [Chi20].
Flow-based approaches rely their analyses on a packet flow, i.e. a set of re-
lated packets that is sent from a source to a destination [Pac18]. In contrast,
packet-based approaches focus on the classification of single packets.

As the use case for the network packet preprocessing discussed in this chapter
is packet-based model training for blackbox fuzzing, we focus on packet-
based traffic classification in the following. Moreover, accounting for the
protocol-agnostic approach of NeDaP, we focus on classification of encrypted
network packets. Similar to the analysis of non-parseable proprietary industrial
network protocols, the analysis of encrypted traffic also needs to rely on the
general features of a network packet since it cannot decrypt and parse its
actual payload.

Lotfollahi et al. and Chiu et al. present approaches for the analysis of encrypted
traffic that include preprocessing of single network packets to be used for
ML models [Lot20, Chi20], while Lim et al. choose a different preprocessing
approach and transform application level data of network packets to images
which are then fed into the ML models [Lim19]. Both of the first two approaches
perform several steps for the preprocessing of network packets, including
padding, normalization, and dimensionality reduction. As we also require the
preprocessing of single network packets, we base our approach on both of
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these works, and present a deeper analysis in Section 6.4.1. Both approaches
use the preprocessing to prepare the network packets to be fed into a Neural
Network (NN). This NN is then used to classify the packet, for example by
the application that created that specific packet. However, since the focus
of both publications is on the network traffic classification, their evaluation
only includes information on the performance of the resulting NN. In contrast,
our experiments presented in this chapter focus on the performance of the
network data preprocessing itself (Section 6.4.3). We apply the preprocessing
steps and evaluate the performance of the full application in Section 7.5.

As discussed in Chapter 3, other approaches in blackbox testing utilize network
traffic as well, and thus need to process it as well. Zhao et al., Lin et al. and Lv
et al. preprocess a network packet stream before feeding it into an Long Short-
Term Memory Network (LSTM). Lin et al. and Lv et al. both parse the network
traffic and extract the TCP payload from each packet [Lin21, Lv21], while Zhao
et al. use the full packets [Zha19]. The bytes are then converted into a decimal
representation and then directly fed into the LSTM. As an LSTM does not
require fixed-sized inputs, the data does not need to be padded. Moreover, the
authors do not require a dimensionality reduction approach as the parameters
of the LSTM to not depend on the length of the sequences.

PULSAR represents the network protocols by the occurrence of certain tokens
and n-grams within the network packet. For dimensionality reduction, PULSAR
excludes volatile features and constant elements [Gas15].

6.4 Preprocessing of Network Packets

The objective of the work presented in this chapter, NeDaP, is to analyze
the performance of various network packet preprocessing approaches, with a
special focus on dimensionality reduction. This builds the base for model-based
fuzzing with HMMs, as presented in Section 7.5. Initially, we review related
preprocessing approaches (Section 6.4.1.1), as well as five datasets from the
domain of industrial security testing (Section 6.4.1.2). We adapt the existing
approaches to this domain and present a preprocessing pipeline including
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three different dimensionality reduction approaches, a PCA, an AE, and a
CAE, in Section 6.4.2. Our evaluation focuses on the performance of these
three dimensionality reduction approaches with respect to in-domain and
out-of-domain generalization. Moreover, we analyze the impact of the input
dimension 𝑑𝑖 and the output dimension 𝑑𝑜 of the dimensionality reduction
approaches.

6.4.1 Analysis of Existing Approaches

As a basis for our approach and experiments, we analyze related approaches
from literature as well as datasets representing various use cases from the
industrial domain. The two relevant approaches from literature, namely CAPC

by Chiu et al. [Chi20] and Deep Packet by Lotfollahi et al. [Lot20], both
use similar strategies for the preprocessing of network packets. However,
they use protocol-specific knowledge for some of the preprocessing steps. In
contrast, we aim for an approach that is independent of the concrete com-
munication protocol, to be as flexible as possible (Challenge 4 (Insufficient
Protocol Support)). Moreover, CAPC and Deep Packet focus their evaluations
on the performance of the ML model using the preprocessed packets, while
we focus on the performance evaluation of the actual preprocessing, with a
special focus on the dimensionality reduction.

6.4.1.1 Preprocessing Steps

As shown in Section 6.3, network packet preprocessing is related to approaches
concerning the analysis of encrypted network traffic using ML models. Thus,
we analyze the approaches in this domain and build our work upon them. More
specifically, we analyze the work published by Lotfollahi et al. [Lot20] and
by Chiu et al. [Chi20], called Deep Packet and CAPC respectively. Table 6.1
presents an aggregated view on the preprocessing steps from the two publica-
tions as well as the preprocessing steps for NeDaP. This section gives details
on the approaches from literature, while Section 6.4.2 focuses on presenting
the new approach presented in this doctoral work.
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Table 6.1: Steps for network packet preprocessing as presented by literature [Lot20, Chi20], and
as proposed by this doctoral work. Both approaches from literature assume IP-based
traffic and trim or mask the corresponding headers or address fields. Furthermore,
both approaches fix the length of the input data to 1500. Since this work focuses on the
performance analysis of the preprocessing and dimensionality reduction, we include
three different approaches for the dimensionality reduction.

Deep Packet
[Lot20]

CAPC
[Chi20]

NeDaP

Trim Remove Ethernet
header

- -

Mask Mask IP address Mask IP address
and MAC address

-

Fix length Pad with zeros or
cut to a length of
1500

Pad with zeros or
cut to a length of
1500

Pad with zeros or
cut to a length of
𝑑𝑖 ∈ {304, 1504}

Normalize Normalize bytes
to [0,1]

Normalize bytes
to [0,1]

Normalize bytes
to [0,1]

Reduce
dimensions

(1) Stacked AE,
(2) 1D CNN

CAE (1) PCA,
(2) AE,
(3) CAE

All approaches take raw packet data as input. CAPC as well as NeDaP explicitly
use the packet bytes as input, while Deep Packet starts with the packet bits
and transforms them to bytes later on. However, this does not introduce a
conceptional difference between the approaches, since both approaches base
their actual calculations on the byte representation of the packets.

Deep Packet and CAPC both trim and mask the network packet first, while
assuming knowledge on the communication protocols used in this specific
packet. More specifically, both approaches assume IP-based traffic. Deep

Packet removes the Ethernet header of the packet, claiming that this header
does not include information necessary for the two tasks of Deep Packet,
namely application identification and traffic characterization. Moreover, Deep
Packet masks the IP address of the packet with a fixed value to prevent that
the trained model will draw conclusions from these addresses which will not be
transferable to other datasets. Driven by the same goal, CAPC masks the MAC
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address and the IP address in the network packet. Note that Deep Packet

does not mask the MAC address since this address is located in the Ethernet
header which is removed from the packet either way.

Since the ML models that the packets are preprocessed for expect a fixed input
size, both approaches conduct steps to produce data that is of fixed length. This
is achieved by zero padding those packets that are too short, and cutting those
packets that are too long. Deep Packet and CAPC both fix the length of the
packets to 1500 bytes. Note that the resulting data includes more IP payload
data for Deep Packet, since the Ethernet header is removed from the packet
before cutting. To ensure that each of the remaining bytes of the packet has the
same weight, the bytes are normalized to the interval [0,1] by both approaches.

Subsequently, both approaches perform a dimensionality reduction to generate
a more dense representation of the input data. Deep Packet uses two ap-
proaches for this, namely a Stacked Autoencoder (SAE) and a 1D CNN. A SAE
is an architecture consisting of several AEs. These AEs are stacked in a way
such that the output of one AE is used as the input of the next AE [Lot20]. With
this, more complex relationships within the features can be represented by the
AEs and a more efficient dimensionality reduction can be achieved [Vin10].
CAPC uses a CAE consisting of several convolutional and pooling layers. With
this, the authors aim to efficiently extract the relevant information from the
network packet [Chi20]. Since both approaches use convolutional parts in
their dimensionality reduction step, they focus on local correlations instead of
global correlations over the whole network packet [Pin21].

6.4.1.2 Network Data

As we locate our work in the domain of industrial security testing, and aim
for a preprocessing pipeline to be used for model-based fuzzing, we choose
corresponding datasets for our analysis and experiments. In the following, we
first describe the datasets and then analyze those properties that are relevant
for the preprocessing pipeline. Table 6.2 summarizes this information. Note
that the datasets contain a different number of network packets, with the
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maximum being 15,350. We aim to make our analysis as realistic as possible,
and in usual industrial security testing scenarios, only small sets of network
traffic data are available.

Industrial System This dataset is based on a testbed at Fraunhofer IOSB,
representing a real production environment. It includes bus couplers, sensors
and actors. We excluded the PROFINET realtime data from the original dataset,
since this would introduce a high class imbalance due to the high throughput
and thus high representation of realtime data in the dataset.

Vulnerability Scan In this dataset, we find a vulnerability scan conducted
using the web vulnerability scanner ZAP1. More specifically, it shows a scan of
the Web Application (WA) of an industrial controller. Thus, the dataset includes
various HTTP requests and responses, as the scanner tries to analyze the WA.

Web Fuzzing This dataset also includes traffic generated by ZAP, but that of a
fuzzing run. Again, this dataset includes mostly HTTP requests and responses,
but these requests and responses are rather untypical since ZAP mutates these
packets in various ways to reveal vulnerabilities in the scanned controller.
Thus, one would expect that this dataset poses a greater challenge to the
dimensionality reduction approaches than the previous dataset.

User Data This dataset shows traffic of a user interacting with a File Transfer
Protocol (FTP) server, namely ProFTP. It is part of the datasets recorded for
the subsequent model-based testing with HMMs. More details on the data
collection can be found in Section 7.5.2.

AFLnwe Fuzzing Similar to Web Fuzzing, this dataset includes fuzzing traffic.
In contrast, this dataset is based on FTP fuzzing conducted by the graybox
network protocol fuzzer AFLnwe2. It targets the same FTP server that is used
in the User Data dataset, ProFTP.

1 https://www.zaproxy.org/
2 https://github.com/thuanpv/aflnwe
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Table 6.2: Properties of the considered datasets, including the number of total packets, the median
packet lengths (PL), and the percentage of packet lengths that are smaller than the
threshold of 304. Moreover, we show the number of Principal Components (PCs) that
are needed to achieve ≥ 0.99 cumulative explained variance, giving a measure for the
complexity of the network packets in the respective dataset.

Name Total
Packets

Median PL PLs ≤ 304 PCs

Industrial System 15,100 60 99.7% 91
Vulnerability Scan 15,350 66 72.1% 108
Web Fuzzing 9,524 66 90.0% 30
User Data 1,127 72 98.7% 36
AFLnwe Fuzzing 15,100 74 99.7% 49
BCex 944 60 100.0% 104

BCex This dataset includes the traffic of a user interacting with the FTP
server of the running example bus coupler BCex. The user performed the same
actions as in the User Data dataset, but BCex does not support all of the used
FTP commands. For example, it does not support creating new directories
or renaming files.

Packet Lengths

The first property of the datasets that we analyze is the total length of the
packets included in the datasets, including all headers. Similar to Lotfollahi
et al. [Lot20], we use this information to choose possible values for the fixed
packet length 𝑑𝑖 for our experiments. Lotfollahi et al. show that 96% of packets
in their dataset have a total length of less than 1500 bytes and thus decide to
set the fixed length to 1500 during preprocessing.

As an example, Figure 6.2 shows an FTP packet taken from User Data, including
the raw bytes on the left and the corresponding text on the right. This packet
forms a request to get the contents of the folder Testfolder1. It includes 14
bytes of Ethernet header (green), 20 bytes of IP header (red), and 32 bytes of
TCP header (blue). The FTP payload consists of the final 18 bytes requesting
the contents of the test folder (orange). In total, this network packet has a
length of 84.
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02 42 ac 13 00 02 02 42 ab e7 0e 69 08 00 45 00 .B.....B ...i..E.

00 46 22 eb 40 00 40 06 bf 9d ac 13 00 01 ac 13 .F".@.@. ........

00 02 95 84 00 15 0d e2 1f f9 39 07 22 53 80 18 ........ ..9."S..

01 f6 58 62 00 00 01 01 08 0a f0 04 5f 61 fb 5e ..Xb.... ...._a.^

31 e6 43 57 44 20 2f 54 65 73 74 46 6f 6c 64 65 1.CWD /T estfolde

72 31 0d 0a r1..

Figure 6.2: Bytes representation of a FTP packet with a length of 84, showing the bytes on the
left and the corresponding text representation on the right. Non-printable characters
are represented as dots. The shown packet consists of an Ethernet header (green), an
Internet Protocol (IP) header (red), a TCP header (blue), and a FTP payload (orange)
requesting to change the working directory (CWD) to the folder TestFolder1.
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Figure 6.3: Box plot of the total packet lengths observed in the datasets, with the boxes showing
the upper and lower quartile and the whiskers showing the minimum and maximum
value. The two horizontal lines show the fixed packet lengths used for the experiments
at 304 and 1504.

Figure 6.3 shows a box plot representing the packet lengths that we observe
in our datasets. The boxes represent the upper and lower quartile, while
the whiskers show the minimum and maximum values. For example, the
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Vulnerability Scan dataset shows a maximum packet length of 2205 and a
minimum packet length of 42. Note that the values on the y-axis are shown
on a logarithmic scale.

As we aim to propose a preprocessing pipeline suitable for network fuzzing,
we focus on the User Data, BCex, Web Fuzzing, and AFLnwe Fuzzing datasets
to choose possible values for the input dimension 𝑑𝑖. Based on the packet
length data, we first choose 𝑑𝑖 = 304 for our experiments. With this number,
90.0% of the packets have fewer bytes than this threshold for Web Fuzzing, and
99.74% for AFLnwe Fuzzing (see also Table 6.2). For the dataset recorded with
BCex, 100% of the network packets have a length smaller than 304. Within
User Data, 15 packets are longer than 304 bytes. Each of these packets is
an FTP data connection packet. The FTP data connection is an additional
communication channel opened for data transfer within FTP [For10]. Within
this additional channel, possibly large files are transferred and thus the FTP
data connection packets tend to be larger in size. However, since most fuzzers
only consider the control connection and not the data connection, these packets
are unlikely to appear in usual fuzzing scenarios. With this, we should be
able to cut the packets at a length of 304 bytes without changing the actual
content of the packets much.

Moreover, 304 is divisible by 8, which helps with the implementation of the
CAE used by CAPC that we will be using for our experiments, since it requires
to divide the number of input dimensions into halves three times. Thus, if we
choose a number divisible by 8, less rounding effects are to be expected. We
choose 𝑑𝑖 = 1504 as the second option for our experiments. On the one hand,
we based this choice on the results from literature. On the other hand, Figure 6.3
shows that all packets in Web Fuzzing and AFLnwe Fuzzing are below this
threshold and thus it serves as a good baseline for the other choice, 𝑑𝑖 = 304.

Explained Variance

The second property of the datasets that we analyze is the number of PCs that
are needed to explain the datasets. For this, we conduct multiple PCAs, each
with a different number of PCs, and calculate the cumulative explained variance.
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Figure 6.4: Cumulative explained variance for the considered datasets. Industrial System and
Vulnerability Scan are the most complex datasets, while the two most relevant datasets,
User Data and AFLnwe Fuzzing, need fewer PCs to be explained. We choose the output
dimensions 8, 24, 48, and 64 for our evaluation and represent them as dashed lines in
the figure.

The explained variance denotes how much of the total variance of the used
dataset is explained by each PC [Gér22]. Therefore, the cumulative explained
variance indicates how much of the total variance of the dataset is explained
by all PCs of a PCA together. We leverage this metric to identify choices for
the output dimension that is to be achieved by our dimensionality reduction.
Our goal is to identify a dimension that sufficiently captures information while
remaining manageable for the subsequent ML model utilizing the preprocessed
data. Note that a PCA uses only linear mappings, while AEs can learn non-
linear mappings. Nevertheless, the explained variance helps us to select a
number of possible choices for the dimensions to be further evaluated during
our experiments.

Figure 6.4 displays the results of this analysis, showing the number of PCs on
the x-axis and the cumulative explained variance on the y-axis. It shows that
the curves for Industrial System and Vulnerability Scan converge slower than
the curves representing the other datasets, indicating that these two datasets
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are more complex. For example, 91 PCs are needed to achieve a cumulative
explained variance ≥ 0.99 for Vulnerability Scan, while only 30 PCs are needed
for Web Fuzzing (see also Table 6.2). With respect to our use case of model-
based fuzzing, User Data and AFLnwe Fuzzing are the most relevant datasets.
For User Data, 36 PCAs are needed for a cumulative explained variance of
≥ 0.99, while 49 PCs are needed for AFLnwe Fuzzing.

Based on these observations, we choose 8, 24, 48, and 64 as output dimensions
for the dimensionality reduction step in our experiments. We will evaluate
the impact of the chosen output dimension in Section 6.4.3.

6.4.1.3 Analysis Conclusions

Our analysis leads to the following main conclusions:

1 The two related approaches from literature, CAPC and Deep

Packet both use similar preprocessing steps, wile using
protocol-specific knowledge for some of the steps.

2 In the two most relevant datasets, User Data and AFLnwe
Fuzzing, more than 98.7% of the packets are shorter than
304. Thus, we choose 304 and the value from literature,
1504, as possible choices for the input dimension 𝑑𝑖 for our
experiments.

3 For User Data and AFLnwe Fuzzing, up to 49 PCs are needed
to achieve a cumulative explained variance of ≥ 0.99. We
choose 8, 24, 48, and 64 as possible choices for the output
dimension 𝑑𝑜 for our experiments.
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Representation of the packet with dimension 𝑑𝑜

Figure 6.5: Preprocessing pipeline for NeDaP. The raw packet bytes are cut or padded to a fixed
length of 𝑑𝑖, the values are normalized, and then the dimensions are reduced by either
PCA, our AE, or CAPC. The input dimension 𝑑𝑖 and the output dimension 𝑑𝑜 are varied
in our experiments (𝑑𝑖 ∈ {304, 1504}, 𝑑𝑜 ∈ {8, 24, 48, 64})

6.4.2 Approach

Our approach presented below, NeDaP, builds upon the aforementioned analy-
sis and integrates multiple preprocessing steps to turn raw network packets
into a representation suitable for utilization by ML models. The full prepro-
cessing pipeline, including the different options for dimensionality reduction,
is shown in Figure 6.5. In the figure, the rounded rectangles represent inputs
or outputs of the process, while the rectangles show processing steps.
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6.4 Preprocessing of Network Packets

The input for the preprocessing pipeline are raw packet bytes as they are read
from the network. In contrast to the approaches from literature, we do not
alter concrete headers of the packet, since we do not assume any knowledge
on the communication protocols used in the packet. Note however that this
means that we are including the MAC and IP address of the communication
partners in the input data for the preprocessing steps. In contrast to the two
approaches from literature, we focus on a communication setting in which
there are only two communication partners (TD and SuT), and do not focus on
traffic from a whole network. Thus, the information on the MAC or IP address
can only help to distinguish between the TD and the SuT, which does not leak
unintended information to the preprocessing approach, as this information
is already known in the fuzzing setting. In the domain of network traffic
classification that is targeted by the approaches from, however, the MAC or
IP address can leak unintended information. For example, if one IP address
always only sends traffic coming from one application, the downstream ML
model could learn to directly classify all traffic from this address to this specific
application and thus overfit on the dataset.

The first step of preprocessing is to either cut or pad the packet to be of a
fixed size of 𝑑𝑖 bytes. In line with literature, we cut the packets that are too
long starting from the end of the packet, and pad packets that are too short
with zeros. Subsequently, we normalize the 𝑑𝑖 bytes and feed the resulting
data in three different algorithms for dimensionality reduction. We choose a
PCA, a vanilla AE as presented in the following paragraph, and the CAE-based
CAPC as presented by Chiu et al. [Chi20]. The output of the preprocessing is a
representation of the initial packet with a reduced number of dimensions, 𝑑𝑜. In
our experiments, we vary the input dimension 𝑑𝑖 and the output dimension 𝑑𝑜
to analyze the impact of this choice on the performance of the dimensionality
reduction. We derive the possible choices for 𝑑𝑖 and 𝑑𝑜 from our analysis as
presented in Section 6.4.1.
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Figure 6.6: Visual representation of the architecture of the AE used as one approach for dimen-
sionality reduction in NeDaP. The dimension of the encoding layer is equal to the
output dimension of the dimensionality reduction, denoted as 𝑑𝑜.

Autoencoder

We choose a basic AE as one of the algorithms for dimensionality reduction,
serving as a baseline for the more complex AE CAPC. Thus, we choose a basic
encoder-decoder architecture for this AE, as presented in Figure 6.6. The
encoder consists of three dense hidden layers, each using the ReLu activation
function [Gér22]. We choose the following dimensions for the hidden layers:
256, 128, 64. The dimension of the encoding layer is equal to 𝑑𝑜, the output
dimension of the preprocessing pipeline. Symmetric to the encoder, the decoder
consists of three dense layers using the ReLu activation function.

Implementation

We implement the preprocessing pipeline using the popular Python ML li-
braries Tensorflow1 2.15.0, Keras2 2.15.0, and scikit-learn3 1.4.1. For PCA, we
use the PCA implementation as provided by scikit-learn in the decomposition
module (sklearn.decomposition). To construct AE, we use the correspond-
ing modules provided by keras, namely the dense and the sequential layers

1 https://www.tensorflow.org/
2 https://keras.io
3 https://scikit-learn.org
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6.4 Preprocessing of Network Packets

provided in tensorflow.keras.layers. For CAPC, we use the description
provided in the corresponding paper [Chi20], and construct it similar to AE

using the appropriate keras layers. To ensure reproducibility, we construct
all of our models with fixed seeds for the used random functions. For each
repetition of the experiments, we use a different but fixed seed to account
for the influence of the seed.

6.4.3 Experiments

The objective of our experiments is to analyze the performance of the prepro-
cessing pipeline, with a special focus on the performance of the dimensionality
reduction approaches. For this, we define several configurations by varying
the datasets, the input dimension 𝑑𝑖, and the output dimension 𝑑𝑜. As stated
before, we use a PCA, an AE, and the CAE CAPC. Since the PCA does not
include learning steps, we can use this as a baseline for the two learning-based
approaches AE and CAPC.

We focus our experiments on the user data and fuzzing datasets as described
above, which consist of FTP network traffic. We choose FTP since it is a
plaintext network protocol used in office and industrial networks, and is
often used as fuzzing target (see e.g. [Gas15, Nat21, Liu22, Nat22]). Thus, we
can reuse existing frameworks to generate the necessary network traffic and
generate comparable results, while still recognizing the industrial use case.
Nevertheless, our approach NeDaP is not tailored to FTP but is agnostic of
the used network protocol.

Our experiments demonstrate that CAPC outperforms PCA and AE if the training
and evaluation of the dimensionality reduction approaches is conducted on the
same dataset. However, if the approaches are trained on user data and are then
validated on fuzzing data, AE outperforms the other two approaches. Moreover,
we show that 𝑑𝑖 has an impact on the training time of the dimensionality
reduction approaches as well as the reproduction error. Our experiments also
confirm that 𝑑𝑜 impacts the reconstruction loss such that a higher output
dimension 𝑑𝑜 leads to a smaller reconstruction loss. This is the expected
behavior and highlights the soundness of our experiments.
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6.4.3.1 Experimental Setting

We run our experiments on an Ubuntu 23.10 server with an AMD Ryzen
Threadripper PRO 5975WX CPU (32 physical cores) with 128 GB of RAM and
an NVIDIA GeForce GTX 1060 6GB graphics card (Cuda version 12.3).

Research Questions

Our experiments presented in this section are driven by the following re-
search questions.

RQ1 How do the dimensionality reduction approaches perform in terms
of reconstruction error when applied to different network traffic
datasets?

RQ2 How do dimensionality reduction approaches trained on FTP user
data perform in terms of reconstruction error when applied to
fuzzing data?

RQ3 What is the effect of the output dimension 𝑑𝑜 on the reconstruction
error?

RQ4 What is the effect of the input dimension 𝑑𝑖 on the reconstruction
error?

Methodology

We train and evaluate each dimensionality reduction approach (PCA, AE, and
CAPC) on each of the datasets using a 10-fold cross validation with a 80 ∶ 20
split between train and test data. Both NN-based approaches are trained for
a fixed number of 200 epochs. In order to achieve reproducible results, we
use fixed seeds for the various randomness functions used during the con-
struction and evaluation of the dimensionality reduction approaches. With
the validation on the 20% test data, we measure the in-domain generalization
of the dimensionality reduction approaches. Moreover, we validate the trained
models on the remaining datasets, analyzing the approaches’ out-of-domain
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generalization capabilities. Especially, we are interested in how the dimen-
sionality reduction approaches trained on user data generalize to fuzzing data.
Table 6.3 shows the configurations used during the evaluation.

6.4.3.2 Results

This section presents the results of the experiments conducted as described
above. These results are then discussed in Section 6.4.3.3.

Runtime

First, we report the runtime needed to train the different dimensionality re-
duction approaches. The timing measurements were conducted across 10 runs
for each output dimension and preprocessing approach using the user data
datasets for ProFTP and LightFTP. Table 6.4 presents the average of these 40
runs for each approach. Notably, CAPC stands out as the most time-consuming

Table 6.3: Dataset configurations used for the evaluation. User Data and AFLnwe Fuzzing are based
on the FTP implementation of ProFTP. For comparison, we also use user data collected
using the FTP implementation LightFTP. The goal of these configurations is either to
analyze the in-domain performance of the dimensionality reduction approaches, or to
analyze the out-of-domain performance.

ID Cross validation Validation Goal
only-user User Data - in-domain validation
only-fuzz AFLnwe Fuzzing - in-domain validation
user-fuzz User Data AFLnwe Fuzzing out-of-domain validation

Table 6.4: Training time of the dimensionality reduction approaches for the user data of ProFTP
and LightFTP, mean over 40 runs (10 runs for each of the four output dimensions).
Note that for PCA, no training is required.

Training time in seconds
ProFTP LightFTP

𝑑𝑖 = 304 𝑑𝑖 = 1504 𝑑𝑖 = 304 𝑑𝑖 = 1504
PCA 0.01 𝑠 0.03 𝑠 0.01 𝑠 0.01 𝑠
AE 19.99 𝑠 19.56 𝑠 8.90 𝑠 8.96 𝑠
CAPC 56.14 𝑠 146.36 𝑠 23.87 𝑠 60.45 𝑠
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Figure 6.7: Mean absolute reconstruction error for dimensionality reduction approaches trained
and validated on User Data (configuration only-user) for different choices of 𝑑𝑖 and 𝑑𝑜
(mean of 10 runs). The whiskers represent the upper and lower quartiles. The mean
absolute error is calculated only on the original input bytes and not on the padding.
Choosing 𝑑𝑖 = 304 leads to smaller reconstruction errors for PCA, while choosing
𝑑𝑖 = 1504 leads to slightly smaller reconstruction errors for AE and CAPC.

approach, with a training time of 56.14 seconds for the ProFTP dataset with
𝑑𝑖 = 304. Conversely, PCA shows the shortest training time. This is expected,
since for PCA, no NN needs to be trained. In comparison to the training times
for 𝑑𝑖 = 304, the training times for 𝑑𝑖 = 1504 increase. Furthermore, the
training times for the ProFTP dataset are higher than those for the LightFTP
dataset, reflecting the difference in their sizes.

Input Dimension

Following the runtime, we present the results with respect to the two
choices for the input dimension 𝑑𝑖, which defines the fixed length the
network packets are cut or padded to. Subsequently, the network packets
with fixed length are fed into the dimensionality reduction approaches. As
discussed in Section 6.4.1.2, we use two choices for 𝑑𝑖 during our experiments:
𝑑𝑖 ∈ {304, 1504}.
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Figure 6.7 displays the mean absolute reconstruction error of the three dimen-
sionality reduction approaches trained and validated on User Data. For AE, we
also add whiskers showing the upper and lower quartile respectively. We omit
them for PCA and CAPC for visualization purposes, since their reconstruction
errors have such a small variance that the whiskers would be smaller than the
mark that represents the mean value. Each data point represents the mean of
10 runs of the specific configuration. The choices for 𝑑𝑖 are represented by the
different colors and marks, while the choice of 𝑑𝑜 is reflected by the different
graphs of the figure. For example, the graph on the far left shows the mean
absolute reconstruction error for 𝑑𝑜 = 8, and shows that PCA achieves a mean
reconstruction error of 0.067 for 𝑑𝑜 = 304, and of 0.068 for 𝑑𝑜 = 1504.

Note that the different choices for 𝑑𝑖 particularly imply different percentages
of padded zeros in the input data for the dimensionality reduction approaches.
Recall that more than 98% of the network packets of User Data are shorter
than 304. Thus, for 𝑑𝑜 = 1504, for most network packets, more than 80% of
the input data consists of padded zeros. In order to achieve comparable recon-
struction errors for 𝑑𝑖 = 304 and 𝑑𝑖 = 1504, we calculate the reconstruction
error only on the original input length, omitting the padded parts of the input.
For the remaining experiments, we calculate the error on the full input and
output data of the dimensionality reduction approaches, and thus the absolute
values of the error are not comparable to the other figures in this chapter.

Our experiments suggest that choosing 𝑑𝑖 = 304 leads to a smaller recon-
struction error for PCA. In contrast, 𝑑𝑖 = 1504 leads to a slightly smaller
reconstruction error for AE and CAPC. The relative performance of the dimen-
sionality reduction approaches is not affected by 𝑑𝑖 for 𝑑𝑖 ∈ {304, 1504}.

Together with the insights given by the runtime analysis, these observations
help to choose an appropriate input dimension for a given use case and given
datasets. Since the following experiments focus on the relative performance
of the dimensionality reduction approaches, which is not changed by 𝑑𝑖, and
the observation that the training time is reduced for 304 (see Table 6.4), we
only report the results for 𝑑𝑖 = 304 in the following.
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Figure 6.8: Visual representation of a two-dimensional encoding of selected packets as created
by PCA, AE, and CAPC. The visual analysis shows that same packet types are generally
located close to each other.

Packet Representation

To give an intuition of the performance of the dimensionality reduction ap-
proaches, we visually present the results of a dimensionality reduction to a
output dimension of 𝑑𝑜 = 2 in Figure 6.8. The choice for 𝑑𝑜 in this case is based
on the constraint of multidimensional visual representations not being feasible
on paper. The x-axis and y-axis each represent one of the two dimensions
of the encoding. Note that the absolute values of the resulting encodings are
not comparable between the encodings, especially since the values of AE’s
and CAPC’s representation do not have a frame of reference. The colors of the
points correspond to the packet type of the encoded packet. For example, PCA
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encodes the two instances of HTTP 404 packets, shown as gray dots, relatively
close to each other at (−1.36, 1.08) and (−1.32, 1.15). AE, however, encodes
them further away from each other at (3.78, 1.64) and (4.46, 2.02). Interest-
ingly, all three approaches classify one of the TCP PSH packets (represented
in orange) close to the HTTP 404 packets (represented in gray).

For all three dimensionality reduction approaches, it shows that packets of
the same type are mostly located next to each other. From that observation,
we can derive the intuition that the dimensionality reduction is able to create
suitable encodings, even for an output dimension of 𝑑𝑜 = 2. In the following,
we analyze the performance of the dimensionality reduction approaches in
a more data-driven way.

Reconstruction Error

The reconstruction errors of the three dimensionality reduction approaches
for the datasets User Data and AFLnwe Fuzzing are shown in Figure 6.9. The
y-axis shows the mean absolute error of the reconstruction of the input data
based on the encoding of the dimensionality reduction approaches. Note
that the mean absolute error is calculated on the full given input and the
reconstructed values of the respective dimensionality reduction approach,
both having the dimension 𝑑𝑖 = 304. For the AE-based approaches, AE and
CAPC, we use the respective decoder for the reconstruction. For the PCA, we
use the inverse_transform functionality as provided by scikit-learn.

Each subplot in Figures 6.9a and 6.9b shows the reconstruction error of the
three dimensionality reduction approaches for one of the output dimensions 𝑑𝑜.
The reconstruction error is presented as a box plot, in which the box represents
the area between the upper and the lower quartile, while the whiskers show
the minimum and the maximum. This data is taken from ten runs of each
dimensionality reduction approach for each configuration of 𝑑𝑖 and the used
dataset. Note that for this plot, we train the approaches on one dataset and
then calculate the reconstruction error on the same dataset, representing
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(a) Dimensionality reduction approaches trained and validated on User Data (ProFTP), 𝑑𝑖 = 304.
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(b) Dimensionality reduction approaches trained and validated on AFLnwe Fuzzing (ProFTP),
𝑑𝑖 = 304.

Figure 6.9: Box plot showing the mean absolute reconstruction error of the dimensionality re-
duction approaches for different choices of 𝑑𝑜 on User Data and AFLnwe Fuzzing
(in-domain). Choosing a higher output dimension leads to a generally smaller recon-
struction loss. CAPC generally leads to the smallest reconstruction errors.

the configurations only-user and only-fuzz (see Table 6.3). As an example,
Figure 6.9a shows that for User Data, the mean reconstruction error for PCA
is 0.025 for 𝑑𝑜 = 8, while it improves to 0.0002 for 𝑑𝑜 = 64.
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The results in Figure 6.9 show that the reconstruction error decreases with an
increasing output dimension 𝑑𝑜. For PCA, this decrease is most apparent, while
it is smaller for AE and CAPC. Moreover, it shows that the PCA generally leads
to a higher reconstruction error than AE and CAPC, except for User Data with
𝑑𝑜 ≥ 48. AE generally performs worse than CAPC, and also shows a higher
variance in performance.

To also analyze to which extent the approaches can be generalized, we cal-
culate the reconstruction error on the AFLnwe Fuzzing dataset. For this, the
approaches are still trained on the User Data dataset. This reflects the practical
approach for model-based testing, as in this scenario one might have access
to user-generated data to train the models on. Subsequently, the models are
to be used for model-based testing using the data generated during testing
or fuzzing (see also Section 7.5). We present the results in Figure 6.10 with
the same representation as the previous results. Again, we show the mean
absolute reconstruction error of the dimensionality reduction to various out-
put dimensions. Figure 6.10a shows the performance of the dimensionality
reduction approaches trained on User Data and validated on AFLnwe Fuzzing
(configuration user-fuzz). For comparison, we also show the results of ap-
proaches trained the user data recorded for LightFTP and validated on the
fuzzing data for LightFTP in Figure 6.10b.

For ProFTP, our results show that the reconstruction loss of the dimensionality
reduction approaches increases if we validate their performance on the AFLnwe
Fuzzing dataset. For example, for 𝑑𝑜 = 48, AE achieves a median reconstruction
error of 0.018, while it achieved a reconstruction error of 0.002 for training and
validation on User Data (only-user), and of 0.001 for training and validation on
AFLnwe Fuzzing (only-fuzz). Note that the x-axis of Figure 6.10a differs from
the one used in Figures 6.9 and 6.10b for visualization purposes.

It also shows that the area inside the boxes in Figure 6.10a are larger than
the corresponding areas in Figure 6.9, meaning that the performance of the
10 runs of the cross validation are spread over a larger interval and thus the
performance of the dimensionality reduction approach is less reliable. This is
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(a) Dimensionality reduction approaches trained on user data and validated on fuzzing data
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figures.
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(b) Dimensionality reduction approaches trained on user data and validated on fuzzing data
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Figure 6.10: Box plot of the mean absolute reconstruction error of the dimensionality reduction
approaches when trained on user data and validated on fuzzing data. For Figure 6.10a,
we use User Data and AFLnwe Fuzzing, and for Figure 6.10b, we use user data
generated using LightFTP and fuzzing of LightFTP. AE generally achieves a smaller
reconstruction error than CAPC.
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especially apparent for CAPC. Moreover, AE outperforms CAPC for all choices
of 𝑑𝑜, while CAPC outperformed AE in all experiments in which we used the
same data for training and validation (Figure 6.9).

For LightFTP, the results also show that AE outperforms CAPC. PCA outper-
forms both AE-based approaches for 𝑑𝑜 = 64. The absolute values of the mean
reconstruction error show that it is generally easier to reduce the dimension-
ality of network packets in the LightFTP datasets than it is for the network
packets in the ProFTP dataset.

Target Dimension

The plots presented in Figures 6.9 and 6.10 illustrate a clear dependency be-
tween the reconstruction error of the dimensionality reduction approaches and
the selected output dimension 𝑑𝑜. They demonstrate that the reconstruction
loss decreases with as the output dimension increases.

6.4.3.3 Discussion of Results

Our experiments result in new insights with respect to the research questions
formulated in Section 6.4.3.1, which are discussed in the following.

RQ1 How do the dimensionality reduction approaches perform in terms of
reconstruction error when applied to different network traffic datasets?

Our experiments show that CAPC outperforms PCA and AE if the training and
validation is conducted on the same dataset in most cases. Only for the ProFTP
dataset with 𝑑𝑜 = 64, CAPC is outperformed by PCA. This implies that CAPC
generalizes better than the other two approaches in an in-domain evaluation.
Interestingly, CAPC finds an efficient encoding for the network packets even
for an output dimension of 𝑑𝑜 = 8, showcasing its strength in encoding the
network packets from the User Data dataset.

Moreover, we show that the training time needed for the dimensionality
reduction approaches varies greatly, as CAPC needs around 2.8 times longer
than AE and 5,600 times more than PCA for the User Data dataset. However,
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the importance of the training time depends highly on the use case. If the
dimensionality reduction approaches are re-used for several model building
purposes, the training needs to be done only once and thus a longer training
time is not as significant.

RQ2 How do dimensionality reduction approaches trained on FTP user data
perform in terms of reconstruction error when applied to fuzzing data?

In contrast to the previous observations, AE outperforms the other two ap-
proaches in most cases when the approaches are trained on user data and
validated on fuzzing data. AE is only outperformed by PCA for 𝑑𝑜 = 64 on
LightFTP data. This implies that the AE generalizes better for out-of-domain
tasks, while CAPC generalizes better for in-domain tasks, as discussed in RQ1.

Moreover, the reconstruction loss of CAPC shows a higher variance for the
validation on fuzzing data, especially on LightFTP. One explanation for this
could be that CAPC, caused by the convolutional layers, focuses on local cor-
relations in the network packet to perform the dimensionality reduction. In
fuzzing however, this local correlations are likely to be broken, especially in
the payload of the network packet. With this, it is a bigger challenge for CAPC
to reconstruct the fuzzed network packets. In contrast, AE most likely captures
less detailed information of the network packet, due to the reduced number
of parameters and structure the AE has in comparison to the CAE used by
CAPC. With this, it generalizes better to the fuzzing dataset.

RQ3 What is the effect of the output dimension 𝑑𝑜 on the reconstruction
error?

As expected, our experiments show that the output dimension has an impact
on the absolute reconstruction error of the dimensionality reduction, as the
absolute error decreases with an increasing output dimension. This decrease is
most apparent for PCA. Moreover, we show that the output dimension does not
have an impact on the relative performance of the dimensionality reduction
approaches in most cases. For example, for the configuration only-fuzz, where
the approaches are trained and validated on AFLnwe Fuzzing, the median
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reconstruction error of PCA is always higher than the one of AE, which again is
always higher than the one of CAPC. However, for only-user , PCA outperforms
AE and CAPC for 𝑑𝑜 = 64.

RQ2 What is the effect of the input dimension 𝑑𝑖 on the reconstruction error?

Our experiments with input dimensions 𝑑𝑖 ∈ {304, 1504} show an incon-
sistent influence on the reconstruction error of the dimensionality reduction
approaches. For PCA, an input dimension of 304 leads to a smaller reconstruc-
tion error for all choices for the output dimension 𝑑𝑜. In contrast, it leads to
slightly higher reconstruction errors for AE and CAPC. Moreover, the choice
of the input dimension 𝑑𝑖 impacts the training time of the dimensionality
reduction approaches. A higher input dimension increases the training time,
which is to be expected, since a higher input dimension leads to a higher
number of trainable parameters.

6.5 Discussion

This section puts the results of NeDaP into context. It discusses the implications
of NeDaP (Section 6.5.1), its limitations (Section 6.5.2) and possible future
research directions (Section 6.5.3).

6.5.1 Implications

To the best of our knowledge, NeDaP presents the first performance analysis of
dimensionality reduction approaches with respect to network packets. Even
though we put a special focus on preprocessing the network packets for model-
based fuzzing in the industrial domain, our results provide insights for other
use cases of preprocessed network packets such as traffic flow classification
or intrusion detection. Moreover, we created several datasets which reflect
different use cases in the domain of industrial security, including fuzzing, web
security testing, and user interaction traffic. These datasets could build the
base for further data-driven analyses in this domain.
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Building upon these experiments and results, we use the preprocessing pipeline
presented in this chapter to perform blackbox model-based fuzzing using
HMMs. Especially, the experimental results presented in this chapter are
used to balance possible choices for hyperparameters such as 𝑑𝑖 and 𝑑𝑜. This
HMM-based testing approach, called Palpebratum, is presented in Section 7.5.

6.5.2 Limitations

In line with literature, we cut the input data to the fixed length 𝑑𝑖 by dropping
the last bytes of the network packet. However, these bytes usually represent
parts of the payload of the network packet which might be important for
the subsequent model which uses the preprocessed data. Thus, the contrary
approach of dropping the first bytes of the network packet to cut it to 𝑑𝑖 might
be beneficial and could be investigated in future work.

For our evaluation, we mostly focus on FTP. This network protocol can be
fuzzed easier than other protocols since it is a plaintext protocol, it occurs in
office networks as well as in industrial networks, and is often used as fuzzing
target in literature. However, since NeDaP is agnostic for the used network
protocol, our evaluation could be extended by datasets including different
industrial protocols to analyze the generalization capabilities of NeDaP in a
more thorough way.

The work presented in this chapter focuses on the performance of the di-
mensionality reduction approaches. For a full evaluation of their performance
however, an evaluation including the downstream application is necessary. It is
possible that a dimensionality reduction approach with a higher reconstruction
error still yields a good representation for the downstream application, the
HMMs in our case. To this end, we extend upon the evaluation shown in this
chapter by using the presented preprocessing pipeline to perform HMM-based
fuzzing in Section 7.5.
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6.5.3 Future Work

In future work, the experiments presented in this chapter could be extended by
varying more parameters, adding more datasets, and adding more approaches
for dimensionality reduction.

One parameter that could be varied is the interval the bytes of the network
packets are normalized to during preprocessing. For this work we chose the
interval [0,1] based on related work, but it is possible that other intervals, such
as [−1,1], or other normalization approaches might be better suited for some
of the dimensionality reduction approaches [Cab23]. It might also be beneficial
to include more choices for the input dimension 𝑑𝑖 to the experiments, in
order to further analyze the impact of this choice. Furthermore, the impact of
cutting the network packets to 𝑑𝑖 could be investigated further. As described in
Section 6.5.2, we cut the last bytes of the packets to achieve the desired length.
However, it might be beneficial to cut the first bytes of the packets instead
since these bytes usually contain header data that might be less relevant for
the models that are using the preprocessed data afterwards.

Moreover, one could extend the experiments to more datasets, and datasets
from other domains. One interesting generalization analysis would be to in-
clude user data and fuzzing data that is not focussed on one single protocol, but
includes several different protocols. As detailed in Section 6.4.2, the approach
of NeDaP does not assume any information on the used network protocol and
thus can easily be extended to other protocols.

Furthermore, additional approaches for dimensionality reduction could be
included to the experimental setup. For instance, one could include insights
and approaches from transformer models [Vas17] to the approach of NeDaP.
These have been used successfully for intrusion detection tasks based on
network traffic flows [Wu22b, Wan21a] and thus their encoding layer might
also provide benefits for the dimensionality reduction tasks needed for network
packet preprocessing.

161



6 Network Data Processing

The experimental setup used for NeDaP could also be used to approach ad-
ditional research questions. For instance, it would be interesting to analyze
whether dimensionality reduction approaches that have been trained on the
user data of one FTP implementation could be reused for preprocessing net-
work data generated by other FTP implementations. If this could be done
without a significant performance drop, one would only need to train the
dimensionality reduction approaches once to train several implementations
of the same protocol.

6.6 Summary

With NeDaP, we present a full preprocessing pipeline for network packets,
including three different dimensionality reduction approaches. We acknowl-
edge the special requirements of the industrial use case by presenting an
approach that is agnostic of the used network protocols. With this, NeDaP can
be used without changes for industrial communication protocols, especially
for proprietary protocols.

In our experiments, we analyze the performance of this preprocessing pipeline,
with a special focus on the performance of the dimensionality reduction in
terms of the reconstruction loss. We demonstrate that CAPC consistently
outperforms AE and PCA across most choices of the output dimension 𝑑𝑜
when trained and evaluated on one dataset. However, when we train the
dimensionality reduction approaches on FTP user data and then validate their
performance on fuzzing data, AE outperforms the other two approaches in
most cases. The latter scenario mirrors a more realistic setting for model-based
blackbox testing, where access to a limited set of user traffic data is a more
practical assumption than access to a comprehensive dataset of fuzzing data.

Furthermore, our experiments underscore the trade-off with respect to the
parameter selection, particularly concerning the preprocessing of network
packets intended for use in ML models. On the one hand, a smaller output
dimension decreases the number of trainable parameters in the downstream
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ML model, thereby simplifying the training process. On the other hand, a
smaller output dimension also decreases the quality of the data, as shown by
the increased reconstruction error in our experiments.
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7 Machine Learning based Blackbox
Fuzzing

This chapter focuses on utilizing the information available in blackbox testing
by leveraging Machine Learning (ML) models. As stated before, prior to and
during blackbox testing, only limited information is available. However, this
limited information could be represented adequately by a model, which then
could be utilized to improve the blackbox testing efficiency.

In general, models are used in various different ways to improve the devel-
opment and testing in various industrial domains, such as generating dig-
ital twins based on Hidden Markov Models (HMMs) [Gho19], testing em-
bedded systems [Böh11, Zan17], detecting faults in Cyber-Physical Systems
(CPSs) [Mai14], and model-driven security engineering of CPSs [Gei20]. More-
over, testing approaches utilize models, e.g. to represent the state of the System
under Test (SuT) state in stateful testing [Nat22, Gir20, Dou12], or to represent
the structure of the SuT’s input [Vii08, Gas15]. Felderer et al. give a general
overview of model-based security testing [Fel16b].

Moreover, ML approaches have been increasingly employed to improve secu-
rity testing in general, with a particular focus on improving fuzzing. Especially
in graybox fuzzing, ML approaches have, for example, been used for seed
selection [Che20, Wan21b], mutation selection [Böt18], and test case gener-
ation [Wan17]. Wang et al. and Chafjiri et al. give an overview of research
with respect to ML for fuzzing [Wan20a, Cha24].
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However, the majority of existing approaches focus on graybox fuzzing. We
identify the possibility to apply ML approaches to represent the information
available in blackbox testing, which then can be used to guide the fuzzing
process. More specifically, we focus on mutational blackbox fuzzing for Op-
erational Technology (OT) components.

7.1 Problem Statement

We propose using ML techniques to make the limited information in blackbox
fuzzing more accessible to a fuzzer. For this, several information sources such
as the test cases sent to a SuT, the responses of the SuT, or the entire network
traffic generated during fuzzing can be leveraged. Based on this information,
various characteristics of the SuT’s behavior can be modeled. The concrete
representation of the SuT’s behavior by the ML model and its utilization to
guide the fuzzing process is to be determined and is explored in the following.

7.2 Contributions

This doctoral work advances the field of blackbox testing by utilizing ML
models across three different approaches. Each of these approaches is focused
on network fuzzing, with their characteristics being detailed in Table 7.1. A
more general approach to model-based blackbox testing was registered as a
patent in collaboration with Steffen Pfrang and Christian Haas [Bor23d].

Smevolution The first approach, Smevolution, combines evolutionary
blackbox fuzzing with an ML model which approximates the function mapping
a test case 𝑡 to the services of the SuT that crash in response to 𝑡. This model
is trained using the crash information collected during testing and guides the
evolutionary fuzzing by providing additional information for mutation and test
case selection. Based on this general approach, we implement three concrete
instances of Smevolution, employing a Neural Network (NN), a Decision
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Table 7.1: Comparison of the three contributions of this doctoral work with respect to ML-based
blackbox testing. The work on Palpebratum will be published separately in the future.

Smevolution Palpebratum StateBandit

Approach Blackbox Blackbox Blackbox
Model Explicit Explicit Implicit
Target Test case ↦ crash-

ing services
Network traffic State ↦ coverage

Used data Crash information
during testing

Network traffic data
prior to and during
testing

Code coverage and
crash information
during testing

Reference Section 7.4 Section 7.5 Section 7.6
Publication [Bor23b] tbd [Bor23a]

Tree (DT), and a Support Vector Machine (SVM) as ML model. Our evaluation
shows that the fuzzer utilizing the DT performs significantly better than a
random and a blackbox baseline fuzzer in terms of triggered vulnerabilities.

Contribution 6. Proposal, implementation, and evaluation of Smevolution,
an approach to combine evolutionary fuzzing with ML models leveraging test
data to help guiding the test process.

Smevolution targets a blackbox test setting (Challenge 1 (Blackbox Testing))
and is independent of the tested network protocol (Challenge 4 (Insufficient
Protocol Support)). The used ML model analyzes and processes the information
on test cases and crashing services to provide it to a fuzzer (Challenge 2 (Missing
Information)), and could be used as external mutator by mutation-based fuzzers
(Challenge 5 (Choice of Testing Tool)). Due to the integration in ISuTest®,
Smevolution allows to monitors all communication interfaces of the SuT
(Challenge 3 (Insufficient Observations)).

We call this approach Smevolution, thus choosing a name that combines the
perceived smartness of the ML models with the evolutionary testing approach
that we use as a basis. Smevolution and the corresponding experiments were
published in Sensors Vol. 23 [Bor23b], and the code is publicly available on
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GitHub1. The work on Smevolution was conducted in collaboration with
Steffen Pfrang and Martin Morawetz, and is based on the Master’s thesis by
Martin Morawetz [Mor21].

Palpebratum Furthermore, we present an approach that relies on the net-
work traffic between the Test Device (TD) and the SuT, and leverages this
traffic to provide information on the SuT’s behavior to a network fuzzer. To this
end, we train an HMM on network traffic data recorded prior to the security
test. During testing, we query this model to receive information on the most
likely sequence of hidden states that lead to the observed network traffic. With
this, we receive an approximation of the SuT’s behavior represented by a list
of paths hit by a test case. As this information can be used exchangeable with
the code coverage information used by graybox network fuzzers, it can be
utilized transparently. Thus, the novel approach allows for applying graybox
testing approaches in a blackbox test scenario.

Our experiments demonstrate that the HMM-based fuzzers are able to generate
test cases that are more efficient than the test cases generated by the baseline
fuzzers. However, the HMM-based fuzzers achieve significantly less coverage
than the two baseline fuzzers. Possible explanations are an underestimation of
the coverage achieved by the HMM-based fuzzers and differences in efficiency
in terms of the number of test cases generated in a fixed time frame.

Contribution 7. Proposal, implementation, and evaluation of Palpebratum,
an approach to approximate the SuT’s behavior based on preprocessed network
traffic, facilitating graybox fuzzing approaches in a blackbox test setting.

Palpebratum is designed to be used in a blackbox test setting (Challenge 1
(Blackbox Testing)) and is independent of the underlying network protocols
(Challenge 4 (Insufficient Protocol Support)). The HMM is used to approxi-
mate information that would otherwise be missing in a blackbox test scenario
(Challenge 2 (Missing Information)). This approximated information can be
used by graybox coverage-based fuzzers (Challenge 5 (Choice of Testing Tool)).

1 https://github.com/anneborcherding/Smarter-Evolution
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The name of this approach, Palpebratum, is based on a fish species called
Photoblepharon palpebratum1. These fish use bioluminescent organs below
their eyes for several means such as attracting and finding pray, confusing
predators, and communicating with other fish. Especially, these fish use their
bioluminescent organs to bring at least some light into the darkness of the
ocean. Our HMM-based approach has a similar objective by aiming to “bring
more light" into blackbox network fuzzing and shifting it more into the direction
of graybox network fuzzing.

The work on Palpebratum is partly based on the Master’s thesis by Robert
Mumper [Mum21], the Bachelor’s thesis by Deniz İmge Avcı [Avc23], and the
seminar work by Johannes Häring [Här23], all supervised during this doctoral
work. Most of the work presented in this section is to be published in the future.

StateBandit With this approach, we leverage a Reinforcement Learning
(RL) agent to address the state selection problem in stateful graybox network
fuzzing. In stateful fuzzing, the fuzzer has access to a state machine and uses
this state machine to guide its fuzzing process. Amongst others, the fuzzer
needs to decide in which state the SuT should be fuzzed next. For this, a
balance between exploration and exploitation is needed, which we approach
by using RL, more specifically a Multi-armed Bandit (MaB), agents. We evaluate
our approach with four different algorithms for the bandit’s policy and show
that all four algorithms lead to statistically indistinguishable performances in
terms of code coverage. Moreover, our experiments show that the MaB-based
approaches achieve significantly less coverage than the current state-of-the-art
stateful graybox fuzzer AFLNet.

Contribution 8. Proposal, implementation, and evaluation of StateBandit,
an approach to delegate the state selection problem to a MaB agent.

StateBandit operates independent of the network protocol that is being tested
(Challenge 4 (Insufficient Protocol Support)), and helps to provide additional
guidance and information for the test (Challenge 2 (Missing Information)).

1 https://en.wikipedia.org/wiki/Photoblepharon_palpebratum
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7 Machine Learning based Blackbox Fuzzing

We call our approach leveraging an Multi-armed Bandit agent to solve the state
selection problem StateBandit. The approach and experimental results were
published with the EuroS&P workshops [Bor23a]. The work on StateBandit

was conducted in collaboration with Mark Giraud and Ian Fitzgerald, and is
based on the Bachelor’s thesis by Ian Fitzgerald [Fit22].

7.3 Related Work

The approaches presented in this chapter focus on applying ML techniques
to blackbox fuzzing. Accordingly, we provide an overview of related work
in this area, specifically focussing on blackbox approaches. For a broader
perspective on ML applications in fuzzing, refer to studies such as the ones
presented by Wang et al., Zhang et al., and Chafjiri et al. [Wan20a, Zha23a,
Cha24]. Additionally, Maximilian Kühn’s Bachelor’s thesis, supervised during
this doctoral work, analyzes existing applications of ML within the fuzzing
process [Küh23]. For a more detailed discussion of work related to the specific
approaches presented in this chapter, refer to the corresponding sections
(Sections 7.4.3, 7.5.5, and 7.6.3).

Most blackbox fuzzing approaches leveraging ML employ the ML technique to
learn the SuT’s input features to use them for test case generation. Gascon et al.
present PULSAR [Gas15] which utilizes an HMM to learn the state machine of
a network protocol and the structure of the network packets (see Chapter 3
and Section 7.5.5 for more details on PULSAR). This representation is then used
to generate new test cases, but also to guide the fuzzing process by utilizing
the learned state machine. Fan et al. and Zhao et al. utilize a Long Short-Term
Memory Network (LSTM) to represent the network traffic and to generate new
network packets as test cases [Fan18a, Zha19]. Lv et al. combine an LSTM with
techniques from Generative Adversarial Networks (GANs) to generate network
packets as test cases [Lv21]. Note that these approaches consider test case
generation for generational fuzzing, and thus the ML model is directly used
to generate new test cases for the SuT. In contrast, the approaches presented
in this chapter are concerned with mutational fuzzing and leverage the ML
model to guide the mutational fuzzing process.
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Appelt et al. utilize a DT to guide the mutation of a blackbox fuzzer targeting
Web Application (WA) firewalls [App18]. We adapt this approach for one of the
specific implementations of our evolutionary fuzzing framework Smevolution
presented in Section 7.4. The corresponding section on related work includes
additional details on the work by Appelt et al. (Section 7.4.3).

Lin et al. present IPCFuzzer which uses an LSTM to generate initial test
cases which are then mutated [Lin21]. Moreover, IPCFuzzer uses weighted
mutations and chooses those mutations with a higher weight more often.
However, these weights are not influenced by an ML model, but are chosen
based on a heuristic.

7.4 Evolutionary Fuzzing

In this section, we present Smevolution, our approach to leverage ML models
to approximate the behavior of a blackbox SuT for evolutionary fuzzing. In
evolutionary fuzzing, an Evolutionary Algorithm (EA) is deployed, in which
the individuals usually represent the test cases, or seeds, of the fuzzer [Man19].
First, the individuals in the population are mutated to generate new offsprings.
Then, the individuals in the offspring are ranked based on a fitness function
and the most promising individuals are selected to form the new population.

With Smevolution, we use ML models to approximate a function mapping
a test case 𝑡 to the services of the SuT that crash if 𝑡 is presented to the SuT.
This model is trained online during the fuzzing process, utilizing the data
generated by sending test cases to the SuT and observing crashing services.
Then, we use this model (1) to guide the mutation of the EA, and (2) to facilitate
the ranking of test cases in the EA. With this, we allow for a guided fuzzing
process in a blackbox setting, leveraging the information that are available
in a blackbox test setting.

To evaluate our approach, we implement three fuzzers, each utilizing the
new approach with a different ML model, specifically a DT, an SVM, and
an NN. As baseline, we use two fuzzers that employ the same evolutionary
approach, but use predefined heuristics for the mutation of test cases. The first
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baseline fuzzer uses the number of crashed services as fitness value used for
test case selection, while the second baseline fuzzer selects the test case from
the offspring randomly. With this, we can analyze how the trained ML models
perform when compared to (1) an approach that directly uses the available
information, and (2) a random approach. Moreover, we evaluate the impact of
the granularity of the feedback concerning the SuT’s crashing services that
the fuzzers receive. To evaluate the efficiency and the overhead of the fuzzers,
we also evaluate the number of test cases the different fuzzers produce and
set this in relation to the findings of the fuzzers.

Our experiments show that the fuzzer based on a DT is able to perform sig-
nificantly better than the two baseline fuzzers in terms of found crashes. The
fuzzer based on an NN significantly outperforms the random fuzzer. Moreover,
we show that the dimension and interval of the feedback the fuzzers receive
does not significantly impact the final performance of the fuzzers. Due to
the overhead introduced by the ML models, the newly presented approaches
lead to a reduced number of test cases that are sent per time. However, since
two of the newly presented approaches significantly outperform the random
baseline fuzzer on a fixed time budget, this shows that the fuzzers are able
to generate their test cases more efficiently.

7.4.1 Approach

Our general approach is to combine an EA for test case generation with an ML
model, supporting the decisions necessary within the EA. The ML model is
tasked with mutating and selecting the test cases in a short-term manner, while
the EA provides a feedback loop and long-term improvements. Figure 7.1 shows
a graphical representation of this approach. The underlying EA is represented
by the black elements of the figure, while the newly added ML model is shown
in green, and the SuT is shown in blue. In the following, we give more details
on the different aspects of Smevolution.
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Population
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Figure 7.1: Overview of Smevolution based on [Bor23b]. The EA represented by the black
elements is enhanced by an ML model, which support the mutation and the selection
steps. The test cases in the offspring are executed against the SuT, thus yielding
labeled data to perform the online training of the ML model.

7.4.1.1 Evolutionary Algorithm

In each evolutionary round of an EA, new individuals are generated by mutat-
ing the individuals that are in the population at the beginning of the round,
forming the new offspring. Then, the most promising individuals are selected
from the offspring based on a fitness function. These selected individuals
form the new population. The following describes how we apply the general
concept of an EA to our use case of blackbox network fuzzing. Refer to the
work by Bartz-Beielstein et al. for a detailed description on EAs [Bar14].

Individuals The population and the offspring of the EA consist of test cases
for the SuT. Driven by our focus on blackbox network protocol fuzzing, these
test cases specify values for the fields of the network packet being fuzzed. For
example, if we are fuzzing two fields of a network packet, one containing an
unsigned Integer and the other a string, a test case might look like this:

[ 73412, “AAAA” ] (7.1)

Mutation New individuals are created by mutating individuals from the
population. The objective of the mutation in the fuzzing context is to generate
new test cases that reveal new anomalies in the behavior of the SuT. In a
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blackbox test setting, mutations are generally performed randomly [Man19].
Common approaches to test case mutation include replacing, deleting, or
adding parts of the test case [Tri23]. For instance, a mutated test case produced
by flipping a bit in the last character of the test case shown in Equation (7.1)
might look as follows:

[ 73412, “AAAC” ] (7.2)

Execution The offspring is executed against the SuT, and the SuT’s behavior
is observed by monitoring the SuT’s services. With this, we receive information
on which services of the SuT crashed in response to sending a specific test
case. This information is used to assess the fitness of each test case.

For example, assume that we aim to test a SuT including the three services
Simple Network Management Protocol (SNMP), Transmission Control Protocol
(TCP), and Hypertext Transfer Protocol (HTTP). If executing the test case from
the previous example crashed the SNMP service, this would be represented by
the bitstring b'100', indicating that the first service of the SuT crashed. With
this, the labeled test case would appear as follows:

[[ 73412, “AAAC” ], b'100'] (7.3)

Selection From the offspring, the individuals with the highest fitness are
selected to form the new population. In the context of fuzzing, the fitness
function used for this selection evaluates how likely a test case will help to
uncover new anomalies in the future.

7.4.1.2 ML Model

We enhance the previously described EA by leveraging an ML-based repre-
sentation of the SuT’s behavior that we learn during the fuzzing of the SuT.
While the following description is focussed on our general approach of using
an ML model to enhance the EA, Section 7.4.2.3 details the concrete ML models
that we implemented and how they are used to improve the mutation and
the selection step of the EA.
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In Smevolution, we represent the behavior of the SuT as a function mapping
a test case to the services of the SuT that crash after executing the test case.
This function is approximated by an ML model and can be denoted as follows.

𝑓 ∶ 𝐻𝑛 → {0,1}𝑚 (7.4)

In this equation, 𝐻 represents the set of all possible hexadecimal values,
𝑛 is the length of a test case, and 𝑚 is the number of services of the SuT
being monitored. Thus, this function maps a test case in its hexadecimal
representation to a bitstring indicating which services crash after executing
the test case.

Training The ML model is trained in an online fashion. It uses the labeled
data generated by executing the offspring of the EA against the SuT. In this
step, all test cases in the offspring are executed and the SuT’s services are
monitored. Thus, we receive labeled data consisting of a test case and the
bitstring representing the crashed services, similar to the example provided in
Equation (7.3). This labeled data is then used to train the ML model. Note that
the information on crashing services can be received with differing granularity.
On the one hand, services can be monitored after each test case, resulting in
detailed information on the services for each test case. On the other hand, the
services can be monitored after a fixed number of test cases, restricting the
information to whether the set of test cases sent leads to crashing services. The
latter approach increases the speed of the fuzzing process, as the monitoring
of services takes a significant amount of time.

Application The ML model is used in two different steps of the EA: selection
and mutation. For our use case, we define the fitness of a test case based on the
number of services that it is expected to crash. The higher the predicted number
of crashing services, the higher the fitness value of a test case. Moreover, we
use the ML model to provide guidance for the mutation step. For example, for
our experiments, we implement a fuzzer based on a DT, and one based on an
NN. While both ML models are used to determine the position and the direction
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of the mutation that should be conducted to improve the test case, the specifics
depend heavily on the type of ML model used. We present more details on the
specific models that we implement for the experiments in Section 7.4.2.3.

7.4.2 Experiments

The following describes the experiments we conduct to assess the performance
and implications of Smevolution. We present our research questions in Sec-
tion 7.4.2.1 and our methodology in Section 7.4.2.2. Section 7.4.2.3 details the
fuzzers that we implement based on Smevolution. The model-based fuzzers
use the following ML models: DT, NN, and SVM. Moreover, we implement
two baseline fuzzers. Additionally, we describe our evaluation target based
on VulnDuT in Section 7.4.2.4. The results of our experiments are presented
in Section 7.4.2.5 and discussed in Section 7.4.2.6.

7.4.2.1 Research Questions

The experiments presented in this section are driven by the following re-
search questions.

RQ1 Can the ML models used with Smevolution represent blackbox
information that can be utilized to improve evolutionary fuzzing?

To address this question, we compare the performance of three model-based
fuzzers using the approach of Smevolution against two baseline fuzzers,
which only make use of the evolutionary aspect of Smevolution, but do not
include a model (see also Section 7.4.2.3). This baseline consists of (1) a fuzzer
that makes random decisions instead of consulting a model, and (2) a fuzzer that
uses the raw information on the number of crashed services for the selection.

RQ2 How much does the granularity of the available information influence
the performance of fuzzing?
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We examine how varying levels of granularity in the feedback influence the
performance of the model-based fuzzers. On the one hand, we analyze the
impact of how many test cases are sent between the monitoring steps of the
fuzzer. On the other hand, we analyze how aggregating the information on
the responsiveness of the SuT’s services influences the performance. This
analysis aims to determine the amount of information required to achieve
better fuzzing results.

RQ3 How much overhead do the ML models introduce?

The models introduce an overhead compared to fuzzers that do not use ML
models. However, if the fuzzing performance is improved, this overhead might
be acceptable. We address this topic by measuring the number of test cases the
model-based fuzzers can generate within a given time frame compared to a
random fuzzer. Note that our approach does not introduce an initial overhead,
since the ML models are trained online and thus do not require a training
phase before the fuzzing begins.

7.4.2.2 Methodology

We apply the following methodology to address the previously presented
research questions. For our experiments, we implement three model-based
fuzzers that follow the approach presented in Section 7.4.1, called A_DT, A_NN,
A_SVM. Each of these fuzzers utilizes a different ML model. In addition, we
implement two baseline fuzzers. While the baseline A_RAND implements a
random selection for the EA, the baseline A_BASE uses the number of services
that crashed for a specific test case directly as a fitness function to select the
test cases. Both baseline fuzzers use predefined heuristics for the mutations.
As a basis for our implementation, we use the security testing framework
ISuTest® (see Section 2.2.3). More details on the implemented fuzzers can
be found in Section 7.4.2.3.

Each of the configurations of the fuzzers defined below are run against
VulnDuT, a deliberately vulnerable SuT where we can control the exhibited
vulnerabilities (see Section 7.4.2.4). We run each fuzzing campaign for 24

177



7 Machine Learning based Blackbox Fuzzing

Table 7.2: Configurations used for our experiments. Fuzzer lists the fuzzers used (see Sec-
tion 7.4.2.3). Feedback Dimension indicates the type of feedback the fuzzer receives:
either detailed information on the crashed services or binary information indicating
whether at least one service crashed. With Feedback Interval, we define the frequency
at which the fuzzer receives feedback, expressed as the number of test cases between
each feedback cycle. The default value is underlined.

Parameter Values
Fuzzer A_DT, A_SVM, A_NN, A_BASE, A_RAND
Feedback Dimension Multidimensional, Unidimensional
Feedback Interval 10, 50, 500

hours, as suggested by Klees et al. [Kle18], and repeat each configuration
for 10 times. Note that this is less than the recommended 30 times [Kle18],
which is due to resource restrictions. During fuzzing, we measure the number
of vulnerabilities that have been triggered by the respective fuzzer. Since
we control VulnDuT, we can directly measure how many of the exhibited
vulnerabilities are triggered, and do not need to rely on proxy metrics (see
e.g. Section 8.4 or [Böh22, Sch24]).

We run our experiments on an Ubuntu 20.04.6 LTS with an Intel®Xeon® Silver
4216 CPU @ 2.10 GHz (12 cores) and 32 GB of RAM. We publish the results
of our experiments as well as the code that we used to define the ML models
to allow for reproducible results1.

An overview of the configurations used for our experiments is given in Ta-
ble 7.2. The following paragraphs detail the configurations and how they
support approaching the research questions.

RQ1 - Model Impact

To approach RQ1, we compare the performance of the three model-based
fuzzers and the two baseline fuzzers with respect to the number of vulnerabil-
ities that they trigger over the course of the 24 hour fuzzing campaigns. With

1 https://github.com/anneborcherding/Smarter-Evolution
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this, we can analyze how the utilization of the different ML models influences
the fuzzing performance. Additionally, we assess the performance of each
fuzzer with respect to different types of vulnerabilities.

We hypothesize that the model-based fuzzers will outperform the two baseline
fuzzers in terms of the number of triggered vulnerabilities.

RQ2 - Information Granularity

To address the question regarding the impact of information granularity on
the fuzzers’ performance, we analyze the impact of two parameters: feedback
dimension and feedback interval.

For the feedback dimensions, we define the following two configurations.

1 Multidimensional Information: Using this configuration, the fuzzer
receives full feedback on which services crashes for a given test case.
This corresponds to the example given in Equation (7.3).

2 Unidimensional Information: With this configuration, the information
concerning the crashing services is reduced to a single bit. This bit is
set to 1 if at least one service crashes, 0 else.

We expect that the model-based fuzzers using multidimensional feedback
trigger more vulnerabilities. This expectation is based on the design of
Smevolution by which the mutation and selection strategies aim to maximize
the number of services crashed by a test case. Thus, if the fuzzer has no
information on the number of crashed services, it has less information on
the optimization it is supposed to perform. Additionally, more detailed
information is expected to improve the quality of the ML models.

For the feedback interval, we select the following three intervals for our
evaluation: (1) 10 test cases, (2) 50 test cases, and (3) 100 test cases. In industrial
blackbox testing scenarios, monitoring the services of a SuT after each test
case introduces significant overhead. For example, for each monitoring of the
Internet Control Message Protocol (ICMP) service, the fuzzer needs to send
an ICMP echo request and needs to wait for the SuT’s response before it can
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continue. To take this into account and to analyze the impact of this choice,
we select the aforementioned feedback intervals. These intervals represent the
number of test cases presented to the SuT before the next monitoring cycle runs,
and the fuzzer thus receives feedback on the crashed services. Consequently, a
larger feedback interval results in less accurate feedback. However, a larger
feedback interval also speeds up the fuzzing process, allowing the fuzzer to
send more test cases within the fixed timeframe of 24 hours.

RQ3 - Efficiency

Similar to RQ1, we analyze the overhead introduced by the models by com-
paring the performance of the model-based fuzzers with the two baseline
fuzzers. Specifically, we analyze the number of test cases each fuzzer generates
within the fixed 24 hours, while also considering the number of vulnerabilities
discovered during that time.

We expect that the model-based fuzzers will generate fewer test cases than
the two baseline fuzzers due to the time required for model queries and the
online training of the ML models.

7.4.2.3 Fuzzers

For our experiments, we implement three model-based fuzzers and two baseline
fuzzers. The following describes the details of these five fuzzers, while Table 7.3
gives an overview. Our implementation of the fuzzers is based on the security
testing framework ISuTest® (see Section 2.2.3). Refer to the corresponding
Master’s thesis and publication for more details on the implementation and
the integration into ISuTest® [Mor21, Bor23b].

Neural Network (A_NN)

Our first concrete instance for the ML model used for Smevolution is an
NN, drawing inspiration from the work by She et al. [She19]. The authors
propose an approach to approximate a program’s branching behavior using
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Table 7.3: Overview of the fuzzers used for our experiments. All fuzzers use the evolutionary
framework introduced by Smevolution (see Section 7.4.1). Their implementation is
based on ISuTest®.

ID ML model Mutation Selection
A_NN Neural

Network
Mutate in direction of
gradient

Predicted number of crashed
services

A_DT Decision
Tree

Mutate to change clas-
sification

Predicted number of crashed
services

A_SVM SVM ISuTest® heuristics Predicted number of crashed
services

A_BASE - ISuTest® heuristics Actual number of crashed ser-
vices

A_RAND - ISuTest® heuristics Random

a smooth function modeled by NNs. Building on this idea, we use an NN to
approximate the SuT’s crashes. Thus, the NN used by the corresponding fuzzer
A_NN represents a continuous function 𝑓 that maps a test case to the services
that are crashed by this test case (see Equation (7.4)). As this function is based
on an NN, efficient gradient calculations are possible.

Mutation To mutate a given test case 𝑡, we first calculate the gradient of the
function the NN represents at position 𝑡. Then, we use this gradient to decide
in which direction the test case needs to be changed in order to increase the
absolute value of 𝑓 (𝑡). With this, we increase the probability that the mutated
test case 𝑡′ crashes more services. By taking this approach, A_NN follows a
depth first search strategy.

Selection The fitness function is calculated based on the predicted number of
crashing services 𝑓 (𝑡). The higher this number, the higher the fitness value.

Decision Tree (A_DT)

The second instance, A_DT, is inspired by the work by Appelt et al. [App18].
The authors use a DT for test case generation within the use case of testing
WA firewalls. In their approach, the DT identifies which positions within a
test case should be kept and which can be mutated. In the context of testing
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WA firewalls, it is important to keep those parts of the test case that help
evade the configurations of the firewall. Thus, it is important to identify those
parts and to preserve them.

We adapt the approach by Appelt et al. and utilize the DT as follows. As for
all models within Smevolution, the DT is trained to approximate a function
mapping test cases to the SuT’s services that crash if we send the test case
to the SuT.

Mutation The DT is used to decide on the position of the test case that should
be mutated, and how this mutation needs to look like. For this, we classify
the currently considered test case 𝑡 based on the DT. Then, we can trace the
decision path through the DT and analyze the nodes along this path. We aim
to find a node in which the decision would need to be different in order to
classify 𝑡 to a leaf with more crashed services. If we find such a node, we can
change 𝑡 such that it would be classified differently. This is the mutation that
we apply to 𝑡. This approach leads to a depth first search approach for A_DT.

Selection We define the fitness function based on the number of services that
a test case is expected to crash, according to the DT.

Support Vector Machine (A_SVM)

We employ a third instance that focuses solely on basing the fitness function
on a model’s decision, while not influencing the mutation. For this, we choose
an SVM, roughly following the approach proposed by Chen et al. [Che19]. The
authors present an evolutionary fuzzing framework for cyber-physical systems,
which uses sensor values as input. Since the sensor values are continuous
values, they can directly be used and manipulated by the ML models. Thus,
the approach can not directly be transferred to the discrete values in the use
case of network fuzzing, but we adapt the idea of using an SVM for test case
selection. The corresponding fuzzer A_SVM does not guide the mutation in
a specific direction, thus we expect it to perform a broader search than the
two approaches presented above.
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Mutation As the SVM is not used for the mutation step, we use the heuristic-
based mutation strategy provided by ISuTest®.

Selection The fitness of the test cases is determined by the predicted number
of crashing services.

Maximum Crashes (A_BASE)

As a baseline for the model-based fuzzers, we implement a fuzzer that is also
based on the evolutionary fuzzing approach, but takes its decisions independent
of any model of the SuT.

Mutation The mutation step conducted by A_BASE uses the ISuTest® heuris-
tics.

Selection The selection is directly based on the number of services that a test
case crashes. The higher the actual number of crashed services, the higher
the fitness of the test case.

Random (A_RAND)

To have a general baseline, we additionally implement a fuzzer that performs
a random selection, while also using the evolutionary framework.

Mutation A_RAND also uses the heuristics provided by ISuTest®.

Selection The selection is performed at random, meaning that random indi-
viduals are selected from the offspring to form the new population.

7.4.2.4 Target

We use an artificial SuT called VulnDuT as target for our experiments. VulnDuT
is an intentionally vulnerable SuT and part of the ISuTest® suite. It is deployed
within a Docker container equipped with one network interface for testing,
and one network interface for configuration purposes.
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The testing interface provides access to various services running within the
container, such as an Internet Protocol (IP) stack and a WA. Additionally, the
VulnDuT testing interface facilitates communication via the VulnDuT protocol,
an artificial network protocol based on UDP. The protocol’s network packets
include three fields: an unsigned Integer, a signed Integer, and a String. Note
that we focus on the stateless VulnDuT protocol, while VulnDuT also supports
the so-called example protocol, a stateful network protocol that was explicitly
designed for evaluating Test Tools (TTs) [Pfr19c].

We can define and activate various scenarios for VulnDuT, each specifying
which services will crash when particular inputs are sent via the VulnDuT

protocol. Each scenario represents one or more deterministic vulnerabilities
that can be detected by monitoring the respective services of VulnDuT. For
example, a scenario might involve shutting down the WA if a VulnDuT pro-
tocol network packet containing the value 64 in the unsigned Integer field
is received. The configuration interface of VulnDuT is used to choose the
currently active scenario.

Vulnerabilities

To analyze the performance of the fuzzers, we define several vulnerabilities
within VulnDuT. The following gives an overview of these vulnerabilities
and explains the general goals of defining these vulnerabilities. Refer to the
corresponding publication or the Master’s thesis by Martin Morawetz for more
details on the vulnerabilities [Bor23b, Mor21].

We implement two types of vulnerabilities to analyze the performance of the
fuzzers: Independent vulnerabilities, and linked vulnerabilities.

The first group, independent vulnerabilities, are not connected to each other.
Identifying these vulnerabilities is comparable to a breadth-first search. For
example, we implement the following independent artificial vulnerabilities,
which are triggered if the received VulnDuT protocol packet fulfills specific
requirements.
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1 A shutdown of the WA is induced if the unsigned Integer has a value of
232 − 1

2 A shutdown of the ICMP service is induced if the signed Integer has a
value of −231

3 A shutdown of the SNMP service is induced if the String starts with the
characters “KL”

In contrast, linked vulnerabilities are those that are closely related. Closeness in
this case refers to the number of mutations required for a test case to transition
from one vulnerability to another. Finding these vulnerabilities is comparable
to a depth-first search. We differentiate between three approaches to linked
vulnerabilities.

1 Vulnerabilities based on String matching that lead to progressively
more crashes. For example, if the String starts with “A”, the ICMP
service is shut down. If it starts with “AB”, the ICMP and the HTTPS
service are shut down. For each additionally matching character, more
services are shut down.

2 Vulnerabilities based on String matching that lead to only one crash at a
time. For example, if the String starts with “K”, the ICMP service is shut
down. If it starts with “KL”, the SNMP service is shut down.

3 Vulnerabilities based on ranges of signed and unsigned Integer values,
causing the same set of services to be shut down if the signed or
unsigned Integer falls in the specified range. For example, the HTTP
and ICMP service are shut down if the signed Integer value is in the
interval [1024,2024].

With the independent vulnerabilities, we can analyze how the fuzzers perform
with respect to a breadth-first search. In contrast, the linked vulnerabilities
test the performance with respect to a depth-first search. In total, we introduce
25 vulnerabilities to VulnDuT.
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Figure 7.2: Absolute number of triggered vulnerabilities for the different fuzzers over time (mean
over 10 runs). A_DT and A_NN outperform the two baseline algorithms A_BASE and
A_RAND, as well as A_SVM.

7.4.2.5 Results

This section presents the results of the experiments conducted following the
experimental setup outlined in Section 7.4.2.2, while Section 7.4.2.6 discusses
the results and their implications with respect to the research questions. All
data required to generate the reported figures and tables, as well as additional
figures and data, have been published1.

Triggered Vulnerabilities

First, we report the number of triggered vulnerabilities for the different fuzzers
over the course of the fuzzing campaign. We use the default configuration
for the feedback dimension (multidimensional feedback) and the feedback
interval (50) for these experiments (see also Table 7.2). Figure 7.2 depicts the
mean absolute number of unique vulnerabilities triggered by the different
fuzzers. Each line represents the mean of 10 runs of the respective fuzzer. Note

1 https://github.com/anneborcherding/Smarter-Evolution
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that we have chosen not to visualize the confidence intervals in Figure 7.2
to maintain clarity. However, figures that include the confidence intervals
are available in the published code.

For example, Figure 7.2 shows that A_DT triggered a mean number of 7.0
vulnerabilities at the end of the fuzzing campaign, while A_NN triggered 6.5.
The figure demonstrates that A_DT and A_NN outperform A_BASE and A_RAND

in terms of the total number of vulnerabilities triggered. Conversely, A_BASE
and A_RAND outperform A_SVM in this metric.

Statistical Tests

To analyze the relative performance of the fuzzers in more detail, we conduct
statistical tests on the number of triggered vulnerabilities. With this, we follow
the established recommendations on fuzzing evaluations [Kle18, Sch24]. We
conduct pairwise one-sided Mann-Whitney U tests on the final number of
vulnerabilities triggered by the fuzzers, and present the results in Table 7.4.
For each two fuzzers 𝐹1 and 𝐹2, this one-sided Mann-Whitney U test uses
the alternative hypothesis that the underlying distribution of the number of
triggered vulnerabilities of 𝐹2 is stochastically greater than the corresponding
distribution with respect to 𝐹1 [Man47]. We choose a significance level of
𝛼 = 0.05, in accordance to literature [Paa21], and highlight each p-value
smaller than 𝛼 in gray for Table 7.4.

Table 7.4: p-values calculated using a one-sided Mann-Whitney U test (𝛼 = 0.05). Significant
differences are highlighted in gray. A_DT outperforms the other fuzzers significantly.

A_DT A_NN A_SVM A_BASE A_RAND

A_DT - 0.034 < 0.001 0.007 < 0.001
A_NN 0.972 - < 0.001 0.199 0.002
A_SVM > 0.999 > 0.999 - 0.998 0.995
A_BASE 0.995 0.823 0.003 - 0.056
A_RAND > 0.999 0.998 0.006 0.953 -
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Thus, if a cell is colored gray in Table 7.4, it implies that the fuzzer in the
respective row triggers significantly more vulnerabilities than the fuzzer in
the column. For example, A_DT significantly outperforms A_SVM, A_BASE,
and A_RAND with p-values of < 0.001, 0.007, and < 0.001, respectively. The
performance of A_NN is only significantly better than the one shown by A_SVM

and A_RAND (< 0.001 and 0.002). A_SVM is significantly outperformed by all
other fuzzers.

Note that we have chosen to report the values of a two-sided Mann-Whitney
U test in the publication of Smevolution [Bor23b] and thus report different
p-values there. While leading to the same conclusions, the results from a
one-sided test are better suited to intuitively represent the relevant informa-
tion, since we are not generally interested in significant differences, but are
interested in whether a fuzzer leads to significantly better results.

Exceeding the requirements by best practices for fuzzing evaluations [Kle18,
Sch24], we also calculate and report the p-values over time. This allows to ana-
lyze how the relative fuzzer performance changes during the fuzzing campaign.
Again, we calculate a pairwise one-sided Mann-Whitney U test. Figure 7.3
shows the p-values over time for the three fuzzers A_DT, A_NN, and A_SVM

when compared to A_BASE (Figure 7.3a) and A_RAND (Figure 7.3b). Data points
below the horizontal line, which represents the significance level, correspond
to those points in time at which the corresponding fuzzer outperformed the
respective baseline fuzzer significantly.

Figure 7.3a shows that A_NN outperforms A_BASE significantly at the beginning
of the campaign, while after around eight hours, the difference is no longer
significant. A_DT outperforms A_BASE significantly over the whole fuzzing
campaign. In Figure 7.3b, the data points concerning A_DT and A_NN are below
the significance level over the whole fuzzing campaign, implying significant
better performance over the whole campaign.
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(a) Comparison to A_BASE. A_DT outperforms A_BASE significantly over the whole
fuzzing campaign, while A_NN only outperforms it significantly in some time
intervals.
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(b) Comparison to A_RAND. A_DT and A_NN outperform A_RAND significantly over the
whole fuzzing campaign.

Figure 7.3: p-values calculated using a one-sided Mann-Whitney U test over the time of the
fuzzing campaign. The horizontal line represents the significance level 𝛼 = 0.05.

Overhead

To quantify the overhead introduced by the ML models, we measure the
throughput of the fuzzers in terms of the number of test cases sent to the SuT
within 24 hours. Figure 7.4 presents the mean and standard deviation of the
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Figure 7.4: Mean number of test cases the fuzzers send over 24 hours. The whiskers represent
the standard deviation.

number of test cases sent by the fuzzers, based on the data from 10 runs in
the default configuration (see Table 7.2). For example, A_SVM sends 215,884
test cases on average, with a standard deviation of 57,746.

The results demonstrate that A_RAND achieves the highest throughput by
generating 299,524 test cases in 24 hours. This is followed by A_SVM with
215,884 test cases, and A_BASE with 207,882 test cases, both of which do not
introduce changes to the mutation step of the EA.

In contrast, A_DT and A_NN send fewer test cases, with 79,900 and 145,372,
respectively. This corresponds to a reduction in the number of test cases
sent compared to A_RAND by 27.92% for A_SVM, 51.47% for A_NN, and 73.32%
for A_DT. Notably, A_DT exhibits the smallest variation in the number of test
cases sent.
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Information Granularity

We run each of the configurations presented in Table 7.2 for 10 times and ana-
lyze whether the choice for the feedback dimension and the feedback interval
influence the performance of the fuzzers in terms of the number of triggered
vulnerabilities. Our analyses show that neither the choice for the feedback
dimension nor for the feedback interval influences the performance of the
model-based fuzzers significantly (see [Bor23b] for details). However, the per-
formance of A_BASE is influenced significantly by both the feedback dimension
and the feedback interval. It shows that A_BASE triggers significantly fewer
vulnerabilities with unidimensional feedback when compared to multidimen-
sional feedback. Moreover, A_BASE triggers significantly more vulnerabilities
with a feedback interval of 100 when compared to a feedback interval of 10.

7.4.2.6 Discussion of Results

The following presents the key conclusions drawn from the previously pre-
sented results with respect to the research questions formulated in Section 4.3.1.
For a more detailed analysis and discussion of the specific vulnerabilities found
by the different fuzzers as well as an analysis of the distributions of test cases
generated by the fuzzers, refer to the corresponding publication [Bor23b].

RQ1 - Model Impact

Our experiments show that A_DT, which uses a DT for mutation and selection,
significantly outperforms the two baseline fuzzers A_BASE and A_RAND. More-
over, A_NN, using an NN for mutation and selection, significantly outperforms
A_RAND. We conclude that both models are able to learn and represent the
behavior of the SuT in a way that is suitable to improve blackbox fuzzing.

Our experiments also show that A_SVM, which uses an SVM for selection,
performs significantly worse than the two baseline fuzzers. Since it uses the
same mutation strategy than the baseline fuzzers, we conclude that the SVM is
not able to represent information that improves the selection strategy. Based
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on this observation, we conclude that using a model for selection has the
potential to decrease the performance in terms of triggered vulnerabilities.
In future work, one could combine an NN- or DT-based mutation strategy
with the baseline selection strategy implemented with A_BASE, to analyze the
impact of the models on the mutation only.

RQ2 - Information Granularity

In contrast to our hypotheses (see Section 4.3.1), the choice of feedback dimen-
sion and feedback interval does not significantly influence the performance
of the fuzzers in terms of triggered vulnerabilities. In our experiments, we
observe that (1) the model-based fuzzers perform significantly better than the
baseline fuzzers, and (2) that the feedback dimension does influence the perfor-
mance of A_BASE, with multidimensional feedback leading to a significantly
higher number of triggered vulnerabilities, supporting our corresponding hy-
pothesis. Based on these observations, one could come to the conclusion that
the model-based fuzzers can compensate for the reduced information that is
introduced by the unidimensional feedback. This aligns with results from pre-
vious work which also successfully used binary feedback to improve blackbox
testing [App18]. Nevertheless, additional experiments could be conducted
to strengthen this conclusion.

Moreover, our experiments show that the feedback interval does not signifi-
cantly impact the performance of the model-based fuzzers. While a smaller
feedback interval offers higher resolution feedback, it also introduces greater
overhead due to the additional service monitoring cycles required. For model-
based fuzzers, these advantages and disadvantages appear to balance out,
resulting in similar performance.

However, the feedback interval does affect the performance of A_BASE. Specif-
ically, the a feedback interval of 500 leads to significantly more vulnerabilities
than the a feedback interval of 10. This shows that for A_BASE, the reduced
monitoring overhead for a feedback interval of 500 is more relevant than the
improved feedback granularity facilitated by a feedback interval of 10. One
possible explanation is that test cases within the same interval are likely to be
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similar, as they have been generated from related test cases. Consequently,
the information loss from larger feedback intervals might be minimal and
thus can be compensated for.

RQ3 - Efficiency

Smevolution does not require an a priori training phase for the ML models
as these models are trained and queried during the fuzzing process itself. To
evaluate the performance overhead introduced by the models during fuzzing,
we measure the number of test cases the fuzzers send to the SuT. Our results
indicate that A_RAND generates the highest number of test cases which is
expected since it does not utilize any model.

A_BASE, A_NN, and A_SVM produce a comparable number of test cases, while
A_DT generates the fewest. Despite this, A_DT significantly outperforms
A_RAND and A_BASE in terms of the number of triggered vulnerabilities
within the 24 hours time frame. Additionally, A_DT identifies vulnerabilities
earlier in the fuzzing campaign (see Figure 7.2). From these findings, we
conclude that although A_DT produces the fewest test cases, it generates
the most effective ones.

7.4.3 Related Work

EAs have been used for graybox fuzzing at least since 2007 [DeM07, Man19],
while their application to blackbox fuzzing is not as established. In the follow-
ing, we focus on evolutionary fuzzing in a blackbox setting, while acknowl-
edging that there are several works using EAs for graybox fuzzing, including
AFL [Zal16], AFL++ [Fio20], AFLNet [Pha20], and libfuzzer [LLV24].

Evolutionary Blackbox Fuzzing Appelt et al. present an approach for
fuzzing WA firewalls. The authors use a DT to generate SQL injection test cases
that need to first bypass the firewall [App18]. Specifically, the DT identifies the
parts of a test case responsible for bypassing the firewall, ensuring these parts
remain unchanged to retain their bypass functionality. To train the DT, the
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authors use binary feedback, specifically the binary information on whether
the test case successfully bypassed the firewall. We adapt the idea by Appelt
et al. for our implementation of the DT-based fuzzer A_DT.

Duchene et al. present KameleonFuzz, an approach to WA fuzzing employing
an evolutionary approach [Duc14] . KameleonFuzz uses the response DOM
and taint inference to assess the fitness of a test case. As a basis for their fuzzing,
the authors automatically infer a model of the control flow graph of the WA.

Chen et al. introduce an evolutionary fuzzing framework for cyber-physical
systems that leverages ML models [Che19]. Their framework uses sensor
values from the tested cyber-physical system as input for the ML models.
Unlike network fuzzing, sensors in cyber-physical systems provide continuous
data, which can be directly used by the ML models to select and mutate test
cases. Our implementation of A_SVM is inspired by the work by Chen et al.

Shang et al. propose to perform mutation and selection in an EA by mutating
the current test case in the direction of a test case that was successful in trigger-
ing an anomaly in the SuT in the past [Sha21]. The authors call this successful
test case suspicious point. Moreover, the authors consider the average similarity
of test cases in the population for their mutation strategy. The authors evaluate
their approach based on the dispersion of the test case population. While this
approach has similar objectives as Smevolution, it is not clear how the newly
presented method affects vulnerability finding performance or code coverage.

Feedback Granularity Our experiments show that our fuzzers perform statis-
tically indistinguishable for unidimensional and for multidimensional feedback.
The approach presented by Appelt et al. also only use binary feedback [App18].
Appelt et al. use the binary information whether a test case was able to bypass
the tested WA firewall (see above). The authors show that their approach
successfully utilizes the binary feedback to test the corresponding SuT.
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7.4.4 Discussion

The following discusses Smevolution and the results of our experiments,
with a special focus on their implications, limitations, and on possible future
research directions.

7.4.4.1 Implications

Blackbox testing generally uses less sophisticated approaches since the black-
box test setting lacks the necessary information to apply, for example, graybox
testing approaches [Man19]. Improving upon this, Smevolution leverages
ML models trained on the information on sent test cases and the correspond-
ing behavior of the SuT to allow for a targeted mutation and selection in an
evolutionary fuzzing approach. With this, it can be seen as a starting point
for the application of evolutionary graybox testing approaches to blackbox
testing and thus allowing for more sophisticated testing approaches.

To support further research based on our results, we published the raw data
from our experiments1, accompanied by the evaluation scripts used to generate
the figures and tables in this section. Moreover, the code includes additional
figures and data to provide a deeper insight into our results. We also published
the code we used to define the ML models used in this work to allow for a
transparent evaluation of our work.

Even though our experiments focus on the artificial SuT VulnDuT, our integra-
tion of Smevolution into ISuTest® allows to apply Smevolution to test OT
components such as BCex (see Section 7.7). Since the approach of Smevolution
is independent of the underlying network protocol, it can be applied to all
network protocols supported by ISuTest®. Moreover, the general approach of
Smevolution could also be extended to other embedded systems, which are
required to be tested in a blackbox setting and show the behavior of services
crashing during testing.

1 https://github.com/anneborcherding/Smarter-Evolution
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7.4.4.2 Limitations

The presented experiments give insights into the performance of evolutionary
blackbox fuzzers using ML models for mutation and selection while using an
artificial SuT as target. While this helps to exactly control and analyze the
existing vulnerabilities, it potentially restricts the transferability of results to
real-world applications of the fuzzers. To reduce this limitation, we imple-
mented the vulnerabilities based on vulnerabilities that are known to exist in
real-world OT components (see e.g. Section 5.4).

Moreover, due to resource restrictions, it was not possible to completely fulfill
the requirements for fuzzing evaluations as formulated by Klees et al. [Kle18]
and confirmed by Schloegel et al. [Sch24], most notably with respect to the
number of trials each fuzzer was run. Even though we account for the ran-
domness of the fuzzers and the training of the ML models by running each
configuration 10 times, our results would be more statistically robust if we
repeated each configuration 30 times.

7.4.4.3 Future Work

Future work could expand upon the experiments presented in this section.
First, one could evaluate Smevolution using OT components as targets, thus
evaluating the real-world applicability of Smevolution as well as the impact
of the feedback granularity in real-world scenarios. For OT components, test
cases are usually longer and vulnerabilities fewer, and thus the granularity
of the feedback might have a more substantial impact. An evaluation with
OT components would also enable us to assess the transferability of results
from experiments using VulnDuT in general by comparing the results from
this study to those generated by future studies. To gain more insights into
the absolute performance of the fuzzers implemented within Smevolution,
one could compare their performance with state-of-the-art network fuzzers,
either blackbox or graybox.
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Additionally, one could analyze the impact on performance and efficiency
caused by changing parts of the general approach of Smevolution. On the
one hand, it would be possible to only execute the test cases in the population,
and not those from the bigger offspring. This would reduce the number of test
cases sent and thus save time during testing, but it would also provide less
information to the fuzzer. On the other hand, one could use the ML model only
for mutating the input, and keep the baseline strategy for the selection step.
Our experiments suggest that this might improve the overall performance of
the fuzzers (see Section 7.4.2.6).

Furthermore, our experiments show that different fuzzers excel in identifying
independent and linked vulnerabilities (see Section 7.4.2.4 and [Bor23b]). A
possible approach for future work would be to combine multiple ML models
to balance breadth-first and depth-first search approaches.

Another research direction could involve leveraging the explainability [Dwi23]
of the NN used by A_NN to better understand and to improve its decision-
making process.

7.4.5 Summary

We present Smevolution, an approach designed to bridge the gap between
graybox and blackbox testing. During the fuzzing process, we train an ML
model that approximates the behavior of the SuT. This model is integrated into
an EA and is used to (1) select promising test cases for the next evolutionary
round, and to (2) guide the mutations of the test cases. With this, we provide
information to the EA that is typically unavailable in blackbox testing.

Our experiments, conducted using the artificial SuT VulnDuT, yield the fol-
lowing key insights.

1 The fuzzer using a DT significantly outperforms a baseline fuzzer which
uses the EA without any model-based support. This shows that the
application of the ML model indeed improves the fuzzing performance.
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2 The feedback dimension and the feedback interval have no significant
impact on the performance of the model-based fuzzers, but do influence
the performance of the baseline fuzzer.

Our approach and our experiments provide a foundation for applying efficient
graybox testing approaches to blackbox test settings. This is particularly
relevant in the domain of OT components, where efficient blackbox tests
are essential due to standards requirements and systems including blackbox
third-party components.

7.5 Hidden Markov Models

This section presents Palpebratum, our approach approximating the behavior
of the SuT using HMMs. As we did with Smevolution presented in the
previous section, we again aim to leverage an ML model which represents the
behavior of the SuT. With Smevolution, we utilized a DT, a NN, and a SVM to
represent the behavior of the SuT with respect to the number of services that
crash for a given test case. In contrast, with Palpebratum, we utilize an HMM
to represent the inner workings of the SuT. For this, we interpret the network
traffic that the SuT produces as emissions produced by an HMM. Thus, we
collect the network traffic resulting from sending one or more test cases to the
SuT, and use the Viterbi algorithm to calculate the state sequence of the HMM
that has the highest probability to having generated this observation. With
this, we receive information on which states where traversed by the SuT while
handling the test case. We use this information similar to the code coverage
information available in graybox fuzzing. If a test case takes a transition that
has not been taken before, this test case is considered to be interesting and is
added to the corpus. With this, we allow for an application of graybox testing
approaches in a blackbox scenario.
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Our evaluation of Palpebratum is twofold. First, we evaluate the performance
of the HMMs with respect to their ability to approximate the interestingness
of test cases in comparison to the graybox baseline AFLnwe. To this end, we
propose two novel scores which quantify the HMMs’ performance. Our experi-
ments demonstrate that HMMs with more nodes tend to achieve higher scores.

Second, we implement a blackbox fuzzer which utilizes an HMM to guide
the test case generation as well as two baseline fuzzers. We choose two
HMMs to be used for this evaluation, based on the scores calculated in the
first part of our evaluation. Subsequently, we execute these two instances of
Palpebratum and two baseline fuzzers against ProFTP. Our results indicate
that the HMM-based fuzzers are able to generate test cases that are more
efficient than those generated by the baseline fuzzers. However, the final
coverage achieved by the baseline fuzzers is significantly higher than the one
achieved by Palpebratum. Explanations for this observation is the possible
underestimation of the coverage achieved by Palpebratum, and differences in
efficiency of the fuzzers caused by the overhead the HMMs introduce.

7.5.1 Approach

As described above, Palpebratum encompasses an HMM representing the
inner workings of a SuT as it can be observed by the network traffic. This
HMM is then utilized to approximate the interestingness of a test case, which
is then used to guide the fuzzing process in a graybox manner while still
keeping a blackbox test scenario. For this, we first train an HMM on network
traffic generated by user interaction with the SuT. This network traffic is first
preprocessed by the means provided by NeDaP as presented in Section 6.4.
Then, this HMM is included in a fuzzer, which utilizes the HMM to decide on
the interestingness of a test case. In the following, we give an overview of the
fuzzing process with Palpebratum, while Section 7.5.1.1 gives information
on the data representation for the HMM, including the parameter choices of
NeDaP. Section 7.5.1.2 provides more details on the characteristics and the
training of the HMM, and on the integration of this approach into the fuzzing
library LibAFL [Fio22].
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SuT Fuzzer Traffic Capture HMM Handler

next_testcase()

𝑡
start()

𝑡
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packet_seq

get_path(packet_seq)

preprocess(packet_seq)

preprocessed_seq
get_path(preprocessed_seq)
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path

interesting(path)
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Figure 7.5: Specialities of the Palpebratum fuzzing loop, building upon the general approach of
coverage-guided fuzzing. During the execution of the test case, the network traffic is
captured. This capture is then used to calculate the state path of the HMM that has
the highest probability of producing this network traffic. This path information is
used to decide whether the test case is interesting for the fuzzer or not, similarly to
the coverage information in graybox coverage-guided fuzzing.

Figure 7.5 shows the fuzzing process as conducted with Palpebratum, while
omitting the details of the general coverage-guided fuzzing process and fo-
cussing on the specifics of Palpebratum. See Section 2.4 for more details on
the general approach of coverage-guided fuzzing. The fuzzing loop as shown
in Figure 7.5 starts with the fuzzer getting the next test case that should be
sent to the SuT. Note that this might include several steps such as selecting the
seed and mutating the seed to generate the next test case 𝑡. Then, the fuzzer
starts the network traffic capture, sends the test case 𝑡 via the network to the
SuT, waits for the SuT’s response, and stops the network traffic capture again.
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The recorded network packet sequence is then given to the HMM handler.
This handler first preprocesses the network packets using NeDaP, and then
calculates the state sequence of the HMM that has the highest probability to
lead to this network packet sequence using the Viterbi algorithm. This state
sequence, or path, is then given to the fuzzer. The fuzzer treats this path infor-
mation similarly to the coverage map information collected in coverage-guided
graybox fuzzing. It keeps track of the states of the HMM that have already
been visited, and if the path taken for a test case 𝑡 includes a state that was
not visited before, 𝑡 is deemed to be interesting. Then, the fuzzer uses this
information to decide whether a test case should be added to the seed corpus.
This concludes one fuzzing loop using Palpebratum.

7.5.1.1 Data Representation and Preprocessing

We split the network traffic into sequences of packets, each sequence including
the packets from one TCP connection. Each sequence is then interpreted as
a sequence of observations emitted by the HMM.

To make this network data usable by an HMM, it needs to be preprocessed first.
For this, we use the approach NeDaP as presented in Chapter 6. The application
of NeDaP within Palpebratum is shown in Figure 7.6. We split the network
traffic into sequences using the TCP connections as split criterion. Then, we
feed this sequence into NeDaP and receive a sequence of preprocessed network
packets. Each of these packets is represented by a byte vector of length 𝑑𝑜 = 24.

Then, we feed the preprocessed packets and a pre-trained HMM into the
Viterbi algorithm to calculate the state sequence withing the HMM that has
the highest probability to lead to the given sequence of observations. This
sequence of states of the HMM is then further used by the fuzzing as an
indicator of interestingness (see also Figure 7.5).
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Sequence of Raw Packets
split by TCP connection

NeDaP

Sequence of Byte Vectors
of length 48

Viterbi AlgorithmHMM

Sequence of HMM States

Figure 7.6: Data preprocessing and application within Palpebratum using NeDaP as presented
in Section 6.4. The raw network data is preprocessed by NeDaP and then used to
determine the most likely state sequence within the HMM.

For NeDaP, we choose the parameters based on the results of our experiments
as presented in Section 6.4.3. These choices are also shown in Table 7.5. We
acknowledge that our choice of parameters for NeDaP probably influences
the performance of the downstream HMM building upon the preprocessed
network packets.

Input Dimension

We choose the input dimension for the dimensionality reduction approaches
to be 𝑑𝑖 = 304, with the main goal of being consistent with the experi-
ments shown in Section 6.4.3. The main reason to choose 𝑑𝑖 = 304 instead of
𝑑𝑖 = 1504 there was that the training time of the dimensionality reduction ap-
proaches was heavily reduced, while only slightly impacting the reconstruction
error. We acknowledge that the training time is not as relevant for the concrete
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Table 7.5: Parameter values chosen for NeDaP as used within Palpebratum.

Parameter Value Reason
𝑑𝑖 304 Consistency with the experiments in Section 6.4.3
𝑑𝑜 24 Balance between number of parameters in HMM and

the reconstruction error (see Figures 6.9b and 6.10)
general seed 37 Consistency with the experiments in Section 6.4.3
specific seeds PCA:

437883
AE:

721885
CAPC:
437883

Seed leading to the smallest reconstruction error
when validating the dimensionality reduction ap-
proaches on the ProFTP fuzzing dataset (see Fig-
ure 6.10a)

use case presented in this chapter as each dimensionality reduction approach
only needs to be trained once. However, to allow for a direct comparison and
transferability of the results presented in Section 6.4.3, we choose 𝑑𝑖 = 304.

Output Dimension

For the output dimension of the dimensionality reduction approaches of NeDaP,
we choose 𝑑𝑜 = 24. This values strikes a balance between the reconstruction
error of the dimensionality reduction approaches and the number of trainable
parameters in the resulting HMM. As we use the dimensionality reduction
approaches trained on user data on fuzzing data, we base our decision on the
corresponding experiments conduced in Section 6.4.3, shown in Figure 6.10.
For ProFTP, 𝑑𝑜 = 24 only leads to a slightly higher reconstruction error for
AE and CAPC, while also reducing the variance. For example, the median
reconstruction error of CAPC for 𝑑𝑜 = 48 is 0.0257 with a lower quartile of
0.0227 and an upper quartile of 0.0274. For 𝑑𝑜 = 24, the median is 0.0262 with
a lower quartile of 0.241 and an upper quartile of 0.0272. Similar behavior
can be seen for LightFTP.

However, increasing the dimension of the emissions from 24 to 48 leads to
an increased number of trainable parameters for the emission distribution of
the HMM. We call this number of trainable parameters 𝑃 . Since we are using
a multivariate Gaussian distribution (see below), the choice of the emission
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dimension influences size of the vector of means and the covariance matrix.
For each node in the HMM, we need one vector of means of the size 𝐷 and
a covariance matrix of size 𝐷 ⋅𝐷. Since the covariance matrix is symmetric,
the covariance has 𝐷 + 𝐷(𝐷−1)

2 trainable parameters. Increasing the emission
dimension from 24 to 48, we would increase 𝑃 by 3.78 (see Equation (7.5)).
This is why we decide to use 𝑑𝑜 = 24 for Palpebratum.

𝑃48
𝑃24

= 48 + 48 + 48 ⋅ 47 ⋅ 0.5
24 + 24 + 24 ⋅ 23 ⋅ 0.5

= 1224
324

= 3.78 (7.5)

Seeds

For Palpebratum, we choose the seeds for the randomness used during the
preprocessing of network traffic based on our experiments with NeDaP. We
choose the general seed to be 37, keeping it the same as for the experiments
with NeDaP to be able to produce comparable results. For the three dimen-
sionality reduction approaches, we choose the seeds that lead to the smalled
reconstruction error for the approaches trained on the ProFTP user data dataset
and validated on the ProFTP fuzzing dataset (see Section 6.4.1.2). Table 7.5
shows the concrete numbers of these seeds.

7.5.1.2 Hidden Markov Model

The preprocessed network packets are fed into an HMM. In the following para-
graphs, we first motivate selecting HMMs as the foundation for Palpebratum,
and then provide a description of the specific characteristics of the HMMs used.

Choice of Model

In our setting, we aim to model sequential, multivariate data of which the
underlying state is not observable. For this, several modeling approaches could
be suitable, such as HMMs, Recurrent Neural Networks (RNNs) and LSTMs,
all of which are able to model sequential multivariate data. For our specific
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use case, we aim to use the learned state representation to approximate the
internal behavior of the SuT. While RNNs and LSTMs would implicitly model
the internal states, an HMM explicitly models the states. Moreover, using the
Viterbi algorithm, we can calculate the state sequence that has the highest
probability to have caused the observation sequence. With this, the internal
behavior of the SuT can be approximated easier.

Furthermore, research from other domains suggests that HMMs are better
suited than LSTMs in cases in which only little training data is available [Tad20,
Pan16].

While we acknowledge that other modeling approaches such as RNNs or
LSTMs might be suited better to accurately model the network packet se-
quences given enough training data, an HMM makes the utilization of this
model for guided fuzzing easier. As the goal of Palpebratum is to improve
blackbox fuzzing by leveraging the information on the SuT as learned and
represented by a model, we choose to use an HMM as a basis for Palpebratum.

One disadvantage of HMMs in comparison to RNNs and LSTMs is that long
range dependencies can not be modeled, since the underlying states are mod-
eled as Markov chain (see e.g. [Kha21]). We mitigate this shortcoming by
including HMMs based on second order Markov chain in our experiments,
which is also explained in more detail in the next paragraph.

Characteristics

As the observations emitted by the HMM are byte vectors, we need to use a
multivariate HMM for Palpebratum. The emissions of multivariate HMMs
are multidimensional, as opposed to univariate HMMs, which only emit scalar
values [Liu10].

As second-order Markov chains can be represented by first-order Markov
chains (see Section 2.6.5), we use HMMs using first-order Markov chains with
a quadratic number of states to represent second-order Markov chains for
our experiments.
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Note that the HMM that we train and utilize during fuzzing is not intended
to comprehensively represent the behavior of the SuT, but rather is expected
to represent the information given by the network traffic in a way such that
it can be used by a fuzzer. For a comprehensive model of the SuT’s behavior
richer data would be needed [Xav22].

Training

We train the HMM on the user-generated network traffic which is first pre-
processed using NeDaP. For this, we apply the Baum-Welch algorithm which is
used to fit HMMs to data (see Section 2.6.5). In our current approach, the HMM
is not further trained during the fuzzing process, which could be investigated
in future work.

7.5.2 Research Questions and Methodology

Our experiments with Palpebratum are driven by the following research
questions.

RQ1 How can we assess the performance of the HMMs Palpebratum is
based on?

The first research question is concerned with the assessment of the HMMs’s
performance with respect to the approximation of the SuT’s behavior. We
focus on comparing an HMM’s behavior approximation with a graybox code
coverage, while other baselines could also be used. We propose two different
means to assess this performance: by (1) defining a similarity measure for
coverage curves, and by (2) analyzing which test cases are deemed interesting
by the HMMs and the baseline (see Section 7.5.3).

RQ2 How does the behavior approximation of the HMMs compare to the
behavior approximation done by AFLnwe?

206



7.5 Hidden Markov Models

Based on the performance measures defined within RQ1, we assess the per-
formance of the HMMs in comparison to the behavior approximation based
on code coverage as calculated by AFLnwe. For this, we first train HMMs on
user-generated data for File Transfer Protocol (FTP) implementations. Then,
we run AFLnwe for eight hours against these implementations, and record
the test cases that AFLnwe deems interesting as well as the network traffic
that is generated during this run. We then use this recorded network traffic
sequences to query the HMMs for the most likely hidden state sequence that
lead to this sequence. This is used as a measure for the interestingness of a
test case as described in Section 7.5.1. Subsequently, we can compare which
test cases were deemed to be interesting by AFLnwe and by the HMM. With
this information, we can decide how the behavior approximation as expressed
in the interestingness of the test cases differs between the blackbox HMMs
and the graybox fuzzer AFLnwe.

RQ3 Does the HMM-based behavior approximation improve blackbox
fuzzing in terms of code coverage?

We integrate the HMMs into the fuzzing library LibAFL (see Section 7.5.2.1).
The predicted state sequence of the HMM is used as a basis for the interest-
ingness assessment for the test cases, and thus the HMM is used to guide
the blackbox fuzzing process.

For our experiments, we choose the HMMs with the best performance, as
calculated based on the scores presented in RQ2, and implement fuzzers using
these HMMs. As reference fuzzers, a blackbox fuzzer which has no additional
guidance, and a fuzzer receiving random feedback (see Section 7.5.2.1 for more
information on these baseline fuzzers). We run each fuzzer for 24 hours against
the FTP server ProFTP (see Section 7.5.2.3), and repeat each configuration 30
times to account for the fuzzers’ randomness. With this, we can assess the
relative performance of the HMM-based fuzzer Palpebratum in comparison
to an unguided blackbox fuzzer as well as a random fuzzer.

RQ4 Which impact does the dimensionality reduction approaches used to
preprocess the network traffic have on the HMMs’ and the fuzzers’
performance?
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Table 7.6: Fuzzers used during our experiments. The newly presented HMM-based blackbox
fuzzer Palpebratum is evaluated against three reference fuzzers.

Fuzzer Approach Feedback Mutation
Palpebratum Blackbox HMM predicted state sequence LibAFL default
RAND Blackbox Random Feedback LibAFL default
BLACKBOX Blackbox Crash Feedback LibAFL default
AFLnwe Graybox Coverage Feedback AFLnwe default

In Section 6.4, we proposed and evaluated three different dimensionality re-
duction approaches to be used for the network packet preprocessing approach
NeDaP. The HMMs as utilized by Palpebratum use this preprocessing and thus
represent a downstream application for NeDaP. We analyze how the different
dimensionality reduction approaches influence the performance of the HMMs
with respect to the behavior approximation as discussed for RQ2 and with
respect to performance of a fuzzer utilizing this specific HMM.

7.5.2.1 Fuzzers

For our experiments, we use the HMM-based fuzzer Palpebratum, as well as
three reference fuzzers to allow for a relative assessment of Palpebratum’s
performance. Table 7.6 gives an overview of the used fuzzers.

Palpebratum Palpebratum utilizes an HMM to assess the interestingness
of a test case as described in Section 7.5.1. While still being a blackbox fuzzer,
Palpebratum thus is able to guide the fuzzing as it is used in graybox fuzzing.

RAND This reference fuzzer receives random feedback on whether a given
test case is interesting or not. Each test case has a probability of 0.5 to be
considered interesting. With this, we can use it as a baseline to decide whether
the HMM within Palpebratum performs better than random.

BLACKBOX This reference fuzzer receives information on crashes of the
SuT and thus receives the same amount of information as a usual blackbox
fuzzer does. With this, we can analyze whether Palpebratum performs better
than a usual blackbox fuzzer.
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AFLnwe We also compare the performance of the blackbox fuzzers to the
stateless graybox network protocol fuzzer AFLnwe1. It observes the code cov-
erage a test case achieved and uses this information for its test case generation.

Implementation

We implement Palpebratum, RAND, and BLACKBOX based on the fuzzing library
LibAFL v0.11.1, which is written in Rust [Fio22]. To this end, we implement
several new modules in the framework given by LibAFL such as a module to
allow for fuzzing via TCP, and a module to allow to use an HMM to observe
the behavior of the SuT. To capture the network traffic during fuzzing, we
use tcpdump2.

We implement the HMM in Python using the library pomegranate3 v0.14.3 as
there was no sufficient HMM implementation available in Rust at the time of
our work on Palpebratum. During the work on Palpebratum, pomegranate
was rewritten from using Cython to using PyTorch aiming to provide a faster
implementation with additional features. However, the new implementation
aggravates an issue of the old implementation that occurs if HMMs are trained
on only a few observation sequences4. Based on this observation, we decided
to stick to the older version of pomegranate for our experiments.

Implementing the HMM in Python requires to connect it to the fuzzing part of
Palpebratum which is written in Rust. We implement this link using PyO35.

7.5.2.2 HMMs

For our experiments, we need to determine the number of nodes the HMMs
should include, and the data the HMMs should be trained on.

1 https://github.com/thuanpv/aflnwe
2 https://www.tcpdump.org/
3 https://github.com/jmschrei/pomegranate/tree/master
4 https://github.com/jmschrei/pomegranate/issues/633
5 https://github.com/PyO3/pyo3
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Numbers of Nodes

To this end, we leverage information from literature and studies conducted
during the course of this doctoral work. Gascon et al. train a Markov chain
to approximate the behavior of FTP implementations, while choosing a dif-
ferent approach to train and utilize the resulting models. The authors use a
second order Markov chain and their experiments result in a model with 6
nodes [Gas15, Figure 3]. Note that our models as well as the model shown
by Gascon et al. include an additional start and end node, which is added to
the number of inner nodes in the following. As we choose to represent the
second order Markov chain as a first order Markov chain for our HMMs, we
include a model with 6 ⋅ 6 + 2 = 38 nodes in our experiments. Moreover,
to analyze the impact of adding or deleting a node, we include models with
5 ⋅ 5 + 2 = 27 and 7 ⋅ 7 + 2 = 51 nodes.

The Master’s thesis by Robert Mumper, which was supervised during this
doctoral work, analyzes the number of nodes necessary to represent the user-
generated network traffic for different FTP server implementations [Mum21].
While depending on the sever, the experiments show that models with 16
to 21 nodes are suited to represent a dataset based on LightFTP data, while
models with 7 to 8 nodes are suited to represent ProFTP data. Thus, we decide
to include models with 4 ⋅ 4 + 2 = 18 and with 7 nodes.

In summary, we decide to use models with the following numbers of nodes
for our experiments: 7, 18, 27, 38, 51.

Training Data

We choose to use FTP data for training, as FTP is a text-based protocol fre-
quently used in OT components for which user-generated data can be acquired
by using established tools such as Filezilla1. Moreover, the fuzzing evalu-
ation framework ProFuzzBench supports several FTP implementations as
target [Nat21].

1 https://filezilla-project.org/
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We capture user-generated traffic for each of the FTP servers supported by
ProFuzzBench, following a defined script of user actions [Här23]. As the data
captured for one FTP server does not suffice to successfully train a HMM with
more than 7 nodes, we combine the user data captured for the following FTP
servers: BFTP, LightFTP, ProFTP, PureFTP. This results in a dataset consisting
of 137 sequences of FTP traffic.

7.5.2.3 Target

We use the FTP implementation ProFTP as target for our experiments. In con-
trast to the other FTP implementations supported by ProFuzzBench, ProFTP
parses FTP with several commands, and processes each of these commands
separately. The other FTP implementations only process the first command. As
stateless fuzzers such as AFLnwe send single packets with several commands
in as test cases, these test cases are usually not fully processed by the targets,
and the targets only reply with a single response. Thus, the resulting network
traffic is not as elaborated as for ProFTP.

Based on this observation we choose to use ProFTP as target for our experi-
ments with respect to NeDaP (see Section 6.4.3), and, for consistency, also use
ProFTP for our experiments with respect to Palpebratum. Nevertheless, the
fuzzers implemented in this section, namely RAND, BLACKBOX, PalpebratumAE,
and PalpebratumCAPC send each command in a single packet and thus can
also be applied to other FTP implementations.

7.5.3 HMM Performance Assessment

The first two research questions outlined in Section 7.5.2 focus on the perfor-
mance of the HMMs in approximating the SuT’s behavior and determining
the interestingness of a test case. To address these questions, we introduce
two scores to measure the HMMs’ performance against a graybox baseline
(Section 7.5.3.1). Then, we evaluate the HMMs based on these scores (Sec-
tion 7.5.3.2).
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7.5.3.1 Similarity Scores

We propose two scores to assess the performance of the HMMs’ behavior
approximation in comparison to a baseline. For our experiments, the baseline is
the graybox behavior approximation and interestingness assessment conducted
by AFLnwe, which uses code coverage.

Interestingness Similarity Score

On the one hand, we measure performance by analyzing which test cases are
deemed interesting by both the baseline and by the HMM. While this method
abstracts from the actual approximation of the SuT’s, it directly evaluates the
alignment between the graybox baseline and the blackbox HMM in terms of
their impact on guided fuzzing. We refer to this score as 𝑠𝑖, as it is based on
the interestingness of the test cases. It is calculated as follows:

𝑠𝑖 =
|𝑇𝑏 ∩ 𝑇ℎ|
|𝑇𝑏 ∪ 𝑇ℎ|

, (7.6)

where 𝑇𝑏 and 𝑇ℎ denote the set of test cases deemed interesting by the baseline
and the HMM, respectively.

Coverage Similarity Score

On the other hand, we propose a new score to compare the graybox behavior
approximation based on code coverage and the blackbox HMM state coverage.
Figure 7.7 shows an example of two coverage curves to motivate the proposed
score. The x-axis represents the test cases generated by AFLnwe, while the
y-axis shows the relative coverage achieved by both AFLnwe and the HMM.
Note that we used the same test cases, in the same order, to calculate the
graybox coverage using AFLnwe and the blackbox coverage using the HMM.
With this, we allow for a direct comparison of these two coverage curves.
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Figure 7.7: Coverage curves as measured based on AFLnwe and an HMM with 51 nodes which
uses CAPC for the dimensionality reduction. Both curves are normalized to [0, 1].

While the HMM is not expected to perfectly model the code coverage directly
but to approximate the SuT’s behavior good enough to guide a fuzzer, a similar
coverage curve indicates a comparable impact on the fuzzer’s guidance. This, in
turn, provides insights into the relative performance of the blackbox HMM and
the graybox baseline. Since this score is derived from the coverage information,
we call it 𝑠𝑐 .

The general approach of 𝑠𝑐 involves applying a sliding window approach to
align increases in the HMM’s coverage curve with corresponding increases
in the baseline coverage curve. With this sliding window approach, coverage
increases that occur in different points along the x-axis, which represents
the sequence of test cases sent to the SuT, can be matched during the score
calculation. This might be necessary if the baseline does not provide exact
coverage information after each test case. Moreover, by using this sliding
window approach, we allow small differences in the behavior approximation
of the HMM and the baseline, as test cases next to each other tend to be similar.
Nevertheless, the size of the sliding window can be set to 1 to enforce to only
count perfect matches for the score calculation. Additionally, we consider the
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gradient of the matched increases for the calculation of 𝑠𝑐 . With this, the score
reflects not only whether new coverage was generated but also the magnitude
of the coverage increase produced by the respective test case.

𝑠𝑐 is calculated as

𝑠𝑐 =
∑

|𝑀|

𝑖=0 𝑑𝑖 + |𝑇 𝑢
ℎ | ⋅ 𝑑𝑚𝑎𝑥

|𝑇 | ⋅ 𝑑𝑚𝑎𝑥
, (7.7)

where 𝑀 is the set of matched coverage increases between the two curves, and
𝑑𝑖 the distance between the two coverage increases in a match 𝑚𝑖 ∈ 𝑀 . This
distance includes the distance between the two increases along the x-axis and
the distance between the gradient of the coverage increases. 𝑇 𝑢

ℎ refers to the
set of test cases that lead to a coverage increase for the HMM, but not for the
baseline, and 𝑇 denotes the set of all test cases. 𝑑𝑚𝑎𝑥 represents the maximum
distance that could be achieved between two This formula sums the distances
between coverage increases in the HMM coverage curve that have a matching
within the sliding window in the baseline curve. Coverage increases in the
HMM curve that lack a matching increase are penalized with the maximum
possible distance. The sum is then normalized by dividing it by |𝑇 | ⋅ 𝑑𝑚𝑎𝑥.

For a more detailed explanation of the calculation of 𝑠𝑐 , including pseudocode,
refer to the corresponding publication [Här23]. This publication also details
why existing similarity scores for curves are not suitable for our use case of
comparing coverage curves.

214



7.5 Hidden Markov Models

We propose two different scores to assess the performance of the
HMMs in comparison to a graybox baseline.

1 𝑠𝑖, a score measuring the count of test cases deemed
interesting based on the HMM approximation compared to
the graybox baseline approximation.

2 𝑠𝑐 , a score based on the coverage curves generated by the
HMM and the graybox baseline approximation.

𝑠𝑐 provides a more detailed view on the HMM coverage approxi-
mation accurarcy, while 𝑠𝑖 assesses the downstream implications
of the approximation, particulary its impact on fuzzer guidance.

7.5.3.2 Experiments

In order to assess the performance of the blackbox HMMs in comparison
to graybox AFLnwe, we run AFLnwe against the FTP stack ProFTP and com-
pare the interestingness decisions by AFLnwe with those of the HMMs. More
specifically, we perform the following steps.

1 Execute AFLnwe against ProFTP for 8 hours, recording all network
traffic generated during the run. This results in 9 GB of network traffic
which includes 672,214 test cases generated by AFLnwe.

2 Replay the recorded network traffic for the HMMs, and:

a identify which test cases are considered interesting based on the
HMM coverage, and

b concurrently record the number of non-zero entries in the
coverage map of the HMM.

3 Gather the test cases that are considered interesting by AFLnwe from
the final corpus.

4 Calculate the scores 𝑠𝑖 and 𝑠𝑐 as defined in Section 7.5.3.1 utilizing the
information collected from the above steps.
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We execute AFLnwe in the first step to generate fuzzing data than we can
then use to replay to the HMMs. As this data is not intended to evaluate the
performance of the fuzzer itself, we

When interpreting the Interestingness Similarity Score 𝑠𝑖 for the HMMs and
AFLnwe, it is important to consider the following. AFLnwe considers test cases
interesting if they lead to new coverage [Pha20]. Consequently, the inter-
estingness of a test case is influenced by the sequence of test cases that was
already sent and analyzed. For instance, if test cases 𝑡1 and 𝑡2 produce the same
coverage, AFLnwe would not consider 𝑡2 to be interesting if 𝑡1 was analyzed
first. However, if 𝑡2 were processed before 𝑡1, it would be deemed interesting.
This scenario could lead to the HMM considering 𝑡1 not interesting while
AFLnwe deems it interesting, which in turn might cause the HMM to later
consider 𝑡2 interesting when AFLnwe does not.

This discrepancy would influence the score 𝑠𝑖 calculated for the HMM, while
it is not necessarily a poor decision by the HMM. Rather, it could stem from
differences in how the SuT’s behavior is represented. These differences are to
be expected, as the HMM utilizes blackbox information only.

To account for this, we also analyze the distribution of interesting test cases
over time when evaluating HMM performance. If the HMMs deem more
test case interesting later in the process, it is more likely that the scenario
described may have occurred. If the HMMs initially consider other test cases to
be interesting, this could cause a propagation of differences through subsequent
decisions, as each decision is influenced by earlier ones. In this case, other test
cases would still be considered interesting later in the process, since the HMMs
only have a slightly different interpretation as AFLnwe. However, if the HMMs
report most interesting test case earlier in the process, it is more likely that
they generally have a different representation, leading to an interpretation of
the test cases differing from the one from AFLnwe. Note that we do not expect
the HMMs to come to exactly the same conclusions as AFLnwe. Instead, we
are interested in the HMMs’ relative performance to understand the impact of
the HMMs’s number of nodes and the dimensionality reduction approaches
better. Furthermore, we use these insights to decide which HMMs to use for
the subsequent fuzzer evaluation (see Section 7.5.4).
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Table 7.7: Comparison of the HMM-based interestingness decisions compared to AFLnwe’s in-
terestingness decisions. We report the number of test cases that were considered
interesting by both the HMM and AFLnwe (True Positive (TP)), the number of test cases
that where considered interesting by the HMM (False Positive (FP)), and the precision
(Pr). The value reported for TP corresponds to the Interestingness Similarity Score
𝑠𝑖. In total, AFLnwe considered 3,220 out of 672,214 test cases to be interesting. The
HMMs with the highest precision and highest TP for each dimensionality reduction
approach ratio are highlighted for AE and CAPC.

HMM Nodes PCA AE CAPC

TP FP Pr TP FP Pr TP FP Pr
7 1 9 0.10 1 15 0.06 2 9 0.18

18 2 6 0.25 2 40 0.05 2 39 0.05
27 2 6 0.25 2 65 0.03 1 7 0.12
38 1 8 0.11 4 45 0.08 3 56 0.05
51 2 20 0.09 5 116 0.04 5 109 0.04

In addition, we analyze the coverage curves of the HMMs to gain a deeper
understanding of their performance. Note that the absolute coverage values of
the HMMs and AFLnwe are not directly comparable, as these values depend on
the total number of nodes in the respective HMM (𝑁). Thus, we normalize
the coverage curves to the interval [0, 1] for comparisons among the HMMs
and AFLnwe.

The following sections present the results of our experiments with respect
to the HMMs’ performance, while Section 7.5.3.3 provides a discussion. Sec-
tion 7.5.4 further explores and discusses the performance of fuzzers utilizing
the HMMs described in this section. While evaluating the performance of the
HMMs is important for understanding their general capabilities, the most sig-
nificant performance indicator remains the overall effectiveness of the fuzzer.

Interestingness Similarity Score

We first calculate the Interestingness Similarity Score 𝑠𝑖 for the HMMs. In
addition to this score, we report the number of false positives, representing to
the number of test case that have been classified as interesting by the respective
HMM, but not by AFLnwe, and the precision. The precision is calculated as
the ratio of true positives to the sum of true positives and false positives.
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Table 7.7 presents these values for the considered HMMs, which differ in the
dimensionality reduction approach used in NeDaP and in the number of hidden
nodes (see Section 7.5.2.2). For example, among the test cases the HMM with
51 nodes using CAPC for dimensionality reduction deems interesting, five are
also considered to be interesting by AFLnwe, while 109 are not. This results
in a precision of 0.04.

Interesting Test Case Distribution

We also report the distribution of test cases considered to be interesting by the
HMMs over the total sequence of test cases, as illustrated in Figure 7.8. The
figure displays a corresponding box plot for those HMMs that achieved the
highest precision and AFLnwe (see Table 7.7). We exclude the HMMs utilizing
PCA for dimensionality reduction with the highest precision from this analysis,
as they only considered 8 test cases to be interesting, which is insufficient for
statistical analyses. However, we include the HMMs with 51 nodes for both AE

and CAPC, as these models achieved the highest true positive values (Table 7.7).

In Figure 7.8, the boxes represent the interquartile range, spanning from the
lower quartile to the upper quartile, with the median indicated by the line
within the box. The whiskers extend to the most distant points within 1.5
times the interquartile range. Test cases considered to be interesting by both
AFLnwe and the respective HMM are marked with blue circles.

The two plots in Figure 7.8 display the same data, but with different scaling.
Figure 7.8a provides a more intuitive visualization to analyze the distribution
of interesting test cases across all test cases, wile Figure 7.8b uses a logarithmic
scale to highlight the distribution of test cases that were deemed interesting
by both AFLnwe and the respective HMM.

Figure 7.8a reveals that the majority of test cases deemed interesting by the
HMMs are executed at the very beginning of the fuzzing campaign. For
example, for the HMM with 38 nodes using AE (AE/38) results in a lower
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(a) Distribution of test cases on a linear scale. Most test cases that are classified as
interesting by the HMMs are located in the first half.
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(b) Distribution of test cases on a logarithmic scale. Most test cases that are deemed
interesting by an HMM and AFLnwe are located in the first 1,000 test cases.

Figure 7.8: Distribution of test cases that are considered to be interesting by the HMMs. Test
cases that are deemed interesting by an HMM and AFLnwe are shown as blue circles.
The boxes span from the lower quartile to the upper quartile, and the whiskers show
the farthest point within the 1.5 interquartile range. The median is shown as vertical
line in the box. In total, 672,214 test cases were executed.

quartile of 2.0 and an upper quartile of 31,122.75. In total, 672,214 test cases
were executed. In contrast, the test cases deemed interesting by AFLnwe are
distributed over the entire fuzzing campaign.

Figure 7.8b offers a more detailed view of the earlier stages of the fuzzing
process. This figure shows that most test cases deemed interesting by both the
HMMs and AFLnwe are located within the first 1,000 test cases. For example,
for AE/38, these include test cases 1, 2, 4, and 257. Additionally, the figure
highlights that all HMMs and AFLnwe agree in deeming the very first test
case as interesting.
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Figure 7.9: HMM transition coverage for different dimensionality reduction approaches and
HMM sizes. The coverage is normalized to the interval [0,1]. The HMMs with 7 nodes
reach their maximum coverage quickly, and achieve a relatively high coverage.

Coverage

While the previously reported results are based on the binary information
on whether a test case is deemed interesting by the HMMs and AFLnwe, the
following is based on the relative coverage as identified by AFLnwe and the
HMMs. We base our experiments on the line coverage as reported by AFLnwe,
and on the transition coverage within the hidden states of for the HMMs.
Figure 7.9 illustrates the coverage of the HMMs over the test cases generated
by AFLnwe. The coverage values for the HMMs are normalized to the interval
[0, 1], allowing for a relative comparison of coverage across different HMMs.

The figure indicates that the HMMs with 7 nodes reach their respective maxi-
mum coverage relatively quickly, both for AE and CAPC. Additionally, when
comparing HMMs with the same number of nodes but different dimensionality
reduction approaches, it becomes evident that HMMs using PCA generally
result in lover coverage values.
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Figure 7.10: Coverage as measured by AFLnwe (line coverage) and three HMMs (transition cov-
erage), normalized to the interval [0, 1].

Figure 7.10 presents the coverage of HMMs with 51 nodes compared to the line
coverage reported by AFLnwe. In this case, all coverage values are normalized
to the interval [0, 1], facilitating a more direct visual comparison. The figure
shows that the coverage curves generated by AFLnwe generally have smaller
gradients compared to those provided by the HMMs.

Coverage Similarity Score

To analyze the similarity between the coverage curves, we utilize the Coverage
Similarity Score 𝑠𝑐 as presented in Section 7.5.3.1. We calculate 𝑠𝑐 for each of
the considered HMMs and the line coverage as reported by AFLnwe. A smaller
score indicates a higher similarity between the coverage curves.

The results of these calculations are presented in Table 7.8. It shows that,
across all dimensionality reduction approaches, the coverage curves produced
by the HMMs with 51 nodes exhibit the highest similarity to the coverage
curve generated by AFLnwe. For example, for CAPC, the HMM with 51 nodes
achieves a score of 0.5, whereas the HMM with 27 nodes achieves a score of
0.92. This is consistent with the visual representation of the coverage curves
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Table 7.8: Coverage Similarity Score 𝑠𝑐 calculated with respect to AFLNet line coverage, using a
sliding window size of 37,000. The lowest score, which indicates the highest similarity
between the HMM and the AFLNet coverage, is highlighted for each dimensionality
reduction approach.

HMM Nodes PCA AE CAPC

7 0.9 0.84 0.89
18 0.93 0.63 0.63
27 0.92 0.61 0.92
38 0.91 0.59 0.56
51 0.79 0.57 0.50

in Figures 7.9 and 7.10 and with the number of test cases deemed interesting
by these two HMMs (Table 7.7). CAPC/51 produces to a coverage curve which
is visually aligns more closely with AFLnwe’s coverage curve, while CAPC/27
results in a curve with only few increases due to it considering only 7 test
cases as interesting.

When interpreting the 𝑠𝑐 scores with respect to AFLnwe, the following needs
to be considered. AFLnwe does not record coverage for each individual test
case, but only at fixed time intervals. Changing this would require larger
changes in the code base. As a result, for the 672,214 test cases processed,
only have 3,233 coverage measure points are reported by AFLnwe. To compare
the coverage curves and to calculate 𝑠𝑐 , we need to extend AFLnwe’s coverage
curve to match the x-axis range of the HMM coverage curves. This adjustment
allows for comparison but introduces some inaccuracy to the 𝑠𝑐 score.

Despite the limitation, we present the results of these calculations but ac-
knowledge the constraint in our assessment of the HMMs’ performance (see
Section 7.5.3.3). To mitigate the impact of this inaccuracy, we set the sliding
window size to 37,000, aligning with the time interval of AFLnwe’s coverage
measurements.
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7.5.3.3 Discussion

While the HMMs are not expected to replicate AFLnwe’s representation of
the SuT exactly, comparing the two approaches offers valuable insights into
the HMMs’ performance.

Our calculations of the Interestingness Similarity Score 𝑠𝑖 reveal that the
HMMs consider fewer test cases as interesting compared to AFLnwe. This
outcome aligns with our expectations, as the number of possible transitions in
the HMMs is significantly smaller than the number of code lines considered
by AFLnwe’s coverage. Consequently, AFLnwe achieves finer granularity in
coverage, allowing it to detect more subtle changes in the SuT’s behavior and
thus consider a greater number of test cases as interesting.

Consistent with this observation, our experiments suggest that HMMs with
a larger number of nodes tend to consider more test cases as interesting
compared to those with fewer nodes. This is because HMMs with more nodes
can model the SuT’s behavior with finer granularity, leading to a more detailed
representation, and consequently, a higher number of test cases being deemed
interesting.

Our analysis of the distribution of test cases deemed interesting by the HMMs
reveals that most of these test cases are located in the first half of the sequence
of test cases. Specifically, we observe that those test cases deemed interesting
by both AFLnwe and the HMMs are located within the first 1,000 test cases. As
discussed in the beginning of Section 7.5.3.2, this analysis provides insight into
whether the HMMs merely exhibit slightly different interpretations of the test
cases, leading to different decisions on the interestingness of a test cases which
then has an impact on all following decisions. However, our findings suggest
that the HMMs likely represent the SuT in a fundamentally different way,
leading them to consider different test cases as interesting compared to AFLnwe.

It is important to note that this difference in representation does not neces-
sarily imply that the HMMs are unsuitable for enhancing blackbox fuzzing.
Nevertheless, it influences our choice of HMMs for subsequent experiments,
as discussed later in this section.
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Furthermore, the coverage curves generated by the HMMs reinforce our pre-
vious observations. For instance, HMMs that deem only a few test cases
interesting, such as those with 7 nodes and those using PCA for dimensionality
reduction, exhibit coverage curves with fewer steps. This pattern is expected,
as each test case deemed interesting leads to an increase in the coverage curve.
The consistency of our results across different metrics further validates the
findings from our experiments.

Following the performance evaluation of the HMMs presented in this section,
we assess the effectiveness of a fuzzer guided by such an HMM in Section 7.5.4.
This evaluation examines the entire pipeline, starting from raw network traffic
through NeDaP and the HMMs, and then using the HMMs’ coverage infor-
mation to guide the fuzzing process. The objective of this evaluation is to
determine whether the HMMs can effectively improve the fuzzing process.

For this subsequent evaluation, we select specific HMMs to be used within
a fuzzer. We choose to evaluate two fuzzers, each employing one of the
following HMMs:

1 AE/51, the HMM with 51 nodes using AE for dimensionality
reduction in the network packet preprocessing conduced
with NeDaP, and

2 CAPC/51, the HMM with 51 nodes using CAPC for
dimensionality reduction.

We come to this decision based on the following considerations. First, we
decide not to further consider the HMMs that use PCA for dimensionality
reduction. These HMMs consider only up to two 22 test cases interesting,
suggesting that they lack the capability to guide the fuzzing process effectively
over a 24-hour campaign.
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Then, we evaluate the performance of the HMMs based on the two scores 𝑠𝑖
and 𝑠𝑐 . AE/51 and CAPC/51 achieve the highest scores in terms of 𝑠𝑖. However,
considering the precision, AE/38 and CAPC/7 show the best performance. Our
analysis indicates that 𝑠𝑖 is the more important measure for our purposes. The
distribution of test cases considered interesting by the HMMs is concentrated
in the first half of the full sequence of test cases, whereas AFLnwe considers test
cases interesting throughout the entire sequence. We infer that the differences
in interestingness assessment is not merely based on subsequent faults, and
thus focus on the number of True Positive results (𝑠𝑖) of the HMMs as a basis
to select HMMs to be used in the fuzzer. Based on 𝑠𝑖, AE/51 and CAPC/51 are
considered the HMMs with the highest performance. Moreover, these two
HMMs are also considered to be the two HMMs with the highest performance
when evaluating 𝑠𝑐 .

Based on these considerations, we decide to use AE/51 and CAPC/51 for our
subsequent experiments.

7.5.4 HMM-based Fuzzer Assessment

To assess the performance of the downstream application of the HMMs, we
implement four fuzzers based on LibAFL [Fio22]: the blackbox and random
baseline fuzzers BLACKBOX and RAND as presented in Section 7.5.2.1, and two
instances of Palpebratum, one using AE/51 and one using CAPC/51. We run
each of the fuzzers for 24 hours against ProFTP (see Section 7.5.2.3), and repeat
each run 30 times to account for the fuzzers’ randomness. Our experimental
setup for these runs is based on ProFuzzBench [Nat21]. As initial corpus, we
use the seeds provided by ProFuzzBench. With this, we follow the recom-
mendations by Klees et al. [Kle18]. To assess the performance of the fuzzers,
we measure the code coverage in basic block hits using the code provided by
ProFuzzBench. We run our experiments on an Ubuntu 20.04 LTS server with
an Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz CPU (6 physical cores) with
125 GB of RAM. To ensure a fair resource distribution between the runs, we
only run six experiments in parallel.
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Figure 7.11: Coverage in basic blocks for the four fuzzers over the course of 24 hours. Each
line represents the mean of 30 runs while the shaded area represents the 95% con-
fidence interval. BLACKBOX and RAND achieve significantly higher coverages than
PalpebratumAE and PalpebratumCAPC, and PalpebratumAE significantly outper-
forms PalpebratumCAPC.

7.5.4.1 Results

We first report the coverage in basic block hits achieved by the different fuzzers
over the course of the 24 hour campaign. Note that this coverage is calculated
based on the evaluations provided by ProFuzzBench and thus calculates only
the coverage of the test cases deemed interesting by the respective fuzzer.
Figure 7.11 shows the mean of 30 runs as well as the 95% confidence interval.
It demonstrates that BLACKBOX performs better than RAND, and that RAND
performs better than the two instances of Palpebratum, PalpebratumAE and
PalpebratumCAPC. Moreover, PalpebratumAE outperforms PalpebratumCAPC.
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Table 7.9: Experimental results for the four fuzzers. We report the final coverage in basic blocks,
the coverage achieved by the newly generated test cases, the number of test cases
deemed interesting, and the ratio between the coverage and the number of interesting
test cases. All values shown for the blackbox fuzzers represent the mean of 30 runs,
while AFLnwe has been run six times. 𝑇𝑛 denotes the set of interesting test cases
newly generated by the fuzzer, thus excluding the seeds, and 𝐶𝑛 denotes the coverage
generated by the test cases in 𝑇𝑛

Fuzzer Total coverage 𝐶𝑛 |𝑇𝑛| 𝐶𝑛∕|𝑇𝑛|

PalpebratumAE 4214.33 (15.31%) 118.93 59.47 2.0
PalpebratumCAPC 4177.83 (15.18%) 77.67 76.97 1.01
BLACKBOX 4437.43 (16.12%) 360.77 4735.83 0.08
RAND 4266.74 (15.50%) 163.74 3690.43 0.04
AFLnwe 5137.17 (18.66%) 1078.0 3311.83 0.33

We verify these results by calculating a two-sided Mann-Whitney U test with
the significance level of 𝛼 = 0.05. Our results show that for every pair of
coverage distributions, the test rejects the null hypothesis that the two fuzzers
achieve the same coverage with a p-value < 0.01. This supports the visual
impression given by Figure 7.11.

For a more comprehensive view of the fuzzers’ performance, we report ad-
ditional values on the fuzzing campaigns in Table 7.9. Each value shown for
the blackbox fuzzers represents the mean of 30 runs. AFLnwe was only run 6
times as these values only serve as a baseline to compare the absolute values
of the blackbox fuzzers against and are not used for statistical calculations
themselves. We report the total coverage achieve by the corpus generated by
each fuzzer after 24 hours. This value corresponds to the rightmost values of
the plot shown in Figure 7.11. For example, PalpebratumAE achieve a total
coverage of 4214.33 basic blocks, while the graybox fuzzer AFLnwe covers
5137.17 basic blocks.

Moreover, we report 𝐶𝑛, which denotes the coverage achieved by the corpus
excluding the seeds given to the fuzzer Thus, this value shows the coverage
that is achieved by the corpus newly generated by the fuzzers. The test cases
newly generated by PalpebratumAE achieve a coverage of 118.93 basic blocks.
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In order to highlight the efficiency of the test cases, Table 7.9 also reports
the ratio between the 𝐶𝑛 and the number of the test cases in the corpus that
were newly generated by the fuzzers. This value shows the coverage that
was achieved per test case on average. For PalpebratumAE, this ratio is 2.0,
while RAND achieves a ratio of 0.04.

7.5.4.2 Discussion

Our experiments with respect to the performance of the HMM-guided fuzzers
provide the following insights.

Impact of HMM First, our results suggest that the choice of the underly-
ing HMM, including the choice of the preprocessing algorithm, influences
the fuzzer performance. PalpebratumAE, based on an HMM with 51 nodes
which uses AE for preprocessing, results in a significant higher coverage than
PalpebratumCAPC, based on an HMM with 51 nodes using CAPC for prepro-
cessing. This is in line with the experiments conducted with NeDaP. Within
these experiments, AE showed better out-of-domain generalization capabilities
than CAPC, which was expected to have a positive impact on the downstream
fuzzers’ performance (see Section 6.4.3.3).

Relative Achieved Coverage Our results indicate that PalpebratumAE and
PalpebratumCAPC achieve significantly less code coverage than the two base-
line algorithms BLACKBOX and RAND. As expected, it shows that the graybox
fuzzer AFLnwe achieves more coverage than the blackbox fuzzers.

As stated before, we base our experiments on the coverage measurement as
usually conducted for graybox fuzzing evaluations and as implemented by
ProFuzzBench [Nat21]. For this coverage measurement, test cases that are
included in the corpus after the fuzzing campaign are collected and replayed
against a version of the SuT that was compiled for coverage analysis. However,
the corpus only includes those test cases that were deemed interesting by the
fuzzer, and the initial seeds. Thus, the measured coverage only shows the
coverage of those test cases and not of the whole fuzzing campaign.
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In graybox fuzzing evaluations, this does not impact the reliability of the
coverage measurement, as the fuzzer uses the same coverage analysis to guide
its fuzzing and thus correctly selects those test cases for the corpus that leads to
new coverage. In blackbox fuzzing however, the fuzzer cannot decide correctly
which test cases to include in the corpus and thus might miss test cases that
lead to new coverage. Thus, it is to be expected that the reported coverage
underestimates the coverage of the fuzzing campaign for PalpebratumAE,
PalpebratumCAPC, and RAND. As BLACKBOX includes all test cases in the corpus,
the coverage measurement for BLACKBOX includes the full coverage of the
fuzzing campaign. Thus, the coverage reported for these experiments helps
to understand how the coverage of the interesting test cases evolves over the
fuzzing campaign. However, for an evaluation of the total achieved coverage,
a novel performance measure that includes all test cases generated by the
fuzzer would be necessary.

Effectiveness of test cases Nevertheless, the reported coverage provides
insights into the effectiveness of the generated test cases, measured as the ratio
of achieved coverage and generated test cases (see Section 2.4.3). As BLACKBOX
deems all test cases interesting, the effectiveness of its test cases can be used
as a baseline for relative comparisons. The test cases generated by RAND are
less efficient than the ones generated by BLACKBOX. A reason for this might be
that the coverage is not uniformly distributed over the test cases and thus a
random selection of test cases might exclude those test cases leading to higher
coverage. Nevertheless, both PalpebratumAE and PalpebratumCAPC generate
test cases with a higher effectiveness, showing that the test cases that are
deemed interesting by the approaches actually improve coverage. Interestingly,
PalpebratumAE deems less test cases interesting than PalpebratumCAPC, but
achieves a higher final coverage. This again highlights the impact of the HMM
chosen as a basis for the fuzzer.

Efficiency Another factor that might influence the relative performance of the
baseline fuzzers and the HMM-based fuzzers is their general efficiency. In line
with Gopinath et al., we define the efficiency of a fuzzer as the number of test
cases that are executed in a given time frame [Gop22]. In comparison to the
two baseline fuzzers, the HMM-based fuzzers need to capture and preprocess
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the network traffic, and query the HMM to determine the interestingness of a
test case. For the baseline fuzzers, this decision is either trivial as it returns
always true for BLACKBOX, or is based on a simple query to a random oracle
for RAND. As a result, it would be expected that the baseline fuzzers show a
higher efficiency than the HMM-based fuzzers. With this, the assessment of
relative performance of the HMM-based fuzzers in comparison to the baseline
fuzzers might change in favor of the HMM-based fuzzers. However, the metrics
as provided by ProFuzzBench do not allow to analyze the efficiency of the
evaluated fuzzers. Thus, additional measurements would be needed to further
analyze the impact of the fuzzers’ efficiency on the code coverage they achieve.

Impact of model quality In addition, our experiments demonstrate that
BLACKBOX performs significantly better than RAND. Recall that BLACKBOX uti-
lized no information on the behavior of the SuT and deems all test cases in-
teresting, while RAND randomly decides whether a certain test case is deemed
interesting. With RAND, each test case has a probability of 0.5 to be inter-
esting. Both BLACKBOX and RAND are directly comparable in terms of their
efficiency as they base on the same fuzzer and only differ in the function that
defines the interestingness of a test case. Thus, as BLACKBOX performs better
than RAND, this suggests that selecting the wrong test cases can decrease the
fuzzing performance and that in this case, just selecting all test cases for the
corpus might be beneficial. This insight was also shown by our experiments
with respect to Smevolution, where the fuzzer based on an SVM yielded
significantly less vulnerability coverage than the random approach (see Fig-
ure 7.2). These results emphasize purely blackbox approach might achieve
higher coverage than a model-based fuzzer if the model employed does not
capture relevant information.

7.5.5 Related Work

Palpebratum models the behavior of the SuT as expressed by the network
traffic using HMMs. Markov chains and HMMs have been used to model and
to generate network traffic by various works. Wright et al. use a Markov chain
to model and to generate user events which lead to network traffic which is
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then used to test network applications [Wri10]. Note that in this case, the
Markov chain is used to model and generate user events and not to generate
network traffic directly.

Dainotti et al. propose to use an HMM to model network packet behavior from
internet traffic sources [Dai08]. More specifically, they model the inter packet
time and the packet size with the HMM. The authors apply their approach
to SNMP, HTTP, the network game Age of Mythology, and MSN messenger.
Their experiments show that the HMM is able to model the dependencies and
temporal structures of the network traffic. Moreover, they show that the HMM
is able to replicate and predict future network packet properties. In contrast to
the work by Dainotti et al., we use the network packets themselves as input
to the HMM instead of using traffic flow parameters. With this, we allow for
a more detailed representation of the single packets. This accounts for the
differing use case as Dainotti et al. handle large sequences of internet network
traffic, while Palpebratum considers short sequences of fuzzer traffic.

Gascon et al. present PULSAR, which uses a second-order Markov chain to
represent the network packets [Gas15]. The main goal of PULSAR is to pro-
vide a generative model which can analyze and simulate network traffic to
support a blackbox fuzzer. More specifically, PULSAR learns a second-order
Markov chain which represents the state machine of the protocol under test
as well as a set of templates and rules which define the specifics of a net-
work packet, and the dependencies between network packets. This Markov
chain is then transformed to a Deterministic Finite Automaton (DFA). This
DFA is used to generate fuzzing responses to requests received by the SuT,
leveraging so-called fuzzing masks which indicate which parts of the network
packet should be fuzzed next. The authors evaluate PULSAR using FTP and
the proprietary network protocol OSCAR. In contrast to Palpebratum which
aims to approximate the SuT’s behavior to guide fuzzing, PULSAR focuses on
modelling the network protocol in detail to allow generating new packets as
response to a SuT’s requests. With this, more training data and modelling
overhead is necessary within PULSAR.
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Moreover, several publications use Markov chains and HMMs to model differ-
ent aspects of blackbox and graybox fuzzing (see e.g. [Zhu22]). Böhme et al.,
Rawat et al. present approaches which apply a Markov chain to model the
seed selection problem in graybox fuzzing [Böh16, Raw17], while Salem et al.
use a Markov chain for blackbox test case generation [Sal21].

7.5.6 Discussion

The following sections discuss our results by first addressing the research
questions in Section 7.5.6.1. Then, we discuss the implications of our find-
ings in Section 7.5.6.2, and present identified limitations in Section 7.5.6.3.
Section 7.5.6.4 outlines possible future research directions.

7.5.6.1 Research Questions

Our experiments address the research questions presented in Section 7.5.2,
and our findings are discussed in the following.

RQ1 How can we assess the performance of the HMMs Palpebratum is
based on?

We present two scores that can be used to assess the performance of the
HMMs. First, we present 𝑠𝑖, a score that compares the count of test cases
deemed interesting based on the HMMs to a graybox approach. Second, we
present 𝑠𝑐 , a score based on the coverage curves generated by the HMMs and
a graybox baseline. The first score directly compares the assessment of the
HMM to the assessment of a graybox baseline. In our experiments, the second
score demonstrates that it is capable to represent the similarity of coverage
curves, both for expected coverage curves and for edge cases [Här23].

Nevertheless, as both scores use a graybox fuzzer as baseline, they suffer from
a limitation stemming from the graybox interestingness assessment. The gray-
box fuzzer used as a baseline deems those test cases interesting which lead
to new coverage, considering the coverage all previous test cases achieved.
Thus, if a HMM classifies one test cases differently than the graybox baseline,
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this leads to consequential differences in the interestingness assessment, re-
sulting in a high impact of a single difference in classification on the score.
This needs to be considered when assessing the performance of HMMs based
on the proposed scores.

RQ2 How does the behavior approximation of the HMMs compare to the
behavior approximation done by AFLnwe?

Our experiments demonstrate that the HMMs consider fewer test cases inter-
esting compared to AFLnwe. Moreover, it shows that HMMs with more nodes
tend to lead to more interesting test cases. Both outcomes are in line with the
general observation that a model with more nodes can represent the informa-
tion with a higher granularity. Thus, as each identified difference in behavior
leads to a test case to be considered interesting, models with more nodes are ex-
pected to lead to more interesting test cases. As AFLnwe considers the coverage
in basic blocks, it represents the SuT’s behavior with the highest granularity.

Comparing the specific test cases that are deemed interesting by the HMMs
and AFLnwe as well as comparing the coverage curves shows high differences.
For example, AE/51 deemed 121 test cases interesting, of which only 5 where
also deemed interesting by AFLnwe. Moreover, as most test cases deemed
interesting by the HMMs are located in the first half of the fuzzing campaign,
it less likely that the differences are based on subsequent errors. Nevertheless,
this insight does not necessarily imply that the HMMs are unsuited to improve
the performance of blackbox testing, as they still might represent information
relevant for testing.

RQ3 Does the HMM-based behavior approximation improve blackbox
fuzzing in terms of code coverage?

We measure the code coverage as usual in graybox fuzzing evaluations by
calculating the coverage achieved by the test cases deemed interesting by the
respective fuzzer. Based on this measure, the two baseline fuzzers BLACKBOX
and RAND outperform the two HMM-based approaches PalpebratumAE and
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PalpebratumCAPC. However, as the HMM-based approaches tend to deem less
test cases interesting, this coverage measure is expected to underestimate the
performance of the HMM-based fuzzers.

In addition, we analyze the effectiveness of the test cases by analyzing the
coverage achieved by an interesting test case on average. Our results indi-
cate that the HMM-based approaches generate test cases that show a higher
effectiveness than those generated by the baselines. PalpebratumAE leads to
2.0 basic blocks per test cases on average, while PalpebratumCAPC achieves
a values of 1.01, and the two baselines BLACKBOX and RAND values of 0.08
and 0.04, respectively.

In summary, the HMM-based approaches generate more effective test cases, but
achieve less final coverage. The latter is influenced by the coverage measure-
ment which potentially underestimates the actual coverage of the HMM-based
approaches. Moreover, the HMMs introduce an overhead to the fuzzers. As
a result, the baseline fuzzers operate more efficiently and generate more test
cases per time frame. This potentially also influences the relative assessment
of the fuzzers.

RQ4 Which impact does the dimensionality reduction approaches used to
preprocess the network traffic have on the HMMs’ and the fuzzers’
performance?

The dimensionality reduction approaches have an impact on the performance
of the HMMs as well as on the performance of the subsequent fuzzers.

With respect to the performance of the HMMs, measured by the Interestingness
Score 𝑠𝑖 and the Coverage Score 𝑠𝑐 , our results demonstrate a performance
impact. While the HMMs using PCA for dimensionality reduction tend to deem
less test cases interesting, the performance of HMMs based on AE and CAPC

achieve comparable results.

Comparing the fuzzer performance of PalpebratumAE, which uses AE for
preprocessing, and PalpebratumCAPC, which uses CAPC for preprocessing,
provides the following insights. PalpebratumAE significantly outperforms
PalpebratumCAPC in terms of final code coverage, while also deeming less test
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cases interesting. Specifically, PalpebratumAE achieves a mean final coverage
of 4,214.33 basic blocks, while PalpebratumCAPC achieves 4,177.83. The test
cases generated by PalpebratumAE achieve a coverage of 2.0 per test case on
average, while the test cases generated by PalpebratumCAPC achieve a mean
coverage of 1.01. Thus, the test cases generated by PalpebratumAE are more
efficient. This observation suggests that the choice of the dimensionality reduc-
tion approach has a significant impact on the downstream fuzzer performance.

7.5.6.2 Implications

Our experiments with Palpebratum show that HMM-based blackbox fuzzing
is able to generate test cases that are more effective than those generated
by the baseline fuzzers. With this promising result, it demonstrates how a
blackbox information source, the network traffic generated during testing, can
be leveraged to guide test case generation. This builds a starting point for
applying established graybox testing approaches to blackbox testing in order
to improve the overall blackbox test performance.

In addition, comparing the two baselines used in our experiments suggests
that choosing an unsuitable model can lead to a performance decrease. More
specifically, we use a blackbox fuzzer which deems all test cases interesting,
and compare it to a random fuzzer for which each test case has the probability
of 0.5 to be interesting. The blackbox fuzzer shows a significantly better
performance than the random fuzzer. As the random fuzzer behaves like a
fuzzer using an unsuitable model, this indicates that using a blackbox approach
can be preferable over using a model-based approach with an unsuitable model.

7.5.6.3 Limitations

For our experiments, we used established metrics from graybox testing, which
showed to suffer from certain limitations when applied to blackbox fuzzing
evaluations. Especially, our experiments identified the need for refined met-
rics for blackbox fuzzing evaluations. On the one hand, the proxy metric of
measuring code coverage of the interesting test cases usually used in graybox
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fuzzing evaluations has its limitations when applied to blackbox fuzzing as
ist might underestimate the actual achieved coverage. On the other hand,
proposing new means to approximate the behavior of a SuT requires a metric
to assess the quality of this approximation. In this work, we proposed two
scores to compare the interestingness assessment of blackbox approaches to a
graybox baseline. While these scores provide valuable means to quantify the
performance, they suffer from the fact that the interestingness of a test case
depends on previous test cases in graybox fuzzing. Using a known ground
truth to compare the blackbox interestingness assessment against would en-
sure reliable and comprehensible scores. However, how such a ground truth
could be acquired remains an open question for further research.

For our experiments regarding the fuzzers’ performance, we utilized ProFTP
as a target. While this provides insights into the performance of the fuzzers,
an evaluation including more targets would provide additional insights with
respect to the general performance of the fuzzers.

7.5.6.4 Future Work

Currently, the HMMs used for Palpebratum are trained on a dataset of user
data generated with several FTP servers. Future work could analyze the impact
of the training dataset on the performance of the HMMs and the downstream
fuzzers. Specifically, the similarity of HMMs trained on datasets which each
include user-generated traffic for one FTP server could be analyzed. For
this, one could use the distance measure for HMMs as presented by Juang
et al. [Jua85], for which an implementation is provided by Manuel Pineda1.
However, preliminary analyses conducted during the course of this doctoral
work suggest that there is no correlation between the distance of HMMs and
the FTP server that was used to generate the respective training data [Mum21].

Nevertheless, this similarity analysis could provide insights with respect to the
transferability of the HMMs. To reduce the overhead necessary for each test, it
would be beneficial to train one HMM which then could be used to test several

1 https://github.com/pin3da/hmm-dist/blob/master/src/probdist.py
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SuTs. This could be feasible if the HMMs trained for different SuTs are similar
enough. A similar approach was taken by Aichernig et al. [Aic21]. The authors
first train a behavioral model of the general system, and then utilize the model
to test specific SuTs. They apply their technique to test implementations of the
network protocol Message Queuing Telemetry Transport (MQTT) which is
often used in Internet of Things (IoT) environments, and reveal several bugs.

While we chose HMMs for Palpebratum due to their explicit state represen-
tation and suitability for applications with only small training datasets, future
work could investigate whether more recent approaches could be applied to
approximate the SuT’s behavior as well. LSTMs or RNNs could be possible
choices for these investigations.

7.5.7 Summary

We present Palpebratum, an approach to utilize the network traffic accessible
before and during a blackbox test to approximate the behavior of the SuT.
Specifically, we train a HMM on the network traffic prior to testing. During
testing, we query the HMM to decode the sequence of network packets gener-
ated by one test case, resulting in the sequence of hidden states that has the
highest probability to having produced this sequence of network packets. We
use this state sequence to define the interestingness of a test case by deeming
those test cases interesting that take transitions in the HMM that were not
taken by any previous test case.

Based on this approximation, we apply coverage-guided mutational graybox
fuzzing to a blackbox test setting by integrating it into the fuzzing framework
LibAFL [Fio22]. We evaluate two instances of Palpebratum, one based on an
HMM using AE to preprocess the network traffic and one based on an HMM
using CAPC, against a blackbox fuzzer and a fuzzer receiving random feedback.
We execute each fuzzer for 24 hours, using ProFTP as target, and repeating
each run 30 times to account for the fuzzers’ randomness.
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Our experiments indicate that Palpebratum is able to generate effective test
cases, but the coverage achieved by the test cases deemed interesting is signif-
icantly less than the one achieved by the two baseline fuzzers. This difference
could be caused by an underestimation of the actual coverage achieved by
Palpebratum, and differences in efficiency, i.e. the number of test cases that
are generated during the course of 24 hours. Moreover, our experiments show
that the choice of the HMM impacts the fuzzer’s performance significantly.

7.6 Multi-Armed Bandit

In contrast to the two approaches presented above, StateBandit, as detailed in
this section, does not construct an explicit model of the SuT’s behavior. Instead,
StateBandit applies RL to address a specific decision in fuzzing: the state
selection problem encountered in stateful network fuzzing. Stateful fuzzing
recognizes that the SuT incorporates several states and incorporates explicit or
implicit knowledge on the states in the fuzzing strategy (see e.g. [Ba22, Dou12,
Liu22] and Sections 2.4 and 2.5). Consequently, the fuzzer can, for example,
target deeper states within the SuT to uncover vulnerabilities located there.
Those vulnerabilities are less likely to be revealed by stateless fuzzers, since
it is usually very unlikely that they provide the specific sequence of inputs
necessary to reach the vulnerable state [Ba22]. Since network protocols mostly
encompass multiple states, stateful fuzzing is an important tool to consider
for a thorough test of network interfaces and stacks.

Stateful fuzzers need to effectively select the next state of the SuT that should
be tested, which is generally called the state selection problem [Liu22]. In
general, for each fuzzing round, stateful fuzzers choose one state of the SuT
that should be tested during this cycle. The SuT is then placed into this chosen
state, and a predetermined number of fuzzing cycles are run while the SuT
is in this specific state. Subsequently, in the next round, the fuzzer repeats
this process by selecting the next state for testing (see also Section 2.5). The
decision on which state should be tested in the next fuzzing round would be
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expected to have an impact on the efficiency of the fuzzing process. However,
Liu et al. show in their work that the different current state selection algorithms
do not lead to significant differences in a fuzzer’s performance [Liu22].

In this section, we introduce a novel approach to address the state selection
problem in stateful network fuzzing by formulating it as a RL problem, specif-
ically a Multi-armed Bandit (MaB) problem (Section 7.6.1). We choose to use a
graybox test setting for this approach to analyze whether an MaB agent can
utilize graybox information to approach the state selection problem and thus
to ultimately improve fuzzing. Since we leverage the MaB problem to approach
the state selection problem, we call our approach StateBandit.

For our experiments, we choose two different approaches to formulate the
state selection problem: a stochastic MaB, and an adversarial MaB. The main
difference between these two approaches is that a stochastic MaB assumes
stationary reward distributions while an adversarial MaB can handle non-
stationary reward distributions (see Section 7.6.2 for more details). In fuzzing,
only new code coverage or new crashes are rewarded. As more code is covered
over time, the amount of code that can be newly covered in a state of the SuT
changes over time, leading to a non-stationary reward distribution. Thus, we
expect that the adversarial MaB to model the state selection problem better and
thus expect a respective fuzzer to perform better (see Section 7.6.1.1 for details).

Conversely, our experiments show that both approaches yield statistically
indistinguishable fuzzer performance in terms of code coverage. Furthermore,
we find that the baseline fuzzer AFLNet achieves significantly better results
compared to the MaB-based approaches. These findings from graybox testing
suggest that attempting to formulate the state selection problem as a MaB
problem in a blackbox setting would likely be unsuccessful, given that the agent
would receive even less information. Therefore, we have decided not to pursue
this research direction further in this doctoral work. Nevertheless, the work
on formulating the state selection problem in graybox network fuzzing, as
presented in this section, was published with the EuroS&P workshops [Bor23a].
The work was conducted in collaboration with Mark Giraud and is based on
the Bachelor’s thesis by Ian Fitzgerald [Fit22].
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7.6.1 Approach

The state selection required for efficient stateful fuzzing can be viewed as
an instance of the exploitation versus exploration dilemma. For fuzzers, it is
crucial to exploit states that have previously yielded new coverage and crashes,
while also exploring new states to uncover additional coverage and crashes. For
example, when testing a network protocol, there might exist a state in which
the connection of the network protocol is fully established and data packets
can be sent. Intuitively, this state is the one that includes most functionality
of the SuT and thus should be exploited to cover this functionality. However,
the other states of the network protocol, such as intermediate connection
establishment states, need to be tested as well to reveal bugs there.

One possibility to formulate exploitation versus exploration problems is
through MaB problems. In MaB problems, a non-contextual RL agent selects
from actions to maximize the cumulative rewards resulting from the ac-
tions [Sut18]. We propose to formulate the state selection problem as MaB and
leverage established algorithms designed for the MaB problem to approach
the state selection problem. The intuition for this is that the actions the agent
selects are mapped to the states of the SuT and thus the agent selects the
state of the SuT that should be tested in the next fuzzing round. As soon as
one fuzzing round is finished, the agent is queried to select the next action
and thus the next state of the SuT to be tested.

7.6.1.1 Multi-armed Bandit

In a MaB problem, figuratively speaking, an agent faces multiple slot machines
(one-armed bandits) and aims to maximize its total winnings over several
rounds. In each round, the agent needs to decide which slot machine to pull,
knowing that each slot machine has its own underlying probability distribution
from which rewards are drawn. Over time, the agent can learn these probability
distribution for each slot machine. Alternatively, one can envision this scenario
as an agent facing a single slot machine with multiple independent arms (see
Figure 7.12), which forms the name of the Multi-armed Bandit problem.
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Figure 7.12: Visualization of the Multi-armed Bandit problem. In each round, the agent needs
to decide which arm of the slot machine to pull. Then, the agent receives a reward
based on the reward distribution of that particular arm.

More formally, in the MaB problem, a non-contextual agent repeatedly selects
from several actions, each leading to rewards drawn from a probability distri-
bution specific to that action. The agent’s goal is to maximize the expected total
reward. Without prior knowledge of the reward distributions, the agent needs
to decide whether to exploit known actions or explore unknown ones. For our
work, we consider a non-contextual MaB, where the agent receives only its
reward after selecting an action, without receiving any additional information
about the environment, the fuzzer, or the SuT influencing its decision [Bou20].
Note that the MaB assumes a stateless environment and thus the agent receives
a reward directly after a single action was chosen.

Literature proposes various approaches to formulate MaB problems [Sli19].
In general, all approaches balance between exploiting known good actions
for short-term benefit, and exploring unknown actions for long-term benefit.
However, these approaches diverge in how they achieve this balance and what
kind of reward distributions they assume. In our setting, we adopt two distinct
approaches: a stochastic MaB and an adversarial MaB. The main difference
between these two approaches lies in the nature of the reward distributions.
For the stochastic MaB, the reward is based on stationary probability distri-
butions, whereas these distributions can change over time for the adversarial
MaB [Aue02b].
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The general approach of a stochastic MaB is to balance between exploration
and exploitation while aiming to find the action that yields the highest reward,
while also aiming to minimize the cumulative regret by converging to the
best action as quickly as possible. In contrast, fuzzing aims to maximize
the general coverage and bugs found, which is potentially distributed over
different states of the SuT.

Adversarial MaBs do not assume stationary reward distributions and thus the
corresponding algorithms are designed to handle the case that the reward
for a specific action changes over time. We base the name of this MaB on
its original publication by Auer et al., who establish the setting of an adver-
sary controlling the rewards, as opposed to the rewards being drawn from a
probability distribution [Aue02b]. In fuzzing, success is generally determined
by the discovery of new coverage or new bugs. Repeatedly encountering the
same coverage or bugs does not provide new insights and should not yield
review for the agent. Thus, our hypothesis is that the adversarial MaB is suited
better to approach the state selection problem in fuzzing, since the reward
for this problem changes over time.

For both approaches, various policies have been proposed. In our experiments,
we use the following commonly used policies. For the stochastic MaB, we
choose the the 𝜀-greedy algorithm [Sut18], the UCB1 algorithm [Aue02a],
and a tuned version of UCB [Aue02a]. Accounting for the differences in a
stochastic MaB, which assumes a stationary reward distribution, and the state
selection problem, we configure the stochastic algorithms to give a rather high
weight on the exploration. For example, we choose 𝜀 = 0.2 for the 𝜀-greedy
algorithm. For the adversarial MaB, we choose the Exp3 algorithm [Aue02b].

𝜀-greedy The 𝜀-greedy algorithm selects the action with the highest expected
reward with a probability of 1 − 𝜀, exploiting the knowledge on rewarding
probability distributions. To also account for exploring new probability distri-
butions, 𝜀GR chooses a random action with a probability of 𝜀 [Sut18].

UCB1 The UCB1 algorithm presented by Auer et al. [Aue02a] takes the known
uncertainty with respect to an action 𝑎 into account, representing this by the
ratio of the total choices that have been taken and the number of times action
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𝑎 has been chosen [Sut18]. With UCB1, all actions will be selected eventually.
However, actions that have already been chosen frequently or that lead to a
lower expected reward are chosen with decreasing frequency over time.

Tuned UCB Auer et al. also present a tuned version of the UCB algo-
rithm [Aue02a], which also takes the estimated variance of an action’s rewards
into account. In contrast to UCB1, the authors do not derive theoretical guar-
antees for this algorithm, but it shows that it outperforms the other algorithms
in several experiments [Aud07].

Exp3 The Exp3 algorithm, presented in a different publication by Auer et
al. [Aue02b], makes no statistical assumptions about the distributions of re-
wards, but assumes an arbitrary and unknown sequence of rewards for each
action. Thus, it is better suited to model the state selection problem for stateful
fuzzing, in which the reward is not drawn from a stationary distribution, but
can change over time. As the specifics of this algorithm are not essential for
understanding the following descriptions and evaluations, we refer to the
original publication for more details on Exp3 [Aue02b].

7.6.1.2 Problem Formulation

Regarding the state selection problem in stateful network fuzzing, the agent’s
task is to select the state of the SuT to be tested during the next fuzzing cycle.
Note that the agent still operates in a stateless environment, since each state
of the SuT represents a possible action for the agent, but does not translate
to a state for the agent.

Assumptions We make the following assumptions as a basis for formulating
the MaB problem.

1 The fuzzer has access to the deterministic state machine that represents
the behavior of the SuT. Amongst other information, that state machine
includes the set of states the SuT can be in, denoted as 𝑆 .

2 Each state in 𝑆 is reachable from the start state.

3 The fuzzer can coerce the SuT into a specific state 𝑠, 𝑠 ∈ 𝑆 .
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Given these assumptions, the state machine itself can be transparent for the
agent. Note that this state machine is needed for the fuzzing process, but does
not influence the agent and the environment the agent operates in. For further
details on how the fuzzer, the agent, and the SuT interact, please refer below.

Actions We define the set of possible actions 𝐴 for the agent to be equal
to the set of states in 𝑆 (𝐴 ∼ 𝑆). Note that 𝑆 represents the states of the
SuT, whereas the agent, operating in a non-contextual environment, remains
stateless. With this construction and our assumptions, each action selection of
the agent corresponds to selecting a state from the SuT’s state machine.

Reward The agent receives a reward if it finds previously unseen cover-
age or crashes. New coverage is rewarded with a reward of 1, and a new
crash is rewarded with a reward of 10. If the agent finds neither new cov-
erage nor a new crash, it receives a reward of 0. Since our ultimate goal
is to apply StateBandit to blackbox fuzzing, we already aggregate the in-
formation available in graybox fuzzing and thus give the agent a relatively
coarse-grained reward. Note that this results in a non-stationary reward dis-
tribution. For our experiments, we choose three algorithms that are designed
for stationary reward distributions, and one algorithm which is also designed
for non-stationary reward distributions (Exp3 algorithm). Thus, we would
expect the Exp3 algorithm to yield better performance.

Framework The interaction between the agent, the fuzzer, and the SuT is
illustrated in Figure 7.13. When the agent selects an action 𝑎, it determines
the subsequent state 𝑠 of the SuT for testing, since 𝐴 ∼ 𝑆 . Then, the SuT is
put into state 𝑠 by sending the necessary inputs to the SuT. Following the
state transition, the fuzzer generates the fuzzing input and sends it to the SuT.
The SuT executes the input, and metrics such as code coverage and crashes
are captured. Note that our setup assumes a graybox scenario where we have
access to code coverage data during fuzzing. Based on these measurements,
the fuzzer computes the reward for the agent and provides it accordingly. This
completes one round of the fuzzing process, prompting the agent to repeat the
cycle by selecting the next state. Note that this entire process operates in a
non-deterministic manner due to the fuzzer’s non-deterministic mutations,
and the agent’s non-deterministic choices. Additionally, note that we assume
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Figure 7.13: Sequence diagram of the interaction between the agent, the fuzzer, and the SuT
(based on [Bor23a]).

the agent to train its policy during the fuzzing process, meaning that it still
balances between exploration and exploitation in the setting as opposed to
selecting the action leading to the highest rewards deterministically.

7.6.2 Experiments

Our experiments aim to investigate the implications of formulating the state
selection problem in stateful fuzzing as MaB problem and employing an MaB
agent to approach the state selection. To this end, we implement the four MaB-
based fuzzers based on the four agent policies presented above. Subsequently,

245



7 Machine Learning based Blackbox Fuzzing

we run these fuzzers against an implementation of the highly stateful network
protocol OPC Unified Architecture (OPC UA), and measure the achieved code
coverage. As a baseline, we use the state-of-the-art stateful graybox fuzzer
AFLNet [Pha20].

Our experiments indicate that all four MaB-based fuzzers achieve statistically
indistinguishable code coverages. This finding is interesting since, as discussed
above, the adversarial MaB approach was expected to model the state selection
problem better and thus to result in a higher code coverage. Nonetheless,
this aligns with the findings of Liu et al., whose results also demonstrate
similar cove coverages for the different state selection approaches they an-
alyzed [Liu22]. Moreover, the baseline AFLNet outperforms the MaB-based
fuzzers significantly, showing possible future research directions to further
improve the MaB-based fuzzers (see also Section 7.6.4.3).

7.6.2.1 Experimental Setting

We run our experiments on an Ubuntu 20.04 LTS server with an Intel® Xeon®
CPU ES-1650 v3 @ 3.50GHz (12 physical cores) with 64 GB of RAM. As SuT,
we choose open625411, an open source implementation of OPC UA.

Research Questions

Our experiments are driven by the following two research questions.

RQ1 Do the different policies for the MaB agent affect the performance
of stateful fuzzers based on a MaB state selection?

RQ2 How do stateful fuzzers using a MaB-based state selection compare
to the state of the art fuzzer AFLNet?

1 https://www.open62541.org/
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Initialstart

Hello Channel Session Activated

Hello

OpenSecureChannel CreateSessionRequest ActivateSessionRequest

Figure 7.14: State machine of OPC UA that is used for the MaB-based fuzzers (based on [Bor23a]).
The protocol states as well as the OPC UA messages that are necessary to transition
between these states are shown. During fuzzing, the MaB agent first selects one of
these states, and the fuzzer then sends the OPC UA messages to reach this state to
the SuT, followed by the fuzzing input.

Methodology

To approach these questions, we implement four MaB-based fuzzers based on
AFL++ [Fio20]. Each of these fuzzers implements one of the policies 𝜀-greedy,
UCB1, tuned UCB, and Exp3. We call these fuzzers 𝜀GR, UCB, UCBT, and EXP,
respectively. As baseline, we use AFLNet [Pha20], a stateful network fuzzer
that uses a manually crafted heuristic to approach the state selection problem.
This heuristic is based on the number of times a state has been selected in
the future, and on how successful the fuzzer was in finding new coverage
in this state [Pha20].

As stated before, our current approach requires a pre-defined state machine of
the network protocol that should be tested. Thus, we create a state machine
including the five states of OPC UA that are needed to establish connection
(see Figure 7.14). When started, the SuT is expected to be in the initial state of
the state machine. By sending OPC UA messages, the fuzzer can subsequently
transition the SuT into the state selected by the MaB agent. Afterward, the
fuzzer sends its fuzzing input and thus test the SuT while it is in this specific
state. For our implementation, we rely on the mutation-based input generation
approach as implemented in AFL++ [Fio20]. Note that this state machine is
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not intended to encapsulate the entire behavior of the SuT. Instead, it focuses
on representing states of the SuT relevant for fuzzing. Therefore, it excludes
error states nor the states necessary to close a session.

We run our four fuzzers against the SuT open62541, and measure the code
coverage the fuzzers achieve over time. As coverage metric, we choose the
basic block hits as measured by AFL-based fuzzers [Wan19].

To ensure reliable results, we follow the recommendations by Klees et
al. [Kle18]. These recommendations include executing each fuzzing run
for a minimum of 24 hours, and repeating each configuration at least 30
times to account for the randomness of the fuzzer. However, given the
exploratory nature of our experiments in this chapter, we run each fuzzer
configuration 10 times for 24 hours. Note that this still accounts for the
randomness of the MaB algorithms.
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Figure 7.15: Box plot of the final coverages achieved by 10 runs of the MaB-based fuzzers. The
boxes show the range between the lower and upper quartile, the whiskers represent
the minimum and maximum. The lines in the boxes show the median. None of the
MaB-based fuzzers leads to significantly different results.

248



7.6 Multi-Armed Bandit

7.6.2.2 Results

We present the results of our experiments in this section, while Section 7.6.2.3
discusses the results and their implications with respect to our research ques-
tions.

Comparison between MaB-based Fuzzers

First, we present the results achieved by the four MaB-based fuzzers. Figure 7.15
illustrates the final coverage that has been achieved across 10 runs of the four
MaB-based fuzzers. In the figure, each box spans from the lower quartile to
the upper quartile, with the median depicted as a line within the box. The
whiskers extend the minimum and the maximum. Higher coverage indicates
better performance for each respective fuzzer.

The box plot indicates that there is no statistically significant difference in
performance amongst the four fuzzers. To validate this statistically, we conduct
a Mann-Whitney U test and present the resulting p-values in Table 7.10. Since
none of these p-values is smaller than 0.05, we cannot reject the null hypothesis
that all fuzzers achieve the same final coverage. This finding confirms the
visual impression provided by Figure 7.15. We choose the threshold of the
p-value 𝛼 = 0.05 according to established best practices [Kle18, Paa21].

Table 7.10: Resulting p-values of a Mann-Whitney U test regarding the statistical significance of
the distance of the resulting coverages. No algorithm performs significantly better
than one of the others (𝛼 = 0.05).

UCB UCBT 𝜀GR EXP

UCB - 0.545 0.364 0.879
UCBT 0.545 - 0.198 0.449
𝜀GR 0.364 0.198 - 0.542
EXP 0.879 0.449 0.542 -
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Figure 7.16: Mean code coverage achieved by 10 runs of the MaB-based fuzzers and AFLNet.
AFLNet outperforms the MaB-based fuzzers.

Comparison to AFLNet

For an evaluation of the absolute performance of the MaB-based fuzzers, we
compare them against the state-of-the-art stateful fuzzer AFLNet. Figure 7.16
displays the mean coverage over time for 10 runs of each of the fuzzers. With
this, we follow the usual presentation of fuzzing results [Kle18], since our
evaluation focuses on the fuzzing performance of the MaB-based fuzzers. For a
more detailed analysis of the performance of the MaB agents, one would need to
analyze the performance in terms of total actions taken as opposed in terms of
time. Again, higher coverage indicates better performance for each respective
fuzzer. The figure clearly demonstrates that AFLNet clearly outperforms the
MaB-based fuzzers. Moreover, AFLNet achieves higher coverage right from
the start of the fuzzing campaign compared to the MaB-based fuzzers.

Additionally, Figure 7.16 provides insights into the relative performance of the
MaB-based fuzzers. While Figure 7.15 details the final coverage achieved by the
fuzzers, Figure 7.16 illustrates the mean coverage throughout the course of the
fuzzing campaign. Although these differences are not statistically significant,
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it is noticeable that the EXP algorithm, which considers non-stationary reward
distributions, performs better initially. Towards the end of the campaign, 𝜀GR
(based on the 𝜀-greedy algorithm), achieves the highest mean coverage.

Note that we decided to omit the presentation of the confidence band in this
figure to improve the visibility of the mean values. However, our statistical
analysis as presented in Table 7.10 shows that the four MaB-based fuzzers to
not result in significant differences, while AFLNet significantly outperforms
the MaB-based fuzzers.

7.6.2.3 Discussion of Results

Our experiments result in new insights regarding the research questions posed
in Section 7.6.2.1, which we discuss below.

RQ1 Do the different policies for the MaB agent affect the performance of
stateful fuzzers based on a MaB state selection?

Our experiments demonstrate that all four MaB-based fuzzers achieve statisti-
cally indistinguishable performances. This result is noteworthy considering
that the state selection problem in fuzzing inherently involves a non-stationary
reward distributions. Thus, we would expect the EXP fuzzer to perform better,
as it employs an algorithm specifically designed for non-stationary reward dis-
tributions. Nevertheless, our results align with the findings by Liu et al. [Liu22],
who show that existing approaches for the state selection problem result in
comparable fuzzing performances in most cases.

RQ2 How do stateful fuzzers using a MaB-based state selection compare to
the state of the art fuzzer AFLNet?

Compared to the baseline AFLNet, all MaB-based fuzzers show significant
lower values for the final code coverage. This observation suggests that the
manually crafted heuristic used in AFLNet outperforms the policies utilized
by the RL agents in terms of code coverage. However, for a more thorough
comparison between these two approaches, it is essential to consider the
inherent differences between the AFL++-based MaB fuzzers and AFLNet. For
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instance, AFLNet requires a full sequence of input messages as input, while
the agents do not receive any additional information on the states and their
structure. Consequently, AFLNet can start by fuzzing the deeper states, where
it might expect to find more coverage and bugs. However, some preliminary
analyses that we did based on the work presented in this chapter show that
fuzzing deeper states do not necessarily lead to more coverage than fuzzing
the other states. Thus, to draw more conclusive insights, a comprehensive
analysis of these differences would be necessary.

7.6.3 Related Work

Several publications have formulated different aspects of the fuzzing process
as a RL or MaB problem, demonstrating improvements in overall fuzzing
performance. However, to the best of our knowledge, no publication has yet
formulated the state selection problem as MaB problem.

Seed Selection One crucial aspect of the fuzzing process is determining the
seed for the next fuzzing cycle. Gohil et al. formulate this decision as a MaB
problem, focusing on simulation-based hardware fuzzing [Goh24]. Similar
to our experiments, the authors employ 𝜀-greedy, UCB, and EXP3 policies.
Moreover, the authors address the non-stationary reward distributions by
explicitly deleting seeds from the corpus, effectively "resetting" one of the
arms of the Multi-armed Bandit [Goh24]. Furthermore, the authors modify the
policies to accommodate these resets. In their experiments, the authors show
that their MaB-based approach achieves an increased vulnerability detection
speed when compared to the baseline TheHuzz. Note that this publication was
published after the publication of the work presented in this section.

Yue et al. propose to formulate the power schedule process of AFL, used
for seed selection, as a MaB problem [Yue20]. The authors show that their
approach achieves a higher code coverage while using less test cases than
the baseline AFL.
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In another study, Fang et al. apply a general RL approach to formulate the
seed selection problem within the domain of fuzzing 4G/LTE Android de-
vices [Fan18b]. In contrast, Woo et al. address the seed selection problem by
utilizing the Coupon Collector’s Problem, focusing on finding unique bugs dur-
ing fuzzing [Woo13]. Their approach also includes determining the mutation
ratio for each seed, which is why the refer to the problem they are approaching
as the scheduling problem of fuzzing.

Coverage Metric Selection Wang et al. employ an RL-based approach to
determine the coverage metric with the appropriate level of detail for the
next fuzzing cycle. Their experiments compare this approach to AFL and
AFLFast, demonstrating enhancements over these baselines in terms of both
bug discovery and achieved coverage [Wan21b].

Mutation Selection Binosi et al. use an RL-approach to decide on the position
within the current input that should be mutated. The authors show that their
approach, Rainfuzz, outperforms a random policy and that its performance
can be further improved by combining it with AFL++ in a collaborative fuzzing
setting [Bin23]. Wu et al. model the mutation selection using a MaB which is
tasked to select the number of mutators and the mutators to be used [Wu22a].

Böttinger et al. formulate the problem of deciding on which mutations to
perform on a given input as a RL problem. Their approach involves an RL agent
selecting actions corresponding to specific probabilistic mutation rules. The
authors show that their approach performs better than a random policy [Böt18].

While proposing various improvements with respect to graybox fuzzing, Pham
et al. also suggest using a RL approach to select one out of nine possible
mutation actions [Pha24]. As one result of their evaluation, they show that
their approach outperforms AFL++.

Fernandez et al. present a grammar-based fuzzer in which a MaB is used to
decide on how to generate the next test case [Fer22]. For this, they introduce
annotations to the grammar which enable or disable certain parts of the gram-
mar’s definition. The MaB then decides which annotations to enable and thus
influences how the next test case is generated.
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State Selection Problem While our approach to formulate the state selection
problem as a MaB problem is novel, there exist other approaches addressing
this problem in stateful fuzzing. Guo et al. propose to use a state selection
algorithm based on Monte Carlo Tree search [Guo24]. However, the authors
do not evaluate the performance of the state selection algorithm separately
but focus on the general performance of the fuzzer.

Liu et al. compare the three state selection approaches implemented in AFLNet

against a newly proposed approach called AFLNETLEGION [Liu22]. The three
approaches implemented in AFLNet are FAVOR, RANDOM, and ROUND-ROBIN.
FAVOR, which we also use for our evaluation, uses a manually crafted heuris-
tic that aiming to balance exploration and exploitation. Liu et al. show with
their experiments that the three algorithms implemented in AFLNet achieve
comparable code coverage. Moreover, they find that while AFLNETLEGION

achieves higher coverage than the AFLNet algorithms for specific cases, it does
not consistently improve the overall fuzzing performance. StateBandit, as
presented in this section, enhances the work by Liu et al. by implementing
additional state selection approaches based on the MaB problem. However, our
experiments suggest that the policy that is used by the MaB agent does not sig-
nificantly impact the overall fuzzing performance, with all MaB-based fuzzers
achieving lower coverage compared to AFLNet using the FAVOR algorithm.

7.6.4 Discussion

This section sets the approach and the results of StateBandit in a broader
context and explains their implications (Section 7.6.4.1). Moreover, we discuss
the limitations of StateBandit (Section 7.6.4.2) and outline possible directions
for future work (Section 7.6.4.3).

7.6.4.1 Implications

The state selection problem in stateful fuzzing remains an ongoing area of
research where optimal algorithms and their impact on fuzzing performance
are not yet fully understood. With StateBandit, we contribute to this field
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by introducing the new approach of formulating the state selection problem as
a MaB problem and comparing different agent policies. Our findings include
that the different agent policies we evaluated resulted in statistically indistin-
guishable fuzzer performances. This aligns with existing literature, which also
reports indistinguishable fuzzer performances for several approaches to the
state selection problem. Moreover, we demonstrate that AFLNet significantly
outperforms the MaB-based fuzzers. While is comparison provides valuable
context for understanding the absolute performance of MaB-based fuzzers,
more detailed experiments are needed to directly compare the MaB-based state
selection to the state selection approaches used by AFLNet.

We conduct our experiments in a graybox test setting with the ultimate goal
of transferring the results to blackbox testing. However, since the MaB-based
fuzzers did not achieve comparable or superior results to state-of-the-art state
selection approaches, it is not to be expected that they would perform better
in a blackbox test setting. Evidently, the agents are unable efficiently leverage
the aggregated graybox information provided via the reward to enhance state
selection. Consequently, we anticipate that the agents would similarly struggle
to compete with blackbox state selection approaches, as the rewards would
incorporate even fewer information. Therefore, we decide not to pursue this
research direction further in the context of this doctoral work. Nevertheless,
we point out several possibilities to improve upon StateBandit in the domain
of graybox testing (Section 7.6.3).

Even though StateBandit was not suited to improve the state selection pro-
cess, it revealed a bug in the SuT, the open source OPC UA stack open62541.
We reported the finding and the bug was fixed by Mark Giraud1.

7.6.4.2 Limitations

Our experiments aim to provide initial insights into whether formulating
the state selection problem as MaB problem has the potential to improve a
graybox fuzzer’s performance and how the chosen MaB policy influences the

1 https://github.com/open62541/open62541/pull/4906/commits
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fuzzer’s performance. For a more thorough analysis and evaluation, it would
be necessary to expand the experiments by increasing the number of runs
per configuration and by increasing the number of tested SuTs. Moreover,
to directly compare the performance of the MaB-based approaches with the
heuristic used in AFLNet, both strategies would need to be implemented within
the same fuzzer. Note that for our experiments, we implemented the MaB-
based approaches based on AFL++.

7.6.4.3 Future Work

Future research could investigate approaches to improve the performance of
the MaB-based fuzzers. One approach would be to explicitly incorporating
knowledge of how the rewards are affected by exclusively rewarding new
coverage and crashes in the agent’s policies. The approach presented by Gohil
et al. [Goh24] could be used as a basis for these new policies.

Additionally, conducting thorough hyperparameter tuning could lead to dis-
covering more optimal configurations for the agents, thereby improving their
efficacy in state selection. Another potential approach for future work could
involve integrating our MaB-based approaches into AFLNet or implement-
ing both strategies within the fuzzing framework LibAFL [Fio22]. The latter
approach would modularize the state selection algorithms, facilitating easier
reuse and comparison with other algorithms.

Furthermore, exploring the deeper question of how different state selection
strategies influence the fuzzer’s performance remains pertinent. Both the find-
ings from Liu et al. [Liu22] and our experiments suggest that the choice of state
selection algorithms may not significantly influence the fuzzer’s performance.
However, substantiating this observation would require more extensive eval-
uations and experiments.
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7.6.5 Summary

We present a novel approach to address the state selection problem in stateful
graybox network fuzzing by formulating it as a MaB problem. Within this
framework, we explore four different agent policies, with one of the policies
specifically designed to accommodate the non-stationary reward distributions
in fuzzing caused by only rewarding new coverage and crashes. We implement
each policy in a separate fuzzer based on AFL++, and we conduct evaluation
amongst them and against the baseline AFLNet. Our experiments show that all
four MaB-based fuzzers achieve statistically indistinguishable performances,
while AFLNet significantly outperforms the MaB-based approaches. These
results are consistent with those reported by Liu et al., who show that different
approaches addressing the state selection problem lead to comparable code
coverage.

7.7 Testing BCex

As we integrated Smevolution into the industrial security testing framework
ISuTest®, it can be applied to test OT components such as BCex directly.
However, as StateBandit is a graybox approach and Palpebratum is based
on the software fuzzing framework LibAFL, both approaches need significant
additional work to apply them to OT component testing in practice.

Smevolution reveals one new Denial of Service (DoS) vulnerability of BCex
based on an IP packet. If one sends an empty IP packet which includes the
IP address of 102.251.189.167 as source address, the WA of BCex crashes
and remains unresponsive until BCex is power cycled. Further testing with
Smevolution revealed additional anomalies in the behavior of BCex, as the FTP
server becomes temporarily unresponsive for several test cases. However, BCex
shows resilience with respect to these test cases and the FTP server becomes
responsive again, without the need to power cycle BCex.
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7.8 Discussion

In this discussion, we aggregate the findings and insights from the three ML-
based approaches presented in this chapter: Smevolution, Palpebratum, and
StateBandit.

7.8.1 Implications

The presented approaches leverage ML models trained on different data sources
to improve the testing process. Smevolution and Palpebratum aim for a
targeted test case generation in a blackbox test setting, while StateBandit

addresses the state selection problem in graybox fuzzing. Both Smevolution

and Palpebratum show that the trained models are able to improve upon the
baseline fuzzers in some aspects, highlighting the potential of ML-based black-
box fuzzing. For Smevolution, utilizing a DT or NN as ML model improves
performance, while using an SVM decreases performance. Our experiments
with Palpebratum suggest that the HMM fuzzers generate more efficient test
cases, and that the choice of the dimensionality reduction approach used for
data preprocessing has a significant impact on a HMM-based fuzzer’s per-
formance. These results indicate that ML-based fuzzing has the potential to
improve blackbox testing performance, but that the underlying models need
to be chosen carefully. Utilizing ML models that are unsuited for the given
task can lead to a performance worse than the one achieved by a blackbox
fuzzer that does not incorporate any feedback from the SuT.

For StateBandit, we chose a graybox test setting to analyze whether the MaB-
based approach is able to improve performance in this scenario. However, it
shows that the novel approach cannot outperform the state-of-the-art, which
uses a manually crafted heuristic. This further supports the insight that, even
with graybox information, models need to be adequate to the given task in
order to actually improve the fuzzing performance.
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Moreover, the presented approaches demonstrate that blackbox fuzzing can
be improved by utilizing the accessible information with selected models, and
how graybox fuzzing approaches can be applied to blackbox testing. The
presented approaches and insights advance the domain of blackbox fuzzing
and build the basis for further improvements.

7.8.2 Limitations

The evaluations presented in this chapter are based on an artificial SuT and
on software implementations of network stacks. The artificial SuT allows
to control the exhibited vulnerabilities, while the network stacks allow for
measuring graybox baselines to compare the blackbox approaches against.
While using these SuTs strengthens the experimental possibilities with respect
to the foundational capabilities of the approaches, this also results in limited
conclusions with respect to the practical applicability of the approaches in
OT component testing.

For our evaluations, we implemented several fuzzers to evaluate the perfor-
mance of the proposed approaches. While these allow for an evaluation of
the approaches, the implementations have not been improved with respect
to general performance. Thus, to compete against fuzzers that consider gen-
eral runtime performance, the implementations presented in this work would
need to be refined.

7.8.3 Future Work

Leveraging the insights presented in this doctoral work, future work could
analyze different ML models which could further improve blackbox fuzzing.
For example, LSTMs or RNNs could be used for processing the network traffic
generated during testing. Moreover, transformer models could be used for
network traffic processing or for test case generation.
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Our evaluations demonstrate that existing metrics for fuzzing evaluations
focus on graybox fuzzing and show limitations when applied to blackbox
testing. Future work could investigate additional metrics that are tailored for a
blackbox test setting, and analyze how these metrics influence the assessment
of the performance of blackbox fuzzers.

In addition, future work could examine the optimization objective that guides
the fuzzing process for blackbox fuzzing. The blackbox approaches presented
in this chapter aim to either maximize the number of crashing services or an
approximated coverage. While maximizing the number of crashing services
helps in finding vulnerabilities, a fuzzer might potentially focus on crashes
that are close to each other, while missing crashes that are farther away. Here,
the distance between two test cases is defined by the number of mutations
required to generate one test case from the other. Maximizing code coverage is
an established optimization goal which is shown to correlate with the number
of bugs a graybox fuzzer finds [Böh22]. However, it remains an open question
whether the approximated coverage can achieve similar results. Thus, it might
be beneficial to design optimization objectives specifically for blackbox testing
that consider these insights.

7.9 Summary

This chapter presents three approaches that leverage ML techniques to address
challenges in fuzzing. Smevolution employs an ML model to approximate a
function mapping a test case to the services of the SuT that are expected to crash
in response to said test case. We implement three instances of Smevolution,
using a DT, a NN, and an SVM as underlying ML model, respectively. Our
experiments based on a SuT exhibiting artificial vulnerabilities show that
the fuzzer based on the DT outperforms the evolutionary blackbox baseline
fuzzer and a random fuzzer significantly, while the fuzzer based on the NN
only outperforms the random fuzzer significantly. The fuzzer based on the
SVM achieves significantly less performance than the random fuzzer and the
blackbox baseline fuzzer.
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Palpebratum leverages an HMM to represent the behavior of the SuT as it is
exhibited in the network traffic generated by the SuT. For our experiments,
we compare two instances of Palpebratum, which use an HMM with 51
nodes each and use AE and CAPC for dimensionality reduction respectively, to
a blackbox and a random baseline fuzzer. The results demonstrate that the
HMM-based fuzzers overall generate more efficient test cases, while achieving
less final coverage. Moreover, it shows that the instance of Palpebratum

using AE for dimensionality reduction significantly outperforms the instance
using CAPC.

StateBandit focuses on stateful graybox fuzzing and leverages an MaB agent
to address the state selection problem. We implement four different approaches
for the agent, three using a policy for a stochastic MaB problem and one a policy
for an adversarial MaB. Our experiments reveal that the four fuzzers based on
one of the agent policies respectively do lead to statistically indistinguishable
performances. Moreover, the state-of-the-art fuzzer AFLNet outperforms the
MaB-based fuzzers significantly.

In summary, the three approaches show that ML-based approaches have the
potential to utilize the information accessible in blackbox fuzzing to improve
the fuzzing performance. However, it also shows that the characteristics of
the used ML model significantly influence a blackbox fuzzer’s performance.
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The preceding chapters of this doctoral work focussed on proposing new test-
ing approaches and Test Tools (TTs), each accompanied by an evaluation in ac-
cordance with established evaluation guidelines such as the recommendations
for fuzzing evaluations by Klees et al. [Kle18]. Additionally, this doctoral work
contributes to the research field of evaluating TTs, specifically with respect to
(1) the evaluation of stateful web application testing, and (2) the evaluation of
stateless fuzzers. Both contributions are described in the following.

8.1 Problem Statement

As discussed in Section 1.3 with respect to Challenge 5 (Choice of Testing
Tool), several possible TTs exist for the different areas of testing. To make an
informed decision, a tester needs to retrieve information on the performance
of the TTs. Moreover, researcher and developers who propose new TTs or
enhancements of existing TTs need to evaluate whether their new TT or
their enhancement improves upon the current state-of-the-art. This requires
established evaluation frameworks and strategies.

In this doctoral work, we concentrate on the evaluation of two subtopics
of industrial security testing: (1) blackbox Stateful Web Application Testing
(SWAT), and (2) stateless fuzzing. This focus aligns with the topics covered
in the previous chapters.

Evaluating Blackbox SWAT For general blackbox Web Application (WA)
testing, several studies have been published, comparing the bug finding capa-
bilities of various open source and commercial Web Vulnerability Scanners
(WVSs) (see Section 4.3.2). However, those studies mostly focus on the WVSs
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as a whole and do not directly analyze the performance impact of individual
design choices or testing approaches within the WVSs. With this, it is more
difficult to identify the root causes of performance differences between the
WVSs. This is especially true for SWAT for which fewer comparative evalu-
ations exist (see Section 8.3.2) although some approaches specific to SWAT
have been proposed [Dou12, Has22]. Thus, their relative performance and the
impact of the authors’ design choices on their performance remain unclear.
Notably, a modular approach allowing to easily change and thus to compare
the impact of individual design choices on the performance of stateful WVSs
does not yet exist. Therefore, we identify the need for a modular evaluation
framework focusing on stateful blackbox WVSs. For this contribution, we
focus on blackbox SWAT with a special emphasis on the task of automatically
inferring a state machine of the System under Test (SuT).

Evaluating Stateless Graybox Fuzzers In the domain of fuzzing, evaluation
guidelines have been established, most notably those proposed by Klees et
al. [Kle18]. Literature shows that most fuzzing evaluations use metrics such
as the code coverage or the number of bugs a fuzzer reveals for assessing the
relative performance of a fuzzer [Kle18, Böh22]. This finding is also supported
by a more recent study by Schloegel et al. [Sch24]. However, a study by Fioraldi
et al. indicates that the relative performance of fuzzers depends on the chosen
evaluation metric [Fio22]. Moreover, other metrics used in traditional software
testing and benchmarking, such as the memory utilization and CPU load, have
not been extensively applied in fuzzing evaluations. Therefore, we identify the
need to evaluate the impact of both established and new fuzzing metrics on
the relative performance assessment of fuzzers. For this, we focus on stateless
graybox fuzzing, since this is the subdomain of fuzzing which received most
attention recently [Mal23].

8.2 Contributions

This doctoral work makes two contributions to the research area of evaluating
TTs: SWaTEval and MEMA (see Table 8.1). SWaTEval focuses on blackbox SWAT,
while MEMA focuses on stateless graybox fuzzers.
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Table 8.1: Comparison of the two contributions of this doctoral work with respect to evaluating
TTs. During the work on MEMA, a more extensive work on the same topic was pub-
lished [Li21], and we thus refrain from publishing this work separately.

SWaTEval MEMA

Evaluation target Blackbox state machine infer-
ence

Stateless graybox fuzzing

Approach Modular evaluation frame-
work

Analysis of the impact of dif-
ferent performance metrics
on the evaluation results

Publication [Bor23c] -

SWaTEval We design and implement a modular evaluation framework for
stateful blackbox WA testing. We call it SWaTEval, short for Stateful Web
Application Testing Evaluation.

Contribution 9. Proposal, implementation, and evaluation of SWaTEval, an
evaluation framework for SWAT.

For our evaluation, we focus on specific design choices related to the state
machine inference necessary for stateful blackbox testing. In blackbox testing,
we cannot assume that information on the SuTs’s state machine is available.
Thus, we need to infer the state machine dynamically during the test to allow
for stateful testing. This inference requires determining whether two responses
from the SuT should be considered the same (see Sections 2.3 and 8.3.1). In our
case, the responses of the SuTs are web pages, and thus a similarity measure
for web pages is necessary. For this similarity measure, several options exist
and we choose an analysis of these options as use case for our evaluation
of SWaTEval. With this use case, we first demonstrate the effectiveness of
SWaTEval by reproducing results from literature. Additionally, we provide new
insights regarding SWAT by evaluating the impact of the similarity measures
using SWaTEval. Our evaluation shows (1) that SWaTEval can be used to
reproduce insights regarding the performance of similarity measures from the
literature, and (2) that the choice of similarity measure impacts the quality
of the state machine inference and, therefore, should be considered during
the design of TTs for SWAT.
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Contribution 10. Development of a new similarity measure for web pages and
use of SWaTEval to analyze the impact of the choice of similarity measures on
the performance of state machine inference.

SWaTEval is based on the Bachelor’s thesis by Simon Zimmermann [Zim21],
the Master’s thesis by Felix Hofmann [Hof21], and the work by Johanna Kindler,
Sara Joosten and Nikolay Penkov, all supervised during this doctoral work.
It was presented at the 9th International Conference on Information Systems
Security and Privacy (ICISSP 2023), in collaboration with Nikolay Penkov and
Mark Giraud. Below, we describe the approach and evaluation of SWaTEval
with a focus on contextualizing the work, while the corresponding publi-
cation focuses on the more technical details of the implementation and the
evaluation [Bor23c]. The source code is publicly available on GitHub1.

MEMA MEMA focuses on the domain of stateless graybox fuzzing and is con-
cerned with the impact of performance metrics on the relative evaluation
of fuzzers. As an analytical basis, we identify the different dimensions of
fuzzing evaluations.

Contribution 11. Analysis and formulation of the dimensions of fuzzing eval-
uations.

Then, we integrate additional metrics for fuzzing evaluations into the fuzzing
benchmark tool MAGMA [Haz20], and assess how the selection of metrics influ-
ences the relative rating of fuzzers. To achieve this, we evaluate three fuzzers
against five targets using six different metrics. Our experiments show that the
choice of performance metrics impacts the relative ranking of fuzzers as thus
has an impact on the evaluation of fuzzers. This insight is also supported by the
study by Li et al. [Li21] published during the work on MEMA (see Section 8.4.1).

Contribution 12. Integration of new metrics into an existing fuzzing benchmark
framework and use of this framework to analyze the impact of these metrics.

1 https://github.com/SWaTEval
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As we conduct an evaluation of the impact of performance metrics and base our
experiments on the fuzzing benchmark MAGMA, we call our approach Metrics
Evaluation for MAGMA (MEMA). MEMA is based on the Bachelor’s thesis by Tom
Blankefort [Bla23], which was supervised during this doctoral work.

During the course of this research, Li et al. introduced UNIFUZZ, an evalua-
tion framework for fuzzers that also examines the impact of different perfor-
mance metrics [Li21]. This indicates that the topic discussed in this section
is considered relevant by the community. UNIFUZZ includes six categories of
performance metrics and the authors evaluate 8 fuzzers against 20 targets,
demonstrating that the choice of performance metrics influences the relative
assessment of fuzzers. Their work exceeds the results presented in this chapter
in terms of the number of evaluated metrics, fuzzers, and targets. However, the
fuzzers and targets chosen by Li et al. only have a small intersection with only
one fuzzer and one target: Only AFL and sqlite3 are evaluated by Li et al. and
the study presented in this chapter. With this, MEMA complements the results
by Li et al., and we present our approach and findings in Section 8.4, without
pursuing an additional publication of these results.

8.3 Stateful Web Application Testing

Even though first publications with respect to SWAT were published more than
ten years ago (e.g. [Dou12]), a modular framework to evaluate the different
approaches and design choices for SWAT has yet to be developed. Such a frame-
work needs to provide a modular structure that allows the implementation of
different SWAT approaches and includes a stateful target WA for performance
analysis and evaluation. With SWaTEval, we design and implement such a
framework with a corresponding target WA.

We conduct a twofold evaluation. On the one hand, we show that SWaTEval
can be used to reproduce results from the study published by Yandrapally
et al. [Yan20], suggesting that SWaTEval yields relevant results and insights.
On the other hand, we utilize SWaTEval to conduct an evaluation of the impact

267



8 Evaluation of Test Tools

of one specific design choice in SWAT on the performance of the state machine
inference. With this, we show how SWaTEval can help to provide new insights
in the domain of SWAT.

Among the several challenges associated with SWAT, our evaluation focuses
on one specific aspect to allow for a precise evaluation. For blackbox stateful
testing, access to a state machine of the SuT is generally not assumed [Dou12].
Thus, the state machine needs to be inferred during testing, which is usually
done based on the responses which the TT receives from the SuT (see Sec-
tion 2.5). To infer the state machine from those responses, it is necessary to
decide whether two responses are to be considered the same response. To
achieve this, a similarity measure for the responses is necessary. In the domain
of SWAT, the responses considered during state machine inference are web
pages, and thus a similarity measurement for web pages is necessary. We focus
our evaluation on the impact of this similarity measure on the quality of the
state machine inference. We assess the quality of the state machine inference
by the number of correctly identified states in the inferred state machine.

8.3.1 Concepts and Terminology

The following provides information on the concepts and terminology used
in this section, with a particular focus on highlighting terms that are used
inconsistently in literature.

Web Page We consider the SuT to be a WA with its full functionality, consisting
of one or more web pages. For example, it could provide a home page, a login
page, and a unique profile page for each user.

Endpoint An endpoint exposes functionality to the user and facilitates com-
munication with the WA. In most cases, these endpoints can be directly mapped
to the web pages provided by the WA. For example, a WA might offer the
endpoint /login.php, which serves the login page when accessed.

Interaction We call a pair consisting of a request to an endpoint and the
corresponding response an interaction.
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State Similar to Doupé et al., we use the term state to describe the underlying
internal state of a WA [Dou12]. For example, this state could differ before and
after a successful user login. In this example, a WA would provide different
functionality for an authenticated user, such as access to their profile, which
would not be accessible for an unauthenticated user. Note that other works,
such as those by Yandrapally et al. and Zhang et al., use a different terminology,
considering each individual web page as a state of the WA [Yan20, Zha23b].
Their definition of a state corresponds to our definition of an endpoint.

State Machine Inference As we cannot assume access to the state machine
of the SuT in blackbox testing, the TT needs to automatically infer the state
machine based on its interactions with the SuT. Thus, state machine inference
in this context refers to the automated blackbox inference of the state machine
of a WA. This is done by interacting with the WA and by interpreting its
responses. According to Doupé et al., state machine inference involves the
following three main challenges [Dou12].

1 Clustering similar endpoints to avoid analysing duplicates, which do
not contribute to the state machine inference

2 Detecting state changes to refine the state machine

3 Clustering similar states within the state machine to prevent state
explosion

Each of these three tasks is addressed by different detectors in SWaTEval (see
Section 8.3.3).

8.3.2 Related Work

The research presented in this section spans the domain of SWAT with an
emphasis on similarity measures for web pages. The following provides an
overview of related work in these areas.
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Stateful Web Application Testing

SWAT has been a significant topic for some time and remains relevant. The
foundational work by Doupé et al. introduced an approach that incorporates the
underlying state machine of WAs into testing and fuzzing [Dou12]. However,
their implementation is non-modular and has not been extensively compared
with other state-aware approaches. As shown by Hassanshahi et al. [Has22],
several approaches for SWAT and also for stateful crawling have emerged since
then. Especially, Drakonakis et al. contributed to this topic by proposing a
framework for SWAT, focusing specifically on authentication and authorization
within SWAT [Dra20]. However, to the best of our knowledge, no existing
work aims to design and implement a modular framework for evaluating
different aspects of SWAT.

Several intentionally vulnerable WAs and benchmarks are available for evalu-
ating WA testing, including WackoPicko [Dou10], JuiceShop1, DVWA2, and
OWASP benchmark3. The discovery rate of the known vulnerabilities of these
targets is used as a general performance metric of WVS (see e.g. Section 4.3.2
and [Pfr19b, Bor20]). However, to understand the impact of stateful testing
methods, a more specific target is necessary. For example, it is required that
the target exhibits different internal states and that the state machine is known
and manageable in size.

Moreover, various works address different aspects of WA testing that comple-
ment our approach. First, the work presented in this dissertation in Chapter 4
and [Bor20] proposes an approach to enhance the performance of WVSs by
injecting additional information into the WVS’s requests via a proxy. We adopt
a similar strategy to provide an interface for existing fuzzers in SWaTEval (see
Section 8.3.3.1). Additionally, Li et al. propose an approach to test stateful web
services based on a state machine derived from the web service’s specification

1 https://github.com/juice-shop/juice-shop
2 https://github.com/digininja/DVWA
3 https://owasp.org/www-project-benchmark/
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given in the Web Services Description Language [Li18a], and several publica-
tions focus on stateful testing of REST APIs [Atl19, Yam21, Fel23]. In contrast,
we construct the state machine from the blackbox communication with the
WA itself. Other approaches focus on stateful testing of network protocol
implementations [Aic21, Pfe22], whereas our work targets the user interface
of the WA. While we implement a blackbox approach, other approaches fo-
cus on stateful graybox testing of WAs, e.g. by leveraging coverage and taint
information which is only available in graybox testing [Gau21].

Similarity Measures

As mentioned in Section 8.3.1, measuring the similarity between two web
pages is essential for automated state machine inference. Lin et al. propose a
similarity measure based on the similarity of links on web pages [Lin06]. Other
studies utilize the Levenshtein distance to compute the distance between web
pages [Mes08, Pop16]. In contrast, Doupé et al. introduce a distance measure
based on a prefix tree [Dou12]. Other works suggest measuring the similarity of
web pages by analyzing their content, such as input fields [Lin17], or elements
like buttons, anchors, and images [Ali19].

Oliver et al. present the locality sensitive hash Trend Micro Locality Sensitive
Hash (TLSH) [Oli13]. With TLSH, small changes in the input result only in
small changes in the corresponding hashes. This property is advantageous as
it provides a means to represent data in a compressed format while keeping
the distances between inputs similar, thus allowing for calculating similarity
measures between the TLSH hashes. To this end, Oliver et al. define a distance
measure on TLSH that approximates the Hamming distance, called the TLSH
score. We choose TLSH and theTLSH score as one method for representing
web pages and calculating similarities (see Section 8.3.3.3).

Yandrapally et al. conduct an extensive study on the performance of vari-
ous similarity measures across multiple real-world WAs [Yan20]. This study
includes, among others, the Levenshtein distance as well as TLSH. We use
the results of their study to compare our own evaluation results against in
Section 8.3.3.3.
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8.3.3 Evaluation Framework

Our evaluation framework consists of a modular framework representing the
state-aware TT, and a target WA with a known and manageable state ma-
chine. The following paragraphs describe the requirements, the derived design
choices, and selected implementation details. Please refer to the corresponding
publication for more details on the design and the implementation [Bor23c].

8.3.3.1 Test Tool Framework

The objective of the framework for the TT is to provide a modular structure
in which different approaches for SWAT can be implemented and thus be
evaluated individually.

Requirements

We formulate the following requirements for the TT (Tool Requirements (TRs)).

TR1 Modularity: The different parts necessary for SWAT are divided
into modules such that they can easily be modified or replaced.

Without a modular structure, simple modifications and replacements of certain
parts of the testing approach would not be possible. However, this is crucial for
evaluations of individual design choices in order to understand their impact
on the performance of the fuzzer and the state machine inference.

TR2 Interaction: The crawling and fuzzing modules can work in an
interlaced fashion.

Both Hassanshahi et al. and Doupé et al. identify the need to allow for an
interaction between the crawler and the fuzzer [Has22, Dou12]. With this
interaction, the crawler can first identify endpoints which are then used as
targets for the fuzzer. During the fuzzing of these endpoints, potentially again
new endpoints are identified. These new endpoints can then again be used by
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Database Module

2 Fuzzer1 Crawler 3 Detector

Worker

Figure 8.1: Overview of the general design of the TT framework of SWaTEval, providing a
modular structure for crawlers, fuzzers, and detectors. During execution, the modules
are called in the order indicated by the gray numbers [Bor23c].

the crawler to identify even more endpoints. Since this interaction is proposed
and used in literature, SWaTEval should support this interlaced approach to
be able to implement existing approaches.

TR3 Traceability: All generated data can be traced back and can be
reproduced.

In order to understand the impact and behavior of the different modules,
it is necessary to trace and reproduce the data they generated. To achieve
reproducible data, it is necessary to implement deterministic behavior.

General Design

Figure 8.1 gives an overview of the TT framework’s architecture. We design the
framework to consist of several modules, which can be exchanged and extended
easily. These modules can be classified in the following three categories: (1)
crawlers, responsible for state selection and state traversal, (2) fuzzers, which
generate payloads and analyze the SuT’s responses for possible vulnerabilities,
and (3) detectors, tasked with pattern detection and information inference.
Each module has read and write access to the centralized database. This
centralized access facilitates seamless interaction between the modules and
enables efficient information sharing. Especially, this allows for an information
sharing between the crawlers and the fuzzers.
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Table 8.2: Modules implemented for SWaTEval.

Module Source
Crawler (Basic) Adapted from [Dou12]
Fuzzer (Dummy) Newly presented in [Bor23c]
Fuzzer (External) Adapted from [Bor20]
Detector (Clustering) Newly presented in [Bor23c]

During execution, the modules are called in a predefined order, to allow for an
interleaved execution and information sharing between the different modules.
This predefined order is visualized by the gray numbers 1 - 3 in Figure 8.1.
First, all crawler modules are run, followed by the fuzzing modules, and then
the detector modules. After this, the loop is restarted and the crawler modules
start again.

In the following, we detail the general task of the different modules and present
the concrete implementations of these modules that we provide with SWaTEval.
An overview of the implemented modules is given in Table 8.2.

Crawlers

The crawlers’ primary objective is to explore the WA and to identify new
endpoints for fuzzing. Information gathered by the crawlers is stored in
the database and later utilized by the fuzzers to conduct their tests and by
the detectors to construct the state machine. This state machine then helps
the crawler to determine which states should be explored next, by saving
information on which states have been explored already. Moreover, the state
machine saves information on the known endpoints that are accessible for
each state. For example, an endpoint /profile.php could only be accessible
if the user authenticated first and thus the WA is in the respective state.

For our experiments, we implement a basic crawler which employs a straight-
forward approach to crawling and is based on the work presented by Doupé
et al. [Dou12]. The basic crawler selects the first available state of the WA that
has not been explored yet, and subsequently visits all accessible endpoints
within that state. To maintain consistency, the WA is reset to the selected
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state before each iteration of crawling. Note that there are more sophisticated
approaches to crawling (see e.g. [Has22]) as well as to state selection for testing
(see Section 7.6), which could be integrated into SWaTEval in the future.

Fuzzers

The primary objective of the fuzzers is to generate payloads to test the WA
and to reveal vulnerabilities. In our design, fuzzers also play a crucial role in
revealing new states within the WA by providing various inputs to the WA
that potentially could tigger a state transition. Like the crawlers, information
generated by the fuzzers is stored in the centralized database. For our imple-
mentation of SWaTEval, we provide two different fuzzers: (1) a dummy fuzzer,
tailored for our target WA, and (2) an interface for external fuzzers.

The dummy fuzzer mocks the functionality of a fuzzer, but incorporates knowl-
edge on the target WA of SWaTEval. To this end, it sends input to the WA
which is known to tigger state transitions in the current state. Additionally,
the fuzzer also sends other requests that will explicitly not trigger a state
transition, to mimic the behavior of a real fuzzer. With this dummy fuzzer,
efficient evaluations of the other modules of SWaTEval are possible, since the
existing states in the WA can be visited easily.

In addition to the dummy fuzzer, we provide an integration for external fuzzing
tools. This integration is based on the proxy-based approach to WA testing
as presented in Section 4.3 and [Bor20]. For SWaTEval, we start the external
fuzzer from within SWaTEval and intercept its traffic using mitmproxy1. This
approach enables us to capture and analyze the responses generated by the
SuT for state machine inference. Moreover, we can inject state data, such as
cookies and headers, to the requests made by the external fuzzer to be able
to influence the state of the SuT.

1 https://mitmproxy.org/
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Detectors

The detectors build the base for the automated state machine inference. To this
end, they analyze the responses received by the SuT, considering the requests
that were made before receiving these responses. With this, the detectors
can use this information to infer the state machine of the SuT based on the
following intuition. If a request 𝐴 lead to response 𝑋 before sending some
fuzzing input, but the same request 𝐴 leads to a response 𝑌 after the fuzzing
input, it is likely that the fuzzing input caused a state transition of the SuT.
It is generally assumed that the SuT presents the same response for a certain
request if no state change took place. Note that this approach needs to use a
similarity measure for the responses in order to be able to decide whether a
response 𝑋 should be considered as equal, or similar, to a response 𝑌 . This
general approach can be implemented in various different ways. Especially, the
question of how to represent the information found by the crawlers and fuzzers
needs to be answered. Doupé et al. represent the information in so-called page
link vectors [Dou12], while we present a hash-based approach in the following.

For our implementation of SWaTEval’s modules, we propose a new approach
to the state machine inference and content representation necessary for the
detector modules. The following describes the challenges and the approach on
a high level, for more details refer to the corresponding publication [Bor23c].
According to Doupé et al., a blackbox state machine inference needs to solve
the following challenges: (1) decide which endpoints are to be considered the
same, (2) decide whether a state transition happened, and (3) decide which
states of the state machine are to be considered to be the same [Dou12].

We solve all these challenges by hashing the necessary information using the
locality sensitive hash TLSH (see Section 8.3.2, and performing a clustering
step afterward. Note that TLSH preserves the locality of the input values, and
thus similar inputs lead to similar hashes. For the first challenge, we hash
and cluster the endpoints in the EndpointDetector. Then, we consider those
endpoints in the same cluster to be the same endpoint. For the second challenge
(StateChangeDetector), we generate hashes of the interactions and perform
a clustering on all interactions that share the same request. If all interactions
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based on the same request are clustered in the same cluster, we assume that no
state change happened. In the opposite case, where one or more interactions
are clustered differently, we assume that a state change happened. Based
on this observation, we can infer the state machine as proposed by Doupé
et al. [Dou12], which follows the intuition presented above. We approach the
third challenge similar to the first challenge by hashing the state information,
and calculating clusters on these hashes (StateDetector). Then, the states
that are clustered in one cluster are considered to be the same state and are
merged in the state machine. For more details on the detectors, refer to the
corresponding publication [Bor23c].

8.3.3.2 Target

The target WA of SWaTEval is designed to provide a testing target for stateful
TTs, with a special focus on the state machine inference. It can be utilized either
together with the evaluation framework or as a standalone target. This target
incorporates various challenges specific to stateful TTs while maintaining
a manageable and comprehensible state machine. This allows for manual
in-depth analyses of the TTs’ performance.

Requirements

We define the following requirements for the target WA (Web Application
Requirements (WRs)).

WR1 Similar Pages: The target includes web pages that are similar but
not equal, which should be recognized and treated as the same web
pages by the TTs.

Interacting with the same web page several times does not contribute to the
state machine inference and thus, a stateful TT needs to decide which web
pages should be treated as the same web page [Dou12]. Thus, the target WA
should include web pages that are to be treated as the same web page to analyze
whether the corresponding detector of the TT identifies them correctly.
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WR2 Different Pages: The target includes web pages that are significantly
different from one another and should be recognized and treated as
different web pages by the TTs.

Complementary to WR1, we also require web pages that are significantly
different and should be classified accordingly by the respective detector.

WR3 Statefulness: The target provides the possibility to change its state
through external requests.

Since the target should be used for evaluating stateful TTs, it needs to include
an internal state machine which can be inferred by a blackbox TT. For this,
it is necessary that the some requests sent by the TT trigger state transitions
of the WA’s state machine.

WR4 Complexity: The state machine of the target remains manageable
and comprehensible to humans.

To allow an in-depth analysis of the performance of a stateful TT and the
impact of individual design choices, we require the state machine of the target
to be manageable in size and comprehensible to humans.

Design

Similar to the approach taken by Doupé et al., we implement the target as a
server-side WA [Dou12]. In this setup, the DOM elements for each request are
generated in the back-end and are included in the response of the WA each
time. We implement the following functionality for the target.

User Login The target WA includes login functionality, providing a regular
user and an admin user.

Chained Links The target provides an endpoint that accepts a number as
an input parameter and the resulting web page contains a link to the same
endpoint with an incremented number as parameter. This endpoint specifically
challenges stateful TT by providing an endless chain of links. If the detectors
do not detect that these web pages are to be treated as the same, the crawler
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Figure 8.2: Visual representation of the state machine of the target, including the keywords that
are necessary to perform a state transition [Bor23c]. Note that the state machine
includes a loop which poses a challenge to the detectors, since this loop and possible
duplicate states need to be identified.

will be stuck in an endless chain of requests. This implementation is inspired
by the approach of Doupé et al. who include an endless calendar in their
vulnerable WA WackoPicko [Dou10].

Pages with Links and Content The target encompasses web pages that
include links or content that can either be dynamically generated or be con-
stant. With this, the target provides means to evaluate the performance of
the various detectors.

State Machine Next to the aforementioned web pages, the target includes
an underlying state machine. State transitions of this state machine can be
triggered by certain keywords which need to be provided to the WA. The states,
state transitions, and the required keywords are shown in Figure 8.2. Note that
the state machine includes a transition that resets the WA to the initial state
(keyword initial). With this, it poses a special challenge to the detectors which
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need to identify that the states on this loop are to be considered the same. If
this would not be recognized, the inferred state machine would include several
copies of the actual state machine, chained after one another.

8.3.3.3 Evaluation

Our evaluation of SWaTEval, including the TT framework and the target, con-
sists of a qualitative evaluation and a quantitative evaluation. The qualitative
evaluation shows that our design and implementation of the TT framework
and the target fulfill the respective requirements defined in Sections 8.3.3.1
and 8.3.3.2. The qualitative evaluation shows that SWaTEval can be used
to reproduce the results from large studies in literature. We show this by
reproducing the results presented by Yandrapally et al. with respect to the
performance of different similarity measures for web pages [Yan20].

Qualitative Evaluation

As the first step of our evaluation, we analyze how SWaTEval meets the re-
quirements for a SWAT evaluation framework as formulated in Sections 8.3.3.1
and 8.3.3.2.

TR1 Modularity By dividing the framework into modules with the same
functionality (crawler, fuzzer, detector) and thus encapsulating their individual
approaches, we hide complexity and create abstract workflows. With this,
we ensure that SWaTEval fulfills TR1.

TR2 Interaction We facilitate interaction between the modules of SWaTEval
by establishing a database as the core point of information exchange. The
modules of SWaTEval are run in a sequential order, executing their logic
only when the conditions specified in their configurations align with the
current status of the framework. For example, a fuzzer will generate its fuzzing
requests in the current state only if the crawler and the detectors have marked
the currently selected state of the state machine as fully explored.
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TR3 Traceability We make the influence and behavior of different modules
and their functionality visible by separating the generated data in a central-
ized database. This allows for a centralized analysis of the current status of
SWaTEval and its modules. This separation also allows for manual data editing
during runtime, facilitating experiments with edge cases and a deeper analy-
sis of the modules’ behavior. The database contains all relevant information
on the behavior of the modules and its content can be stored and used for
documentation or analysis purposes, thereby fulfilling TR3.

WR1 Similar Pages The target WA includes web pages with similar content,
which should be classified as the same web page. This holds, for example, for
the web pages at /views/const-content/const-links/random-page. For
more details on the web page, refer to the corresponding publication [Bor23c]
or the source code on GitHub1.

WR2 Different Pages Additionally, the target features web pages with
distinctly different content which should be classified accordingly, such as the
pages at /views/dynamic-content/const-links/random-page.

WR3 Statefulness The target WA implements mechanisms to change the
underlying state of the WA through (1) user login, and (2) an artificial state
machine controlled by different keywords, as illustrated in Figure 8.2.

WR4 Complexity The state machine of the target WA consists of eight states
with easily traceable transitions and is thus suitable to be manually analyzed.

In summary, our qualitative evaluation shows that SWaTEval, con-
sisting of a TT framework and a target WA, fulfills the requirements
for a SWAT evaluation framework as formulated in Sections 8.3.3.1
and 8.3.3.2.

1 https://github.com/SWaTEval/evaluation-target
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Quantitative Evaluation

The objective of our quantitative evaluation is to determine if SWaTEval can
be used to replicate results from literature. Specifically, we compare the per-
formance of various similarity measures based on SWaTEval’s target with the
evaluation results presented by Yandrapally et al. [Yan20]. Note that Yandra-
pally et al. use different terminology, referring to each individual web page
as a state. In SWaTEval, this corresponds to an endpoint. Consequently, their
evaluation of similarity measures for states can be directly compared to our
evaluation with respect to similarity measures for endpoints.

We conduct the following experiments to evaluate the suitability of SWaTEval.
First, we use a selection of three similarity measures to cluster the web pages
Yandrapally et al. used for their evaluation [Yan20]. Then, we use the same
similarity measures to cluster the web pages of SWaTEval’s target. Thus, this
allows us to gain insights into the performance of different similarity measures
both with respect to the targets by Yandrapally et al. and with respect to
SWaTEval’s target.

Similarity Measures We use three different similarity measures for our
experiments, as shown in Table 8.3: (1) Euclidean distance, (2) TLSH score,
and (3) Levenshtein distance. For the first two similarity measures, we choose
the locality sensitive hash TLSH as representation for the web pages. Thus,
we calculate the TLSH for each considered web page and then calculate the
similarity of the hashes based on the respective similarity measure. For com-
parison, we include a similarity measure based on the DOM representation
of the web page, using the Levenshtein distance as similarity measure. After

Table 8.3: Content representation and similarity measures used for our quantitative evaluation.

Name Representation Similarity Measure
TLSH score TLSH (String) TLSH score
Euclidean TLSH (Integer) Euclidean distance
Levenshtein Response body (String) Levenshtein distance
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calculating the respective similarities, we use this information to cluster the
web pages using DBSCAN. Refer to the publication on SWaTEval for more
information on our configuration of DBSCAN [Bor23c].

To leverage the Euclidean distance, we first need to convert the text-based
hash into an Integer representation. Since the TLSH algorithm always outputs
a hash consisting of 72 characters, we can directly interpret this as an Integer
vector by converting characters to their corresponding ASCII Integer.

Oliver et al., who introduce TLSH, also propose a similarity measure for TLSH
hashes known as the TLSH score. This score approximates the Hamming dis-
tance and is calculated by comparing every two bits. Furthermore, it penalizes
large differences with disproportionately higher scores [Oli13].

The Levenshtein distance, being a text-based distance, can be directly calculated
on the DOM of the web page. This choice for this similarity measure is
based on the observation that this approach is regularly used in literature (see
Section 8.3.2 and e.g. [Mes08, Pop16, Yan20]) and thus is included as a baseline.

Results Figure 8.3 illustrates the accuracy of clustering the web pages based
on the different similarity measures for the dataset by Yandrapally et al. and
SWaTEval’s target. The x-axis shows the similarity measures, while the y-
axis shows the achieved accuracy values. For example, the clustering based
on the Levenshtein distance achieves an accuracy of 0.69 on the dataset by
Yandrapally et al., and an accuracy of 0.89 on SWaTEval’s target. For both
datasets, clustering based on the TLSH score achieves the relatively lowest
accuracy, while the Euclidean distance achieves the highest accuracy.

Discussion

Given that Yandrapally et al.’s data comprise more diverse WAs, it is expected
that the clustering would show generally lower accuracy on their dataset
compared to SWaTEval’s target. Our results support this expectation.
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Figure 8.3: Accuracy of clustering web pages from the datatset by Yandrapally et al. and
SWaTEval’s target using different similarity measures (based on [Bor23c]). The relative
performance of the three similarity measures is the same.

Moreover, it shows that, despite differences in absolute values, our results
exhibit the same trends and relative performances for the different similarity
measures. Thus, our results show that our artificial target WA produces results
comparable to those of Yandrapally et al.’s study. This suggests that our target
WA effectively incorporates the essential features of real-world WAs.

8.3.4 Similarity Measures

After having presented and evaluated SWaTEval, this section utilizes SWaTEval
to evaluate the impact of choosing different similarity measures on the quality
of the inferred state machine. With this, we aim to provide new insights re-
garding design choices for stateful WA TTs, and also to present how SWaTEval

can be applied to a concrete use case. The following shows an aggregated
view on the experiments and results, while the corresponding publication
presents a more detailed view [Bor23c].
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8.3.4.1 Experimental Setting

We again consider the three similarity measures already introduced in Table 8.3
in the previous section: Euclidean, TLSH score, and Levenshtein. For our ex-
periments, we configure the three detectors that are included in SWaTEval,
EndpointDetector, StateChangeDetector, and StateDetector (see Sec-
tion 8.3.3.1) with either the Euclidean distance or the TLSH score. For the
StateChangeDetector, we additionally add a configuration using the Lev-
enshtein distance on the DOM. Thus, we use 2 ⋅ 2 ⋅ 3 = 12 configurations in
our experiments. We run each of these configurations 20 times to account for
potential influences of the TLSH calculations (see [Bor23c]).

For each of the runs, we calculate the count of correctly identified states, the
count of identified endpoints, and the count of conducted interactions. Out
of these performance metrics, the count of correctly identified states in the
final state machine is considered to be the most important metric.

For this implementation, we utilize the modularity of SWaTEval’s design and
implementation to implement easily interchangeable variants of the three
detectors.

8.3.4.2 Results

Figure 8.4 shows an aggregated view on our results with respect to the number
of correctly identified states. While we run all 12 configurations described
above and present those results in the corresponding publication [Bor23c],
we now focus on the configurations which use the same similarity measure
for all detectors. This allows us provide a broader view on the experiments
and to highlight the impact and context of our results. Figure 8.4 presents the
number of correctly identified states of the state machine for the configuration
in which all detectors use the Euclidean distance, and in which all detectors
use the TLSH score. The bar labeled Levenshtein represents the configuration
in which the StateChangeDetector uses the Levenshtein distance. For this
configuration, changing the similarity measure used for the other two detectors
does not change the final result. The whiskers show the standard deviation
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Figure 8.4: Mean number of correctly identified states for the different similarity measures (based
on [Bor23c]). Using the Euclidean distance for all detectors leads to the highest number
but also results in the highest standard deviation, visualized by the whiskers.

calculated on the 20 runs of the respective configuration, and the dashed
line represents the number of states in the correct state machine. It shows
that the configuration using all Euclidean distance results in a mean number
of correctly identified states of 6.75, while TLSH score achieves 2.35, and
using the Levenshtein distance for the StateChangeDetector leads to 2.00
correctly identified states. Moreover, it is apparent that the standard deviation
of the results is the highest for the Euclidean distance, while being smaller for
the TLSH score and zero for the Levenshtein distance.

In addition to the final count of correctly identified states, we also report
the impact of the similarity measure for the different detectors in Table 8.4.
We calculate this impact value as the difference between the minimum and
the maximum mean number of correctly identified states for all configura-
tions concerning this specific detector. Based on this value, the choice of the
similarity measure is more important for the StateChangeDetector and the
StateDetector than for the EndpointDetector.
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Table 8.4: Impact of the choice regarding similarity measures for the different detectors
(based on [Bor23c]). The similarity measures have the smallest impact on the
EndpointDetector.

Detector Impact
StateChangeDetector 2.30
StateDetector 2.46
EndpointDetector 0.08

8.3.4.3 Discussion of Results

The results presented above highlight the following three key findings.

1 The Euclidean similarity measure results in the highest number of
correctly identified states.

2 The use of TLSH increases the standard deviation of the results.

3 The choice of similarity measure has more impact on the
StateDetector and on the StateChangeDetector than on the
EndpointDetector.

The observation that the Euclidean distance leads to better results than the
TLSH score is contra-intuitive, since both approaches use TLSH as basis and
one would expect that the distance measure especially developed for this hash
would lead to a better performance. Moreover, the literature suggests that
distance measures based on the Manhattan distance are more suitable for
high dimensional data than the Euclidean distance [Agg01]. Based on the
findings by Aggarwal et al. and given our 72-dimensional data, it is expected
that TLSH score, approximating the Hamming distance, to perform better than
the Euclidean distance. This discrepancy could be due to the differences in
the data used by Aggarwal et al. and the data we used in our experiments.
Aggarwal et al. use synthetic data drawn from a normal distribution and
data from the UCI machine learning repository [Agg01], whereas our study
uses TLSH as input for both similarity measure and clustering. Analyzing
classification performance of the similarity measures on various data types
could be a valuable direction for future research, thought it is beyond the
scope of this doctoral work.
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The second finding is that the usage of TLSH increases the standard deviation
of the results. This is expected due to effects of the padding necessary for
TLSH [Bor23c].

The third finding relates to the impact of the choice of similarity measures. It
shows that the choice for the two detectors directly concerned with the states
of the state machine has a greater impact on the number of correctly identified
states. This supports the expected behavior, since these two detectors directly
influence the quality of the state machine. The EndpointDetector, clustering
similar endpoints, has a relatively high impact on the runtime and efficiency
of the testing compared to its impact on the quality of the state machine.

8.3.5 Discussion

The following contextualizes the results and findings with respect to SWaTEval
in Section 8.3.5.1, discusses known limitations in Section 8.3.5.2, and outlines
possible directions for future work in Section 8.3.5.2. Note that the WA pro-
vided by BCex does not include an internal state, since it only presents status
information on the bus coupler, without providing any means for user inter-
action. Thus, we did not apply SWaTEval to test BCex.

8.3.5.1 Implications

With SWaTEval, we publish the first modular evaluation framework with a
special focus on SWAT and state machine inference. It allows for evaluation
of individual design choices and approaches in this domain and builds the
basis for future research. To further support future research building upon
SWaTEval, we published the source code1.

Our evaluation showed that SWaTEval fulfills the requirements for an evalua-
tion framework for SWAT as defined in Sections 8.3.3.1 and 8.3.3.2. Moreover,
we successfully utilized SWaTEval to gain new insights with respect to the

1 https://github.com/SWaTEval
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impact of similarity measures on the state inference performance. On the one
hand, this shows how SWaTEval can be used for evaluations. On the other
hand, it shows that the choice of similarity measures actually impacts the
quality of the state machine inference, showing that this decision should be
taken deliberately in TTs for stateful WAs.

8.3.5.2 Limitations

The current implementation of the target WA included with SWaTEval only
incorporates HTML-based web pages and does not feature JavaScript-based
content. While this still covers a relevant portion of the WAs used in the
industrial domain, it would be interesting to extend the target WA in the
future. Moreover, SWaTEval currently focuses on sever-side WA and does not
support modern web technologies such as progressive web apps. This could
also be an additional starting point to enhance the target WA.

8.3.5.3 Future Work

Based on the newly presented evaluation framework SWaTEval, several re-
search directions could be explored.

On the one hand, SWaTEval could be used to analyze additional approaches
to and design choices for state machine inference. For example, it could be
used to evaluate the effectiveness of different state inference algorithms, such
as the ones proposed by Raffelt et al. and Vaandrager et al. [Raf05, Vaa22].
Moreover, SWaTEval could be used to study how the quality of the inferred
state machine affects fuzzer performance. Another possible direction for future
research based on SWaTEval would be to optimize the feature selection for
the representation of endpoints, interactions, and states.

On the other hand, the existing implementation of SWaTEval could be en-
hanced by adding new detector modules. For instance, anomaly detection
capabilities of autoencoders, such as presented by Mirsky et al. [Mir18], could
serve as a basis for new detectors. Furthermore, the basic state selection ap-
proach used in SWaTEval could be enhanced by using a more sophisticated
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approach, such as the ones presented by Liu et al. [Liu22], or the ones presented
in Section 7.6 [Bor23a]. With this, an evaluation of the impact of the state
selection algorithm on a fuzzer’s performance in the domain of WA testing
could be conducted.

8.4 Stateless Fuzzing

As fuzzers are complex non-deterministic systems, solidly evaluating their
performance and comparing them to other fuzzers is a challenging task. In
this section, we examine which approaches exist for the evaluation of fuzzers
and which dimensions of fuzzing evaluations are considered by literature.
Based on this analysis, we identify the performance metrics used to assess the
fuzzers as dimensions that received less attention in the past. Moreover, recent
literature suggests that the relative assessment of fuzzers can vary depending
on the metrics chosen [Fio22, Böh22]. Thus, we aim to evaluate the impact of
both established and new fuzzing metrics on the performance evaluation of
fuzzers. To this end, we extend the existing fuzzing framework MAGMA [Haz20]
with new fuzzing metrics and evaluate how the selection of metrics influences
the assessment of the fuzzers.

8.4.1 Related Work

Recently, numerous studies on fuzzing evaluations have been published, indi-
cating the high relevance of this topic. The following provides an overview
of the work in this area, including studies published after we started work-
ing on MEMA.

Probably the most recognized work in the domain of fuzzer evaluations is the
one presented by Klees et al. [Kle18]. The authors formulate requirements
for a sound fuzzing evaluation, such as a sufficient number of runs and an
appropriate timeout for these runs. Then, they analyze the fuzzer evalua-
tions conducted by 32 research papers and find that none of these evaluations
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fulfills all of the requirements. Based on their findings, they formulate recom-
mendations for future fuzzing evaluations. Klees et al. analyse the following
dimensions of fuzzing: statistical sound comparisons, seed selection, timeouts,
performance metrics, and targets. With respect to the performance metrics,
the authors state that fuzzer evaluations should measure the performance of a
fuzzer in terms of known bugs, while code coverage metrics could be used as
a secondary metric. Their experiments show that heuristics for found bugs,
such as code coverage or stack hashes, tend to over-count the number of bugs
and thus are not a reliable heuristic. However, the authors do not discuss the
impact or relevance of other performance metrics. In a recent study, Schloegel
et al. [Sch24] analyze 150 fuzzing evaluations to investigate to what extend
existing guidelines are implemented, including those by Klees et al. [Kle18].
They show that the guidelines are not fully implemented by the considered
publications, especially with respect to statistical tests. Moreover, they revise
existing fuzzing evaluation recommendations and formulate new recommen-
dations. With respect to performance metrics, Schloegel et al. recommend to
evaluate code coverage and bug-finding capabilities [Sch24]. Kim et al. present
a study on evaluating directed fuzzers, highlighting requirements specific to
this subdomain of fuzzing [Kim24].

Li et al. present UNIFUZZ, a fuzzing benchmark that focuses on implementing
several performance metrics to analyze their impact on the fuzzer evalua-
tion [Li21]. With this, their work has the same objective as MEMA. UNIFUZZ
encompasses performance metrics from the following categories: quantity of
unique bugs, quality of bugs, speed of finding bugs, stability of finding bugs,
coverage, and overhead. MEMA also includes performance metrics with respect
to the quantity and quality of bugs, the stability of bugs, and the overhead.
However, the implementation and experiments presented by Li et al. exceed
the ones conducted in the work presented in this section. Nevertheless, the
fuzzers and targets chosen by Li et al. only have a small intersection with
only one fuzzer and one target: Only AFL and sqlite3 are evaluated by Li et al.
and the study presented in this chapter. Consequently, MEMA accompanies and
supports the findings by Li et al., since both studies show that the choice of
metrics indeed influences the relative assessment of fuzzers and thus are to
be considered a relevant factor in fuzzing evaluations.
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The study presented by Böhme et al. is also concerned with performance
metrics in fuzzing evaluations [Böh22]. The authors analyze the correlation
between code coverage, often used as proxy metric, and the actual bug finding
capabilities of fuzzers. Their experiments show a strong correlation between
the coverage achieved and the number of bugs a fuzzer finds. However, they
also show that even though this correlation exists, the relative ranking of
fuzzer performance (agreement) shows only a moderate consensus between
the two metrics. This work again highlights the importance and the impact
of performance metrics in fuzzing evaluations.

Paaßen et al. analyze the impact of the stochastic properties of fuzzing on
fuzzing evaluations [Paa21]. Specifically, they demonstrate the relevance
of statistical tests for the evaluation of fuzzers. Additionally, the authors
present a framework for fuzzing evaluations which provides statistical analysis
methods for the evaluations. We include their findings on statistical tests for
fuzzing evaluations in our analysis of the dimensions of fuzzing evaluations
(see Section 8.4.2).

Wolff et al. examine how the results of a fuzzer evaluation conducted on a
certain benchmark generalize [Wol22]. They show that the relative assessment
of fuzzers depends on the benchmark and the seeds used for the evaluation.
Moreover, they propose a methodology to explain the impact a specific evalu-
ation setting has on the evaluation’s results. Our analysis of the dimensions of
fuzzing evaluations incorporates the findings of Wolff et al.

Gavrilov et al. and Gopinath et al. [Gav20, Gop22] propose new approaches
to fuzzing evaluations. Gavrilov et al. propose to use several versions of a
SuT to analyze whether the fuzzers are able to reveal the changes inbetween
the different versions of the SuT [Gav20]. The authors argument that version
updates, similar to bugs, are changes in the SuT that should be revealed by
a fuzzer. They conduct preliminary experiments showing that the results of
their evaluation is consistent with evaluations based on bug-based metrics.

Gopinath et al. propose to apply the concept of mutation analysis known from
traditional software testing to fuzzing evaluations [Gop22]. Mutation analysis
evaluates the performance of a TT by introducing small changes to the SuT and
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then analyzing whether the evaluated TT is able to detect the change in the SuT.
With this, it is based on a similar idea as the approach presented by Gavrilov
et al. [Gav20], but does not rely on several real-world versions of the SuT.
Instead, the mutations to the SuT are injected automatically. Gopinath et al.
claim that using mutation analysis will improve fuzzing evaluations, especially
due to the flexibility in injecting arbitrary faults into a SuT. Nevertheless, they
also identify several challenges that need to be solved before mutation analysis
can be used for fuzzing evaluations, such as a reduction of the computational
cost [Gop22].

8.4.2 Analysis

As a basis for our implementation and experiments, we conduct an analysis
of existing approaches to fuzzing evaluations. This analysis is driven by the
following two questions:

1 What methodologies are utilized for the systematic evaluation of
fuzzers?

2 Which dimensions are considered for the evaluation of fuzzers and
what choices are considered for these dimensions?

With answering the first question, we aim to give an overview of the current
state-of-the-art with respect to fuzzing evaluations. The second question aims
to analyze how these fuzzing evaluations are conducted and which dimen-
sions of the evaluation are considered. For example, one dimension for fuzzer
evaluations could be the seeds that are chosen for the fuzzer. Moreover, we
aim to analyze which choices for these dimensions are considered in litera-
ture. For example, for the dimension of the fuzzer’s seed, one could imagine
configurations such as (1) no seeds, (2) a set of valid and invalid seeds, (3)
a minimized set of seeds.
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Note that we concentrate on the evaluation of stateless graybox fuzzers, since
these fuzzers did receive more attention in literature compared to blackbox
fuzzers [Böh21, Mal23]. Nevertheless, we recognize that a similar analysis for
the evaluation of stateful fuzzers and blackbox fuzzers would also be beneficial
(see also Section 8.4.4.3).

8.4.2.1 Methodologies for Fuzzing Evaluations

Our analysis on the methodologies for fuzzing evaluations builds upon survey
papers on fuzzing and system evaluations [Kle18, Böh22, Fio22, Haz20, Wol22,
Kou19], as well as papers presenting new fuzzing approaches that include
evaluations of this new fuzzer (such as [Fio20, Pha20, Pfr18]). Note that the
latter set of papers is by no means exhaustive, as a significant number of
fuzzing papers have been published recently [Sch24].

Benchmarking Systems

In general, evaluating or benchmarking systems should fulfill the follow-
ing requirements: (1) completeness, (2) relevance, (3) correctness, and (IV)
reproducibility [Kou19].

Completeness The evaluation of a system needs to consider all claims about
the system. It also includes highlighting the limitations of the system.

Relevance The results presented in an evaluation need to be relevant to
the objectives of the evaluation. For example, the evaluation setting should
simulate a real environment such that the evaluation results are transferable
to real-world deployments of the system.

Correctness The evaluation needs to be conducted correctly and the results
need to be analyzed accurately. In the evaluation of fuzzers, this mainly con-
cerns the calculation of statistical metrics as well as their solid interpretation.
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Reproducibility For results to be verified, evaluations need to be reproducible.
To ensure this, the evaluation setup needs to be fully described and important
configurations need to be specified. Moreover, the code used for the evaluation
could be published to ensure full reproducibility.

Evaluating Fuzzers

Meeting the requirements discussed above is essential for well-founded eval-
uations. However, there are some additional challenges to consider when
evaluating fuzzers. On the one hand, fuzzing is a stochastic process and thus
the results of a fuzzer vary from execution to execution. Thus, to obtain reli-
able results, fuzzers need to be executed multiple times, which increases the
resources and time required, limits reproducibility, and makes correct analyses
more demanding [Kle18]. On the other hand, the fuzzing process can be quite
non-transparent. Many fuzzers use feedback obtained from the SuT during
fuzzing and generate their inputs based on this feedback. These developments
over time are difficult to comprehend from the outside. Furthermore, a variety
of design decisions for the fuzzer and the evaluation influence the evaluation
outcome [Paa21, Wol22].

Generally, fuzzers are empirically evaluated by comparing the new fuzzer
with one or more reference fuzzers [Kle18, Sch24]. For this comparison,
several fuzzing campaigns are run against a set of targets, and several metrics
are collected during and after these campaigns (see Section 8.4.2.2 for more
details). Theoretical evaluation approaches are used to infer and justify new
fuzzing techniques (e.g. [Böh20]), but are only used to complement empirical
evaluations. Some papers take the approach to compare various attributes and
characteristics of different fuzzers (e.g. [Pfr18]). This provides an overview
of the fuzzers, while not delivering a complete evaluation of the fuzzers’
performance.
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8.4.2.2 Dimensions of Fuzzing Evaluations

Our analysis of survey papers and fuzzing papers shows that empirical evalua-
tions of fuzzers are the main approach for evaluating fuzzers. Nevertheless, as
discussed in Section 8.4.1, we recognize that there are some studies proposing
different approaches [Gop22, Gav20]. Thus, we detail the different dimensions
of empirical fuzzing evaluations in the following. The dimensions and descrip-
tions are mainly based on the work by Klees et al. [Kle18], Wolff et al. [Wol22],
Li et al. [Li21], Paaßen et al. [Paa21], Li et al. [Li21], and Arcuri et al. [Arc11].

Reference Fuzzer The chosen reference fuzzer needs to be relevant so that
insights can be gained from the comparison between the fuzzer being evalu-
ated and the reference fuzzer. For this purpose, the reference fuzzer should
be state-of-the-art. Furthermore, the comparison between the fuzzer being
evaluated and the reference fuzzer should be fair, meaning that the fuzzers
should be based on similar use cases and architectures. For example, comparing
a whitebox fuzzer and a blackbox fuzzer can be misleading since these fuzzers
are designed for different use cases. Although direct comparisons between
different evaluations are challenging due to differing system specifications,
version deviations, and numerous evaluation parameters [Li21], choosing a
widely-used reference fuzzer such as AFL++ [Fio20] can facilitate comparisons.

Seeds Literature shows that the initial seed corpus has a significant impact
on the evaluation results [Kle18, Paa21]. Existing seed corpora vary in terms
of the number and size of the seeds, the average execution time of the seeds,
and the code coverage achieved by the seeds. The seeds can be valid or invalid
inputs, randomly generated, manually selected, or generated through previous
fuzzing campaigns. Since all these variations can influence the evaluation, the
seed files used in an evaluation should be specified. To mitigate the influence
of individual characteristics of the seeds, diverse seed sets should be used.
Moreover, fuzzers can be evaluated based on an empty initial corpus.

Timeout The timeout of a fuzzing campaign describes the duration of a
fuzzing test run. Since fuzzers usually cannot fully test a program, a termination
criterion needs to be established. In most cases, a fixed time duration is used
for this purpose. The timeout affects the results of a fuzzing campaign, and,
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consequently, the evaluation of a fuzzer [Kle18, Paa21]. A balance needs to be
struck between the effort and the completeness of the evaluation. A common
choice for the fuzzing timeout are 24 hours [Kle18].

Trials Since fuzzing usually includes non-deterministic behavior, the per-
formance of different runs of the same fuzzer can result in different perfor-
mance [Paa21]. Thus, a large number of fuzzing runs should be conducted
to account for this non-deterministic behavior and to obtain statistically sig-
nificant results. Similar to the timeout, a balance between the effort and the
completeness needs to be struck. It is recommended to conduct at least 30
runs for each combination of fuzzer and target [Kle18].

Statistical Tests To be able to derive reliable interpretations, statistical tests
should be used to assess the significance of the results [Arc11, Paa21]. The
Mann-Whitney U test [Man47] and the Vargha-Delaney �̂�12 measure [Var00]
are suitable for this purpose [Kle18]. While the Mann-Whitney U test helps to
decide whether the performance difference between two fuzzers is statistically
significant, the �̂�12 measure quantifies how big the performance difference
is. In any case, statistical measures such as the mean, median, and standard
deviation should be reported. This enables others to understand the results
of the evaluation and form their own interpretations.

Performance Metrics While Klees et al. note that a fuzzing evaluation should
report the number of bugs identified by fuzzing as a performance metric, most
scientific fuzzing evaluations use code coverage as a proxy metric [Böh22].
Li et al. state that most papers in literature use either the number of unique
crashes, the number of unique bugs, or the code coverage [Li21]. Muench et al.
focus on fuzzing embedded devices and show that measuring only the crashes
of a SuT has the potential to not correctly identify and measure memory
corruption bugs triggered by a fuzzer [Mue18].

Benchmarks for fuzzing usually also report different metrics. For example,
MAGMA [Haz20] reports the number of bugs a fuzzer reached and the number
of bugs a fuzzer triggered. A bug is considered as reached when the faulty
line of code is executed, and triggered when the fault condition is satisfied.
FuzzBench [Met21] reports code coverage and bug coverage, including a
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differential coverage, showing the regions that were uniquely covered by one
fuzzer when compared to the other fuzzers in the evaluation. However, before
the start of the work presented in this section, no study analyzed the actual
impact of the performance metric on the relative assessment of fuzzers.

Targets The choice of the fuzzers’ targets, or benchmark suite [Kle18], used
during the evaluation highly influences the performance of the evaluated
fuzzers [Wol22]. If one fuzzer performs better on a specific target program,
this does not necessarily indicate that the fuzzer will perform better in gen-
eral [Kle18, Wol22]. To obtain a representative overview of a fuzzer’s perfor-
mance, it therefore needs to be evaluated on a diverse set of targets. For a
relevant and realistic evaluation, fuzzers should be evaluated using real-world
targets. However, the large amount of possible targets makes comparisons
between evaluations difficult. If a target program is used for evaluations at
two different points in time, bugs found in one evaluation might have been
fixed in the meantime, or the structure of the program might have changed.
Version differences also significantly hinder the reproducibility of evalua-
tions [Haz20]. To approach this issue, several fuzzing benchmark suites have
been proposed, such as FuzzBench [Met21], MAGMA [Haz20], UNIFUZZ [Li21],
and ProFuzzBench [Nat21], which is specifically designed for stateful fuzzing.

8.4.2.3 Analysis Summary

Our literature review and analysis leads to the following conclusions.

1 The empirical evaluation of fuzzers is currently the most
prevalent approach to fuzzing evaluations.

2 There are slight differences in the dimensions presented and
investigated by literature, but no contradictions.
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3 No study analyses the impact of the performance metrics on
the relative ranking of fuzzers.

4 Recent work continues to support the existing
recommendations for fuzzing evaluations, while
highlighting that these recommendations are not
implemented satisfactorily [Sch24].

8.4.3 Experiments

Based on our analysis, we identify the need to evaluate the impact of different
performance metrics on the relative assessment of fuzzers. Thus, we extend
the existing fuzzing benchmark MAGMA [Haz20] by adding additional metrics
and an automated evaluation and comparison of these metrics. We choose
MAGMA as basis, since it includes real-world targets with real bugs, and already
provides the number of reached and triggered bugs as performance metrics.
In addition to these metrics that are already included in MAGMA, we implement
a means to calculate stability, rare bugs, memory usage, and CPU usage, which
are described in the following. All these metrics are especially relevant for the
practical application of fuzzers. Note that Li et al., whose work was published
during the work on MEMA, consider similar types of performance metrics [Li21].
In their evaluation, the authors also examine the stability, the rareness of bugs,
and the memory consumption of the fuzzers.

8.4.3.1 Metrics

We implement the following additional metrics for MAGMA. Firstly, we aggre-
gate and contextualize the number of found bugs across multiple fuzzers and
multiple runs measure rare errors and stability. Secondly, we collect additional
system information to measure memory consumption and the CPU load.
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Stability Unlike scientific fuzzing evaluations, which typically involve several
runs of a fuzzer to account for its randomness, practical applications of fuzzers
usually only include one or a few number of runs. Therefore, it is crucial for
a fuzzer to demonstrate stable performance across multiple runs against the
same target. We include the stability of a fuzzer’s performance, as measured
by the variance in the number of the bugs found by the fuzzer, in MEMA. Note
that Wang et al. use the term stability of a fuzzer to describe performance
consistency across different targets [Wan21c], and AFL++ the term with respect
to the SuT [Heu24].

Rare Bugs Similar to our evaluations concerning WVSs [Bor18, Pfr19b], we
aim to include a metric to compare the bugs found by the fuzzers. Specifi-
cally, we count the number of bugs that were found only by the fuzzer under
consideration and not by any of the other fuzzers. To maintain consistent
terminology, we refer to these bugs as rare bugs, in line with the terminology
of the paper by Li et al. [Li21], which was presented during our work on MEMA.

Memory Consumption and CPU load Along with CPU load, memory
consumption is a common metric used to evaluate the performance of soft-
ware systems [Kou19]. In fuzzing evaluations, these metrics can quantify the
resources required by a fuzzer during its runs, providing additional insights
into the fuzzer’s performance.

8.4.3.2 Implementation

Figure 8.5 shows an overview of our implementation of MEMA. In the figure,
the rounded rectangles represent inputs or outputs of the process, while the
rectangles show processing steps. As discussed above, we build our metric col-
lection approach upon the fuzzing benchmarking framework MAGMA [Haz20].
An evaluation using MEMA starts with a configuration detailing the setting such
as the fuzzers and the targets to be used during the evaluation. Then, the
first run of MAGMA is started accordingly, while the parallel measurement of
memory consumption and CPU load is conducted by MEMA. As a result, we
receive the number of bugs found by the fuzzer as reported by MAGMA as well as
the collected metrics concerning CPU load and memory consumption. Then,
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Figure 8.5: Overview of the implementation of MEMA, building upon the evaluation framework
MAGMA [Haz20]. MEMA collects additional metrics during the runs of MAGMA, and per-
forms a postprocessing of MAGMA’s results to calculate additional performance metrics.
This is conducted for each combination of fuzzer and target specified in the configu-
ration.

this loop is repeated until all runs that were specified in the configuration
are finalized. Based on the results and measurements from all these runs,
MEMA performs several postprocessing steps to calculate the rare bugs found by
the fuzzers and the stability of the fuzzers. Moreover, MEMA reports statistical
values and the results of a Mann-Whitney U test and the Vargha-Delaney
�̂�12 measure. Finally, we receive a textual representation (JSON) and visual
representation of the collected performance metrics of the fuzzers.
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As MAGMA runs the fuzzers and targets in docker containers, MEMA measures
the CPU load and memory consumption every ten seconds using the docker
stats command. MEMA reports the mean values for each fuzzer for each target
individually, and for each fuzzer aggregated over all targets. Moreover, MEMA
reports the maximum value for the memory consumption that was observed
during the fuzzing runs for each fuzzer and target.

8.4.3.3 Experimental Setting

We base our experiments on the fuzzers and targets included in MAGMA. Specifi-
cally, we use AFL [Zal16], Entropic [Böh20], and FairFuzz [Lem18] as fuzzers
and run them against the following targets: libpng, libtiff, libxml2, poppler,
and sqlite3. FairFuzz is an AFL-based fuzzer, while Entropic is based on
LibFuzzer [LLV24]. For the fuzzing campaigns, we use the seed files given by
MAGMA1. We repeat each combination of fuzzer and target for 24 times and run
the campaigns for 24 hours. Note that we repeat each run only 24 times due
to time and resource restrictions. As hardware, we use a Intel Xeon E5-1650
v3 processor with 3.5 GHz, six cores and two threads per core. The system
uses Ubuntu 22.04 and has 64 gigabytes of RAM.

Our experiments aim to provide new insights into the following research
question:

What influence does the choice of metrics have on the relative rating of the
fuzzers?

8.4.3.4 Results

In the following, we present the results that we collected during our exper-
iments. For some of the results, we aggregate the information in order to
give a condensed view on the results and the performance of the fuzzers,
focussing on the contextualization of the results. More details can be found
in the Bachelor’s thesis by Tom Blankefort [Bla23].

1 https://github.com/HexHive/magma (commit hash: 75d1ae7)
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Reached and Triggered Bugs

First, we report the number of reached and triggered bugs as measured by
MAGMA. MAGMA classifies a bug as reached if the corresponding line of code
was executed during a fuzzing run, and classifies it as triggered if the specific
fault condition was met [Haz20]. Table 8.5 shows the statistical metrics of
these values, including the mean, the median, the standard deviation, and
the coefficient of variance. AFL and FairFuzz reach a mean of 41.79 and
41.38 bugs, respectively, while Entropic reaches a mean of 39.21 bugs. The
standard deviation of reached bugs is 3.51 for AFL, 3.17 for FairFuzz, and
1.14 for Entropic.

To allow for a more detailed comparison of the fuzzers’ performance, conducted
several statistical tests and report their results in Table 8.6. As suggested by
literature [Kle18], we consider a significance level of 𝛼 = 0.05. With this,
the differences in the number of bugs between AFL and FairFuzz are not
significant, both for reached bugs (0.289447) and triggered bugs (0.237786), .
With respect to the reached bugs, the differences found are significant both in

Table 8.5: Statistical metrics of the bugs reached (reach.) and triggered (trigg.) by the fuzzers
over 24 runs: mean, median, standard deviation, and Coefficient of Variance (CV). The
results are aggregated over the five targets.

Fuzzer Mean Median Std. Dev. CV
reach. trigg. reach. trigg. reach. trigg. reach. trigg.

AFL 41.79 8.42 43 8 3.51 1.41 0.0823 0.1642
Entropic 39.21 8.00 39 8 1.98 1.14 0.0494 0.1398
FairFuzz 41.38 8.92 42 9 3.17 1.28 0.0751 0.1408

Table 8.6: Results of the statistical analyses based on the number of bugs reached and triggered
by the fuzzers. We report p-values calculated using the Mann-Whitney U test, as well
as the �̂�12 values.

Fuzzers p-value �̂�12

reached triggered reached triggered
AFL vs. FairFuzz 0.289447 0.237786 0.5877 0.4028
AFL vs. Entropic 0.000005 0.284279 0.8394 0.5885
FairFuzz vs. Entropic 0.000537 0.016882 0.7899 0.6962
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Table 8.7: Bugs that have only been found by one fuzzer (rare bugs), referenced by the bug
identifiers as provided by MAGMA.

Fuzzer Rare Bugs
reached triggered

AFL - TIF001
Entropic SQL013, SQL012, SQL006,

PDF018
PDF018, PDF021, SQL013,
XML003, SQL012, PNG006

FairFuzz SQL020 SQL020

the comparison of AFL to Entropic (0.000005) and FairFuzz to Entropic

(0.000537). However, concerning the triggered bugs, the difference between
FairFuzz and Entropic is significant (0.016882), but the difference between
AFL and Entropic is not (0.284279).

The Vargha-Delaney �̂�12 values describes the probability that a value from one
group is greater than a value from another group. �̂�12 values in the interval
[0.56,0.64) are interpreted as small effect sizes, values in [0.64,0.71) are inter-
preted as medium effect size, and values in [0.71,1] as large effect sizes [Var00].
With respect to the reached bugs, the effect size between AFL and FairFuzz

is small (0.5877), while it is large between AFL and Entropic (0.8394), and
FairFuzz and Entropic (0.7899). This is in line with the findings from the
Mann-Whitney U test.

Rare Bugs

Based on the reached and triggered bugs as reported by MAGMA, MEMA calculates
the rare bugs found by each fuzzer. Rare bugs are those bugs that are only found
by one of the considered fuzzers. Table 8.7 shows the rare errors that have been
found by the fuzzers, referenced by the MAGMA bug identifiers. It shows that AFL
does not reach a rare bug, while Entropic reaches 4 rare bugs, and FairFuzz

one. AFL and FairFuzz trigger one rare bug, while Entropic triggers 6.
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Stability

We measure the stability of a fuzzer by calculating the Coefficient of Vari-
ance (CV) of the triggered bugs (see Table 8.5). With this, a lower absolute
value for the CV and thus for the stability is to be interpreted as a better
performance. AFL achieves a stability of 0.1642, FairFuzz achieves 0.1408,
and Entropic 0.1398.

Memory Consumption

Figure 8.6 shows the memory consumption of the fuzzers for each of the targets
in Mebibyte (MiB). The bars show the mean value, calculated over the 24 runs,
while the additional circle marks the maximum memory consumption observed
over the 24 runs. For example, for the target libxml2, AFL consumes a mean of
119.94 MiB, Entropic uses 394.87 MiB, and FairFuzz 190.47 MiB. Averaged
over the five targets, AFL needs 85.07 MiB, Entropic uses 248.58 MiB, and
FairFuzz 264.34 MiB. Entropic shows the highest maximum numbers for all
five targets. For libxml2, Entropic exhibits a maximal memory consumption
of 651.6 MiB.

CPU Load

MEMA also reports the CPU load observed during the fuzzers’ runs. Figure 8.7
shows the mean CPU load for the fuzzers for each of the targets. The results
show varying results for the CPU load. AFL exhibits the lowest CPU load for
libpng, libxml2, and poppler, but the highest for libtiff (98.73%). Entropic
and FairFuzz show similar CPU loads for most targets. However, for sqlite3,
FairFuzz reaches a mean CPU load of 98.17%, while Entropic uses only
84.98%.
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Figure 8.6: Memory consumption of the fuzzers for the five targets. The bars show the mean
memory consumption in MiB over the 24 runs, and the additional marks show the
maximum value that was observed during the runs.
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Figure 8.7: Mean CPU load shown by the fuzzers for the five targets. AFL shows the lowest CPU
load for three of the targets.
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Table 8.8: Overview of the aggregated performance metrics for the different fuzzers. Rank shows
the relative ranking of each fuzzer for the corresponding performance metric. While
AFL achieves the first rank for most of the metrics, it does not outperform the other
two fuzzers in all metrics.

Metric AFL Entropic FairFuzz

Value Rank Value Rank Value Rank
Triggered Bugs 202 2 192 3 214 1
Reached Bugs 1003 1 941 3 993 2
Rare Bugs 1 2 6 1 1 2
Stability 0.1642 3 0.1398 1 0.1408 2
Memory Consumption 85 MiB 1 249 MiB 3 144 MiB 2
CPU Load 92.20% 1 95.40% 2 97.97% 3

8.4.3.5 Discussion of Results

We aggregate and assess the values for the different metrics as provided by
MEMA in Table 8.8. The results indicate that the relative assessment of fuzzers
varies depending on the considered metric. For each fuzzer, a metric exists for
which it achieves rank 1, 2, or 3. For example, FairFuzz triggers the highest
number of bugs (214), Entropic triggers the highest number of rare bugs (6),
and AFL reaches the highest number of bugs (1003).

When considering only the number of reached bugs as the primary metric, AFL
is rated better than Entropic, which a significant difference in performance.
However, when the number of triggered bugs is considered, the difference be-
tween AFL and Entropic is no longer significant. Moreover, while FairFuzz
reaches and triggers a higher number of bugs than Entropic, Entropic re-
veals a higher number of rare bugs. An evaluation that does not consider rare
bugs as metric might overlook this aspect in the relative comparison between
FairFuzz and Entropic. Thus, specifically the choice between the number
of triggered, reached, and rare bugs, as well as the consideration of statistic
calculations, affects the evaluation of the fuzzers in this context.

For both memory consumption and CPU load, AFL achieves smaller values
than Entropic and FairFuzz. On average, Entropic consumes nearly three
times more memory than AFL, with the mean maximum memory usage being
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3.5 times higher. Therefore, in an evaluation deeming the used resources of
the fuzzers an important metric, AFL could be favored over FairFuzz and
Entropic. However, an alternative interpretation of these results could be
that AFL does not fully utilize the available resources, and thus is less effective.

Overall, the experiments conducted with MEMA demonstrate that the choice of
metrics impacts the relative ranking of fuzzers. The selection of the primary
metric as well as the weighting of metrics influences the ranking. Taking
multiple metrics into account allows for a more comprehensive and nuanced
assessment of fuzzers than reducing the evaluation to a single metric and
ranking.

8.4.4 Discussion

With MEMA, we analyzed existing approaches to fuzzer evaluations, included
additional metrics to the fuzzer evaluation framework MAGMA, and evaluated the
impact of the metrics on the relative ranking of fuzzers. The following discusses
MEMA’s implications in Section 8.4.4.1, details limitations in Section 8.4.4.2, and
shows possible directions for future work in Section 8.4.4.3

8.4.4.1 Implications

The main finding of MEMA is that the choice and weighting of metrics for fuzzing
evaluations influences the relative ranking of fuzzers. With this, it highlights
the need for generally accepted metrics and a clear and justified choice of
metrics in fuzzer evaluations. During the work on MEMA, Li et al. published
a study targeting the same research question as MEMA [Li21], resulting in the
same key finding. The authors approached the same research question, chose
similar additional performance metrics (see also Section 8.4.1), and present
a comprehensive evaluation of eight fuzzers using 20 targets. Out of these
fuzzers and targets, one of each overlaps with the experiments chosen for
MEMA: AFL and sqlite3. Thus, even with using different fuzzers and different
targets, Li et al. come to the same results and conclusions as presented in this
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chapter. With this, the study presented in this chapter complements the results
presented by Li et al. [Li21]. However, their work exceeds the experiments
presented in this chapter in terms of the evaluated metrics, fuzzers, and targets.

8.4.4.2 Limitations

Most fuzzing evaluations choose the code coverage as a metric to assess the
performance of the fuzzers [Böh22]. Since MAGMA does not support this metric
and as an integration of this metric would mean a significant amount of
work (see Section 8.4.4.3), we refrained from including this metric in our
experiments. However, the experiments presented in this section could be
extended by including the code coverage as additional metric to assess the
fuzzers. Moreover, one could extend the experiments by including more of
the targets fuzzers supported by MAGMA. In total, MAGMA supports nine targets
and 17 fuzzers at the time of this writing.

8.4.4.3 Future Work

The authors of MAGMA deliberately excluded coverage from the metrics sup-
ported by MAGMA, since they claim that the code coverage is only an approxima-
tion of the actual performance of the fuzzers [Haz]. However, for an evaluation
targeting the impact of different performance metrics, including the coverage
would be beneficial. To achieve this, it would be necessary to use the inputs
generated by the fuzzers to measure the coverage achieved by these inputs
after the actual runs of the fuzzers. To this end, one could create additional
versions of the docker containers provided by MAGMA such that they include
the tools necessary for code coverage measurement (e.g. llvm-cov1). With
this, one could re-use the compilation instructions used, and thus achieve the
same setup for the coverage analysis as has been used for fuzzing before.

1 https://llvm.org/docs/CommandGuide/llvm-cov.html
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The analyses and experiments presented in this chapter focus on the evaluation
of stateless graybox fuzzers. On top of this, it would be interesting to further
investigate and analyse existing approaches to evaluating blackbox fuzzers
and stateful fuzzers. Especially for the latter, additional metrics such as the
final state coverage could be evaluated [Guo24].

8.5 Summary

This chapter presented the contributions of this doctoral work to the domain
of evaluating TTs. On the one hand, SWaTEval contributes to evaluating TTs
for SWAT by providing an evaluation framework and an evaluation target.
We show that SWaTEval can be utilized to yield reliable results by showing
that we can use it to reproduce results from extensive studies in literature.
Moreover, we utilized SWaTEval to evaluate whether the choice of similarity
measures used in the automatic state inference influences the performance
of the state machine inference. Our evaluation shows that (1) the Euclidean
similarity measure leads to the highest number of correctly identified states,
that (2) the use of TLSH increases the standard deviation of the results, and
that (3) the choice of similarity measure is of different importance for the
different parts of automatic state machine inference.

On the other hand, MEMA contributes to evaluating stateless graybox fuzzers
by giving an overview of the different dimensions of fuzzing evaluations, and
by adding additional metrics to the fuzzer evaluation framework MAGMA. Using
MEMA, we evaluate the impact of choosing different performance metrics on the
final ranking of fuzzers. Our experiments show that the choice of performance
metrics indeed impacts the ranking and thus should be considered for future
fuzzing evaluations, based on the concrete setting and requirements of the
evaluation.
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This section consolidates the various approaches presented in the previous
chapters by addressing the overarching research questions formulated in Sec-
tion 1.3. It also discusses the impact and the limitations of this doctoral work.
While this section emphasizes the broader contextualization of the results, each
preceding chapter includes a section that discusses the respective approach
in more detail.

9.1 Research Questions

The following addresses and discusses the research questions formulated in
Section 1.3 and details how the newly presented approaches of this doctoral
work contribute to the research questions.

Research Question 1. What sources of information are available for blackbox
security testing?

While blackbox testing assumes no access to internal data of the System under
Test (SuT), external and behavioral information on the SuT is still accessible
during testing. We present the results of our analysis of approaches from the
literature that utilize additional information in blackbox testing in Chapter 3.

Our analysis reveals that the information sources utilized in blackbox testing
can be categorized along two dimensions: (1) time of accessibility, and (2)
temporal variability. Regarding time of accessibility, we differentiate between
information accessible prior to testing, and information that becomes accessible
only during testing. Examples for information sources that are accessible before
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testing are known vulnerabilities and previously recorded network traffic. One
information source that is only accessible during testing is the behavior of the
SuT in response to certain test cases, such as crashes or the SuT’s responses.

The second dimension, temporal variability, differentiates between static and
dynamic information sources. Static information, which remains constant
over time, includes information on the communication endpoints that a SuT
provides. In contrast, dynamic information, potentially changing over time,
encompasses the network traffic which can be observed during testing.

In Chapter 3, we also classify the newly introduced approaches according
to the information sources they utilize. It shows that the newly presented
approaches do not rely on new information sources but instead utilize known
information sources in new ways. Chapter 10 explores additional information
sources that could potentially be leveraged in future research.

Research Question 2. How can information that is accessible prior to the actual
test be used to improve a blackbox security test?

With respect to information sources that are accessible before testing, our
analysis shows that existing Test Tools (TTs) utilize information on known
vulnerabilities, expert knowledge in terms of heuristics for test case generation,
and network traffic (see Chapter 3). In this doctoral work, we present three
new means to utilize this information.

Amongst other information, HitM uses additional information on the SuT
known prior to the test, such as login details, to improve the performance
of Web Vulnerability Scanners (WVSs) transparently. Our experiments show
that utilizing HitM increases the number of true positive reports by the WVSs
and an increased Uniform Resource Locator (URL) coverage. For BCex, HitM
revealed one previously unknown vulnerability [CVE18].

With ClusterCrash, we present an approach to represent the knowledge
from existing vulnerabilities systematically using Vulnerability Anti-Patterns
(VAPs) (see Chapter 5 and [Bor22]). From these VAPs, we derive blackbox
fuzzing scripts leveraging the knowledge on known vulnerabilities, which
have been revealed by whitebox and graybox testing. With this, we make the
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information on known vulnerabilities directly accessible for blackbox TTs.
We utilize the derived fuzzing scripts to test eight Operational Technology
(OT) components and report eleven findings, showing that our scripts can
successfully utilize the information from known vulnerabilities.

Additionally, we present Palpebratum, which infers a protocol-agnostic Hid-
den Markov Model (HMM) from network traffic to determine the interesting-
ness of a test case based on the inferred model (see Section 7.5). As a basis, we
additionally propose an approach to preprocess the network traffic to make it
accessible for the HMM, called NeDaP. We train the HMM on user data includ-
ing 140 traces of File Transfer Protocol (FTP) traffic. During fuzzing, this HMM
is queried based on the observed network traffic. This information is then
used to determine the interestingness of a test case. Our experiments show
that these models can be utilized by a blackbox fuzzer to generate test cases
that are more efficient than those generated by a traditional blackbox fuzzer.
Nevertheless, the final coverage of such a fuzzer is outperformed by a true
blackbox fuzzer. One possible explanation for this is the overhead introduced
by the HMMs which results in a reduced number of test cases that can be
sent during a fuzzing campaign.

Research Question 3. How can models of the SuT be derived from information
sources during a blackbox security test?

In this doctoral work, we present three new approaches to derive a model
from information sources accessible before and during testing. Details on
these approaches, including a detailed discussion of related work, can be
found in Chapter 7. First, we present Smevolution, an approach to combine
evolutionary fuzzing with a Machine Learning (ML) model which is trained
during the course of the fuzzing campaign. This model utilizes information
on the SuT’s crashes and approximates a function mapping a test case to the
services of the SuT that are expected to crash in response to this test case. We
implement this approach with three different ML models, namely a Decision
Tree (DT), a Neural Network (NN), and an Support Vector Machine (SVM).
Our experiments indicate that the DT and the NN are able to learn relevant
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information on the behavior of the SuT which can be leveraged to improve
the performance of a blackbox fuzzer in terms of found vulnerabilities, while
the fuzzer based on the SVM does not perform better than the baselines.

Second, as discussed with respect to the previous research question,
Palpebratum leverages network traffic accessible before and during testing
to train an HMM which is then used to approximate the behavior of the SuT.

Third, with StateBandit, we evaluate the applicability of Reinforcement
Learning (RL) to the state selection problem in fuzzing. For our experiments,
we apply different Multi-armed Bandit (MaB) agents to the state selection
problem of graybox fuzzing. These agents interact with the SuT and build
an implicit model of the SuT during this interaction. Our experiments show
that the fuzzers based on these agents are not able to outperform the current
state-of-the-art. This observation is in line with the results by Li et al., which
show that none of the state selection approaches the authors considered has
lead to a distinguishable fuzzer performance [Li21]. We chose to conduct our
experiments with respect to graybox fuzzing to evaluate whether MaB agents
are able to improve fuzzing based on graybox information. However, given
the results, we decided not to transfer this approach to blackbox testing, in
which the information that is accessible for the agents is even more limited.

Research Question 4. How can test approaches be evaluated and compared to
competing approaches?

While each evaluation of a TT should follow the generic requirements for
evaluating systems by providing complete, relevant, correct, and reproducible
results [Kou19], the specific evaluation approach depends on the domain of
the TT. For this doctoral work, we focus on blackbox Stateful Web Application
Testing (SWAT) and stateless graybox fuzzing.

Literature includes several evaluations of general WVSs (see Section 4.3.2), but
evaluating stateful WVS has not received as much attention. Thus, we provide
the modular framework for evaluating stateful WVSs SWaTEval, including a
target Web Application (WA) with a known state machine [Bor23c]. With this,
we allow for detailed analyses of the impact of different testing approaches
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and design choices. We show this by (1) implementing different approaches
for the distance measure necessary for the automatic state machine inference,
and by (2) evaluating their impact. Our results imply that the choice of this
measure indeed has an impact on the quality of the inferred state machine,
and thus should be considered while designing stateful WVSs.

With respect to stateless graybox fuzzing, we analyze existing evaluation
approaches and guidelines, and describe the different dimensions of a fuzzing
evaluation in Section 8.4.2. Our analysis suggests that the guidelines presented
by Klees et al. [Kle18] are considered to be the state-of-the-art for fuzzing
evaluations. This was also confirmed by the more recent work presented by
Schloegel et al. [Sch24], which was published after we conducted our analysis.
Nevertheless, some authors suggest considering other evaluation approaches
based on mutation testing [Gav20, Gop22].

Moreover, our analysis shows that the impact of the choice of performance
metrics on the relative assessment of fuzzers has not received much attention
in the past. However, more recent literature suggests that the choice of metrics
may have a significant impact on the relative assessment [Fio22]. Thus, we
extend the fuzzing framework MAGMA [Haz20] with new performance metrics
and evaluate their impact, calling our approach MEMA. We show that the choice
and weighting of performance metrics influence the relative ranking of fuzzers
by evaluating three fuzzers using five targets. With this result, our experiments
supplement the findings by Li et al., who conducted a similar study after we
started our work [Li21]. The authors used mostly different fuzzers and targets,
with only one fuzzer and one target being the same for their evaluation and
our evaluation. Nevertheless, Li et al. come to the same conclusions as our
work, which supports the general claim that the choice of performance metrics
is important for the evaluation of stateless fuzzers.
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9.2 Implications

All approaches developed, implemented, and evaluated in this doctoral work
contribute to the objective to allow for effective testing of OT components.
The experiments including actual OT components and artificial vulnerabilities
show that the proposed approaches HitM, Smevolution, ClusterCrash are
able to improve blackbox testing. Palpebratum and StateBandit further
explore how ML techniques could be used to utilize the information accessible
in blackbox and graybox fuzzing. Moreover, we contributed to the research
on evaluating TTs by providing SWaTEval, a framework to evaluate stateful
WVS, and by evaluating the impact of the choice of performance metrics on
fuzzer evaluations using MEMA.

9.2.1 Reported Vulnerabilities

Several of the approaches presented in this doctoral work have been executed
against OT components, including BCex, to assess their practical applicability.
During these experiments and tests, we followed a responsible disclosure
policy and disclosed all our findings to the respective manufacturers.

BCex Findings

The PROFINET bus coupler BCex is used as a running example throughout
this doctoral work. By applying several of the newly presented approaches,
we revealed anomalies and vulnerabilities in BCex which are summarized in
Table 9.1. In total, the approaches revealed one configuration error and six
Denial of Service (DoS) vulnerabilities within BCex. Of these DoS vulnerabili-
ties, four are to be considered as critical based on their Common Vulnerability
Scoring System (CVSS) score. Details on the vulnerabilities are provided in
the sections referenced in Table 9.1. These findings illustrate how the different
approaches can be applied to an OT component, and which vulnerabilities can
potentially be found within an OT component.
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Additional Findings

In addition to BCex, we tested several other OT components during the experi-
ments as presented in this doctoral work. Table 9.2 aggregates the vulnerabili-
ties of other OT components that have been confirmed and published during
this doctoral work, while additionally showing anonymized data on those
vulnerabilities that have been confirmed, but not yet published by the manu-
facturer. The following gives an overview of those vulnerabilities that have
been confirmed by the affected manufacturer and that received a Common
Vulnerabilities and Exposures (CVE) identifier.

During this doctoral work, nine vulnerabilities were reported and confirmed by
the corresponding manufacturer. For example, we reported a DoS vulnerability
of a safety controller manufactured by SICK. This vulnerability was confirmed
and closed by the manufacturer. We confirmed this fix by re-testing the updated
version of the controller’s software.

All except one of the vulnerabilities shown in Table 9.2 have been fixed by the
respective manufacturer, although not all have been assigned a CVE identifier
yet. The remaining unaddressed vulnerability is the DoS identified in the
industrial I/O device. This attack is only feasible shortly after the startup of
the affected OT component. According to the manufacturer, this scenario
represents a highly unlikely attack vector, which is why they opted not to
address this vulnerability.

Table 9.1: Vulnerabilities and anomalies of BCex revealed by the novel approaches presented in
this doctoral work.

CVSS Approach Vulnerability Reference
0.0 HitM Missing security headers Section 4.4
5.3 HitM DoS via TCP flood Section 4.4
5.3 Smevolution DoS via IPv4 (source address) Section 7.7
7.5 HitM DoS via parallel TCP connections Section 4.4
7.5 HitM DoS via HTTP [CVE18] Section 4.4
7.5 ClusterCrash DoS via IPv4 (length field) Section 5.5
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Table 9.2: Vulnerabilities revealed during this doctoral work in OT components other than BCex
that have been confirmed by the respective manufacturer. A dash (-) in the CVE
column implies that the respective vulnerability was not yet assigned a CVE ID.
Most vulnerabilities are DoS vulnerabilities. CVSS scores indicating a high severity
are highlighted in red, while scores indicating a medium severity are highlighted in
orange.

CVSS CVE Tested OT component Vulnerability
7.5 CVE-2019-14753 Safety controller by SICK DoS via UDP
5.3 CVE-2021-21003 Industrial switch by Phoenix

Contact
DoS via TCP

7.4 CVE-2021-21004 Industrial switch by Phoenix
Contact

Cross-site script-
ing via LLDP

7.5 CVE-2021-21005 Industrial switch by Phoenix
Contact

DoS via TCP

5.3 - Industrial I/O device DoS via PROFINET
8.6 - Temperature sensor DoS via DHCP
7.7 - Temperature sensor DoS via DNS
6.5 - OPC UA network stack DoS via OPC UA

As shown in Table 9.2, most of the vulnerabilities are DoS vulnerabilities. Since
the availability is a crucial security requirement for OT components [Sto23], it
is of special importance to find and close DoS vulnerabilities. This doctoral
work contributed to the goal of finding and closing vulnerabilities in OT
components by finding and reporting eleven vulnerabilities of which eight
have been closed by the manufacturers. Of these eight vulnerabilities, six have
a high severity as defined by the CVSS score, and two have a medium severity.

9.2.2 Data and Code Availability

In addition to the descriptions provided in this doctoral work, further content
related to the contributions of this doctoral work has been published. Table 9.3
summarizes these additional materials.
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Table 9.3: Overview of the information that has been published for the different contributions of
this doctoral work in addition to the descriptions presented in this dissertation.

Contribution Reference Additional Content
HitM Section 4.3 Paper [Bor20]

Underlying work [Wei19]
mitmproxy add-onsa , b

ClusterCrash Section 5.4 Paper [Bor22]
VAPsc

Code upon request
NeDaP Section 6.4 Preliminary implementationd

Smevolution Section 7.4 Paper [Bor23b]
Underlying work [Mor21]
Codee

Experimental dataf

Palpebratum Section 7.5 Underlying work [Här23]
StateBandit Section 7.6 Paper [Bor23a]

Underlying work [Fit22]
SWaTEval Section 8.3 Paper [Bor23c]

Underlying work [Zim21, Hof21]
Codeg

Experimental datah

Documentationi

MEMA Section 8.4 Underlying work [Bla23]

a https://github.com/mitmproxy/mitmproxy/pull/3961
b https://github.com/mitmproxy/mitmproxy/pull/3962
c https://github.com/anneborcherding/vulnerability-anti-patterns
d https://github.com/anneborcherding/network-packets-preprocessor
e https://github.com/anneborcherding/Smarter-Evolution
f https://fordatis.fraunhofer.de/handle/fordatis/345
g https://github.com/SWaTEval
h https://github.com/SWaTEval/evaluation-data
i https://swateval.github.io/

Specifically, papers have been published on HitM, ClusterCrash, Smevolution,
StateBandit, and SWaTEval, while publications for NeDaP and Palpebratum

are planned. Since Li et al. published a study similar to our experiments
with MEMA during the course of our research [Li21], we have opted not to
publish these results separately.
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We have published the code for several contributions of this doctoral work.
This includes the code for the mitmproxy add-ons that were developed with
HitM, the code that we used to define the ML models used for Smevolution
as well as the code used to interpret the experimental data produced during
the experiments with respect to Smevolution. Moreover, we published the
code of the evaluation framework SWaTEval, including the implementation
of the target WA and a documentation of the framework.

For HitM, Smevolution, and ClusterCrash, we based our fuzzer implemen-
tation on ISuTest®. However, as the process of making the core of ISuTest®
open source is still ongoing, the enhancements done during this doctoral work
could not yet be published. Despite this, we extracted the test scripts created
with ClusterCrash, which now can be run without an ISuTest® installa-
tion. While the concrete vulnerabilities found during the experiments with
ClusterCrash have been fixed, these scripts have the potential to crash OT
components and other embedded systems. Thus, we opted not to publish them
but provide them upon request.

The preliminary results presented with StateBandit were based on a prelim-
inary implementation, which is set to be improved upon in future work. Mark
Giraud will continue this research direction by developing the RL-based fuzzing
approaches using an emulator that offers a deterministic and restorable execu-
tion environment, and provides more data and possible actions to the agent
Thereby, it has the potential to enhance the agent’s decision-making process.
Thus, we chose not to publish the preliminary implementation, but to publish
the improved and more reliable and flexible implementation in the future.

Our experiments for SWaTEval and Smevolution are based on artificial vul-
nerabilities, allowing us to publish our experimental results without exposing
unpatched or unpublished vulnerabilities in OT components. For SWaTEval,
we additionally published the full source code of the framework and the
target WA.
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We have made the effort to ensure that the approaches and experiments are
as transparent and as accessible as possible. Our goal is to provide other
researchers and interested parties with the resources to understand, utilize,
and further enhance our research.

9.2.3 Applicability

As this doctoral work is located in the domain of testing OT components,
we needed to strike a balance between a controlled environment and real-
istic SuTs for the experiments presented in this dissertation. Our experi-
ments regarding HitM, ClusterCrash used OT components as SuTs, while
NeDaP, Palpebratum, StateBandit, and MEMA used network stacks as SuT.
As StateBandit and MEMA are based on a graybox approach, a direct applica-
tion of those two approaches to OT components is not feasible. Nevertheless,
both contribute relevant insights to the security testing domain in general.
Smevolution and SWaTEval were evaluated based on artificial SuTs which
aim to represent real SuTs as closely as possible. Both approaches are designed
for a blackbox test setting and can be applied to testing OT components,
especially Smevolution since it is integrated into the blackbox testing frame-
work ISuTest®.

In summary, all blackbox approaches presented in this work have either already
been applied to OT component testing, or provide the foundation to apply the
new approach to OT component testing. With this, we allow for a practical
application of the approaches presented in this dissertation and thus allow for
improved security testing of OT components in practice.

9.2.4 Transferability

While the domain of this doctoral work is testing OT components, the results
could be transferred to other domains, such as building automation and Internet
of Things (IoT).
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Building Automation First, the approaches could be transferred to the
domain of IoT for building automation. This domain also shares similar chal-
lenges [Gra22], as, for example, specialized or proprietary network protocols
need to be tested [Mor24]. However, testing approaches such as fuzzing have
not yet been applied to this domain extensively [Mor24]. Thus, the approaches
presented in this doctoral work could serve as a starting point to improve the
security testing of building automation devices.

Internet of Things Furthermore, the approaches presented in this dissertation
could be transferred to the general domain of testing embedded systems, such
as IoT devices. Testing, especially fuzzing, these devices shares challenges
similar to those presented in Section 1.3. For example, the source code for
an embedded device’s firmware is typically not accessible and cannot be re-
compiled [Yun22]. In addition, detecting crashes or anomalies in the behavior
of an embedded device is challenging [Mue18, Yun22], and resetting the SuT
to a known state is time-consuming since it needs to be restarted. Since
restarting an embedded device may need several seconds [Mey13], this delays
the fuzzing process. Thus, the approaches presented in this doctoral work
could be transferred to testing embedded systems.

Software In contrast, transferring the approaches targeting OT components to
general software testing might yield different results, as software testing faces
different challenges. Especially, the time needed to process a single test case is
smaller for software testing than for testing of OT components. For blackbox
OT components, the test case needs to be sent via the network interface,
which takes longer than providing a software with a specific input [And24].
Moreover, monitoring the current status of the SuT to detect crashes and
anomalies generally takes more time for OT components, since the different
services of the SuT need to be monitored for a crash. Furthermore, resetting an
OT component to a known state includes restarting the whole OT component,
while software can be reset to a known state more easily. Considering all of this,
the importance of effective test cases is higher for testing OT components, and
more overhead to generate the test cases is acceptable. In contrast, experiments
by Nicolae et al. [Nic23] with respect to graybox software fuzzing suggest
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that spending time budget on the mutation strategy by AFL or AFL++ might
lead to better overall results than spending time on more complex approaches
such as NEUZZ [She19].

Blackbox Fuzzing Two of the presented approaches, StateBandit and MEMA,
focus on graybox fuzzing. The question arises whether these approaches could
be transferred to blackbox fuzzing. As StateBandit aims to utilize information
accessible during testing by giving it to a MaB agent, we first analyzed whether
graybox fuzzing would provide enough information for such an agent to
be successful. However, our experiments show that the MaB-based fuzzers
perform significantly worse than the baseline graybox fuzzer. Based on these
results, we refrained from attempting to transfer this approach to blackbox
fuzzing, where an agent would have even more limited information. Since
MEMA analyzes additional performance metrics specific to graybox testing, its
implementation and results do not directly apply to blackbox testing. However,
future work could analyze which additional performance metrics could be used
in blackbox fuzzing and how they would influence the relative assessment of
blackbox fuzzers. We would expect the performance metrics to have an impact
on the relative assessment in blackbox fuzzing as well.

9.3 Limitations

While the approaches presented in this dissertation contribute to improving
blackbox security testing for OT components, there are certain limitations that
need to be acknowledged. The following section discusses general limitations,
whereas the corresponding sections in previous chapters address limitations
specific to each approach.
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Evaluation Target

One limitation relates to the targets used in our experiments. When evaluating
blackbox TTs for OT component testing, one can choose from three types
of targets: (1) a true blackbox OT component, (2) a graybox target, or (3) an
artificial target. Each choice presents distinct advantages and disadvantages.

Blackbox OT Component Using a true blackbox OT component provides
the most realistic assessment of a TT’s performance. However, the lack of
access to ground truth data on the OT component’s vulnerabilities poses a
significant challenge. Moreover, we cannot rely on proxy metrics such as code
coverage to assess a TT, since we cannot measure these metrics. Furthermore,
there are no established blackbox OT component SuTs that would enable
comparisons between different studies.

Graybox Target Graybox targets allow the measurement of proxy metrics,
which allows for a more detailed assessment of the TT’s performance. Fur-
thermore, SuTs supported by fuzzing benchmarks such as FuzzBench [Met21]
are widely used, enabling some degree of comparability between studies using
these SuTs. However, many graybox SuTs do not provide a ground truth for
their bugs, and precisely controlling the included vulnerabilities is difficult.

Artificial SuT An artificial SuT offers a controlled experimental environment
where vulnerabilities can be predefined and controlled. However, the use of
artificial targets can limit the transferability of results to real-world blackbox
OT component testing.

In our experiments, we selected the targets that best suited the specific use
case. For example, HitM especially addresses the limitations of WVSs in their
applicability to OT components, so we evaluated HitM’s performance using
actual OT components. Conversely, for Smevolution, our goal was to gain a
detailed understanding of which vulnerabilities different model-based fuzzers
could identify. Therefore, we opted for an artificial target where vulnerabilities
could be easily defined. While this choice facilitated controlled experiments, it
does affect the transferability of the results to blackbox OT component testing.
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Target Complexity

Given that most OT components currently incorporate simple, Hypertext
Markup Language (HTML)-based WAs, we chose these for our evaluation of
HitM and SWaTEval. However, as future OT components may adopt more
modern approaches to WAs, the applicability of HitM and SWaTEval to these
newer WAs will need further evaluation and adaption. Additionally, for NeDaP
and Palpebratum, we focused on the text-based communication protocol FTP.
The transferability of these results to binary communication protocols, such
as OPC UA, remains uncertain and needs further experiments.

Network Stack Implementation

The majority of the approaches presented in this dissertation focus on test
case generation for blackbox testing. These approaches assume access to a
communication interface that implements the network protocols used by the
SuT. For our practical implementations, we use e.g. the implementation pro-
vided by scapy1, which also supports industrial protocols such as PROFINET.
However, access to such an implementation might not always be available in a
real-world testing scenario, especially if proprietary protocols by third parties
need to be tested. This could affect the practical usability of our approaches.
A potential mitigation of this limitation could involve combining our meth-
ods with techniques that automatically learn a representation of the network
protocol communication (e.g. [Gas15, Zhe22]).

1 https://scapy.net/
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10 Future Work

The approaches presented in this dissertation contribute to improving black-
box testing of Operational Technology (OT) components, while also revealing
opportunities for future investigation. This chapter highlights potential di-
rections for future research, providing suggestions on how the current work
could be extended. While this chapter discusses general research opportuni-
ties, the corresponding sections in previous chapters focus on future research
specific to each approach.

Distribution of Vulnerabilities

The primary objective of Test Tools (TTs), particularly fuzzers, is to identify
inputs within the input space that expose vulnerabilities, bugs, or anomalies
in the System under Test (SuT). Although various random and deterministic
approaches have been developed to approach this objective, we identify a
research gap regarding the distribution of these triggering inputs across the
input space. To the best of our knowledge, the only empirical study in this area
is the work by Bishop presented in 1993, which explores failure regions within
a program’s continuous input space [Bis93]. This study reveals contiguous
failure regions in two Fortran programs’ input spaces and the analyses suggest
that such contiguous failure regions are likely to exist in any program. With
respect to coverage in a graybox test setting, Zhang et al. show that for some
programs, 1% of the input bytes contribute up to 90% of the covered edges,
also suggesting relative locality of the coverage findings [Zha24a].
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While acknowledging that this is highly time-consuming, we suggest conduct-
ing a comprehensive analysis of the input space of several SuTs. This would
provide valuable insights into how bugs and vulnerabilities are distributed
within the input space. Based on these insights, TTs could be designed to
leverage this knowledge effectively, as, e.g., discussed by Chen et al. [Che10].

Recent Machine Learning Approaches

Recent advances in Machine Learning (ML) offer new possibilities for blackbox
testing of OT components. For instance, transformer models [Vas17] could
be employed to identify efficient encodings for test cases and network traffic,
which can then be utilized by downstream ML models for test case generation.

Transformer models could also be applied directly for generating test cases
in blackbox OT component testing. In other domains, several studies have
explored the potential of Large Language Models (LLMs) for test case gen-
eration, with promising results (e.g. [Liu24b, Isa24, Wan24, Xia24, Den24]).
Other studies evaluate the use of LLMs for automated unit test generation
(e.g. [Oué24, Yan24]), and for generating test cases from natural language
descriptions, bug reports, or specifications (e.g. [Ras24, Xue24, Ple24, Ma24]).
Although these studies address different use cases, they highlight the potential
for leveraging LLMs in automated testing.

Additional Information Sources

Beyond the information sources discussed in Chapter 3, other information
sources could be utilized for blackbox testing. For example, techniques used in
asset discovery within industrial networks could provide more information
on the SuT (e.g. [Cas13, Wed15, Sam22]). Additionally, information explicitly
stored about an OT component, such as that found in the asset administration
shell [Ye19], could be utilized to tailor test cases to the specific features of the
SuT. For instance, since many OT components share the same network stack,
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and thus may exhibit similar vulnerabilities [Pfr19a], a TT could first identify
the network stack in use, and then focus on testing for known vulnerability
patterns associated with it first.

Software Testing

Research on software testing in general as well as security testing was con-
ducted with respect to several domains, but the relationship between these
two fields has not been discussed in depth [Awa23]. Awalurahman et al.
present a systematic literature review with the goal of providing new insights
into this relationship. While it gives an overview of different approaches
and aspects of software testing and security testing, a more in-depth anal-
ysis might be necessary to fully understand the implications and potentials
of the relationship between software testing and security testing [Awa23].
Nevertheless, the relationship and also a possible convergence of software
testing and security testing shows in some publications. For example, fuzzing
was historically primarily used for security testing, but is also used for gen-
eral software testing nowadays [Man19]. In addition, Gopinath et al. suggest
to apply mutation analysis, an approach from software testing, to improve
fuzzing [Gop22]. Future work could encompass a more in-depth analysis of
the relationship between these two research domains, which could provide
insights into possible synergies.

System Identification

Rooted in control theory, system identification focuses on building a mathemat-
ical model of a system based on observed inputs and outputs (see e.g. [Lju10,
Kee11]). One possible direction for future research is to explore whether tech-
niques from system identification could be applied to construct a model of
the SuT. Such a model could then be used to guide and improve the blackbox
testing of OT components.

329





11 Summary

The primary objective of this doctoral work was to improve blackbox testing
for Operational Technology (OT) components by utilizing information acces-
sible before and during testing. Through various contributions that consider
different Systems under Test (SuTs) and utilize different information sources,
this doctoral work advances the state-of-the-art in this research area. The
approaches presented in this doctoral work demonstrate how accessible infor-
mation can be utilized to improve blackbox testing of OT components. Their
practical application uncovered several previously unknown vulnerabilities in
OT components. These vulnerabilities were disclosed responsibly, and a total
of nine vulnerabilities were confirmed by the respective manufacturers (see
Section 9.2.1). Among these, five were assigned Common Vulnerabilities and
Exposures (CVE) identifiers [CVE18, CVE19, CVE21a, CVE21b, CVE21c]. With
this, this doctoral work contributes to the security of OT components and the
production environments in which they are deployed. Thus, this doctoral work
advances the field of blackbox testing of OT components and has a tangible
impact on the practical security of critical infrastructure.

Analysis Our analysis demonstrates that a variety of static and dynamic
information sources can be utilized to improve blackbox testing (see Chapter 3).
These information sources are accessible either prior to or during testing. The
contributions newly presented in this doctoral work utilize these information
sources in novel ways to further improve the performance of blackbox Test
Tools (TTs).

HitM We introduced HitM, a proxy-based solution that transparently improves
the performance of blackbox Web Vulnerability Scanners (WVSs) when testing
OT components (see Chapter 4 and [Bor20]). HitM addresses several challenges
specific to OT components, such as their limited resources, which often result
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in early crashes. Our experiments, conducted using six WVSs and five OT
components, demonstrate that HitM increases the number of true positive
reports and improves Uniform Resource Locator (URL) coverage. However,
this improvement comes at the cost of increased runtime per test case and a
higher false positive rate. Notably, one of the vulnerabilities identified during
the evaluation of HitM was assigned a CVE identifier [CVE18].

ClusterCrash ClusterCrash utilizes information on known vulnerabili-
ties that is accessible prior to testing a concrete SuT (see Chapter 5 and [Bor22]).
This approach aggregates and structures information on vulnerabilities identi-
fied using graybox and whitebox tests by using Vulnerability Anti-Patterns
(VAPs). From these VAPs, we derive blackbox test scripts tailored to identify
similar vulnerabilities in a blackbox test setting. In our experiments, we ap-
plied these newly developed test scripts to eight OT components, resulting in
eleven findings. Of these findings, three vulnerabilities were assigned CVE
identifiers [CVE21c, CVE21a, CVE21b]. Additionally, our findings demonstrate
that VAPs are effective in identifying similar vulnerabilities across different
protocols and device classes.

NeDaP With NeDaP, we introduced a tool to preprocess another information
source that is accessible both before and during testing: network traffic (see
Chapter 6). We propose a preprocessing pipeline that includes a dimensionality
reduction to make the information more accessible by downstream Machine
Learning (ML) models. We evaluated the performance of three different ap-
proaches to dimensionality reduction, highlighting that each approach has
distinct advantages and disadvantages. Thus, the decision on the dimensional-
ity reduction approach depends on the downstream ML model which builds
upon the preprocessed network packets.

Palpebratum With Palpebratum, we proposed a novel approach to mod-
eling the behavior of the SuT based on network traffic generated during testing
(see Section 7.5). The network traffic is first preprocessed using the NeDaP

pipeline, and then utilized to query an Hidden Markov Model (HMM) that
approximates the behavior of the SuT. This HMM is employed to estimate the
interestingness of a test case, and thus to guide the test case generation. Our
experiments, using a File Transfer Protocol (FTP) implementation as target,

332



11 Summary

demonstrated that the test cases generated by an HMM-based fuzzer are more
effective than those generated by a traditional blackbox fuzzer. However, the
final coverage achieved by a blackbox fuzzer significantly outperforms the
coverage achieved by a HMM-based fuzzer. One reason for this could be the
overhead the HMM introduces.

Smevolution Smevolution employs an ML model to approximate the
behavior of the SuT based on the services of the SuT that crash in response to a
specific test cases (see Section 7.4 and [Bor23b]). This model is embedded into
an evolutionary test case generation algorithm in order to provide additional
insights for mutating and selecting the test case individuals. We evaluated
this approach using three different ML models: a Decision Tree (DT), a Neural
Network (NN), and an Support Vector Machine (SVM). Experiments conducted
on an artificial SuT reveal that the DT-based fuzzer significantly outperforms
the baseline fuzzer in terms of bugs detected. This result suggests that the
DT was particularly effective in approximating the SuT’s behavior, leading
to improved testing performance.

StateBandit With StateBandit, we explored the use of a Multi-armed
Bandit (MaB) agent to approach the state selection problem of stateful network
fuzzing (see Section 7.6 and [Bor23a]). To gain initial insights, we evaluated
StateBandit in a graybox test scenario. Our experiments, using an OPC
Unified Architecture (OPC UA) network stack as target, revealed that the state-
of-the-art fuzzer AFLNet significantly outperforms the MaB-based fuzzers.
Due to these results, we decided not to transfer this approach to a blackbox
test scenario, where the agents would have even less information to build
their decisions on.

SWaTEval In addition to proposing new approaches to utilize the informa-
tion accessible in blackbox testing, this doctoral work also contributes to the
field of evaluating TTs (see Section 8.3 and [Bor23c]). SWaTEval is a novel
framework designed to evaluate stateful WVSs. This framework includes an
artificial Web Application (WA) that serves as an evaluation target. Using
SWaTEval we investigated the impact of different similarity measures on the
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performance of the state machine inference employed by stateful WVS. Our
experiments demonstrate that the choice of similarity measures indeed affects
the performance on the state machine inference.

MEMA MEMA enhances an existing fuzzer benchmark by introducing additional
performance metrics to be measured during testing, allowing for an analysis of
their impact on the relative assessment of fuzzers (see Section 8.4). We focus on
stateless graybox fuzzers, and we conducted our evaluation using five graybox
targets. Our experiments indicate that the selection of performance metrics
indeed influences the relative ranking of fuzzers, highlighting the importance
of choosing appropriate metrics for accurate fuzzer evaluations.
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