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Deep Interactive Segmentation of Medical Images:
A Systematic Review and Taxonomy

Zdravko Marinov , Paul F. Jäger , Jan Egger , Jens Kleesiek , and Rainer Stiefelhagen , Member, IEEE

Abstract—Interactive segmentation is a crucial research area
in medical image analysis aiming to boost the efficiency of costly
annotations by incorporating human feedback. This feedback takes
the form of clicks, scribbles, or masks and allows for iterative
refinement of the model output so as to efficiently guide the system
towards the desired behavior. In recent years, deep learning-based
approaches have propelled results to a new level causing a rapid
growth in the field with 121 methods proposed in the medical imag-
ing domain alone. In this review, we provide a structured overview
of this emerging field featuring a comprehensive taxonomy, a sys-
tematic review of existing methods, and an in-depth analysis of
current practices. Based on these contributions, we discuss the
challenges and opportunities in the field. For instance, we find that
there is a severe lack of comparison across methods which needs to
be tackled by standardized baselines and benchmarks.

Index Terms—Deep learning, interactive segmentation, medical
imaging, systematic review.

I. INTRODUCTION

D EEP learning segmentation methods revolutionized vari-
ous application areas including autonomous driving [158],

product manufacturing [159], and medical image analysis [160].
For the latter, high-quality segmentation of anatomical struc-
tures and detection of abnormalities is an essential step to-
wards automating diagnosis and treatment planning [161]. How-
ever, the quality of these methods relies heavily on large-
scale data sets for training featuring high-quality annotations.
Especially in the medical imaging domain, this poses a ma-
jor bottleneck, because annotations are time-consuming and
require expert knowledge [5]. For instance, labeling a volu-
metric Positron Emission Tomography/Computed Tomography
(PET/CT) volume to identify tumor lesions can consume up to
an hour of manual annotation for a single sample [154].
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Deep interactive segmentation addresses this trade-off be-
tween high-quality segmentation and laborious manual annota-
tion. The idea is to boost annotation efficiency by incorporating
human feedback into either the training or application process of
segmentation methods. This feedback loop lets users iteratively
correct or refine the model output, e.g., in the form of clicks,
scribbles, or fine-grained voxel-masks, and thus efficiently guide
the model towards the desired output.

The development of interactive segmentation models in the
medical domain entails unique challenges. Medical data is in-
herently diverse, including: 1) 2D images from dermoscopy,
endoscopy, and microscopy; 2) 3D volumes from CT scans and
other radiological sources; 3) and even videos from ultrasound.
Thus, designing interactive segmentation models for specific
modalities requires expertise in the best practices for that partic-
ular type of imaging. Moreover, achieving robust and accurate
segmentation is further complicated by the variability introduced
by different scanner types, population demographics, and the
presence of noise and artifacts in the data [155].

The field of interactive segmentation traces back to active
contour models [153] and Graph Cut [131], which primarily rely
on low-level image features, such as pixel intensity changes, to
differentiate foreground and background. However, traditional
methods often require handcrafted features to incorporate high-
level semantics related to the object-of-interest [5], [65], [140].
Additionally, traditional methods often require manual param-
eter tuning which can be domain or even image-specific [131],
[141], [153]. These challenges have been widely solved in recent
years by interactive deep learning-based approaches, as first
introduced by Xu et al. [140].

Deep learning-based methods offer distinct advantages over
traditional approaches by capturing both low- and high-level
semantic features and being trained end-to-end without requiring
image-specific parameter tuning. This paradigm shift has led to
the successful application of interactive segmentation systems,
for instance by reducing the annotation time of the aforemen-
tioned PET/CT volume to around three minutes [82].

Several reviews have been published in the field of interac-
tive segmentation. However, previous reviews either focus on
classical approaches rather than the more recent deep learning
methods [145], [155], [156], [180], or exclude approaches from
the medical domain [157]. At the same time, no review exists
for the field of deep learning-based interactive segmentation
of medical images despite its rapid emergence with over 121
proposed methods in the last 8 years as seen in Fig. 1. The
lack of a systematic overview in this field hampers scientific
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Fig. 1. Tendencies in medical interactive segmentation in recent years.

progress by generating redundancies and poses a challenge for
users seeking the best-fitting method for their problem.

We address these shortcomings in this dedicated review by
means of the following key contributions:
� We introduce a comprehensive taxonomy for deep inter-

active segmentation allowing users to quickly comprehend
the various approaches and select the best fitting method
for their task.

� Based on this taxonomy, we provide a systematic review
of 121 proposed methods in the medical domain.

� We perform an in-depth analysis of the current practices
in the field including prevalent datasets, anatomies, and
validation metrics, as well as the adequacy of baselines
and the reproducibility of results.

� Based on this analysis, we provide a discussion of current
challenges and opportunities in the field.

II. TERMINOLOGY

Before we present our systematic review, we establish clear
definitions for the fundamental terminology within the domain
of interactive segmentation.

A. Interactive Segmentation

Interactive segmentation describes an iterative feedback loop,
where user-provided corrections or refinements to the model’s
output inform subsequent iterations, leading to updated predic-
tions. Depending on the method, user guidance is provided dur-
ing training or application in the form of, e.g., clicks, scribbles, or
other interactions. Importantly, initial labels provided to a model
before training are excluded from this definition to differentiate
interactive segmentation from related training paradigms such
as weakly-supervised segmentation.

B. Guidance Signal

A guidance signal is a representation of the user interactions in
a form in which the model can process it. This can be an explicit
representation that involves transforming the user interaction
into an additional structured input for the model to process and
learn from, e.g., Gaussian heatmaps centered around user clicks.
Additionally, guidance signals can also be implicit, where user
interaction information is subtly integrated into the model’s
learning process without the provision of explicit structured
input. For instance, this integration could involve modifying the
loss function to incorporate the distance to clicks and assign

greater weight to predictions in proximity to those clicks. Exist-
ing guidance signals for clicks, scribbles, and other interactions
are given in the Appendixes.

C. Training and Application

We use the terms training and application as the building
blocks of our taxonomy tree. In the training stage, the model
undergoes optimization, where its weights are updated using a
predetermined loss function. The subsequent application stage
involves deploying the trained model on unseen data, utilizing
its refined parameters to address specific clinical tasks.

D. Robot User

The concept of a robot user [122] involves creating a simulated
model that mimics the behavior of a real human annotator. The
robot user leverages ground-truth labels to simulate user interac-
tions at plausible locations. For example, clicks can be sampled
randomly from the ground-truth labels or generated at the center
of the largest object. These simulated interactions are then
converted into a guidance signal, which is fed back to the model.
Robot users are used during training to simulate interactions for
a large number of training samples as this is unfeasible for real
human annotators at this scale. Additionally, robot users can also
be used during application to evaluate trained models on unseen
data without involving real human annotators. Robot users can
be categorized as non-iterative or iterative. Non-iterative users
simulate all interactions simultaneously, integrate them into the
model, and perform a single prediction. In contrast, iterative
users simulate interactions in a loop. In this case, the model
predicts, interactions are generated based on the errors of this
prediction, and the model predicts again using all the previous
interactions in an interaction-prediction loop [152]. Here, an
iteration denotes a single round of interaction and prediction
with the model.

III. SCOPE AND STUDY COLLECTION STRATEGY

We conduct a systematic review of deep learning-based in-
teractive segmentation models applied in medical scenarios.
Our review, being inherently technical in nature, aims to rig-
orously categorize and analyze relevant literature. Recogniz-
ing the need for a comprehensive reporting framework, we
integrate as many components from the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines by Moher et al. [139] as applicable to enhance the
transparency and methodological clarity of our study. A detailed
account of the adopted PRISMA components can be found in
the PRISMA 2020 checklist in the Appendixes. We performed a
literature search in several databases, including PubMed, Google
Scholar, IEEE Xplore, SpringerLink, and arXiv, using specific
keywords – [interactive], [human-in-the-loop], [segmentation],
[delineation], [medical], and [deep]. The search was carried
out on 31 July 2023, and we limited the publication period to
cover the years 2016–2023 since the first deep learning interac-
tive method originated in 2016 [140]. We removed duplicates,
including pre-prints followed by their peer-reviewed versions.
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Fig. 2. Search strategy in our systematic review for selecting relevant studies.
The logos in steps 1 and 4 are illustrated only as examples for literature databases
and venues respectively. A full list is given in the Appendixes.

Subsequently, we conducted an initial manual screening of titles
and abstracts to ensure that the selected studies are relevant.
After this initial screening, full texts were retrieved and reviewed
for eligibility based on specific inclusion criteria: 1) studies with
English full texts; 2) studies that have undergone peer-review or
have pre-prints submitted to the arXiv database; and 3) studies
describing the application of interactive segmentation models
for a human medical purpose. Consequently, certain exclusion
criteria were applied to maintain the focus and quality of the
review: 1) studies lacking English full texts; 2) studies that utilize
non-deep learning models; 3) studies that utilize interactive
models solely on natural images; and 4) studies using medical
images but not as the primary focus.

One reviewer assessed a study’s eligibility through a three-
stage process. Initially, we examine the title to decide if it
focuses on deep medical interactive segmentation. If the title
is ambiguous, we read the abstract for confirmation. In cases
where the abstract remains unclear, we read the entire study.

This search produced our initial seed studies stack as il-
lustrated in Fig. 2. In addition to adhering to the PRISMA
guidelines, we implemented three supplementary steps in our
search strategy to maximize the retrieval of relevant studies and
formed an iterative loop utilizing these steps. These steps are
depicted as steps 2, 3, and 4in Fig. 2. In step 2, we incorporated
the Connected Papers tool1 to enhance our search process. This
tool was applied to each of the already included studies from the
seed studies, and we systematically screened all the suggested
studies recommended by the tool, ensuring they meet our pre-
defined inclusion and exclusion criteria. In step 3, we manually
inspected all the citations of each study in the seed studies and
all of the studies that have cited this study using the “Cited by”
function in Google Scholar. In step 4, we formed a list of all the
peer-reviewed venues, which is given in the Appendixes, and
manually screened all of the publications from each venue in
the timeframe 2016–2023 with our pre-defined keywords and
added the relevant publications in our seed studies. We repeated
steps 2, 3, and 4 and accumulated all relevant studies in our

1https://www.connectedpapers.com/

seed studies stack until no new relevant studies were found. Our
search strategy found a total of 121 relevant publications.

After collecting all studies, one reviewer manually extracted
from each study the following data items: 1) used imaging
modalities; 2) used datasets along with provided links, if avail-
able; 3) prior interactive methods the study has compared to; 4)
employed evaluation metrics; 5) type of interaction, e.g., clicks;
6) target structures for segmentation; 7) and, if applicable, a link
to publicly available code. We cataloged all 121 reviewed studies
and their data items in Tables VIII and IX in the Appendixes.
This facilitates efficient navigation for future researchers seeking
relevant interactive methods related to their own work.

It is important to note that during our search we exclude
“classical approaches”, which do not utilize deep learning. Some
examples include methods based on: 1) Graph Cut [131], [141];
2) dense Conditional Random Fields (CRFs) [166]; 3) active
contours [153]; and 4) level sets [167]. While non-deep learning
interactive frameworks such as ilastik [168] and ITK-Snap [169]
have demonstrated success in clinical workflows, we maintain a
focus on deep learning-based methods to align with the review’s
scope and the growing prevalence of interactive deep learning
models in the medical domain.

IV. TAXONOMY

After retrieving the 121 publications, we analyze the foun-
dational principles of their methodologies and categorize them
based on common characteristics. This procedure yields our
proposed taxonomy tree and taxonomy blueprints in Figs. 3
and 5, which function as navigational tools for existing medical
interactive segmentation methods. These tools should help re-
searchers categorize their approaches and steer them towards
existing methods that align with their own. In this section,
we provide detailed insights into the construction of both
tools.

Taxonomy tree: In our systematic review of deep medical
interactive segmentation, we identified three paradigms T1-T3
that are determined by the stage at which human interactions
occur. These paradigms form the primary categorization in our
taxonomy tree in Fig. 3, and a summary of each paradigm can
be found in the three boxes at the bottom right. The interactions
take place in two distinct stages: training and application, which
are defined in Section II-C. Depending on these two stages, inter-
actions occur: 1) exclusively during application; 2) exclusively
during training; 3) or in an alternating manner between both
stages (online learning). These three paradigms constitute our
proposed taxonomy and are described in detail in Sections IV-A,
IV-B, and IV-C.

Taxonomy blueprints: Fig. 5 visually depicts the training and
application phases of the main taxonomy nodes, using icons to
represent generic concepts, such as the input image. The diagram
displays the involvement of a human annotator during either the
training or application phase. The distinction between training
and application phases is apparent in most paradigms, however,
in the case of the online learning paradigm, this separation is not
as evident. In online learning, the model is alternately trained
and applied to the same data, with real-time feedback provided

https://www.connectedpapers.com/
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Fig. 3. Our proposed taxonomy tree for all the reviewed studies. The references for studies associated with a node are listed beneath the respective node.

Fig. 4. Advantages and disadvantages of methods within the three main
taxonomy nodes regarding five specific demands.

by a human annotator. The taxonomy blueprints offer a two-
fold advantage: 1) they reveal detailed differences in training

and application phases among nodes in the taxonomy tree; 2)
and streamline the categorization of emerging methods. They
serve as a visual guide to both understand the taxonomy nodes
and systematically incorporate new approaches into the existing
taxonomy structure.

Navigating our taxonomy: We facilitate the navigation in
our taxonomy tree through decision guidelines, which pose
specific questions Q1-Q12 at each branching point focusing
on the inherent strengths and weaknesses of each taxonomy
node. By engaging with each question, users are encouraged to
reflect on their objectives, resources, and specific use cases. With
these questions integrated at every juncture, users can efficiently
traverse our taxonomy, ultimately arriving at a category that
aligns with their intended application.

The first juncture in our taxonomy tree categorizes methods
based on where human interactions occur. We deem this decision
as the most crucial in navigating our taxonomy and divide it
into five questions Q1-Q5 addressing: 1) availability of human
interactors; 2) label availability; 3) model complexity; 4) model
generalizability; and 5) number of training rounds. We depict
the advantages and disadvantages of each node regarding these
criteria in Fig. 4 and present the questions in the following.
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Fig. 5. Taxonomy blueprints for our proposed taxonomy nodes. The human annotator is involved during training, application, or both in online learning.
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Q1. At which stage is an interactive user available? Depend-
ing on the user availability, our three main taxonomy nodes
present distinct challenges. In training only methods, users are
required to correct model predictions for the most informative
samples across multiple sessions, as models undergo iterative
re-training after each correction session. Hence, users must
be available at multiple points in time but may correct the
predictions at their own pace since the annotation process occurs
offline. In application only methods, users utilize a pre-trained
model and correct its predictions in real-time within one con-
tinuous interaction session or user study, demanding the users’
undivided attention. In online learning methods, users must be
available for both training and applying the model to the same
data within a single uninterrupted session.

Recommendation: Training only methods are appropriate
when users can participate in multiple sessions to annotate data at
their own pace. In contrast, application only and online learning
methods necessitate only one interactive round but require the
user to be continuously available for the entire session. This is
essential for measuring usability metrics such as the number of
clicks or interaction time, or for training the interactive model
in online learning methods.

Q2. How many annotations are available for the task?
The amount of available annotated training data is critical for
an interactive model’s development. However, some domains,
like PET/CT, face annotation scarcity due to limited public
datasets [154]. Training only methods begin with a small labeled
fraction, termed the “starting budget,” for initial pre-training
of the model [62], [92]. The model then iteratively annotates
the unlabeled portion across multiple rounds. In contrast, ap-
plication only methods require fully annotated data to simulate
interactions or non-interactively train models. Online learning
methods require no annotated training data [19], [65], [85] or
pre-train on a small fully-annotated dataset [6], [8]. This makes
them particularly suitable for tasks where there is a limited
amount of annotated data.

Recommendation: In cases where labels are scarce or costly to
obtain, application only methods are unsuitable as they require
fully annotated datasets for training. In contrast, training only
and online learning methods are less dependent on this factor.

Q3. Does the task demand a specific model complexity? The
fundamental principles of the training only and application only
methods do not mandate a specific model complexity. However,
methods in the online learning node are limited to small models
such as one-layer CNNs [65], [85] or a 2-layer U-Net [19] since
the models are updated in real-time during application. We deem
this disadvantage as “neutral” in Fig. 4 as it constrains model
architecture options without requiring high-end hardware like
larger models.

Recommendation: If the task requires a complex model, avoid
online learning methods as they rely on simpler models.

Q4. How diverse is the data during application? Methods
in the training only paradigm are used in multiple annotation-
training rounds to annotate one concrete dataset tailoring them
to that dataset [37], [62]. In contrast, application only meth-
ods are not limited to one dataset and may employ multiple
training datasets, even from various imaging modalities [120].

The only requirement is that these datasets contain ground-truth
labels, enabling either the simulation of interactions (green
branch in Fig. 3) or non-interactive pre-training (red branch in
Fig. 3). Online learning methods exhibit the most constrained
generalization capability, as they are typically trained either on
individual image samples [41], [65], [85] or only on samples
obtained from a single patient [19].

Recommendation: For diverse application data, application
only methods are most suitable as they can utilize training
data from various sources or imaging modalities. Training only
methods are suitable for partially annotated data aiming for full
annotation, while online learning is ideal for single-patient or
single-image-sample scenarios.

Q5. How time-critical is the deployment of the model? The
number of necessary training rounds places constraints on the
hardware required for model training. Training only methods
entail multiple annotation-training iterations, during which the
model’s predictions are iteratively refined and the model is
trained multiple times until it reaches acceptable performance.
This results in a slower deployment of the model for application
and higher hardware demands. Application only methods require
only a single pre-training round and online learning methods ei-
ther exclude pre-training altogether or require only a single small
pre-training round. This makes them well-suited for scenarios
with limited access to hardware.

Recommendation: If the transition time from the training
to the application phase needs to be short, we recommend
designing a method following the online learning or applica-
tion only paradigm as training only methods require multiple
annotation-training rounds before their application.

After addressing Q1-Q5, users should gain a clearer under-
standing of which taxonomy node aligns with their specific
use case. The next sections introduce the remaining questions
Q6-Q12, offering guidance to navigate deeper into our taxonomy
tree until reaching a leaf node.

A. Training Only

The first taxonomy category T1. Training Only encompasses
methods utilizing human interactions only during training, de-
picted as yellow nodes in our taxonomy tree in Fig. 3. Reviewed
methods within this paradigm all fall within one taxonomy node:
T1.1. Active Learning.

T1.1. Active learning models are first trained on a small
labeled fraction of the dataset (”starting budget”) and are subse-
quently applied to the unlabeled remainder of the dataset. Based
on these predictions, the most informative samples for future
training are identified, annotated, and added to the training data
for the next iteration. This iterative training process continues
until the annotator is content with the model’s predictions. After-
ward, the model may be used non-interactively on the application
data without involving a human annotator, as seen in Fig. 5. Ho
et al. [35] introduce active learning to deep medical interactive
segmentation, utilizing a Convolutional Neural Network (CNN)
on an unlabeled osteosarcoma dataset, substantially reducing
annotation time compared to pixelwise annotation. Menon et al.
[37] introduce a method where annotators highlight a query
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patch for annotating whole-slide images (WSIs). A retrieval
module selects the K-nearest patches based on the feature space
similarity and annotators offer feedback for each patch as rele-
vant or irrelevant or provide explicit segmentation labels. Using
their retrieval module, only 5% of patches need annotation for
state-of-the-art performance. Atzeni et al. [62] present a method
leveraging estimated segmentation quality and labeling effort
to identify regions of interest. The labeling effort considers
boundary length and irregularity, assuming complex boundaries
are harder to annotate. The segmentation quality is measured by
the average class Dice score on annotated regions. This selects
easier regions for initial annotation rounds, aiding the model
in learning valuable features for annotating more challeng-
ing areas later. AnatomySketch [70] presents an open-source
software platform with a graphical user interface designed for
annotating and integrating deep learning segmentation models.
The “Annotation-by-iterative-Deep-Learning (AIDL)” module
enables annotators to proofread, correct, and incorporate seg-
mentations into the next training iteration of a pre-trained model.
Deep SED-Net [77] shows that an AIDL strategy for testicular
cell segmentation achieves results comparable to manual an-
notation using squeeze-and-excitation layers [130] in a U-Net
model [127]. Ma et al. [79] use an igniter network trained on
a small dataset to generate coarse labels for a larger dataset,
which are then refined by a human annotator in an AIDL loop
following a specific labeling protocol. This protocol prioritizes
easier samples for early labeling and gradually addresses harder
ones, minimizing human effort while enhancing the model’s
predictions, similar to Atzeni et al. [62]. Zhuang et al. [87]
propose a boundary contour correction tool as an alternative
to voxel-wise corrections, showing enhanced shape learning,
faster proofreading, and more anatomically plausible results.
Ho et al. [88] expedite the AIDL paradigm by utilizing a pre-
trained breast segmentation model instead of random weight
initialization, decreasing the annotation time. Zhuang et al. [90]
employ user-provided scribbles to compute an exponentialized
geodesic distance map, used to modulate the model’s prediction
and generate pseudo-labels for the next training iteration. These
pseudo-labels are more certain near the scribbles and integrate
human feedback during training. Qu et al. [92] train U-Net [127],
Swin-UNETR [135], and nnU-Net [136] on a small CT dataset,
then use their predictions to annotate 8000 CT volumes. They
assess prediction inconsistency, entropy, and overlap to suggest
volumes for refinement to annotators, reducing the annotation
time to two work weeks.

B. Application Only

The second category of our taxonomy T2. Application Only
encompasses models engaging with human annotators exclu-
sively during the application stage, depicted as green and red
nodes in Fig. 3. During the training stage, these models either: 1)
utilize simulated interactions generated by a simulated annotator
(T2.1.), termed robot user in literature [122]; or 2) use no
interactions (T2.2.). During the application stage, human users
interact with these models by providing initial and/or iterative

corrective interactions. To decide between the simulated and
non-interactive methods, the user may consider the following:

Q6. Are interactions simulated during training? Simulated
interactions (green nodes) facilitate the generation of interac-
tions with predefined annotation behaviors, such as placing
clicks at object centers or boundaries. This enhances the model’s
adaptation to specific behaviors so that it better leverages real
user interactions during application. Non-interactive training
(red nodes), on the other hand, does not integrate any prior
knowledge about the annotation behavior. However, a drawback
of simulated training, particularly when performed iteratively, is
a longer training time due to the computational overhead from
simulating interactions.

Recommendation: Simulated interactions specialize the
model toward a specific interaction style, which could be helpful
if, during application, annotators follow a specific annotation
protocol. However, in scenarios, where this is not important, or
where a short training time is important, non-interactive training
methods offer an alternative.

T2.1. Simulated training interactions circumvent the need for
human annotators during the training process by simulating the
annotation process using a robot user. This robot user mimics
the behavior of a human annotator and relies on ground truth
labels to simulate interactions only in the correct regions. In our
taxonomy, we differentiate between non-iterative (T2.1.1.) and
iterative simulation (T2.1.2.) and aid in selecting a method with
the following question:

Q7. Is the model trained to refine its predictions? Iterative
simulations train models to refine their predictions with each new
interaction, better aligning with real-world application scenarios
where annotators continuously correct segmentations. However,
non-iterative interaction simulations are computationally more
efficient than iterative ones as they do not require multiple model
predictions during training.

Recommendation: If the model should iteratively refine pre-
dictions and longer training is acceptable, iterative simulations
are a suitable option. However, if the user interacts with the
model only once or if the training time should be short, non-
iterative methods are more favorable.

T2.1.1. Non-iterative simulation methods generate all inter-
actions at once in a single iteration and then transform them
into a guidance signal, which is combined with the image.
During training, there are no correction loops, whereas during
the application stage, human annotators may iteratively correct
the model’s predictions, as illustrated in Fig. 5. Non-iterative
methods are further subdivided into the two subcategories rule-
based (T2.1.1.1.) and sampling-based (T2.1.1.2.), depending
on whether the interactions are generated through deterministic
rules (e.g., the center of the largest connected component in the
mask) or by randomly sampling the ground-truth mask, respec-
tively. To decide between sampling- and rule-based approaches,
we ask the following question:

Q8. Is the simulation sampling- or rule-based? In both iter-
ative and non-iterative simulations, rule-based interaction gen-
eration provides precise control over annotation behavior, such
as positioning clicks at the object’s center. This protocol may
be enforced during application, minimizing the “behavior gap”
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between training and application. On the other hand, sampling-
based simulations introduce randomness in annotation, enhanc-
ing the model’s capacity to generalize across diverse annotation
styles and adapt to imperfect annotations.

Recommendation: Rule-based approaches are ideal when
annotation styles are consistent and vary minimally, while
sampling-based approaches excel when annotations are more
flexible and interactions vary significantly among annotators.

T2.1.1.1. Non-iterative sampling-based methods sample the
ground-truth labels to simulate interactions. DeepIGeoS [5]
samples a fixed amount of voxels from connected components
that are over a certain size threshold and uses them as seeds
for computing a geodesic distance transform. UGIR [22], Bi
et al. [63], DeepIGeoSv2 [13], WDTISeg [44], and Hallitschke
et al. [82] follow the same sampling strategy as DeepIGeoS [5].
UGIR [22] additionally estimates the segmentation uncertainty
by calculating the prediction variance within a group convo-
lution layer. Bi et al. [63] integrate the guidance signal at
multiple stages in their skin lesion segmentation model. DeepI-
GeoSv2 [13] expands upon the two-stage DeepIGeoS [5] model
to handle multiple organs and introduces an uncertainty-aware
loss function that assigns an exponential penalty based on
the model’s certainty of an error. WDTISeg [44] combines
geodesic and euclidean distance maps through a linear com-
bination, allowing the incorporation of both appearance and
location information, respectively. Hallitschke et al. [82] expand
DeepIGeoS [5] to multimodal PET/CT data, exploring various
annotation interface presentations for users when displaying
multimodal data. Cerrone et al. [16] segment neuron cells from
serial section electron microscopy images by randomly sampling
a click from each neuron while maintaining a minimum dis-
tance from any boundary. Wang et al. [20] perturb ground-truth
polygon vertices by applying randomly sampled offsets and
directions. NuClick [26] randomly samples a point within each
nucleus, ensuring it is at least two pixels away from the object
boundaries. Tang et al. [32] dilate ground-truth masks of liver
and lung lesions, along with lymph nodes, then randomly sample
five pixels from the dilated mask. Jiang et al. [51] use a two-stage
network and randomly sample clicks from the segmentation er-
ror of the first-stage coarse network, encoding them as Gaussian
heatmaps. Daulatabad et al. [55] sample multiple clicks in the
proximity of the centroid of the ground-truth mask of the thyroid
nodule. Shi et al. [69] partition the ground-truth mask based on
the distance to the object’s boundary, then randomly sample
one pixel from each section, addressing cluttered samples in the
guidance map. Shahedi et al. [61] and Ju et al. [78] uniformly
sample clicks from the target organ, varying the number of sam-
pled clicks in their ablation studies. Pirabaharan et al. [73], [75]
uniformly sample the ground-truth mask to generate foreground
and background clicks. These clicks are encoded as Gaussian
heatmaps, with a radius proportional to the mask’s area. Smaller
radii for smaller objects ensure better boundary alignment.

T2.1.1.2. Non-iterative rule-based methods employ determin-
istic rules to simulate interactions. Sun et al. [3] simulate a click
at the prostate center. They use Canny edge detection [123] to
create horizontal and vertical location prior maps, assigning
decreasing intensity to voxels farther from the central click

with more crossed edges. Khan et al. [12] use object extreme
points (topmost, leftmost, rightmost, bottom-most) as four clicks
and generate a confidence map based on Chebyschev and Ma-
halanobis distances to the object center. DeepCut [1] extends
the ground-truth bounding box to generate foreground and
background voxels for an interactive CNN. Dense CRFs [166]
refine the CNN’s predictions, and then the refined predictions
are used as foreground and background voxel seeds for the
interactive CNN once more. Can et al. [4] also utilize dense CRFs
to refine CNN predictions for prostate and cardiac structures
segmentation. iW-Net [14] simulates two clicks by using the
farthest points in the ground truth mask to compute an attraction
field, inspired by oppositely charged punctual electric charges.
Roth et al. [15], [40] use 3D Gaussian heatmaps centered at
extreme points, expanded and employed as guidance for a
CNN-based model. Raju et al. [24] bridge the domain gap
between simulated and ground-truth extreme points by training
a model to predict them on unseen data, then use them as a
guidance signal. Girum et al. [34] use extreme points as input
to their prior-knowledge network. This network produces a
spatial attention map, which is multiplied with the image and
fed into a downstream segmentation model. MIDeepSeg [38]
uses extreme points to simulate clicks, slightly shifting them
inward to obtain interior margin points. These points are then
used to compute an exponentialized geodesic distance map as a
guidance signal. Zhang et al. [47] extract image patches along
rays from the object’s center to its outer boundaries to train a
Convolutional Recurrent Neural Network (ConvRNN). During
application, a single click at the object’s center is enough, as
the ConvRNN segments neighboring patches around the click
sequentially. Trimpl et al. [57] simulate full annotation on the
central axial slice of a CT image and propagate it to the remaining
slices. Their model utilizes the central slice, its annotation, and
a target slice as joint inputs to learn the segmentation of the
target slice. Iteratively selecting each slice as a new target slice
segments the entire volume. Jahanifar et al. [59] skeletonize the
ground-truth mask to simulate scribbles. i3Deep [66] randomly
samples multiple slices from ground-truth labels per image
sample. The full image labels of selected slices are appended
to the input of a refinement model during training. Galisot et al.
[71] train segmentation models on various brain structures using
cropped brain regions as inputs. They also develop a model
to learn spatial relationships between structures, automatically
positioning bounding boxes during inference, with annotators
able to adjust them as needed. Chen et al. [76] generate 2D
Gaussian heatmaps around each extreme point and compute an
euclidean distance transform using the intersection point of the
two extreme axes as a seed point for a second guidance signal.
Bruzadin et al. [84] propagate foreground seeds from a source
slice to neighboring slices by considering strong edges in the
image and avoiding sampling seeds near those edges in adjacent
slices. Shahin et al. [86] identify the slice with the highest error
and use its ground-truth boundary as a scribble.

T2.1.2. Iterative simulation methods mimic the iterative
nature of human interactions during application where the
annotator repeatedly corrects the model prediction in a typical
human-in-the-loop scenario. This loop is simulated by either
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sampling interactions from the missegmented regions or defin-
ing deterministic rules to choose each next interaction, e.g.,
choosing the center of the largest erroneous region. We refer
to Q8 for deciding between error sampling-based (T2.1.2.1.)
and rule-based methods (T2.1.2.2.).

T2.1.2.1. Iterative error sampling-based methods sample in-
teractions for the next iteration from missegmented regions.
We distinguish between uniform (T2.1.2.1.1.) and distance
transform-based (T2.1.2.2.) iterative sampling in our taxonomy
by asking the following:

Q9. How are interactions sampled? Unlike non-iterative
simulations, iterative methods involve two sampling types: 1)
uniform; 2) and distance transform-based sampling. Uniform
sampling methods are more computationally efficient than dis-
tance transform-based ones. However, distance transforms en-
able sampling closer to the central regions of the label.

Recommendation: Distance transform-based sampling is
preferable when interactions are expected in central regions,
while uniform sampling is suited for interactions anywhere in
the label.

T2.1.2.1.1. Iterative uniform sampling approaches sample
new interactions with an equal probability of landing in any
of the missegmented pixels/voxels. UI-Net [2] detects mis-
segmented regions of hepatic lesions and samples a random
number of pixels for each interaction. For the first interaction,
they initialize foreground and background scribbles by applying
multiple dilation and erosion operations on the lesion’s bound-
ary. InterCNN [7] uniformly samples multiple clicks from the
error, places a 9× 9 window around each click, and adds all
foreground pixels in the window to the sampled clicks, regard-
less of whether they were missegmented. Hu et al. [29] use a
stratification approach, randomly sampling a click from each
of the three largest missegmented connected components. Li
et al. [45] randomly sample clicks from the intersection of the
object’s boundary and error regions. They use a reinforcement
learning approach, rewarding the agent based on cross-entropy
improvement. Additionally, they propose a confidence estima-
tion network guiding annotators by suggesting click locations
based on segmentation confidence. Deng et al. [46] use a sam-
pling strategy selecting a fixed number of under- and overseg-
mented voxels per iteration. Their loss function targets only the
9× 9× 9 neighborhood around each missegmented voxel to
avoid affecting well-segmented regions. Mikhailov et al. [74]
randomly sample clicks from missegmented regions, storing
them in an ordered memory bank across all iterations. This
preserves the sequence of interactions, ensuring the sequential
information is retained instead of combining all clicks into a
single guidance signal.

Recently, Meta AI released the code for their Segment Any-
thing Model (SAM) [137]. Due to its remarkable performance
and zero-shot capabilities on natural images, many methods
have adapted SAM for medical images. In this review, we only
consider methods that use SAM’s interactive prompts. All the
reviewed medical SAM methods fall into the category of itera-
tive uniform sampling simulation in our taxonomy, which uses
SAM’s original pre-training described in the training algorithm
in [137, p.17]. Here, we summarize these methods.

Mazurowski et al. [93] extensively evaluate SAM’s zero-shot
performance on 33 datasets, exhibiting significant performance
variations across tasks, ranging from 0.11 to 0.86 Intersection
over Union. They find bounding box prompts consistently yield
superior results, and that SAM performs better on larger objects.
Iterative corrections do not lead to substantial improvements,
with the best performance achieved in the first three clicks for
most tasks. Deng et al. [94] find SAM excels in segmenting
larger objects but struggles with multiple small objects, even
with abundant prompts. The study concludes SAM is unsuit-
able for gigapixel whole-slide imaging (WSI) data. SAM vs.
BET [95] demonstrates SAM’s superiority over the gold stan-
dard Brain Extraction Tool (BET) [134] in brain extraction from
MRI images, however, it does not compare it to newer skull
stripping models [101]. Putz et al. [96] show SAM’s effective
generalization in glioma brain tumor segmentation, except for
small tumors under 300mm3 , where performance deteriorates
slightly. Hu et al. [97] assess SAM’s effectiveness in liver tumor
segmentation, finding a significant performance gap compared
to even a simple U-Net model [127]. SAM-Adapter [98] en-
hances SAM by injecting task-specific embeddings into its im-
age encoder, resulting in significant performance improvement
for polyp segmentation compared to using SAM directly without
modifications. Ophthalmology SAM [100] fine-tunes SAM with
an additional prompt adapter on fundus images and improves
SAM significantly on three ophthalmology tasks.

He et al. [101] assess SAM on 12 public medical datasets
across ten organs and six imaging modalities. They find SAM
is consistently outperformed by a simple U-Net [127] across
all datasets, with performance strongly influenced by the target
object’s size. Additionally, SAM achieves higher results on
2D modalities (dermoscopy, colonoscopy, X-Ray, ultrasound)
compared to 3D modalities like MRI and CT. Shi et al. [102]
confirm SAM’s inferiority to a basic U-Net model [127] in
fundus, CT, MRI, and Optical Coherence Tomography (OCT)
data. However, they demonstrate that in-domain fine-tuning
enables SAM to achieve specialized U-Net model performance
in retinal vessel segmentation. GazeSAM [103] employs eye
gazing to estimate the annotator’s point of focus, encodes this
position as a click, and utilizes SAM for segmentation. Skin-
SAM [104] fine-tunes SAM on dermoscopy images by using
simulated bounding box prompts, resulting in satisfying perfor-
mance on skin lesion segmentation. Wang et al. [105] employ
SAM for surgical instrument segmentation, finding bounding
box prompts significantly outperform click prompts. However,
SAM’s performance remains unsatisfactory in challenging sce-
narios, such as overlapping instruments and blood. Cheng et al.
[106] evaluate SAM without fine-tuning on 12 medical datasets,
showing bounding boxes yield notably better results than clicks.
Additionally, they find incorporating perturbations into bound-
ing boxes decreases performance. Mattjie et al. [107] explore
SAM across six datasets, confirming that using the ground-truth
bounding box without perturbations consistently yields optimal
results across all datasets and transformer backbones. Polyp-
SAM [108] fine-tunes SAM on five colonoscopy datasets with
bounding box prompts. They discover that fine-tuning solely the
decoder and using a smaller transformer backbone yields the
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best performance. BreastSAM [110] also concludes that using
a smaller transformer backbone leads to better results for breast
cancer segmentation in ultrasound images. IAMSAM [111]
implements an annotation interface for microscopy images,
using segmentation masks for downstream tasks like cell type
prediction and spatial transcriptomics. Shen et al. [113] expand
SAM with temporal prompts, where a Reinforcement Learning
(RL) agent advises the suitable prompt type, like a bounding
box or click. Their study shows RL suggestions outperform
choosing a single interaction type. Ning et al. [114] utilize SAM
on ultrasound videos, revealing its potential for segmenting di-
verse structures, with minimal deviations between frames when
enough prompts are provided. Zhang et al. [115] experiment
across various anatomical structures, finding SAM excels on
large organs like the liver and brain. Yet, its performance declines
for smaller and ambiguous targets like the parotid and cochlea.
MedLSAM [116] uses extreme points that implicitly define
a bounding box prompt for SAM and reduce the annotation
burden. SAM-U [117] produces multiple bounding box prompts
for a single image. It estimates the aleatoric uncertainty by com-
puting the prediction entropy from separate forward passes with
each bounding box. This metric identifies challenging regions
requiring further annotator guidance. 3DSAM-adapter [118]
adapts SAM to 3D images and prompts by freezing pre-trained
weights and extending SAM’s components to 3D. The patch
embedding is extended with a 3D depth-wise convolution, and
the 3D position encoding integrates the original 2D lookup table
with a new depth lookup table. The attention block queries
expand from [B,H ×W, c] to [B,H ×W ×D, c], and all 2D
convolutions are replaced with 3D in the bottleneck. Huang
and Yang et al. [119] evaluate SAM across 52 public datasets,
exploring its “Segment Everything” mode and various click and
bounding box prompts. They find SAM’s performance varies
significantly across datasets and modalities. Bounding boxes
consistently outperform clicks, while the “Segment Everything”
mode performs the worst.

In contrast to the predominantly negative findings in most
other works that integrate SAM for medical images, Med-
SAM [120] achieves a remarkable performance on 14 unseen
datasets, covering 50 target classes and seven imaging modal-
ities, and even surpasses specialized nnU-Net [136] models on
each of the target classes. This impressive outcome is the result
of the careful curation of 84 existing public medical datasets
for pre-training, leading to 1 090 486 medical image-mask
pairs, and fine-tuning SAM on this large-scale medical dataset.
The diversity of this dataset, spanning 15 imaging modalities,
bolsters MedSAM’s strong generalization abilities and reveals
the significant potential of using SAM for medical interactive
segmentation. Furthermore, MedSAM [120] concludes that
bounding box prompts perform the best, and they convert 3D
images into 2D slices for training and evaluation. Medical Sam
Adapter (MSA) [99] extends depth attention to address the
dimensionality reduction from 3D to 2D images in SAM’s train-
ing. Pre-training on large-scale medical datasets, MSA exhibits
superior performance to MedSAM [120], but only when using
clicks instead of bounding boxes. PromptUNet [109] train an
interactive one-prompt model on 64 medical datasets, surpassing

both click-based MedSAM [120] and MSA [99] on 14 datasets.
DeSAM [112] separates the prompt from the image to mitigate
the impact of inadequate prompts, significantly enhancing
performance over MedSAM [120], even with bounding box
prompts.

T2.1.2.1.2. Iterative distance transform-based sampling
methods apply a distance transform over the missegmented
regions, generating a distance map that serves as a sampling
distribution for new interactions. As a result, these approaches
prioritize sampling new interactions primarily in the central
regions of the connected components of the errors. Sakinis et al.
[10] utilize the Chamfer distance transform on errors, employing
the resulting distance map as a sampling distribution for new
clicks. Bai et al. [52] utilize the euclidean distance transform
on over- and under-segmented regions, converting them into
background and foreground sampling distributions. They then
exponentiate and normalize the distance maps to obtain pseudo-
probability maps. DeepEdit [67] follows Sakinis et al. [10],
while also exploring varied proportions of interaction-free iter-
ations, where the model receives no clicks (an empty guidance
signal). Bai et al. [80] use the euclidean distance transform on
error regions, followed by Softmax normalization to generate
a pseudo-probability map for sampling new clicks. Guiding the
Guidance (GtG) [91] builds upon DeepEdit [67] by introducing a
dynamic Gaussian heatmap with varying radii. They assess four
guidance signals and introduce five metrics for a comprehensive
evaluation of interactive models.

T2.1.2.2. Iterative rule-based approaches utilize a determin-
istic rule to generate an interaction at each iteration. We differ-
entiate four types of rules: 1) center of largest error (T2.1.2.2.1.);
2) error skeletonization (T2.1.2.2.2.); 3) multiple custom rules
(T2.1.2.2.3.); and 4) worst vertex/slice correction (T2.1.2.2.4.)
and ask the following to select a node:

Q10. What rules are used? There are no clear advantages as
each node is tailored to a specific interaction type, e.g., center of
largest error for clicks, error skeletonization for scribbles, worst
vertex correction for polygons, and multiple custom rules for
methods using multiple interaction types.

Recommendation: We recommend selecting rule-based
nodes depending on the interaction (clicks, scribbles,
etc.).

T2.1.2.2.1. Center of largest error methods use the center of
the largest error region as the next click with the assumption
that it is the most intuitive choice. IterMRL [23] and BS-
IRIS [25] utilize multi-agent reinforcement learning, treating
each voxel as an agent with a cross-entropy improvement reward.
IterMRL [23] selects the center of the largest error region and
N − 1 other largest connected components in each iteration.
Feng et al. [39] merge few-shot learning with interactive seg-
mentation by training with annotations on a small set of slices,
clicking only on those slices. Subsequent clicks are positioned at
the center of the largest connected error component within these
slices. DINs [49] place clicks at the center of the largest error
region, verifying if it matches the ground-truth class. In concave
regions, they skeletonize the error region and select the nearest
point in the skeleton as the click location, ensuring precise
placement. iSegFormer [64] samples clicks at the centers of
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under- and oversegmented regions for knee cartilage segmenta-
tion. Liu et al. [68] employ a transformer-based model for multi-
class segmentation, targeting missegmented regions by placing
clicks at their centers for each class. Liu et al. [83] maintain
initial segmentation quality via cycle consistency, starting with
a click in the largest structure and refining the worst-segmented
organ using central clicks iteratively.

T2.1.2.2.2. Error skeletonization simulates iterative scribbles
as an alternative to iterative clicks. Similar to the central error
clicks, error skeletonization generates scribbles that are posi-
tioned in the central regions of the object. A visual example
of error skeletonization is given in the Appendixes. Kitrungrot-
sakul et al. [27] employ skeletonization to generate foreground
and background scribbles from under- and oversegmented er-
rors. These scribbles are utilized by a second-stage model,
augmenting the initial non-interactive model. Jinbo et al. [33]
extend Kitrungrotsakul et al.’s [27] method with an improved
annotation interface enabling simultaneous scribble drawing
and real-time segmentation visualization. DeepScribble [53]
generates scribble-like annotations by thresholding and skele-
tonizing euclidean distance maps computed for false positive
and false negative regions. Attention-RefNet [54] leverages
skeletonized errors to mimic scribbles, generating a guidance
signal by subtracting geodesic distance maps of the foreground
and background, assigning positive values to the foreground and
negative values to the background.

T2.1.2.2.3. Multiple custom rules are methods that apply
multiple custom rules that are specific to the application. Zhou
et al. [11] simulate central clicks by eroding the largest connected
component and selecting the center from the remaining pixels.
They also simulate scribbles by connecting the two farthest
points in the largest error component of the worst segmented
2D slice. Lin et al. [72] simulate a boundary scribble by dilating
the object’s boundary and simulate iterative clicks by placing a
central click in the largest error region.

T2.1.2.2.4. Worst vertex/slice correction involves identifying
and selecting the worst vertex or slice at each iteration and
incorporating its ground-truth value as a guidance signal. Tian
et al. [30] predict boundary polygon vertices and mimic user
interaction by adjusting the worst vertex toward its correct
position. They employ a Graph Convolutional Network (GCN)
to propagate adjustments to the remaining vertices and update
the segmentation contour. Tian et al. [50] expand this method
with a local correction, adjusting only the 2×K neighboring
vertices of the corrected vertex. This local update preserves
well-segmented regions while refining local errors. Foo et al.
[36] find the slice with the largest error and find the pair of points
that is the furthest apart and connect them to form the scribble.
Chao et al. [31] target the most poorly segmented 2D slice,
using its corrections to update the model’s bottleneck features.
This iterative refinement process enhances the segmentation
model’s performance across the entire volume. Wei et al. [89]
also simulate a slice correction and use the ground-truth label of
the slice with the largest tumor area as a guidance signal. They
compare this strategy to random slice corrections to show that
their approach selects more informative slices.

T2.2. Non-interactive training methods opt to exclude inter-
actions during the training stage and, instead, adopt a standard
non-interactive training approach. These methods are marked in
red in Fig. 3. Based on their approach, these methods either
incorporate additional weak labels during training (T2.2.1.)
or post-process the model prediction during the application
(T2.2.2.). To select between these two types of methods, we
ask the following:

Q11. Does the training data have additional weak labels? Pre-
saved weak labels provide similar advantages as non-iterative
simulations, enabling the model to adapt to specific annotation
behaviors by incorporating weak labels as additional model
inputs. However, they require manual annotations, which is
costly for large datasets, even for weak labels. In contrast,
post-processing during application does not require any annota-
tion efforts but does not incorporate prior knowledge about the
annotation style into the model.

Recommendation: Pre-saved weak label methods are suitable
when weak labels exist in the training data, aiding in adapting the
model to specific annotation behaviors. Alternatively, if weak
labels are absent or annotation behavior is not crucial, post-
processing provides an efficient solution.

T2.2.1. Pre-saved weak labels as additional input methods
utilize additional weak labels during training. However, instead
of using the weak labels as supervisory signals as done in weakly
supervised learning [129], the weak labels are transformed into
guidance signals. Zhou et al. [42], [81] utilize weak labels in
the form of scribbles on a single source slice and propagate the
label information from the source slice to the rest of the volume
using a memory-readout operation from a memory-encoder
network.

T2.2.2. Post-processing during application methods adopt
non-interactive training and integrate post-processing tech-
niques to combine model predictions with user interactions
during application. For instance, Zheng et al. [17] use shadow
set theory [124] to extract ground-truth masks from the training
dataset. These masks are aligned with human clicks on unseen
images during application and the averaged extracted masks are
fused with the model’s prediction, with the mask variance esti-
mating the uncertainty. In IRIS [28], patches around user clicks
are extracted and fed into a pre-trained model. Post-processing
stitches together predictions from all patches to obtain the final
prediction. Williams et al. [43] use B-spline active surfaces [125]
to calculate contours along CNN predictions. Users modify
contours by dragging control points, updated via Yezzi energy
minimization [126]. PiPo-Net [58] employs a two-stage model:
a U-Net [127] generates pixelwise masks, and an LSTM [128]
produces a vertex polygon. Users correct vertices, updated by the
LSTM as a post-processing step. Manh et al. [56] employ a U-
Net [127] for Z-line segmentation, followed by Binary Partition
Tree (BPT) [132] post-processing. Users mark superpixels [133]
with clicks, resolving conflicts based on euclidean distance to
labeled superpixels. Sun et al. [60] employ a two-stage approach
for boundary prediction: a CNN predicts the initial contour,
followed by a GCN trained for post-processing to predict vertex
offsets from the ground-truth boundary.
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C. Online Learning

The third category in the taxonomy tree T3. Online Learning
encompasses methods that undergo real-time training or fine-
tuning directly on the data they are finally applied to. Methods in
this paradigm produce on-the-fly predictions and allow annota-
tors to make immediate corrections with minimal or no latency
between corrections, model updates, and new predictions. In
our taxonomy, we differentiate between full training (T3.1.)
and fine-tuning (T3.2.) based on the number of updated model
parameters and we ask the following to help select a method:

Q12. What part of the model is trained? In online learning, full
model training relies solely on interactions during application as
labels, eliminating the need for any manual annotations for pre-
training. However, fine-tuning necessitates a small pre-training
dataset to initialize the model. Despite this, full training ap-
proaches start with entirely random initial predictions, requiring
more interactions to achieve performance levels comparable to
fine-tuning approaches.

Recommendation: Full model training is suitable in cases
where there is no labeled training data and the model is directly
trained on the application data, whereas fine-tuning is the better
option if a small labeled dataset is already present.

T3.1. Full training from scratch models do not use any pre-
training and are trained entirely on the data on which they are
finally applied. These models use the user interactions as the only
labels, update their parameters in real-time, and predict again
so that the user may correct them again until they are satisfied
with the prediction’s quality. Längkvist et al. [19] propose a
real-time annotation tool for CT scans, training CNNs from
scratch with human interactions as labels. They explore the
efficiency-accuracy trade-off, comparing small and large models
in online learning. ECONet [65] employs a small CNN model
with a single convolution layer. Scribbles from the user are
utilized directly as ground-truth masks, with fixed-size patches
around each voxel used for model updates. Sliding window
inference is then applied to the entire volume for Coronavirus
Disease 2019 (COVID-19) lung lesion segmentation. Asad et al.
[85] enhance ECONet [65] with an adaptive loss that spreads
scribble influence to neighboring similar regions. They further
prune uncertain predictions below a confidence threshold during
weight updates.

T3.2. Fine-tuning during application online learning models
utilize a pre-trained model and only fine-tune it on the appli-
cation data using human interactions. BIFSeg [6] employs a
user-provided bounding box for initial segmentation, followed
by correction using scribbles. The model fine-tunes with a
weighted loss function based on these scribbles. Dhara et al.
[8] expand the fine-tuning step into an iterative loop, where
the annotator corrects model predictions with scribble-based
GraphCut [131]. These corrections are then used to update
a CNN model in real-time. Chao et al. [18] propagate user
corrections to neighboring slices by updating the model with
a distance-based loss function. Boers et al. [21] use a loss func-
tion that assigns higher weights to missegmented voxels from
user-provided scribbles, while other voxels are weighted based
on their distance to the scribbles. Sambaturu et al. [41] propose
an efficient model-agnostic fine-tuning scheme using user-based

scribbles. They dilate the scribbles with region growing and
introduce an L2 regularization term for weight updates, ensuring
stability in the model’s predictions.

V. REVIEW FINDINGS

In this section, we present our findings on the prevalent trends
observed during the review of the 121 reviewed papers. We delve
into the implications of these trends and the potential factors
contributing to them. Through this analysis, we aim to provide
a comprehensive depiction of the current landscape within the
medical interactive segmentation domain.

A. Segmentation Targets, Imaging Modalities, and Evaluation
Metrics

1) Segmentation Targets: We distinguish segmentation tar-
gets in two primary categories: 1) anatomical structures and
cells; and 2) pathologies. The categorization depends on whether
a method’s primary focus is on specific anatomical structures,
distinct pathologies, or both (noted in n = 7 of all 121 studies).
The number of methods per specific anatomy or pathology is
depicted in Fig. 6. Prominent anatomical regions encompass
the brain, prostate, and cardiac structures as well as abdominal
organs featuring the liver, spleen, kidney, pancreas, stomach, and
gallbladder. Thoracic organs are less prominent, including lungs,
aorta, esophagus, and cardiac structures, and whole-body struc-
tures like bones and blood vessels. Further notable regions of
interest which are combined in the “Other”-category encompass
lymph nodes, the Z-line, spine, cartilage, and skin. Furthermore,
techniques using microscopy and OCT data are predominantly
geared towards cell segmentation, targeting blood cells, testicu-
lar cells, neurons, or cell nuclei.

Pathological targets exhibit notably less diversity compared
to their anatomical counterparts. The prevalent pathologies tend
to concentrate primarily within the brain (n = 21) and liver
regions (n = 12), largely owing to the prominence of datasets
like: 1) BraTS [162] for brain cancer; 2) as well as MSD [163]
and LiTS [164] for liver cancer. Beyond brain and liver cancer, a
few specific targets emerge as representative of certain imaging
modalities. Notably, COVID-19 lung lesions stand out in X-
Rays, while skin lesions take precedence in dermoscopy. Colon
cancer and polyps serve as typical examples in colonoscopy
imaging. Other relevant pathologies encompass lung, breast,
kidney, and thyroid cancer. The “Other”-category consists of less
frequently encountered targets such as head and neck cancer, cer-
vical, pancreatic, prostatic, and esophageal cancer, hematomas,
and foot ulcers.

2) Imaging Modalities: Radiological modalities, particu-
larly CT (n = 65) and MRI (n = 42), dominate the imaging
modalities and are featured in the most reviewed methods.
This prevalence can be attributed to the existence of popular
public datasets from segmentation challenge competitions like
MSD [163] and BraTS [162]. These challenges frequently re-
lease their training data publicly, incentivizing the adoption of
these imaging modalities in many approaches. Subsequent to
CT and MRI, ultrasound is the choice for n = 18 out of 121 ap-
proaches, frequently applied in cardiac imaging, mammography,
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Fig. 6. Distribution of segmentation targets in the anatomy (top left) and in the pathology (top right), imaging modalities (bottom left), and evaluation metrics
(bottom right) among all reviewed papers. The numbers represent the number of papers in that category. The icons on the top row are designed by Flaticon.com.

or fetal ultrasound. Microscopy finds application in n = 15 out
of 121 reviewed methods, predominantly in pathology for tumor
or cancer cell identification. Colonoscopy stands as an imaging
modality exclusively dedicated to polyp and/or colon cancer
segmentation. Dermoscopy, on the other hand, specializes in
skin lesion segmentation. Less frequently encountered imaging
modalities in interactive models encompass OCT, X-Ray, fundus
imaging, and PET/CT. For a comprehensive listing of segmen-
tation targets and imaging modalities utilized by each reviewed
method, refer to Tables VIII and IX in the Appendixes.

3) Evaluation Metrics: An adequate selection of evaluation
metrics is crucial for meaningful assessment of segmentation
methods, and thus, for trustworthy deployment in practice as
well as scientific progress of the field. A large-scale investiga-
tion recently found that current medical image segmentation is
subject to a substantial extent of pitfalls related to evaluation
metrics [170]. The study reveals various shortcomings of the
popular Dice Similarity Coefficient (DSC). At the same time, a
follow-up study termed “Metrics Reloaded” provides a standard-
ized framework for avoiding these pitfalls and selecting adequate
metrics for a given problem [165]. One major finding was that
performance should always be assessed by multiple metrics to
account for failure modes such as of the DSC. Fig. 6 depicts
the evaluation metrics employed by the reviewed studies. As
expected, the most-used metric is DSC (n= 89). However, often-
times the DSC is the only reported metric for segmentation per-
formance (n= 29). Another common problem is the reporting of
redundant metrics, such as reporting both DSC and Intersection
over Union (n = 19). Remarkably, despite its widespread use as
a complementary metric to DSC in non-interactive segmentation
and its endorsement by “Metrics Reloaded” for various settings,
the Normalized Surface Distance [171] appears in only 2 out of
121 studies reviewed.

The incorporation of user-centered metrics is crucial for de-
vising user-friendly and intuitive methods, particularly in the
context of human-in-the-loop approaches. However, there is
a noticeable scarcity of user-centric metrics in the reviewed
studies. Some studies report the User Time (n = 17), quan-
tifying the active annotator’s labeling time in seconds, or the
Dice@NoC (n = 10), measuring the Dice score at a predefined
Number of Clicks (NoC). Furthermore, the “Other”-category
includes usability metrics like NASA-TLX [147] and the System
Usability Scale [148], although these are seldom utilized.

B. Emergence of Foundation Models

In early 2023, the Segment Anything Model (SAM) [137]
emerged, introducing an approach that involves large-scale train-
ing on over 1 billion segmentation masks. Although SAM’s
initial training dataset (SA-1B) primarily comprises 2D natural
images, several works have showcased its adaptability to medi-
cal data, spanning both 2D (such as dermoscopy and fundus) and
3D imaging modalities (including CT, MRI, and PET/CT). This
versatility is achieved through targeted fine-tuning on medical
data [120]. In the case of 3D images, it commonly involves using
2D axial slices [120] or integration of specialized 2D-to-3D
adapters into the model [118].

SAM has shown a good generalization on multiple imaging
modalities and tasks, especially on 2D modalities [120] utilizing
its bounding box prompting capability. This light-weight adapt-
ability has caused an unprecedented acceleration in the field of
deep interactive medical image segmentation as evidenced by
29 proposed medical SAM-adaptations in only a few months at
the time of writing. Thus, SAM has demonstrated the potential
of utilizing foundation models for medical interactive segmenta-
tion. Further, due to its generalization and zero-shot capabilities,
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it seems to foster a trend towards evaluating methods on a larger
number of tasks as some SAM-based approaches are evaluated
on over 30 public medical datasets [119], [120].

C. Reproducibility and Availability

In recent years, the field of interactive medical segmentation
has witnessed a surge in the emergence of new approaches.
There is a promising shift towards enhanced reproducibility,
with an increasing number of research papers releasing their
code, often accompanied by detailed instructions for repli-
cating results, and in some instances, providing pre-trained
model weights. This openness and transparency in sharing re-
sources are further bolstered by the presence of open-source
projects like MONAI Label [149], AnatomySketch [70], RIL-
Contour [150], BioMedisa [151], MITK [173], and PyMIC [174]
which greatly facilitate the development and deployment of
interactive deep medical models. Non-deep learning projects
such as ilastik [168], ITK-Snap [169], and Li et al. [172], have
also contributed to the open source development of interactive
models and are widely used in the community. Additionally,
this positive trajectory benefits from a growing reliance on
openly available challenge datasets sourced from platforms such
as Kaggle (www.kaggle.com), Grand Challenge (www.grand-
challenge.org), and Synapse (www.synapse.org), promoting col-
laborative research and advancing the state of the art in the
domain. All these tendencies are illustrated in Fig. 1. In our
Appendixes, we provide links to code repositories of all re-
viewed studies with publicly available code as well as links to all
185 public datasets used by the reviewed methods, streamlining
access for future researchers.

D. Comparison Graph

Finally, we investigate the field’s practice of comparing pro-
posed methods against relevant baselines. Since the scientific
merit of a proposed method is measured as the gain over ex-
isting solutions, a comprehensive and up-to-date set of baseline
methods is crucial for scientific progress in the field. Fig. 7 gives
an overview over the comparison practices in deep interactive
segmentation of medical images.

The most remarkable observation is the fact that a large frac-
tion (n= 46) of the 121 reviewed studies do not compare against
any prior work. Another portion compares exclusively against
“classical methods” (n= 6), i.e., non-deep learning-based meth-
ods proposed before 2016, or exclusively against DeepIGeoS [5]
(n= 3). Additionally, a large portion of studies (n= 37) compare
only to interactive methods which are not trained on medical
data, such as DIOS [140], Polygon-RNN [175], DEXTR [176],
Latent Diversity (LD) [179], BRS [178], f-BRS [177], and
SAM [137]. Despite their shared characteristics, even methods
from the same node of the presented taxonomy tree (see circle
color in Fig. 7) are most often not compared against each other.
Finally, the described acceleration of the field caused by the in-
troduction of SAM seems to compromise the rigor of evaluation
given that none of these approaches compares to methods other
than the original non-medical SAM. This overall concerning
status of a severe lack of cross-comparison in the field comes

as a surprise given the positive trends towards reproducibility
shown in Fig. 1.

VI. DISCUSSION AND FUTURE DIRECTIONS

Based on the key trends we have identified in Section V, we
now derive and discuss the major challenges and opportunities
for the field of deep interactive medical image segmentation.
The discussion aims to provide a succinct summary of the field’s
current trajectory while simultaneously identifying pivotal areas
where course corrections are necessary.

A. Positive Trends

1) Momentum in Research and Adaptation: The increasing
number of publications each year reflects significant momen-
tum and rapid advancements in the field. Additionally, the fast
adoption of new paradigms, such as SAM [137], exemplifies the
field’s dynamic and responsive nature to emerging concepts and
technologies.

2) Enhanced Reproducibility and Open-Source Engagement:
There has been a notable surge in the use of open-source
methods and public datasets. This trend not only facilitates
more accessible development of customized models but also
encourages the sharing of these models within the community.
The proliferation of open-source frameworks specifically de-
signed for interactive segmentation, like MONAI Label [149]
and AnatomySketch [70], further underlines this commitment
to reproducibility and collaborative growth.

B. Challenges and Opportunities

Our review highlights a pivotal challenge in the field: a
discernible deficiency in scientific rigor in method evaluation.
This challenge is evident in various aspects that we discuss in
the following alongside opportunities to address them.

1) Missing Baselines and Scattered Comparisons: The ab-
sence of consistent baselines and scattered comparisons across
studies is a major issue. Frequently, new methods are not com-
pared with previous work, possibly due to a lack of awareness
of other methods or no established evaluation protocols for
interactive segmentation.

Opportunities: First, we hope that our taxonomy tree func-
tions as a navigational tool, aiding researchers in categorizing
their approaches and guiding them towards relevant existing
methods. Second, the emergence of generalizing models like
SAM [137] is a promising trend towards foundational baselines
that allow for out-of-the-box comparisons under a uniform pro-
tocol. This approach can shift the field towards more structured
and systematic improvements, similar to the effects of nnU-
Net [136] in the realm of non-interactive medical segmentation,
which, due to its out-of-the-box functionality, serves as a strong
and standardized baseline in the field [146].

2) No Standardized Benchmarking Datasets: The lack of
established benchmarking protocols across datasets and tasks in
interactive medical image segmentation is a significant barrier.
This gap impedes the objective evaluation and comparison of
interactive models, which results in an inconsistent literature

www.kaggle.com
www.grand-challenge.org
www.grand-challenge.org
www.synapse.org
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Fig. 7. Comparison graph of all the reviewed methods. Nodes are ordered by initial submission year left to right. Classical methods denote non-deep learning-based
interactive methods before 2016. The star (∗) and the dagger (†) are introduced to reduce the visual load in the figure caused by too many arrows.
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landscape with no definite state of the art. A major challenge
in benchmarks for the medical domain is that simulating inter-
actions requires expert knowledge, as annotators develop their
styles over years of experience with specific tasks. Therefore,
creating meaningful benchmarks involves simulating interac-
tions that reflect this expertise.

Opportunities: The domain of non-medical interactive seg-
mentation, particularly with natural images, has addressed
this issue by leveraging extensively validated benchmark
datasets like GrabCut [141], DAVIS [142], Pascal VOC [143],
SBD [144], and Berkeley [145]. Moreover, these datasets are
coupled with well-defined evaluation protocols and metrics,
streamlining fair and systematic comparisons with previous
research. A potential remedy for the fragmented nature of com-
parisons within the medical interactive segmentation field entails
the establishment of a curated selection of the most exemplary
datasets tailored to specific tasks and imaging modalities, com-
plete with well-defined evaluation protocols. When designing
a medical interactive benchmark, we suggest evaluating mod-
els with various annotation styles to ensure effective use by
different annotators. For natural images, benchmarks typically
use the “center click in the largest error” protocol to simulate
clicks [177], [179]. However, for medical tasks, it is impor-
tant to include multiple diverse simulated annotators in each
benchmark to test whether interactive models perform reliably
when used by annotators focusing on different types of errors.
Such an approach would furnish researchers with a systematic
framework for assessing their methodologies and documenting
enhancements over prior methods.

3) Lack of Adequate and Standardized Evaluation Metrics:
In the current landscape of deep interactive medical image
segmentation, there are two significant challenges related to
metric selection. The first prevalent issue is the over-reliance
on a single metric for evaluating segmentation performance. As
pointed out in [165], [170], this approach is too narrow and
often fails to adequately capture the complexity and nuances of
segmentation accuracy. Second, there is a conspicuous absence
of user-centric metrics in evaluations. These metrics are essential
to understand how effectively an interactive segmentation tool
meets the practical needs and scenarios of its users, especially
in the medical imaging context.

Opportunities: By adopting the comprehensive guidelines
of “Metrics Reloaded” for metric selection, researchers can
ensure a more holistic evaluation of segmentation methods.
This would involve using a diverse set of metrics that together
provide a more complete picture of a method’s performance. In
addition to technical metrics, emphasizing user-centric metrics
in evaluations is crucial. These metrics focus on: (1) annotation
efficiency, measuring how quickly an image is annotated (e.g.,
user time per image or #Inter@90); and (2) annotation efficacy,
measuring how well interactions are utilized (e.g., Dice Score
after 10 clicks, DSC@10, or Consistent Improvement - the per-
centage of interactions that lead to improved segmentation). We
believe both categories should be included in every benchmark
to comprehensively evaluate interactive models.

This focus will shed light on the usability and practical
effectiveness of interactive segmentation methods from the

perspective of end-users, which is particularly important in
clinical applications. Our review found that iterative interactive
methods are the most popular taxonomy category (n = 61).
When designing benchmarks we suggest evaluating models with
multiple robot users to account for the variability in annotation
styles as discussed in Section VI-B2 and to report the per-
formance before the first interaction to assess how the task is
addressed with non-interactive methods.

C. Text-Based Interactive Segmentation

Text-based interactions are a promising future direction for
interactive methods, gaining traction by using text queries to
specify segmentation targets. Recent methods use text in two
ways: (1) directly as an additional input to the interactive model;
(2) indirectly via visual grounding, where text is used to pro-
duce a bounding box, which the interactive model uses as an
interaction cue. Direct text-based models [183], [184], [185]
leverage image-text pairs for contrastive pre-training, aligning
text and image embeddings of the same targets. Indirect text-
based models [181], [182] use text as input to a detection model,
utilizing the resulting bounding box for interaction. Text-based
interactions are expanding the boundaries of the interactive field
by exploring novel interactions beyond imaging, extending into
the speech domain and other modalities.

VII. CONCLUSION

In conclusion, our systematic review and the accompanying
taxonomy tree stand as a pivotal resource for both researchers
and practitioners within the field of deep interactive medical
image segmentation. For researchers, this work simplifies the
task of locating pertinent related studies, thereby enhancing
the quality and relevance of their methodological proposals
and evaluations. Practitioners, meanwhile, are empowered to
swiftly identify and select methods that are optimally suited to
their unique problem scenarios. Additionally, our review has
not only identified key trends within the field but also thor-
oughly discussed the related challenges and opportunities for
the future. Most importantly, we have pinpointed a concerning
lack of scientific rigor in the evaluation of methods. This critical
insight underlines the need for more standardized and systematic
benchmarking practices in the field. Overall, we believe this
work represents an important step towards implementing such
standardized approaches, thereby fostering the development of
more reliable, efficient, and effective solutions in deep interac-
tive medical image segmentation.
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