
On Representations and Exploration in Policy Search
Methods for Multi-Agent Robotics

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der KIT-Fakultät für Informatik des

Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Maximilian Hüttenrauch

geb. in Wiesbaden

Tag der mündlichen Prüfung: 21. Oktober 2024

1. Referent: Prof. Dr. Gerhard Neumann

2. Referent: Prof. Dr. Heinz Köppl

Abstract

Artificial intelligent agents such as robots have made remarkable progress in recent years, slowly

escaping from confined industrial manufacturing settings. A key enabler to this transition is reinforce-

ment learning, a machine learning sub-domain that allows agents to learn from trial and error and

excel in domains such as manipulation of objects, sorting, or navigation. While many of the recent

improvements stem from more and more powerful computation, there are still many aspects of the

learning process that can be improved, two of which we investigate in this thesis. In the domain of

multi-agent learning where multiple autonomous agents interact and learn from their experiences, data

representation presents several significant challenges, while in policy search for robotic manipulation,

a central question is how to make more efficient use of data as interaction with the environment can be

costly.

In Chapter 3, we investigate the problem of multiple agents interacting to achieve a collaborative goal.

A key challenge is to find a good representation of the agents’ state space, which needs to be compact

and independent of the number of observed agents. We present an agent-centric representation of the

local neighborhood, based on histogram embeddings of geometric features such as relative distances

and velocities of neighboring agents. We combine these features with an adaptation of Trust-Region

Policy Search, a deep reinforcement learning algorithm for single-agent learning, to solve collaborative

navigation and coordination tasks. With the ability to embed communicated features of adjacent agents,

the tasks can be solved even in the case of limited observability.

One of the shortcomings of the method presented in Chapter 3 is the exponentially growing repre-

sentation space with each added feature. Thus, Chapter 4 extends the agent-centric representations

using learned embeddings of features. These embeddings are based on the idea of mean embeddings

where the underlying data distribution is embedded into a higher dimensional latent space. This choice

allows for a greater number of features to be taken into account. The method is evaluated on new

collaborative tasks with a higher number of agents compated to Chapter 3.

In Chapter 5, we attend to the problem of safe and efficient exploration. We investigate exploration

in low dimensional robotic manipulation problems where the robot’s trajectories are encoded using

movement primitives. The optimization of movement primitive parameters requires careful updates, as

the individual parameters are highly correlated. Starting with an existing version of the Model-based

Relative Entropy Stochastic Search algorithm, we present a new algorithm with several improvements.

We stabilize the optimization process by running separate updates for the mean and covariance of the

policy, improve the surrogate model estimation, and introduce an adaptive entropy scaling method. We

show the effectiveness of the new algorithm on complex robotic manipulation tasks. Additionally, we

sketch how this approach can be extended to multi-agent settings where multiple robots need to solve

a task in collaboration.

i

Abstract

In summary, this thesis focuses on two core problems in reinforcement learning: (1) state representation

in the presence of multiple agents, and (2) efficient exploration of the parameter space in episode-based

policy learning using movement primitives.

ii

Zusammenfassung

Künstliche intelligente Agenten wie Roboter haben in den letzten Jahren bemerkenswerte Fortschritte

gemacht und sich dabei langsam aus den begrenzten industriellen Produktionsumgebungen befreit.

Eine treibende Kraft für diesen Fortschritt ist das Verstärkungslernen, ein Teilbereich des maschinellen

Lernens, der es Agenten ermöglicht aus Versuch und Irrtum zu lernen. Dies ermöglicht hervorragende

Lösungen in Bereichen wie der Manipulation von Objekten, dem Sortieren oder der Navigation. Obwohl

viele der jüngsten Verbesserungen auf immer leistungsfähigere Berechnungen zurückzuführen sind,

gibt es noch viele Aspekte des Lernprozesses, die verbessert werden können. Zwei davon werden

wir in dieser Arbeit untersuchen. Im Bereich des Multi-Agenten-Lernens, bei dem mehrere Agenten

interagieren und aus ihren Erfahrungen lernen, stellt die Datenrepräsentation eine Reihe bedeutender

Herausforderungen. Desweiteren ist eine zentrale Frage, wie Daten bei der Suche nach Strategien für

die robotische Manipulation effizienter genutzt werden können, da die Interaktion mit der Umwelt

kostspielig sein kann.

In Kapitel 3 untersuchen wir das Problem der Interaktion mehrerer Agenten zur Erreichung eines kolla-

boratives Ziels. Eine zentrale Herausforderung besteht darin, eine gute Darstellung des Zustandsraums

der Agenten zu finden, welche sowohl kompakt als auch unabhängig von der Anzahl der beobachteten

Agenten sein muss. Wir präsentieren eine agenten-zentrierte Darstellung der lokalen Nachbarschaft, die

auf Histogrammeinbettungen von geometrischen Merkmalen wie relativen Distanzen und Geschwin-

digkeiten benachbarten Agenten basieren. Wir kombinieren diese Merkmale mit einer angepassten

Version von Trust-Region Policy Search, einem Algorithmus für das Lernen von einzelnen Agenten,

um kollaborative Navigations- und Koordinationsaufgaben zu lösen. Durch die Möglichkeit, kom-

munizierte Merkmale benachbarter Agenten einzubetten, können die Aufgaben auch bei begrenzter

Beobachtbarkeit gelöst werden.

Einer der Schwachpunkte der in Kapitel 3 vorgestellten Methode ist der exponentiell wachsende

Repräsentationsraum mit jedem hinzugefügten Merkmal. Daher werden in Kapitel 4 die agenten-

zentrierte Repräsentationen durch gelernte Einbettungen vonMerkmalen erweitert. Diese Einbettungen

basieren auf der Idee der Mittelwert-Einbettung, bei der die zugrunde liegende Datenverteilung in einen

einen höherdimensionalen latenten Raum eingebettet wird. DieseWahl ermöglicht die Berücksichtigung

einer größeren Anzahl von Merkmalen. Die Methode wird an neuen kollaborativen Aufgaben mit einer

höheren Anzahl von Agenten im Vergleich zu Kapitel 3 getestet.

In Kapitel 5 befassen wir uns mit dem Problem der sicheren und effizienten Exploration. Wir un-

tersuchen die Exploration bei niedrigdimensionalen Robotermanipulationsproblemen, bei denen die

Trajektorien des Roboters mit Hilfe von Bewegungsprimitiven kodiert werden. Die Optimierung der

Parameter der Bewegungsprimitive erfordert sorgfältige Aktualisierungen, da die einzelnen Parameter

stark korreliert sind. Ausgehend von einer bestehenden Version des Model-Based Relative Entropy

Stochastic Search Algorithmus präsentieren wir einen neuen Algorithmus mit mehreren Verbesserun-

gen. Wir stabilisieren den Optimierungsprozess, indem wir separate Updates für den Mittelwert und

die Kovarianz der Policy einführen, verbessern die Schätzung des Surrogatmodells und führen eins

iii

Zusammenfassung

adaptives Entropieskalierungsverfahren ein. Wir zeigen die Effektivität des neuen Algorithmus an kom-

plexen Robotermanipulations Aufgaben. Außerdem skizzieren wir, wie dieser Ansatz auf Multi-Agenten

Probleme erweitert werden kann wo mehrere Roboter eine Aufgabe gemeinsam lösen müssen.

Zusammenfassend konzentriert sich diese Dissertation auf zwei Kernprobleme des Reinforcement

Learning: (1) Zustandsrepräsentation in Anwesenheit mehrerer Agenten und (2) effiziente Exploration

des Parameterraums beim episodenbasierten Policy-Lernen unter Verwendung von Bewegungsprimiti-

ven.

iv

Acknowledgments

First of all, I would like to thank Geri without whose support I would never have finished this thesis. Your

seemingly endless, at times almost annoying, optimism is what kept me going. Thank you for believing

in me, especially in times when I didn’t. Also, I would like to thank Adrian for the collaboration, giving

me great advice, and always being available during the first two years of my PhD.

Next, I would like to thank all the wonderful colleagues at ALR that create an inspiring environment,

especially Onur and Philipp who have accompanied me since my restart in Germany. It was good to

not move alone to a new city for a third time. Also, thank you Philipp for explaining me more than

once what I was actually doing. Thanks to my students Philipp, Philipp, Robin, Felix, Yuhe, Denis, and

Lyuba for letting me be your thesis supervisors. It was a pleasure guiding you.

To Sergi, Paolo, and the Lincoln Handball club who made my stay in Lincoln more pleasant. To Philipp,

Philipp, Svenja, and Balázs for the Doppelkopf rounds. To Nic for the countless bike discussions. To

Michael for being almost as old as I am.

I would like to thank my brother, and my parents who give me all the freedom in the world to pursue

whatever goal I had in mind. Thank you for your support and always being there for me.

Finally, I’m grateful to the awesome people at Kohi Karlsruhe, especially Hannah, Cora, and Cat. You’ve

made me feel at home for the first time in a long time.

v

Contents

Abstract . i

Zusammenfassung . iii

Acknowledgments . v

List of Figures . xi

List of Tables . xvii

List of Algorithms . xix

1. Introduction . 1
1.1. Contributions . 1

1.1.1. Local Communication Protocols for Learning Complex Swarm Behaviors with

Deep Reinforcement Learning . 2

1.1.2. Deep Reinforcement Learning for Swarm Systems 2

1.1.3. Robust Black-Box Optimization for Stochastic Search and Episodic Reinforce-

ment Learning . 2

1.1.4. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning 3

1.2. Structure of Thesis . 3

2. Fundamentals and State of the Art . 5
2.1. Sequential Decision Making . 5

2.1.1. Markov Decision Processes . 5

2.1.2. Value Functions . 5

2.1.3. Reinforcement Learning . 6

2.1.4. Multi-Agent Reinforcement Learning . 7

2.2. Episode-Based Reinforcement Learning . 8

2.2.1. Probabilistic Movement Primitives as Episode-Based Policy Parameterizations . 9

2.2.2. Advantages and Disadvantages of Episode-Based Reinforcement Learning . . . 9

2.3. Information Representation in Swarms . 10

2.3.1. Set Representation of Local Observations . 10

2.3.2. Swarm as a Graph . 13

2.3.3. Graph Multi-Agent RL . 14

2.4. Exploration Strategies in Reinforcement Learning . 14

2.4.1. Trust-Region Reinforcement Learning . 15

2.4.2. Evolution Strategies . 18

vii

Contents

3. Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforce-
ment Learning . 21
3.1. Background . 22

3.1.1. Trust Region Policy Optimization . 22

3.1.2. Problem Domain . 23

3.1.3. Related Work . 23

3.2. Multi-Agent Learning with Local Communication Protocols 24

3.2.1. Communication Protocols . 24

3.2.2. Weight Sharing for Policy Networks . 25

3.2.3. Adaptations to TRPO . 25

3.3. Experimental Setup . 26

3.3.1. Agent Model . 26

3.3.2. Tasks . 26

3.3.3. Policy Architecture . 27

3.4. Results . 28

3.4.1. Edge Task . 28

3.4.2. Link Task . 29

3.5. Conclusions and Future Work . 29

4. Deep Reinforcement Learning for Swarm Systems . 31
4.1. Related Work . 33

4.1.1. Deep RL . 33

4.1.2. Optimization-Based Approaches for Swarm Systems 34

4.1.3. Analytic Approaches . 34

4.2. Background . 35

4.2.1. Trust Region Policy Optimization . 35

4.2.2. Mean Embeddings . 35

4.3. Deep Reinforcement Learning for Swarms . 36

4.3.1. Problem Domain . 36

4.3.2. Local Observation Models . 36

4.3.3. Local Communication Models . 37

4.3.4. Mean Embeddings as State Representations for Swarms 37

4.3.5. Other Representation Techniques . 39

4.3.6. Adaption of TRPO to the Homogeneous Swarm Setup 39

4.4. Experimental Results . 40

4.4.1. Swarm Models . 40

4.4.2. Rendezvous . 41

4.4.3. Pursuit Evasion with a Single Evader . 45

4.4.4. Pursuit Evasion with Multiple Evaders . 48

4.4.5. Evaluation of Pooling Functions . 48

4.4.6. Comparison to Moment-Based Representations 50

4.4.7. Computational Complexity . 50

4.5. Conclusion . 50

5. Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning . 53
5.1. Related Work . 54

5.1.1. Evolutionary Strategies and Black-Box Optimization 54

5.1.2. Reinforcement Learning . 55

5.1.3. Broader Scope . 56

viii

Contents

5.2. Preliminaries . 57

5.2.1. Problem Setting . 57

5.2.2. Model-Based Relative Entropy Stochastic Search 57

5.2.3. Relation to Natural Gradient . 59

5.3. Improving the MORE Algorithm . 61

5.3.1. Disentangled Trust Regions . 61

5.3.2. Entropy Control . 62

5.3.3. Illustrative Example . 64

5.4. Model Learning . 65

5.4.1. Least Squares Model Fitting . 65

5.4.2. Adaptive Model Complexity . 66

5.4.3. Data Pre-Processing . 66

5.5. Experiments . 68

5.5.1. Black-Box Optimization Benchmarks . 69

5.5.2. Episodic Reinforcement Learning Results . 71

5.6. Conclusion . 77

5.7. Acknowledgements . 78

6. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning 79
6.1. Multi-Agent Stochastic Search . 79

6.1.1. Factorized MORE . 79

6.1.2. Policy Updates . 80

6.1.3. Illustrative Experiment . 80

6.2. Permutation Invariant Learning of Versatile Multi-Agent Behavior 82

6.2.1. Maximum Entropy Episodic Policy Search . 82

6.2.2. Permutation Invariant VIPS . 83

6.2.3. Component Updates . 85

6.2.4. Weight Updates . 86

6.3. Conclusion . 86

7. Conclusion . 87
7.1. Summary of Contributions . 87

7.1.1. Fundamentals and State of the Art . 87

7.1.2. Local Communication Protocols for Learning Complex Swarm Behaviors with

Deep Reinforcement Learning . 87

7.1.3. Deep Reinforcement Learning for Swarm Systems 88

7.1.4. Robust Black-Box Optimization for Stochastic Search and Episodic Reinforce-

ment Learning . 88

7.1.5. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning 88

7.2. Discussion and Outlook . 88

7.2.1. State Representation for Learning in Swarms 89

7.2.2. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning 89

Bibliography . 91

A. Appendix for Chapter 4 . 101
A.1. Agent Kinematics . 101

A.2. Observation Model . 101

A.3. Task Specific Communication Protocols . 102

ix

Contents

A.4. Controller for Double Integrator Dynamics . 102

A.5. Reward Functions . 103

A.5.1. Rendezvous . 103

A.5.2. Pursuit Evasion . 103

A.5.3. Pursuit Evasion with Multiple Evaders . 103

A.6. Policy Architectures . 103

A.6.1. Neural Network Embedding Policy . 104

A.6.2. Histogram Embedding Policy . 104

A.6.3. RBF Embedding Policy . 104

A.6.4. Concatenation Policy . 105

B. Appendix for Chapter 5 . 107
B.1. Derivation of CA-MORE Dual . 107

B.1.1. Mean Update . 107

B.1.2. Covariance Update . 108

B.2. Robust Target Normalization . 108

B.3. Hyper-Parameters . 110

B.4. Black-box Optimization Benchmarks . 111

B.5. Episodic RL . 111

B.5.1. Holereaching . 111

B.5.2. Table Tennis . 112

B.5.3. Beerpong . 112

B.5.4. Hopper Jump . 113

C. Appendix for Chapter 6 . 119
C.1. PI VIPS Derivations . 119

x

List of Figures

2.1. Diagram of the DeepSets architecture. The elements𝜙 (𝒙𝑖) of the input setX are transformed

into a latent representation and subsequently summed up, followed by further processing

steps. The result is a permutation invariant function 𝑓 . 11

2.2. This figure shows a diagram of an attention based architecture. The processing function 𝜙

represents a scalar dot-product between individual elements of the input set. 12

2.3. A graph representation of a swarm of eight agents where agents 𝑖 and 𝑗 are represented by

their node features 𝒗𝑖 and 𝒗 𝑗 . The edge feature 𝒆𝑘 contains observations of agent 𝑖 about
agent 𝑗 , as well as additional information sent from 𝑗 to 𝑖 13

2.4. Illustrations of information flow with message passing over three hops. 14

3.1. This Figure shows an illustration of the histogram-based observation model. Figure 3.1a

shows an agent in the center of a circle whose neighborhood relations are to be captured

by the histogram representation. The shaded green area is highlighted as a reference for

Figures 3.1c and 3.1d. Figure 3.1b hereby shows the one dimensional histogram of agents

over the neighborhood range 𝑑 into four bins, whereas Figure 3.1c shows the histogram

over the bearing angles 𝜙 into eight bins. Figure 3.1d finally shows the two dimensional

joint histogram over range and bearing. 24

3.2. This diagram shows a model of our proposed policy with three hidden layers. The numbers

inside the boxes denote the dimensionalities of the hidden layers. The plus sign denotes

concatenation of vectors. 26

3.3. Illustration of the two cooperative tasks used in this paper. The green dots represent

the agents, where the green ring segments located next to the agents indicate the short

range IR front sensors. The outer green circles illustrate the maximum range in which

distances / bearings to other agents can be observed, depending on the used observation

model. (a) Edge task: The red rings show the penalty zones where the agents are punished,

the outer green rings indicate the zones where legal edges are formed. (b) Link task: The
red dots correspond to the two points that need to be connected by the agents. 28

3.4. Learning curves for (a), (b) the edge task and (c) the link task. The curves show the mean

values of the average undiscounted return of an episode (i.e. the sum of rewards of one

episode, averaged over the number of episodes for one learning iteration) over the learning

process plus /minus one standard deviation, computed from eight learning trials. Intuitively,

the return in the edge task corresponds to the number of edges formed during an episode

of length 500 steps. In the link task, it is a measure for the quality of the link. Legend:
2DSP: two dimensional histogram over shortest paths, 2D: two-dimensional histogram over

distances and bearings, 1D: two independent histograms over distances and bearing, d:

distance only histogram, b: bearing only histogram, sensor: no histogram. 29

xi

List of Figures

4.1. Illustration of (a) the neural network mean embedding policy, (b) the network architecture

used for the RBF and histogram representation, and (c) for the simple concatenation of

observations. The numbers inside the boxes denote the dimensionalities of the hidden

layers. The color coding in (a) highlights which layers share the same weights. The plus

sign denotes the mean of the feature activations. 38

4.2. Illustration of two neighboring agents facing the direction of their velocity vectors 𝜈𝑖

and 𝜈 𝑗 , along with the observed quantities, shown with respect to agent 𝑖 . The observed

quantities are the bearing 𝜙𝑖, 𝑗 to agent 𝑗 , agent 𝑗 ’s relative orientation 𝜃 𝑖, 𝑗 to agent 𝑖 , their

distance 𝑑𝑖, 𝑗 and a relative velocity vector Δ𝜈𝑖, 𝑗 = 𝜈𝑖 − 𝜈 𝑗 . In this trivial example, agent 𝑖’s

observed neighborhood size as well as the neighborhood size communicated by agent 𝑗 are

|N (𝑖) | = |N (𝑗) | = 1. 41

4.3. Learning curves for the rendezvous task with different observation models. The curves

show the median of the average return 𝐺 based on the top five trials on a log scale.

Legend: NN++: neural network mean embedding of comm set, NN+: neural network

mean embedding of extended set, NN: neural network embedding of basic set, RBF: radial
basis function embedding of basic set, HIST: histogram embedding of basic set, CONCAT+:
simple concatenation of extended set. 42

4.4. Visualization of a learned policy for the pursuit evasion task. The policy is learned and

executed by 10 agents using a neural network mean embedding of the extended set. Pursuers
are illustrated in blue, the evader is highlighted in red. Visualization of a learned policy

for the rendezvous task. The policy is learned and executed by 20 agents using a neural

network mean embedding of the extended set. 43

4.5. Comparison of the mean distance between agents in the rendezvous experiment achieved

by the best learned policies and the consensus protocol. In (a) and (b), the policy is learned

with 20 agents and executed by 20 and 100 agents, respectively. In (c) and (d), the policy is

learned with 20 agents and executed by 20 and 10 agents. Results are averaged over 1000

episodes with identical starting conditions. 44

4.6. Learning curves for the pursuit evasion task with different observation models. The curves

show the median of the average return 𝐺 based on the top five trials on a log scale.

Legend: NN++: neural network mean embedding of comm set, NN+: neural network

mean embedding of extended set, RBF: radial basis function embedding of basic set, HIST:
histogram embedding of basic set, CONCAT+: concatenation of extended set. 45

4.7. Visualization of a learned policy for the pursuit evasion task. The policy is learned and

executed by 10 agents using a neural network mean embedding of the extended set. Pursuers
are illustrated in blue, the evader is highlighted in red. 46

4.8. Performance comparison of the best learned policies and the optimization approach mini-

mizing Voronoi regions in the pursuit evasion task with global observability. The curves

show the probability that the evader is caught after 𝑡 time steps. All policies are learned with

10 agents but executed with different agent numbers, as indicated below each subfigure.

Results are averaged over 1000 episodes with identical starting conditions. 47

4.9. Performance comparison of the best policies in the pursuit evasion task with local observ-

ability. The curves show the probability that the evader is caught after 𝑡 time steps. All

policies are learned and executed by 20 agents. Results are averaged over 1000 episodes

with identical starting conditions. 48

xii

List of Figures

4.10. Learning curves for 50 agent pursuit evasion with 5 evaders. The curves show the median

of the average return 𝐺 based on the top five trials. Legend: NN+ 2x: two neural network

mean embeddings of the extended set, RBF 2x: two radial basis function mean embeddings

of the basic set, concat: simple concatenation of extended set. MSSK+, MSS+, MS+ and

M+: Combinations of mean, standard deviation, skew and kurtosis of the features in the

extended set. 49

4.11. Learning curves of different embedding and pooling architectures based on the extended
set. The curves show the median of the average return𝐺 based on the top five trials on a

log scale. Legend: MEAN: neural network mean embedding, SM: softmax feature pooling,

MAX: max feature pooling. 49

5.1. This figure illustrates the concept of the evolution path in a 2D example and is adapted

from Hansen [68]. In each figure, arrows with black heads correspond to an update of the

mean. The evolution path is a smoothed sum over subsequent mean updates and depicted

with an open head. In the left plot, the mean updates show no clear search direction and,

as a result, the evolution path is short. The right plot shows the opposite where heavily

correlated mean updates lead to a long evolution path. The center plot shows the desired

case, where subsequent mean updates are uncorrelated. 63

5.2. This figure shows the function value (left) and the entropy of the search distribution (right)

over the course of optimization of a 15-dimensional Rosenbrock function using different

variants of MORE. The original MORE is shown in green, while coordinate ascent versions

of more are orange and blue where CA-MORE indicates a fixed entropy reduction schedule

and CAS-MORE indicates the adaptive entropy schedule using the step-size adaptation.

For comparison, CMA-ES is plotted in red. 65

5.3. This figure shows the effects of data pre-processing on the optimization. We plot the

function value over the course of optimization for a Rosenbrock (a) and Attractive Sector

(b) function in 15 dimensions and turn off whitening and robust target normalization with

clipping, respectively. We see that whitening becomes important for low entropy regimes

near the optimum, while target normalization is especially important in case of outliers in

the function values as can be seen for the Attractive Sector function. 67

5.4. This figure illustrates the robust target normalization scheme on 100 synthetic data points,

generated by a reward function 𝑦 = −0.5𝒙T𝒙 . We sample 𝒙 from a two dimensional

multivariate normal distribution with zero mean and unit variance and pick 20 random

𝑦 values and add Gaussian noise with a standard deviation of 10. Plots from top left to

bottom right show histograms of the data after standardization of the input in each level

of recursion of the procedure. The excess kurtosis is measured on the black data points

in the interval (-3, 3) and only these data points are recursively treated again until the

excess kurtosis of the clipped data is below the threshold of 0.55. Finally, the bottom right

histogram shows the output with the red data points clipped to the minimum and maximum

values of the remaining data points. Note, that in each plot the standardized data has zero

mean and unit variance but the model quality suffers from the present outliers. 68

xiii

List of Figures

5.5. This figure shows the bootstrapped empirical cumulative distribution of the number of

objective function evaluations divided by dimension (FEvals/DIM) for 51 targets with

target precision in 10
[−8..2]

in 20-D representing the percentage of targets achieved over

the number of function evaluations. The results are averaged over 15 instances of each

function. As reference algorithm, the best algorithm from BBOB 2009 is shown as light

thick line with diamond markers. The first two rows show the aggregated results for all

functions and subgroups of functions. Additionally, we show the results of individual

functions in the third and fourth row. Big thin crosses indicate the used budget median for

the respective algorithm which is 10 000 n function evaluations for each trial of CAS-MORE.

Runtimes to the right of the cross are based on simulated restarts and are used to determine

a runtime for unsuccessful runs [72]. 70

5.6. This figure shows an illustration of the hole reacher task. The robot arms starts upright

and smoothly reaches down the narrow hole. The policy is learned using CAS-MORE and

shows a typical behavior that keeps a safe distance to the ground. 72

5.7. This figure shows the results of the hole-reacher experiment. Plotted is the expected

performance of the mean in the left column, the mean of episode returns of the samples

drawn in each iteration in the center left column, the percentage of trajectories that led to

collisions with the ground in the center right column, and the distance of the end-effector

at the end of the trajectory in the right column. The first row contains the results for

the noise-less experiment with dense step-based reward, while the second row shows the

results of the noisy experiment with dense step-based reward. The third and fourth row

show the results for the noiseless and noisy experiments using a sparse episodic reward,

respectively. 74

5.8. A successful episode of the table tennis task learned by CAS-MORE. 75

5.9. This figure shows the results of the table tennis experiment. Plotted is the expected

performance of the mean in the left column, the mean of episode returns of the samples

drawn in each iteration in the center column, and the percentage of trajectories that led to

ball landing points within the last 10cm of the table in the right column. 75

5.10. A successful episode of the beerpong task learned by CAS-MORE. 76

5.11. This figure shows the results of the beerpong experiment. Plotted is the expected perfor-

mance of the mean in the left column, the mean of episode returns of the samples drawn in

each iteration in the center column, and the percentage of successful throws where the ball

landed in the cup in the right column. 76

5.12. A successful episode of the hopper jump task learned by CAS-MORE. At first, the agent

fully bends to then release into a fully extended jump. This way, it can reach a safe height

not risking contact with the box’s edge. 77

5.13. This figure shows the results of the hopper jump experiment. Plotted is the expected

performance of the mean in the left column, the mean of episode returns of the samples

drawn in each iteration in the center column, and the percentage of successful throws

where the ball landed in the cup in the right column. 77

6.1. An episode of four arms reaching towards a single hole. 81

6.2. An episode of eight arms reaching towards a single hole. 82

6.3. This figure shows learning curves (left) and achieved average end-effector distances to

the ground (right) over the optimization iterations for the four arm (upper row) and eight

arm hole reacher. The first number in the legend indicates the number of samples drawn

per iteration and the second number indicates the size of the reward buffer. Results are

averaged over 5 seeds. 83

xiv

List of Figures

A.1. Learning curves for 20 agent rendezvous with (a) different activation functions for the mean

embedding and (b) different layer numbers and sizes using a RELU activation function. The

curves show the median of the average return 𝐺 based on the top five trials. 104

B.1. Comparison of mean/std normalization and robust normalization on a penalty based reward

function for the hole-reaching task. 109

B.2. Expected running time (ERT) divided by dimension versus dimension in log-log presentation 115

B.3. Bootstrapped empirical cumulative distribution of the number of objective function evalu-

ations divided by dimension (FEvals/DIM) for 51 targets with target precision in 10
[−8..2]

for all functions and subgroups in 5-D. As reference algorithm, the best algorithm from

BBOB 2009 is shown as light thick line with diamond markers. 116

B.4. Bootstrapped empirical cumulative distribution of the number of objective function evalu-

ations divided by dimension (FEvals/DIM) for 51 targets with target precision in 10
[−8..2]

for all functions and subgroups in 20-D. As reference algorithm, the best algorithm from

BBOB 2009 is shown as light thick line with diamond markers. 116

B.5. Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in num-

ber of objective function evaluations, divided by dimension (FEvals/DIM) for the 51 targets

10
[−8..2]

in dimension 5. 117

xv

List of Tables

4.1. Number of times the algorithm discovered policies that led to a successful catch. 50

5.1. Runtime comparison for various episodic reinforcement learning algorithms. We measure

the time the algorithm takes for one iteration without the sampling process. 73

6.1. Number of model parameters depending on the number of agents 𝑛 for a 15-dimensional

movement primitive per agent. 81

B.1. Empirically found default hyper-parameters for CAS-MORE based on the problem dimen-

sionality 𝑛. 109

B.2. Hyper-parameters for the deep RL and BBRL experiments. 110

xvii

List of Algorithms

1. Robust target normalization . 109

xix

1. Introduction

Artificial agents, may it be robots in the physical world or virtual agents such as chatbots, influence

our daily lives. They assemble cars, explore surfaces of far away planets, or, most recently, are capable

of answering questions regarding general knowledge in human like language or writing code based

on natural language instructions. While, for a long time, these agents had to be hand-programmed to

achieve their tasks, there has been a shift in paradigm towards data-driven approaches such as Machine

Learning (ML) in the past years. This approach should enable agents to not only work in confined

environments such as factories, but, ultimately, should lead to a coexistence between humans and

artificial agents. This new approach has been made possible by the ever increasing computational

resources, as well as the ability to store and distribute large databases. Sometimes, as in machine

translation, labelled data is available, e.g., the input sentence in one language and the desired output

in the target language, to train a system. Often however, especially in robotics, we need to generate

data during the optimization process. Through means of trial and error, the behavior of an agent is

optimized to maximize a performance measure describing the task. This case can be formalized using the

framework of Reinforcement Learning (RL). The agent observes its environment, for example through

a camera or proprioceptive feedback, and chooses an action using its policy, a function mapping from

observations to actions. After the action is applied, the environment emits a reward signal indicating

the quality of the taken action in the current state, and a new observation based on the new state of

environment.

Two key challenges for achieving efficient RL, which we will investigate in this thesis, are the agents’

capabilities of perceiving the world and their ability to efficiently explore their environment. We will

study these problems in two different setups. First, we look at information representation in scenarios

where multiple agents are working together two solve a collaborative task. This setup is especially

suited for exploring information representation as the amount of information to be processed increases

with the number of agents within the neighborhood of an agent. In order to perform well informed

actions, each agent has to process this information and find a representation that, ideally, is independent

of the number and order of its neighbors.

Second, we look at the problem of efficiently exploring large action-spaces. To this end, we study the

case of episodic reinforcement, where the behavior is encoded using movement primitives in the form

of a low dimensional parameter vector. Compared to step-based RL, where exploration usually happens

in the agent’s action space, exploration here happens directly in the parameter space. Here, correlations

between the parameters become increasingly important. Additionally, the learning process has to be

robust in situations where execution of the agent’s policy is subject to noise. After studying in-depth

the optimization of the movement primitive parameters for a single agent, we provide a formulation

for the multi-agent setup.

1.1. Contributions

This thesis addresses two fundamental problems in reinforcement learning. On the one hand, the

problem of learning concise representations of an environment in the presence of a large number of

1

Introduction

observed entities. On the other hand, the problem of efficient exploration in difficult manipulation

tasks. This section serves as a brief summary of the contributions.

1.1.1. Local Communication Protocols for Learning Complex Swarm Behaviors with Deep
Reinforcement Learning

Swarm systems constitute a challenging problem for reinforcement learning (RL) as the algorithm needs

to learn decentralized control policies that can cope with limited local sensing and communication

abilities of the agents. While it is often difficult to directly define the behavior of the agents, simple

communication protocols can be defined more easily using prior knowledge about the given task. In

this paper, we propose a number of simple communication protocols that can be exploited by deep

reinforcement learning to find decentralized control policies in a multi-robot swarm environment.

The protocols are based on histograms that encode the local neighborhood relations of the agents

and can also transmit task-specific information, such as the shortest distance and direction to a

desired target. In our framework, we use an adaptation of Trust Region Policy Optimization to learn

complex collaborative tasks, such as formation building and building a communication link. We

evaluate our findings in a simulated 2D-physics environment, and compare the implications of different

communication protocols.

1.1.2. Deep Reinforcement Learning for Swarm Systems

Recently, deep reinforcement learning (RL) methods have been applied successfully to multi-agent

scenarios. Typically, the observation vector for decentralized decision making is represented by a

concatenation of the (local) information an agent gathers about other agents. However, concatenation

scales poorly to swarm systems with a large number of homogeneous agents as it does not exploit

the fundamental properties inherent to these systems: (i) the agents in the swarm are interchangeable

and (ii) the exact number of agents in the swarm is irrelevant. Therefore, we propose a new state

representation for deep multi-agent RL based on mean embeddings of distributions, where we treat the

agents as samples and use the empirical mean embedding as input for a decentralized policy. We define

different feature spaces of the mean embedding using histograms, radial basis functions and neural

networks trained end-to-end. We evaluate the representation on two well-known problems from the

swarm literature— rendezvous and pursuit evasion— in a globally and locally observable setup. For the

local setup we furthermore introduce simple communication protocols. Of all approaches, the mean

embedding representation using neural network features enables the richest information exchange

between neighboring agents, facilitating the development of complex collective strategies.

1.1.3. Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement
Learning

Black-box optimization is a versatile approach to solve complex problems where the objective function

is not explicitly known and no higher order information is available. Due to its general nature, it

finds widespread applications in function optimization as well as machine learning, especially episodic

reinforcement learning tasks. While traditional black-box optimizers like CMA-ES may falter in noisy

scenarios due to their reliance on ranking-based transformations, a promising alternative emerges in

the form of the Model-based Relative Entropy Stochastic Search (MORE) algorithm. MORE can be

derived from natural policy gradients and compatible function approximation and directly optimizes the

2

1.2. Structure of Thesis

expected fitness without resorting to rankings. However, in its original formulation, MORE often cannot

achieve state of the art performance. In this paper, we improve MORE by decoupling the update of the

search distribution’s mean and covariance and an improved entropy scheduling technique based on an

evolution path resulting in faster convergence, and a simplified model learning approach in comparison

to the original paper. We show that our algorithm performs comparable to state-of-the-art black-box

optimizers on standard benchmark functions. Further, it clearly outperforms ranking-based methods

and other policy-gradient based black-box algorithms as well as state of the art deep reinforcement

learning algorithms when used for episodic reinforcement learning tasks.

1.1.4. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

We propose a movement primitive based reinforcement learning framework for non-contextual multi-

agent path-planning problems in continuous state and action spaces. To this end, we leverage recent

advances in episodic policy search and extend them to the multi-agent setting. Instead of learning a

joint policy for all agents, individual agents’ policies are updated independently based on a factorized

model of the cooperative reward. Building on this approach, we show how to learn versatile behavior

in scenarios with homogeneous agents. Learning versatile solutions for multi-agent tasks is a hard

problem due to the inherent redundancy of solutions introduced by permutations of homogeneous

agents. While contemporary deep reinforcement learning based methods are in principle very powerful,

they usually only allow for single solutions as they use uni-modal Gaussian policies. Additionally, they

lack the simplicity and interpretability of simpler policy parameterizations. We mitigate the problem of

redundant solutions by introducing an auxiliary distribution factoring in permutations of the solution

space. Preliminary results are presented in simulated 2D robotics environments.

1.2. Structure of Thesis

We start this thesis by laying the foundations of sequential decision making and information represen-

tation in Chapter 2. We first give the fundamentals for reinforcement learning in Section 2.1.3. This

includes background on deep reinforcement learning in Section 2.1.3.3, multi-agent reinforcement learn-

ing in Section 2.1.4, and trust-region reinforcement learning in Section 2.4.1. Additionally, we dedicate

a section to information representation using attention and graph neural networks (Section 2.3).

Chapter 4 introduces a framework that applies concepts from Section 2.3 in a swarm reinforcement

learning context. It uses mean embedding pooling to represent an agent’s local perception of its

environment and a TRPO-based deep reinforcement learning algorithm to solve cooperative tasks.

Chapter 5 proposes an episodic reinforcement learning algorithm which is especially suited for hard

exploration problems. It improves upon the MORE algorithm, by introducing several algorithmic

extensions. An improved model learning scheme, more robust update equations, and a sophisticated

exploration approach based on an evolution path lead to excellent results on non-deterministic episodic

reinforcement learning problems.

Chapter 6 contains an outline for the application of the algorithm presented in Chapter 5 in multi-agent

settings and possible future work directions.

Finally, Chapter 7 concludes this thesis.

3

2. Fundamentals and State of the Art

This thesis is concerned with two important topics in reinforcement learning: efficient information rep-

resentation and effective exploration of the parameter space. In this chapter, we lay out the foundations

necessary to understand the methods in this thesis and provide an overview over existing work.

We start with a general introduction to sequential decisionmaking problems and present the foundations

for reinforcement learning as well as multi-agent reinforcement learning. In the following, we present an

episode-based view on reinforcement learning alongwith its advantages and disadvantages over the step-

based view and introduce probabilistic movement primitives, an episode-based policy representation

used in this thesis. We then provide the background over state representations for swarms and how

they are used in multi-agent RL. Finally, we give an overview over action-space and parameter-space

based exploration strategies.

2.1. Sequential Decision Making

Sequential decision making refers to the process of making a series of interconnected choices, or

actions, over time, where each decision affects the available options and outcomes for subsequent

steps. Critically, the decisions made at each step are influenced by prior choices and expected future

consequences. The decision maker, typically called the agent, can be all kinds of entities, for example

humans, robots, or software programs. A prominent example for a sequential decision making problem

is the game of chess. Players make successive moves, considering their opponent’s potential responses

and adjusting their strategy accordingly.

2.1.1. Markov Decision Processes

Sequential decision making problems can be formalized using the concept of Markov decision processes

(MDPs). An MDP is defined as a tuple {S,A, 𝑃, 𝑅} where S is a set of states within the environment,

A is a set of actions available to the agent, 𝑃 is a transition probability function such that given a state

𝑠 and action 𝑎 at time-step 𝑡 , the probability of the next state 𝑠′ is given by 𝑃 (𝑠𝑡+1 = 𝑠′ | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎),
and a reward function 𝑅, an immediate performance measure 𝑟𝑡 = 𝑅(𝑠𝑡−1 = 𝑠, 𝑎𝑡−1 = 𝑎) of the agent’s
action 𝑎 taken in state 𝑠 . The agent takes actions according to its policy 𝜋 , a function that maps from

states to actions. This function can either be deterministic, such that 𝑎 = 𝜋 (𝑠), or stochastic. In the

stochastic case, actions are sampled as 𝑎 ∼ 𝜋 (· | 𝑠).

2.1.2. Value Functions

A useful quantity to describe the quality of a policy on a certain problem are value functions. Two

important value functions exist. A state value function𝑉 𝜋 (𝑠) = E𝜋 [
∑𝑇
𝑡=0
𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡) | 𝑠𝑡 = 𝑠] that yields

the expected return when starting in state 𝑠𝑡 = 𝑠 and subsequently following the policy. Furthermore, the

state-action value function, also known as Q-function, 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [
∑𝑇
𝑡=0
𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡) | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

5

Background

that yields the expected return starting in state 𝑠𝑡 = 𝑠 and additionally taking action 𝑎𝑡 = 𝑎, subsequently

following 𝜋 . Here, E𝜋 = E𝑠∼𝑑𝜋 , 𝑎∼𝜋 denotes that actions are sampled from the policy 𝜋 and states are

visited according to the state distribution 𝑑𝜋 induced by 𝜋 . 0 < 𝛾 ≤ 1 is a discount factor trading off

the importance of short term and long term rewards while ensuring the sum converges to a finite value

in case 𝑇 →∞.

Given a fixed policy 𝜋 , the value function corresponding to a task can be computed using a procedure

called policy evaluation. This procedure leverages a recursive formulation of the value function,

𝑉 𝜋 (𝑠) = E𝜋 [𝑟𝑡+1 + 𝛾𝑉 𝜋 (𝑠′) | 𝑠𝑡 = 𝑠] ,

which is also known as the Bellman equation for 𝑉 𝜋 . If the environment dynamics are known and the

state and action spaces are finite, one can iteratively compute the policy’s value function using the

update rule

𝑣𝑘+1(𝑠) = E𝜋 [𝑟𝑡+1 + 𝛾𝑣𝑘 (𝑠′) | 𝑠𝑡 = 𝑠]
=

∑︁
𝑎

𝜋 (𝑎 | 𝑠)𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′
𝑃 (𝑠′ | 𝑠, 𝑎)𝑣𝑘 (𝑠′)

for all states 𝑠 ∈ S and any initialization of 𝑣0. The Q-function can be obtained from the state value

function as

𝑄𝜋 (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾
∑︁
𝑠′
𝑃 (𝑠′ | 𝑠, 𝑎)𝑉 𝜋 (𝑠′)

Finally, the advantage of an action 𝑎 over other actions is given by 𝐴𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) −𝑉 𝜋 (𝑠).

2.1.3. Reinforcement Learning

We are interested in an optimal policy 𝜋∗ for a task that maximizes the expected cumulative reward

𝐽 = E𝜋

[
𝑇∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)
]
.

If we had access to the transition probability function and reward function, we could simply use planning

algorithms to arrive at it. However, this is usually not the case. Instead, we can use reinforcement

learning (RL), a sub-domain of machine learning, where the agent learns to fulfil a task based on

continued interactions with its environment. We refer to Sutton and Barto [148] for an extensive

introduction to the topic and only provide a concise overview over the foundations of model-free

methods which are the basis for the algorithms presented in this thesis.

2.1.3.1. Value-Based Methods

Value-based RL algorithms provide methods for estimating an optimal policy from a learned value

function. One of the most prominent examples is Q-learning [153]. Based on the Bellman equation, the

update rule is given by

𝑄𝑘+1(𝑠, 𝑎) = (1 − 𝛼𝑘)𝑄𝑘 (𝑠, 𝑎) + 𝛼𝑘 (𝑅(𝑠, 𝑎) + 𝛾 max

𝑎′
𝑄𝑘 (𝑠′, 𝑎′))

where 𝛼𝑘 is a learning rate. Provided that all states and actions are continually visited, this learning

rule is guaranteed to converge to the optimal Q-function 𝑄∗. The optimal policy is given as

𝜋∗(𝑎 | 𝑠) =
{

1 if 𝑎 = arg max𝑎𝑄
∗(𝑠, 𝑎)

0 else.

6

2.1. Sequential Decision Making

2.1.3.2. Policy Gradient Methods

A very different approach from value-based methods to learning a policy are policy gradient methods

[149, 155]. Whereas the policy in value-based methods is implicitly defined through its value function,

policy gradient methods learn an explicit policy function 𝜋 (𝑎 | 𝑠; 𝜽) with parameters 𝜽 . The only
requirement regarding the parameterization is that 𝜋 is differentiable with respect to 𝜽 . The parameters

are updated through gradient ascent

𝜽𝑡+1 = 𝜽𝑡 + 𝛼∇𝜽 𝐽

where ∇𝜽 𝐽 is the gradient of the performance measure with respect to the policy parameters 𝜽 . The
question remains how to obtain this gradient. It is provided by the policy gradient theorem as

∇𝜽 𝐽 =
∫
S
𝑑𝜋 (𝑠)

∫
A
∇𝜽𝜋 (𝑎 | 𝑠; 𝜽)𝑄𝜋 (𝑠, 𝑎)da ds.

Using an approximation 𝑄̂ for 𝑄𝜋 and the identity ∇𝑓 (𝒙) = 𝒙∇ log 𝑓 (𝒙), we can rewrite the policy

gradient as

∇𝜽 𝐽 ≈ E𝜋
[
𝑄̂ (𝑠, 𝑎)∇𝜽 log𝜋 (𝑎 | 𝑠; 𝜽)

]
which can be approximated from samples. Policy gradient methods are especially useful for continuous

action spaces and are therefore the algorithms of choice in this thesis.

2.1.3.3. Deep Reinforcement Learning

The problems we aim to solve in this thesis are comprised of infinite continuous state and action spaces,

and, therefore, cannot be solved using classic reinforcement learning algorithms like Q-learning. In

order to solve these problems, we need to rely on approximations of value functions and tractable

parameterizations of the policy function. While linear feature approximators showed some success in

small continuous state spaces, it was only possible to solve large problems after breakthroughs from

deep learning found there way into reinforcement learning, opening the field of deep reinforcement

learning. Here, neural networks are usually used to represent the policy and approximated value

functions. Perhaps the most prominent example is the Deep Q-Networks algorithm [105] where a

Q-function, approximated by a deep neural network, directly mapped from pixels of Atari games to

actions, achieving human-level play which was unprecedented at that time. For the deep RL algorithm

used in this thesis, we refer to Section 2.4.1.2.

2.1.4. Multi-Agent Reinforcement Learning

In the real world, many tasks involve not just one but several agents, either cooperating to solve a

single task, or even competing, pursuing conflicting interests [140]. This can include tasks like traffic

management [35], financial markets [138], or manufacturing [102]. While, in theory, any multi-agent

system with full observability can be treated as a single agent problem where a centralized controller

chooses a joint action for all agents, this approach quickly becomes infeasible with an increasing

number of agents or if sensing of the system can only be realized locally on an agent level. To this

end, we introduce in the following sections the formal extensions necessary to frame a multi-agent

reinforcement learning (MARL) problem, and give an overview over current state of the art algorithms

to solve them.

7

Background

2.1.4.1. Decentralized POMDPs

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) have been introduced

to formalize multi-agent learning problems where a single task has to be accomplished by a group

agents. They are an extension of MDPs and are given by a tuple {S, {A𝑖}, 𝑃, 𝑅, {Ω𝑖},𝑂} where S is a

set of global states, A𝑖 is the set of actions for agent 𝑖 , 𝑃 is a transition probability function between

states, and 𝑅 is a reward function. The partial observability of the system is described by the set of

observation Ω𝑖 for agent 𝑖 and a set of conditional observation probabilities 𝑂 .

2.1.4.2. Deep MARL

In the same fashion as presented in Section 2.1.3.3, deep MARL algorithms try to solve sequential

decision making problems using neural networks as function approximators. Wong et al. [158] identified

four main challenges that arise especially in MARL that algorithms need to overcome:

1. The problem of computational complexity,

2. non-stationarity introduced by all agents learning concurrently,

3. partial observability,

4. and credit assignment.

Until now, many dedicated algorithms to solve multi-agent problems have been proposed, each tackling

one or more of these problems. From a learning perspective, the centralized training, decentralized

control (CTDE) paradigm offers a remedy for the high computational complexity. In this paradigm, the

policy acts locally on each agent’s own perception of the world. Tuples of observations, actions and

rewards from all agents are then collected and stored centrally for the learning algorithm to access.

After the policy update, the new policy is rolled out to all agents again and the process repeats. This

scheme is applied in many deep MARL approaches with different focuses. Value-function methods, as

studied in Sunehag et al. [147] and Rashid et al. [127] and many others, aim to decompose the global

value function into local agent-based value functions to use them for control. Furthermore, Multi-Agent

DDPG [101] and its successors can learn continuous policies for competitive environments. In order

to overcome the non-stationarity, as well as partial observability, algorithms that try to model the

behavior of other agents have been developed. Notably, AlphaZero [141] achieves superior results on

classic board games such as Go and chess using neural network policies and Monte-Carlo tree search.

Learning to explicitly communicate as in Foerster et al. [47] additionally helps. Finally, reward shaping

strategies have been introduced to deal with the credit assignment problem. Foerster et al. [46], for

example, introduce COMA to reason about the influence of an agent’s action on the outcome of a task.

The method uses a counterfactual baseline to marginalise out a single agent’s action. The method we

propose in Chapter 4 makes use of CTDE and mainly tackles the first and, to some extent, the third

problem.

2.2. Episode-Based Reinforcement Learning

So far, we described a step-based view of the policy where the agent observes the current state of the

environment and chooses an action for the next time step. Alternatively, a plan for the whole motion

can be created and then executed by a low level controller such as a PD controller. In this episode-based

view of the policy, the parameters 𝒘 of an upper level motion planning module are improved based

8

2.2. Episode-Based Reinforcement Learning

on the quality of the execution of the whole trajectory. Instead of using individual transition tuples

{𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1}, whole trajectories 𝜏 = {𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟1, . . . , 𝑠𝑇 , 𝑟𝑇 } are used to update the policy.

The trajectory can, for example, be represented by movement primitives that use a low dimensional

parameter𝒘 to generate a full trajectory. The policy 𝜋 (𝒘) is defined as a function over these movement

primitive parameters and can be parameterized depending on the nature of the problem. In contextual

problems, either a linear mapping or a neural network [114] can be used to map the context to the

movement primitive parameters. If no context exists, we can directly learn a mean and covariance of a

Gaussian search distribution, as presented in Chapter 5.

We now present the episode-based policy representation used in this thesis and discuss advantages

and disadvantages of episode-based reinforcement learning compared to step-based reinforcement

learning.

2.2.1. Probabilistic Movement Primitives as Episode-Based Policy Parameterizations

Probabilistic movement primitives (ProMPs) [120] are a method for representing distributions over

trajectories. Based on basis function representations, they allow a low dimensional yet expressive

encoding of movements. We denote a trajectory 𝝉 = {𝑞𝑡 }𝑡=0,...,𝑇 for a single degree of freedom over

time. The position 𝑞𝑡 and velocity ¤𝑞𝑡 is represented by a weight vector𝒘 and is computed as a linear

basis function model

𝒚𝑡 =

[
𝑞𝑡
¤𝑞𝑡

]
= 𝚽𝑡𝒘 + 𝝐𝑦

where 𝚽𝑡 =
[
𝜙𝑡 ¤𝜙𝑡

]T ∈ R2×𝑛
is the matrix of 𝑛 time-dependent basis functions and 𝝐𝑦 ∼ N(0, 𝚺𝑦) is

zero-mean i.i.d Gaussian noise. For stroke-based movements, as we will investigate them in this thesis,

we use radial basis functions

𝑏𝑖 (𝑧) = exp

(
− (𝑧𝑡 − 𝑐𝑖)

2

2ℎ

)
where ℎ defines the width and 𝑐𝑖 the center of the 𝑖th basis function. The phase variable 𝑧 decouples

the movement from the time signal. After normalization, the basis functions are given as

𝜙𝑖 (𝑧𝑡) =
𝑏𝑖 (𝑧𝑡)∑𝑛
𝑗=1
𝑏 𝑗 (𝑧𝑡)

.

The probability of observing a trajectory 𝝉 given a weight vector𝒘 is given as

𝑝 (𝝉 | 𝒘) =
∏
𝑡

N(𝒚𝑡 | 𝚽𝑡𝒘, 𝚺𝑦) .

In the reinforcement learning algorithm presented in Chapter 5, we learn a distribution 𝜋 (𝒘) over the
movement primitive parameters𝒘 .

2.2.2. Advantages and Disadvantages of Episode-Based Reinforcement Learning

Episode-based reinforcement, as the name suggests, is especially helpful if a meaningful reward signal

is only returned after a full episode. Furthermore, it can deal with non-Markovian or sparse rewards

and the policy can be realized with very few parameters. When used with movement primitives, it

provides smooth control trajectories, often leading to more energy efficient behavior [114]. On the

9

Background

downside, an episode-based policy lacks the ability to react to changes in the environment as the whole

motion plan is created prior to execution while the policy in the step-based view is able to directly

react to feedback from the environment. It can also be less data-efficient than step-based reinforcement

as it does not exploit the time-series structure of the problem, especially in the dense reward setting.

2.3. Information Representation in Swarms

Parts of this thesis are concerned with sequential decision making in swarms, i.e., a population of simple

homogeneous agents [41], which are a special case of multi-agent systems. By means of collaboration,

they are able to solve tasks that are not solvable by individual agents. Additionally, the performance

is not affected by a small number of agents failing. This kind of phenomenon can often be found in

nature where flocking birds travel large distances or colonies of ants forage for food and supplies [25].

While potentially allowing for more complex tasks to be solved, controlling multiple agents also adds

complexity to the learning process. In swarms, not only the learning algorithm itself needs attention.

Additionally, an important question is how to efficiently process swarm information, an orthogonal

problem which many multi-agent RL works do not explicitly try to solve. A characteristic of swarms

that allows for the complexity of the problem to be reduced is looking at groups of homogeneous entities,

i.e., agents or objects that are identical in their physical properties. Within these groups, exchanging

agents A and B has no influence on the outcome of a planned motion or the way other agents react on

the overall agent configuration. Yet, these permutations all constitute individual solutions to a problem

and, thus, complicate the learning process, when not explicitly taking these invariances into account.

A good representation therefore needs to be independent of the number and order of agents, while

avoiding the curse of dimensionality, i.e., the problem that with increasing problem dimensionality we

need exponentially more data to sufficiently explore the problem space.

In this section, we provide two views of swarm data and how they can be processed. First, we look

at local information processing at an agent level and present the current state in processing set data.

Second, we take a more abstract view of a swarms in the form of a graph and give a brief outline of

graph processing with neural networks.

2.3.1. Set Representation of Local Observations

At an abstract level, locally observed information about a group of homogeneous in an agents neighbor-

hood takes the form of an unordered set. An element 𝒙𝑖 of the set X = {𝒙1, . . . , 𝒙𝑁 } contains important

quantities for decision making such as geometric and kinematic features of neighboring entities. These

include, for example, distances, bearing angles, or relative velocities to neighboring agents, points of

interest, or objects to interact with. We want to make use of the inherent structure of the data that

factors in the knowledge about the existing invariance and avoid learning redundant solutions. In

the reinforcement learning context, this translates to the output of the policy 𝜋 being invariant to

permutations PX of the set of input elements, i.e.

𝜋 (X) = 𝜋 (PX) ∀PX ∈ 𝑆 (X)

where 𝑆 (X) is the set of all permutations ofX. An efficient representation therefore needs to be invariant

to the order of the elements in the set. In Chapter 3, we provide a method based on handpicked features

over sets, while in Chapter 4, we extend this approach to learned feature representations. In the

following sections, we provide an in-depth overview over the underlying processing techniques.

10

2.3. Information Representation in Swarms

2.3.1.1. DeepSets

Standard neural network based architectures, such as feed forward MLPs, usually impose some sort of

order on the input and are therefore unsuitable for processing sets directly. This shortcoming led to the

development of DeepSets [161], a permutation invariant and equivariant deep learning architecture. The

general idea is to first transform each element 𝒙𝑖 into a representation 𝜙 (𝒙𝑖) using either hand-designed
or learned feature transformations, such as histograms or neural network layers. Afterwards, the

representations 𝜙 (𝒙𝑖) are summed up and may further be processed by subsequent neural network

layers. The permutation invariant function is given by

𝑓 (X) = 𝜌
(∑︁
𝑖

𝜙 (𝒙𝑖)
)

Since all elements are transformed independently, the mapping 𝜙 (𝒙𝑖) can efficiently be parallelized. An

illustration if the architecture can be found in Figure 2.1. In Chapter 4, we will show how to incorporate

this type of representation into a swarm reinforcement learning framework.

𝑓 (X)

𝜙

𝜙

𝜙

𝜙

𝒙1

𝒙2

𝒙3

𝒙4

𝜌

Figure 2.1.: Diagram of the DeepSets architecture. The elements 𝜙 (𝒙𝑖) of the input set X are transformed into a latent

representation and subsequently summed up, followed by further processing steps. The result is a permutation invariant

function 𝑓 .

2.3.1.2. Relational Approaches

The DeepSets architecture provides a permutation invariant function mapping by first transforming

each element of the set independently and pooling these embeddings over the whole set. While

transforming individual elements, in principle, is sufficient for universal function approximation, it is

often beneficial to incorporate explicit relational reasoning into the model [20]. To this end, several

architectures have been introduced. Relation Networks [135] provide a simple neural network module

of the form

RN(X) = 𝜌
(∑︁
𝑖, 𝑗

𝜙 (𝒙𝑖 , 𝒙 𝑗)
)
,

where 𝜌 and 𝜙 are MLPs. By summing over embeddings of pairs of elements, the output becomes

permutation invariant. This module is not primarily developed for approximating functions on sets but

11

Background

rather serves as a drop-in module for convolutional or recurrent neural networks to allow for explicit

relational reasoning.

Self-attention extends this concept by an additional weighting step on input pairs of the set. In the

simplest case, an attention module for elements of a set is given by

Att(X) = 𝜔 (XXT)X

where 𝜔 = softmax(·/
√
𝑑) is a scaled softmax to ensure the weights sum up to one. A permutation

invariant architecture utilizing attention modules is the Set Transfomer [93]. An illustration of relational

architectures using attentioin can be found in Figure 2.2.

𝒙1 𝒙1

𝒙1 𝒙2𝒙1 𝒙2

𝒙3 𝒙4

𝒙4 𝒙4

...

Attention

𝜙

𝜙

𝜙

𝜙

𝑓 (X)

Figure 2.2.: This figure shows a diagram of an attention based architecture. The processing function 𝜙 represents a scalar

dot-product between individual elements of the input set.

2.3.1.3. Generalization

Recently, Wagstaff et al. [152] realized that both, Deep Sets and Attention-based architectures are special

cases of the Janossy pooling paradigm [108]. In its most expressive form, a permutation invariant

function is constructed from processing all possible permutations of the input set with a permutation

sensitive neural network, followed by sum or mean pooling. The permutation invariant output of the

pooling operation can then further be processed without any constraints. Mathematically, the function

is given by

𝑓 (X) = 𝜌 ©­« 1

|𝑆 (X)|
∑︁

𝜎∈𝑆 (X)
𝜙 (𝜎)ª®¬ .

The expressiveness of this formulation comes at a very high computational cost as the number of

permutations grows linearly with the with the cardinality of the set, which grows factorially with

the number of elements. Murphy et al. [108] propose three ways of limiting the computational

complexity: sorting, sampling, and restricting the permutations to 𝑘-tuples. Sorting only considers

a single permutation, based on an inherent or learned order of data-points. Sampling, on the other

hand, considers a small number of randomly chosen permutations from 𝑆 (X). Finally, models such as

DeepSets as well as attention-based approaches fall into the category of 𝑘-tuples. Specifically, DeepSets

is the result of setting 𝑘 = 1, while attention-based approaches are derived from 𝑘 = 2.

12

2.3. Information Representation in Swarms

𝒆𝑘 𝒗𝑖
𝒗 𝑗

Figure 2.3.: A graph representation of a swarm of eight agents where agents 𝑖 and 𝑗 are represented by their node features 𝒗𝑖
and 𝒗 𝑗 . The edge feature 𝒆𝑘 contains observations of agent 𝑖 about agent 𝑗 , as well as additional information sent from 𝑗 to 𝑖 .

2.3.2. Swarm as a Graph

The set representation is a natural choice for information representation at an agent level. Another

abstraction of the whole swarm can be made by representing it as a graph G = (𝑉 , 𝐸). Agents or objects
are treated as nodes, also called vertices, 𝑉 = {𝒗1, 𝒗2, . . . , 𝒗𝑁 } where 𝒗𝑖 contains node 𝑖’s attributes.
Interactions and relations between nodes are modelled as undirected edges 𝐸 ⊂ 𝑉 ×𝑉 . Additionally,
there can be directed edges 𝒆𝑘 with an explicit sender 𝑠𝑘 and receiver 𝑟𝑘 between two nodes 𝒗𝑖 and 𝒗 𝑗 .
These edges can represent features such as observations from agent 𝑖 about agent 𝑗 or even explicit

messages from agent 𝑗 to agent 𝑖 . In general, there can exist undirected or (multiple) directed edges or

both. In the swarm context, a node feature could, for example, be an agent’s location and velocity, as

well as an indicator of its current health state, or whether it is carrying an object in a transportation

task. Edge features on the other hand may include observations about neighboring agents, such as

relative velocities or bearing angles. Finally, global features are collected in a feature vector 𝒈. An
example graph can be seen in Figure 2.3.

2.3.2.1. Graph Neural Networks

Graph neural networks (GNNs) provide a neural network based architecture to compactly represent

the information present in a graph. By now, there exists a plethora of literature that uses different

approaches to graph-based problems, such as simulating physical interactions [134] or learning multi-

agent dynamics [145]. Although the method presented in this thesis makes use of the graph notation,

we do not make use of explicit GNN architectures and therefore only introduce the general architecture

and provide a brief overview of a specific GNN flavor. An in-depth overview covering geometric deep

learning can be found in Bronstein et al. [28].

Abstractly speaking, a GNN is comprised of three building blocks: Permutation equivariant layers

computing transformations on a node level, local pooling operations providing graph coarsening, and a

global permutation invariant pooling layer [28]. These building blocks can be implemented in different

ways. Particularly suited for processing swarm information are Message Passing Networks [134] which

allow an implicit form of message passing that goes beyond "1-hop" information exchange within an

agent’s neighborhood N𝑖 = { 𝑗 | {𝒗𝑖 , 𝒗 𝑗 } ∈ 𝐸}1. Thus, the graph representation lends itself naturally

to scenarios with limited observability. In graph terms, this relates to a connected, but not complete

graph or digraph, where agents cannot observe all other agents in each time-step.

1
In comparison, DeepSets approaches are only able to process "1-hop" information.

13

Background

𝒆𝑘 𝒗𝑖𝒗 𝑗

(a) First hop.

𝒆𝑘 𝒗𝑖𝒗 𝑗

(b) Second hop.

𝒆𝑘 𝒗𝑖𝒗 𝑗

(c) Third hop.

Figure 2.4.: Illustrations of information flow with message passing over three hops.

The message passing step consists of updates of the latent edge, node, and global features. Initially,

node, edge, and global features are linearly transformed into representations 𝑯 0

𝑣 where a row 𝒉0

𝑣,𝑖

corresponds to the 𝑖th node’s embedding, 𝑯 0

𝑒 where a row 𝒉0

𝑒,𝑘
corresponds to the embedding of edge

feature 𝒆𝑘 , and 𝒉
0

𝑔. The edge features are updated according to

𝒉𝑙+1
𝑒,𝑘

= 𝜙𝑙𝑒 (𝒉𝑙𝑒,𝑘 , 𝒉
𝑙
𝑣,𝑖 , 𝒉

𝑙
𝑣, 𝑗 , 𝒉

𝑙
𝑔)

where an MLP transforms latent edge features of edge 𝑘 and the features of the corresponding sending

and receiving nodes (𝑖, 𝑗) = (𝑠𝑘 , 𝑟𝑘). Next, the node features are updated according to

𝒉𝑙+1𝑣,𝑖 = 𝜙𝑙𝑣

(
𝒉𝑙𝑣,𝑖 ,

⊕
𝑠𝑘 ∈N𝑖

𝒉𝑙
𝑒,𝑘
,𝒉𝑙𝑔

)
taking into account the edge information sent from node 𝑠𝑘 . Finally, the global feature vector is update

according to

𝒉𝑙+1𝑔 = 𝜙𝑙𝑔

(⊕
𝑯 𝑙+1
𝑣 ,

⊕
𝑯 𝑙+1
𝑒 ,𝒉𝑙𝑔

)
.

By repeating this step 𝐿 times, information flowing along edges can reach nodes that are 𝐿 hops away.

An illustration of this process can be seen in Figure 2.4.

2.3.3. Graph Multi-Agent RL

The aforementioned concepts have been studied in several multi-agent learning frameworks. Jiang

et al. [85] model the multi-agent task as a graph and use convolutions with a multi-head attention

kernel to extract relational representations between neighbors. Chen et al. [30] use graph neural

networks and attention for communication to overcome environment non-stationarity and improve

over broadcast-based multi-agent algorithms such as MADDPG [101]. Freymuth et al. [48] use the

concept of message-passing networks for adaptive mesh refinement where each element of the mesh

can be seen as an agent that decides whether to refine the mesh or not.

2.4. Exploration Strategies in Reinforcement Learning

In the previous sections, we have seen how collected data can be represented and used to update an

agent’s behavior, but not how to obtain new data for learning, i.e., how to explore. Ideally, we want an
agent to find the best policy as quickly as possible while avoiding to become trapped in local optima,

14

2.4. Exploration Strategies in Reinforcement Learning

or, especially in the case of robotics, entering dangerous regions of the state space or choosing harmful

actions. Exploration is still an open topic of research and several very different strategies exist. In the

following, we give a general overview over random exploration in action-space and parameter-space.

Afterwards, we provide an overview over trust-region methods and evolution strategies, which are the

basis of the reinforcement learning algorithms used in this thesis.

Action-Space Exploration Action-space exploration, as the name suggests, performs exploration by

perturbing the action taken by the agent. This perturbation can either be inherent if the action is

sampled from a stochastic policy or added from an external noise process. For discrete action-space

problems, classical strategies are 𝜖-greedy or Boltzmann policies derived from the Q-values for a

given state [148]. In the case of continuous actions, a stochastic policy is modelled most commonly

as a multi-variate Gaussian 𝜋 (𝑎 | 𝑠) = N(𝑎 | 𝜇 (𝑠), Σ) with state dependent mean 𝜇 and covariance

Σ. Although exploration is directly driven by the covariance matrix, for problems with well shaped

rewards, a diagonal non-contextual covariance is often sufficient [11]. Different techniques exist to

steer the covariance during the optimization process. An algorithmic approach that directly encourages

the agent to explore without altering the problem is maximum-entropy reinforcement learning [166,

59]. Here, the objective function is augmented with the policy’s entropy trading off optimizing the task

while acting as randomly as possible. Alternatively, the agent can also be rewarded for entering novel

states through intrinsic motivation objectives [15].

Parameter-Space Exploration While action-space exploration is the de-facto standard in deep RL

today, there are also certain downsides to it. For example, many real world tasks only provide sparse

rewards or work on long time horizons making it hard for unstructured exploration to find optimal

solutions. Furthermore, it introduces a high level of noise as even for a fixed state, hardly ever the same

action will be taken. Lastly, on real robots it leads to shaky behavior due to jittery trajectories which

can damage or break robots [125]. Instead, another way to enforce exploration of the state space is

to perturb the parameters of the policy themselves. Evolution strategies, which we will describe in

more detail in Section 2.4.2, are a classic example for algorithms that perform exploration in parameter

space. The basic idea consists of sampling a generation of candidate parameters, evaluating them, and

improve them towards more promising regions. Based on this idea, Plappert et al. [122], for example,

show how to combine parameter noise with deep RL algorithms such as DQN [105], DDPG [95], and

TRPO [137]. Their algorithms improve exploration especially in sparse reward scenarios. While the ES

concept has also been implemented for large scale optimization of neural network policies [133], we

take a movement primitive based approach that is especially useful for robotics.

2.4.1. Trust-Region Reinforcement Learning

Trust-region optimization methods have a long history in machine learning and optimization as these

methods are especially useful for optimization of non-linear and potentially noisy objective functions.

They have been around for as early as the 1960s [53]. Trust-region reinforcement learning algorithms

are based on these methods and are used to ensure thorough and stable exploration in both, action-space

and parameter-space exploration setups. Within this approach, an objective function is iteratively

maximized within a well modelled region such that the optimization parameters do not deviate greatly

between subsequent iterations. The model can be obtained, for example, by local first or second order

information such as the gradient or Hessian.

15

Background

In this thesis, we will use Trust Region Policy Optimization [137] in the framework provided in

Chapters 3 and 4. In Chapter 5 we will analyse and improve Model-Based Relative Entropy Stochastic

Search [3]. In this section, we will provide a brief introduction to constrained optimization and outline

the optimization problems that are solved in these algorithms.

2.4.1.1. Constrained Optimization

In its general form, a constrained optimization problem is given by

maximize

𝜽
𝑓 (𝜽)

subject to 𝑔𝑖 (𝜽) ≤ 0,

ℎ 𝑗 (𝜽) = 0

where we want to find parameters 𝜽 that maximize an objective function 𝑓 , inequality constraints are

denoted as𝑔𝑖 , 𝑖 = (1, . . . ,𝑚), equality constraints are denoted asℎ 𝑗 , 𝑗 = (1, . . . , 𝑙). Under differentiability
and convexity assumptions, the constrained optimization problem with inequality constraints can be

solved using the Karush–Kuhn–Tucker (KKT) approach, a generalization of the method of Lagrange

multipliers. First, we construct the Lagrangian function

L(𝜽 ,𝜼,𝝎) = 𝑓 (𝜽) −
𝑚∑︁
𝑖=1

𝜂𝑖𝑔𝑖 (𝜽) −
𝑙∑︁
𝑗=1

𝜔 𝑗ℎ 𝑗 (𝜽)

with Lagrange multipliers 𝜼 and 𝝎. The solution to the optimization problem is a saddle point of the

Lagrangian function. If we can obtain 𝜽 ∗ analytically, we first need to find

𝜽 ∗ = 𝑙 (𝜼,𝝎) = arg max

𝜽
L(𝜽 ,𝜼,𝝎).

as a function of the Lagrangian multipliers 𝜼 and 𝝎. Subsequently, we plug the solution back into the

Lagrangian to obtain the dual function

ℎ(𝜼,𝝎) = L(𝑙 (𝜼,𝝎),𝜼,𝝎)

and solve the dual optimization problem

minimize

𝜼,𝝎
ℎ(𝜽)

subject to 𝜂𝑖 ≥ 0

to find the solution 𝜼∗,𝝎∗. Since the dual function is convex even when the original problem is not

concave, this can be done using a standard non-linear optimizer such as L-BFGS-B [165]. The optimal

solution of the original problem obeying the constraints is finally given by

𝜽 ∗ = 𝑙 (𝜼∗,𝝎∗) .

2.4.1.2. KL-Constrained Trust-Region Reinforcement Learning

The optimization problem can be formulated using a constrained optimization problem where 𝑓 usually

relates to the expected cumulative reward 𝐽 and the constraints ensure that the updated policy does not

16

2.4. Exploration Strategies in Reinforcement Learning

deviate too much from the current policy. A common choice is the Kullback-Leibler (KL) divergence

KL(𝑝 ∥ 𝑞) [90] (also known as relative entropy), a statistical distance of how a probability distribution

𝑝 is different from a probability distribution 𝑞. For continuous distributions, it is defined as

KL(𝑝 ∥ 𝑞) =
∫ ∞

−∞
𝑝 (𝑥) log

𝑝 (𝑥)
𝑞(𝑥) dx.

In case the policy is modelled as a multivariate Gaussian, the KL divergence can be computed in closed

form. In this thesis we will use two trust-region RL algorithms, Trust-Region Policy Optimization

(TRPO) [137] and Model-based Relative Entropy Stochastic Search (MORE) [2]. We will modify TRPO

to be used in a multi-agent setting in Chapters 3 and 4 and closely analyze and improve MORE in

Chapter 5. In the following sections, we will briefly introduce the optimization problems that the

methods introduce and show how they are solved.

Trust Region Policy Optimization TRPO is a step-based deep RL algorithm for problems with continu-

ous state and actions spaces where the policy is parameterized by a neural network with parameters 𝜽
that outputs a state dependent mean and learned diagonal covariance matrix of a multivariate Gaussian.

The algorithm is based on a monotonic improvement guarantee for general stochastic policies. The

optimization problem is given by

maximize

𝜋
𝐿𝑡 (𝜋)

subject to KL(𝜋𝑡 ∥ 𝜋) ≤ 𝛿

where the objective 𝐿𝑡 is given as

𝐿𝑡 (𝜋) = E𝑠∼𝜌𝑡 , 𝑎∼𝜋𝑡
[
𝜋 (𝑎 | 𝑠)
𝜋𝑡 (𝑎 | 𝑠)

𝐴𝜋𝑡 (𝑠, 𝑎)
]
.

KL(𝜋𝑡 ∥ 𝜋) = E𝑠∼𝜌𝑡 [KL(𝜋𝑡 ∥ 𝜋)] denotes the average KL-divergence between the current policy 𝜋𝑡
and new policy 𝜋 under the state distribution 𝜌𝑡 induced by 𝜋𝑡 . It is bounded by 𝛿 to ensure the

algorithm is stable. However, the above optimization problem cannot be solved directly. Instead, a

linear approximation of the objective and a quadratic approximation of the constraint are made. On this

simplified problem, the method of Lagrangian multipliers can be applied. The optimization problem is

solved using the conjugate gradient method followed by a line search in order to obey the constraint of

the original problem.

Model-based Relative Entropy Stochastic Search MORE falls into the category of derivative-free

optimization methods and can be applied to non-contextual episode-based RL problems. The policy

is parameterized as a multi-variate Gaussian𝒘 ∼ N(𝒘 | 𝝁, 𝚺). It can be used to choose a parameter

vector that describes the trajectory for a whole episode, for example using movement primitives. The

optimization problem is formally given by

maximize

𝜋

∫
𝒘
𝜋 (𝒘) 𝑓 (𝒘)dx

subject to KL(𝜋 ∥ 𝜋𝑡) ≤ 𝜖,
𝐻 (𝜋) ≥ 𝛽,∫

𝒘
𝜋 (𝒘)dw = 1

17

Background

where 𝜖 and 𝛽 are hyper-parameters controlling the exploration-exploitation trade-off,

𝐻 (𝑝) =
∫
𝒙
𝑝 (𝒙) log𝜋 (𝒙)dx

denotes the Shannon entropy of a distribution 𝑝 . After substituting the objective function with a

quadratic approximation, the optimization problem is solved exactly with analytic updates for the mean

and covariance. Full details can be found in Chapter 5.

2.4.2. Evolution Strategies

The MORE algorithm presented in the previous section is closely related to algorithms from the class of

evolution strategies (ES) [69, 24]. They provide a framework for black-box optimization of continuous

valued objective functions in cases where an objective function is too complex to be modelled and no

higher order information is available. In reinforcement learning, they can be applied in episode-based

problems performing parameter-space exploration.

The basic paradigm consists of two steps: Sampling new candidate solutions from a search distribution

and updating the search distribution parameters based on the quality of the function values evaluated

at the candidates. This procedure is executed iteratively until a satisfactory solution is found or a

pre-defined budget of function evaluations is exceeded. Prominent algorithms of this category are the

cross-entropy method [128], Natural Evolution Strategies [154], and the covariance matrix adaptation

evolution strategies [4] which we will discuss in more detail in the next section.

2.4.2.1. Covariance Matrix Adaptation Evolution Strategies

The covariance matrix adaptation evolution strategies (CMA-ES) is an algorithm for finding the mini-

mum of an objective function through heuristically defined updates. A multi-variate normal distribution

𝒙 ∼ N(𝒙 | 𝒎, 𝜎2𝑪) is maintained and updated based on a ranking of function values. The parameter

𝜎 > 0 is referred to as the step-size. A key part of the algorithm are so-called evolution paths which

accumulate previous update steps. They are functions of the mean displacement 𝒎𝑘+1 −𝒎𝑘 of subse-

quent iterations 𝑘 and 𝑘 + 1. In case updates are correlated, the corresponding evolution path is long

while it is short if previous updates were uncorrelated.

Mean Update The mean is updated according to

𝒎𝑘+1 =

𝜇∑︁
𝑖=1

𝑤𝑖𝒙𝑖:𝜆

where {𝒙𝑖:𝜆 | 𝑖 = 1, . . . , 𝜆} = {𝒙𝑖 | 𝑖 = 1, . . . , 𝜆} are the function value sorted candidate solutions

such that 𝑓 (𝒙1:𝜆) ≤ · · · ≤ 𝑓 (𝒙𝜇:𝜆) ≤ 𝑓 (𝒙𝜆:𝜆). Typically, 𝜇 ≤ 𝜆/2. The weights are chosen such that∑
𝑖 𝑤𝑖 = 1

Step-Size Update The step-size is updated using a technique called cumulative step size adaptation.

Based on an evolution path 𝒑𝜎 , the update is given as

𝜎𝑘+1 = 𝜎𝑘 exp

(
𝑐𝜎

𝑑𝜎

(
∥𝒑𝜎 ∥

E[∥N (0, 𝑰)∥] − 1

))
where 𝑐𝜎 , 𝑑𝜎 are hyper-parameters and E[∥N (0, 𝑰)∥] is the expectation of the Euclidean norm of a

N(0, 𝑰) distributed random vector.

18

2.4. Exploration Strategies in Reinforcement Learning

Covariance Matrix Update Finally, the covariance matrix update makes use of an evolution path 𝒑𝐶 .
The update is given by

𝑪𝑘+1 = (1 − 𝑐1 − 𝑐𝜇 + 𝑐𝑠)𝑪𝑘 + 𝑐1𝒑𝐶𝒑
T
𝐶 + 𝑐𝜇

𝜇∑︁
𝑖=1

𝑤𝑖
𝒙𝑖:𝜆 −𝒎𝑘

𝜎𝑘

(
𝒙𝑖:𝜆 −𝒎𝑘

𝜎𝑘

)T
with hyper-parameters 𝑐1, 𝑐𝜇, 𝑐𝑠 .

For full details, we refer to, e.g., Hansen [68].

19

3. Local Communication Protocols for Learning
Complex Swarm Behaviors with Deep
Reinforcement Learning

This chapter has been published in the 11th International Conference on Swarm Intelligence, ANTS 2018
[80].

Nature provides many examples where the performance of a collective of limited beings exceeds the

capabilities of one individual. Ants transport prey of the size no single ant could carry, termites build

nests of up to nine meters in height, and bees are able to regulate the temperature of a hive. Common to

all these phenomena is the fact that each individual has only basic and local sensing of its environment

and limited communication capabilities to its neighbors.

Inspired by these biological processes, swarm robotics [21, 8, 31] tries to emulate such complex

behavior with a collective of rather simple entities. Typically, these robots have limited movement and

communication capabilities and can sense only a local neighborhood of their environment, such as

distances and bearings to neighbored agents. Moreover, these agents have limited memory systems,

such that the agents can only access a short horizon of their perception. As a consequence, the design of

control policies that are capable of solving complex cooperative tasks becomes a non-trivial problem.

In this paper, we want to learn swarm behavior using deep reinforcement learning [137, 105, 136, 150,

57] based on the locally sensed information of the agents such that the desired behavior can be defined

by a reward function instead of hand-tuning controllers of the agents. Swarm systems constitute a

challenging problem for reinforcement learning as the algorithm needs to learn decentralized control

policies that can cope with limited local sensing and communication abilities of the agents.

Most collective tasks require some form of active cooperation between the agents. For efficient

cooperation, the agents need to implement basic communication protocols such that they can transmit

their local sensory information to neighbored agents. Using prior knowledge about the given task,

simple communication protocols can be defined much more easily than directly defining the behavior.

In this paper, we propose and evaluate several communication protocols that can be exploited by deep

reinforcement learning to find decentralized control policies in a multi robot swarm environment.

Our communication protocols are based on local histograms that encode the neighborhood relation of

an agent to other agents and can also transmit task-specific information such as the shortest distance

and direction to a desired target. The histograms can deal with the varying number of neighbors that

can be sensed by a single agent depending on its current neighborhood configuration. These protocols

are used to generate high dimensional observations for the individual agents that is in turn exploited

by deep reinforcement learning to efficiently learn complex swarm behavior. In particular, we choose

an adaptation of Trust Region Policy Optimization [137] to learn decentralized policies.

In summary, our method addresses the emerging challenges of decentralized swarm control in the

following way:

1. Homogeneity: explicit sharing of policy parameters between the agents

21

Local Communication Protocols for Learning Complex Swarm Behaviors

2. Partial observability: efficient processing of action-observation histories through windowing

and parameter sharing

3. Communication: usage of histogram-based communication protocols over simple features

To demonstrate our approach, we formulate two cooperative learning tasks in a simulated swarm

environment. The environment is inspired by the Colias robot [14], a modular platform with two wheel

motor-driven movement and various sensing systems.

Paper Outline In Section 3.1, we review the concepts of Trust Region Policy Optimization and describe

our problem domain. In Section 3.2, we show in detail how we tackle the challenges of modeling

observations and the policy in the partially observable swarm context, and how to adapt Trust Region

Policy Optimization to our setup. In Section 3.3, we present the model and parameters of our agents

and introduce two tasks on which we evaluate our proposed observation models and policies.

3.1. Background

In this section, we provide a short summary of Trust Region Policy Optimization and formalize our

learning problem domain.

3.1.1. Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO) is an algorithm to optimize control policies in single-agent

reinforcement learning problems [137]. These problems are formulated as Markov decision processes

(MDP) which are compactly written as a tuple ⟨S,A, 𝑃, 𝑅,𝛾⟩. In an MDP, an agent chooses an action

𝑎 ∈ A via some policy 𝜋 (𝑎 | 𝑠), based on its current state 𝑠 ∈ S, and progresses to state 𝑠′ ∈ S
according to a transition function 𝑃 (𝑠′ | 𝑠, 𝑎). After each step, the agent is assigned a reward 𝑟 = 𝑅(𝑠, 𝑎),
provided by a reward function 𝑅 which judges the quality of its decision. The goal of the agent is to

find a policy which maximizes the expected cumulative reward E[∑∞
𝑘=𝑡

𝛾𝑘−𝑡𝑅(𝑠𝑘 , 𝑎𝑘)], discounted by

factor 𝛾 , achieved over a certain period of time.

In TRPO, the policy is parametrized by a parameter vector 𝜃 containing weights and biases of a neural

network. In the following, we denote this parameterized policy as 𝜋𝜃 . The reinforcement learning

objective is expressed as finding a new policy that maximizes the expected advantage function of the

current policy, i.e., 𝐽TRPO = E
[
𝜋𝜃
𝜋𝜃

old

𝐴(𝑠, 𝑎)
]
, where 𝐴 is an estimate of the advantage function of the

current policy 𝜋old which is defined as𝐴(𝑠, 𝑎) = 𝑄𝜋old (𝑠, 𝑎) −𝑉 𝜋
old
(𝑠). Herein, state-action value function

𝑄𝜋old (𝑠, 𝑎) is typically estimated by a single trajectory rollout while for the value function𝑉 𝜋old (𝑠) rather
simple baselines are used that are fitted to the monte-carlo returns. The objective is to be maximized

subject to a fixed constraint on the Kullback-Leibler (KL) divergence of the policy before and after the

parameter update, which ensures the updates to the new policy’s parameters 𝜃 are bounded, in order

to avoid divergence of the learning process. The overall optimization problem is summarized as

maximize

𝜃
E

[
𝜋𝜃

𝜋𝜃old
𝐴(𝑠, 𝑎)

]
subject to E[𝐷KL(𝜋𝜃old | |𝜋𝜃)] ≤ 𝛿.

The problem is approximately solved using the conjugate gradient optimizer after linearizing the

objective and quadratizing the constraint.

22

3.1. Background

3.1.2. Problem Domain

Building upon the theory of single-agent reinforcement learning, we can now formulate the problem

domain for our swarm environments. Because of their limited sensory input, each agent can only

obtain a local observation 𝑜 from the vicinity of its environment. We formulate the swarm system as

a swarm MDP (see Šošić et al. [143] for a similar definition) which can be seen as a special case of a

decentralized partially observed Markov decision process (Dec-POMDP) [111]. An agent in the swarm

MDP is defined as a tuple A = ⟨S,O,A,𝑂⟩, where, S is a set of local states, O is the space of local

observations, andA is a set of local actions for each agent. The observation model𝑂 (𝑜 |𝑠, 𝑖) defines the
observation probabilities for agent 𝑖 given the global state 𝑠 . Note that the system is invariant to the

order of the agents, i.e., given the same local state of two agents, the observation probabilities will be

the same. The swarm MDP is then defined as ⟨𝑁, E,A, 𝑃, 𝑅⟩, where 𝑁 is the number of agents, E is

the global environment state consisting of all local states S𝑁 of the agents and possibly of additional

states of the environment, and 𝑃 : S𝑁 × S𝑁 × A𝑁 → [0,∞) is the transition density function. Each

agent maintains a truncated history ℎ𝑖𝑡 = (𝑎𝑖𝑡−𝜂, 𝑜𝑖𝑡−𝜂+1, . . . , 𝑎𝑖𝑡−1
, 𝑜𝑖𝑡) of the current and past observations

𝑜𝑖 ∈ O and actions 𝑎𝑖 ∈ A of length 𝜂. All swarm agents are assumed to be identical and therefore use

the same distributed policy 𝜋 (now defined as 𝜋 (𝑎 | ℎ)) which yields a sample for the action of each

agent given its current history of actions and observations. The reward function 𝑅 of the swarm MDP

depends on the global state and, optionally, all actions of the swarm agents, i.e., 𝑅 : S𝑁 × A𝑁 → R.
Instead of considering only one single agent, we consider multiple agents of the same type, which

interact in the same environment. The global system state is in this case comprised of the local states

of all agents and additional attributes of the environment. The global task of the agents is encoded in

the reward function 𝑅(𝒔, 𝒂), where we from now on write 𝒂 to denote the joint action vector of the

whole swarm.

3.1.3. Related Work

A common approach to program swarm robotic systems is by extracting rules from the observed

behavior of their natural counterparts. Kube and Bonabeau [88], for example, investigate the cooperative

prey retrieval of ants to infer rules on how a swarm of robots can fulfill the task of cooperative box-

pushing. Similar work can be found e.g. in Martinoli, Easton, and Agassounon [103], Hoff et al. [76],

Nouyan et al. [110]. However, extracting these rules can be tedious and the complexity of the tasks that

we can solve via explicit programming is limited. More examples of rule based behavior are found in

Chen, Gauci, and Groß [31] where a group of swarming robots transports an object to a goal. Further

comparable work can be found in Correll and Martinoli [37] for aggregation, Moeslinger, Schmickl,

and Crailsheim [106] for flocking, or Goldberg and Mataric [52] for foraging.

In deep RL, currently, there are only few approaches tackling the multi-agent problem. One of these

approaches can be found in Lowe et al. [101], where the authors use a variation of the deep deterministic

policy gradient algorithm [95] to learn a centralized Q-function for each policy, which, as a downside,

leads to a linear increase in dimensionality of the joint observation and action spaces therefore scales

poorly. Another algorithm, tackling the credit assignment problem, can be found in Foerster et al. [46].

Here, a baseline of other agents’ behavior is subtracted from a centralized critic to reason about the

quality of a single agent’s behavior. However, this approach is only possible in scenarios with discrete

action spaces since it requires marginalization over the agents’ action space. Finally, a different line of

work concerning the learning of communication models between agents can be found in Foerster et al.

[47].

23

Local Communication Protocols for Learning Complex Swarm Behaviors

(a)Local agent configura-

tion

𝑑
(b)Range histogram

𝜙

(c)Bearing histogram

𝑑

𝜙

(d) Joint histogram

Figure 3.1.: This Figure shows an illustration of the histogram-based observation model. Figure 3.1a shows an agent in the

center of a circle whose neighborhood relations are to be captured by the histogram representation. The shaded green area is

highlighted as a reference for Figures 3.1c and 3.1d. Figure 3.1b hereby shows the one dimensional histogram of agents over

the neighborhood range 𝑑 into four bins, whereas Figure 3.1c shows the histogram over the bearing angles 𝜙 into eight bins.

Figure 3.1d finally shows the two dimensional joint histogram over range and bearing.

3.2. Multi-Agent Learning with Local Communication Protocols

In this section, we introduce different communication protocols based on neighborhood histograms

that can be used in combination to solve complex swarm behaviors. Our algorithm relies on deep

neural network policies of special architecture that can exploit the structure of the high-dimensional

observation histories. We present this network model and subsequently discuss small adaptations we

had to make to the TRPO algorithm in order to apply it to this cooperative multi-agent setting.

3.2.1. Communication Protocols

Our communication protocols are based on histograms that can either encode neighborhood relations

or distance relations to different points of interest.

Neighborhood Histograms

The individual agents can observe distance and bearing to neighbored agents if they communicate with

this agent. We assume that the agents are constantly sending a signal, such that neighbored agents can

localize the sources. The arising neighborhood configuration is an important source of information

and can be used as observations of the individual agents. One of the arising difficulties in this case is

to handle changing number of neighbors which would result in a variable length of the observation

vector. Most policy representations, such as neural networks, expect a fixed input dimension.

One possible solution to this problem is to allocate a fixed number of neighbor relations for each agent.

If an agent experiences fewer neighborhood relations, standard values could be used such as a very

high distance and 0 bearing. However, such an approach comes with several drawbacks. First of all, the

size of the resulting representation scales linearly with the number of agents in the system and so does

the number of parameters to be learned. Second, the execution of the learned policy will be limited to

scenarios with the exact same number of agents as present during training. Third, a fixed allocation of

the neighbor relation inevitably destroys the homogeneity of the swarm, since the agents are no longer

treated interchangeably. In particular, using a fixed allocation rule requires that the agents must be

able to discriminate between their neighbors, which might not even be possible in the first place.

To solve these problems, we propose to use histograms over observed neighborhood relations, e.g.,
distances and bearing angles. Such a representation inherently respects the agent homogeneity and

24

3.2. Multi-Agent Learning with Local Communication Protocols

naturally comes with a fixed dimensionality. Hence, it is the canonical choice for the swarm setting. For

our experiments, we consider two different types of representations: 1) concatenated one-dimensional

histograms of distance and bearing and 2) multidimensional histograms. Both types are illustrated in

Figure 3.1. The one-dimensional representation has the advantage of scalability, as it grows linearly

with the number of features. The downside is that potential dependencies between the features are

completely ignored.

Shortest Path Partitions

In many applications, it is important to transmit the location of a point of interest to neighbored agents

that can currently not observe this point due to their limited sensing ability.

We assume that an agent can observe bearing and distance to a point of interest if it is within its

communication radius. The agent then transmits the observed distance to other agents. Agents that can

not see the point of interest might in this case observe a message from another agent containing the

distance to the point of interest. The distance of the sending agent is added to the received distance to

obtain the distance to the point of interest if we would use the sending agent as a via point. Each agent

might now compute several of such distances and transmits the minimum distance it has computed to

indicate the length of the shortest path it has seen.

The location of neighbored agents including their distance of the shortest path information is important

knowledge for the policy, e.g. for navigating to the point of interest. Hence, we adapt the histogram

representation. Each partition now contains the minimum received shortest path distance of an agent

that is located in this position.

3.2.2. Weight Sharing for Policy Networks

The policy maps sequences of past actions and observations to a new action. We use histories of a fixed

length as input to our policy and a feed-forward deep neural network as architecture. To cope with

such high input dimensionality, we propose a weight sharing approach. Each action-observation pair

in an agent’s history is first processed independently with a network using the same weights. After this

initial reduction in dimensionality, the hidden states are concatenated in a subsequent layer and finally

mapped to an output. The homogeneity of agents is achieved by using the same set of parameters for

all policies. A diagram of the architecture is shown in Figure 3.2.

3.2.3. Adaptations to TRPO

In order to apply TRPO to our multi-agent setup, some small changes to the original algorithm have to

be made, similar to the formulation of Gupta, Egorov, and Kochenderfer [58]. First, since we assume

homogeneous agents, we can have one set of parameters of the policy shared by all agents. Since

the agents cannot rely on the global state, the advantage function is redefined as 𝐴(ℎ, 𝑎). In order

to estimate this function, each agent is assigned the same global reward 𝑟 in each time step and all

transitions are treated as if they were executed by a single agent.

25

Local Communication Protocols for Learning Complex Swarm Behaviors

128

at−η, ot−η+1

16

128

at−η+1, ot−η+2

16

128

at−1, ot

16

. . .

. . .

16 × η

2

action

l0,1

l1,1

l2,1

l0,2

l1,2

l2,2

l0,η

l1,η

l2,η

m0

m1

m2

Figure 3.2.: This diagram shows a model of our proposed policy with three hidden layers. The numbers inside the boxes

denote the dimensionalities of the hidden layers. The plus sign denotes concatenation of vectors.

3.3. Experimental Setup

In this section, we briefly discuss the usedmodel and state representation of a single agent. Subsequently,

we describe our two experimental setups and the policy architecture used for the experiments.

3.3.1. Agent Model

The local state of a single agent is modeled by its 2D position and orientation, i.e., 𝑠𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜙𝑖] ∈
S = {[𝑥,𝑦, 𝜙] ∈ R3

: 0 ≤ 𝑥 ≤ 𝑥max, 0 ≤ 𝑦 ≤ 𝑦max, 0 ≤ 𝜙 ≤ 2𝜋}. The robot can only control the

speed of its wheels. Therefore, we apply a force to the left and right side of the agent, similarly to

the wheels of the real robot. Our model of a single agent is inspired by the Colias robot (a detailed

description of the robot specifications can be found in Arvin et al. [14]), but the underlying principles

can be straightforwardly applied to other swarm settings with limited observations. Generally, our

observation model is comprised of the sensor readings of the short and long range IR sensors (later

denoted as ’sensor’ in the evaluations). Furthermore, we augment this observation representation with

the communication protocols developed in the following section. Our simulation is using a 2D physics

engine (Box2D), allowing for correct physical interaction of the bodies of the agents.

3.3.2. Tasks

The focus of our experiments is on tasks where agents need to collaborate to achieve a common goal.

For this purpose, we designed the following two scenarios:

26

3.3. Experimental Setup

Task 1: Building a Graph

In the first task, the goal of the agents is to find and maintain a certain distance to each other. This

kind of behavior is required, for example, in surveillance tasks, where a group of autonomous agents

needs to maximize the coverage of a target area while maintaining their communication links. We

formulate the task as a graph problem, where the agents (i.e. the nodes) try to maximize the number

of active edges in the graph. Herein, an edge is considered active whenever the distance between the

corresponding agent lies in certain range. The setting is visualized in Figure 3.3a. In our experiment, we

provide a positive reward for each edge in a range between 10 cm and 16 cm, and further give negative

feedback for distances smaller than 7 cm. Accordingly, the reward function is

𝑅(𝒔, 𝒂) =
𝑀∑︁
𝑖=1

𝑀∑︁
𝑚>𝑖

1[0.1 m, 0.16 m] (𝑑𝑖𝑚) − 5

𝑀∑︁
𝑖=1

𝑀∑︁
𝑚>𝑖

1[0 m, 0.07 m] (𝑑𝑖𝑚), (3.1)

where 𝑑𝑖𝑚 =
√︁
(𝑥𝑖 − 𝑥𝑚)2 + (𝑦𝑖 − 𝑦𝑚)2 denotes the Euclidean distance between the centers of agent 𝑖

and agent𝑚 and

1[𝑎,𝑏] (𝑥) =
{

1 if 𝑥 ∈ [𝑎, 𝑏],
0 else

is an indicator function. Note that we omit the dependence of 𝑑𝑖𝑚 on the system state 𝑠 to keep the

notion simple.

Task 2: Establishing a Communication Link

The second task adds another layer of difficulty. While maintaining a network, the agents have to locate

and connect two randomly placed points in the state space. A link is only established successfully

if there are communicating agents connecting the two points. Figure 3.3b shows an example with

an active link spanned by three agents between the two points. The task resembles the problem of

establishing a connection between two nodes in a wireless ad-hoc network [19, 157]. In our experiments,

the distance of the two points is chosen to be larger than 75 cm, requiring at least three agents to bridge

the gap in between. The reward is determined by the length of the shortest distance between the two

points 𝑑opt (i.e. a straight line) and the length of the shortest active link 𝑑sp spanned by the agents,

𝑅(𝒔, 𝒂) =
{
𝑑opt

𝑑sp
if link is established

0 otherwise.

In this task, we use the shortest path partitions as communication protocol. Each agent communicates

the shortest path it knows to both points of interests, resulting in two 2-D partitions that are used as

observation input for a single time step.

3.3.3. Policy Architecture

We decided for a policy model with three hidden layers. The first two layers process the observation-

action pairs (𝑎𝑘−1, 𝑜𝑘) of each timestep in a history individually and map it into hidden layers of size

128 and 16. The output of the second layer is then concatenated to form the input of the third hidden

layer which eventually maps to the two actions for the left and right motor.

27

Local Communication Protocols for Learning Complex Swarm Behaviors

(a) Edge task (b) Link task

Figure 3.3.: Illustration of the two cooperative tasks used in this paper. The green dots represent the agents, where the green

ring segments located next to the agents indicate the short range IR front sensors. The outer green circles illustrate the

maximum range in which distances / bearings to other agents can be observed, depending on the used observation model.

(a) Edge task: The red rings show the penalty zones where the agents are punished, the outer green rings indicate the zones

where legal edges are formed. (b) Link task: The red dots correspond to the two points that need to be connected by the

agents.

3.4. Results

We evaluate each task in a standardized environment of size 1 m × 1 m where we initialize ten agents

randomly in the scene. Of special interest is how the amount of information provided to the agents

affects the overall system performance. Herein, we have to keep in mind the general information-

complexity trade-off, i.e., high-dimensional local observations generally provide more information

about the global system state but, at the same time, result in a more complex learning task. Recall that

the information content is mostly influenced by two factors: 1) the length of the history, and 2) the

composition of the observation.

3.4.1. Edge Task

First, we evaluate how the history length 𝜂 affects the system performance. Figure 3.4a shows an

evaluation for 𝜂 = {2, 4, 8} and a weight sharing policy using a two-dimensional histogram over

distances and bearings. Interestingly, we observe that longer observation histories do not show an

increase in the performance. Either the increase in information could not counter the effect of increased

learning complexity, or a history length of 𝜂 = 2 is already sufficient to solve the task. We use these

findings and set the history length to 𝜂 = 2 for the remainder of the experiments.

Next, we analyze the impact of the observation model. Figure 3.4b shows the results of the learning

process for different observation modalities. The first observation is that, irrespective of the used

mode, the agents are able to establish a certain number of edges. Naturally, a complete information of

distances and bearing yields the best performance. However, the independent histogram representation

yields comparable results to the two dimensional histogram. Again, this is due to the aforementioned

complexity trade-off where a higher amount of information makes the learning process more difficult.

28

3.5. Conclusions and Future Work

0 200 400 600 800 1000

0

2,000

4,000

6,000

8,000

TRPO Iterations

A
ve
ra
ge

R
et
u
rn

η=2.0
η=4.0
η=8.0

(a)Comparison of different history lengths

𝜂. (2D histogram)

0 200 400 600 800 1000

0

2,000

4,000

6,000

8,000

TRPO Iterations

A
ve
ra
ge

R
et
u
rn

2D
1D
d
b
sensor

(b) Edge task: Comparison of different ob-

servation models. (𝜂 = 2)

0 200 400 600 800 1000
0

100

200

300

400

TRPO Iterations

A
ve
ra
g
e
R
et
u
rn

2DSP
2D
1D
sensor

(c) Link task: Comparison of different ob-

servation models. (𝜂 = 2)

Figure 3.4.: Learning curves for (a), (b) the edge task and (c) the link task. The curves show the mean values of the average

undiscounted return of an episode (i.e. the sum of rewards of one episode, averaged over the number of episodes for

one learning iteration) over the learning process plus /minus one standard deviation, computed from eight learning trials.

Intuitively, the return in the edge task corresponds to the number of edges formed during an episode of length 500 steps.

In the link task, it is a measure for the quality of the link. Legend: 2DSP: two dimensional histogram over shortest paths,

2D: two-dimensional histogram over distances and bearings, 1D: two independent histograms over distances and bearing, d:

distance only histogram, b: bearing only histogram, sensor: no histogram.

3.4.2. Link Task

We evaluate the link task with raw sensor measurements, count based histograms over distance and

bearing, and the more advanced shortest path histograms over distance and bearing. Based on the

findings of the edge task we keep the history length at 𝜂 = 2. Figure 3.4c shows the results of the

learning process where each observation model was again tested and averaged over 8 trials. Since

at least three agents are necessary to establish a link between the two points, the models without

shortest path information struggle to reliably establish the connection. Their only chance is to spread

as wide as possible and, thus, cover the area between both points. Again, it is interesting to see that

independent histograms over counts seem to be favorable over the 2D histogram. However, both

versions are surpassed by the 2D histogram over shortest paths which yields information about the

current state of the whole network of agents, currently connected to each of the points.

3.5. Conclusions and Future Work

In this paper, we demonstrated that histograms over simple local features can be an effective way for

processing information in robot swarms. The central aspect of this new model is its ability to handle

arbitrary system sizes without discriminating between agents, which makes it perfectly suitable to

the swarm setting where all agents are identical and the number of agents in the neighborhood varies

with time. We use these protocols and an adaptation of TRPO for the swarm setup to learn cooperative

decentralized control policies for a number of challenging cooperative task. The evaluation of our

approach showed that this histogram-based model leads the agents to reliably fulfill the tasks.

Interesting future directions include, for example, the learning of an explicit communication protocol.

Furthermore, we expect that assigning credit to agents taking useful actions should speedup our

learning algorithm.

29

Local Communication Protocols for Learning Complex Swarm Behaviors

Acknowledgments.

The research leading to these results has received funding from EPSRC under grant agreement

EP/R02572X/1 (National Center for Nuclear Robotics). Calculations for this research were conducted

on the Lichtenberg high performance computer of the TU Darmstadt

30

4. Deep Reinforcement Learning for Swarm Systems

This chapter has been published in the Journal of Machine Learning Research [79].

In swarm systems, many identical agents interact with each other to achieve a common goal. Typically,

each agent in a swarm has limited capabilities in terms of sensing and manipulation so that the

considered tasks need to be solved collectively by multiple agents.

A promising application where intelligent swarm systems take a prominent role is swarm robotics

[21]. Robot swarms are formed by a large number of cheap and easy to manufacture robots that can be

useful in a variety of situations and tasks, such as search and rescue missions or exploration scenarios.

A swarm of robots is inherently redundant towards loss of individual robots since usually none of

the robots plays a specific role in the execution of the task. Because of this property, swarm-based

missions are often favorable over single-robot missions (or, let alone, human missions) in hazardous

environments. Behavior of natural swarms, such as foraging, formation control, collective manipulation,

or the localization of a common ‘food’ source can be adapted to aid in these missions [21]. Another

field of application is routing in wireless sensor networks [132] since each sensor in the network can

be treated as an agent in a swarm.

A common method to obtain control strategies for swarm systems is to apply optimization-based

approaches using a model of the agents or a graph abstraction of the swarm [97, 83]. Optimization-

based approaches allow to compute optimal control policies for tasks that can be well modeled, such

as rendezvous or consensus problems [96] and formation control [126], or to learn pursuit strategies

to capture an evader [164]. Yet, these approaches typically use simplified models of the agents / the

task and often rely on unrealistic assumptions, such as operating in a connected graph [39] or having

full observability of the system state [164]. Rule-based approaches use heuristics inspired by natural

swarm systems, such as ants or bees [60]. Yet, while the resulting heuristics are often simple and can

lead to complex swarm behavior, the obtained rules are difficult to adapt, even if the underlying task

changes only slightly.

Recently, deep reinforcement learning (RL) strategies have become popular to solve multi-agent coordi-

nation problems. In RL, tasks are specified indirectly through a cost function, which is typically easier

than defining a model of the task directly or a finding a heuristic for the controller. Having defined a

cost function, the RL algorithm aims to find a policy that minimizes the expected cost. Applying deep

reinforcement learning within the swarm setting, however, is challenging due to the large number of

agents that need to be considered. Compared to single-agent learning, where the agent is confronted

only with observations about its own state, each agent in a swarm can make observations of several

other agents populating the environment and thus needs to process an entire set of information that is

potentially varying in size. Accordingly, two main challenges can be identified in the swarm setting:

1. High state and observation dimensionality, caused by large system sizes.

2. Changing size of the available information set, either due to addition or removal of agents, or

because the number of observed neighbors changes over time.

31

Deep Reinforcement Learning for Swarm Systems

Most current multi-agent deep reinforcement learning methods either concatenate the information

received from different agents [101] or encode it in a multi-channel image, where the image channels

contain different features based on a local view of an agent [147, 162]. However, both types of

methods bare major drawbacks. Since neural network policies assume a fixed input dimensionality,

a concatenation of observations is unsuitable in the case changing agent numbers. Furthermore, a

concatenation disregards the inherent permutation invariance of identical agents in a swarm system

and scales poorly to large system sizes. Top-down image based representations alleviate the issue

of permutation invariance, however, the information obtained from neighboring agents is of mostly

spatial nature. While additional information can be captured by adding more image channels, the

dimensionality of the representation increases linearly with each feature. Furthermore, the discretization

into pixels has limited accuracy due to quantization errors.

In this paper, we exploit the homogeneity of swarm systems and treat the state information perceived

from neighboring agents as samples of a random variable. Based on this model, we then use mean

feature embeddings (MFE) [142] to encode the current distribution of the agents. Each agent gets

a local view of this distribution, where the information obtained from the neighbors is encoded in

the mean embedding. Due to the sample-based view of the collected state information, we achieve

a permutation invariant representation that is furthermore invariant to the number of agents in the

swarm / the number of perceived neighbors.

Mean feature embeddings have so far been used mainly for kernel-based feature representations [55],

but they can be also applied to histograms or radial basis function (RBF) networks. The resulting models

are closely related to the “invariant model” formulated by Zaheer et al. [161]. However, compared to

the summation approach described in their paper, the averaging of feature activations proposed in our

approach yields the desired invariance with respect to the observed agent number mentioned above.

To the best of our knowledge, we are the first to use mean embeddings inside a deep reinforcement

learning framework for swarm systems where both the feature space of the mean embedding as well as

the policy are learned end-to-end.

We test our state representation on various rendezvous and pursuit evasion problems using Trust Region

Policy Optimization (TRPO) [137] as the underlying deep RL algorithm. In the rendezvous problem, the

agents need to find a collective strategy that allows them to meet at some arbitrary location. In the

pursuit evasion domain, a group of agents collectively tries to capture one or multiple evaders.

Policies are learned in a centralized-learning / decentralized-execution fashion fashion, meaning that

during learning data from all agents is collected centrally and used to optimize the parameters as if

there was only one agent. Nonetheless, each agent only has access to its own perception of the global

system state to generate actions from the policy function. We compare our representation to several

deep RL baselines as well as to optimization-based solutions, if available. Herein, we perform our

experiments both in settings with global observability (i.e., all agents are neighbors) and in settings

with local observability (i.e., agents are only locally connected). In the latter setting, we also evaluate

different communication protocols [80] that allow the agents to transmit additional information about

their local graph structure. For example, an agent might transmit the number of neighbors within its

current neighborhood. Previously, such additional information could not be encoded efficiently due to

the poor scalability of the histogram-based approaches.

Our results show that agents using our representation can learn faster and obtain policies of higher

quality, suggesting that the representation as mean embedding is an efficient encoding of the global

state configuration for swarm-based systems. Moreover, mean embeddings are simple to implement

32

4.1. Related Work

inside existing neural network architectures and can be applied to any deep RL algorithm, which makes

the approach applicable in a wide variety of scenarios.

4.1. Related Work

The main contribution of this work lies in the development of a compact representation of state

information in swarm systems, which can easily be used within deepmulti-agent reinforcement learning

(MARL) settings that contain homogeneous agent groups. In fact, our work is mostly orthogonal to

other research in the field of MARL and the presented ideas can be incorporated into most existing

approaches. To provide an overview, we begin with a brief survey of algorithms used in (deep) MARL,

we revisit the basics of mean embedding theory, and we summarize some classic approaches to swarm

control for the rendezvous and pursuit evasion task.

4.1.1. Deep RL

Recently, there has been increasing interest in deep reinforcement learning for swarms and multi-agent

systems in general. For example, Zheng et al. [162] provide a many-agent reinforcement learning

platform based on a multi-channel image state representation, which uses Deep Q-Networks (DQN)

[105] to learn decentralized control strategies in large grid worlds with discrete actions. Gupta, Egorov,

and Kochenderfer [58] show a comparison of centralized, concurrent and parameter sharing approaches

to cooperative deepMARL, using TRPO [137], DDPG [95] and DQN. They evaluate eachmethod on three

tasks, one of which is a pursuit task in a grid world using bitmap-like images as state representation.

A variant of DDPG for multiple agents in Markov games using a centralized action-value function

is provided by [101]. The authors evaluate the method on tasks like cooperative communication,

navigation and others. The downside of a centralized action-value function is that the input space

grows linearly with the number of agents, and hence, their approach scales poorly to large system

sizes. A more scalable approach is presented by [159]. Employing mean field theory, the interactions

within the population of agents are approximated by the interaction of a single agent with the average

effect from the overall population, which has the effect that the action-value function input space stays

constant. Experiments are conducted on a Gaussian squeeze problem, an Ising model, and a mixed

cooperative-competitive battle game. Yet, the paper does not address the state representation problem

for swarm systems.

Omidshafiei et al. [112] investigate hysteretic Q-learning [104] and distillation [131]. They use deep

recurrent Q-networks [74] to solve single and multi-task Dec-POMDP problems. Following this work,

Palmer et al. [117] add leniency [118] to the hysteretic approach to prevent “relative overgeneralization”

of agents. The approach is evaluated on a coordinated multi-agent object transportation problem in a

grid world with stochastic rewards.

Sunehag et al. [147] tackle the “lazy agent” problem in cooperative MARL with a single team reward by

training each agent with a learned additive decomposition of a value function based on the team reward.

Experiments show an increase in performance on cooperative two-player games in a grid world. Rashid

et al. [127] further develop the idea with the insight that a full factorization of the value function is not

necessary. Instead, they introduce a monotonicity constraint on the relationship between the global

value function and each local value function. Results are presented on the StarCraft micro management

domain.

33

Deep Reinforcement Learning for Swarm Systems

Finally, Grover et al. [56] show a framework to model agent behavior as a representation learning

problem. They learn an encoder-decoder embedding of agent policies via imitation learning based on

interactions and evaluate it on a cooperative particle world [107] and a competitive two-agent robo

sumo environment [139]. The design of the policy function in the approach of Mordatch and Abbeel

[107] is similar to ours but the model uses a softmax pooling layer. However, instead of applying

(model-free) reinforcement learning to optimize the parameters of the policy function, they build an

end-to-end differentiable model of all agent and environment state dynamics and calculate the gradient

of the return with respect to the parameters via backpropagation.

An application related to our approach can be found in the work by [49], where the authors use mean

embeddings to learn a centralized controller for object manipulation with robot swarms. Here, the key

idea is to directly embed the swarm configuration into a reproducing kernel Hilbert space, whereas

our approach is based on embedding the agent’s local view. Furthermore, using kernel-based feature

spaces for the mean embedding scales poorly in the number of samples and in the dimensionality of

the embedded information.

4.1.2. Optimization-Based Approaches for Swarm Systems

To provide a concise summary of the most relevant related work, we concentrate on optimization-based

approaches that derive decentralized control strategies for the rendezvous and pursuit evasion problem

considered in this paper. Ji and Egerstedt [84] derive a control mechanism preserving the connectedness

of a group of agents with limited communication abilities for the rendezvous and formation control

problem. The method focuses on high-level control with single integrator linear state manipulation and

provides no rules for agents that are not part of the agent graph. Similarly, Gennaro and Jadbabaie [50]

present a decentralized algorithm to maximize the connectivity (characterized by an exponential model)

of a multi-agent system. The algorithm is based on the minimization of the second smallest eigenvalue

of the Laplacian of the proximity graph. An approach providing a decentralized control strategy for

the rendezvous problem for nonholonomic agents can be found in the work by [39]. Using tools from

nonsmooth Lyapunov theory and graph theory, the stability of the overall system is examined. A

control strategy for the pursuit evasion problem with multiple pursuers and single evader that we

investigate in more detail later in this paper was proposed [164]. The authors derive decentralized

control policies for the pursuers and the evader based on the minimization of Voronoi partitions. Again,

the control mechanism is for high-level linear state manipulation. Furthermore, the method assumes

visibility of the evader at all times. A survey on pursuit evasion in mobile robotics in general is provided

by [36].

4.1.3. Analytic Approaches

Another line of work concerned with the curse of dimensionality can be found in the area of multi-

player reach-avoid games. Chen, Zhou, and Tomlin [34], for example, look at pairwise interactions

between agents. This way, they are able to use the Hamilton-Jacobian-Isaacs approach to solve a partial

differential equation in the joint state space of the players. Similar work can be found in [33, 32, 163].

34

4.2. Background

4.2. Background

In this section, we give a short overview of Trust Region Policy Optimization and mean embeddings of

distributions.

4.2.1. Trust Region Policy Optimization

Trust Region Policy Optimization is an algorithm to optimize control policies in single-agent rein-

forcement learning problems [137]. These problems are formulated as Markov decision processes

(MDPs), which can be compactly written as a tuple ⟨S,A, 𝑃, 𝑅⟩. In an MDP, an agent chooses an action

𝑎 ∈ A according to some policy 𝜋 (𝑎 | 𝑠) based on its current state 𝑠 ∈ S and progresses to state 𝑠′ ∈ S
according to the transition dynamics 𝑃 , i.e., 𝑠′ ∼ 𝑃 (𝑠′ | 𝑠, 𝑎). After each step, the agent receives a reward

𝑟 = 𝑅(𝑠, 𝑎), provided by the reward function 𝑅, which judges the quality of its decision. The goal of the

agent is to find a policy that maximizes the cumulative reward achieved over a certain period of time.

In TRPO, the policy is parametrized by a parameter vector 𝜃 containing the weights and biases of a

neural network. In the following, we denote this parametrized policy as 𝜋𝜃 . The reinforcement learning

objective is expressed as finding a new policy that maximizes the expected advantage function of the

current policy 𝜋old, i.e., 𝐽
TRPO = E

[
𝜋𝜃
𝜋𝜃

old

𝐴𝜋old (𝑠, 𝑎)
]
, where 𝐴𝜋old (𝑠, 𝑎) = 𝑄𝜋old (𝑠, 𝑎) − 𝑉 𝜋old (𝑠). Herein,

the state-action value function 𝑄𝜋old (𝑠, 𝑎) is typically estimated via trajectory rollouts, while for the

value function 𝑉 𝜋old (𝑠) linear or neural network baselines are used that are fitted to the Monte-Carlo

returns, resulting in an estimate 𝐴(𝑠, 𝑎) for the advantage function. The objective is to be maximized

subject to a fixed constraint on the Kullback-Leibler (KL) divergence of the policy before and after the

parameter update, which ensures that the updates to the policy parameters 𝜃 are bounded, in order to

avoid divergence of the learning process. The overall optimization problem is summarized as

maximize

𝜃
E

[
𝜋𝜃

𝜋𝜃old
𝐴(𝑠, 𝑎)

]
subject to E[𝐷KL(𝜋𝜃old | |𝜋𝜃)] ≤ 𝛿.

The problem is approximately solved using conjugate gradient optimization, after linearizing the

objective and quadratizing the constraint.

4.2.2. Mean Embeddings

Our work is inspired by the idea of embedding distributions into reproducing kernel Hilbert spaces

[142] from where we borrow the concept of mean embeddings. A probability distribution 𝑃 (𝑋) can be

represented as an element in a reproducing kernel Hilbert space by its expected feature map (i.e., the

mean embedding),

𝜇𝑋 = E𝑋 [𝜙 (𝑋)],

where𝜙 (𝑥) is a (possibly infinite dimensional) feature mapping. Given a set of observations {𝑥1, . . . , 𝑥𝑚},
drawn i.i.d. from 𝑃 (𝑋), the empirical estimate of the expected feature map is given by

𝜇𝑋 =
1

𝑚

𝑚∑︁
𝑖=1

𝜙 (𝑥𝑖) .

35

Deep Reinforcement Learning for Swarm Systems

Using characteristic kernel functions 𝑘 (𝑥, 𝑥 ′) = ⟨𝜙 (𝑥), 𝜙 (𝑥 ′)⟩, such as Gaussian RBF or Laplace kernels,

mean embeddings can be used, for example, in two-sample tests [55] and independence tests [54].

A characteristic kernel is required to uniquely identify a distribution based on its mean embedding.

However, this assumption can be relaxed to using finite feature spaces if the objective is merely to

extract relevant information from a distribution such as, in our case, the information needed for the

policy of the agents.

4.3. Deep Reinforcement Learning for Swarms

The reinforcement learning algorithm presented in the last section has been originally designed for

single-agent learning. In order to apply this algorithm to the swarm setup, we switch to a different

problem domain and show the implications on the learning algorithm. Policies in this context are then

optimized in a centralized–learning / decentralized–execution fashion.

4.3.1. Problem Domain

The problem domain for our swarm system is best described as a swarm MDP environment [143].

The swarm MDP can be regarded as a special case of a decentralized partially observable Markov

decision process (Dec-POMDP) [23] and is constructed in two steps. First, an agent prototype is defined

as a tuple A = ⟨S,O,A, 𝜋⟩, determining the local properties of an agent in the system. Herein, S
denotes the set of the agent’s local states, O is the set of possible local observations, A is the set of

actions available to the agent, and 𝜋 : O × A → [0, 1] is the agent’s stochastic control policy. Based
on this definition, the swarm MDP is constructed as ⟨𝑁,A, 𝑃,𝑂, 𝑅⟩, where 𝑁 is the number of agents

in the system and A is the aforementioned agent prototype. The coupling of the agents is specified

through a global state transition model 𝑃 : S𝑁 × S𝑁 × A𝑁 → [0,∞) and an observation model

𝑂 : S𝑁 × {1, . . . , 𝑁 } → O, which determines the local observation 𝒐𝑖 ∈ O for agent 𝑖 at a given swarm

state 𝒔 ∈ S𝑁 , i.e., 𝒐𝑖 = 𝑂 (𝒔, 𝑖). Finally, 𝑅 : S𝑁 × A𝑁 → R is the global reward function, which encodes

the cooperative task for the swarm by providing an instantaneous reward feedback 𝑅(𝒔, 𝒂) according
to the current swarm state 𝒔 and the corresponding joint action assignment 𝒂 ∈ A𝑁

of the agents. The

specific state dynamics and observation models considered in this paper are described in Section 4.4.

The model encodes two important properties of swarm networks: First, all agents in the system are

assumed to be identical, and accordingly, they are all assigned the same decentralized policy 𝜋 . This is

an immediate consequence of the two-step construction of the model, which implies that all agents

share the same internal architecture. Second, the agents are only partially informed about the global

system state, as prescribed by the observation model 𝑂 . Note that both the transition model and the

observation model are assumed to be invariant to permutations of the agents in order to ensure the

homogeneity of the system. For details, see [143].

4.3.2. Local Observation Models

The local observation 𝒐𝑖 introduced in the last section is a combination of observations 𝑜𝑖
loc

an agent

makes about local properties (like the agent’s current velocity or its distance to a wall) and observations

𝑂𝑖 of other agents. In order to describe the observation model used for the agents, we use an interaction

graph representation of the swarm. This graph is given by nodes 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } corresponding
to the agents in the swarm and an edge set 𝐸 ⊂ 𝑉 ×𝑉 , which we assume contains unordered pairs

36

4.3. Deep Reinforcement Learning for Swarms

of the form {𝑣𝑖 , 𝑣 𝑗 } indicating that agents 𝑖 and 𝑗 are neighbors. The interaction graph is denoted as

G = (𝑉 , 𝐸). If both the set of nodes and the set of edges are not changing, we call G a static interaction

graph; if either of the set undergoes changes, we instead refer to G as a dynamic interaction graph.

The set of neighbors of agent 𝑖 in the graph G is given by

NG (𝑖) = { 𝑗 | {𝑣𝑖 , 𝑣 𝑗 } ∈ 𝐸}.

Within this neighborhood, agent 𝑖 can sense local information about other agents, for example distance

or bearing to each neighbor. We denote the information agent 𝑖 receives from agent 𝑗 as 𝑜𝑖, 𝑗 = 𝑓 (𝑠𝑖 , 𝑠 𝑗),
which is a function of the local states of agent 𝑖 and agent 𝑗 . The observation 𝑜𝑖, 𝑗 is available for agent 𝑖

only if 𝑗 ∈ NG (𝑖). Hence, the complete state information agent 𝑖 receives from all neighbors is given

by the set 𝑂𝑖 =
{
𝑜𝑖, 𝑗 | 𝑗 ∈ NG (𝑖)

}
.

As the observations of other agents are summarized in form of sets {𝑂𝑖}, we require an efficient

encoding that can be used as input to a neural network policy. In particular, it must meet the following

two properties:

• The encoding needs to be invariant to the indexing of the agents, respecting the unorderedness

of the elements in the observation set. Only by exploiting the system’s inherent homogeneity we

can escape the curse of dimensionality.

• The encoding must be applicable to varying set sizes because the local graph structure might

change dynamically. Even if each agent can observe the entire system at all times, the encoding

should be applicable for different swarm sizes.

4.3.3. Local Communication Models

In addition to perceiving local state information of neighboring agents, the agents can also communicate

information about the interaction graph G [80]. For example, agent 𝑗 can transmit the number of

perceived neighbors to agent 𝑖 . Furthermore, the agents can also perform more complex operations

on their local neighborhood graph. For example, they could compute the shortest distance to a target

point (such as an evader) that is perceived by at least one agent within their local sub-graph. Hence, by

using local communication protocols, observation 𝑜𝑖, 𝑗 can contain information about both, the local

states 𝑠𝑖 and 𝑠 𝑗 as well as the graph G, i.e., 𝑜𝑖, 𝑗 = 𝑓 (𝑠𝑖 , 𝑠 𝑗 ,G).

4.3.4. Mean Embeddings as State Representations for Swarms

In the simplest case, the local observation 𝑜𝑖, 𝑗 that agent 𝑖 receives of agent 𝑗 is composed of the distance

and the bearing angle of agent 𝑖 to agent 𝑗 . However, 𝑜𝑖, 𝑗 can also contain more complex information,

such as relative velocities or orientations. A straightforward way to represent the information set 𝑂𝑖

is to concatenate the local quantities {𝑜𝑖, 𝑗 } 𝑗 into a single observation vector. However, as mentioned

before, this representation has various drawbacks as it ignores the permutation invariance inherent

to a homogeneous agent network. Furthermore, it grows linearly with the number of agents in the

swarm and is, therefore, limited to a fixed number of neighbors when used in combination with neural

network policies.

To resolve these issues, we treat the elements in the information set 𝑂𝑖 as samples from a distribution

that characterizes the current swarm configuration, i.e., 𝑜𝑖, 𝑗 ∼ 𝑝𝑖 (· | s). We can now use an empirical

encoding of this distribution in order to achieve permutation invariance of the elements of 𝑂𝑖 as well

37

Deep Reinforcement Learning for Swarm Systems

neural network embedding

64

oi,1

64

oi,2

φNN

Oi

64

oi,N

. . .

64

action

oiloc

(a) neural network embedding policy network

64

φRBF/φHIST

64

action

oiloc

(b) RBF and histogram

embedding policy

64

concat(Oi)

64

action

oiloc

(c) policy network for

concatenation

Figure 4.1.: Illustration of (a) the neural network mean embedding policy, (b) the network architecture used for the RBF and

histogram representation, and (c) for the simple concatenation of observations. The numbers inside the boxes denote the

dimensionalities of the hidden layers. The color coding in (a) highlights which layers share the same weights. The plus sign

denotes the mean of the feature activations.

as flexibility to the size of 𝑂𝑖 . As highlighted in Section 4.2.2, a simple way is to use a mean feature

embedding, i.e.,

𝜇𝑂𝑖 =
1

|𝑂𝑖 |
∑︁

𝑜𝑖,𝑗 ∈𝑂𝑖

𝜙 (𝑜𝑖, 𝑗),

where 𝜙 defines the feature space of the mean embedding. The input dimensionality to the policy is

given by the dimensionality of the feature space of the mean embedding and, hence, it does not depend

on the size of the information set 𝑂𝑖 any more. This allows us to use the embedding 𝜇𝑂𝑖 as input to a

neural network used in deep RL. In the following sections, we describe different feature spaces that can

be used for the mean embedding. Figure 4.1 illustrates the resulting policy architectures with further

details given in Appendix A.6.

4.3.4.1. Neural Network Feature Embeddings

In line with the deep RL paradigm, we propose to use a neural network as feature mapping 𝜙NN

whose parameters are determined by the reinforcement learning algorithm. Using a neural network to

define the feature space allows us to handle high dimensional observations, which is not feasible with

traditional approaches such as histograms [80]. In our experiments, a rather shallow architecture with

one layer of RELU units already performed very well, but deeper architectures could be used for more

complex applications. To the best of our knowledge, we present the first approach for using neural

networks to define the feature space of a mean embedding.

4.3.4.2. Histograms

An alternative feature space are provided by histograms, which can be related to image-like representa-

tions. In this approach, we discretize the space of certain features, such as the distance and bearing

to other agents, into a fixed number of bins. This way, we can collect information about neighboring

38

4.3. Deep Reinforcement Learning for Swarms

agents in the form of a fixed-size multi-dimensional histogram. Herein, the histogram bins define

a feature mapping 𝜙HIST
using a one-hot-coding for each observed agent. A detailed description of

this approach can be found in our previous work [80]. While the approach works well in discrete

environments where each cell is only occupied by a single agent, the representation can lead to blurring

effects between agents in the continuous case. Moreover, the histogram approach does not scale well

with the dimensionality of the feature space.

4.3.4.3. Radial Basis Functions

A specific problem of the histogram approach is the hard assignment of agents into bins, which results

in abrupt changes in the observation space when a neighboring agent moves from one bin to another.

A more fine-grained representation can be achieved by using RBF networks with a fixed number of

basis functions evenly distributed over the observation space. The resulting feature mapping 𝜙RBF
is

then defined by the activations of each basis function and can be seen as a “soft-assigned” histogram.

However, both representations (histogram and RBF) suffer from the curse of dimensionality, as the

number of required basis functions typically increases exponentially with the number of dimensions of

the observation vector.

4.3.5. Other Representation Techniques

Inspired by the work of Mordatch and Abbeel [107], we also investigate a policy function that uses

a softmax pooling layer instead of the mean embedding. The elements of the pooling layer 𝜓 =

[𝜓1, . . . ,𝜓𝐾] are given by

𝜓𝑘 =

∑
𝑜𝑖,𝑗 ∈𝑂𝑖 exp

(
𝛼𝜙𝑘 (𝑜𝑖, 𝑗)

)
𝜙𝑘 (𝑜𝑖, 𝑗)∑

𝑜𝑖,𝑗 ∈𝑂𝑖 exp (𝛼𝜙𝑘 (𝑜𝑖, 𝑗))
for each feature dimension of 𝜙 = [𝜙1, . . . , 𝜙𝐾] with a temperature parameter 𝛼 . Note that the represen-

tation becomes identical to our mean embedding for 𝛼 = 0, while setting 𝛼 ≫ 1 results in max-pooling

and 𝛼 ≪ −1 corresponds to min-pooling. In our experiments, we choose 𝛼 = 1 as a trade-off between a

mean embedding and max-pooling and additionally study the performance of max-pooling over each

individual feature dimension.

4.3.6. Adaption of TRPO to the Homogeneous Swarm Setup

Gupta, Egorov, and Kochenderfer [58] present a parameter-sharing variant of TRPO that can be used in

a multi-agent setup. During the learning phase, the algorithm collects experiences made by all agents

and uses these experiences to optimize one policy with a single set of parameters 𝜃 . Since, in the swarm

setup, we assume homogeneous agents that are potentially indistinguishable to each other, we omit

the agent index introduced by [58]. The optimization problem is expressed using advantage values

based on all agents’ observations. During execution, however, each agent has only access to its own

perception. Hence, the terminology of centralized–learning / decentralized–execution is chosen.

During the trajectory roll-outs, we use a sub-sampling strategy to achieve a trade-off between the

number of samples and the variability in advantage values seen by the learning algorithm. Our

implementation is based on the OpenAI baselines version of TRPO with 10 MPI workers, where each

worker samples 2048 time steps, resulting in 2048𝑁 samples. Subsequently, we randomly choose the

data of 8 agents, yielding 2048 × 10 × 8 = 163840 samples per TRPO iteration. The chosen number of

samples worked well throughout our experiments and was not extensively tuned.

39

Deep Reinforcement Learning for Swarm Systems

4.4. Experimental Results

Our experiments are designed to study the use of mean embeddings in a cooperative swarm setting.

The three main aspects are:

1. How do the different mean embeddings (neural networks, histograms and RBF representation)

compare when provided with the same state information content?

2. How does the mean embedding using neural networks perform when provided with additional

state information while keeping the dimensionality of the feature space constant?

3. How does the mean embedding of neural network features compare against other pooling

techniques?

In this section, we first introduce the swarm model used for our experiments and present the results of

different evaluations afterwards. During a policy update, a fixed number of 𝐾 trajectories are sampled,

each yielding a return of 𝐺𝑘 =
∑𝑇
𝑡=1

𝑟 (𝑡). The results are presented in terms of the average return,

denoted as 𝐺 = 1

𝐾

∑𝐾
𝑘=1

𝐺𝑘 .

4.4.1. Swarm Models

Our agents are modeled as unicycles [a commonly used agent model in mobile robotics; see, for example,

42], where the control parameters either manipulate the linear and angular velocities 𝑣 and 𝜔 (single

integrator dynamics) or the corresponding accelerations ¤𝑣 and ¤𝜔 (double integrator dynamics). In the

single integrator case, the state of an agent is defined by its location 𝒙 = (𝑥,𝑦) and orientation 𝜙 . In

case of double integrator dynamics, the agent is additionally characterized by its current velocities.

The exact state definition and kinematic models can be found in Appendix A.1. Note that these agent

models are more complex than what is typically considered in optimization-based approaches, which

mostly assume single integrator dynamics directly on 𝒙 . Depending on the task, we either opt for

a closed state space where the limits act as walls, or a periodic toroidal state space where agents

exceeding the boundaries reappear on the opposite side of the space. Either way, the state is bounded

by 𝑥max = 𝑦max = 100.

We study two different observation scenarios for the agents, i.e., global observability and local observ-

ability. In the case of global observability, all agents are neighbors, i.e.

NG (𝑖) = { 𝑗 ∈ {1, . . . , 𝑁 } | 𝑖 ≠ 𝑗},

which corresponds to a fully connected static interaction graph. For the local observability case, we

use Δ-disk proximity graphs, where edges are formed if the distance 𝑑𝑖, 𝑗 =
√︁
(𝑥𝑖 − 𝑥 𝑗)2 + (𝑦𝑖 − 𝑦 𝑗)2

between agents 𝑖 and 𝑗 is less than a pre-defined cut-off distance 𝑑𝑐 for communication, resulting in a

dynamic interaction graph. The neighborhood set of the graph is then defined as

NG (𝑖) = { 𝑗 ∈ {1, . . . , 𝑁 } | 𝑖 ≠ 𝑗, 𝑑𝑖, 𝑗 ≤ 𝑑𝑐 }.

For a detailed description of all observational features available to the agents in the tasks, see Appen-

dices A.2 and A.3.

40

4.4. Experimental Results

agent i

agent j
∆νi,j

di,j

νi
νj

φi,j

θi,j

Figure 4.2.: Illustration of two neighboring agents facing the direction of their velocity vectors 𝜈𝑖 and 𝜈 𝑗 , along with the

observed quantities, shown with respect to agent 𝑖 . The observed quantities are the bearing 𝜙𝑖, 𝑗 to agent 𝑗 , agent 𝑗 ’s relative

orientation 𝜃𝑖, 𝑗 to agent 𝑖 , their distance 𝑑𝑖, 𝑗 and a relative velocity vector Δ𝜈𝑖, 𝑗 = 𝜈𝑖 − 𝜈 𝑗 . In this trivial example, agent 𝑖’s

observed neighborhood size as well as the neighborhood size communicated by agent 𝑗 are |N (𝑖) | = |N (𝑗) | = 1.

4.4.2. Rendezvous

In the rendezvous problem, the goal is to minimize the distances between all agents. The reason why

we choose this experiment is because a simple optimization-based baseline controller can be defined by

the consensus protocol,

¤𝒙𝑖 = −
∑︁
𝑗∈N(𝑖)

(𝒙𝑖 − 𝒙 𝑗),

where 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖) denotes the location of agent 𝑖 . To make the solution compatible to the double

integrator agent model, we make use of a PD-controller (see Appendix A.1 for details). The reward

function for the problem can be found in Appendix A.5.1.

We evaluate different observation vectors 𝑜𝑖, 𝑗 which are fed into the policy. To compare the histogram

and RBF embedding with the proposed neural network approach, we restrict the basic observation
model (see below) to a set of two features: the distance 𝑑𝑖, 𝑗 between two agents and the corresponding

bearing 𝜙𝑖, 𝑗 . This restriction allows for a comparison to the optimization-based consensus protocol,

which is based on displacements (an equivalent formulation of distance and bearing). To show that the

neural network embeddings can be used with more informative observations, we further introduce

an extended set and a communication (comm) set. These sets may include relative orientations 𝜃 𝑖, 𝑗 or

relative velocities Δ𝜈𝑖, 𝑗 (depending on the agent dynamics), as well as the own neighborhood size and

those of the neighbors. An illustration of these quantities can be found in Figure 4.2.

4.4.2.1. Global Observability

First, we study the rendezvous problem with 20 agents in the global observability setting with double

integrator dynamics to illustrate the algorithm’s ability to handle complex dynamics. To this end, we

compare the performances of policies using histogram, RBF and neural network embeddings on the

basic set, as well as neural network embeddings on the extended set. The observations 𝑜𝑖, 𝑗 in the basic
set comprise the distance 𝑑𝑖, 𝑗 and bearing 𝜙𝑖, 𝑗 . In the extended set, which is processed only via neural

network embeddings, we additionally add neighboring agents’ relative orientations 𝜃 𝑖, 𝑗 and velocities

41

Deep Reinforcement Learning for Swarm Systems

0 100 200 300 400 500
-500

-100

-50

-10

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

NN+ NN
RBF HIST
CONCAT+

(a) 20 agents with global observability

0 100 200 300 400 500

-1000

-500

-100

-50

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

NN++
NN+
RBF

(b) 20 agents with local observability

Figure 4.3.: Learning curves for the rendezvous task with different observation models. The curves show the median of the

average return 𝐺 based on the top five trials on a log scale. Legend: NN++: neural network mean embedding of comm set,

NN+: neural network mean embedding of extended set, NN: neural network embedding of basic set, RBF: radial basis function
embedding of basic set, HIST: histogram embedding of basic set, CONCAT+: simple concatenation of extended set.

Δ𝜈𝑖, 𝑗 . The local properties 𝑜𝑖
loc

consist of a shortest distance and orientation to the closest boundary,

i.e., 𝑑𝑖
wall

and 𝜙𝑖
wall

. The sets are summarized as follows:

Basic : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}

Extended : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 , Δ𝜈𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}.

The results are shown in Figure 4.3a. On first sight, they reveal that all shown methods eventually find

a successful strategy, with the histogram approach showing worst performance. Upon a closer look,

it can be seen that the best solutions are found with the neural network embedding, in which case

the learning algorithm also converges faster, demonstrating that this form of embedding serves as a

suitable representation for deep RL. However, there are two important things to note:

• The differences between the approaches seem to be small due to the wide range of obtained

reward values, but the NN+ method brings in fact a significant performance gain. Compared

to the NN and RBF embedding, the performance of the learned NN+ policy is ∼10% better in

terms of the average return of an episode (Figure 4.3a) and almost twice as good (∼4 × 10
−2

versus ∼8 × 10
−2
) in terms of the mean distance between agents at the steady state solution after

around 200 time steps (Figure 4.5a). Furthermore, the NN+ embedding reaches the mean distance

achieved by the NN and RBF embeddings roughly 20 to 30 time steps earlier, which corresponds

to an improvement of ∼25%.

• Although the performance gain of NN+ can be partly explained by the use of the extended feature

set, experiments with the same feature set using the histogram / RBF approach did not succeed
to find solutions to the rendezvous problem; hence, the corresponding results are omitted. The

reason is that the dimensionality of the input space scales exponentially for the histogram / RBF

approach while only linearly for the neural network embedding, which results in a more compact

feature representation that keeps the learning problem tractable.

Together, these two observations suggest that the neural network embedding provides a suitable learning

architecture for deep RL, whereas the histogram / RBF approach is only suited for low-dimensional

spaces.

Figure 4.4 shows a visualization of a policy using the neural network mean embedding of the extended
set. After random initialization, the agents’ locations quickly converge to a single point. Figure 4.5

42

4.4. Experimental Results

t = 0 t = 30

t = 50 t = 90

(a) Snapshots (b) Full episode

Figure 4.4.: Visualization of a learned policy for the pursuit evasion task. The policy is learned and executed by 10 agents

using a neural network mean embedding of the extended set. Pursuers are illustrated in blue, the evader is highlighted in red.

Visualization of a learned policy for the rendezvous task. The policy is learned and executed by 20 agents using a neural

network mean embedding of the extended set.

shows performance evaluations of the best policies found with each of the mean embedding approaches.

We plot the evolution of the mean distance between all agents over 1000 episodes with equal starting

conditions. We also include the performance of the PD-controller defined in Appendix A.1. It can be

seen in Figures 4.5a and 4.5c that the policies using the neural network embeddings decrease the mean

distance most quickly and also find the best steady-state solutions among all learning approaches. While

the optimization-based solution (PD) eventually drives the mean distance to zero, a small error remains

for the learning-based approaches. However, the learned policies are faster in reducing the distance

and therefore show a better average reward. Although the optimization-based policy is guaranteed to

find an optimal stationary solution, the approach is build for simpler dynamics and hence performs

suboptimally in the considered scenario. Note, that the controller gains for this approach have been

tuned manually to maximize performance.

In order to show the generalization abilities of the embeddings, we finally evaluate the obtained policies

(except for the concatenation) with 100 agents. The results are displayed in Figure 4.5b. Again, the

neural network embedding of the extended set is quickest in reducing the inter-agent distances, resulting
in the best overall performance.

4.4.2.2. Local Observability

The local observability case is studied with 20 agents and a communication cut-off distance of 𝑑𝑐 = 40.

Due to the increased difficulty of the task, we resort to single integrator dynamics for this experiment.

Again, we evaluate the basic and the extended set, which in this case contains the single integrator state

information. Accordingly, we remove the relative velocities from the information sets. Moreover, we

employ a local communication strategy that transmits the number of observed neighbors as additional

information. Note that this information can be used by the agents to estimate in which direction the

center of mass of the swarm is located.

43

Deep Reinforcement Learning for Swarm Systems

0 100 200 300 400 500
10−2

10−1

100

101

102

t

m
ea
n
d
is
ta
n
ce

NN+
NN
RBF
HIST
CONCAT+
Consensus

(a) 20 agents (global observability)

0 100 200 300 400 500
10−2

10−1

100

101

102

t

m
ea
n
d
is
ta
n
ce

NN+
NN
RBF
HIST
Consensus

(b) 100 agents (global observability)

0 200 400 600 800 1,000
10−1

100

101

102

t

m
ea
n
d
is
ta
n
ce

NN++
NN+
RBF

(c) 20 agents (local observability)

0 200 400 60080 1,000
10−1

100

101

102

t

m
ea
n
d
is
ta
n
ce

NN++
NN+
RBF

(d) 10 agents (local observability)

Figure 4.5.: Comparison of the mean distance between agents in the rendezvous experiment achieved by the best learned

policies and the consensus protocol. In (a) and (b), the policy is learned with 20 agents and executed by 20 and 100 agents,

respectively. In (c) and (d), the policy is learned with 20 agents and executed by 20 and 10 agents. Results are averaged over

1000 episodes with identical starting conditions.

While the received neighborhood sizes {|N (𝑗) |} 𝑗∈N(𝑖) are treated as part of agent 𝑖’s local observation

of the swarm, the own perceived neighborhood size |N (𝑖) | is considered as part of the local features

𝑜𝑖
loc
. The observation models for the local observability case are thus summarized as:

Basic : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}

Extended : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}

Comm : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 , |N (𝑗) |} 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall

, |N (𝑖) |}.

For the experiment, we limit our comparison to RBF embeddings (which showed best performance

among all non-neural-network solutions) of the basic set and neural network embeddings of the extended
set and the comm set. The results are illustrated in Figure 4.3b, which shows that the neural network

embeddings lead to a quicker learning progress. Furthermore, by introducing the commmodel, a higher

return is achieved. Compared to the global observability case, however, the learning process exhibits

an increased variance caused by the information loss in the reward signal (see Appendix A.5).

Figure 4.5c illustrates the performances of the learned policies. Again, the neural network embedding

is quicker in reducing the inter-agent distances and converges to better steady-state solutions. In order

to test the efficacy of the communication protocol, we further evaluate the learned policies with 10

agents. The results are displayed in Figure 4.5d. As expected, the performance decreases due to the

lower chance of agents seeing each other but we still notice a benefit caused by the communication.

44

4.4. Experimental Results

0 100 200 300 400 500

-100

-50

-10

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

NN+
NN
RBF
HIST
CONCAT+

(a) 10 agents with global observability

0 200 400 600 800 1,000

-1000

-500

-100

-50

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

NN++
NN+
RBF

(b) 20 agents with local observability

Figure 4.6.: Learning curves for the pursuit evasion task with different observation models. The curves show the median of

the average return𝐺 based on the top five trials on a log scale. Legend: NN++: neural network mean embedding of comm set,

NN+: neural network mean embedding of extended set, RBF: radial basis function embedding of basic set, HIST: histogram
embedding of basic set, CONCAT+: concatenation of extended set.

4.4.3. Pursuit Evasion with a Single Evader

Our implementation of the pursuit evasion scenario is based on the work by [164], from which we

adopt the evader strategy. The strategy is based on Voronoi regions, which the pursuers try to minimize

and the evader tries to maximize. While the original paper considers a closed world, we change the

world type from closed to periodic, thereby making it impossible to trap the evader in a corner. In

order to encourage a higher level of coordination between the agents, we set the evader’s maximum

velocity to twice the pursuers’ maximum velocity. An episode ends once the evader is caught, i.e., if the

distance of the closest pursuer is below a certain threshold. In all our experiments, the evader policy is

fixed and not part of the learning process. The reward function for the problem is based on the shortest

distance of the closest pursuer and can be found in Appendix A.5.2.

4.4.3.1. Global Observability

Again, we study the global observability case with ten agents. Since the pursuit of an evader is a more

challenging task already, we reduce the movement complexity to single integrator dynamics. The basic
and extended set are equal to those in the rendezvous experiment with single integrator dynamics, with

additional information about the evader in the local properties 𝑜𝑖
loc
. In here, we add the distance 𝑑𝑖,𝑒

and bearing 𝜙𝑖,𝑒 of agent 𝑖 to the evader 𝑒 . Accordingly, the observation sets are given as:

Basic : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall

, 𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 }
Extended : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 } 𝑜𝑖

loc
= {𝑑𝑖

wall
, 𝜙𝑖

wall
, 𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 }.

The results in Figure 4.6a reveal that successful strategies can be obtained with all methods. However,

this time, a clear advantage can be seen for the policies using neural network mean embeddings of

the extended set, both in terms of behavior quality and in the number of samples necessary to find the

solution.

Figure 4.7 illustrates the strategy that such a policy exerts. After random initialization, the agents first

spread in a way that leaves no possibility for the evader to increase its Voronoi region, thereby keeping

the evader almost on the same spot. Once this configuration is reached, they surround the evader in a

45

Deep Reinforcement Learning for Swarm Systems

t = 0 t = 100

t = 110 t = 121

(a) snapshots (b) full episode

Figure 4.7.: Visualization of a learned policy for the pursuit evasion task. The policy is learned and executed by 10 agents

using a neural network mean embedding of the extended set. Pursuers are illustrated in blue, the evader is highlighted in red.

circular pattern and start to reduce the distance until one pursuer successfully reaches the distance

threshold.

To investigate the performance of the best mean embedding policies (learned with 10 agents), we

estimate the corresponding probabilities that the evader is caught within a certain time frame. For the

sake of completeness, we also include the method proposed by [164], which was originally not designed

for a setup with a faster evader, though. The results are plotted in Figure 4.8 as the fraction of episodes

ending at the respective time instant, averaged over 1000 episodes. The plot in Figure 4.8b reveals that

the evader may be caught using all presented methods if the policies are executed for long time periods.

As already indicated by the learning curves, using a neural network mean embedding representation

yields the quickest capture among all methods. The additional information in the extended set further

increases performance.

Next, we examine the generalization abilities of the learned policies, this time on scenarios with 5, 20

and 50 agents (Figures 4.8a, 4.8c and 4.8d). Increasing the amount of agents leads to a quicker capture

for all methods; however, the best performance is still shown by the agents executing a neural network

policy based on embeddings of the extended set. Interestingly, when using fewer agents than in the

original setup (Figure 4.8a), all methods struggle to capture the evader. After inspection of the behavior,

we found that the strategy of establishing a circle around the evader causes too large gaps between the

agents through which the evader can escape.

4.4.3.2. Local Observability

The local observability case is studied with 20 agents and a communication cut-off distance of 𝑑𝑐 = 40.

Additionally, we introduce an observation radius 𝑑𝑜 = 20 within which the pursuers can observe the

distance and bearing to the evader. We reuse the basic and extended set from last section and modify

the comm set to include the shortest path information of other agents in the neighborhood of agent

𝑖 to the evader. This way, each agent 𝑖 can compute a shortest path to the evader over a graph of

46

4.4. Experimental Results

0 200 400 600 800 1,000
0.0

0.2

0.4

0.6

0.8

1.0

t

p
(e
va
d
er

ca
u
g
h
t)

NN+
NN
RBF
HIST
Voronoi

(a) 5 agents

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

t

p
(e
va
d
er

ca
u
gh

t)

NN+
NN
RBF
HIST
Voronoi
Concat

(b) 10 agents

0 50 100 150
0.0

0.2

0.4

0.6

0.8

1.0

t

p
(e
va
d
er

ca
u
gh

t)

NN+
NN
RBF
HIST
Voronoi

(c) 20 agents

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

t

p
(e
va
d
er

ca
u
gh

t)
NN+
NN
RBF
HIST
Voronoi

(d) 50 agents

Figure 4.8.: Performance comparison of the best learned policies and the optimization approach minimizing Voronoi regions

in the pursuit evasion task with global observability. The curves show the probability that the evader is caught after 𝑡 time

steps. All policies are learned with 10 agents but executed with different agent numbers, as indicated below each subfigure.

Results are averaged over 1000 episodes with identical starting conditions.

connected agents, such that the path 𝑃 = (𝑣1, 𝑣2, . . . , 𝑣𝑀) minimizes the sum 𝑑
𝑖,𝑒

min
=

∑𝑀−1

𝑚=1
𝑑𝑚,𝑚+1 where

𝑣1
represents agent 𝑖 and 𝑣𝑀 is the evader. The observation sets are given as:

Basic : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall

, 𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 }
Extended : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 } 𝑜𝑖

loc
= {𝑑𝑖

wall
, 𝜙𝑖

wall
, 𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 }

Comm : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 , 𝑑 𝑗,𝑒
min
} 𝑜𝑖

loc
= {𝑑𝑖

wall
, 𝜙𝑖

wall
, 𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 , 𝑑

𝑖,𝑒

min
}.

Note that in this case the distance and bearing to an evader are only available if 𝑑𝑖,𝑒 ≤ 𝑑𝑜 . Furthermore,

the correct shortest path is only available if an agent and the evader are in the same sub-graph, otherwise,

a pre-defined value is fed into the policy.

Again, we limit the comparison for the local observability case to the more promising methods of

neural network and RBF mean embeddings. The results in Figure 4.6b show that the performance gain

of the neural network mean embeddings is even more noticeable than in the global observability case,

with a clear advantage in the presence of the local communication protocols. The inspection of the

termination probabilities in Figure 4.9 confirms that the neural network mean embedding results in a

significantly improved policy.

47

Deep Reinforcement Learning for Swarm Systems

0 100 200 300 400
0.0

0.2

0.4

0.6

0.8

1.0

t

p
(e
va
d
er

ca
u
gh

t)

NN++
NN+
RBF

Figure 4.9.: Performance comparison of the best policies in the pursuit evasion task with local observability. The curves show

the probability that the evader is caught after 𝑡 time steps. All policies are learned and executed by 20 agents. Results are

averaged over 1000 episodes with identical starting conditions.

4.4.4. Pursuit Evasion with Multiple Evaders

Lastly, we study a pursuit evasion scenario with multiple evaders, i.e., we assume that agent 𝑖 receives

observation samples {𝑜𝑖,𝑒 } from several evaders, which are processed using a second mean embedding

to account for the variable set size. Where in the previous experiment the agents had precise information

about the evader in terms of distance and bearing, they now have to extract this information from the

respective embedding. An additional level of difficulty results from the fact that the reward function no

longer provides any guidance in terms of the distances to the evaders since it only counts the number

of evaders caught in each time step (see Appendix A.5.3 for details).

We study a scenario with 50 pursuers and 5 evaders using the global observability setup in Section 4.4.3.1,

except that we respawn caught evaders to a new random location instead of terminating the episode.

The observation sets, containing the same type of information but arranged according to the inputs of

the neural networks, are designed as follows:

Basic : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 } 𝑜𝑖,𝑒 = {𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}

Extended : 𝑜𝑖, 𝑗 = {𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗 , 𝜃 𝑖, 𝑗 } 𝑜𝑖,𝑒 = {𝑑𝑖,𝑒 , 𝜙𝑖,𝑒 } 𝑜𝑖
loc

= {𝑑𝑖
wall

, 𝜙𝑖
wall
}.

Figure 4.10a shows the learning curves for policies with neural network and RBF mean embeddings

and for the concatenation approach. The return directly relates to the number of evaders caught during

an episode. Again, the neural network mean embedding performs significantly better than the RBF

embedding. The curves clearly indicate the positive influence of the additional information present in

the extended set. With this amount of agents, the dimensionality of the concatenation has increased to

a point where learning is no longer feasible.

4.4.5. Evaluation of Pooling Functions

Figure 4.11 shows learning curves of policies based on mean embeddings, softmax pooling, and max-

pooling (as described in Section 4.3.5) of features of the extended set for the rendezvous and pursuit

evasion task with global observability.

In the rendezvous task (Figure 4.11a), all pooling techniques eventually manage to find a good solution.

Policies using neural network mean embedding, however, on average converge more quickly while

48

4.4. Experimental Results

0 100 200 300 400 500
0

20

40

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ
NN+ 2x
RBF 2x
concat

(a) Evaluation of different observation models and embedding

techniques.

0 100 200 300 400 500
0

20

40

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

NN+
MSSK+
MSS+
MS+
M+

(b) Comparison of the proposed mean embedding policy to

policies with statistics of the observations as input.

Figure 4.10.: Learning curves for 50 agent pursuit evasion with 5 evaders. The curves show the median of the average return

𝐺 based on the top five trials. Legend: NN+ 2x: two neural network mean embeddings of the extended set, RBF 2x: two radial

basis function mean embeddings of the basic set, concat: simple concatenation of extended set. MSSK+, MSS+, MS+ and M+:

Combinations of mean, standard deviation, skew and kurtosis of the features in the extended set.

0 50 100 150 200 250

-100

-50

TRPO iterations

av
er
ag
e
re
tu
rn

Ḡ

MEAN
SM
MAX

(a) Rendezvous with 20 agents and global observability.

0 100 200 300 400 500

-100

-50

-10

TRPO iterations

av
er
ag

e
re
tu
rn

Ḡ

MEAN
SM
MAX

(b) Pursuit evasion with 10 pursuers and global observability.

Figure 4.11.: Learning curves of different embedding and pooling architectures based on the extended set. The curves show the

median of the average return 𝐺 based on the top five trials on a log scale. Legend: MEAN: neural network mean embedding,

SM: softmax feature pooling, MAX: max feature pooling.

policies using max-pooling show slightly worse performance. Given its reduced computational com-

plexity compared to the softmax-pooling, the mean embedding provides the most effective approach

among all proposed architectures.

When examining the results of the pursuit evasion task (Figure 4.11b), we find that the algorithm

produces two distinct solutions. A sub-optimal one, which is only able to circle the evader but is unable

to catch it (a catch is realized if the distance of the closest pursuer to the evader is below a certain

threshold), and a solution which additionally catches the evader after a short period of time. Therefore,

we not only report the performance of the top 5 trials out of 16, but also provide the number of times

the algorithm was able to discover the better of the two solution (Table 4.1). Once that the algorithm

finds a good solution, the mean embedding and softmax solutions perform comparably well but the

max-pooling approach shows a significantly worse performance. More importantly, however, the

algorithm was able to find the good solution more often using the mean embedding than using the

other pooling approaches.

49

Deep Reinforcement Learning for Swarm Systems

mean sm max

10/16 6/16 4/16

Table 4.1.: Number of times the algorithm discovered policies that led to a successful catch.

4.4.6. Comparison to Moment-Based Representations

Finally, we compare the mean embedding of neural network features to a representation using statistics

of the input. Figure 4.10b shows an evaluation on the pursuit evasion task with 50 agents and 5 evaders.

Here, we use combinations of the empirical mean, standard deviation, skew and kurtosis of each

feature of the extended set as the input to a policy function. The plot reveals that neural network mean

embeddings can capture more relevant information about the characteristics of the distribution of

agents than simple statistics of the elements in the extended set. Similar results were obtained for the

other tasks although the differences in performance were less pronounced.

4.4.7. Computational Complexity

Unlike in classical optimization-based control, where the controller is derived from an assumed dynamics

model, model-free reinforcement learning methods like TRPO find their control policies through

interaction with the environment, without requiring explicit knowledge of the underlying system

dynamics. While this comes at the cost of an additional exploration phase, learning-based approaches

typically offer an increased flexibility in that the same control architecture can adapt to different

tasks and environments, without being affected by potential model mismatches. More importantly,

considering the final learned policy from a computational perspective, the synthesis of the control

signal involves no additional conceptual steps compared to an optimization-based approach.

While a typical experiment with 20 agents in our setup takes between four and six hours of training on

a machine with ten cores (sampling trajectories in parallel), a forward pass through the trained neural

network to compute the instantaneous control signal takes only about 1 ms, which enables an execution

in real time. Furthermore, all control strategies learned through our framework are decentralized, which

allows an arbitrary system size scaling in a real swarm network, where the required computations

are naturally distributed over all agents. When learning new policies, the memory requirements scale

O(𝑁 (𝑁 − 1)) with the number of agents (assuming global observability) since we need to store the

local views of all agents. However, decentralized execution after the policy is learned scales linearly in

𝑁 per agent. An incremental online computation of the mean can be chosen if memory restrictions

exist [44].

For comparison, the complexity of calculating Voronoi regions for the pursuit evasion policy scales

O(𝑁 log𝑁) with the number of agents [18]. Concerning the system sizes considered in our experiments,

the resulting computation time of both policy types is in the same order of magnitude during task

execution.

4.5. Conclusion

In this paper, we proposed the use of mean feature embeddings as state representations to overcome

two major problems in deep reinforcement learning for swarms: the high and possibly changing dimen-

sionality of information perceived by each agent. We introduced three different approaches to realize

50

4.5. Conclusion

such embeddings— two manually designed approaches based on histograms / radial basis functions and

an end-to-end learned neural network feature representation. We evaluated the approaches on different

variations of the rendezvous and pursuit evasion problem and compared their performances to that of

a naive feature concatenation method and classical approaches found in the literature. Our evaluation

revealed that learning embeddings end-to-end using neural network features scales well with increasing

agent numbers, leads to better performing policies, and often results in faster convergence compared

to all other approaches. As expected, the naive concatenation approach fails for larger system sizes.

51

5. Robust Black-Box Optimization for Stochastic
Search and Episodic Reinforcement Learning

This chapter has been published in the Journal of Machine Learning Research [78].

Stochastic-Search algorithms [144] are problem independent algorithms well-suited for black-box

optimization (BBO) [92] of an objective function. They only require function evaluations and are used

when the objective function cannot be modeled analytically and no gradient information is available.

This is often the case for real world problems such as robotics [29] where the objective function

describes the outcome of a task, medical applications [156], or forensic identification [82].

Typically, these algorithmsmaintain a search distribution over the optimization variables of the objective

function. Solution candidates are sampled, evaluated, and the parameters of the search distribution (e.g.

mean and covariance for Gaussian search distributions) are then updated towards a more promising

direction. This process is repeated until a satisfactory solution quality is found or a pre-defined budget

of objective function evaluations is reached.

In this paper, we re-introduce Model-based Relative Entropy Stochastic Search (MORE) [2], a versatile,

general purpose stochastic-search optimization algorithm. Using insights from reinforcement learning

(RL) and information-theoretic trust-regions, it aims to update the parameters of a Gaussian search

distribution in the direction of the natural gradient [87]. To this end, MORE uses compatible function

approximation [149, 116] and learn a quadratic surrogate model of the objective function and bound the

Kullback-Leibler (KL) divergence between subsequent search distributions. In its original formulation,

a bound on the Kullback-Leibler divergence and a bound on the loss of entropy between the old and

new search distribution additionally acts as an exploration-exploitation trade-off to prevent pre-mature

convergence of the algorithm.

Most other successful stochastic search algorithms make use of rankings of objective function eval-

uations for updating the search distribution’s parameters [68, 154, 128]. While the use of rankings

is well studied for deterministic objective function evaluations, its effects in the case of stochastic

objective function evaluations, which are, for example, common in episodic reinforcement learning,

are less well understood. We analyze these ranking based algorithms for this stochastic evaluation case

and uncover their limitations to solve such tasks. In contrast, MORE directly optimizes the expected

objective function values without ranking transformations of the objective function evaluations and

can therefore also be applied for such domains.

However, the original MORE approach suffers from (a) the need for conservative KL bounds to keep the

covariance updates stable, (b), a fixed entropy decreasing schedule resulting in suboptimal exploration

and slow convergence, and (c), it employs an unnecessary complicated and inaccurate model learning

method. We aim to fix these issues by (a) splitting the KL divergence into separate updates for the

mean and covariance with separate trust region bounds, (b) introducing an adaptive entropy schedule

based on an evolution path, and (c) using ordinary least squares with appropriate data pre-processing

techniques to simplify the model learning process. We call our new algorithm Coordinate-Ascent
MORE with Step Size Adaptation or CAS-MORE for short.

53

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

We empirically evaluate our algorithm on simulated robotics tasks, as well as a set of benchmark

optimization functions. While we are competitive with state-of-the-art algorithms such as CMA-ES on

the benchmark optimization functions, the RL experiments clearly show the strength of MORE.

5.1. Related Work

In the following sections, we describe in more depth current state of the art algorithms from the field of

black-box optimization and review common design choices and algorithmic procedures. In addition, we

highlight current step- and episode-based reinforcement learning approaches along with their benefits

and drawbacks and discuss trust-region based reinforcement learning algorithms.

5.1.1. Evolutionary Strategies and Black-Box Optimization

The MORE algorithm can be seen as an instance of Evolution Strategies [24] from the broader class of

Evolutionary Algorithms. The usual procedure involves sampling from a search distribution 𝜋 (𝒙 ;𝜃)
with parameters 𝜃 , evaluating the candidates 𝒙𝑘 on an objective function 𝑓 (𝒙), 𝑓 : R𝑛 → R, 𝒙 ↦→ 𝑓 (𝒙),
and the goal is to either find an individual 𝒙∗ that maximizes 𝑓 or a distribution 𝜋∗ that maximizes the

optimization objective 𝐽 = E𝒙∼𝜋 [𝑓 (𝒙)].

5.1.1.1. Ranking-Based Algorithms

Instead of directly incorporating function values into the optimization process, many algorithms apply a

ranking based transformation , i.e., a monotonous mapping of function values sorted by fitness to some

pre-defined fixed values. Specifically, for a population {𝒙𝑖:𝜆 | 𝑖 = 1, . . . , 𝜆} = {𝒙𝑖 | 𝑖 = 1, . . . , 𝜆} sorted
by function values such that 𝑓 (𝒙1:𝜆) ≤ 𝑓 (𝒙2:𝜆) ≤ · · · ≤ 𝑓 (𝒙𝜆:𝜆), the function values are substituted by

weight values𝑤1 <, . . . , < 𝑤𝜆 , before updating parameters. While this makes the optimization process

invariant to certain transformations and adds to the robustness of algorithms, it also changes the

optimization objective into 𝜃 ∗ = arg max𝜃

∑
𝑖 𝑤𝑖 log𝜋 (𝒙𝑖 ;𝜃). As we will show in our experiments, this

change can have severe downsides in reinforcement learning problems. In non-deterministic problems,

it leads to an over- or underestimation of a sample’s performance and requires averaging over several

sample evaluations in order to obtain a reliable estimate for the ranking [70, 75].

The cross-entropymethod [128, 26, 10] is one of the simplest representatives of ranking based algorithms.

It evolves the search distribution by only incorporating an elite set of samples into the next generation

which can be seen as a rank-based update.

The Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) [68] performs well established

heuristics to update the mean and covariance matrix of a Gaussian search distribution as an interpolation

of the weighted sample mean and covariance and the old mean and covariance. The weights of the

samples are chosen according to the ranking of the samples. CMA-ES also introduces the evolution

path, an exponentially smoothed cumulative sum of previous update steps, which acts as a momentum

term, similar to gradient based optimizers [94, 129]. Building on the basic CMA-ES approach, many

derivative algorithms exist, mainly aiming at improving sample efficiency. Notable extensions are those

which include restarts with increasing population sizes [16], restarts that alternate between large and

small population sizes [67], a version with decreasing step-sizes [99], or incorporating second order

information into the update of the covariance matrix [17].

54

5.1. Related Work

Another class of algorithms using rank-based fitness shaping are those from the family of Natural

Evolution Strategies (NES) [154]. Instead of updating the search distribution parameters with heuristics,

NES follow a sample-based search gradient based on the same objective as MORE. Yet, due to the use

of rankings, the connection to the natural gradient of the original expected reward objective is lost. We

describe the relation to MORE in more detail in the next section.

Contrary to these algorithms, MORE does not discard poorly performing candidates in its optimization

process and only applies common data pre-processing techniques such as standardization before feeding

them to the learning algorithm. There also exist variations of the CMA-ES using surrogate models such

as [100] or [66]. Whereas these algorithms use the surrogate to generate approximate function values,

which are then again used to generate a ranking, MORE directly uses the model parameters to update

the search distribution parameters.

5.1.1.2. Natural Gradients for Black-Box Optimization

The natural gradient is often used in optimization as it has shown to be more effective when a parameter

space has a certain underlying structure [9]. Important algorithms belong to the family of Natural

Evolution Strategies (NES) [154]. They use a Taylor approximation of the KL-divergence between

subsequent updates to estimate a search gradient in the direction of the natural gradient. Instead of

information theoretic trust-regions on the update as used in MORE, they use either fixed [146, 51] or

heuristically updated learning rates [154]. NES also uses ranking-based fitness shaping. The ranking is

required to improve the robustness of the algorithm, yet, it also changes the objective and the search

direction does not correspond to the natural gradient anymore. In contrast, MORE is inherently robust

due to the used trust-regions and therefore, does not require a ranking-based transformation of the

rewards. The ROCK∗ algorithm presented in [81] uses the natural gradient on a global approximation

of the objective generated with kernel regression.

5.1.1.3. Other Black-Box Optimization Approaches

There exists a wide variety of stochastic search algorithm classes for black-box optimization, each

with their own benefits and drawbacks. Classic algorithms such as Nelder-Mead [109] use a simplex

to find the minimum of a function. Bayesian optimization techniques such as Gaussian processes, for

example, aim at finding global optima in low dimensional problem domains [113]. However, they suffer

from high computation time and scale poorly with problem dimensionality and data points. Other

directions are genetic algorithms [77] which are easy to implement but suffer from the need for good

heuristics and random search [160, 124]. While both approaches can yield good results, they are not

computationally efficient.

5.1.2. Reinforcement Learning

As MORE is based on the policy search objective, we also review some of the recent work from the

domain of reinforcement learning. Here, the objective is based on the reward function defining the task

to be solved. A detailed introduction to the problem domain can be found in Section 5.2.

55

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

5.1.2.1. Step-based Trust-Region Reinforcement Learning Algorithms

Updates bounded by a trust-region are a common approach in the reinforcement learning literature. One

of the first deep reinforcement learning algorithms to successfully make use of a trust-region update is

TRPO [137] which enforces a bound on an average KL divergence trust-region. Similar sample-based

approximations of the trust-region are also employed by recent deep reinforcement learning techniques

such as Maximum A-Posteriori Policy Optimization (MPO) [1]. Compatible function approximation for

deep reinforcement learning has been explored in [116]. An improved way of enforcing trust-regions

directly in the policy function by using differentiable trust-region layers (TRPLs) has been introduced

in [115].

5.1.2.2. Episode-based Reinforcement Learning

Episode-based reinforcement learning algorithms make use of black-box optimization techniques to

optimize the expected return of an entire trajectory. These algorithms excel when tasks are defined

through sparse and non-Markovian rewards, whereas step-based approaches typically fail in these

cases. Due to the use of sparse rewards, learned behaviors are more energy efficient and less sensitive

to high action costs compared to policies learned by step-based reinforcement learning algorithms. On

the downside, the improved performance often comes at a higher sample complexity [114].

A closely related method to MORE is the Relative Entropy Policy Search (REPS) for step-based reinforce-

ment learning [121] and its episodic formulation (albeit derived in a contextual setting) in [91]. Both

use samples to approximate the objective and the trust-regions which does not guarantee that the KL

trust-region is enforced for the new parametric policy in practice. Layered direct policy search (LaDIPS)

[43] extends MORE to the contextual setting using a linear mapping from the context to the mean.

Additionally, the usage of natural gradients can be derived by using a second order approximation of

the KL-divergence, resulting in the Fisher information matrix used in NES.

Recently, Otto et al. [114] extended TRPLs to the episodic case and use a policy gradient method for

learning movement primitives that allow a non-linear mapping from a context vector to the motion

primitive parameters. They show that other algorithms such as PPO [136] are unsuitable as they suffer

from the higher dimensional action space induced by the motion primitives. In contrast, we focus on

the non-contextual case where the policy is a Gaussian distribution with full covariance matrix. We

show that in this case, the natural gradient updates from MORE clearly outperform the trust-region

policy gradient updates from TRPL, indicating that extending the exact natural gradient updates from

MORE to deep neural networks is an interesting direction for future work.

5.1.3. Broader Scope

The MORE algorithm finds application in a variety of fields, such as variational inference [12] or density

estimation [22]. In the context of trajectory optimization, ideas from the MORE algorithm are explored

in the MOTO algorithm [7].

56

5.2. Preliminaries

5.2. Preliminaries

Before we introduce our new algorithm, we present in detail the problem setting and the original MORE

algorithm. Additionally, we provide another view on the algorithm derived from compatible feature

approximation and its relation to natural gradient optimization.

5.2.1. Problem Setting

The goal is to find a distribution 𝜋 (𝒙;𝜃), parameterized by 𝜃 , over variables 𝒙 ∈ R𝑛 that maximizes

1
the expected value F (𝒙) = E[𝐹 (𝒙, 𝜉 (𝜔))] of a noisy objective function 𝐹 where 𝜉 (𝜔) is a typically

unknown noise process. In the episodic reinforcement learning case [38, 114], 𝐹 describes the episodic

return. There can be multiple sources of noise 𝜉 (𝜔), such as noise in the dynamics or the state

observations of the given system. We frame the stochastic search objective as maximizing the expected

fitness function, i.e.,

max

𝜋
𝐽 = max

𝜋
E𝒙∼𝜋 [F (𝒙)] (5.1)

which is a well known objective in policy search [38]. We consider the black-box scenario where we

only have access to the noisy function evaluations 𝑓 (𝒙) = 𝐹 (𝒙, 𝜁), 𝜁 ∼ 𝜉 (𝜔), of the objective function,
i.e., the expected function values F (𝒙) are unknown and no gradients of the objective function are

available.

5.2.2. Model-Based Relative Entropy Stochastic Search

MORE [2] is an iterative stochastic search algorithmwhere the search distribution 𝜋𝑡 (𝒙) = N(𝒙 | 𝝁𝑡 , 𝚺𝑡)
in each iteration 𝑡 is modelled as a multivariate Gaussian distribution. The parameters to be optimized

are 𝜃 = {𝝁, 𝚺} and the optimization problem is given by

maximize

𝜋

∫
𝒙
𝜋 (𝒙)F (𝒙)dx

subject to KL(𝜋 ∥ 𝜋𝑡) ≤ 𝜖,
𝐻 (𝜋) ≥ 𝛽,∫

𝒙
𝜋 (𝒙)dx = 1

(5.2)

where 𝜖 and 𝛽 are hyper-parameters controlling the exploration-exploitation trade-off,

𝐻 (𝜋) =
∫
𝒙
𝜋 (𝒙) log𝜋 (𝒙)dx

denotes the Shannon entropy of the search distribution, and

KL(𝜋 ∥ 𝜋𝑡) =
∫
𝒙
𝜋 (𝒙) log

𝜋 (𝒙)
𝜋𝑡 (𝒙)

dx

is the KL divergence between the current and new search distribution. MORE optimizes the objective

from Equation (5.2) by substituting the expected objective value with a learned quadratic approxima-

tion

F (𝒙) ≈ ˆF (𝒙) = −1/2 𝒙T𝑨𝒙 + 𝒙T𝒂 + 𝑎0. (5.3)

1
Equivalently, a cost can be minimized by maximizing the negative objective function.

57

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

Using a quadratic surrogate and a Gaussian search distribution, the optimal solution in each iteration

would be to set the mean of the search distribution to the optimum of the surrogate and collapse the

search distribution to a point estimate which would prevent it from further exploration. To control the

exploration-exploitation trade-off, additional constraints on the updated search distribution need to

be introduced. First, the KL-divergence between the current search distribution and the solution of

the optimization problem is upper bounded which ensures that the mean and covariance only slowly

change and the approximate model is not over-exploited. Furthermore, an additional lower bound on

the entropy is introduced to prevent premature convergence.

Closed Form Updates The optimization problem can be solved in closed form using the method of

Lagrangian multipliers. The dual function is given by

𝑔(𝜂,𝜔) = 𝜂𝜖 − 𝜔𝛽 + (𝜂 + 𝜔) log

(∫
𝜋𝑡 (𝒙)

𝜂

𝜂+𝜔
exp

(
F (𝒙)
𝜂 + 𝜔

)
dx

)
with Lagrangian multipliers 𝜂 and 𝜔 . The new search distribution is then given in terms of the

Lagrangian multipliers as

𝜋 (𝒙) ∝ 𝜋𝑡 (𝒙)
𝜂

𝜂+𝜔
exp

(
F (𝒙)
𝜂 + 𝜔

)
.

Analytic Solution The use of a quadratic model is beneficial for two reasons. First, it is expressive

enough to solve a wide range of problems while being computationally easy to obtain. Second, quadratic

features are the compatible features of the Gaussian distribution which make the integrals tractable. As

shown in Section 5.2.3, the use of quadratic features also allows us to obtain exact natural gradient

updates. The optimization problem in terms of the natural parameters𝒎 = 𝚺
−1𝝁 and 𝚲 = 𝚺

−1
is solved

by minimizing the Lagrangian dual function, which is given as

𝑔(𝜂,𝜔) =𝜂𝜖 − 𝜔𝛽 + 1

2

(
𝜔𝑘 log(2𝜋) − 𝜂 (log |𝚲−1

𝑡 | +𝒎T

𝑡 𝚲
−1

𝑡 𝒎𝑡)

+ (𝜂 + 𝜔) (log |𝚲−1 | +𝒎T
𝚲
−1𝒎)

)
,

and the optimization problem becomes

minimize

𝜂,𝜔
𝑔(𝜂,𝜔)

subject to 𝜂 ≥ 0,

𝜔 ≥ 0

with Lagrangian multipliers 𝜂 and 𝜔 . The convex dual function can be optimized using a constrained

non-linear optimization method such as L-BFGS [98] to obtain the optimal solutions 𝜂∗ and 𝜔∗. The
update rules for the new search distribution based on the Lagrangian multipliers are given by

𝚲 =
𝜂∗𝚲𝑡 +𝑨
𝜂∗ + 𝜔∗ , 𝒎 =

𝜂∗𝒎𝑡 + 𝒂
𝜂∗ + 𝜔∗ .

Mean and covariance can be recovered by the inverse transformations and are given by 𝝁 = 𝚲
−1𝒎 and

𝚺 = 𝚲
−1
. We can now see that the new search distribution’s parameters are an interpolation between

the natural parameters of the old distribution and the parameters of the quadratic model from Equation

(5.3).

58

5.2. Preliminaries

5.2.2.1. Model Learning

The parameters of the quadratic model can be learned from the noisy evaluations 𝑓 (𝒙) using linear

regressionwith quadratic features. The originalMORE algorithm first uses a probabilistic dimensionality

reduction technique to project the problem parameters into a lower dimensional space. Afterwards,

weighted Bayesian linear regression is used to solve for the model parameters in the reduced space.

Lastly, the model parameters are projected back into the original space. This approach has several

drawbacks, as it introduces additional hyper-parameters to the algorithm and involves a sample-based

approach to integrate out the projection matrix which is very costly in terms of computation time.

We will later on show that by using appropriate data pre-processing techniques, standard linear least

squares is better suited to efficiently fit the quadratic models and also allows a direct connection of

MORE to natural gradients.

5.2.2.2. Entropy Control

The entropy of the search distribution can be controlled with parameter 𝛽 . The bound 𝛽 is chosen

such that entropy of the search distribution 𝐻 (𝜋) decreases by a certain percentage until a minimum

entropy 𝐻 0
is reached, i.e. 𝛽 = 𝛾 (𝐻 (𝜋𝑡) − 𝐻 0) + 𝐻 0

. Alternatively, a simple alternative is to linearly

decrease 𝛽 in each iteration until the lower bound 𝐻 0
is reached, i.e. 𝛽 = max(𝐻 (𝜋𝑡) − 𝛿, 𝐻 0).

5.2.3. Relation to Natural Gradient

The natural gradient is an optimization technique that considers the geometry of the parameter space

to improve the convergence speed and efficiency of training machine learning models, especially in

situations where parameters are highly correlated [9]. The natural gradient is given by scaling the

"vanilla" gradient

∇𝜃 𝐽 = E𝒙∼𝜋 [∇𝜃 log𝜋 (𝒙)F (𝒙)] ≈
∑︁
𝑖

∇𝜃 log𝜋 (𝒙𝑖) 𝑓 (𝒙𝑖)

with the inverse of the Fisher information matrix (FIM) 𝑭 = E𝒙∼𝜋 [∇𝜃 log𝜋 (𝒙)∇𝜃 log𝜋 (𝒙)T], i.e.,

𝒈NG = 𝑭 −1∇𝜃 𝐽 .

5.2.3.1. Approximating the Natural Gradient with Samples

A sample based approximation of the natural gradient is given as

𝒈NG ≈
(∑︁
𝑖

∇𝜃 log𝜋 (𝒙𝑖)∇𝜃 log𝜋 (𝒙𝑖)T
)−1 ∑︁

𝑖

∇𝜃 log𝜋 (𝒙𝑖) 𝑓 (𝒙𝑖)

=

(
𝚽

T
𝚽

)−1

𝚽
T𝒚 (5.4)

with

𝚽 =


∇𝜃 log𝜋 (𝒙1)

...

∇𝜃 log𝜋 (𝒙𝑁)

 , 𝒚 =


𝑦1

...

𝑦𝑁


59

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

where 𝑦𝑖 = 𝑓 (𝒙𝑖), 𝑖 = 1, . . . , 𝑁 . Equation (5.4) resembles the least squares solution to a linear regression

problem which is given by

𝒘∗ = arg min

𝒘

∑︁
𝑖

(∇𝜃 log𝜋 (𝒙𝑖)T𝒘 − 𝑦𝑖)
2

(5.5)

using the function approximator ∇𝜃 log𝜋 (𝒙)T𝒘 where the features are given by the gradient of the log

search distribution with respect to the parameters of 𝜋 . In this case, the natural gradient is given by

the least squares solution, i.e., 𝒈NG = 𝒘∗.

5.2.3.2. Compatible Function Approximation for Stochastic Search

Equation (5.5) is a special case of compatible function approximation. To see this, we will quickly

review this concept. Originally defined in the context of policy gradients with function approximation

for step-based reinforcement learning [149], the compatible function theorem states that the policy

gradient with function approximation is exact under two conditions:

1. The gradient of the advantage function approximator is equal to the log gradients of the policy,

i.e. ∇𝑤𝐴(𝑠, 𝑎;𝑤) = ∇𝜃 log𝜋 (𝑎 | 𝑠;𝜃)

2. the parameters𝑤 of the advantage function minimize a mean-squared error.

Stochastic search can be seen as a state-less one-step RL problem where 𝐴(𝑠, 𝑎) = F (𝒙) and the policy

𝜋 (𝑎 | 𝑠 ;𝜃) is the search distribution 𝜋 (𝒙). For the gradient to be unbiased in the case of MORE where we

optimize an approximated surrogate objective, we need to replace F (𝒙) with a learned approximation

ˆF that uses compatible features. For a Gaussian distribution with natural parameters 𝒎 = 𝚺
−1𝝁 and

𝚲 = 𝚺
−1
, these features are given by

∇𝒎 log𝜋 (𝒙) = 𝒙T + 𝑐1,

∇𝚲 log𝜋 (𝒙) = −1

2

𝒙𝒙T + 𝑐2.

Thus, the compatible features are given by

𝜙 (𝒙) = [∇𝒎 log𝜋 (𝒙), vec(∇𝚲 log𝜋 (𝒙))]
=

[
1, 𝒙,− 1

2
vec(𝒙𝒙T)

]
.

Consequently, if the model is obtained by a linear least squares fit using quadratic features, the MORE

algorithm is performing an unbiased update in the natural gradient direction where the learning rate

is specified implicitly by the trust region 𝜖 . This is reflected in the update equations of MORE which,

assuming an entropy bound 𝛽 → −∞, are simply given by

𝒎 = 𝒎𝑡 + 𝜂−1𝒂, 𝚲 = 𝚲𝑡 + 𝜂−1𝑨,

where 𝒂 and 𝑨 are the estimated parameters of the compatible function approximation. They directly

correspond to the fitted model parameter 𝒘∗ in Equation (5.5). In difference to other methods such

as CMA-ES [6] or NES, where a relation to natural gradients has also been established, the natural

gradient update of MORE is exact since the estimation of the quadratic model is unbiased in expectation

and no ranking based reward transformation is used.

60

5.3. Improving the MORE Algorithm

5.3. Improving the MORE Algorithm

In its original formulation, MORE has several drawbacks as already pointed out earlier. In this section,

we will introduce a new version of MORE that aims at improving convergence speed and simplifying

the model learning approach. We achieve this by (a) disentangling the trust regions for mean and

covariance, (b) an adaptive entropy control mechanism, (c) a simplified but improved model learning

approach based on standard linear least squares. We also propose a robust fitting of the surrogate to

stabilize the model fitting process. We will refer to the new algorithm as Coordinate-Ascent MORE

with Step Size Adaptation or CAS-MORE for short.

5.3.1. Disentangled Trust Regions

The trust-region radius 𝜖 controls the change of the distributions between subsequent updates and thus

has an influence on the speed of convergence. While a large trust region should encourage larger steps

of the mean, we observed in our experiments that the result is mainly a large change in the covariance

matrix leading to instabilities and divergence of the algorithm, especially on problems where it is

difficult to estimate the quadratic model.

Therefore, limiting the KL-divergence between the policies in subsequent iterations is a sub-optimal

choice as we have no direct control whether the mean or covariance of the search distribution is updated

more aggressively. To alleviate this problem, we propose to decouple the mean and covariance update

by employing a block coordinate ascent strategy for the mean and the covariance matrix which allows

for setting different bounds on each of the components. This approach results in independent updates

for the mean and covariance as in CMA-ES, albeit more principled, and has already been explored

successfully in other episodic [114] and step-based [3] reinforcement algorithms.

The optimization problems we will be solving are

maximize

𝝁

∫
𝒙
𝜋 (𝒙) ˆF (𝒙)dx

����
𝚺=𝚺𝑡

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) |𝚺=𝚺𝑡 ≤ 𝜖𝜇
(5.6)

for the mean and

maximize

𝚺

∫
𝒙
𝜋 (𝒙) ˆF (𝒙)dx

����
𝝁=𝝁𝑡

subject to KL(𝜋 ∥ 𝜋𝑡) |𝝁=𝝁𝑡 ≤ 𝜖Σ
(5.7)

for the covariance in each iteration. By choosing a small bound 𝜖Σ, we can drop the entropy constraint

from the optimization as the entropy is not decreasing as quickly.

5.3.1.1. Updating the Mean

We start updating the mean by setting 𝚺 = 𝚺𝑡 and introducing a bound 𝜖𝜇 to limit the change of the

mean displacement. The dual function to the problem in Equation (5.6) is given by

𝑔𝜇 (𝜆) = 𝜆𝜖𝜇 +
1

2

(
𝒎𝜇 (𝜆)T𝑴𝜇 (𝜆)−1𝒎𝜇 (𝜆) − 𝜆𝒎T

𝑡 𝑴
−1

𝑡 𝒎𝑡

)

61

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

where 𝜆 is a Lagrangian multiplier and

𝑴𝜇 (𝜆) = 𝜆𝚺−1

𝑡 +𝑨, 𝒎𝜇 (𝜆) = 𝜆𝚺−1

𝑡 𝝁𝑡 + 𝒂.

A detailed derivation of the dual function can be found in Appendix B.1.1. We now solve the dual

problem

minimize

𝜆
𝑔𝜇 (𝜆)

subject to 𝜆 > 0

and obtain the new mean as

𝝁∗ = 𝑴𝜇 (𝜆∗)−1𝒎𝜇 (𝜆∗)

where 𝜆∗ is the solution of the optimization problem which we find using a non-linear optimization

algorithm
2
.

5.3.1.2. Updating the Covariance Matrix

Next, we set 𝝁 = 𝝁𝑡 and introduce a bound 𝜖Σ to constrain the change of the covariance. The dual

function (see Appendix B.1.2 for a detailed derivation) for the problem in Equation (5.7) is given by

𝑔Σ (𝜈) = 𝜈𝜖Σ +
1

2

𝜈

(
log |𝚲(𝜈)−1 | − log |𝚲−1

𝑡 |
)

with

𝚲(𝜈) = 𝜈𝚺−1

𝑡 +𝑨
𝜈

and we need to solve the following optimization problem

minimize

𝜈, 𝜔
𝑔Σ (𝜈)

subject to 𝜈 > 0

where 𝜈 is again a Lagrangian multiplier. The optimal solution 𝚺
∗
in terms of the solution 𝜈∗ can be

found analogously and is given by

𝚺
∗ = 𝚲(𝜈∗)−1.

5.3.2. Entropy Control

The standard MORE algorithm is only able to decrease the entropy of the search distribution in each

iteration. This might result in slow convergence in particularly if the search distribution is initialized

with too small variances
3
. On the other hand, a too large covariance can also lead to slow convergence

2
We used the implementation of L-BFGS-B [98] provided by the python package NLOpt [86].

3
This is often necessary in case a large initial exploration is generating samples that are very costly or dangerous to evaluate,

e.g., in robotics.

62

5.3. Improving the MORE Algorithm

Figure 5.1.: This figure illustrates the concept of the evolution path in a 2D example and is adapted from Hansen [68]. In each

figure, arrows with black heads correspond to an update of the mean. The evolution path is a smoothed sum over subsequent

mean updates and depicted with an open head. In the left plot, the mean updates show no clear search direction and, as a

result, the evolution path is short. The right plot shows the opposite where heavily correlated mean updates lead to a long

evolution path. The center plot shows the desired case, where subsequent mean updates are uncorrelated.

as it takes a long time to settle in on a solution and simply increasing the bound on the covariance can

lead to unstable updates.

To solve these issues, we take inspiration from CMA-ES which already makes use of an entropy control

mechanism in form of the step-size update [68]. The crucial property underlying this update is the

so-called evolution path which is a smoothed sum over previous mean updates. The idea of step-size

adaptation is the following. Whenever we take steps in the same direction, we could essentially take a

single, larger step, while dithering around a constant location indicates no clear search direction. In

the first case, a larger entropy would allow for bigger steps, in the second case, we need to decrease

entropy. We illustrate the concept in Figure 5.1. We can achieve this by scaling the covariance after the

optimization with a scalar factor

𝜎𝑡+1 = exp

(
−𝛿𝑡+1
𝑛

)
after the optimization steps where 𝑛 is the problem dimensionality and 𝛿𝑡+1 is the desired change

between the entropy in iteration 𝑡 and the next iteration 𝑡 + 1 of the algorithm. The question is now

how to determine a suitable value for 𝛿𝑡+1.

The step size update we propose is inspired by the step size control mechanism used in CMA-ES called

cumulative step size adaptation (CSA). We also use the evolution path 𝒑 which is a vector tracking

previous mean updates and compare its length to a hypothetical length of the evolution path resulting

from uncorrelated mean updates. Therefore, the evolution path update needs to be constructed in a

way that we can derive a computable desired length from it. Inspired by CMA-ES, we initialize the

evolution path 𝒑0 to zero and update it as follows

𝒑𝑡+1 = (1 − 𝑐𝜎)𝒑𝑡 +
√︄
𝑐𝜎 (2 − 𝑐𝜎)

2𝜖𝜇
𝚺

− 1

2

𝑡 (𝝁𝑡+1 − 𝝁𝑡)

where 𝑐𝜎 < 1 is a hyper parameter. The factors are chosen analogously to CMA-ES such that (1−𝑐𝜎)2 +√︁
𝑐𝜎 (2 − 𝑐𝜎)

2

= 1. While multiplying the shift in means with the inverse square root of the covariance

matrix in CMA-ES makes the evolution path roughly zero mean and unit variance distributed, we know

63

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

its exact length due to the constraint on the mean update in Equation (5.6) as long as the mean update

is at its bound. The vector 𝚺

− 1

2

𝑡 (𝝁𝑡+1 − 𝝁𝑡) has in that case length

√︁
2𝜖𝜇 and by scaling it with (

√︁
2𝜖𝜇)−1

the resulting length is 1. We set

𝛿𝑡+1 = 𝛼

(
1 − ∥𝒑𝑡+1∥
∥𝒑des

𝑡+1∥

)
,

where ∥𝒑des

𝑡+1∥ is a desired length of the evolution path given by the length of a evolution path resulting

from fully uncorrelated updates and 𝛼 influences the magnitude of entropy change which was set

to 1 in the black-box optimization experiments, and 0.1 in the episodic RL experiments. This rule

for determining the change in entropy is almost identical to the one in CMA-ES. If the norm of the

current evolution path 𝒑𝑡+1 is smaller than 𝒑des

𝑡+1, i.e., the mean updates were dithering around a constant

location, we reduce entropy (i.e. 𝛿𝑡+1 > 0) while entropy is increased if the length of the evolution path

is longer than desired.

In order to determine the length of an uncorrelated path ∥𝒑des

𝑡+1∥, we first look at the length of two

vectors

∥𝒂 + 𝒃 ∥ =
√︁
∥𝒂∥2 + ∥𝒃 ∥2 + 2∥𝒂∥∥𝒃 ∥ cos𝜃,

where 𝜃 is the angle between vectors 𝒂 and 𝒃 . If these two vectors are uncorrelated (i.e. 𝜃 = 𝜋/2), the
length becomes

√︁
∥𝒂∥2 + ∥𝒃 ∥2. Under the assumption that the mean update is always at the bound, i.e.

(2𝜖𝜇𝚺𝑡)−
1

2 (𝝁𝑡+1 − 𝝁𝑡) = 1, the length of the evolution path 𝑝𝑡+1 given the previous length 𝑝𝑡 is then

𝑝𝑡+1 =
√︃
(1 − 𝑐𝜎)2𝑝2

𝑡 + 𝑐𝜎 (2 − 𝑐𝜎).

In practice, we set the desired angle 𝜃 = 3𝜋
8
and compute ∥𝒑des

𝑡+1∥ accordingly to account for unavoidable
correlations between iterations due to sample reuse and constrained updates. Finally, the adapted

policy is given by

𝜋𝜎𝑡+1 = N(𝒙 | 𝝁𝑡+1, 𝜎2

𝑡+1𝚺𝑡+1) .

5.3.3. Illustrative Example

We demonstrate the characteristics of CAS-MORE by comparing it to the original formulation of MORE

and Coordinate Ascent MORE without adaptive entropy control (CA-MORE). We therefore use a 15

dimensional Rosenbrock function as defined in Hansen et al. [73] and run each variant of MORE 20

times with different seeds. The optimization is stopped once a target function value of 1 × 10
−8

is

reached, or 12 000 function evaluations are exceeded. Figure 5.2 shows median and 5% / 95% quantiles

of the function value at the mean (Figure 5.2a) and the entropy of the search distribution (Figure 5.2b)

over the optimization. The hyper-parameters for the KL bounds (and entropy schedule for MORE)

are chosen individually for each algorithm based on a grid search. We observe that decoupling the

mean and covariance update already significantly improves convergence speed as it allows for a higher

learning rate for the mean and therefore a quicker entropy reduction. Note, that reducing entropy

even quicker leads to premature convergence while increasing 𝜖 for MORE leads to divergence of the

algorithm. This problem is alleviated by introducing the adaptive entropy schedule that first quickly

reduces entropy, then plateaus, and, finally, quickly reduces entropy again, resulting in an accelerated

optimization process.

64

5.4. Model Learning

0 0.2 0.4 0.6 0.8 1 1.2

·104

10−8

10−6

10−4

10−2

100

102

104

Evaluations

f
(µ
)

(a) Function value evaluated at 𝜇𝑡

0 0.2 0.4 0.6 0.8 1 1.2

·104

−100

−80

−60

−40

−20

0

20

Evaluations

E
n
tr
o
p
y

CAS MORE
CA MORE
MORE
CMA-ES

(b) Entropy of the search distribution

Figure 5.2.: This figure shows the function value (left) and the entropy of the search distribution (right) over the course of

optimization of a 15-dimensional Rosenbrock function using different variants of MORE. The original MORE is shown in

green, while coordinate ascent versions of more are orange and blue where CA-MORE indicates a fixed entropy reduction

schedule and CAS-MORE indicates the adaptive entropy schedule using the step-size adaptation. For comparison, CMA-ES is

plotted in red.

5.4. Model Learning

In this section, we introduce a simple but effective approach of learning a quadratic model based on

polynomial ridge regression using the method of least squares as replacement for the more complex

Bayesian dimensionality reduction technique introduced in the original paper [2]. We design the model

learning with two objectives in mind. First, it should be data- and time-efficient to allow for quick

execution of the algorithm. Additionally, it should be robust towards outliers and samples from very

low entropy regimes. To this end, we apply a series of data pre-processing techniques, re-use old

samples, and start learning a model with a lower complexity and increase it once sufficient data is

available.

5.4.1. Least Squares Model Fitting

In each iteration, we generate a fixed number 𝐾 of samples 𝒙𝑖 ∼ 𝜋 , 𝑖 = 1, . . . , 𝐾 , evaluate them on the

objective function to obtain𝑦𝑖 = 𝑓 (𝒙𝑖) and add the tuple (𝒙𝑖 , 𝑦𝑖) to a data-setD = {(𝒙𝑞, 𝑦𝑞) | 𝑞 = 1 . . . 𝑄}
of length 𝑄4

. The goal of the model fitting process is to find the parameters 𝑨, 𝒂, and 𝑎 of a quadratic
model of the form

F (𝒙) ≈ ˆF (𝒙) = −1/2 𝒙T𝑨𝒙 + 𝒙T𝒂 + 𝑎.

These parameters can be found by solving a regularized least squares problem

min

𝒘
∥(𝒚 − 𝚽𝒘)∥2

2
+ 𝜆∥𝒘 ∥2

2
,

4
Once the number of data-points 𝑄 in D exceeds a maximum queue-size𝑄max, we discard old samples in a first-in, first-out

manner.

65

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

where 𝚽 is the design matrix whose rows are given by a feature transformation 𝜙 (𝒙), i.e 𝚽 =

[𝜙 (𝒙1), . . . , 𝜙 (𝒙𝑄)]T, 𝒚 is a vector containing the fitness evaluations 𝑦𝑖 = 𝑓 (𝒙𝑖) and 𝜆 is the regu-

larization factor. The solution is given by the well known ridge regression estimator

𝒘̂ = (𝚽T
𝚽 + 𝜆𝑰)−1

𝚽
T𝒚.

5.4.2. Adaptive Model Complexity

A full quadratic model has in the order of O(𝑛2) parameters that need to be estimated. Compared to

model-free algorithms, this can be a disadvantage if we initially need to sample enough parameters

for the first model to be built. Instead, the complexity of the feature function 𝜙 (𝒙) will be gradually
increased from a linear to a diagonal and, finally, a full quadratic model depending on the number of

obtained samples. The simplest model is a linear model where

𝑎 = 𝑤1 𝒂 = [𝑤2, . . . ,𝑤𝑛+1]T 𝑨 = 0.

Next, we estimate a diagonal model where

𝑨 = −diag([𝑤𝑛+2, . . . ,𝑤2𝑛+1]) .

Once sufficiently many data-points are available, we estimate a full quadratic model where

𝑨 = −(𝑳 + 𝑳T)

with

𝑳 =


𝑤𝑛+2 0 0

𝑤𝑛+3 𝑤𝑛+4 0 ... 0

...
. . .

𝑤𝑛 (𝑛+3)/2−1
... ... 𝑤𝑛 (𝑛+3)/2−𝑛−1

0

𝑤𝑛 (𝑛+3)/2−𝑛+2 𝑤𝑛 (𝑛+3)/2+1

 .
The feature functions for the models are given by

𝜙lin(𝒙) = [1, 𝑥1, 𝑥2, . . . , 𝑥𝑛]T

𝜙diag(𝒙) = [𝜙lin(𝒙)T, 𝑥2

1
, 𝑥2

2
, . . . , 𝑥2

𝑛]T

𝜙full(𝒙) = [𝜙lin(𝒙)T, 𝑥2

1
, 𝑥1𝑥2, 𝑥1𝑥3, . . . , 𝑥1𝑥𝑛, 𝑥

2

2
, 𝑥2𝑥3, . . . 𝑥2𝑥𝑛, 𝑥3𝑥4, . . . , 𝑥

2

𝑛]T.

We empirically found that we require at least 10% more samples than the model has parameters, i.e. start

with a linear model once |D| ≥ 1.1(1 + 𝑛) and continue with a diagonal model once |D| ≥ 1.1(1 + 2𝑛).
Finally, we switch to estimating a full quadratic model once |D| ≥ 1.1(1 + 𝑛(𝑛 + 3)/2).

5.4.3. Data Pre-Processing

Estimating the model parameters can be numerically difficult with function values spanning several

orders of magnitude, outliers, and very low variances of input and output values near the optimum.

Therefore, we perform data pre-processing on the input values 𝒙 , as well as the design matrix 𝚽 and

the target values 𝑦 before solving the least squares problem. In particular, we perform whitening of the

inputs 𝒙 , standardization of the design matrix 𝚽 and a special form of standardization of the target

values 𝑦 and construct the normalized data set D𝑤 . We demonstrate the effect of data pre-processing

in Figure 5.3.

66

5.4. Model Learning

0 0.2 0.4 0.6 0.8 1 1.2

·104

10−10

10−8

10−6

10−4

10−2

100

102

104

106

Evaluations

f
(µ
)

default
no whitening
no target norm

(a) Rosenbrock

0 0.2 0.4 0.6 0.8 1 1.2

·104

10−10

10−8

10−6

10−4

10−2

100

102

104

106

Evaluations

f
(µ
)

default
no whitening
no target norm

(b) Attractive Sector

Figure 5.3.: This figure shows the effects of data pre-processing on the optimization. We plot the function value over the

course of optimization for a Rosenbrock (a) and Attractive Sector (b) function in 15 dimensions and turn off whitening and

robust target normalization with clipping, respectively. We see that whitening becomes important for low entropy regimes

near the optimum, while target normalization is especially important in case of outliers in the function values as can be seen

for the Attractive Sector function.

5.4.3.1. Data Whitening

Before estimating
ˆ𝜷 , we whiten the input data and obtain

𝒙𝑤 = ¯𝑪−1

D (𝒙 − 𝒙D) ∀ 𝒙 ∈ D

where 𝒙D is the empirical mean and
¯𝑪D is the Cholesky-factorization of the empirical covariance

of the data-set. The parameters
ˆ𝜷𝑤 learned with the whitened data-set to be transformed back into

unwhitened parameters. This transformation is given by

𝑨 = ¯𝑪−T

D 𝑨𝑤
¯𝑪−1

D ,

𝒂 = 𝑨𝒙D + ¯𝑪−T

D 𝒂𝑤,

𝑎 = 𝑎𝑤 + 𝒙T

D (𝑨𝒙D − ¯𝑪−T

D 𝒂𝑤),

where 𝑨𝑤 , 𝒂𝑤 and 𝑎𝑤 are the model parameters in the whitened space.

5.4.3.2. Target Normalization

Normalization of function values is beneficial as it stabilizes the model learning process. Depending on

the number of samples we draw in each iteration as well as how well behaved the objective function is,

we propose two target normalization methods. The first one allows for exact natural gradient updates,

while the second one is more robust towards outliers.

Standard Target Normalization The first target normalization method is based on a simple standard-

ization

𝑦𝑤 = (𝑦 − 𝑦D)/𝑠D ∀ 𝑦 ∈ D

of the target values where 𝑦D is the empirical mean and 𝑠D is the empirical standard deviation of the

target values in D.

67

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

−4 −2 0 2 4
0

20

40

60

80

Excess kurtosis: 11.57

−4 −2 0 2 4
0

20

40

60

80

Excess kurtosis: 12.37

−4 −2 0 2 4
0

10

20

30

40

50

Excess kurtosis: 6.61

−4 −2 0 2 4
0

5

10

15

20

25

30

35

Excess kurtosis: 2.10

−4 −2 0 2 4
0

5

10

15

20

25

Excess kurtosis: 1.40

−4 −2 0 2 4
0

5

10

15

20

25

Excess kurtosis: 0.56

−4 −2 0 2 4
0

5

10

15

20

Excess kurtosis: 0.00

−4 −2 0 2 4
0

5

10

15

20

Final

Figure 5.4.: This figure illustrates the robust target normalization scheme on 100 synthetic data points, generated by a reward

function 𝑦 = −0.5𝒙T𝒙 . We sample 𝒙 from a two dimensional multivariate normal distribution with zero mean and unit

variance and pick 20 random 𝑦 values and add Gaussian noise with a standard deviation of 10. Plots from top left to bottom

right show histograms of the data after standardization of the input in each level of recursion of the procedure. The excess

kurtosis is measured on the black data points in the interval (-3, 3) and only these data points are recursively treated again

until the excess kurtosis of the clipped data is below the threshold of 0.55. Finally, the bottom right histogram shows the

output with the red data points clipped to the minimum and maximum values of the remaining data points. Note, that in each

plot the standardized data has zero mean and unit variance but the model quality suffers from the present outliers.

Robust Target Normalization Additionally, we propose an adaptive iterative normalization and clipping

scheme based on the excess kurtosis of the target values resulting in a normalization process more

robust towards outliers. Given the data-set in a particular iteration, we first perform standardization

like above, then treat all values outside the interval [−𝑣clip, 𝑣clip] as outliers. Afterwards, we look at

the excess kurtosis of the standardized targets in the interval (−𝑣clip, 𝑣clip). If it is high, the data is

still compacted to a small interval while outliers at the borders negatively influence the least squares

optimization. In order to evenly spread the data, we repeat the procedure (normalization and clipping),

until the excess kurtosis falls below a threshold or the standard deviation of the remaining values is close

to 1. After the procedure, we replace the negative and positive outliers with the minimum and maximum

value of the remaining targets, respectively. We illustrate the procedure in Figure 5.4, pseudo-code of

the approach can be found in Appendix B.2. While this effectively changes the optimization objective,

it is not as severe as replacing all function values with a ranking and, thus, the update direction still

corresponds to an approximated natural gradient. An exact quantification of the error is subject to

future work.

5.5. Experiments

In this section, we evaluate the performance of CAS-MORE in the black-box stochastic search and

episodic reinforcement learning setting. While we use the former to highlight the applicability over

a wide range of objective functions using as few samples as possible, it is the episodic reinforcement

learning domain where the core strengths of the algorithm come into play. We start by looking at the

performance in terms of sample efficiency on a set of black-box optimization benchmark functions

68

5.5. Experiments

provided by Hansen et al. [71] and compare CAS-MORE to the original formulation of MORE, as well

as competitors such as CMA-ES [68] and XNES [154]. Afterwards, we run our algorithm on a suite of

different episodic reinforcement learning tasks from the domain of robotics where the fitness function

evaluation is inherently noisy and we also care about the quality of the generated samples (e.g., the

sample evaluations should not damage the robot) instead of plainly looking at the fitness evaluation

at the mean of the search distribution. We compare against state of the art episodic and step-based

reinforcement learning algorithms.

5.5.1. Black-Box Optimization Benchmarks

The COCO framework [71] provides continuous benchmark functions to compare the performance of

optimizers on problems with different problem dimensions. In these deterministic problems, it is only

important to find a good point estimate 𝒙∗. We choose this benchmark to show that our algorithm is

competitive with other black-box optimizers in using as few samples as possible. In order to avoid the

center-bias problem [89], the optimum of the objective function is randomly shifted away from zero for

each instance.

5.5.1.1. Experimental Setup

We evaluate MORE on the 24 functions of the Black-box Optimization Benchmark (BBOB) [64] suite

in dimensions 2, 3, 5, 10, 20 and 40. We run the experiments without explicit optimization of the

algorithm’s hyper parameters for individual functions. Table B.1 shows a set of default parameters

which we found to robustly perform well on a wide variety of benchmark functions in terms of the

problem dimensionality 𝑛. Additionally, we allow restarts of the algorithm with a larger population

size whenever the optimization process fails (see [16]) until a budget of 10 000𝑛 function evaluations is

exceeded or the final target of 1 × 10
−8

is reached. Since MORE maximizes, we multiply the function by

-1 in order to minimize the objective.

5.5.1.2. Black-box Optimization Benchmarks

Figure 5.5 shows runtime results aggregated over function groups and on single functions in dimension

20. Plotted is the percentage of targets reached within the interval 1 × 10
2
to 1 × 10

−8
versus the

log of objective function evaluations divided by the problem dimensionality. The further left a curve

is, the quicker it reached a certain target. The first two rows correspond to combined results on

separable, moderate, ill-conditioned, multi-modal and weakly structured multi-modal functions, as

well as combined results from all 24 functions. The third and fourth row shows results on selected

individual functions.

We first notice that CAS-MORE has a significant advantage over the original formulation of MORE

on almost all functions. Furthermore, we can see that, especially on functions from the group of

moderate and ill-conditioned functions such as Ellipsoid, Rosenbrock or Bent Cigar, CAS-MORE is

able to improve state of the art results of competitors like CMA-ES and XNES. On other functions

on the other hand, for example the Attractive Sector function, MORE has slower convergence. We

found this shortcoming is mainly due to difficulties estimating a good model for this objective (see

also Figure 5.3b). Other hard functions include multi-modal functions such as the Rastrigin function,

where MORE often focuses on a local optimum. Here, the solution is to draw more samples in each

iteration to improve the estimated model. For more results on the BBOB suite we refer to Appendix B.4.

69

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

separable fcts moderate fcts ill-conditioned fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f1-f5, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f6-f9, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f10-f14, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

multi-modal fcts weakly structured multi-modal fcts all fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f15-f19, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f20-f24, 20-D
51 targets: 100..1e-08
30, 15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
30, 15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f2, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

MORE

CMA-ES

CAS MORE

best 2009bbob f9, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

9 Rosenbrock rotated

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f12, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

12 Bent cigar

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f16, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

16 Weierstrass

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f23, 20-D
51 targets: 100..1e-08
30, 15 instances

v2.4.1.1

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f6, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

6 Attractive sector

Figure 5.5.: This figure shows the bootstrapped empirical cumulative distribution of the number of objective function

evaluations divided by dimension (FEvals/DIM) for 51 targets with target precision in 10
[−8..2]

in 20-D representing the

percentage of targets achieved over the number of function evaluations. The results are averaged over 15 instances of each

function. As reference algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers. The

first two rows show the aggregated results for all functions and subgroups of functions. Additionally, we show the results of

individual functions in the third and fourth row. Big thin crosses indicate the used budget median for the respective algorithm

which is 10 000 n function evaluations for each trial of CAS-MORE. Runtimes to the right of the cross are based on simulated

restarts and are used to determine a runtime for unsuccessful runs [72].

Typically, these black-box optimization benchmarks also focus purely on the fitness evaluation of the

mean of the distribution and disregard the quality of the samples. While CAS-MORE is comparable

to state-of-the-art black-box optimizers such as CMA-ES in these domains, the real benefits of MORE

appear if we consider problems with noisy fitness evaluations and whenever we care also about the

quality of the generated samples. This is for example the case in robot reinforcement learning problems

which are discussed in the next sub-section.

70

5.5. Experiments

5.5.2. Episodic Reinforcement Learning Results

Our experiments aim to showcase the benefits of CAS-MORE over other black-box optimization

techniques in the episodic RL setting, as well as deep RL algorithms for the step-based RL setting.

To this end, we compare CAS-MORE to the original MORE algorithm that uses the dimensionality

reduction model, an intermediate algorithm labeled as MORE-LS comprising of the same joint KL and

entropy constraint as in MORE and the simplified model learning approach as in CAS-MORE, and

CMA-ES, representing black-box stochastic search optimizers. Furthermore, we compare to policy

gradient based episodic reinforcement learning using movement primitives with and without trust

regions [114] labeled as BBRL-TRPL and BBRL-PPO, respectively. Note that these algorithms have

been developed for contextual episodic RL, which allows to learn a deep neural network mapping from

a context vector, which describes the task, to a motion primitive parameter vector, which describes

the corresponding robot motion. In this work, we concentrate on the non-contextual case where we

only have to learn a single Gaussian distribution. While this case is arguably simpler, we show that

CAS-MORE significantly outperforms trust-region policy gradient based methods, showing the benefits

of a closed form natural gradient update. Finally, we compare with contemporary step-based deep RL

algorithms such as PPO, SAC, and TD-3. We run step-based PPO using approximately the same number

of transitions as the episode-based algorithms. For SAC and TD-3, we are limited by a 24 hour compute

budget and therefore report the performance after this budget is exceeded.

In our experiments, we analyze the performance of the mean the search distribution, as well as other

performance indicators such as success rates. The experiments are designed to be non-contextual

with unchanged starting configurations of the agent in a noisy environment. For the episodic RL

experiments, we use Probabilistic Movement Primitives [119] to plan trajectories. A PD-controller

provides the torques necessary to follow them. For the step-based deep RL algorithms, we provide

proprioceptive feedback in form of the joint angles and joint velocities, as well as a normalized time-step

to the agent. The policy directly outputs the torques applied to the joints. For the BBRL and deep RL

experiments, we orient ourselves towards the hyper-parameters used in Otto et al. [114]. They are

provided in Appendix B.3. For more careful exploration, we set 𝜖𝜇 = 0.05 and 𝜖Σ = 0.005 and draw 64

samples per iteration for the episodic RL algorithms. Since we do not operate using a very low number

of new samples per iteration and the reward functions do not produce large outliers, we can use the

standard target normalization allowing for more exact natural gradient updates. We report the results

in terms of the interquartile mean (IQM) with a 95% stratified bootstrap confidence interval [5].

5.5.2.1. Hole Reacher

The first task is an advanced version of the holereaching task from Abdolmaleki et al. [2] that aims

to show the difference between step-based and episodic reward formulations and the benefits of

maximizing the expected fitness. The end-effector of a 5-link planar robot arm has to reach into a

narrow hole without colliding with the ground or the walls of the hole. The arm is controlled in

joint-space by applying torques to each of the 5 joints. Each link has a length of 1 m, the hole has a

width of 20 cm, a depth of 1 m and is located 2 m away from the robot’s base. For an illustration of a

successful episode, see Figure 5.6. While the simulation of the arm is rather crude, this experiment

has other properties that emphasize certain shortcomings of step-based RL, as well as rank-based

optimization techniques. These properties include two distinct regions of exploration where above

ground level, the agent can explore freely, while below the ground level even slight errors lead to a

collision with the walls of the hole. Additionally, the depth of the hole, which is a main contributor to

the reward function, is subject to noise in the noisy environment.

71

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

4 2 0 2 4
1

0

1

2

3

4

5

Iteration: 200, distance: 0.020631020125826627

Figure 5.6.: This figure shows an illustration of the hole reacher task. The robot arms starts upright and smoothly reaches

down the narrow hole. The policy is learned using CAS-MORE and shows a typical behavior that keeps a safe distance to the

ground.

For the episodic RL setting, we learn the parameters of a ProMP with 3 basis functions, resulting in 15

parameters to be optimized. An episode consists of 200 time steps and in each iteration of the learning

algorithm, we draw 64 new samples for the episodic RL algorithms. The cost function of the task is

composed of two stages. First, the distance of the end-effector to the entrance of the hole is minimized,

subsequently, the reward increases the further down the end-effector reaches. The reward is scaled

down with a constant factor if the robot touches the ground. Additional penalty costs for acceleration

ensure a smooth and energy-efficient trajectory. This reward function is different from the original

MORE paper and is designed to highlight the risk awareness of the tested algorithms as the reward

increases towards the bottom of the hole and then suddenly drops. The exact reward function can be

found in Appendix B.5.1.

We examine 4 different settings of this experiment where we highlight the consequences of each choice

on the learning process, namely

1. noise-free environment with dense in time reward,

2. noisy environment with dense in time reward,

3. noise-free environment with sparse in time reward,

4. noisy environment with sparse in time reward,

where in the noisy environment the perception of the depth of the hole is subject to noise
5
. The

difficulty of this task lies in the two distinct sectors above and below the ground level. While above

ground level, the agent can explore without negative consequences, it has to be much more careful

once navigating into the narrow hole. The results of these experiments can be found in Figure 5.7. We

plot the performance at the mean of the search distribution in left column, the expected performance

under the search distribution in the center left column, the percentage of samples that collided with

the ground in the center right column, and the distance of the end-effector to the bottom of the hole at

the end of the episode in the right column. The result is averaged over 20 seeds for the episodic RL

algorithms and 10 seeds for the step-based RL algorithms.

5
In the beginning of the episode, we sample the depth of the hole uniformly from (1.00 ± 0.02)m.

72

5.5. Experiments

Algorithm Median (s) Mean (s) Standard Deviation (s)

BBRL PPO 0.23196 0.25007 0.03200

BBRL TRPL 0.42725 0.43615 0.11009

CAS MORE 0.01095 0.01117 0.00191

CMA-ES 0.00601 0.00613 0.00192

MORE 2.24552 2.20081 0.36460

MORE LS 0.01070 0.01462 0.08261

Table 5.1.: Runtime comparison for various episodic reinforcement learning algorithms. We measure the time the algorithm

takes for one iteration without the sampling process.

Dense in time reward We first examine the results of the experiment in the noise-free environment

with dense in time reward, the usual setting of current deep RL literature, in the first row of Figure 5.7.

When looking at the second column, we can see that CAS-MORE optimizes towards a stable solution

reaching into the ground that avoids collision with the ground. While CMA-ES finds a solution that

comes closer to the bottom of the hole (right column) leading to a higher performance at the mean, it

often draws samples that collide with the walls during the optimization as can be seen in the center

left column. Compared to the original MORE algorithm, MORE-LS using a model based on our newly

introduced model learning approach leads to a similar performance as CAS-MORE. BBRL-TRPL also

performs similarly to CAS-MORE, yet, at the cost of much higher computation time. For a comparison

of run times, see also Table 5.1. PPO optimizes towards fast movement of the end-effector in the

direction of the entrance of the hole but fails to consistently reach into it. When looking at individual

learning curves, we found that it often finds policies that successfully reach into the hole but soon after

forgets this solution again. SAC, TD-3, BBRL-PPO, and also the original MORE with the dimensionality

reduction model fail to find policies that reach into the ground in our experiments.

Next, we look at the results of the experiments in the noisy environment in the second row of Figure 5.7.

Compared to the noise-free experiment, we can see the biggest impact on CMA-ES. CMA-ES again

optimizes very fast towards the ground of the hole but due to the noise it quickly ends up in a solution

that collides with the ground. CAS-MORE, MORE-LS and BBRL-TRPL on the other hand are hardly

influenced by the noise in the environment and still provide solutions that reach into hole, albeit

maintaining a slightly larger distance to the ground compared to the noise-less case. The results of the

rest of the algorithms stay more or less unchanged as they never get close to the ground.

Sparse in time reward As noted in Otto et al. [114], a dense reward leads to a fast movement and overall

poor energy efficiency. Thus, a better task description for this task is to only provide a distance-based

reward in the last time-step and penalize high action values in each time-step. Again, we first examine

the noise-free environment results which can be found in the third row of Figure 5.7. Even without

noise, the results of CMA-ES become inconsistent over individual seeds, while CAS-MORE consistently

optimizes towards well performing distributions. We assume this is the case as the distance between

the initialization of the movement primitive parameters and a well performing solution is quite large.

MORE-LS and BBRL-TRPL still find good solutions but perform slightly worse as can be seen from the

distance of the end-effector to the ground in the last column. All step-based algorithms now fail to find

good policies.

Last, we look at the results of the experiments in the noisy environment in the last row of Figure 5.7.

We can now see the full potential of optimizing the expected reward and individual updates of the mean

and covariance of the search distribution, as CAS-MORE finds the policies with the best performance

73

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

50

100

150

200

R
ew

ar
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

50

100

150

200

E
x
p
ec
te
d
re
w
a
rd

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

0.8

1

C
ol
li
si
on

ra
te

0 0.2 0.4 0.6 0.8 1 1.2

·107

10−3

10−2

10−1

100

D
is
ta
n
ce

to
gr
o
u
n
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

50

100

150

200

R
ew

ar
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

50

100

150

200
E
x
p
ec
te
d
re
w
a
rd

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

0.8

1

C
o
ll
is
io
n
ra
te

0 0.2 0.4 0.6 0.8 1 1.2

·107

10−1

100

D
is
ta
n
ce

to
g
ro
u
n
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

−0.5

0

0.5

1

1.5

2

R
ew

ar
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

−0.5

0

0.5

1

1.5

2

E
x
p
ec
te
d
re
w
a
rd

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

0.8

1

C
o
ll
is
io
n
ra
te

0 0.2 0.4 0.6 0.8 1 1.2

·107

10−3

10−2

10−1

100

101

D
is
ta
n
ce

to
gr
ou

n
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

−0.5

0

0.5

1

1.5

2

Environment interactions

R
ew

ar
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

−0.5

0

0.5

1

1.5

2

Environment interactions

E
x
p
ec
te
d
re
w
ar
d

0 0.2 0.4 0.6 0.8 1 1.2

·107

0

0.2

0.4

0.6

0.8

1

Environment interactions

C
o
ll
is
io
n
ra
te

0 0.2 0.4 0.6 0.8 1 1.2

·107

10−1

100

Environment interactions

D
is
ta
n
ce

to
gr
ou

n
d

CAS-MORE MORE MORE LS CMA-ES BBRL-TRPL BBRL-PPO PPO SAC TD-3

Figure 5.7.: This figure shows the results of the hole-reacher experiment. Plotted is the expected performance of the mean in

the left column, the mean of episode returns of the samples drawn in each iteration in the center left column, the percentage

of trajectories that led to collisions with the ground in the center right column, and the distance of the end-effector at the end

of the trajectory in the right column. The first row contains the results for the noise-less experiment with dense step-based

reward, while the second row shows the results of the noisy experiment with dense step-based reward. The third and fourth

row show the results for the noiseless and noisy experiments using a sparse episodic reward, respectively.

at the mean as well as the best performing samples during the optimization process, with MORE-LS

and BBRL-TPRL slightly below them. CMA-ES now consistently produces policies that collide with the

ground. Results for all other algorithms remain poor.

5.5.2.2. Table Tennis

In the second task, we want to teach a 7 DoF Barrett WAM robotic arm a fore-hand smash. The goal is

to return a table-tennis ball and place it as close as possible to the far edge of table on the opponent’s

side. For this and all following experiments, we concentrate on the noisy environment with sparse in

time reward setting. Thus, in every episode, the ball is initialized at the same position but the velocity

in x-direction (approaching the robot) is noisy. A robust strategy is to account for the uncertain velocity

74

5.5. Experiments

Figure 5.8.: A successful episode of the table tennis task learned by CAS-MORE.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

·107

0

5

10

15

Environment interactions

R
ew

ar
d

0 2 4

·107

0

5

10

15

Environment interactions

E
x
p
ec
te
d
re
w
ar
d

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

·107

0

0.2

0.4

0.6

0.8

1

Environment interactions

S
u
cc
es
s
ra
te

CAS-MORE MORE MORE LS CMA-ES BBRL-TRPL BBRL-PPO PPO SAC TD-3

Figure 5.9.: This figure shows the results of the table tennis experiment. Plotted is the expected performance of the mean in

the left column, the mean of episode returns of the samples drawn in each iteration in the center column, and the percentage

of trajectories that led to ball landing points within the last 10cm of the table in the right column.

and aim for a spot that is not too close to the edge. An illustration of a successful execution of the task

can be found in Figure 5.8.

We learn the parameters of a ProMP where we use 2 basis functions for each joint, resulting in 14

parameters to be optimized. The weights of the movement primitive are initialized as zero, so that the

robot needs to learn the movement from scratch. The reward function is composed of three stages.

First, the distance between the ball and the racket is minimized to enforce hitting of the ball. Second, a

term is added to minimize the distance between the landing point of the ball and the far edge of the

table. Once the ball lands on the table, the reward increases with the distance of the ball. Note, that

different from the hole-reacher task, the reward for this task is non-Markovian as it depends on the

whole trajectory [114]. In order to provide a step-based based reward for the step-based RL algorithms,

we run the simulation until the racket touches the ball while only return the action cost. The rest of the

episode is then simulated without agent interaction and presented to the learning algorithm as one last

time-step with the task reward as in Otto et al. [114]. For more details on the environment, we refer

the reader to Appendix B.5.2. The reward function differs from Otto et al. [114] to showcase the risk

awareness of the optimization algorithms, as the reward drops as soon as the ball flies past the table.

The results of the experiment are presented in Figure 5.9. We can again see that CAS-MORE and

MORE using the novel model learning approach produce the best results, this time with a distinct

advantage over both, step-based RL algorithms PPO, TD3 and SAC, as well as gradient based episodic

RL algorithms BBRL TRPL and BBRL PPO. Only CAS-MORE is able to consistently return around 90%

of the balls into the target zone towards the edge of the table. CMA-ES and BBRL TRPL only produce

distributions that are able to return around 60% of the balls.

75

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

Figure 5.10.: A successful episode of the beerpong task learned by CAS-MORE.

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

2

4

6

Environment interactions

R
ew

a
rd

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

2

4

6

Environment interactions

E
x
p
ec
te
d
re
w
a
rd

0.0 0.25 0.5 0.75 1.0 1.25 1.5

·107

0

0.2

0.4

0.6

0.8

1

Environment interactions

S
u
cc
es
s
ra
te

CAS-MORE MORE MORE LS CMA-ES BBRL-TRPL BBRL-PPO PPO SAC TD-3

Figure 5.11.: This figure shows the results of the beerpong experiment. Plotted is the expected performance of the mean in the

left column, the mean of episode returns of the samples drawn in each iteration in the center column, and the percentage of

successful throws where the ball landed in the cup in the right column.

5.5.2.3. Beerpong

We use the same simulated robot as before to throw a ball towards a table where it first needs to bounce

at least once and then fly into a cup. The task is depicted in in Figure 5.10. As the robot has no actuated

end-effector and the ball is directly attached to the robot’s last joint, we only need to actuate the first 6

joints, resulting in a 12 dimensional search space for the episodic RL algorithms. In this experiment,

the ball release is noisy and designed in a way that it is not possible to find a conservative strategy.

The noise will always cause some trials to miss the cup. The results can be found in Figure 5.11.

Overall, CAS-MORE again provides the best trade-off between convergence speed and task performance.

Interestingly, the original MORE performs better than MORE using the least squares model while the

step-based reinforcement learning tasks fail to find any good strategy. This experiment also shows the

benefits of trust-region optimization, as BBRL-PPO starts to approach a good strategy but then fails

due to, presumably, too aggressive policy updates.

5.5.2.4. Hopper Jump

The last task we consider is a modified version of the Hopper task from OpenAI gym [27] where the

agent is rewarded for jumping onto a box. To this end, we place a box in front of the Hopper and use

an updated reward function Appendix B.5.4. In the simulation, the initial distance to the agent and

height of the box are subject to noise. For the episodic RL experiments, we choose 3 basis functions for

each of the 3 degrees of freedom, resulting in 9 parameters to be optimized. Compared to the original

version of the Hopper task, it is very difficult for step-based reinforcement learning algorithms, since a

successful strategy requires broad exploration and involves tucking by bending the knee joint and an

explosive move upwards to gain enough momentum to reach the top of the box. An illustration of this

behavior can be found in Figure 5.12

76

5.6. Conclusion

Figure 5.12.: A successful episode of the hopper jump task learned by CAS-MORE. At first, the agent fully bends to then

release into a fully extended jump. This way, it can reach a safe height not risking contact with the box’s edge.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

5

10

Environment interactions

R
ew

ar
d

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

5

10

Environment interactions

E
x
p
ec
te
d
re
w
ar
d

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·107

0

0.2

0.4

0.6

0.8

1

Environment interactions

S
u
cc
es
s
ra
te

CAS-MORE MORE MORE LS CMA-ES BBRL-TRPL BBRL-PPO PPO SAC TD-3

Figure 5.13.: This figure shows the results of the hopper jump experiment. Plotted is the expected performance of the mean in

the left column, the mean of episode returns of the samples drawn in each iteration in the center column, and the percentage

of successful throws where the ball landed in the cup in the right column.

The results are presented in Figure 5.13. We first observe, that only CAS-MORE, MORE LS and BBRL

TRPL are able to solve the task. Again, CAS-MORE finds good solutions more robustly than MORE

LS, as indicated by the confidence interval, and more efficient in terms of samples and in terms of

computation time compared to BBRL TRPL. CMA-ES again quickly optimizes towards a solution but

soon fails once the noise has a direct impact on the trajectory of the agent. All other algorithms hardly

find policies that produce jumping strategies.

5.6. Conclusion

In this paper, we presented CAS-MORE, a new version of Model-based Relative Entropy Stochastic

Search, based on a coordinate ascent strategy on the mean and covariance of the search distribution

and an adaptive entropy schedule. Additionally, we provide an improved model fitting process that

is computationally more efficient and show how to deal with objective functions that produce large

outliers. We show how the parameter updates follow the direction of the natural gradient and, as the

model estimation is not based on rankings of objective function values, we truly optimize the expected

fitness under the search distribution. The result is a robust risk-aware optimization which we show to

outperform state of the art algorithms such as CMA-ES on stochastic search task, as well as episodic and

step-based reinforcement learning tasks, especially on noisy episodic reinforcement learning tasks.

Limitations and Future Work Arguably the biggest limitation of CAS-MORE is the restriction to the

non-contextual setting. However, we believe that CAS-MORE still is a valuable tool in the prototyping

stage of a more complex contextual problem, or if the problem at hand is non-contextual. Here, the

77

Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning

robustness and speed of the algorithm provide a large benefit over more complex algorithms. In addition,

the algorithm can easily be extended for small context spaces with low-dimensional contexts using a

linear mapping from the context to the mean.

5.7. Acknowledgements

The authors acknowledge support by the state of Baden-Württemberg through bwHPC. Research that

lead to this work was funded by the Federal Ministry of Education and Research (BMBF) and the state

of Hesse as part of the NHR Program.

78

6. Black-Box Optimization for Episode-Based
Multi-Agent Reinforcement Learning

The concepts developed in Chapter 5 are the foundation for several interesting continuations. To some

extent, these continuations have already been started. This chapter contains these fundamentals and

serves as a starting point for future work.

6.1. Multi-Agent Stochastic Search

We consider an episodic multi-agent reinforcement learning setup where we want to optimize trajecto-

ries either in task- or in joint-space for 𝑛 agents. Each individual agent 𝑖’s trajectory is parameterized

by a ProMP whose parameters 𝜽𝑖 = {𝝁𝑖 , 𝚺𝑖} we want to optimize. The agents are rewarded by a

multi-variable reward function 𝑓 : 𝑿 → R, 𝑿 = {(𝒙1, . . . , 𝒙𝑛) ∈ R𝑛 dim(𝜇) }. This implies that agents are

not rewarded individually. Instead, the collaborative effort of all agents is rewarded. The goal is to find

a policy 𝜋 : 𝑿 → R that maximizes the expected reward E𝑿∼𝜋 [𝑓 (𝑿)].

6.1.1. Factorized MORE

In single-agent RL, episodic RL using Probabilistic Movement Primitives (c.f. Chapter 5) provides a

well working framework to learn parametric distributions over movement trajectories in task or joint

space. Naïvely applying episodic RL to a multi-agent problem (i.e., treating all agents as one single

agent), however, quickly becomes infeasible due to the increasing parameter space. In MORE, the

main limitation for scaling is the estimation of the quadratic model as the number of parameters to

be learned for a full model scales quadratically with the problem dimensionality and is in the order

of O((𝑛dim(𝝁))2). To alleviate this problem, we propose to factorize the joint policy, effectively not

modelling inter-agent correlations explicitly, and estimate a factorized quadratic surrogate based on the

cooperative reward. It is equivalent to learning a block-diagonal Gaussian distribution over movement

primitive parameters where each block corresponds to an individual agent. Still, we learn a joint

quadratic model on the collaborative reward, which now is block-diagonal as well, and thus, the

inter-agent correlations are modeled implicitly by the reward function surrogate. This choice reduces

the overall parameter complexity to O(𝑛dim(𝝁)2). Mathematically, this means that the objective of

maximizing the expected reward can be rewritten as

max

𝜋
E𝑿∼𝜋 [𝑓 (𝑿)] = max

𝜋1,...,𝜋𝑛
E𝒙1∼𝜋1,...,𝒙𝑛∼𝜋𝑛 [𝑓 (𝒙1, . . . , 𝒙𝑛)]

and we optimize each function 𝜋𝑖 individually.

79

Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

6.1.1.1. Trust-Region Objective

We propose the following multi-variable optimization problem in 𝑛 variables 𝝅1, . . . , 𝝅𝑛

maximize

𝜋1, . . . , 𝜋𝑛
E𝒙1∼𝜋1,...,𝒙𝑛∼𝜋𝑛 [𝑓 (𝒙1, . . . , 𝒙𝑛)]

subject to

𝑛∑︁
𝑖=1

KL(𝜋𝑖 ∥ 𝜋𝑖, 𝑡) ≤ 𝜖

where we employ the same coordinate-ascent strategy as proposed in Chapter 5, now iteratively

optimizing each agent’s policy individually in each step of the algorithm.

6.1.1.2. Model Learning

We learn a quadratic surrogate of the form

𝑓 (𝑿) ≈ ˆ𝑓 (𝑿) = −0.5

𝑛∑︁
𝑖=1

𝒙T

𝑖 𝑨𝑖𝒙𝑖 + 𝒙T

𝑖 𝒂𝑖 + 𝑎0

using the method of least squares and employing the same pre-processing techniques as described in

Chapter 5.

6.1.2. Policy Updates

The optimization problem is solved individually in each iteration for 𝝁1, . . . , 𝝁𝑛 and 𝚺1, . . . , 𝚺𝑛 using

the method of Lagrangian multipliers and an individual trust-region 𝜖𝜇 for the means and 𝜖Σ for the

covariances. The update for a mean 𝝁𝑖 is given by

𝝁𝑖 = (𝜆𝚺−1

𝑖, 𝑡 +𝑨𝑖)−1(𝜆Σ−1

𝑖, 𝑡 + 𝒂𝑖)

and for a covariance 𝚺𝑖 by

𝚺𝑖 = 𝜈 (𝜈𝚺−1

𝑖, 𝑡 +𝑨𝑖)−1

where 𝜆 and 𝜈 are the solutions of the Lagrangian dual problem.

6.1.3. Illustrative Experiment

We demonstrate the applicability of the approach on a variant of the Hole Reacher problem introduced

in Section 5.5.2.1. The new tasks involve several 5-link planar robots that need to reach into a hole, for

example to pick an object that is too heavy for an individual robot to carry.

We again use 3 basis functions for each of the 5 joints, resulting in 15 parameters to be optimized for

each arm. Table 6.1 shows the number of model parameters that need to be estimated depending on the

number of agents. We can see that the dimensionality of the full quadratic model scales quadratically

with the number of agents, while the block-diagonal model only scales linearly. The task reward

function

𝑅task =

{
0.25 exp (−𝑛𝑔

¯𝑑𝑔)
𝑛

if a collision happened,

0.25 + exp (−𝑛𝑔
¯𝑑𝑔)
𝑛

if 𝑡 = 𝑇 and no collision happened

80

6.1. Multi-Agent Stochastic Search

is based on the average distance
¯𝑑𝑔 of all the end-effectors to their corresponding goal points. The

sparse-in-time reward only returns the task reward in the terminal time-step 𝑇 which can either be the

last time-step of the episode or the time-step where a collision happens and is given by

𝑟𝑡 =

{
−10

−5𝜏𝑡 if 𝑡 < 𝑇,

𝑅task − 10
−5𝜏𝑡 if 𝑡 = 𝑇 .

Figure 6.1 shows an example of a successful episode of a policy learned with the block-diagonal quadratic

model. Even though inter-agent correlations are not explicitly modelled, the arms coordinate to not

collide on their way towards the bottom of the hole. Figure 6.2 shows an even higher dimensional

example with 8 arms, resulting in 120 parameters to be optimized.

Figure 6.1.: An episode of four arms reaching towards a single hole.

We run an experiment to test the effectiveness of the block diagonal model and compare it to CAS-

MORE with a full quadratic model, both using more samples than parameters to estimate the model.

Additionally, we run CAS-MORE with the full quadratic model using the same number samples as

the block-diagonal version. The learning curves in Figure 6.3 indicate that the factorized variant of

CAS-MORE is able to achieve similar performance to the full version with a much lower sample count.

Additionally, it performs favorable in comparison to CAS-MORE with a full quadratic model that uses

a low number of samples.

𝑛 dim(𝝁) lin diag block full

4 60 61 121 541 1891

8 120 121 241 1081 7381

16 240 251 481 2161 29161

Table 6.1.: Number of model parameters depending on the number of agents 𝑛 for a 15-dimensional movement primitive per

agent.

81

Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

Figure 6.2.: An episode of eight arms reaching towards a single hole.

6.2. Permutation Invariant Learning of Versatile Multi-Agent Behavior

The episodic formulation additionally lends itself naturally for learning versatile behavior in the form

of Gaussian mixture models. In principle, versatile behavior can be achieved by running multiple

instances of MORE from various starting values. A drawback of this approach is that one may end up

with many of them learning the same solution. Instead, we want to learn a Gaussian mixture model

(GMM) 𝑞(𝒙) = ∑
𝑜 𝑞(𝒙 | 𝑜)𝑞(𝑜) where each component 𝑜 ideally learns a different solution. To this end,

we can resort to Variational Inference by Policy Search (VIPS) [13], an algorithm for learning GMMs,

typically applied in variational inference. It is based on a maximum entropy objective and for each

component we optimize

maximize

𝜋𝑜

∫
𝒙
𝜋𝑜 𝑓𝑜 (𝒙)dx + 𝜌𝐻 (𝜋𝑜)

subject to KL(𝜋𝑜 ∥ 𝜋𝑜,𝑡) ≤ 𝜖
(6.1)

where 𝜋𝑜 = 𝑞(𝒙 | 𝑜) and 𝜋𝑜,𝑡 = 𝑞𝑡 (𝒙 | 𝑜) is the component from the previous iteration. The component

specific reward function 𝑓𝑜 (𝒙) = 𝑓 (𝒙) + 𝜌 (log𝑞𝑡 (𝒙 | 𝑜) − log𝑞𝑡 (𝒙)) contains the original reward

value but, additionally, penalizes regions where other components already have high probability mass.

We leave out the the update for the component weights as we are only interested in the policies

themselves.

6.2.1. Maximum Entropy Episodic Policy Search

While originally not in a maximum entropy formulation, the algorithm from Chapter 5 can easily be

augmented by reformulating the optimization problem

maximize

𝜋

∫
𝒙
𝜋 (𝒙) 𝑓 (𝒙)dx + 𝜌𝐻 (𝜋)

subject to KL(𝜋 (𝒙) ∥ 𝜋𝑡 (𝒙)) ≤ 𝜖
(6.2)

82

6.2. Permutation Invariant Learning of Versatile Multi-Agent Behavior

0 100 200 300 400 500

0.4

0.6

0.8

1

1.2

Iterations

R
ew

a
rd

CAS Block (128/1280 samples)

CAS (256/2560 samples)

CAS (128/1280 samples)

(a) Reward

0 100 200 300 400 500

10−1

100

101

Iterations

D
is
ta
n
ce

to
gr
o
u
n
d

CAS Block (128/1280 samples)

CAS (256/2560 samples)

CAS (128/1280 samples)

(b) Distance to ground

0 100 200 300 400 500

0.4

0.6

0.8

1

Iterations

R
ew

ar
d

CAS Block (256/2560 samples)

CAS (1024/10240 samples)

CAS (256/2560 samples)

(c) Reward

0 100 200 300 400 500

100

101

Iterations

D
is
ta
n
ce

to
gr
ou

n
d

CAS Block (256/2560 samples)

CAS (1024/10240 samples)

CAS (256/2560 samples)

(d) Distance to ground

Figure 6.3.: This figure shows learning curves (left) and achieved average end-effector distances to the ground (right) over the
optimization iterations for the four arm (upper row) and eight arm hole reacher. The first number in the legend indicates the

number of samples drawn per iteration and the second number indicates the size of the reward buffer. Results are averaged

over 5 seeds.

to contain an entropy bonus in the objective. The update equations are given by

𝝁 = (𝜆𝚺−1

𝑡 +𝑨)−1(𝜆𝚺−1

𝑡 𝝁𝑡 + 𝒂) 𝚺 =

(
𝜈𝚺−1

𝑡 +𝑨
𝜈 + 𝜌

)−1

for the mean and covariance where 𝜆 and 𝜈 are Lagrangian multipliers found by solving the dual of

the optimization problem. In contrast to Chapter 5 we omit the step-size adaptation in favor of the

maximum entropy formulation to be able to use it in the framework of VIPS presented in the next

section.

6.2.2. Permutation Invariant VIPS

Learning versatile solutions with multiple agents is of high complexity as, at least from the perspective

of the learning algorithm, permutations of agents look like different solutions, albeit showing the

same overall behavior. More precisely, each additional agent leads to factorially many permutations

83

Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

of unique solutions to a problem. In this section, we sketch how to avoid learning permutations of

solutions by extending the optimization problem introduced in Equation (6.1). To this end, we propose

a permutation invariant form of a Gaussian mixture model where each component is mapped to its

permutations with equal weight, simulating a larger GMM with factorially more components. We show

that the same decomposition as in VIPS can be applied on this extended permutation invariant mixture

model.

6.2.2.1. Permutation Invariant GMMs

In order to separate the space of unique solutions from the space of solutions that include permutations,

we introduce a latent variable model

𝑞(𝑿 | 𝑜) =
∫
𝑍

𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜)𝑑𝒁

over latent variable 𝒁 ∈ Rdim(𝑿) . The auxiliary distribution 𝑞(𝑿 | 𝒁) acts as a mapping from the space

of a unique solution to all permutations of it and can be defined as

𝑞(𝑿 | 𝒁) =
{

1/|𝑆 (𝑿) | if 𝒁 ∈ 𝑆 (𝑿)
0 else

(6.3)

where 𝑆 (𝑿) is the set of all legal permutations of 𝑿 . The mixture model is then defined as

𝑞𝜋 (𝑿) =
∫
𝒁
𝑞(𝑿 | 𝒁)𝑞𝑧 (𝒁)d𝒛

=
∑︁
𝑜

𝑞(𝑜)
∫
𝒁
𝑞(𝑿 | 𝒁)𝑞𝑧 (𝒁 | 𝑜)d𝒛

where 𝑞𝑧 (𝒁) =
∑
𝑜 𝑞(𝑜)𝑞(𝒁 | 𝑜) now is a mixture of block-diagonal GMMs (𝑞(𝒁 | 𝑜) corresponding

to 𝜋 (𝑿)) in the space of unique solutions to the multi-agent problem.
1
Using the definition of the

mapping in Equation (6.3), the distribution

𝑞𝜋 (𝑿) = |𝑆 (𝑿) |−1

∑︁
𝑜

𝑞(𝑜)
∑︁

˜𝑿 ∈𝑆 (𝑿)

𝑞(𝒁 = 𝑿̃ | 𝑜)

assigns equal probability to all samples 𝑿̃ ∈ 𝑆 (𝑿) while only requiring a single component in 𝒁 to

represent all the permuted modes.

6.2.2.2. Objective

We are interested in solving

maximize

𝑞𝜋

∫
𝒙
𝑞𝜋 (𝑿) 𝑓 (𝑿)dx + 𝜌𝐻 (𝑞𝜋)

1
We use subscripts 𝜋 and 𝑧 to denote whether a distribution is defined in the space of 𝑿 or 𝒁 to avoid confusion.

84

6.2. Permutation Invariant Learning of Versatile Multi-Agent Behavior

with the latent variable model introduced in the previous section by applying the decomposition

proposed in Arenz, Zhong, and Neumann [13]. Using the identities

log𝑞(𝑿) = log𝑞(𝑿 | 𝒁) + log𝑞(𝒁) − log𝑞(𝒁 | 𝑿),
log𝑞(𝒁) = log𝑞(𝒁 | 𝑜) + log𝑞(𝑜) − log𝑞(𝑜 | 𝒁)

we can reformulate the objective as

𝐿𝜋 =

∫
𝑿
𝑞𝜋 (𝑿) (𝑓 (𝑿) − 𝜌 log(𝑞𝜋 (𝑿)))d𝑿

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜)

(
𝑓 (𝑿) − 𝜌 (log𝑞(𝑿 | 𝒁) − 𝑞(𝑜 | 𝒁) − log𝑞(𝒁 | 𝑿))

)
d𝒁d𝑿

+ 𝜌 (𝐻 (𝑞(𝒁 | 𝑜)) + 𝐻 (𝑞(𝑜)))

The occurrences of the log responsibilites 𝑞(𝒁 | 𝑿) and 𝑞(𝑜 | 𝒁) prevent us from optimizing each

component independently. However, by adding and subtracting the auxiliary distributions 𝑞(𝒁 | 𝑿)
and 𝑞(𝑜 | 𝒁), we obtain

𝐿𝜋 = 𝐿̃(𝑞(𝑜 | 𝒁)

+ 𝜌
∫
𝑿
𝑞(𝑿)KL(𝑞(𝒁 | 𝑿) ∥ 𝑞(𝒁 | 𝑿))d𝑿

+ 𝜌
∫
𝑿
𝑞(𝑿)KL(𝑞(𝒐 | 𝒁) ∥ 𝑞(𝒐 | 𝒁))d𝑿

where

𝐿̃(𝑞(𝑜 | 𝒁)) =
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (

𝑓 (𝑿) + 𝜌 (log𝑞(𝒁 | 𝑜) + log𝑞(𝑜) − log𝑞(𝑿))d𝒁d𝑿

+ 𝜌 (𝐻 (𝑞(𝒁 | 𝑜)) + 𝐻 (𝑞(𝑜)))

is a lower bound to 𝐿𝜋 as the expected KL divergences are always non negative. Full derivations can be

found in Appendix C.1.

6.2.3. Component Updates

Ignoring the terms that don’t affect the maximization of the lower bound 𝐿𝜋 with respect to a single

component 𝑞(𝒁 | 𝑜), we can optimize

maximize

𝑞(𝒁 | 𝑜)

∫
𝒁
𝑞(𝒁 | 𝑜)𝑅𝑜 (𝒁)d𝒁 + 𝜌𝐻 (𝑞(𝒁 | 𝑜))

subject to KL(𝑞(𝒁 | 𝑜) ∥ 𝑞𝑡 (𝒁 | 𝑜)) ≤ 𝜖

individually for each component using the method presented in Section 6.1. Using the fact that 𝑓 (𝑿)
and 𝑞(𝑿) are permutation invariant by definition, the component-specific reward 𝑅𝑜 (𝒁) is given by

𝑅𝑜 (𝒁) =
∫
𝑿
𝑞(𝑿 | 𝒁) (𝑓 (𝑿) + 𝜌 (log𝑞(𝒁 | 𝑜) − log𝑞(𝑿))d𝑿

= 𝑓 (𝑿 = 𝒁) + 𝜌 (log𝑞(𝒁 | 𝑜) − log𝑞(𝑿 = 𝒁))

85

Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

6.2.4. Weight Updates

From a reinforcement learning perspective, the weight update is not strictly necessary but presented

here for the sake of completeness. The mixture coefficients 𝑞(𝑜) can be updated by optimizing

maximize

𝑞(𝑜)

∑︁
𝑜

𝑞(𝑜)𝑅(𝑜) + 𝜌𝐻 (𝑞(𝑜))

where the reward function 𝑅(𝑜) is given by

𝑅(𝑜) =
∫
𝒁
𝑞(𝒁 | 𝑜)

∫
𝑿
𝑞(𝑿 | 𝒁) (𝑓 (𝑿) + 𝜌 (log𝑞(𝒁 | 𝑜)

+ log𝑞(𝑜) − log𝑞(𝑿))d𝑿d𝒁 + 𝜌𝐻 (𝑞(𝒁 | 𝑜))

=

∫
𝒁
𝑞(𝒁 | 𝑜) (𝑓 (𝑿 = 𝒁) + 𝜌 (log𝑞(𝒁 | 𝑜) + log𝑞(𝑜)

− log𝑞(𝑿 = 𝒁)))d𝒁 + 𝜌𝐻 (𝑞(𝒁 | 𝑜))

6.3. Conclusion

In this section, we laid out the challenges that arise when scaling episode-based reinforcement learning

methods using movement primitives to problems involving multiple agents. We showed that the

inevitable increase in problem dimensionality can be mitigated by factorizing the joint policy and

support this idea with initial experiments supporting the reduced computational and sample complexity

while maintaining performance compared to a joint model. Next, we attended to the challenges

trying to learn versatile solutions involving multiple agents. Here, each agent introduces factorially

many redundant solutions due to permutations of agents resulting in identical behavior. Based on a

permutation invariant formulation of a Gaussian mixture model, we proposed an extension to the VIPS

algorithm to learn versatile behavior while avoiding to learn redundant solutions. An experimental

evaluation of this algorithm is left for future work.

86

7. Conclusion

Sequential decision making problems often challenge reinforcement learning algorithms with very

large state and action spaces. Especially so in multi-agent scenarios, where spaces increase with

each additional agent. Yet, if they have a special structure, this can be taken into account by the

learning algorithm. The question underlying this thesis therefore was to exploit these structures to

improve on state representation for deep reinforcement learning in swarms, as well as exploration in

high dimensional action spaces which are often found in episode-based reinforcement learning using

movement primitives.

7.1. Summary of Contributions

This thesis is concerned with state representation in homogeneous swarms, as well as exploration of

high dimensional action spaces in episode-based reinforcement learning. In this section, we briefly

revisit the main contributions of this thesis.

7.1.1. Fundamentals and State of the Art

This chapter serves as an introduction to the topic of sequential decision making and reviews current

relational state representation methods and their application in multi-agent learning. First, the founda-

tions for reinforcement learning in the step-based and episode-based learning setting are laid out. The

step-based view is taken in Chapters 3 and 4 while the episode-based view is taken in Chapters 5 and 6.

Then, the underlying data structure the agents in Chapters 3 and 4 is explained in detail with additional

references in recent literature. Last, we provide an in-depth look on exploration in reinforcement

learning with a special focus on trust-region methods which are used throughout this thesis.

7.1.2. Local Communication Protocols for Learning Complex Swarm Behaviors with Deep
Reinforcement Learning

Recent deep multi-agent reinforcement learning literature has focused mainly on improving algorithmic

details such as new methods for value function estimation with multiple agents, or credit assignment.

Data representation techniques, however, hardly received attention with many works using simple

techniques such as concatenation of observations. With an increasing number of agents, this approach

quickly becomes infeasible. An area to study these techniques is swarm learning, where many identical

agents cooperate to achieve a common goal and the data observed by the agents has the special structure

of a set. In Chapter 3, we propose embeddings of geometric features using histograms that exploit

this structure. We study the effect of different history length, as well as different numbers of observed

features per agent. This work led to the publication of Hüttenrauch, Šošić, and Neumann [80].

87

7. Conclusion

7.1.3. Deep Reinforcement Learning for Swarm Systems

In Chapter 4, we extend the idea of feature embeddings to learned embeddings. To this end, each

item of an agent’s observation is first projected non-linearly into a higher dimensional features space.

Afterwards, these latent features are aggregated using a permutation invariant function such as the

mean. Last, global task features can be concatenated to the embedding and serve as the input to the

policy. We provide extensive comparisons between hand-designed and learned embeddings on different

feature sets. In these experiments, the learned mean embeddings show superior performance to previous

methods. The state representations using mean embeddings have been published in Hüttenrauch, Šošić,

and Neumann [79].

7.1.4. Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement
Learning

In Chapter 5, we turn to the problem of exploration in high dimensional action spaces for episode-

based reinforcement learning. We present Coordinate Ascent MORE with Step-Size Adaptation, a

zero-order black-box optimization algorithm based on a policy search objective. While the original

MORE algorithm improved the exploration process through a lower bound on the entropy of the policy,

we propose a new version of the algorithm that is comprised of separate updates or the mean and

covariance of policy. Additionally, we use an evolution path, introduced to evolutionary algorithms

by the CMA-ES algorithm, to scale the covariance depending on previous update directions. Last,

we exchange the previous surrogate modelling approach with a much simpler ordinary least squares

approach. We show that this new algorithm is more sample efficient than policy gradient methods and

provides better final performance on stochastic objectives. This work has been published in the Journal

of Machine Learning Research [78].

7.1.5. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

After studying in-depth the functioning of black-box optimization in single agent episode-based

reinforcement learning, we show how to scale the approach to scenarios with multiple agents. The

limiting factor here is the number of samples necessary for the estimation of a high quality local model

of the objective, which scales quadratically with the number of agents. We show that inter-agent

correlation do not need to be modelled explicitly reducing the complexity to linear in the number of

agents. We provide initial experiments that show promising results. We additionally sketch a method to

learn versatile behavior in the presence of multiple agents. Learning multi-modal policies is especially

challenging since exchanging agents introduces factorially more, yet redundant, additional solutions.

By introducing a permutation invariant version of a Gaussian mixture model, learning these redundant

solutions can be prevented. Experimental validation, however, remains future work.

7.2. Discussion and Outlook

Several core aspects of state representation and parameter exploration for reinforcement learning have

been discussed in this thesis. In the following, we discuss the proposed methods and provide an outlook

on future work directions.

88

7.2. Discussion and Outlook

7.2.1. State Representation for Learning in Swarms

The first part of this thesis concentrated on state representation techniques for data that is presented in

form of a set. Starting with heuristically chosen histograms of features, we arrived at the formulation

of mean embeddings as a scalable and expressive method for deep reinforcement learning in swarms.

This line of work opens several interesting future work directions. First of all, mean aggregation puts

equal weight on all latent features, which may be necessary to accurately describe the underlying data

distribution. In swarm learning, however, information from far away agents may not constitute to

solving the task at all. Instead, a way to focus on relevant information could be to use learned attention

mechanisms, effectively filtering out irrelevant information. Further, more sophisticated aggregation

methods could be helpful in scenarios with noisy sensing. A promising technique here is Bayesian

aggregation [151] where an estimate of the uncertainty is calculated in addition to a mean aggregation.

These approaches have been initially tried by my student Robin Ruede during his master’s thesis [130]

where we compared Bayesian and attentive aggregation to the mean embedding approach. Despite the

more powerful capabilities, we could only establish similar performance to the simpler mean embedding

approach. Thus, further studies are necessary to understand where these approaches have a bigger

impact.

A different approach, at least at first sight, is solving the multi-agent learning problem at a graph level

using graph neural networks. Using graph neural networks allows for more sophisticated forms of

communication along the edges of connected agents. First experiments have been conducted by my

student Lyubomira Dimitrova in her master’s theses [40]. Here, we tested the influence of message

passing networks in limited visibility scenarios of the problems established in Chapter 4. Initial results

suggest an advantage over mean embeddings, albeit consistency and stability of the results needs

further work. Additionally, we established a connection between mean embeddings and graph neural

networks. Mean embeddings can be seen as a form of proto-GNN. They only collect information from

immediate neighbors, similar to a one-hop message passing network.

7.2.2. Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

The second part of the thesis is concerned with black-box optimization of movement primitive parame-

ters. We first identified two main attributes that contribute to a successful optimization using the MORE

algorithm in single-agent learning. The first attribute is the estimation of the model parameters. The

method introduced in Section 5.4 leads to an efficient and more exact estimation of the natural gradient

direction compared to other evolutionary approaches, as well as policy gradient based methods. This

sparks the question of how to combine the more powerful policy gradient based methods, which are

able to use non-linear mappings of high dimensional context vectors, with the more exact natural

gradient provided by the surrogate model estimation process of CAS-MORE. The second attribute

is the more powerful entropy regularization. The original MORE algorithm only featured a lower

bound on the entropy of the search distribution using a fixed entropy reduction that usually needs

problem specific adjustments. The approach introduced in Section 5.3.2 replaces the lower bound on

the entropy with an adaptive scaling mechanism for the covariance, based on previous update steps.

Again, combining this approach with more powerful contextual algorithms remains future work.

Next, we started extending the approach to the multi-agent setup. We provided a formulation for

learning movement primitive parameters using a joint model learning, yet individual policy learning

approach. Initial results are promising but need further investigation on more complex tasks. Again, it

would be interesting to extend the findings to policy gradient based methods.

89

Bibliography

[1] Abbas Abdolmaleki et al. “Maximum a Posteriori Policy Optimisation”. In: International Confer-
ence on Learning Representations. 2018.

[2] Abbas Abdolmaleki et al. “Model-Based Relative Entropy Stochastic Search”. In: Advances in
Neural Information Processing Systems. Ed. by C. Cortes et al. Vol. 28. Curran Associates, Inc.,

2015.

[3] Abbas Abdolmaleki et al. “Relative entropy regularized policy iteration”. In: arXiv preprint
arXiv:1812.02256 (2018).

[4] “Adapting arbitrary normal mutation distributions in evolution strategies: The covariance

matrix adaptation”. In: Proceedings of IEEE international conference on evolutionary computation.
IEEE. 1996, pp. 312–317.

[5] Rishabh Agarwal et al. “Deep reinforcement learning at the edge of the statistical precipice”. In:

Advances in neural information processing systems 34 (2021), pp. 29304–29320.

[6] Youhei Akimoto et al. “Bidirectional relation between CMA evolution strategies and natural

evolution strategies”. In: International Conference on Parallel Problem Solving from Nature.
Springer. 2010, pp. 154–163.

[7] Riad Akrour et al. “Model-free trajectory-based policy optimization with monotonic improve-

ment”. In: The Journal of Machine Learning Research 19.1 (2018), pp. 565–589.

[8] Javier Alonso-Mora et al. “Distributed multi-robot formation control among obstacles: A ge-

ometric and optimization approach with consensus”. In: Proceedings of the IEEE International
Conference on Robotics and Automation. 2016, pp. 5356–5363.

[9] Shun-Ichi Amari. “Natural gradient works efficiently in learning”. In: Neural computation 10.2

(1998), pp. 251–276.

[10] Brandon Amos and Denis Yarats. “The differentiable cross-entropy method”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 291–302.

[11] Marcin Andrychowicz et al. “What Matters for On-Policy Deep Actor-Critic Methods? A Large-

Scale Study”. In: International Conference on Learning Representations. 2021.

[12] Oleg Arenz, Gerhard Neumann, and Mingjun Zhong. “Efficient gradient-free variational in-

ference using policy search”. In: International conference on machine learning. PMLR. 2018,

pp. 234–243.

[13] Oleg Arenz, Mingjun Zhong, and Gerhard Neumann. “Trust-Region Variational Inference with

Gaussian Mixture Models.” In: Journal of Machine Learning Research 21 (2020), pp. 163–1.

[14] Farshad Arvin et al. “Colias: An autonomous micro robot for swarm robotic applications”. In:

International Journal of Advanced Robotic Systems 11.7 (2014), p. 113.

[15] Arthur Aubret, Laetitia Matignon, and Salima Hassas. “A survey on intrinsic motivation in

reinforcement learning”. In: arXiv preprint arXiv:1908.06976 (2019).

[16] AnneAuger andNikolaus Hansen. “A restart CMA evolution strategywith increasing population

size”. In: 2005 IEEE congress on evolutionary computation. Vol. 2. IEEE. 2005, pp. 1769–1776.

91

7. Bibliography

[17] Anne Auger, Marc Schoenauer, and Nicolas Vanhaecke. “LS-CMA-ES: A second-order algorithm

for covariance matrix adaptation”. In: International Conference on Parallel Problem Solving from
Nature. Springer. 2004, pp. 182–191.

[18] Franz Aurenhammer. “Voronoi diagrams—a survey of a fundamental geometric data structure”.

In: ACM Computing Surveys (CSUR) 23.3 (1991), pp. 345–405.

[19] P. Basu and J. Redi. “Movement control algorithms for realization of fault-tolerant ad hoc robot

networks”. In: IEEE Network 18.4 (2004), pp. 36–44.

[20] Peter W Battaglia et al. “Relational inductive biases, deep learning, and graph networks”. In:

arXiv preprint arXiv:1806.01261 (2018).

[21] Levent Bayındır. “A review of swarm robotics tasks”. In: Neurocomputing 172 (2016), pp. 292–

321.

[22] Philipp Becker, Oleg Arenz, and Gerhard Neumann. “Expected Information Maximization:

Using the I-Projection for Mixture Density Estimation”. In: International Conference on Learning
Representations. 2019.

[23] Daniel S. Bernstein et al. “The Complexity of Decentralized Control of Markov Decision Pro-

cesses”. In: Mathematics of Operations Research 27.4 (2002), pp. 819–840.

[24] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution strategies–a comprehensive introduc-

tion”. In: Natural computing 1.1 (2002), pp. 3–52.

[25] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, 1999.

[26] Zdravko I Botev et al. “The cross-entropy method for optimization”. In: Handbook of statistics.
Vol. 31. Elsevier, 2013, pp. 35–59.

[27] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.

[28] Michael M Bronstein et al. “Geometric deep learning: Grids, groups, graphs, geodesics, and

gauges”. In: arXiv preprint arXiv:2104.13478 (2021).

[29] Konstantinos Chatzilygeroudis et al. “Black-box data-efficient policy search for robotics”. In:

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017,
pp. 51–58.

[30] Haoqiang Chen et al. “Gama: Graph attention multi-agent reinforcement learning algorithm for

cooperation”. In: Applied Intelligence 50 (2020), pp. 4195–4205.

[31] Jianing Chen, Melvin Gauci, and Roderich Groß. “A strategy for transporting tall objects with

a swarm of miniature mobile robots”. In: Proceedings of the IEEE International Conference on
Robotics and Automation. 2013, pp. 863–869.

[32] Mo Chen, Zhengyuan Zhou, and Claire J Tomlin. “A path defense approach to the multiplayer

reach-avoid game”. In: IEEE 53rd Annual Conference on Decision and Control (CDC). 2014,
pp. 2420–2426.

[33] Mo Chen, Zhengyuan Zhou, and Claire J Tomlin. “Multiplayer reach-avoid games via low

dimensional solutions and maximum matching”. In: American Control Conference (ACC). 2014,
pp. 1444–1449.

[34] Mo Chen, Zhengyuan Zhou, and Claire J Tomlin. “Multiplayer reach-avoid games via pairwise

outcomes”. In: IEEE Transactions on Automatic Control 62.3 (2017), pp. 1451–1457.

[35] Tianshu Chu et al. “Multi-agent deep reinforcement learning for large-scale traffic signal control”.

In: IEEE Transactions on Intelligent Transportation Systems 21.3 (2019), pp. 1086–1095.

92

arXiv:1606.01540

7. Bibliography

[36] Timothy H. Chung, Geoffrey A. Hollinger, and Volkan Isler. “Search and Pursuit-Evasion in

Mobile Robotics”. In: Autonomous Robots 31.4 (2011), p. 299.

[37] Nikolaus Correll and Alcherio Martinoli. “Modeling and designing self-organized aggregation

in a swarm of miniature robots”. In: The International Journal of Robotics Research 30.5 (2011),

pp. 615–626.

[38] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. “A survey on policy search for

robotics”. In: Foundations and trends in Robotics 2.1-2 (2013), pp. 388–403.

[39] D. V. Dimarogonas and K. J. Kyriakopoulos. “On the Rendezvous Problem for Multiple Nonholo-

nomic Agents”. In: IEEE Transactions on Automatic Control 52.5 (2007), pp. 916–922.

[40] Lyubomira Dimitrova. “Swarm Reinforcement Learning in Limited Visibility with Graph Neural

Networks”. MA thesis. KIT, 2022.

[41] Russell C Eberhart, Yuhui Shi, and James Kennedy. Swarm intelligence. Elsevier, 2001.

[42] M. Egerstedt and Xiaoming Hu. “Formation Constrained Multi-Agent Control”. In: IEEE Trans-
actions on Robotics and Automation 17.6 (2001), pp. 947–951.

[43] Felix End et al. “Layered direct policy search for learning hierarchical skills”. In: 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2017, pp. 6442–6448.

[44] Tony Finch. “Incremental calculation of weighted mean and variance”. In: University of Cam-
bridge 4 (2009), pp. 11–5.

[45] S. Finck et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Presentation of the
Noiseless Functions. Tech. rep. 2009/20. Updated February 2010. Research Center PPE, 2009.

[46] Jakob Foerster et al. “Counterfactual multi-agent policy gradients”. In: Proceedings of the AAAI
conference on artificial intelligence. Vol. 32. 1. 2018.

[47] Jakob Foerster et al. “Learning to communicate with deep multi-agent reinforcement learning”.

In: Advances in neural information processing systems 29 (2016).

[48] Niklas Freymuth et al. “Swarm Reinforcement Learning for Adaptive Mesh Refinement”. In:

ICLR 2023 Workshop on Physics for Machine Learning. 2023.

[49] G. H. W. Gebhardt et al. “Learning Robust Policies for Object Manipulation with Robot Swarms”.

In: IEEE International Conference on Robotics and Automation. 2018.

[50] M. C. De Gennaro and A. Jadbabaie. “Decentralized Control of Connectivity for Multi-Agent

Systems”. In: IEEE Conference on Decision and Control. 2006, pp. 3628–3633.

[51] Tobias Glasmachers et al. “Exponential natural evolution strategies”. In: Proceedings of the 12th
annual conference on Genetic and evolutionary computation. 2010, pp. 393–400.

[52] Dani Goldberg and Maja J Mataric. “Robust behavior-based control for distributed multi-robot

collection tasks”. In: (2000).

[53] Stephen M Goldfeld, Richard E Quandt, and Hale F Trotter. “Maximization by quadratic hill-

climbing”. In: Econometrica: Journal of the Econometric Society (1966), pp. 541–551.

[54] Arthur Gretton et al. “A Kernel Statistical Test of Independence”. In: Advances in Neural Infor-
mation Processing Systems. 2008, pp. 585–592.

[55] Arthur Gretton et al. “A Kernel Two-Sample Test”. In: Journal of Machine Learning Research
13.Mar (2012), pp. 723–773.

[56] Aditya Grover et al. “Learning Policy Representations inMultiagent Systems”. In: arXiv:1806.06464
(2018).

93

7. Bibliography

[57] Shixiang Gu et al. “Q-Prop: Sample-efficient policy gradient with an off-policy critic”. In:

Proceedings of the 5th International Conference on Learning Representations. 2017.

[58] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. “Cooperative Multi-Agent Control

using Deep Reinforcement Learning”. In: International Conference on Autonomous Agents and
Multiagent Systems. 2017, pp. 66–83.

[59] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement

learning with a stochastic actor”. In: International conference on machine learning. PMLR. 2018,

pp. 1861–1870.

[60] Julia Handl and Bernd Meyer. “Ant-based and Swarm-based Clustering”. In: Swarm Intelligence
1.2 (2007), pp. 95–113.

[61] N. Hansen et al. “COCO: A Platform for Comparing Continuous Optimizers in a Black-Box

Setting”. In: Optimization Methods and Software (2020).

[62] N. Hansen et al. “COCO: PerformanceAssessment”. In:ArXiv e-prints arXiv preprint arXiv:1605.03560
(2016).

[63] N. Hansen et al. “COCO: The Experimental Procedure”. In: ArXiv e-prints arXiv preprint

arXiv:1603.08776 (2016).

[64] N. Hansen et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions
Definitions. Tech. rep. RR-6829. Updated February 2010. INRIA, 2009.

[65] N. Hansen et al. Real-Parameter Black-Box Optimization Benchmarking 2012: Experimental Setup.
Tech. rep. INRIA, 2012.

[66] Nikolaus Hansen. “A global surrogate assisted CMA-ES”. In: Proceedings of the Genetic and
Evolutionary Computation Conference. 2019, pp. 664–672.

[67] Nikolaus Hansen. “Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed”.

In: Proceedings of the 11th annual conference companion on genetic and evolutionary computation
conference: late breaking papers. 2009, pp. 2389–2396.

[68] Nikolaus Hansen. “The CMA evolution strategy: A tutorial”. In: arXiv preprint arXiv:1604.00772
(2016).

[69] Nikolaus Hansen, Dirk V Arnold, and Anne Auger. “Evolution strategies”. In: Springer handbook
of computational intelligence (2015), pp. 871–898.

[70] Nikolaus Hansen et al. “A method for handling uncertainty in evolutionary optimization

with an application to feedback control of combustion”. In: IEEE Transactions on Evolutionary
Computation 13.1 (2008), pp. 180–197.

[71] Nikolaus Hansen et al. “COCO: A platform for comparing continuous optimizers in a black-box

setting”. In: Optimization Methods and Software 36.1 (2021), pp. 114–144.

[72] Nikolaus Hansen et al. “COCO: The experimental procedure”. In: arXiv preprint arXiv:1603.08776
(2016).

[73] Nikolaus Hansen et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless
Functions Definitions. Research Report RR-6829. INRIA, 2009.

[74] Matthew Hausknecht and Peter Stone. “Deep Recurrent Q-Learning for Partially Observable

MDPs”. In: AAAI Fall Symposium Series. 2015.

[75] Verena Heidrich-Meisner and Christian Igel. “Hoeffding and Bernstein races for selecting

policies in evolutionary direct policy search”. In: Proceedings of the 26th Annual International
Conference on Machine Learning. 2009, pp. 401–408.

94

7. Bibliography

[76] N. R. Hoff et al. “Two foraging algorithms for robot swarms using only local communication”. In:

Proceedings of the IEEE International Conference on Robotics and Biomimetics. 2010, pp. 123–130.

[77] John H Holland. “Genetic algorithms”. In: Scientific american 267.1 (1992), pp. 66–73.

[78] Maximilian Hüttenrauch and Gerhard Neumann. “Robust Black-Box Optimization for Stochastic

Search and Episodic Reinforcement Learning”. In: Journal of Machine Learning Research 25.153

(2024), pp. 1–44.

[79] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. “Deep reinforcement learning

for swarm systems”. In: Journal of Machine Learning Research 20.54 (2019), pp. 1–31.

[80] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. “Local Communication Protocols

for Learning Complex Swarm Behaviors with Deep Reinforcement Learning”. In: International
Conference on Swarm Intelligence. 2018.

[81] Jemin Hwangbo et al. “ROCK∗—Efficient black-box optimization for policy learning”. In: 2014
IEEE-RAS International Conference on Humanoid Robots. IEEE. 2014, pp. 535–540.

[82] Oscar Ibáñez et al. “An experimental study on the applicability of evolutionary algorithms to

craniofacial superimposition in forensic identification”. In: Information Sciences 179.23 (2009),
pp. 3998–4028.

[83] A. Jadbabaie, Jie Lin, and A. S. Morse. “Coordination of Groups of Mobile Autonomous Agents

using Nearest Neighbor Rules”. In: IEEE Transactions on Automatic Control 48.6 (2003), pp. 988–
1001.

[84] M. Ji and M. Egerstedt. “Distributed Coordination Control of Multiagent Systems While Pre-

serving Connectedness”. In: IEEE Transactions on Robotics 23.4 (2007), pp. 693–703.

[85] Jiechuan Jiang et al. “Graph Convolutional Reinforcement Learning”. In: International Conference
on Learning Representations. 2019.

[86] Steven G Johnson. The NLopt nonlinear-optimization package. 2014.

[87] Sham M Kakade. “A natural policy gradient”. In: Advances in neural information processing
systems 14 (2001).

[88] C.Ronald Kube and Eric Bonabeau. “Cooperative transport by ants and robots”. In: Robotics and
Autonomous Systems 30.1 (2000), pp. 85–101.

[89] Jakub Kudela. “A critical problem in benchmarking and analysis of evolutionary computation

methods”. In: Nature Machine Intelligence (2022), pp. 1–8.

[90] Solomon Kullback and Richard A Leibler. “On information and sufficiency”. In: The annals of
mathematical statistics 22.1 (1951), pp. 79–86.

[91] A Kupcsik et al. “Data-efficient contextual policy search for robot movement skills”. In: Proceed-
ings of the National Conference on Artificial Intelligence (AAAI). Bellevue. 2013.

[92] Jeffrey Larson, Matt Menickelly, and Stefan M Wild. “Derivative-free optimization methods”.

In: Acta Numerica 28 (2019), pp. 287–404.

[93] Juho Lee et al. “Set transformer: A framework for attention-based permutation-invariant neural

networks”. In: International conference on machine learning. PMLR. 2019, pp. 3744–3753.

[94] Zhenhua Li and Qingfu Zhang. “What does the evolution path learn in CMA-ES?” In: Parallel
Problem Solving from Nature–PPSN XIV: 14th International Conference, Edinburgh, UK, September
17-21, 2016, Proceedings 14. Springer. 2016, pp. 751–760.

[95] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: (2016).

Ed. by Yoshua Bengio and Yann LeCun.

95

7. Bibliography

[96] J. Lin, A. Morse, and B. Anderson. “The Multi-Agent Rendezvous Problem. Part 2: The Asyn-

chronous Case”. In: SIAM Journal on Control and Optimization 46.6 (2007), pp. 2120–2147.

[97] Zhiyun Lin, M. Broucke, and B. Francis. “Local control strategies for groups of mobile au-

tonomous agents”. In: IEEE Transactions on Automatic Control 49.4 (2004), pp. 622–629.

[98] Dong C Liu and Jorge Nocedal. “On the limited memory BFGS method for large scale optimiza-

tion”. In: Mathematical programming 45.1 (1989), pp. 503–528.

[99] Ilya Loshchilov, Marc Schoenauer, and Michele Sebag. “Alternative restart strategies for CMA-

ES”. In: International Conference on Parallel Problem Solving from Nature. Springer. 2012, pp. 296–
305.

[100] Ilya Loshchilov, Marc Schoenauer, and Michele Sebag. “Self-adaptive surrogate-assisted covari-

ance matrix adaptation evolution strategy”. In: Proceedings of the 14th annual conference on
Genetic and evolutionary computation. 2012, pp. 321–328.

[101] Ryan Lowe et al. “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments”.

In: Advances in Neural Information Processing Systems. 2017, pp. 6379–6390.

[102] Renzhi Lu et al. “Multi-agent deep reinforcement learning based demand response for discrete

manufacturing systems energy management”. In: Applied Energy 276 (2020), p. 115473.

[103] AlcherioMartinoli, Kjerstin Easton, andWilliamAgassounon. “Modeling swarm robotic systems:

a case study in collaborative distributed manipulation”. In: The International Journal of Robotics
Research 23.4-5 (2004), pp. 415–436.

[104] L. Matignon, G. J. Laurent, and N. L. Fort-Piat. “Hysteretic Q-Learning: An Algorithm for Decen-

tralized Reinforcement Learning in Cooperative Multi-Agent Teams”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2007, pp. 64–69.

[105] Volodymyr Mnih et al. “Human-Level Control through Deep Reinforcement Learning”. In:

Nature 518 (2015), pp. 529–533.

[106] Christoph Moeslinger, Thomas Schmickl, and Karl Crailsheim. “Emergent flocking with low-end

swarm robots”. In: Proceedings of the 7th International Conference on Swarm Intelligence Swarm
Intelligence. Ed. by Marco Dorigo et al. 2010, pp. 424–431.

[107] Igor Mordatch and Pieter Abbeel. “Emergence of Grounded Compositional Language in Multi-

Agent Populations”. In: AAAI Conference on Artificial Intelligence. 2018.

[108] R Murphy et al. “Janossy Pooling: Learning Deep Permutation-Invariant Functions for Variable-

Size Inputs”. In: International Conference on Learning Representations (ICLR 2019). 2019.

[109] John A Nelder and Roger Mead. “A simplex method for function minimization”. In: The computer
journal 7.4 (1965), pp. 308–313.

[110] S. Nouyan et al. “Teamwork in self-organized robot colonies”. In: IEEE Transactions on Evolu-
tionary Computation 13.4 (2009), pp. 695–711.

[111] Frans Oliehoek. “Decentralized POMDPs”. In: Reinforcement Learning: State of the Art 12 (2013),
pp. 471–503. doi: 10.1007/978-3-642-27645-3_15.

[112] Shayegan Omidshafiei et al. “Deep Decentralized Multi-task Multi-Agent Reinforcement Learn-

ing under Partial Observability”. In: International Conference onMachine Learning. 2017, pp. 2681–
2690.

[113] Michael A Osborne, Roman Garnett, and Stephen J Roberts. “Gaussian processes for global

optimization”. In: 3rd international conference on learning and intelligent optimization (LION3).
2009, pp. 1–15.

96

https://doi.org/10.1007/978-3-642-27645-3_15

7. Bibliography

[114] Fabian Otto et al. “Deep black-box reinforcement learning with movement primitives”. In:

Conference on Robot Learning. PMLR. 2023, pp. 1244–1265.

[115] Fabian Otto et al. “Differentiable Trust Region Layers for Deep Reinforcement Learning”. In:

International Conference on Learning Representations. 2020.

[116] Joni Pajarinen et al. “Compatible natural gradient policy search”. In: Machine Learning 108.8

(2019), pp. 1443–1466.

[117] Gregory Palmer et al. “Lenient Multi-Agent Deep Reinforcement Learning”. In: arXiv:1707.04402
(2017).

[118] Liviu Panait, Keith Sullivan, and Sean Luke. “Lenient Learners in Cooperative Multiagent

Systems”. In: International Joint Conference on Autonomous Agents and Multiagent Systems. 2006,
pp. 801–803.

[119] Alexandros Paraschos et al. “Probabilistic Movement Primitives”. In: Advances in Neural In-
formation Processing Systems. Ed. by C. J. C. Burges et al. Vol. 26. Curran Associates, Inc.,

2013.

[120] Alexandros Paraschos et al. “Probabilistic movement primitives”. In: Advances in neural infor-
mation processing systems 26 (2013).

[121] Jan Peters, Katharina Mulling, and Yasemin Altun. “Relative entropy policy search”. In: Twenty-
Fourth AAAI Conference on Artificial Intelligence. 2010.

[122] Matthias Plappert et al. “Parameter Space Noise for Exploration”. In: International Conference
on Learning Representations. 2018.

[123] Kenneth Price. “Differential evolution vs. the functions of the second ICEO”. In: Proceedings of
the IEEE International Congress on Evolutionary Computation. Piscataway, NJ, USA: IEEE, 1997,
pp. 153–157. doi: 10.1109/ICEC.1997.592287.

[124] WL1551847 Price. “Global optimization by controlled random search”. In: Journal of optimization
theory and applications 40.3 (1983), pp. 333–348.

[125] Antonin Raffin, Jens Kober, and Freek Stulp. “Smooth exploration for robotic reinforcement

learning”. In: Conference on Robot Learning. PMLR. 2022, pp. 1634–1644.

[126] B. Ranjbar-Sahraei et al. “A Novel Robust Decentralized Adaptive Fuzzy Control for Swarm

Formation of Multiagent Systems”. In: IEEE Transactions on Industrial Electronics 59.8 (2012),
pp. 3124–3134.

[127] Tabish Rashid et al. “QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent

Reinforcement Learning”. In: arXiv:1803.11485 (2018).

[128] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combi-
natorial optimization, Monte-Carlo simulation, and machine learning. Vol. 133. Springer, 2004.

[129] Sebastian Ruder. “An overview of gradient descent optimization algorithms”. In: arXiv preprint
arXiv:1609.04747 (2016).

[130] Robin Ruede. “Bayesian and Attentive Aggregation for Multi-Agent Deep Reinforcement Learn-

ing”. MA thesis. KIT, 2021.

[131] Andrei A Rusu et al. “Policy Distillation”. In: arXiv:1511.06295 (2015).

[132] Muhammad Saleem, Gianni A Di Caro, and Muddassar Farooq. “Swarm intelligence based

routing protocol for wireless sensor networks: Survey and future directions”. In: Information
Sciences 181.20 (2011), pp. 4597–4624.

97

https://doi.org/10.1109/ICEC.1997.592287

7. Bibliography

[133] Tim Salimans et al. “Evolution strategies as a scalable alternative to reinforcement learning”. In:

arXiv preprint arXiv:1703.03864 (2017).

[134] Alvaro Sanchez-Gonzalez et al. “Learning to simulate complex physics with graph networks”.

In: International conference on machine learning. PMLR. 2020, pp. 8459–8468.

[135] Adam Santoro et al. “A simple neural network module for relational reasoning”. In: Advances in
neural information processing systems 30 (2017).

[136] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv:1707.06347 (2017).

[137] John Schulman et al. “Trust Region Policy Optimization”. In: International Conference on Machine
Learning. 2015, pp. 1889–1897.

[138] Ali Shavandi and Majid Khedmati. “A multi-agent deep reinforcement learning framework

for algorithmic trading in financial markets”. In: Expert Systems with Applications 208 (2022),
p. 118124.

[139] Maruan Al-Shedivat et al. “Continuous Adaptation via Meta-Learning in Nonstationary and

Competitive Environments”. In: International Conference on Learning Representations. 2018.

[140] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and
logical foundations. Cambridge University Press, 2008.

[141] David Silver et al. “A general reinforcement learning algorithm that masters chess, shogi, and

Go through self-play”. In: Science 362.6419 (2018), pp. 1140–1144.

[142] Alex Smola et al. “A Hilbert Space Embedding for Distributions”. In: International Conference on
Algorithmic Learning Theory. 2007, pp. 13–31.

[143] Adrian Šošić et al. “Inverse Reinforcement Learning in Swarm Systems”. In: International
Conference on Autonomous Agents and Multiagent Systems. 2017, pp. 1413–1421.

[144] James C Spall. Introduction to stochastic search and optimization: estimation, simulation, and
control. Vol. 65. John Wiley & Sons, 2005.

[145] Chen Sun et al. “Stochastic prediction of multi-agent interactions from partial observations”. In:

arXiv preprint arXiv:1902.09641 (2019).

[146] Yi Sun et al. “Efficient natural evolution strategies”. In: Proceedings of the 11th Annual conference
on Genetic and evolutionary computation. 2009, pp. 539–546.

[147] Peter Sunehag et al. “Value-Decomposition Networks For Cooperative Multi-Agent Learning”.

In: arXiv:1706.05296 (2017).

[148] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

[149] Richard S Sutton et al. “Policy gradient methods for reinforcement learning with function

approximation”. In: Advances in neural information processing systems 12 (1999).

[150] Yee Whye Teh et al. “Distral: robust multitask reinforcement learning”. In: arXiv:1707.04175
(2017).

[151] Michael Volpp et al. “Bayesian Context Aggregation for Neural Processes”. In: International
Conference on Learning Representations. 2020.

[152] EdwardWagstaff et al. “Universal approximation of functions on sets”. In: The Journal of Machine
Learning Research 23.1 (2022), pp. 6762–6817.

[153] Christopher JCHWatkins and Peter Dayan. “Q-learning”. In:Machine learning 8 (1992), pp. 279–
292.

98

7. Bibliography

[154] Daan Wierstra et al. “Natural evolution strategies”. In: The Journal of Machine Learning Research
15.1 (2014), pp. 949–980.

[155] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning”. In: Machine learning 8.3 (1992), pp. 229–256.

[156] Susanne Winter et al. “Registration of CT and intraoperative 3-D ultrasound images of the

spine using evolutionary and gradient-based methods”. In: IEEE Transactions on Evolutionary
Computation 12.3 (2008), pp. 284–296.

[157] Ulf Witkowski et al. “Ad-hoc network communication infrastructure for multi-robot systems in

disaster scenarios”. In: Proceedings of the IARP/EURON Workshop on Robotics for Risky Interven-
tions and Environmental Surveillance. 2008.

[158] Annie Wong et al. “Deep multiagent reinforcement learning: Challenges and directions”. In:

Artificial Intelligence Review 56.6 (2023), pp. 5023–5056.

[159] Yaodong Yang et al. “Mean Field Multi-Agent Reinforcement Learning”. In: arXiv:1802.05438
(2018).

[160] Zelda B Zabinsky. “Random Search Algorithms”. In: Wiley Encyclopedia of Operations Research
and Management Science (2010).

[161] Manzil Zaheer et al. “Deep sets”. In: Advances in Neural Information Processing Systems. 2017,
pp. 3391–3401.

[162] Lianmin Zheng et al. “MAgent: A Many-Agent Reinforcement Learning Platform for Artificial

Collective Intelligence”. In: arXiv:1712.00600 (2017).

[163] Zhengyuan Zhou et al. “A general, open-loop formulation for reach-avoid games”. In: IEEE 51st
Annual Conference on Decision and Control (CDC). 2012, pp. 6501–6506.

[164] Zhengyuan Zhou et al. “Cooperative Pursuit with Voronoi Partitions”. In: Automatica 72 (2016),
pp. 64–72.

[165] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization”. In: ACM Transactions on mathematical software (TOMS) 23.4 (1997), pp. 550–560.

[166] Brian D Ziebart et al. “Maximum entropy inverse reinforcement learning.” In: Aaai. Vol. 8.
Chicago, IL, USA. 2008, pp. 1433–1438.

99

A. Appendix for Chapter 4

A.1. Agent Kinematics

In the single integrator case, the state of an agent is given by 𝑠𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜙𝑖] ∈ S = {[𝑥,𝑦, 𝜙] ∈ R3
:

0 ≤ 𝑥 ≤ 𝑥max, 0 ≤ 𝑦 ≤ 𝑦max, 0 ≤ 𝜙 < 2𝜋}, and the linear velocity 𝑣 and angular velocity 𝜔 can be

directly controlled by the agent. The kinematic model is given by

¤𝑥 = 𝑣 cos𝜙

¤𝑦 = 𝑣 sin𝜙

¤𝜙 = 𝜔.

In the double integrator case, the state is given by 𝑠𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝜙𝑖 , 𝑣𝑖 , 𝜔𝑖] ∈ S, S = {[𝑥,𝑦, 𝜙, 𝑣, 𝜔] ∈ R5
:

0 ≤ 𝑥 ≤ 𝑥max, 0 ≤ 𝑦 ≤ 𝑦max, 0 ≤ 𝜙 < 2𝜋, |𝑣 | ≤ 𝑣max, |𝜔 | ≤ 𝜔max} and the agent can only indirectly

change its velocity by acceleration. With the control inputs 𝑎𝑣 and 𝑎𝜔 , the model is then given by

¤𝑣 = 𝑎𝑣
¤𝜔 = 𝑎𝜔

¤𝑥 = 𝑣 cos𝜙

¤𝑦 = 𝑣 sin𝜙

¤𝜙 = 𝜔.

For the experiments, we use finite differences to model the system in discrete time.

A.2. Observation Model

Irrespective of the task, an agent 𝑖 can sense the following properties about other agents 𝑗 ∈ N (𝑖)
within its neighborhood:

𝑑𝑖, 𝑗 distance to neighboring agents

𝜙𝑖, 𝑗 = arctan(𝑦
𝑗 − 𝑦𝑖
𝑥 𝑗 − 𝑥𝑖) − 𝜙

𝑖
bearing to neighboring agents

𝜃 𝑖, 𝑗 = arctan(𝑦
𝑖 − 𝑦 𝑗
𝑥𝑖 − 𝑥 𝑗) − 𝜙

𝑗
relative orientation

Δ𝑣𝑖, 𝑗 = 𝑣𝑖
[
cos𝜙𝑖

sin𝜙𝑖

]
− 𝑣 𝑗

[
cos𝜙 𝑗

sin𝜙 𝑗

]
relative velocity

101

A. Appendix for Chapter 4

Furthermore, each agent has access to the following local properties:

𝑑𝑖
wall

= min

©­­­«

𝑥𝑖 − 𝑥min

𝑦𝑖 − 𝑦min

𝑥max − 𝑥𝑖
𝑦max − 𝑦𝑖


ª®®®¬ distance to closest wall

𝜙𝑖
wall

= 𝜑𝑖
wall
− 𝜙𝑖 orientation to closest wall

𝑣𝑖 , 𝜔𝑖 own velocity

where 𝜑𝑖
wall

denotes the absolute bearing of agent 𝑖 to the closest wall segment.

A.3. Task Specific Communication Protocols

In the rendezvous task, agent 𝑖 additionally can sense information about neighborhood sizes:

|N (𝑖) | own neighborhood size

|N (𝑗) | : 𝑗 ∈ N (𝑖) neighborhood size of neighbor 𝑗

In pursuit evasion, we additionally have one or multiple evaders with states 𝑠𝑒 = [𝑥𝑒 , 𝑦𝑒] ∈ {[𝑥,𝑦] ∈
R2

: 0 ≤ 𝑥 ≤ 𝑥max, 0 ≤ 𝑦 ≤ 𝑦max}. Agents can sense the distance and bearing to an evader, given that

the evader is within an observation distance 𝑑𝑜 :

𝑑𝑖,𝑒 =
√︁
(𝑥𝑖 − 𝑥𝑒)2 + (𝑦𝑖 − 𝑦𝑒)2 if 𝑑𝑖,𝑒 ≤ 𝑑𝑜 distance to evader

𝜙𝑖,𝑒 = arctan(𝑦
𝑒 − 𝑦𝑖
𝑥𝑒 − 𝑥𝑖) − 𝜙

𝑖
if 𝑑𝑖,𝑒 ≤ 𝑑𝑜 bearing to evader

Furthermore, we assume that each agent 𝑖 can compute a shortest path to the evader over a graph of

connected agents, such that the path 𝑃 = (𝑣1, 𝑣2 . . . , 𝑣𝑀) minimizes the sum

∑𝑀−1

𝑚=1
𝑑𝑚,𝑚+1 where 𝑣1

is

agent 𝑖 and 𝑣𝑀 is the evader.

A.4. Controller for Double Integrator Dynamics

We use a simple PD-controller to transform the consensus protocol with high-level direct state manipu-

lation to the unicycle model with double integrator dynamics. It is given by

𝑎𝑣 = 𝐾1(𝑣𝑑 − 𝑣)
𝑎𝜔 = 𝐾2(𝜙𝑑 − 𝜙) + 𝐷2(𝜔𝑑 − 𝜔)
𝑣𝑑 = ∥ ¤𝒙 ∥

𝜙𝑑 = arctan(¤𝑦¤𝑥)

𝜔𝑑 = 0,

where the parameters 𝐾1, 𝐾2 and 𝐷2 are tuned manually to give good performance on the problem.

102

A.5. Reward Functions

A.5. Reward Functions

A.5.1. Rendezvous

The reward function is defined in terms of the inter-agent distances {𝑑𝑖, 𝑗 } as

𝑅(𝒔, 𝒂) = 𝛼
𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

min(𝑑𝑖, 𝑗 , 𝑑𝑐) + 𝛽 ∥𝒂∥,

where in the global observability case we set the cut-off distance 𝑑𝑐 = max(𝑥max, 𝑦max) to the maximum

possible inter-agent distance in the respective environment. The factor 𝛼 = −
(
𝑁 (𝑁−1)

2
𝑑𝑐

)−1

serves as a

reward normalization factor and 𝛽 = −1 × 10
−3

controls how strongly high action outputs of the policy

are penalized.

A.5.2. Pursuit Evasion

For the case of a single evader, the pursuit evasion objective may be expressed in terms of the distance

to the closest pursuer. More specifically, the reward function is given as

𝑅(𝒔, 𝒂) = − 1

𝑑𝑜
min(𝑑min, 𝑑𝑜),

where 𝑑min = min(𝑑1,𝑒 , . . . , 𝑑𝑁,𝑒). For the global observability case, we set 𝑑𝑜 to the maximum possible

distance of 𝑑𝑖,𝑒 .

A.5.3. Pursuit Evasion with Multiple Evaders

In the case of multiple evaders, we use a sparser reward function that counts how many evaders are

caught per time step, with no additional guidance of inter-agent distances. An evader 𝑒 is assumed to be

caught if the closest pursuer’s distance 𝑑min,𝑒 = min(𝑑1,𝑒 , . . . , 𝑑𝑁,𝑒) is closer than a threshold distance

𝑑𝑡 = 3. The reward function is given by

𝑅(𝒔, 𝒂) =
𝐸∑︁
𝑒=1

1[0,𝑑𝑡] (𝑑min,𝑒),

where 𝐸 is the number of evaders and

1[𝑎,𝑏] (𝑥) =
{

1 if 𝑥 ∈ [𝑎, 𝑏]
0 else

is the indicator function.

A.6. Policy Architectures

This section briefly summarizes the chosen policy architectures. Illustrations can be found in Figure

4.1.

103

A. Appendix for Chapter 4

0 100 200 300 400 500
−18

−16

−14

−12

TRPO iterations

av
er

ag
e

re
tu

rn
Ḡ

relu
tanh
linear

(a) Activation functions evaluation.

0 100 200 300 400
−18

−16

−14

−12

TRPO iterations

av
er

ag
e

re
tu

rn
Ḡ

[32]

[64]

[128]

[32, 32]

[64, 64]

(b) Layer size evaluation.

Figure A.1.: Learning curves for 20 agent rendezvous with (a) different activation functions for the mean embedding and (b)

different layer numbers and sizes using a RELU activation function. The curves show the median of the average return 𝐺

based on the top five trials.

A.6.1. Neural Network Embedding Policy

We evaluated different layer sizes and activation functions on the rendezvous problem and show the

results in Figure A.1. In all other experiments, the neural network mean feature embedding for agent 𝑖 ,

given by

𝜙NN(𝑂𝑖) = 1

|𝑂𝑖 |
∑︁

𝑜𝑖,𝑗 ∈𝑂𝑖

𝜙 (𝑜𝑖, 𝑗),

is realized as the empirical mean of the outputs of a single layer feed-forward neural network,

𝜙 (𝑜𝑖, 𝑗) = ℎ(𝑊𝑜𝑖, 𝑗 + 𝑏),

with 64 neurons and a RELU non-linearity ℎ.

A.6.2. Histogram Embedding Policy

The histogram embedding is achieved with a two-dimensional histogram over the distance and bearing

space to other agents. We use eight evenly spaced bins for each feature, resulting in a 64 dimensional

feature vector.

A.6.3. RBF Embedding Policy

The RBF embedding is given by a vector 𝜙RBF(𝑂𝑖) =
[
𝜓1(𝑂𝑖), . . . ,𝜓𝑀2 (𝑂𝑖)

]
of𝑀2

contributions from

𝑀 = 8 radial basis functions whose center points are evenly distributed in the distance and bearing

space. With 𝑜𝑖, 𝑗 = [𝑑𝑖, 𝑗 , 𝜙𝑖, 𝑗], 𝜇𝑚 = [𝜇𝑑,𝑚, 𝜇𝜙,𝑚], and 𝜎 = [𝜎𝑑 , 𝜎𝜙] its components are given by

𝜓𝑚 (𝑂𝑖) =
∑︁

𝑜𝑖,𝑗 ∈𝑂𝑖

𝜌𝑚 (𝑜𝑖, 𝑗),

104

A.6. Policy Architectures

where we choose

𝜌𝑚 (𝑜𝑖, 𝑗) = exp

(
−1

2

[
(𝑑𝑖, 𝑗 − 𝜇𝑑,𝑚)2

𝜎2

𝑑

+
(𝜙𝑖, 𝑗 − 𝜇𝜙,𝑚)2

𝜎2

𝜙

])
.

The policy network structure used for both, the histogram and the RBF representations, is illustrated in

Figure 4.1b.

A.6.4. Concatenation Policy

For the concatenation method, we first concatenate agent 𝑖’s neighborhood observations contained

in the set 𝑂𝑖 and process them with one hidden layer of 64 neurons and a RELU non-linearity. The

resulting feature vector is then concatenated with the local properties 𝑜𝑖
loc

and fed into a second layer

of same size. Finally, the output of the second layer is mapped to the action. The corresponding policy

network structure can be seen in Figure 4.1c.

105

B. Appendix for Chapter 5

B.1. Derivation of CA-MORE Dual

Before we solve the optimization problems, we will first state the closed-form solution of the objective

and KL-divergence using a quadratic model under multi-variate Gaussian distributions. The solution to

the objective is given by ∫
𝒙
𝜋 (𝒙) ˆ𝑓 (𝒙)dx = −1

2

𝝁T𝑨𝝁 − 1

2

tr(𝑨𝚺) + 𝝁T𝒂 + 𝑎0

and the KL-divergence between two Gaussian distributions is given by

KL(𝜋 ∥ 𝜋𝑡) =
1

2

{
(𝝁𝑡 − 𝝁)T𝚺−1

𝑡 (𝝁𝑡 − 𝝁)

+tr(𝚺−1

𝑡 𝚺) − 𝑘 + log |𝚺𝑡 | − log |𝚺|
}
.

B.1.1. Mean Update

Setting 𝚺 = 𝚺𝑡 , the optimization problem is given by

maximize

𝝁
− 1

2

𝝁T𝑨𝝁 + 𝝁T𝒂

subject to

1

2

(𝝁𝑡 − 𝝁)T𝚺−1

𝑡 (𝝁𝑡 − 𝝁) ≤ 𝜖𝜇

and the Lagrangian is given by

𝐿(𝝁, 𝜆) = −1

2

𝝁T𝑨𝝁 + 𝝁T𝒂

+ 𝜆
(
𝜖𝜇 −

1

2

(𝝁𝑡 − 𝝁)T𝚺−1

𝑡 (𝝁𝑡 − 𝝁)
)

where 𝜆 is a Lagrangian multiplier. The optimal solution 𝝁∗ in terms of the Lagrangian multipliers can

be found by differentiating 𝐿 with respect to 𝝁 and setting it to 0, i.e,

𝜕𝐿

𝜕𝝁
= −𝑨𝝁 + 𝒂 + 𝜆𝚺−1

𝑡 (𝝁𝑡 − 𝝁)
!

= 0.

Using the solution 𝜆∗,

𝝁∗ = (𝜆∗𝚺−1

𝑡 +𝑨)︸ ︷︷ ︸
𝑴𝜇 (𝜆∗)

−1 (𝜆∗𝚺−1

𝑡 𝝁𝑡 + 𝒂)︸ ︷︷ ︸
𝒎𝜇 (𝜆∗)

= 𝑴𝜇 (𝜆∗)−1𝒎𝜇 (𝜆∗).

After rearranging terms, the dual problem for the mean is given by

𝑔𝜇 (𝜆) = 𝜆𝜖𝜇 +
1

2

(
𝒎𝜇 (𝜆)T𝑴𝜇 (𝜆)−1𝒎𝜇 (𝜆)

− 𝜆𝒎T

𝑡 𝑴
−1

𝑡 𝒎𝑡

)
.

107

B. Appendix for Chapter 5

B.1.2. Covariance Update

Analogously, we set 𝝁 = 𝝁𝑡 . The optimization problem for the covariance is given by

maximize

𝚺

− 1

2

tr(𝑨𝚺)

subject to

1

2

(
tr(𝚺−1

𝑡 𝚺) − 𝑘 + log |𝚺𝑡 | − log |𝚺|
)
< 𝜖Σ

and the Lagrangian for the covariance matrix optimization is given by

𝐿(𝚺, 𝜈) = −1

2

tr(𝑨𝚺)

+ 𝜈
(
𝜖Σ −

1

2

(
tr(𝚺−1

𝑡 𝚺) − 𝑘 + log |𝚺𝑡 | − log |𝚺|
))

where 𝜈 is again a Lagrangian multiplier. The optimal solution 𝚺
∗
can be found analogously and is

given by

𝜕𝐿Σ

𝜕𝚺
= −1

2

𝑨 − 1

2

𝜈𝚺−1

𝑡 +
1

2

𝜈𝚺−1
!

= 0.

With the solution 𝜈∗,

𝚺
∗ =

(
(𝜈∗𝚺−1

𝑡 +𝑨)/𝜈∗
)︸ ︷︷ ︸

𝑺 (𝜈∗)

−1 = 𝑺 (𝜈∗)−1.

After rearranging terms again, the dual for the covariance is given by

𝚲(𝜈) = 𝜈𝚺−1

𝑡 +𝑨
𝜈

.

B.2. Robust Target Normalization

In reinforcement learning, a reward function that accurately describes the task and is easy to optimize

is not always given. Here, we want to demonstrate that even with a reward function that includes

large jumps, using a robust target normalization scheme leads to good results. To this end, we use a

different reward function formulation for the hole-reacher task from Section 5.5.2.1. The reward in

this case is defined as the negative squared distance to a target point at the bottom of the hole minus a

large penalty whenever the robot hits the ground. We leave the depth at -1 to focus on the effects of

target normalization. Figure B.1 shows the negative reward (the cost) on a log-scale and we compare

CAS-MORE using mean/std normalization and robust mean/std normalization. A cost of 1 corresponds

to the end-effector of the robot moving close to the entrance of the hole but failing to reach inside.

Only robust normalization is able to capture both, the task reward and the penalty, and guides the

robot to reach down the hole. We provide pseudo-code for the robust target normalization technique in

Algorithm 1.

108

B.2. Robust Target Normalization

Algorithm 1 Robust target normalization

1: procedure Normalize(Y) ⊲ Robust normalization of targets

2: 𝑦Y ← 1

|Y |
∑ |Y |
𝑞 𝑦𝑞

3: 𝜎Y ←
√︃

1

|Y |
∑ |Y |
𝑞 (𝑦𝑞 − 𝑦Y)2

4: 𝑦 ← 𝑦−𝑦Y
𝜎Y

⊲ Standardize all elements in Y
5: I ← −𝑣clip < 𝑦 < 𝑣clip ⊲ Boolean mask of all elements in Y that are in (−𝑣clip, 𝑣clip)
6: S ← {𝑦 ∈ Y | −𝑣clip < 𝑦 < 𝑣clip} ⊲ All elements in Y that are in (−𝑣clip, 𝑣clip)
7: 𝑘 ← Kurt[S] − 3 ⊲ Excess kurtosis of the elements in S
8: if 𝑘 > 0.55 and 𝜎Y ≠ 1 then
9: Y(I) ← Normalize(S) ⊲ Normalize elements in S
10: end if
11: Y ← clip(Y,min(Y(I)),max(Y(I))
12: return Y
13: end procedure

0 100 200 300 400 500

10−2

10−1

100

101

Iterations

R
(µ
)

mean std
mean std robust

Figure B.1.: Comparison of mean/std normalization and robust normalization on a penalty based reward function for the

hole-reaching task.

Table B.1.: Empirically found default hyper-parameters for CAS-MORE based on the problem dimensionality 𝑛.

Parameter Default Value

𝐾 : Population size 4 + ⌊3 log(𝑛)⌋
𝑄max: Maximum queue size max{⌈1.5(1 + 𝑛 (𝑛+3)

2
)⌉, 8(𝑛 + 1)}

𝜖𝜇 : Trust-region for the mean 0.5

𝜖Σ: Trust-region for the covariance
1.5

10+𝑛1.5

𝑐𝜎 : Smoothing factor of evolution path
1

2+𝑛0.75

𝑣clip: Clip value for robust normalization 3

Excess kurtosis threshold 0.55

109

B. Appendix for Chapter 5

B.3. Hyper-Parameters

We provide default hyper-parameters for CAS-MORE in terms of the problem dimensionality 𝑛 in

Table B.1 which we empirically found to work well over all benchmark functions. For some functions, a

higher bound on the mean often leads to quicker convergence but may result in divergence for others.

Table B.2 provides the chosen hyper-parameters for the step-based deep RL experiments (PPO, SAC,

TD3), as well as the BBRL experiments. Note, that samples per iteration corresponds to tuples (𝑠, 𝑎, 𝑟, 𝑠′)
in the step-based case, and whole trajectories in the BBRL case.

Table B.2.: Hyper-parameters for the deep RL and BBRL experiments.

PPO SAC TD3 BBRL-PPO BBRL-TRPL

samples per iteration 16000 1 1 64 64

GAE 𝜆 0.95 n.a. n.a. n.a. n.a.

discount factor 0.99 0.99 0.99 n.a. n.a.

𝜖𝜇 n.a. n.a. n.a. n.a. 0.05

𝜖Σ n.a. n.a. n.a. n.a. 0.005

optimizer adam adam adam adam adam

epochs 10 n.a. n.a. 100 100

learning rate 3e-4 3e-4 3e-4 1e-3 3e-4

use critic True True True False False

epochs critic 10 n.a. n.a. n.a. n.a.

learning rate critic 3e-4 3e-4 3e-4 n.a. n.a.

learning rate alpha n.a. 3e-4 n.a. n.a. n.a.

warm up steps 0 10000 25000 0 0

minibatch size 512 n.a. n.a. 64 64

batch size n.a. 256 256 n.a. n.a.

buffer size n.a. 1e6 1e6 n.a. n.a.

polyak_weight n.a. 5e-3 5e-3 n.a. n.a.

normalized observations True False False False False

normalized rewards True False False False False

critic clip 0.2 n.a. n.a. 0.2 n.a.

importance ratio clip 0.2 n.a. n.a. 0.2 n.a.

hidden layers [256, 256] [256, 256] [256, 256] n.a n.a

hidden layers critic [256, 256] [256, 256] [256, 256] n.a. n.a.

hidden activation tanh ReLU ReLU n.a. n.a.

initial std 0.6 1.0 0.1 1.0 1.0

110

B.4. Black-box Optimization Benchmarks

B.4. Black-box Optimization Benchmarks

Results from experiments according to Hansen et al. [63] and Hansen et al. [62] on the benchmark

functions given in Finck et al. [45] and Hansen et al. [64] are presented in Figures B.2 to B.4. The

experiments were performed with COCO [61], version 2.4.1.1, the plots were produced with version

2.4.1.1. The expected runtime (ERT), used in the figures and tables, depends on a given target function
value, 𝑓t = 𝑓opt + Δ𝑓 , and is computed over all relevant trials as the number of function evaluations

executed during each trial while the best function value did not reach 𝑓t, summed over all trials and

divided by the number of trials that actually reached 𝑓t [65, 123]. Statistical significance is tested
with the rank-sum test for a given target Δ𝑓t using, for each trial, either the number of needed function

evaluations to reach Δ𝑓t (inverted and multiplied by −1), or, if the target was not reached, the best

Δ𝑓 -value achieved, measured only up to the smallest number of overall function evaluations for any

unsuccessful trial under consideration.

B.5. Episodic RL

In this section, we provide additional information and reward functions for the episodic RL tasks. The

action cost for all tasks is given by

𝜏𝑡 =

𝐾∑︁
𝑖

(𝑎𝑖𝑡)2.

B.5.1. Holereaching

The reward function is composed of two phases. In the first phase, the distance 𝑑𝑔 = ∥𝒑𝑡 − 𝒑𝑔∥ of
the position of the end-effector 𝒑𝑡 = (𝑥ee,𝑡 , 𝑦ee,𝑡) to a goal point 𝒑𝑔 = (2,−0.1) below the entrance

of the hole is minimized. Afterwards, the reward scales linearly with the absolute value 𝑦ee,𝑡 of the

end-effector. The task ends if either 𝑡 = 200 or a collision happens. In the deterministic case, the hole

has a depth of 1 m, while in the stochastic case, the depth is sampled uniformly fromU(0.98 m, 1.02 m).
The task reward is given by

𝑅task =


𝑐coll exp (−𝑑𝑔) if a collision happened or 𝑡 = 𝑇,

exp (−𝑑𝑔) if 𝑦ee,𝑡 ≥ 0 and no collision happened,

1 + |𝑦ee,𝑡 | if 𝑦ee,𝑡 < 0 and no collision happened

where 𝑐coll = 0.25 if there is a collision and 𝑐coll = 1 otherwise.

Dense reward. The dense reward is given in each time-step by

𝑟𝑡 = 𝑅task − 0.01𝜏𝑡

Sparse reward. The sparse reward only returns the task reward in the terminal time-step𝑇 which can

either be the last time-step of the episode or the time-step where a collision happens and is given by

𝑟𝑡 =

{
−0.001𝜏𝑡 if 𝑡 < 𝑇,

𝑅task − 0.001𝜏𝑡 if 𝑡 = 𝑇 .

111

B. Appendix for Chapter 5

B.5.2. Table Tennis

In the table tennis task, the episode starts with a fixed ball position and velocity. In order to add

stochasticity to the environment, we add noise to the initial velocity in x-direction (i.e., along the long

edge of the table tennis table). The task is to hit the ball so that it lands close to the opponent’s side

short edge of the table. The reward function is non Markovian and is based on the minimum distance

𝑑𝑏,𝑟 = min𝑡 ∥𝒑𝑏,𝑡 − 𝒑𝑟,𝑡 ∥ between the ball position 𝒑𝑏,𝑡 and the racket position 𝒑𝑟,𝑡 , the minimum

distance 𝑑𝑏,𝑔 = min𝑡 ∥𝒑𝑏,𝑡 − 𝒑𝑔∥ between the ball position and a goal point 𝒑𝑔 = (−1.3, 0, 0.77), and the

distance 𝑑𝑙,𝑒 = |𝑝𝑙,𝑥 − 𝑝𝑔,𝑥 | between the x-coordinate of the ball landing position 𝒑𝑙 and x-coordinate of

the opponent’s edge 𝑝𝑔,𝑥 = −1.3 within an episode. We use the transformation

𝜌 (𝑥) = 1 − 𝑥

1 + 𝑥
to convert large distances to a value of 0 and small distances to a value of 1. The task reward is given

as

𝑅task =


0.2𝜌 (𝑑𝑏,𝑟) if cond. 1,

0.5𝜌 (𝑑𝑏,𝑟) + 𝜌 (𝑑𝑏,𝑔) if cond. 2,

2𝜌 (𝑑𝑏,𝑟) + 3𝜌 (𝑑𝑙,𝑒) if cond. 3 ,

5𝜌 (𝑑𝑏,𝑟) + 10|𝑝𝑙,𝑥 | if cond. 4 ,

where the conditions are given by

• cond. 1: the ball was not hit,

• cond. 2: the ball was hit but landed on floor,

• cond. 3: the ball was hit, landed on the table, and 𝑝𝑙,𝑥 ≥ −1.25,

• cond. 4: the ball was hit, landed on the table and 𝑝𝑙,𝑥 < −1.25.

We consider a trajectory to be successful if the ball lands within 10cm of the opponent’s side edge of

the table. We use the sparse-in-time reward

𝑟𝑡 =

{
−0.001𝜏𝑡 if 𝑡 < 𝑇,

𝑅task − 0.001𝜏𝑡 if 𝑡 = 𝑇 .

B.5.3. Beerpong

In the table beerpong task, the episode starts with the ball attached to the end-effector of the arm.

In order to add stochasticity to the environment, we add noise to the velocity at a pre-defined fixed

time-step of the release of the ball. For a successful throw, the ball first needs to bounce once on the

table and then land inside the cup. The reward function is again non Markovian and is based on the

final distance 𝑑𝑏,𝑐,𝑇 = ∥𝒑𝑏,𝑇 − 𝒑𝑐 ∥, and on the minimum distance 𝑑𝑏,𝑐 = min𝑡 ∥𝒑𝑏,𝑡 − 𝒑𝑐 ∥ between the

ball position 𝒑𝑏,𝑡 and the center of the cup 𝒑𝑐 within an episode. With the same transform 𝜌 (𝑥) as
before, the task reward is given by

𝑅task =


0.2𝜌 (𝑑𝑏,𝑐) + 0.1𝜌 (𝑑𝑏,𝑐,𝑇) if cond. 1,

𝜌 (𝑑𝑏,𝑐) + 0.5𝜌 (𝑑𝑏,𝑐,𝑇) if cond. 2,

𝜌 (𝑑𝑏,𝑐) + 2𝜌 (𝑑𝑏,𝑐,𝑇) + 1 if cond. 3,

𝜌 (𝑑𝑏,𝑐) + 2𝜌 (𝑑𝑏,𝑐,𝑇) + 3 if cond. 4,

112

B.5. Episodic RL

where the conditions are given by

• cond. 1: the ball first has contact with anything but the table,

• cond. 2: the ball first has contact with the table but is not in cup,

• cond. 3: the ball is in cup, without contact with the table,

• cond. 4: the ball is in cup and had contact with the table before.

The sparse-in-time reward is given by

𝑟𝑡 =

{
−0.1𝜏𝑡 if 𝑡 < 𝑇,

𝑅task − 0.1𝜏𝑡 if 𝑡 = 𝑇 .

B.5.4. Hopper Jump

The task reward for the hopper task is composed of a reward term for jumping as high as possible

and a distance minimization term to the center of top of the box. Additionally, bonuses are added for

successfully landing upright and landing on the box. High velocities, as well as joint angles that lead to

falling over on the box result in a penalty. We record the maximum height ℎmax of the agent’s torso

during an episode, the minimum distance 𝑑𝑓 ,𝑐 = min𝑡 ∥𝒑 𝑓 ,𝑡 −𝒑𝑐 ∥ and final distance 𝑑𝑓 ,𝑐,𝑇 = ∥𝒑 𝑓 ,𝑇 −𝒑𝑐 ∥
between the agent’s foot position 𝒑 𝑓 and the top center of the box 𝒑𝑐 . The individual reward terms are

given as

𝑅height =


5ℎmax if ℎmax < 2,

10 + ℎ𝑇 if ℎmax ≥ 2 and cond. 1,

2ℎmax if cond. 2,

𝑅dist =

{
−5 if ℎmax < 2,

−5𝑑𝑓 ,𝑐,𝑇 if ℎmax ≥ 2,

𝑅min dist = −2𝑑𝑓 ,𝑐

𝑅healthy =

{
1 if 𝑧𝑇 ∈ [0.7,∞], 𝜙 ∈ [−∞,∞] and 𝜃, ¤𝜃, ∈ [−100, 100],
0 else,

𝑅box =

{
5 if cond. 3,

0 else,

𝑅box vel =

{
−min(10𝑣2

𝑥 , 1) if cond. 4,

0 else.

with conditions

• cond. 1: the agent did not fall after landing on the box,

• cond. 2: the agent is on the box but falling over,

• cond. 3: the agent is on the box and ℎ𝑇 > 1.6,

• cond. 4: the agent is on the box.

113

B. Appendix for Chapter 5

The task reward is given as

𝑅task = 𝑅height + 𝑅dist + 𝑅min dist + 𝑅healthy + 𝑅box + 𝑅box vel.

and the total reward for each time step is given as

𝑟𝑡 =

{
−10

−4𝜏𝑡 if 𝑡 < 𝑇,

𝑅task − 10
−4𝜏𝑡 if 𝑡 = 𝑇 .

114

B.5. Episodic RL

2 3 5 10 20 40
0

1

2

3

15 instances
target Df: 1e-8 v2.4.1.1

1 Sphere

CAS MORE
MORE
CMA-ES
xNESas schaul

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

2 Ellipsoid separable

2 3 5 10 20 40

1

3

5

7

15 instances
target Df: 1e-8 v2.4.1.1

3 Rastrigin separable

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

4 Skew Rastrigin-Bueche separ

2 3 5 10 20 40
0

1

2

3

15 instances
target Df: 1e-8 v2.4.1.1

5 Linear slope

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

6 Attractive sector

2 3 5 10 20 40
0

1

2

3

4

15 instances
target Df: 1e-8 v2.4.1.1

7 Step-ellipsoid

2 3 5 10 20 40
0

1

2

3

4

15 instances
target Df: 1e-8 v2.4.1.1

8 Rosenbrock original

2 3 5 10 20 40
0

1

2

3

4

15 instances
target Df: 1e-8 v2.4.1.1

9 Rosenbrock rotated

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

10 Ellipsoid

2 3 5 10 20 40
0

1

2

3

4

15 instances
target Df: 1e-8 v2.4.1.1

11 Discus

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

12 Bent cigar

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

13 Sharp ridge

2 3 5 10 20 40
0

1

2

3

4

15 instances
target Df: 1e-8 v2.4.1.1

14 Sum of different powers

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

15 Rastrigin

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

16 Weierstrass

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

17 Schaffer F7, condition 10

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

18 Schaffer F7, condition 1000

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

19 Griewank-Rosenbrock F8F2

2 3 5 10 20 40

1

3

5

15 instances
target Df: 1e-8 v2.4.1.1

20 Schwefel x*sin(x)

2 3 5 10 20 40

1

3

5

30, 15 instances
target Df: 1e-8 v2.4.1.1

21 Gallagher 101 peaks

2 3 5 10 20 40

1

3

5

30, 15 instances
target Df: 1e-8 v2.4.1.1

22 Gallagher 21 peaks

2 3 5 10 20 40

1

3

5

30, 15 instances
target Df: 1e-8 v2.4.1.1

23 Katsuuras

2 3 5 10 20 40

1

3

5

7

30, 15 instances
target Df: 1e-8 v2.4.1.1

24 Lunacek bi-Rastrigin

CAS MORE
MORE
CMA-ES
xNESas schaul

Figure B.2.: Expected running time (ERT in number of 𝑓 -evaluations as log
10

value), divided by dimension for target function

value 10
−8

versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond

to different algorithms given in the legend of 𝑓1 and 𝑓24. Light symbols give the maximum number of function evaluations

from the longest trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms

with 𝑝 < 0.01 and Bonferroni correction number of dimensions (six). Legend: ◦: CAS-MORE, ♦: MORE, ★: CMA-ES, ▽:
xNESas.

115

B. Appendix for Chapter 5

separable fcts moderate fcts ill-conditioned fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

CMA-ES

xNESas sc

best 2009bbob f1-f5, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

MORE

CMA-ES

CAS MORE

best 2009bbob f6-f9, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f10-f14, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

multi-modal fcts weakly structured multi-modal fcts all fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f15-f19, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f20-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

CMA-ES

xNESas sc

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

Figure B.3.: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by

dimension (FEvals/DIM) for 51 targets with target precision in 10
[−8..2]

for all functions and subgroups in 5-D. As reference

algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.

separable fcts moderate fcts ill-conditioned fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f1-f5, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f6-f9, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f10-f14, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

multi-modal fcts weakly structured multi-modal fcts all fcts

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f15-f19, 20-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f20-f24, 20-D
51 targets: 100..1e-08
30, 15 instances

v2.4.1.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
30, 15 instances

v2.4.1.1

Figure B.4.: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by

dimension (FEvals/DIM) for 51 targets with target precision in 10
[−8..2]

for all functions and subgroups in 20-D. As reference

algorithm, the best algorithm from BBOB 2009 is shown as light thick line with diamond markers.

116

B.5. Episodic RL

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f1, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

MORE

CMA-ES

CAS MORE

best 2009bbob f2, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CMA-ES

xNESas sc

CAS MORE

best 2009bbob f3, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

3 Rastrigin separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CAS MORE

MORE

CMA-ES

xNESas sc

best 2009bbob f4, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CAS MORE

MORE

xNESas sc

CMA-ES

best 2009bbob f5, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

5 Linear slope

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f6, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

6 Attractive sector

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
xNESas sc

CAS MORE

CMA-ES

MORE

best 2009bbob f7, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

7 Step-ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

MORE

CMA-ES

CAS MORE

best 2009bbob f8, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

8 Rosenbrock original

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

MORE

CMA-ES

CAS MORE

best 2009bbob f9, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

9 Rosenbrock rotated

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

best 2009

CAS MOREbbob f10, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

10 Ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

best 2009

CMA-ES

CAS MOREbbob f11, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

11 Discus

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f12, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

12 Bent cigar

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f13, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

13 Sharp ridge

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f14, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

14 Sum of different powers

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

CAS MORE

MORE

CMA-ES

best 2009bbob f15, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

15 Rastrigin

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f16, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

16 Weierstrass

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

xNESas sc

CAS MORE

CMA-ES

MORE

best 2009bbob f17, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CAS MORE

xNESas sc

CMA-ES

best 2009

MOREbbob f18, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

18 Schaffer F7, condition 1000

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f19, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

19 Griewank-Rosenbrock F8F2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CAS MORE

MORE

xNESas sc

CMA-ES

best 2009bbob f20, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

CAS MORE

xNESas sc

CMA-ES

best 2009bbob f21, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

21 Gallagher 101 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

MORE

CAS MORE

xNESas sc

best 2009bbob f22, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CMA-ES

CAS MORE

best 2009bbob f23, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MORE

xNESas sc

CAS MORE

CMA-ES

best 2009bbob f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4.1.1

24 Lunacek bi-Rastrigin

Figure B.5.: Empirical cumulative distribution of simulated (bootstrapped) runtimes, measured in number of objective

function evaluations, divided by dimension (FEvals/DIM) for the 51 targets 10
[−8..2]

in dimension 5.

117

C. Appendix for Chapter 6

C.1. PI VIPS Derivations

For the derivations, we use the following definitions and identities. The distribution we want to optimize

is

𝑞𝜋 (𝑿) =
∑︁
𝑜

𝑞(𝑿 | 𝑜)𝑞(𝑜)

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑍

𝑞(𝑿 | 𝒁 , 𝑜)𝑞(𝒁 | 𝑜)d𝒁

= |𝑆 (𝑿) |−1

∑︁
𝑜

𝑞(𝑜)
∑︁

˜𝑿 ∈𝑆 (𝑿)

𝑞(𝒁 = 𝑿̃ | 𝑜)

where we use

𝑞(𝑿 | 𝒁) =
{
|𝑆 (𝑿) |−1

if 𝒁 ∈ 𝑆 (𝑿)
0 else

𝑞(𝑿 | 𝑜) =
∫
𝑍

𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜)d𝒁

= |𝑆 (𝑿) |−1

∑︁
˜𝑿 ∈𝑆 (𝑿)

𝑞(𝒁 = 𝑿̃ | 𝑜)

Identities:

log𝑞(𝑿) = log𝑞(𝑿 | 𝒁) + log𝑞(𝒁) − log𝑞(𝒁 | 𝑿),
log𝑞(𝒁) = log𝑞(𝒁 | 𝑜) + log𝑞(𝑜) − log𝑞(𝑜 | 𝒁)

119

C. Appendix for Chapter 6

We begin by writing down and reformulating the objective function

𝐿𝜋 =

∫
𝑿
𝑞𝜋 (𝑿) (𝑓 (𝑿) − 𝜌 log𝑞(𝑿))d𝑿

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿
𝑞(𝑿 | 𝑜) (𝑓 (𝑿) − 𝜌 log𝑞(𝑿))d𝑿

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (𝑓 (𝑿) − 𝜌 log𝑞(𝑿))d𝒁d𝑿

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (𝑓 (𝑿)

− 𝜌 (log𝑞(𝑿 | 𝒁) + log𝑞(𝒁 | 𝑜) + log𝑞(𝑜) − log𝑞(𝑜 | 𝒁)
− log𝑞(𝒁 | 𝑿)d𝒁d𝑿

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (

𝑓 (𝑿) − 𝜌 (log𝑞(𝑿 | 𝒁) − log𝑞(𝑜 | 𝒁) − log𝑞(𝒁 | 𝑿)d𝒁d𝑿

+ 𝜌𝐻 (𝑞(𝒁 | 𝑜)) + 𝜌𝐻 (𝑞(𝑜))

Adding and subtracting 𝑞(𝑜 | 𝒁) and 𝑞(𝒁 | 𝑿), we rewrite the loss as

𝐿𝜋 = 𝐿̃(𝑞(𝑜 | 𝒁))

+ 𝜌
∫
𝑿
𝑞(𝑿)KL(𝑞(𝒁 | 𝑿) ∥ 𝑞(𝒁 | 𝑿))d𝑿

+ 𝜌
∫
𝑿
𝑞(𝑿)KL(𝑞(𝑜 | 𝒁) ∥ 𝑞(𝑜 | 𝒁))d𝑿

and obtain the variational lower bound

𝐿̃(𝑞(𝑜 | 𝒁)) =
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (

𝑓 (𝑿) + 𝜌 (log𝑞(𝒁 | 𝑿) + log𝑞(𝑜 | 𝒁)) − log𝑞(𝑿 | 𝒁)))d𝒛d𝑿

+ 𝜌𝐻 (𝑞(𝑿 | 𝑜)) + 𝜌𝐻 (𝑞(𝑜))

Using Bayes identities again, we can write

120

C.1. PI VIPS Derivations

𝐿̃(𝑞(𝑜 | 𝒁)) =
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (𝑓 (𝑿)

+ 𝜌 (�������:= 𝑞(𝑿 | 𝒁)
log𝑞(𝑿 | 𝒁) +����

log𝑞(𝒁) − log𝑞(𝑿)
+ log𝑞(𝒁 | 𝑜) + log𝑞(𝑜) −����

log𝑞(𝒁)
−((((((

log𝑞(𝑿 | 𝒁)))d𝒁d𝑿

+ 𝜌𝐻 (𝑞(𝑿 | 𝑜)) + 𝜌𝐻 (𝑞(𝑜))

=
∑︁
𝑜

𝑞(𝑜)
∫
𝑿

∫
𝒁
𝑞(𝑿 | 𝒁)𝑞(𝒁 | 𝑜) (𝑓 (𝑿)

+ 𝜌 (log𝑞(𝒁 | 𝑜) − log𝑞(𝑿) + log𝑞(𝑜))
+ 𝜌𝐻 (𝑞(𝑿 | 𝑜)) + 𝜌𝐻 (𝑞(𝑜))

Given the fact that 𝑓 (𝑿) and 𝑞(𝑿) are permutation invariant, we can write

𝐿̃(𝜽) =
∑︁
𝑜

𝑞(𝑜)
∫
𝒁
𝑞(𝒁 | 𝑜)𝑅(𝒁)d𝒁 + 𝜌𝐻 (𝑞(𝒁 | 𝑜)) + 𝜌𝐻 (𝑞(𝑜))

with

𝑅(𝒁) =
∫
𝑿
𝑞(𝑿 | 𝒁) (𝑓 (𝑿) + 𝜌 (log𝑞(𝒁 | 𝑜) − log𝑞(𝑿) + log𝑞(𝑜))d𝑿

= 𝑓 (𝒁) + 𝜌 (log𝑞(𝒁 | 𝑜) − log𝑞(𝑿 = 𝒁) + log𝑞(𝑜))

121

	Abstract
	Zusammenfassung
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Contributions
	1.1.1 Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
	1.1.2 Deep Reinforcement Learning for Swarm Systems
	1.1.3 Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning
	1.1.4 Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

	1.2 Structure of Thesis

	2 Fundamentals and State of the Art
	2.1 Sequential Decision Making
	2.1.1 Markov Decision Processes
	2.1.2 Value Functions
	2.1.3 Reinforcement Learning
	2.1.4 Multi-Agent Reinforcement Learning

	2.2 Episode-Based Reinforcement Learning
	2.2.1 Probabilistic Movement Primitives as Episode-Based Policy Parameterizations
	2.2.2 Advantages and Disadvantages of Episode-Based Reinforcement Learning

	2.3 Information Representation in Swarms
	2.3.1 Set Representation of Local Observations
	2.3.2 Swarm as a Graph
	2.3.3 Graph Multi-Agent RL

	2.4 Exploration Strategies in Reinforcement Learning
	2.4.1 Trust-Region Reinforcement Learning
	2.4.2 Evolution Strategies

	3 Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
	3.1 Background
	3.1.1 Trust Region Policy Optimization
	3.1.2 Problem Domain
	3.1.3 Related Work

	3.2 Multi-Agent Learning with Local Communication Protocols
	3.2.1 Communication Protocols
	3.2.2 Weight Sharing for Policy Networks
	3.2.3 Adaptations to TRPO

	3.3 Experimental Setup
	3.3.1 Agent Model
	3.3.2 Tasks
	3.3.3 Policy Architecture

	3.4 Results
	3.4.1 Edge Task
	3.4.2 Link Task

	3.5 Conclusions and Future Work

	4 Deep Reinforcement Learning for Swarm Systems
	4.1 Related Work
	4.1.1 Deep RL
	4.1.2 Optimization-Based Approaches for Swarm Systems
	4.1.3 Analytic Approaches

	4.2 Background
	4.2.1 Trust Region Policy Optimization
	4.2.2 Mean Embeddings

	4.3 Deep Reinforcement Learning for Swarms
	4.3.1 Problem Domain
	4.3.2 Local Observation Models
	4.3.3 Local Communication Models
	4.3.4 Mean Embeddings as State Representations for Swarms
	4.3.5 Other Representation Techniques
	4.3.6 Adaption of TRPO to the Homogeneous Swarm Setup

	4.4 Experimental Results
	4.4.1 Swarm Models
	4.4.2 Rendezvous
	4.4.3 Pursuit Evasion with a Single Evader
	4.4.4 Pursuit Evasion with Multiple Evaders
	4.4.5 Evaluation of Pooling Functions
	4.4.6 Comparison to Moment-Based Representations
	4.4.7 Computational Complexity

	4.5 Conclusion

	5 Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning
	5.1 Related Work
	5.1.1 Evolutionary Strategies and Black-Box Optimization
	5.1.2 Reinforcement Learning
	5.1.3 Broader Scope

	5.2 Preliminaries
	5.2.1 Problem Setting
	5.2.2 Model-Based Relative Entropy Stochastic Search
	5.2.3 Relation to Natural Gradient

	5.3 Improving the MORE Algorithm
	5.3.1 Disentangled Trust Regions
	5.3.2 Entropy Control
	5.3.3 Illustrative Example

	5.4 Model Learning
	5.4.1 Least Squares Model Fitting
	5.4.2 Adaptive Model Complexity
	5.4.3 Data Pre-Processing

	5.5 Experiments
	5.5.1 Black-Box Optimization Benchmarks
	5.5.2 Episodic Reinforcement Learning Results

	5.6 Conclusion
	5.7 Acknowledgements

	6 Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning
	6.1 Multi-Agent Stochastic Search
	6.1.1 Factorized MORE
	6.1.2 Policy Updates
	6.1.3 Illustrative Experiment

	6.2 Permutation Invariant Learning of Versatile Multi-Agent Behavior
	6.2.1 Maximum Entropy Episodic Policy Search
	6.2.2 Permutation Invariant VIPS
	6.2.3 Component Updates
	6.2.4 Weight Updates

	6.3 Conclusion

	7 Conclusion
	7.1 Summary of Contributions
	7.1.1 Fundamentals and State of the Art
	7.1.2 Local Communication Protocols for Learning Complex Swarm Behaviors with Deep Reinforcement Learning
	7.1.3 Deep Reinforcement Learning for Swarm Systems
	7.1.4 Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning
	7.1.5 Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

	7.2 Discussion and Outlook
	7.2.1 State Representation for Learning in Swarms
	7.2.2 Black-Box Optimization for Episode-Based Multi-Agent Reinforcement Learning

	Bibliography
	A Appendix for cha:mfe
	A.1 Agent Kinematics
	A.2 Observation Model
	A.3 Task Specific Communication Protocols
	A.4 Controller for Double Integrator Dynamics
	A.5 Reward Functions
	A.5.1 Rendezvous
	A.5.2 Pursuit Evasion
	A.5.3 Pursuit Evasion with Multiple Evaders

	A.6 Policy Architectures
	A.6.1 Neural Network Embedding Policy
	A.6.2 Histogram Embedding Policy
	A.6.3 RBF Embedding Policy
	A.6.4 Concatenation Policy

	B Appendix for cha:cas-more
	B.1 Derivation of CA-MORE Dual
	B.1.1 Mean Update
	B.1.2 Covariance Update

	B.2 Robust Target Normalization
	B.3 Hyper-Parameters
	B.4 Black-box Optimization Benchmarks
	B.5 Episodic RL
	B.5.1 Holereaching
	B.5.2 Table Tennis
	B.5.3 Beerpong
	B.5.4 Hopper Jump

	C Appendix for cha:multimore
	C.1 PI VIPS Derivations

