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Abstract

When communicating over the internet, the current state of the art is to use a secure

channel like TLS to protect confidentiality and authenticity. This is because the internet

is a public network, which facilitates eavesdropping and manipulation of the data during

transmission. These secure channels can be realized by a public key encryption scheme

(PKE) combined with an authenticated channel. One way to realize the encryption is the

KEM-DEM framework, which combines a key encapsulation mechanism (KEM) with a data

encapsulation mechansim (DEM) to realize a PKE. Scalable quantum computers can break

many current used key encapsulation mechanisms (KEMs). Thus, new KEMs base their

security on other problems, which we suspect to be difficult to solve even for a quantum

computer. One of them is learning with errors (LWE) and its ring variant, ring learning with

errors (RLWE). There have been multiple new schemes like the newly standardized Kyber

that base their security on variants of these problems. However, most of them are proven

secure in the random oracle model (ROM) and those that are not either do not propose

parameters or have key sizes that are impractically large. As the commonly used security

notion of indistinguishability under chosen ciphertext attack (IND-CCA) is stronger than

necessary for realizing secure channels, weaker notions such as the sender-binding KEM

(SB-KEM) have been introduced together with the security notion of indistinguishability

under sender-binding chosen plaintext attack (IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 ).

This work improves the current state of secure channels that do not rely on the ROM by

constructing a new IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 secure SB-KEM based on RLWE with concrete

parameters. While the key and cipher sizes are worse than the ROM based Kyber, they

improve upon all known IND-CCA secure KEMs without the ROM. The SB-KEM is then

used in the KEM-DEM framework and combined with SPHINCS256 to realize a secure

channel in the universal composability (UC) framework. For 87 bits of security it requires a

bandwidth of 69.2 kilobytes (KB) and 97.3 KB for 128 bits. The second parameter set for the

SB-KEM actually provides 164 bits of security but SPHINCS256 only 128. To confirm the

theoretical results, a proof of concept for the SB-KEM is implemented in python.
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Zusammenfassung

Bei der Kommunikation über das Internet ist der aktuelle Stand der Technik, sichere Kanäle

wie zum Beispiel TLS zu benutzen, um Vertraulichkeit und Authentizität zu schützen. Hinter-

grund dafür ist, dass das Internet ein öffentliches Netzwerk ist, welches einfaches Abhören

und Manipulieren der versendeten Daten ermöglicht. Diese sicheren Kanäle können durch

die Kombination eines Public Key Encryption Schemes (PKE) und eines authentifizierten

Kanals realisiert werden. Eine Methode für die Konstruktion des PKEs ist das KEM-DEM

Framework, welches einen Key Encapsulation Mechanism (KEM) mit einem Data Encap-

sulation Mechanism (DEM) kombiniert. Da skalierbare Quantum Computer viele aktuell

genutzten KEMs brechen können, basieren neue KEMs ihre Sicherheit auf Probleme, von

denen wir ausgehen, dass sie auch für Quantum Computer schwer zu lösen sind. Eines

davon ist Learning with Errors (LWE) und dessen Ringvariante, Ring Learning with Errors

(RLWE). Es gab mehrere neue Entwürfe von KEMs, die ihre Sicherheit auf diese Probleme

basieren, wie zum Beispiel der kürzlich standardisierte Kyber. Jedoch ist die Sicherheit der

meisten Verfahren mithilfe des Random Oracle Models (ROM) bewiesen und für die, die

es nicht benutzen, werden entweder keine Parameter angegeben oder deren Schlüsselgrö-

ßen sind unpraktikabel groß. Da die häufig verwendete Notation von Indistinguishability

under Chosen Ciphertext Attack (IND-CCA) stärker ist als nötig, um sichere Kanäle zu

realisieren, wurden schwächere Begriffe vorgeschlagen. Ein Beispiel dafür ist der Begriff

Sender-Binding KEM (SB-KEM) zusammen mit der Sicherheitsstufe Indistinguishability

under Sender-Binding Chosen Plaintext Attack (IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 ).

Diese Arbeit verbessert den Stand der Technik von sicheren Kanälen, die nicht das ROM

benötigen, indem ein neuer IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 sicherer SB-KEM basierend auf RLWE

konstruiert sowie konkrete Parameter bestimmt werden. Obwohl die Schlüssel- und Chiffrat-

größen schlechter als der ROM basierte Kyber sind, stellen sie eine Verbesserung gegenüber

allen bekannten IND-CCA sicheren KEMs ohne ROM da. Der SB-KEM wird anschließend

im KEM-DEM Framework benutzt und mit SPHINCS256 kombiniert, um einen sicheren

Kanal im Universal Composability (UC) Framework zu realisieren. Für 87 Bit Sicherheit

haben die Nachrichten eine Größe von 69.2 Kilobytes (KB) und 97.3 KB für 128 Bit. In der

zweiten Einstellung bietet der SB-KEM sogar 164 Bit Sicherheit, jedoch SPHINC256 nur 128.

Um die theoretischen Ergebnisse zu bestätigen, ist ein Prototyp für den SB-KEM in Python

implementiert.
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1 Introduction

Modern communication over the internet uses secure channels like TLS to protect confi-

dentiality and authenticity. The reason for this is the accessibility to the messages during

transmission as the internet is a public network. This allows for eavesdropping and manip-

ulation of the data before they reach their target. One way to realize these secure channels

is the combination of a public key encryption scheme (PKE) with an authenticated channel

[14]. The encryption on the other hand can be realized using the KEM-DEM framework

[20]. The idea of the KEM-DEM framework is to have an asymmetric component, which

generates and encrypts a symmetric key, which the symmetric component uses to encrypt

the data. Because of these roles, the former is called a key encryption mechanism (KEM),

whereas the latter is called data encryption mechanism (DEM). This split enables more

flexibility regarding the length of the messages.

Previously, KEMs such as RSA [41] were based on the intractability assumptions of factor-

ization and discrete logarithm. However, Shor’s algorithm [42] can solve these problems in

polynomial time and therefore break current KEMs, given that a scalable quantum computer

exists. Hence, new problems are chosen as underlying assumptions for these so called

post-quantum cryptographic schemes to ensure security against quantum computers. A

prominent problem is learning with errors (LWE), introduced by Regev [40]. It asks to find

a secret 𝑠 ∈ Z𝑛𝑞 , given samples of the form ⟨𝑎, 𝑠⟩ + 𝑒 , where 𝑎 ∈ Z𝑛𝑞 is uniformly random and

𝑒 ∈ Z𝑞 is a small error term. The authors reduced LWE to problems in ideal lattices, which

are assumed to be hard even for quantum computers. To improve performance, LWE has

been adopted to the ring setting, which is called ring learning with errors (RLWE) [31].

However, most quantum secure KEM designs like the newly standardized Kyber [43] are

proven indistinguishability under chosen ciphertext attack (IND-CCA) secure in the random

oracle model (ROM). The ROM assumes a perfect hash function that is truly random.

Although it cannot be implemented in practice as all systems on the world would need to

request the random oracle for every hash function, it is broadly used in theoretic proofs.

On the flip side, there have not been any practical attacks against constructions that have

been proven secure using the ROM [28]. A major contribution to the heavy use of the ROM

is the Fujisaki-Okamoto transformation [23], which transforms an one-way under chosen

plaintext attack (OW-CPA) KEM into an IND-CCA one in the ROM.

There are only a hand full of post-quantum IND-CCA secure PKEs or KEMs that do not

use the ROM. Additionally, those either do not propose concrete parameters, which means

they only provide asymptotical growth of their parameters, or have large key sizes in the

orders of megabytes (MB), which is highly unpractical. To ease the creation of KEMs, Benz

et al. [7] introduced the sender-binding KEM (SB-KEM) together with the security notion
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1 Introduction

of indistinguishability under sender-binding chosen plaintext attack (IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 ).
The authors proved that they are sufficient for secure channels, when used in the KEM-DEM

framework and combined with an authenticated channel. This work aims to improve secure

channels that do not rely on the ROM by filling the lack of KEMs.

1.1 Related Work

There are two ways of improving secure channels. One way is the creation of new security

notions that are easier to achieve but still sufficient to realize secure message transfer (SMT).

They are either proven to realize SMT in the UC framework or shown to have stronger

notions when combined with other primitives. The other way is to construct a PKE or KEM

and prove that it fulfills a certain security notion. This also includes finding parameters for

the scheme.

Starting with the security notions for PKEs, the most common one is IND-CCA, which

Canetti [14] proved to be sufficient to realize SMT in the UC framework. However, it is

also shown to be unnecessarily strong [16]. Therefore, weaker security notions have been

introduced. Canetti, Krawczyk, and Nielsen [16] built SMT using a PKE, which is replayable

CCA (RCCA) secure. MacKenzie, Reiter, and Yang [33] introduced the tag based encryption

(TBE) with the security notion of indistinguishability under adaptive-tag weakly chosen

ciphertext attack (IND-aTAG-wCCA) and showed how to realize SMT with it. Kiltz [27]

proved that a weaker notion known as indistinguishability under selective-tag weakly

chosen ciphertext attack (IND-sTAG-wCCA) can be combined with a signature scheme to

achieve an IND-CCA secure KEM.

Beskorovajnov et al. [10] analyzed post-quantum secure channels that do not rely on the

ROM and came to the conclusion, that there is a lack of schemes that have practical parameter

sizes. The authors then introduced the new security notion of sender-binding encryption

and proved secure channels based on them. Thereby, they eased the creation of secure

channels, as their new security notion of indistinguishability under sender-binding chosen

plaintext attack (IND-SB-CPA) is a weaker security notion than IND-sTAG-wCCA.

To realize these security notions in the KEM-DEM framework, there have been multiple

notions for the KEMs and DEMs. Cramer and Shoup [20] showed that an IND-CCA secure

PKE can be realized from an IND-CCA secure KEM and an one-time IND-CCA secure DEM.

Abe et al. [1] introduced tag-KEMs with the associated security notion of CCA𝑡𝑎𝑔−𝐾𝐸𝑀 and

showed that the combination with an one-time secure DEM is enough for an IND-CCA

secure PKE.

Benz et al. [7] built upon the IND-SB-CPA notion, by introducing the SB-KEM, the KEM

variant of the sender-binding setting together with its associated IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 se-

curity notion. The authors proved that this security notion is sufficient to construct an

IND-SB-CPA secure PKE by combining the SB-KEM with a DEM that is indistinguishable

under one-time attack (IND-OT). This concludes our overview of the security notions.
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1.2 Our Contribution

For the constructions of KEMs, we will not consider constructions that rely their security on

the Diffie-Hellman assumption, as it is broken on a quantum computer by Shor’s algorithm

[42].

There are many KEMs that are proven secure in the ROM, such as the newly standardized

Kyber [43], NTRU-based [24] or BIKE [3]. On the other hand, there are not many post-

quantum IND-CCA secure KEMs or PKEs without the ROM. Often, the authors do not

provide concrete key sizes but only their asymptotic growth. Yu and Zhang [47] described an

IND-sTAG-wCCA secure TBE based on the learning parity with noise. However, the authors

did not provide concrete parameters. Benhamouda et al. [6] constructed an IND-CCA tag-

based PKE but neither provide concrete parameters. Based on that PKE, Blazy, Chevalier,

and Vu [11] build an oblivious transfer and provided concrete parameters. Although, the

authors did not provide key sizes for the underlying PKE, these can be estimated to be above

100MB.

Boyen, Izabachène, and Li [13] introduced a hybrid encryption scheme without the ROM

based on LWE using the trapdoor by Micciancio and Peikert [35]. The authors stated that

their scheme can be adopted to the ring setting, but did not provide concrete parameters

for neither their proven LWE variant nor the RLWE variant. Benz et al. [7] constructed an

LWE-based SB-KEM drawing from the works of Boyen, Izabachène, and Li [13]. However,

its key sizes are still not practical being in the order of megabytes. This work adopts their

SB-KEM to the ring setting.

To the best of our knowledge, the best post-quantum secure KEMs that do not rely on the

random oracle and provide concrete key sizes are the works of Xu and Li [45] and Yang,

Ma, and Zhang [46]. However, their key sizes are in the order of megabytes.

1.2 Our Contribution

The main contribution of this work is a new SB-KEM. Its design is based on the LWE-based

SB-KEM of Benz et al. [7]. It is proven to be IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 secure and correct based

on RLWE without the ROM. Afterwards, concrete parameter sets are proposed based on

the security estimations of the lattice estimator [2]. The SB-KEM reaches about 87 and 164

bit security with key sizes of 51.2 KB and 102 KB respectively, which is worse than Kyber,

but a vast improvement compared to other designs that do not use the ROM.

The SB-KEM is then combined with a signature scheme to realize a secure channel in the

universal composability (UC) framework. Concretely, the ideal functionality F𝑀−𝑆𝑀𝑇 [10] is
realized with the assumption of certificate authorities described by the ideal functionality

F𝐶𝐴 [15]. SPHINCS256 [8] is hereby used as signature scheme and a one-time pad as DEM.

This yields a secure channel with message sizes of 69.2 KB or 97.3 KB for 87 or 128 bits of

security, respectively. Lastly, a proof of concept is implemented in python to confirm the

theoretical results.
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1 Introduction

The rest of the work is structured as follows. First, Chapter 2 introduces the fundamentals

needed for this work. Then, Chapter 3 describes the new SB-KEM and proves its security

and correctness alongside the parameter sets. This new construction is used in Chapter 4 to

realize a secure channel. Lastly, Chapter 5 describes details for the proof of concept before

we summarize and give and outlook in Chapter 6.
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2 Fundamentals

For a function 𝑓 and a set 𝑆 we define 𝑓 (𝑆) = {𝑓 (𝑠) | 𝑠 ∈ 𝑆}. Analogous for a matrix A

and a set S, we write 𝐴𝑆 = {𝐴𝑥 | 𝑥 ∈ 𝑆}. Vectors are column vectors and denoted as lower

case letters. For a vector 𝑥 , 𝑥𝑖 denotes the i-th entry of 𝑥 with the first being 𝑥1. Matrices

are uppercase letters and elements of a number field are written as lowercase bold like

x. The element-wise multiplication is denoted as ⊙. For Vectors in C𝑛 or R𝑛 we have the
norms ∥𝑎∥ := ∥𝑎∥2 = (∑𝑛

𝑖=1
|𝑎𝑖 |2)1/2 and ∥𝑎∥∞ = max𝑖 |𝑎𝑖 |. For vectors 𝑎 ∈ 𝐾𝑛, 𝑏 ∈ 𝐾𝑚 of a

field or ring 𝐾 , we write (𝑎, 𝑏) ∈ 𝐾𝑚+𝑛 for appending the vectors. Similarly, for matrices

𝐴 ∈ 𝐾𝑛×𝑚, 𝐵 ∈ 𝐾𝑛×𝜔 , appending the matrices is written as (𝐴, 𝐵) ∈ K𝑛×(𝑚+𝜔) . Throughout
this work, 𝐼𝑛 is the identity matrix of dimension n. For a matrix 𝑆 and 𝑝 ∈ {2,∞}, its p-
norm is ∥𝑆 ∥𝑝 = max∥𝑥 ∥𝑝=1 ∥𝐴𝑥 ∥𝑝 . For a matrix 𝑆 ∈ R𝑛×𝑛 , its origin-centered parallelepiped

is P1/2(𝑆) = {𝑆𝑥 | 𝑥 ∈ R𝑛, | |𝑥 | |∞ ≤ 1/2}. The finite ring, which results from taking

integers mod q is denoted as Z𝑞 = Z mod 𝑞. The Gaussian distribution is the distribution

proportional to 𝜌 (𝑥) = 𝑒−𝜋 ⟨𝑥,𝑥⟩ , where ⟨·, ·⟩ denotes the scalar product. For 𝑥 ∈ R, ⌊𝑥⌉
denotes rounding to the next integer. For 𝑐 ∈ C, 𝑐 denotes its complex conjugated. For

sets, fields or rings 𝐾1, 𝐾2, we write 𝐾1 � 𝐾2 iff 𝐾1 is isomorph to 𝐾2. The tensor product of

two fields 𝐾1, 𝐾2 is denoted as 𝐾1 × 𝐾2. The logarithm with basis 2 is denoted as 𝑙𝑜𝑔 := 𝑙𝑜𝑔2

whereas 𝑙𝑛 := 𝑙𝑜𝑔𝑒 . A function 𝑓 : R→ R is said to be negligible iff for every 𝑖 ∈ N, there is
a 𝑥0 ∈ R such that |𝑓 (𝑥) | < 𝑥−𝑖 for every 𝑥 > 𝑥0. A function 𝑔 is overwhelming if 1 − 𝑔 is
negligible.

2.1 Linear Algebra

A matrix 𝑆 ∈ R𝑛×𝑛 is positive semidefinite if 𝑥𝑇𝑆𝑥 ≥ 0 for every 𝑥 ∈ R𝑛 . A matrix Σ ∈ R𝑛×𝑛
is posivite semidefinite if and only if there is a matrix 𝑆 ∈ R𝑛×𝑛 such that Σ = 𝑆𝑆𝑇 . Upon

positive semidefinite matrices there is a partial order denoted as Σ ⪯ Σ′ iff Σ′ − Σ is positive

semidefinite. We write 𝑆 ≤ 𝑇 for matrices 𝑆,𝑇 if 𝑆𝑆𝑇 ⪯ 𝑇𝑇𝑇 .

For a set 𝑆 = {𝑠1, ..., 𝑠𝑛} ⊂ 𝑉 of linear independent vectors from a vector space V with scalar

product ⟨·, ·⟩, the Gram-Schmidt orthogonalization 𝑆 = {𝑠1, ..., 𝑠𝑛} is defined as

𝑠1 = 𝑠1

𝑠𝑖 = 𝑠𝑖 −
𝑖−1∑︁
𝜈=1

⟨𝑠𝑖, 𝑠𝜈⟩
⟨𝑠𝜈 , 𝑠𝜈⟩

𝑠𝜈 .

Note that 𝑆 depends on the order, in which the vectors are orthogonalized.

5



2 Fundamentals

2.2 Lattices

For a vector space 𝑉 , a lattice Λ ⊂ 𝑉 is a discrete subspace. A basis of Λ is a set of linear

independent vectors 𝐵 = {𝑏1, ..., 𝑏𝑖} ⊂ 𝑉 such that there is a unique linear combination with

integer coefficients of 𝐵 for each vector of the lattice. For a given lattice Λ, the basis is not
unique, but each has the same amount of vectors. The rank of Λ is defined as |𝐵 |, the number

of vectors in the basis. A lattice is called full rank if its rank is equal to the dimension of V.

We will abuse notation and view the basis also as matrix, which contains all basis vectors

as columns. A coset of a lattice Λ ⊂ 𝑉 is the set {𝑥 + 𝑐 | 𝑥 ∈ Λ}, where 𝑐 ∈ 𝑉 is arbitrary

but fixed. The dual of a Lattice Λ ⊆ 𝑉 is defined as Λ∨ = {𝑥 ∈ 𝑉 ,∀𝑦 ∈ Λ : ⟨𝑥,𝑦⟩ ∈ Z}. The
determinant of a lattice Λ is 𝑑𝑒𝑡 (Λ) = |𝑑𝑒𝑡 (𝐵) |, where 𝐵 is any basis of Λ. For a lattice Λ,
𝜆1(Λ) is the norm of the shortest vector in Λ. For 𝑖 ≤ 𝑛, 𝜆𝑖 (Λ) denotes the length of the i-th

shortest vector considering only linear independent vectors.

2.3 Algebraic Number Theory

Amore detailed introduction can be found in textbooks like the works of Oggier and Viterbo

[37]. A number field 𝐾 is a finite field extension of Q. It can be shown, that each number

field is the field that arises from adding an algebraic number 𝜁 alongside all multiples and

powers of it to Q. This is denoted as Q[𝜁 ]. The number field 𝐾 = Q[𝜁 ] is isomorph to

the residue class field of the polynomial ring Q[𝑋 ] modulo 𝑓 (𝑋 ), where 𝑓 is the monic

irreducible polynomial with 𝑓 (𝜁 ) = 0, which is unique [25]. This residue class field is

denoted as Q[𝑋 ]/𝑓 (𝑋 ). The polynomial 𝑓 is called the minimal polynomial of 𝜁 . The

order of 𝐾 is equal to the degree of 𝑓 and is denoted by 𝑛. Throughout this work, we will

consider a number field in the Q[𝑋 ]/𝑓 (𝑋 ) representation with representatives denoted as

polynomials of degree 𝑛 − 1. Calculations are often performed on the algebraic integers of a

number field. They are defined as

Definition 1. (Algebraic Integer) An algebraic integer is a complex root of some monic
polynomial whose coefficients are integers.

For any number field, its set of algebraic integers forms a ring with addition and multi-

plication. It is called the ring of integers. For a number field 𝐾 = Q[𝑋 ]/𝑓 (𝑋 ), its ring
of integers is 𝑅 = Z[𝑋 ]/𝑓 (𝑋 ). For an integer q, the finite ring 𝑅𝑞 is defined as 𝑅𝑞 := 𝑅

mod 𝑞 = Z𝑞 [𝑋 ]/𝑓 (𝑋 ). For integers 𝑞, 𝑘 > 0 and 𝑎 ∈ 𝑅𝑘𝑞 , the lattice Λ⊥𝑞 (𝑎) is defined as

Λ⊥𝑞 (𝑎) = {𝑥 ∈ 𝑅𝑘 : 𝑎𝑇𝑥 = 0 mod 𝑞}.

2.3.1 The Space H

The space H is a special subspace of the complex vector space C𝑛 and is used to embed

elements of a number field into the complex vector space, which allowed the famous

6
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Minkoswki’s Theorem. For integers 𝑠1, 𝑠2 with 𝑛 = 𝑠1 + 2𝑠2, the idea is to accommodate 𝑠1
real embeddings and 2𝑠2 complex ones. Hence, 𝐻 ⊂ C𝑛 is defined as

𝐻 = {𝑥 ∈ R𝑠1 × C2𝑠2, 𝑥2𝑖−1+𝑠1 = 𝑥2𝑖+𝑠1, 1 ≤ 𝑖 ≤ 𝑠2}.

Note that in this definition, the indices are in a different order compared to definitions

found in the literature [30]. We put the pairs of conjugated complex numbers next to each

other to have a nicer structure in the matrices following. With the inner product induced

on it by C𝑛 , H is an inner product space that is isomorphic to R𝑛 [31]. The main idea is to

store each complex number as two real numbers. Normally, this doubles the dimension,

but as each complex number comes with its complex conjugated instead of storing the two

complex numbers, the real and imaginary part is stored separately. Throughout this work,

the isomorphism𝜓 is defined as

𝜓 : 𝐻 → R𝑛, 𝜓 (𝑥) =

©«

𝑥1

...

𝑥𝑠1√
2 · 𝑅𝑒 (𝑥𝑠1+1)√
2 · 𝐼𝑚(𝑥𝑠1+1)√
2 · 𝑅𝑒 (𝑥𝑠1+3)√
2 · 𝐼𝑚(𝑥𝑠1+3)

...√
2 · 𝑅𝑒 (𝑥𝑠1+2𝑠2)√
2 · 𝐼𝑚(𝑥𝑠1+2𝑠2)

ª®®®®®®®®®®®®®®®®®¬

. (2.1)

Only half of the complex numbers are used because the other half are the complex conjugated

ones. For the complex numbers, a factor of

√
2 is inserted to have ∥𝑥 ∥C = ∥𝜓 (𝑥)∥R and

⟨𝑥,𝑦⟩C = ⟨𝜓 (𝑥),𝜓 (𝑦)⟩R. We also define the embedding of one pair of complex numbers in

R2
as

𝜓2 : {𝑥 ∈ C2 | 𝑥1 = 𝑥2} → R2,𝜓2(𝑎 + 𝑏𝑖, 𝑎 − 𝑏𝑖) = (
√

2𝑎,
√

2𝑏).

To see that𝜓 is an isomorphism, consider𝜓2, which embeds one pair of complex conjugated

numbers in the same matter that 𝜓 does. There are no two 𝑐1, 𝑐2 ∈ C with 𝜓2((𝑐1, 𝑐1)) =
𝜓2((𝑐2, 𝑐2)) = (𝑎, 𝑏)∧𝑐1 ≠ 𝑐2 as the former would imply 𝑐1 =

√
2𝑎+
√

2𝑏𝑖 = 𝑐2, a contradiction

to the latter. On the other side, for each (
√

2𝑎,
√

2𝑏) ∈ R2
, there is a 𝑐 = 𝑎 + 𝑏𝑖 with

𝜓2((𝑐, 𝑐)) = (
√

2𝑎,
√

2𝑏). As the real numbers and the pairs of complex numbers of 𝐻 are

independent under𝜓 , this analysis extends to𝜓 on 𝐻 .

With element-wise multiplication and addition, H forms a field. The isomorphism 𝜓 is

also a field isomorphism from 𝐻 to R𝑛. Although addition in H is simply addition in R𝑛,
multiplication is not as simple. The following lemma shows how multiplication is translated

to R𝑛 .

7
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Lemma 1. Let 𝑥,𝑦 ∈ 𝐻 and𝜓 : 𝐻 → R𝑛 as above. There exists a matrix 𝐴𝑦 ∈ R𝑛×𝑛 such that
𝜓 (𝑦 ⊙ 𝑥) = 𝐴𝑦𝜓 (𝑥). If no index in 𝑦 is zero, then the function 𝑓 : R𝑛 → R𝑛, 𝑓 (𝑥) = 𝐴𝑦𝑥 is
injective.

Proof. The matrix𝐴𝑦 needs to simulate the element-wise multiplication of complex numbers.

For complex numbers 𝑐1, 𝑐2 = 𝑎 + 𝑏𝑖 , the matrix

𝑅𝑜𝑡 (𝑐2) :=

(
𝑎 −𝑏
𝑏 𝑎

)
fulfills 𝑅𝑜𝑡 (𝑐2) ·𝜓2(𝑐1) = 𝜓2(𝑐2 · 𝑐1).

So for 𝑦 = (𝑟1, ..., 𝑟𝑠1, 𝑐1, 𝑐1, ..., 𝑐𝑠2, 𝑐𝑠2)𝑇 ∈ 𝐻 ; 𝑟 𝑗 ∈ R, 𝑐 𝑗 ∈ C, the matrix

𝐴𝑦 =

©«

𝑟1

. . .

𝑟𝑠1
𝑅𝑜𝑡 (𝑐1)

. . .

𝑅𝑜𝑡 (𝑐𝑠2)

ª®®®®®®®®¬
∈ R𝑛×𝑛

fulfills 𝐴𝑦 · 𝜓 (𝑥) = 𝜓 (𝑦 ⊙ 𝑥) for every 𝑥 ∈ 𝐻 . As each 𝑅𝑜𝑡 (𝑐1) is a rotation matrix, it is

injective unless 𝑐𝑖 = 0. Thus, 𝑓 (𝑥) = 𝐴𝑦𝑥 is injective unless any element of 𝑦 is zero. □

For a vector 𝑒 = (𝑒1, ..., 𝑒𝑛)𝑇 ∈ 𝐻 , we define 𝐴𝑒 as in Lemma 1 and Σ𝑒 as the diagonal matrix

with the squared norms on the diagonal:

Σ𝑒 :=
©«
|𝑒1 |2

. . .

|𝑒𝑛 |2

ª®®¬
Note that for 𝑒 ∈ 𝐻 , 𝐴𝑒𝐴𝑇𝑒 = Σ𝑒 . In addition, as each complex number comes with its

complex conjugated, their norms appear twice in Σ𝑒 .

2.3.2 Canonical and Coefficient embedding

This chapter describes how elements of a number field are embedded into the space H.

For a number field 𝐾 = Q[𝑋 ]/𝑓 (𝑋 ) of order 𝑛 there are 𝑛 distinct embeddings. The i-th

embedding evaluates the polynomial at the i-th root of 𝑓 , formally

𝜎𝑖 : 𝐾 → C,
𝑛∑︁
𝑗=1

𝑎 𝑗𝑋
𝑗−1 ↦→

𝑛∑︁
𝑗=1

𝑎 𝑗𝜁
𝑗−1

𝑖

8



2.3 Algebraic Number Theory

where 𝜁𝑖 is the i-th root of 𝑓 . An embedding 𝜎𝑖 is said to be real if 𝜁𝑖 is a real number.

Otherwise it is complex. For every complex root, its complex conjugate is also a root of 𝑓 .

Combining these embeddings yields the canonical embedding of K into H:

𝜎 : 𝐾 → 𝐻, x ↦→ (𝜎1(x), ..., 𝜎𝑛 (x))

Hereby, the embeddings are sorted in such a way that the first 𝑠1 are the real embeddings

and the complex conjugated are next to each other. The canonical embedding is a field

homomorphism with element-wise multiplication and addition in 𝐻 . As operations are

element-wise in 𝐻 , it is enough to show that each embedding is homomorph, meaning that

𝜎𝑖 (a) + 𝜎𝑖 (b) = 𝜎𝑖 (a + b) and analog for multiplication. For addition we have

𝜎𝑖 (a + b) =
𝑛∑︁
𝑗=1

(𝑎 𝑗 + 𝑏 𝑗 )𝜁 𝑗−1

𝑖
=

𝑛∑︁
𝑗=1

𝑎 𝑗𝜁
𝑗−1

𝑖
+

𝑛∑︁
𝑗=1

𝑏 𝑗𝜁
𝑗−1

𝑖
= 𝜎𝑖 (a) + 𝜎𝑖 (b).

For the multiplication, interpret a, b ∈ 𝐾 as polynomials 𝑎(𝑋 ), 𝑏 (𝑋 ) and 𝜎𝑖 (a) = 𝑎(𝜁𝑖). Let
𝑐 (𝑋 ) = 𝑎(𝑋 ) · 𝑏 (𝑋 ) mod 𝑓 (𝑋 ) and 𝑎(𝑋 ) · 𝑏 (𝑋 ) = 𝑐 (𝑋 ) + 𝑔(𝑋 ) 𝑓 (𝑋 ) for some polynomial

𝑔(𝑋 ). Then it holds that

𝜎𝑖 (a) · 𝜎𝑖 (b) = 𝑎(𝜁𝑖) · 𝑏 (𝜁𝑖) = 𝑐 (𝜁𝑖) + 𝑔(𝜁𝑖) 𝑓 (𝜁𝑖) = 𝑐 (𝜁𝑖) = 𝜎𝑖 (a · b).

For 𝑝 ∈ {2,∞}, the canonical embedding defines a 𝑝-norm for an element v ∈ 𝐾 as

| |v| |𝑝 := | |𝜎 (v) | |𝑝 .

Another embedding is the coefficient embedding, which is to represent x ∈ 𝐾 by its

coefficients relative to the power basis {1, 𝑋, ..., 𝑋𝑛−1}. This also induces a norm. By default

we use the norm induced by the canonical embedding. To specify which embedding is used

for x ∈ 𝐾 , we use [x]𝑐 := 𝜎 (x) and | |x| |𝑐,𝑝 := | | [x]𝑐 | |𝑝 to denote the canonical embedding

and its induced norm whereas [x]𝑘 ∈ Q𝑛 and | |x| |𝑘,𝑝 := | | [x]𝑘 | |𝑝 denotes the coefficient

embedding with its norm. Note that if x ∈ 𝑅, then [x]𝑘 ∈ Z𝑛. We extend the notion to

𝑥 ∈ 𝐻 as [𝑥]𝑘 := [𝜎−1(𝑥)]𝑘 and ∥𝑥 ∥𝑘 := ∥𝜎−1(𝑥)∥𝑘 .

For a vector over a number field K, its norm depends on three variables. The norm used for

the outer vector and the norm and embedding used for each element of K. For integer𝑚,

𝑥 ∈ 𝐾𝑚 , 𝑝, 𝑞 ∈ {2,∞} and embedding 𝑒 ∈ {𝑐, 𝑘} we denote ∥ [𝑥]𝑒,𝑝 ∥𝑞 as

∥ [𝑥]𝑒,𝑝 ∥𝑞 := ∥𝑣 ∥𝑞, 𝑣 =
©«
∥x1∥𝑒,𝑝
...

∥x𝑚∥𝑒,𝑝 .

ª®®¬
That means 𝑞 defines the norm on the outer vector, wheres 𝑒 and 𝑝 determine the embedding

and norm of each element of K.
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2.3.3 The Lattice of the Ring of Integers in H

As calculations of the SB-KEM are performed in the ring of integers 𝑅 of a number field

𝐾 = Q[𝑋 ]/𝑓 (𝑋 ) with order 𝑛, this chapter analyzes the image of it under the canonical

embedding. As the set of all coefficient embeddings {[x]𝑘 | x ∈ 𝑅} is equal to Z𝑛 , it is useful
to look on the connection of the coefficient embedding and the canonical embedding. A

representative of the former can be embedded into the latter by the matrix multiplication

𝜎 (x) = 𝐵𝐾 [x]𝑘 , (x ∈ 𝐾)

where

𝐵𝐾 =
©«
1 𝜁1 𝜁 2

1
... 𝜁𝑛−1

1

...
...

...
. . .

...

1 𝜁𝑛 𝜁 2

𝑛 ... 𝜁𝑛−1

𝑛

ª®®¬ ∈ C𝑛×𝑛 . (2.2)

Hereby, 𝜁𝑖 = 𝜎𝑖 (𝑋 ) is the i-th root of 𝑓 . The matrix 𝐵𝐾 is a Vandermande matrix, which is

invertible, if all 𝜁𝑖 are distinct [26]. It can be shown that this is the case [18].

The set 𝜎 (Z[𝑋 ]/𝑓 (𝑋 )) = {𝐵𝐾𝑥 | 𝑥 ∈ Z𝑛} forms a ring with element-wise multiplication

and addition. We will denote this ring as 𝐻𝐾 . The set also forms a lattice with element-wise

addition and scalar multiplication, which we will denote as Λ𝐾 . By definition, 𝐵𝐾 is a Z-basis
of 𝐻𝐾 and a basis of Λ𝐾 . We will sometimes abuse notation and perform ring operations

on a lattice element. As the underlying sets are the same, it is performed by embedding

the lattice element as its corresponding ring element with the trivial identity embedding,

preforming the operation and embedding the result back into the lattice.

An important property of 𝐻𝐾 is that every non-zero element does not contain any zero

entries as the following lemma shows.

Lemma 2. Let K be a number field, 𝐻𝐾 its canonically embedded ring of integers and 𝑥 =

(𝑥1, ..., 𝑥𝑛) ∈ 𝐻𝐾 . If 𝑥𝑖 = 0 for any i, then 𝑥 = 0.

Proof. As the embeddings 𝜎𝑖 are injective [31], 𝜎𝑖 (x) = 0 only for x = 0. Therefore, for

𝑥 ∈ 𝐻𝐾 if any index is 0, 𝑥 must be zero. □

2.3.4 Cyclotomic Number Fields

Cyclotomic number fields or cyclotomics for short are a subclass of number fields. The

m-th cyclotomic number field is Q[𝜁𝑚] � Q[𝑋 ]/Φ𝑚 (𝑋 ) , where 𝜁𝑚 is the m-th root of unity

and Φ𝑚 (𝑋 ) its minimal polyonimal. They are often used as they have nicer properties than

number fields in general, especially, if m is a power of two. For these so called power of

two cyclotomics, it can be shown that the reducing polynomial is Φ𝑚 (𝑋 ) = 𝑋𝑚/2 + 1 [21].

Lyubashevsky, Peikert, and Regev [30] analyzed the fraction of invertible elements in the

ring of integers of a cyclotomic after applying a modulo 𝑞. Their result is that the fraction

is at least polynomial in 𝑛 and 𝑞, as described in the following lemma.

10
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Lemma 3. ([30], Claim 2.25) Consider the m-th cyclotomic number field of degree 𝑛 for some
𝑚 ≥ 2. Then for any 𝑞 ≥ 2, the fraction of invertible elements in 𝑅𝑞 is at least 1/𝑝𝑜𝑙𝑦 (𝑛, log𝑞).

For any number field 𝐾 = Q[𝑋 ]/𝑓 (𝑋 ), it can be checked in polynomial time whether

g ∈ 𝑅𝑞 = Z𝑞 [𝑋 ]/𝑓 (𝑋 ) is invertible with the extended euclidean algorithm adjusted to

polynomials. Given the two polynomials 𝑓 and 𝑔 the algorithm yields polynomials 𝑎, 𝑏 ∈
Q[𝑋 ]/𝑓 (𝑋 ) such that

𝑎𝑓 + 𝑏𝑔 = 1.

The element g is invertible iff 𝑏 mod 𝑞 exists in 𝑅𝑞 . More concretely, 𝑏 has the form

𝑏 = 𝑏−1

𝑛 (𝑏0 + 𝑏1𝑋 + ...𝑏𝑛−1𝑋
𝑛−1) where 𝑏𝑖 ∈ Z. Iff 𝑏𝑛 is invertible in Z𝑞 , then 𝑏 exists in 𝑅𝑞

and g is invertible.

There is another approach, if the factorization of f into irreducible polynomials in Z𝑞 is
known. If 𝑟 monic polynomials 𝑓𝑖 that are irreducable in Z𝑞 are known such that 𝑓 =

∏
𝑖 𝑓𝑖

mod 𝑞 and 𝑓𝑖 ≠ 𝑓 𝑗 (𝑖 ≠ 𝑗), then 𝑅𝑞 is isomorph to Z𝑞 [𝑋 ]/𝑓1(𝑋 ) × ... × Z𝑞 [𝑋 ]/𝑓𝑟 by the

Chinese Remainder Theorem (CRT)[38]. Therefore, g ∈ 𝑅𝑞 is invertible if and only if it

is not zero modulo any 𝑓𝑖 . This property can be used to check whether a polynomial is

invertible or draw uniformly distributed invertible polynomials by drawing uniform nonzero

polynomials modulo 𝑓𝑖 for each 𝑖 .

Another important statement from Lyubashevsky, Peikert, and Regev [30] is the regularity

lemma. It analyzes the distribution of 𝐴𝑥 , where 𝐴 is a uniformly random matrix and 𝑥

is a vector drawn from a discrete Gaussian distribution, which essentially is a Gaussian

that is restricted to a discrete space like a lattice. It is defined more formally in Section 2.5.

The result of the regularity lemma is, that 𝐴𝑥 is close to uniformly random, under certain

constraints.

Lemma 4. ([30], Corollary 7.5) Let R be the ring of integers in the m-th cyclotomic number
field K of degree n, 𝑞 ≥ 2 an integer. Let 𝑘 ≤ 𝑙 ≤ 𝑝𝑜𝑙𝑦 (𝑛) be positive integers. Assume
𝐴 = (𝐼𝑘 , 𝐴) ∈ (𝑅𝑞)𝑘×𝑙 , where 𝐼𝑘 ∈ (𝑅𝑞)𝑘×𝑘 is the identity matrix and 𝐴 ∈ (𝑅𝑞)𝑘×(𝑙−𝑘) is
uniformly random. Then with probability 1 − 2

−Ω(𝑛) over the choices of 𝐴, the distribution of
𝐴𝑥 ∈ 𝑅𝑘𝑞 , where each coordinate of 𝑥 ∈ 𝑅𝑙𝑞 is chosen from a discrete Gaussian distribution of
parameter 𝑟 > 2𝑛 · 𝑞𝑘/𝑙+2/(𝑛𝑙) over R, satisfies that the probability of each of the 𝑞𝑛𝑘 possible
outcomes is in the interval (1 ± 2

−Ω(𝑛))𝑞−𝑛𝑘 (and in particular is within statistical distance
2
−Ω(𝑛) of the uniform distribution over 𝑅𝑘𝑞 ).

For a cyclotomic number field K, the length of the n-th shortest vector of Λ𝐾 can be bound

by the structure of the Basis 𝐵𝐾 as shown in the following lemma.

Lemma 5. Let 𝐾 be a cyclotomic number field. For the canoncial embedded lattice Λ𝐾 ⊂ 𝐻
we have 𝜆𝑛 (𝜓 (Λ𝐾 )) = 𝜆𝑛 (Λ𝐾 ) ≤

√
𝑛.

11
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Proof. Each vector in the basis 𝐵𝐾 of Λ𝐾 consists of roots of unity and thus has length

√
𝑛.

As all its 𝑛 vectors are linear independent, 𝜆𝑛 (Λ) ≤
√
𝑛. As ∥𝜓 (𝑥)∥2 = ∥𝑥 ∥2 for any 𝑥 ∈ 𝐻 it

holds that 𝜆𝑛 (Λ𝐾 ) = 𝜆𝑛 (𝜓 (Λ𝐾 )). □

The next lemma proves the nice properties of power of two cyclotomics by analyzing the

basis 𝐵𝐾 and its inverse in more detail.

Lemma 6. Let𝑚 be a power of two, 𝑛 :=𝑚/2 and𝐾𝑚 = Q[𝑋 ]/(𝑋𝑛+1) be the m-th cyclotomic.
For the Basis 𝐵𝐾𝑚 as in Eq. (2.2) it holds that

𝐵−1

𝐾𝑚
=

1

𝑛
𝐵𝐻𝐾𝑚

and

∥𝐵𝐾𝑚 ∥2 =
√
𝑛; ∥𝐵−1

𝐾𝑚
∥2 =

1

√
𝑛
.

Proof. Let 𝑏𝑖 = (1, 𝜁𝑖, ..., 𝜁𝑛−1

𝑖 ), where 𝜁𝑖 = 𝜎𝑖 (𝑋 ) is the i-th root of 𝑋𝑛 + 1. Then, for 𝑖 ≠ 𝑗

using the geometric sum and the fact that 𝜁𝑛𝑖 = 𝜁 𝑗
𝑛
= −1

(𝐵𝐾𝑚 · 𝐵𝐻𝐾𝑚 )𝑖 𝑗 =
𝑛−1∑︁
𝜈=0

(𝜁𝑖𝜁 𝑗 )𝜈 =
1 −

(
𝜁𝑖𝜁 𝑗

)𝑛
1 −

(
𝜁𝑖𝜁 𝑗

) =
1 − (−1 · −1)

1 −
(
𝜁𝑖𝜁 𝑗

) = 0.

Note that

(
𝜁𝑖𝜁 𝑗

)
≠ 1 as 𝜁 −1

𝑖 = 𝜁𝑖 and 𝜁𝑖 ≠ 𝜁 𝑗 . For the diagonal entries we have

(𝐵𝐾𝑚 · 𝐵𝐻𝐾𝑚 )𝑖 𝑗 = ∥𝑏𝑖 ∥
2

2
= 𝑛

Thus, 𝐵𝐾𝑚 · 𝐵𝐻𝐾𝑚 = 𝑛𝐼𝑛 , which yields 𝐵−1

𝐾𝑚
= 1

𝑛
𝐵𝐻
𝐾𝑚

.

Therefore,
1√
𝑛
𝐵𝐾𝑚 is a unitary matrix, and

∥𝐵𝐾𝑚 ∥2 =
√
𝑛 · ∥ 1

√
𝑛
𝐵𝐾𝑚 ∥2 =

√
𝑛,

∥𝐵−1

𝐾𝑚
∥2 =

1

𝑛
· ∥𝐵𝐻𝐾𝑚 ∥2 =

1

𝑛
· ∥𝐵𝐾𝑚 ∥2 =

1

√
𝑛
.

□
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2.4 Probability

Distributions are denoted in calligraphic letters like X,Y. The uniform distribution over

the finite set 𝑋 is written as U(𝑋 ). If the set 𝑋 is clear from the context, we only write

U. If a variable 𝑥 is distributed as distribution X, we write 𝑥 ∼ X. We write 𝑥
$← 𝑋

if 𝑥 is drawn uniformly from X. For a distribution X over a set 𝑆 , 𝑎 ∈ 𝑆 and 𝑌 ⊆ 𝑆 , we
define X(𝑎) := 𝑃𝑟 [𝑥 = 𝑎 | 𝑥 ← X] and X(𝑌 ) := 𝑃𝑟 [𝑥 ∈ 𝑌 | 𝑥 ← X]. Regarding statistical
distance, we adopt the notation of Genise et al. [22]. For two probability distributions X,Y
over the same set, the statistical distance Δ(X,Y) is:

Δ(X,Y) = sup

𝐴

|X(𝐴) − Y(𝐴) | ,

where𝐴 ranges over all measurable sets. For two real numbers 𝑥,𝑦 and 𝜖 ≥ 0, x approximates
y within relative error 𝜖 (written 𝑥 ≈𝜖 𝑦) if 𝑥 ∈ [1 − 𝜖, 1 + 𝜖] · 𝑦. The symmetric relation

(𝑥 ≈𝜖 𝑦) ∧ (𝑦 ≈𝜖 𝑥) is abbreviated as 𝑥
𝜖≈ 𝑦. We write X ≈𝜖 Y iff X(𝑧) ≈𝜖 Y(𝑧) for every 𝑧.

Again, the symmetric relation (X ≈𝜖 Y) ∧ (Y ≈𝜖 X) is abbreviated as (X 𝜖≈ Y).

Two distribution ensembles X𝑛,Y𝑛 (𝑛 ∈ N) are called statistically close if the statistical

distance Δ(X𝑛,Y𝑛) is negligible in n.

2.5 Gaussian Random Variables

For the Gaussian random variables, we adopt the notation by Genise et al. [22]. The Gaussian

function 𝜌 is defined as 𝜌 : R𝑛 → R, 𝜌 (𝑥) = 𝑒𝑥𝑝 (−𝜋 ⟨𝑥, 𝑥⟩). By normalizing, we obtain the

continuous Gaussian distribution D. For a matrix 𝑆 ∈ R𝑛×𝑛 the Gaussian distribution D𝑆 is
defined as:

D𝑆 :=
√

2𝜋 · 𝑆 · D .
For 𝑠 ∈ R, we writeD𝑠 as short forD𝑠𝐼𝑛 . We inserted the constant of

√
2𝜋 , such thatD𝑠 has

variance 𝑠2
.

For a lattice Λ ⊂ R𝑛, the discrete Gaussian DΛ,𝑆 is the Gaussian distribution restricted to

the lattice. This means, the probability of 𝑥 is proportional to D𝑆 (𝑥) for 𝑥 ∈ Λ and zero

otherwise. It is defined as:

DΛ,𝑆 (𝑥) =
D𝑆 (𝑥)
D𝑆 (Λ)

(𝑥 ∈ Λ).

Note that the denominator is the normalization. To sample a discrete Gaussian for a lattice

Λ ⊂ 𝐻 , the samples are drawn from D𝜓 (Λ),𝑆 and embedded into H via the inverse of𝜓 .

For working with discrete Gaussians on a lattice Λ ⊂ R𝑛 , Micciancio and Regev [36]

introduced the smoothing parameter 𝜂𝜖 (Λ). It is defined as follows.

Definition 2. (Smoothing Parameter) For a lattice Λ ⊂ R𝑛 and positive real 𝜖 > 0, the
smoothing parameter 𝜂𝜖 (Λ) is the smallest real, such that 𝜌 (𝑠 · Λ∨) ≤ 1 + 𝜖 .

13
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For an invertible matrix 𝑆 ∈ R𝑛×𝑛 , we write 𝜂𝜖 (Λ) ≤ 𝑆 if 𝜂𝜖 (𝑆−1Λ) ≤ 1. The name of

the smoothing parameter comes from its fundamental property proved by Regev [40]

and Micciancio and Regev [36]. Essentially, a Gaussian distribution above the smoothing

parameter is large enough, such that the discrete structure of the lattice is "smoothed".

This implies two facts. First, the Gaussian measure over the whole lattice does not change

under translation of the lattice. Second, when choosing a uniformly random lattice point

and adding a continuous Gaussian noise with width above the smoothing parameter, the

resulting distribution is close to uniform over R𝑛 . These two facts are summarized in the

following lemma. As other definitions, the version stated here is the one from Genise et al.

[22].

Lemma 7. ([22], Lemma 3) For any full rank lattice Λ ⊂ R𝑛 and 𝜖 ≥ 0 where 𝜂𝜖 (Λ) ≤ 1,
we have 𝜌 (Λ + 𝑐) ≈𝜖 1/𝑑𝑒𝑡 (Λ) for any 𝑐 ∈ R𝑛 ; equivalently, (D1/(2𝜋) mod Λ) ≈𝜖 U :=

U(R𝑛/Λ).

For a lattice in R𝑛 , the smoothing parameter can be bounded as follows.

Lemma 8. (Regev [40], Lemma 2.12) For any n-dimensional lattice Λ ⊂ R𝑛 and 𝜖 > 0,

𝜂𝜖 (Λ) ≤ 𝜆𝑛 (Λ) ·
√︂
𝑙𝑛(2𝑛(1 + 1/𝜖))

𝜋
.

In particular, for any superlogarithmic function 𝜔 (log𝑛), 𝜂𝜖 (Λ) ≤ 𝜆𝑛 (Λ) ·
√︁
𝜔 (log𝑛) for some

negligible function 𝜖 (𝑛).

From the definition of the smoothing parameter follows:

Lemma 9. ([22], Lemma 2) For any lattice Λ ⊂ R𝑛, 𝜖 ≥ 0 and matrices 𝑆,𝑇 of full rank, we
have 𝜂𝜖 (Λ) ≤ 𝑆 if and only if 𝜂𝜖 (𝑇Λ) ≤ 𝑇𝑆 .

The following lemmas analyze the distribution after applying transformations to a Gaussian

distribution. The goal is to analyze the distribution of𝑇𝑒 + 𝑓 , where 𝑇 is a matrix and 𝑒 and

𝑓 are vectors. Hereby, all entries are elements of 𝐻𝐾 for a number field 𝐾 and are drawn

from a discrete Gaussian. Starting with normal operations in R𝑛 , the first lemma deals with

multiplication of a Gaussian distribution with a matrix.

Lemma 10. ([22], Lemma 1) For any lattice Λ ⊆ R𝑛 and matrices 𝑆,𝑇 ∈ R𝑛×𝑛 representing
linear functions where T is injective on Λ, we have

𝑇 · DΛ,𝑆 = D𝑇Λ,𝑇𝑆 .

14
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The proof is in essence, that when T is injective, for each sample 𝑇 ·
√

2𝜋𝑆𝑥, 𝑥 ← D, there

is exactly one preimage

√
2𝜋𝑆𝑥 . Therefore, the probability of drawing 𝑇 ·

√
2𝜋𝑆𝑥 is exactly

the same as drawing

√
2𝜋𝑆𝑥 , namely the probability of drawing 𝑥 from D.

The sum of two discrete Gaussian distributions is also a discrete Gaussian if certain properties

about the smoothing parameter hold as shown by the following theorem, which is adapted

to the scaling of

√
2𝜋 in our definition of the Gaussian distribution.

Theorem 1. ([22], Theorem 3) Let 𝜖 ∈ (0, 1), define 𝜖′ = 4𝜖/(1 − 𝜖)2. Let 𝐴1, 𝐴2 ⊂ R𝑛 be
cosets of full-rank lattices Λ1,Λ2 ⊆ R𝑛 (respectively), let Σ1, Σ2 be positive definite matrices
where 𝜂𝜖 (Λ2) ≤

√
2𝜋 ·
√
Σ2 and let

X =
[
(𝑥1, 𝑥2) |𝑥1 ← D𝐴1,

√
Σ1

, 𝑥2 ← 𝑥1 + D𝐴2−𝑥1,
√
Σ2

]
.

If 𝜂𝜖 (Λ1) ≤
√

2𝜋 ·
√
Σ3 where Σ−1

3
= Σ−1

1
+ Σ−1

2
, then the marginal distribution X2 of 𝑥2 in X

satisfies

X2

𝜖′≈ D𝐴2,
√
Σ1+Σ2

.

The next lemma deals with multiplication in 𝐻𝐾 . As the underlying lemmas and theorems

are proven over R𝑛 , we will analyze it in𝜓 (𝐻𝐾 ).

Lemma 11. Let𝐻𝐾 be the embedded ring of integers for a number field𝐾 , Λ𝐾 its corresponding
lattice and 𝑠𝑇 be a real. For 𝑒 ∈ 𝐻𝐾 and 𝑡 ← DΛ𝐾 ,𝑠𝑇 ,𝜓 (𝑒 ⊙ 𝑡) is distributed as D𝐴𝑒𝜓 (Λ𝐾 ),𝑠𝑇𝐴𝑒 .

Proof. For 𝑒 = 0, the statement is trivial. Otherwise, by Lemma 1, the matrix 𝐴𝑒 is injective

as linear function and fulfills𝜓 (𝑒 ⊙ 𝑡) = 𝐴𝑒𝜓 (𝑡). Therefore, Lemma 10 applies and𝜓 (𝑒 ⊙ 𝑡) =
𝐴𝑒𝜓 (𝑡) ∼ D𝐴𝑒𝜓 (Λ𝐾 ),𝑠𝑇𝐴𝑒 . □

Two important facts about the distribution of𝜓 (𝑒 ⊙ 𝑡) will be useful later. First, its variance
𝑠2

𝑇
𝐴𝑒𝐴

𝑇
𝑒 = 𝑠2

𝑇
Σ𝑒 is a diagonal matrix by definition of 𝐴𝑒 . Second, 𝐴𝑒𝜓 (Λ𝐾 ) ⊆ 𝜓 (Λ𝐾 ). As

𝐻𝐾 is a ring, 𝑒 ⊙ 𝑡 ∈ 𝐻𝐾 for every 𝑒, 𝑡 ∈ 𝐻𝐾 . Thus, for any 𝜓 (𝑡) ∈ 𝜓 (𝐻𝐾 ) = 𝜓 (Λ𝐾 ),
𝐴 ·𝜓 (𝑡) = 𝜓 (𝑒 ⊙ 𝑡) ∈ 𝜓 (Λ𝐾 ). With that, the next lemma analyzes the sum 𝑇𝑒 + 𝑓 .

Lemma 12. Let K be a number field of order 𝑛, 𝐻𝐾 its embedded ring of integers and Λ𝐾
the corresponding lattice. Let Σ𝑓 be a positive semi-definite diagonal matrix. For 𝑠𝑇 > 0, an
integer𝑚 and 1 ≤ 𝑖 ≤ 𝑚, let 𝑡𝑖 ← DΛ𝐾 ,𝑠𝑇 , 𝑒𝑖 ∈ 𝐻𝐾 and 𝑓 ← DΛ𝐾 ,

√
Σ𝑓
. Let 𝜖 := 𝜖 (𝑛) > 0 be

negligible in 𝑛. If 𝜂𝜖 (𝜓 (Λ𝐾 )) ≤
√

2𝜋 · 𝐴−1

𝑒𝑖

√︂(
Σ−1

𝑓
+

(
𝑠2

𝑇
Σ𝑒𝑖

)−1

)−1

for every 𝑖 , where 𝑒𝑖 ≠ 0 and

𝜂𝜖 (𝜓 (Λ𝐾 )) ≤
√

2𝜋 ·
√︁
Σ𝑓 , then the distribution of

𝑓 +
𝑚∑︁
𝑖=1

𝑒𝑖 ⊙ 𝑡𝑖

is statistically close to DΛ𝐾 ,
√
Σ, where Σ = Σ𝑓 + 𝑠2

𝑇

∑𝑚
𝑖=1

Σ𝑒𝑖 .
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Proof. We show this lemma by repeatedly using Theorem 1. Let Λ := 𝜓 (Λ𝐾 ) be the embed-

ding of Λ𝐾 into R𝑛. As stated in Lemma 11, 𝜓 (𝑒𝑖 ⊙ 𝑡𝑖) is statistically close to D𝐴𝑒𝑖Λ, 𝑠𝑇𝐴𝑒𝑖 .
Each summand with 𝑒𝑖 = 0 can obviously be ignored and therefore we assume 𝑒𝑖 ≠ 0 for

each 𝑖 .

The rest is shown by an induction over m. For the m-th addition, it is shown that 𝜓 (𝑓 +∑𝑚
𝑖=1
𝑒𝑖 ⊙ 𝑡𝑖) is statistically close to DΛ,

√
Σ𝑚
, where Σ𝑚 = Σ𝑓 + 𝑠2

𝑇

∑𝑘−1

𝑖=0
Σ𝑒𝑘 . For𝑚 = 0 this is

simply𝜓 (𝑓 ) ∼ DΛ,
√
Σ𝑓
, which follows from the definition of DΛ𝐾 ,

√
Σ𝑓
.

For𝑚 + 1, we use Theorem 1 with the following instantiation:

𝐴1 = 𝐴𝑒𝑚Λ, Σ1 = 𝑠
2

𝑇Σ𝑒𝑚 ,

𝐴2 = Λ, Σ2 = Σ𝑚 .

The Theorem has two requirements:

𝜂𝜖 (Λ) ≤
√

2𝜋 ·
√︁
Σ𝑚,

𝜂𝜖 (𝐴𝑒𝑚Λ) ≤
√

2𝜋 ·
√︁
Σ3

where Σ−1

3
= Σ−1

1
+ Σ−1

2
. The first equation holds as

𝜂𝜖 (Λ) ≤
√

2𝜋 ·
√︁
Σ𝑓 ≤

√
2𝜋 ·

√√
Σ𝑓 + 𝑠2

𝑇

𝑚∑︁
𝑖=1

Σ𝑒𝑚 =
√

2𝜋 ·
√︁
Σ𝑚 .

As 𝑒𝑚 ≠ 0, 𝐴−1

𝑒𝑚
exists and is injective. Therefore, by Lemma 9 the second inequality is equal

to

𝜂𝜖 (Λ) ≤
√

2𝜋 · 𝐴−1

𝑒𝑚

√︁
Σ3.

As Σ𝑓 and Σ𝑒𝑚 are diagonal matrices, it holds that

(
Σ−1

𝑓
+

(
𝑠2

𝑇Σ𝑒𝑚
)−1

)−1

⪯ ©«
(
Σ𝑓 + 𝑠2

𝑇

𝑘−1∑︁
𝑖=0

Σ𝑒𝑖

)−1

+
(
𝑠2

𝑇Σ𝑒𝑚
)−1ª®¬

−1

= Σ3

and therefore

𝜂𝜖 (Λ) ≤
√

2𝜋 · 𝐴−1

𝑒𝑚

√︂(
Σ−1

𝑓
+

(
𝑠2

𝑇
Σ𝑒𝑚

)−1

)−1

≤
√

2𝜋 · 𝐴−1

𝑒𝑚

√︁
Σ3.

Therefore,𝜓 (∑𝑚
𝑖=1
𝑒𝑖 ⊙ 𝑡𝑖 + 𝑓 ) is statistically close toDΛ,

√
Σ. The statement follows from this

by definition of the Gaussian distribution on elements in 𝐻𝐾 .

□

The next lemma concerns bounding the norm of a vector drawn from a Gaussian distribution.

We start with the bounds by Banaszczyk [5].
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Lemma 13. ([5], Lemma 1.5(i)) Let Λ ⊂ R𝑛 be lattice and 𝐵𝑛 ⊂ R𝑛 be the open sphere of
unity. For each 𝑐 ≥ (2𝜋)−1/2 one has

𝜌 (Λ \ 𝑐
√
𝑛𝐵𝑛) <

(
𝑒−𝜋𝑐

2

𝑐
√

2𝜋𝑒

)𝑛
𝜌 (Λ).

From this follows the bounds we need.

Lemma 14. Let 𝑎 > 1 and 𝑐 = 𝑎√
2𝜋
. Let Λ ⊂ R𝑛 be a lattice. Let Σ be a diagonal matrix and

𝑠 = ∥
√
Σ∥2. Then, the probability

𝑃𝑟

[
∥𝑥 ∥2 > 𝑠𝑎

√
𝑛 | 𝑥 ← DΛ,

√
Σ

]
<

(
𝑒−𝜋𝑐

2

𝑐
√

2𝜋𝑒

)𝑛
is negligible in 𝑛.

Proof. As the Gaussian distribution only depends on Σ, not on the choice of

√
Σ, choose

𝑆 :=
√
Σ invertible. Such a matrix exists because Σ is a diagonal matrix. Let 𝑦 ← DΛ,𝐼𝑛 and

𝐵𝑛 ⊂ R𝑛 the open sphere of unity. Let Λ′ = (
√

2𝜋𝑆)−1Λ. Using the definition of DΛ,
√
Σ, we

have

𝑃𝑟 [∥𝑥 ∥2 ≥ 𝑠𝑎
√
𝑛 | 𝑥 ← DΛ,𝑆 ] = 𝑃𝑟 [∥

√
2𝜋𝑆𝑦∥2 ≥ 𝑠𝑎

√
𝑛 | 𝑦 ← DΛ′,𝐼𝑛 ]

≤ 𝑃𝑟 [∥
√

2𝜋𝑆 ∥2 · ∥𝑦∥2 ≥ 𝑠𝑎
√
𝑛 | 𝑦 ← DΛ′,𝐼𝑛 ]

= 𝑃𝑟 [∥𝑦∥2 ≥ 𝑐
√
𝑛 | 𝑦 ← DΛ′,𝐼𝑛 ] .

By Lemma 13 it holds that

𝑃𝑟 [∥𝑦∥2 ≥ 𝑐
√
𝑛 | 𝑦 ← DΛ′,𝐼𝑛 ] =

𝜌 (Λ \ 𝑐
√
𝑛𝐵𝑛)

𝜌 (Λ) <

(
𝑒−𝜋𝑐

2

𝑐
√

2𝜋𝑒

)𝑛
.

For 𝑎, 𝑐 as defined, we have (
𝑒−𝜋𝑐

2

𝑐
√

2𝜋𝑒

)
< 1

and therefore, the probability is negligible in 𝑛. □

The next lemma shows that for a power of two cyclotomic, a canonically embedded Gaussian

distribution translates nicely into the coefficient embedding.

Lemma 15. Let𝑚 be a power of two, 𝑛 =𝑚/2 and𝐾 = Q[𝑋 ]/(𝑋𝑛 +1) be the m-th cyclotomic.
Let 𝑅 = Z[𝑋 ]/(𝑋𝑛 + 1) be its ring of integers and Λ = 𝜎 (𝑅) its canonically embedded lattice
with basis 𝐵𝐾 . For a positive definite matrix Σ and 𝑥 ← DΛ,

√
Σ we have

[𝑥]𝑘 ∼ DZ𝑛,
√
Σ2

where Σ2 = 𝐵
−1

𝐾
Σ𝐵−𝐻

𝐾
. In particular, if Σ = 𝜈𝐼𝑛 for some 𝜈 > 0, then Σ2 =

1

𝑛
Σ.
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Proof. By definition of [𝑥]𝑘 and Lemma 10, we have

[𝑥]𝑘 = 𝐵−1

𝐾 · 𝑥 ∼ D𝐵−1

𝐾
Λ,𝐵−1

𝐾
𝑆 .

As Λ = {𝐵𝐾 · 𝑥 | 𝑥 ∈ Z𝑛}, it holds that 𝐵−1

𝐾
Λ = Z𝑛 . The variance is

Σ2 = 𝐵
−1

𝐾 𝑆 (𝐵
−1

𝐾 𝑆)
𝐻 = 𝐵−1

𝐾 Σ𝐵−𝐻𝐾 .

For the second part, by Lemma 6, 𝐵𝑈 :=
√
𝑛𝐵−1

𝐾
is a unitary matrix and thus

Σ2 = 𝐵
−1

𝐾 Σ𝐵−𝐻𝐾 = 𝐵−1

𝐾 𝜈𝐼𝑛𝐵
−𝐻
𝐾 = 𝜈𝐵−1

𝐾 𝐵
𝐻
𝑘
= 𝜈 · 1

𝑛
𝐼𝑛 =

1

𝑛
· Σ.

□

2.6 Semantic Security

This chapter covers the notions of semantic security, which are used throughout this work.

These include the formal definitions of cryptographic schemes used to provide confidentiality

and authenticity as well the different security notions that assess their security.

A probabilistic polynomial timed (PPT) attacker or algorithm is an algorithm, which can

use polynomial amount of randomness but its runtime is bounded by a polynomial on the

length of the input.

Section 2.4 defined the statistically closeness of distribution ensembles. In cryptography,

there is an equivalent definition of it, which states that no attacker can distinguish samples

from the two distributions with non-negligible probability. A relaxation of this is com-
putational indistinguishability, in which the attacker is PPT. The formal definition is as

follows.

Definition 3. (Computationally Indistinguishable) Two distributions ensembles (X)𝜅 , (Y)𝜅
are computationally indistinguishable iff for every PPT attacker A the advantage 𝑎𝑑𝑣 𝐼𝑁𝐷A,X,Y
defined as

𝑎𝑑𝑣 𝐼𝑁𝐷A,X,Y (𝜅) = |𝑃𝑟 [A(𝑧) = 1|𝑧 ← X𝜅] − 𝑃𝑟 [A(𝑧) = 1|𝑧 ← Y𝜅] |

is negligible in 𝜅.

A key derivation function (KDF) is a function 𝐾𝐷𝐹 : 𝑆𝐸𝐸𝐷 → 𝐾 , which maps a seed to a

key, such that its output for a random seed is indistinguishable from a random key. The

attacker hereby does not know the chosen seed. The advantage of any attacker is the chance

of distinguishing the KDF from random. More formally it is defined as:

Definition 4. (Key Derivation Function) Let 𝑆𝐸𝐸𝐷 and 𝐾 be sets. A key derivation function
(KDF) is a function 𝐾𝐷𝐹 : 𝑆𝐸𝐸𝐷 → 𝐾 , such that for any PPT attacker the advantage

𝑎𝑑𝑣𝐾𝐷𝐹A,𝐾𝐷𝐹 (𝜅) = |𝑃𝑟 [A(𝑧) = 1 | 𝑧 ←U(𝐾)] − 𝑃𝑟 [A(𝐾𝐷𝐹 (𝑧)) = 1 | 𝑧 ←U(𝑆𝐸𝐸𝐷)] |

is negligible in 𝜅.
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2.6.1 The KEM-DEM Framework

Part ofmodern asymmetric cryptography is the KEM-DEM framework introduced by Cramer

and Shoup [20]. It consists of a key encapsulation mechanism (KEM), which generates

symmetric keys and encapsulates them and a data encapsulation mechanism (DEM), which

uses the symmetric key to encapsulate the data. The combination of the two yield a PKE,

which is used to provide confidentiality. More formally, a KEM is defined as:

Definition 5. (KEM, [7]) A key encapsulation mechanism (KEM) is given by a set of three
PPT algorithms (gen, enc, dec) with

𝑔𝑒𝑛 : 1
𝜅 ↦→(𝑠𝑘, 𝑝𝑘)

𝑒𝑛𝑐 : 𝑝𝑘 ↦→(𝐾,𝐶)
𝑑𝑒𝑐 : (𝑠𝑘,𝐶) ↦→𝐾

such that the correctness property holds. That means 𝐾 = 𝑑𝑒𝑐 (𝑠𝑘,𝐶) whenever (𝑠𝑘, 𝑝𝑘) ←
𝑔𝑒𝑛(1𝜅) and (𝐾,𝐶) ← 𝑒𝑛𝑐 (𝑝𝑘).

Whereas the DEM is defined as:

Definition 6. (DEM, [7]) A data encapsulation mechanism (DEM) is given by a set of two
PPT algorithms (DEM.Enc, DEM.Dec) with

𝐷𝐸𝑀.𝑒𝑛𝑐 : (𝐾,𝑚) ↦→𝑐
𝐷𝐸𝑀.𝑑𝑒𝑐 : (𝐾, 𝑐) ↦→𝑚

such that𝑚 = 𝐷𝐸𝑀.𝑑𝑒𝑐 (𝐾, 𝑐) whenever 𝑐 ← 𝐷𝐸𝑀.𝑒𝑛𝑐 (𝐾,𝑚) (correctness).

These definitions however do not make any assessment about the security of the KEM or

the DEM. A common definition to fill this gap for KEMs is IND-CCA, in which the attacker

has to distinguish a key 𝐾 generated by enc from a random one, given the corresponding

cipher of 𝐾 and the public key. As additional help, the attacker has access to an decryption

oracle, which decrypts any ciphers other than the challenge cipher. This oracle provides

the attacker with some information about the secret key. In the real world, this corresponds

to a target that reacts predicable to messages from the attacker. The formal definition is as

follows.

Definition 7. (IND-CCA) A KEM Γ = (gen, enc, dec) is indistinguishable under chosen
ciphertext attack (IND-CCA), iff for every PPT attacker A, the advantage 𝐴𝑑𝑣 𝐼𝑁𝐷−𝐶𝐶𝐴A,Γ (𝜅) =��𝑃𝑟 [𝑏 = 𝑏∗] − 1

2

�� of winning the IND-CCA game depicted in Fig. 2.1 is negligible in 𝜅.

More generally, 𝐾1 is from the key space 𝐾 , instead of {0, 1} |𝐾0 |
. But in our work, it is always

𝐾 = {0, 1} |𝐾0 |
. IND-CCA is also defined for DEMs, but for a secure channel, the DEM only

needs to fulfill a weaker security notion named indistinguishable under one time attack

(IND-OT). In this notion, the attacker receives only one encryption and does not have access

to neither an encryption nor decryption oracle. Formally, it is defined as:
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C𝐶𝐶𝐴 A𝐶𝐶𝐴 O𝐶𝐶𝐴
(𝑠𝑘, 𝑝𝑘) ← 𝑔𝑒𝑛(1𝜅)
(𝐾0,𝐶

∗) ← 𝑒𝑛𝑐 (𝑝𝑘)

𝐾1

$← {0, 1} |𝐾0 |

𝑏
$← {0, 1} (𝑝𝑘, (𝐾𝑏,𝐶∗))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝐶

if 𝐶 ≠ 𝐶∗ :

𝐾 := 𝑑𝑒𝑐 (𝑠𝑘,𝐶)
else :
𝐾 :=⊥

𝐾

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑏
?

= 𝑏∗ 𝑏∗

Figure 2.1: The IND-CCA Game for KEMs

Definition 8. (IND-OT, [7]) A DEM Σ = (DEM.enc, DEM.dec) satisfies indistinguishability
under one-time attack (IND-OT), iff for any PPT adversaryA, the advantage 𝐴𝑑𝑣 𝐼𝑁𝐷−𝑂𝑇A,Σ (𝜅) =
|𝑃𝑟 [𝑏 = 𝑏∗] − 1

2
| of winning the game depicted in Fig. 2.2 is negligible in 𝜅.

2.6.2 Sender-Binding

Benz et al. [7] introduced a variation of the KEM, which uses a sender identity (ID) in

encryption and decryption. This sender ID serves two purposes. On the one hand, it stops

replay attacks by binding the ciphertext to the sender ID. On the other hand, it allows for a

weaker notion than IND-CCA, in which the cipher is malleable but bound to the sender.

The adapted KEM is called sender-binding KEM (SB-KEM) and is as follows.
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C𝑂𝑇 A𝑂𝑇

𝐾 ← {0, 1}𝑛 (𝜅 ) 𝑚0,𝑚1, 𝑎𝑢𝑥

𝑏
$← {0, 1}

𝑐∗ ← 𝐷𝐸𝑀.𝐸𝑛𝑐 (𝐾,𝑚𝑏)

𝑐∗

𝑏
?

= 𝑏∗ 𝑏∗

Figure 2.2: The IND-OT Game for DEMs

Definition 9. (SB-KEM, [7]) A sender-binding key encapsulation mechanism (SB-KEM) is
given by a set of three PPT algorithms (gen, enc, dec) with

𝑔𝑒𝑛 : 1
𝜅 ↦→(𝑠𝑘, 𝑝𝑘)

𝑒𝑛𝑐 : (𝑝𝑘, 𝑆) ↦→(𝐾,𝐶)
𝑑𝑒𝑐 : (𝑠𝑘, 𝑆,𝐶) ↦→𝐾

such that correctness holds, which means 𝐾 = 𝑑𝑒𝑐 (𝑠𝑘, 𝑆,𝐶) for (𝑠𝑘, 𝑝𝑘) ← 𝑔𝑒𝑛(1𝜅) and
(𝐾,𝐶) ← 𝑒𝑛𝑐 (𝑝𝑘, 𝑆).

Note that K only needs to be the same if the same sender ID is used. In terms of security, the

authors also introduced the security notion IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 . It is similar to IND-CCA,

however the oracle does not decrypt messages, where the sender is the sender or receiver

of the challenge cipher. Formally it is defined as:

Definition 10. (IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 , [7]) An SB-KEM Γ = (𝑔𝑒𝑛, 𝑒𝑛𝑐, 𝑑𝑒𝑐) with the set of Party
IDs P satisfies indistinguishability under sender-binding chosen plaintext attack (IND-SB-CPA)
security, iff for any PPT adversary A the advantage 𝑎𝑑𝑣 𝐼𝑁𝐷−𝑆𝐵−𝐶𝑃𝐴A,Γ (𝜅) =

��𝑃𝑟 [𝑏 = 𝑏∗] − 1

2

�� to
win the IND-SB-CPA game shown in Fig. 2.3 is negligible in the security parameter 𝜅.

2.6.3 Signature Schemes

Signature schemes are used to provide authenticity. They are defined as follows.
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C𝑆𝐵−𝐶𝑃𝐴 A𝑆𝐵−𝐶𝑃𝐴 O𝑆𝐵−𝐶𝑃𝐴
𝑆, 𝑅 ← P
(𝑠𝑘𝑆 , 𝑝𝑘𝑆 ) ← 𝑔𝑒𝑛(1𝜅)
(𝑠𝑘𝑅, 𝑝𝑘𝑅) ← 𝑔𝑒𝑛(1𝜅)
(𝐾0,𝐶

∗) ← 𝑒𝑛𝑐 (𝑝𝑘𝑅, 𝑆)

𝐾1

$← {0, 1} |𝐾0 |

𝑏
$← {0, 1} (𝑆, 𝑝𝑘𝑆 , 𝑅, 𝑝𝑘𝑅, (𝐾𝑏,𝐶∗))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(𝑝𝑘𝑅′, 𝑆 ′,𝐶)

if 𝑝𝑘𝑅′ ∈ {𝑝𝑘𝑆 , 𝑝𝑘𝑅}
∧ 𝑆 ′ ∉ {𝑆, 𝑅} :

𝐾 := 𝑑𝑒𝑐 (𝑠𝑘𝑅′, 𝑆 ′,𝐶)
else :
𝐾 :=⊥

𝐾

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑏
?

= 𝑏∗ 𝑏∗

Figure 2.3: The IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 Game

Definition 11. (Signature Scheme) A signature schemes Σ = (gen, sign, vfy) is given by a set
of three probabilistic polynomial time (PPT) algorithms (gen, sign, vfy) with

𝑔𝑒𝑛 : 1
𝜅 ↦→(𝑠𝑘, 𝑣𝑘)

𝑠𝑖𝑔𝑛 : (𝑠𝑘,𝑚) ↦→𝜎
vfy : (𝑣𝑘,𝑚, 𝜎) ↦→{0, 1}

such that vfy(𝑣𝑘,𝑚, 𝑠𝑖𝑔𝑛(𝑠𝑘,𝑚)) = 1 for (𝑠𝑘, 𝑣𝑘) ← 𝑔𝑒𝑛(1𝜅) (correctness).

The security demand is that an attacker cannot forge a valid signature without a secret

key, given many valid signatures. The new signature has be for a fresh message, which

means that no valid signature for that message was already revealed. The security notion is

denoted as EUF-CMA and is formally defined as:
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Definition 12. (EUF-CMA) A signature scheme Σ = (𝑔𝑒𝑛, 𝑠𝑖𝑔𝑛,vfy) is existential unfor-
gable under chosen message attack (EUF-CMA), iff for every PPT attacker A, the advantage
𝑎𝑑𝑣𝐸𝑈 𝐹−𝐶𝑀𝐴A,Σ (𝜅) = |𝑃𝑟 [vfy(𝑣𝑘,𝑚∗, 𝜎∗) = 1] | of winning the EUF-CMA game depicted in Fig. 2.4
is negligible in 𝜅.

C𝐶𝑀𝐴 A𝐶𝑀𝐴 O𝐶𝑀𝐴
(𝑠𝑘, 𝑣𝑘) ← 𝑔𝑒𝑛(1𝜅)

𝑣𝑘

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oracle Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑚 𝜎 := 𝑠𝑖𝑔𝑛(𝑠𝑘,𝑚)

𝜎

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

vfy(𝑣𝑘,𝑚∗, 𝜎∗) ?

= 1
𝑚∗, 𝜎∗

∧𝑚∗ fresh?

Figure 2.4: The EUF-CMA Game

2.7 Learning With Errors

Learning with errors (LWE) proposed by Regev [40] is a problem used in cryptography as it

is assumed to be hard to solve even for quantum computers. The problem asks to find a

secret 𝑠 ∈ Z𝑛 given samples of the form 𝑎𝑠 + 𝑒 , where 𝑎 ∈ Z𝑛 is uniform and the error 𝑒 ∈ Z𝑛
is drawn from an error distribution 𝜒 , for example a Gaussian distribution. This work uses

the ring variation called ring LWE (RLWE) in which the ring of integers over a number field

is used instead of Z𝑛 . More specifically, we use the non-dual version, in which the secret is

sampled in R instead of its dual 𝑅∨. The RLWE distribution in the canonical embedding is

defined as follows.

Definition 13. (RLWE Distribution) Let 𝐻𝐾 be the canonical embedded ring of integers for
a number field 𝐾 . For a modulo q, distribution 𝜒 on 𝐻𝑞 := 𝐻𝐾/𝑞𝐻𝐾 , and a secret 𝑠 ∈ 𝐻𝑞 , the
RLWE distribution 𝐴𝑠,𝑞,𝜒 is defined as sampling the value 𝑎 uniformly from 𝐻𝑞 , 𝑒 ← 𝜒 and
outputting (𝑎, 𝑎𝑠 + 𝑒) ∈ 𝐻𝑞 × 𝐻𝑞 .

Based on this distribution, there are two versions of the problem, decision-RLWE and

search-RLWE. The decision-RLWE𝑞,𝜒 asks to distinguish between a uniform distribution
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on 𝐻𝑞 × 𝐻𝑞 and 𝐴𝑠,𝑞,𝜒 , whereas the search-LWE𝑞,𝜒 asks to find 𝑠 , given samples from 𝐴𝑠,𝑞,𝜒 .

In its standard form, 𝑠 is drawn from a uniform distribution and then fixed. In contrast,

in the normal RLWE𝑞,𝜒 (NRLWE𝑞,𝜒 ), 𝑠 is chosen from 𝜒 and then fixed. The advantage of

an attacker A against the decision-NRLWE (d-NRLWE) is its advantage of distinguishing,

formally

𝑎𝑑𝑣
𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A (𝜅) = |𝑃𝑟
[
A(𝑎, 𝑏) = 1 | (𝑎, 𝑏) ← U(𝐻𝑞 × 𝐻𝑞)

]
−𝑃𝑟

[
A(𝑎, 𝑏) = 1 | (𝑎, 𝑏) ← 𝐴𝑠,𝑞,𝜒 , 𝑠 ← 𝜒

]
|.

On the contrary, in the search-NRLWE (s-NRLWE), the advantage of an attacker A is its

probability of finding 𝑠 , formally

𝑎𝑑𝑣
𝑠−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A (𝜅) = 𝑃𝑟
[
A(𝑎, 𝑏) = 𝑠 | (𝑎, 𝑏) ← 𝐴𝑠,𝑞,𝜒 , 𝑠 ← 𝜒

]
.

The d-NRLWE𝑞,𝜒 (or s-NRLWE𝑞,𝜒 ) assumption states that for every PPT attacker A, the

advantage 𝑎𝑑𝑣
𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A (𝜅) (or 𝑎𝑑𝑣𝑠−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A (𝜅)) is negligible in 𝜅 . If the lattice Λ is clear

from the context, we write d-NRLWE𝑞,𝑟 for 𝑟 ∈ R as shorthand for d-NRLWE𝑞,𝜒 with

𝜒 = DΛ,𝑟 .

2.8 Trapdoor

Micciancio and Peikert [35] introduced improved trapdoors for the LWE function. A

trapdoor is a secret information that helps inverting a one-way function. In this case, that

function is 𝑓𝑎,𝑒 (𝑠) = 𝑎𝑠 + 𝑒 mod 𝑞, the function of the LWE samples. The authors defined

trapdoors over Z𝑛 . As this work uses them over a ring of integers 𝑅 of a number field 𝐾 , we

adapt the definition to this setting.

Definition 14. (g-trapdoor, adapted from [35]) Let 𝑅 be the ring of integers of a number field
𝐾 and 𝑞 a modulo. Let𝑚 > 𝜔 ≥ 1 be integers, 𝑎 ∈ 𝑅𝑚𝑞 and 𝑔 ∈ 𝑅𝜔𝑞 . A g-trapdoor𝑇 ∈ 𝑅𝜔×(𝑚−𝜔)
is a matrix for which (𝑇, 𝐼 )𝑎 = 𝑔ℎ for some invertible ℎ ∈ 𝑅𝑞 . We refer to h as the tag or label
of the trapdoor.

The vector 𝑔 is called gadget vector. It is chosen in such a way that inverting 𝑔𝑠 + 𝑒 is very
easy as is shown in Section 2.8.1. Let

𝑔 =

©«

1

2

4

...

2
𝑘−1

ª®®®®®®¬
∈ 𝑅𝑘𝑞 , 𝑘 = ⌈log𝑞⌉ .

Note that the polynomials in g are all just constant polynomials.
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For a prime 𝑞 =
∑𝑘
𝑖=1
𝑞𝑖2

𝑖−1
, the following matrix 𝐵𝑔 is a basis of the lattice Λ

⊥
𝑞 (𝑔) [35].

𝐵𝑔 =

©«

2 𝑞1

−1 2 𝑞2

−1 𝑞3

. . .
. . .

...

−1 2 𝑞𝑘−1

−1 𝑞𝑘

ª®®®®®®®®¬
∈ 𝑅𝑘×𝑘𝑞 (2.3)

Hereby, each 𝑞𝑖 ∈ {0, 1} is interpreted as constant polynomial.

2.8.1 Inverting LWE

Inverting the LWE function 𝑓𝑔,𝑒 (𝑠) = 𝑔𝑠 + 𝑒 mod 𝑞 works, if 𝑒 ∈ P1/2(𝑞 · 𝐵−𝑇 ), where B is

either 𝐵𝑔 or its Gram-Schmidt orthogonalization [35, 29].

We describe inverting for a power of two modulo q as it is more intuitive. By working in

the power basis 1, 𝑥, ..., 𝑥𝑛−1
, each coefficient can be considered independently of each other,

as each entry of g is a constant polynomial and 𝑒 is added. Therefore, we only describe it

for one coefficient 𝑑 . Let 𝑑𝑒 𝑗 be the corresponding coefficient of 𝑒 𝑗 . The idea is to determine

each bit of 𝑑 individually, starting at the least significant one. Let 𝑑 = 𝑑𝑘 ...𝑑1 be the binary

representation of 𝑑 . The last sample is equal to

2
𝑘−1𝑑 + 𝑑𝑒𝑘−1

mod 𝑞 = 𝑑1 · 2𝑘−1 + 𝑑𝑒𝑘−1
.

As 𝑑𝑒𝑘−1
< 2

𝑘−1
by assumption on 𝑒 , the most significant bit of the last sample is equal to 𝑑1.

For the next bit 𝑑2 consider the previous sample

2
𝑘−2𝑑 + 𝑑𝑒𝑘−2

mod 𝑞 = 𝑑2 · 2𝑘−1 + 𝑑1 · 2𝑘−2 + 𝑑𝑒𝑘−2
.

As 𝑑1 is known by the previous calculation, subtracting it yields the same equation as before,

and 𝑑2 can be extracted. Continuing this for the other samples yields 𝑑 . Performing this for

every coefficient yields 𝑠 .

This inversion can be adapted for a modulo which is not a power of two [35]. Lai, Cheung,

and Chow [29] described additional details in the case of power of two cyclotomics. Based

on the inversion of 𝑔𝑠 + 𝑒 , the 𝐼𝑛𝑣𝑒𝑟𝑡 function recovers 𝑠 from 𝑐 = 𝑎𝑠 + 𝑒 with the help of a

g-trapdoor 𝑇 with tag ℎ. It is defined as follows.

𝐼𝑛𝑣𝑒𝑟𝑡 (𝑐,𝑇 , ℎ):

• 𝑏 = (𝑇, 𝐼 ) · 𝑐

• Calculate 𝑠 with 𝑏 = 𝑔𝑠 + 𝑒 for some small 𝑒 as described above.

• 𝑠 = ℎ−1𝑠

• Return 𝑠
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The 𝐼𝑛𝑣𝑒𝑟𝑡 function returns the correct 𝑠 , if the error 𝑒 is suitable small as stated in the

following lemma.

Lemma 16. Let 𝑅 be the ring of integers of a number field 𝐾 and 𝑞 a modulo. Let𝑚 > 𝜔 be
integers, 𝑎0 ∈ 𝑅𝑚𝑞 and 𝑔 ∈ 𝑅𝑘𝑞 the gadget vector above. Let 𝑇 be a 𝑔-trapdoor for 𝑎0 with tag
ℎ ∈ 𝑅𝑞 . Let 𝑠 ∈ 𝑅𝑞 be a secret and 𝑐 = 𝑎0𝑠 + 𝑒 for some error 𝑒 ∈ 𝑅𝑚𝑞 . Let 𝐵 be 𝐵𝑔 as in Eq. (2.3)
or its Gram-Schmidt orthogonalization. If (𝑇, 𝐼𝜔 )𝑒 ∈ P1/2(𝑞 ·𝐵−𝑇 ), then 𝐼𝑛𝑣𝑒𝑟𝑡 (𝑐,𝑇 , ℎ) returns
the correct 𝑠 .

Proof. The correctness of the 𝐼𝑛𝑣𝑒𝑟𝑡 function relies on the inversion of 𝑔𝑠 + 𝑒 in the second

step. More specifically, we have 𝑒 = (𝑇, 𝐼𝜔 )𝑒 as

𝑏 = (𝑇, 𝐼𝜔 )𝑐 = (𝑇, 𝐼𝜔 )𝑎0𝑠 + (𝑇, 𝐼𝜔 )𝑒 = 𝑔ℎ𝑠 + (𝑇, 𝐼𝜔 )𝑒.

If 𝑒 ∈ P1/2(𝑞 · 𝐵−𝑇 ), then the correct 𝑠 = ℎ𝑠 is calculated [35, 29]. As ℎ is invertible, 𝑠 = ℎ−1𝑠

is uniquely determined by 𝑠 . □

Note that the 𝐼𝑛𝑣𝑒𝑟𝑡 function only calculates the secret 𝑠 . The error 𝑒 can then be calculated

as 𝑒 = 𝑐−𝑎𝑠 . To generate an 𝑎 with a corresponding g-trapdoor𝑇 with tag ℎ, choose 𝑎′ ∈ 𝑅𝜔𝑞 ,
a tag ℎ and a trapdoor 𝑇 and set 𝑎 = (𝑎′, ℎ𝑔 −𝑇𝑎′).

2.9 Full-Rank Difference Encoding

For the security, the construction requires an embedding of the sender IDs into the ring

of integers that fulfills a notion that is stronger than injective. Two images are not only

different, but invertible and even the difference of two images is invertible. This mapping is

known as a full-rank difference encoding (FRD). The formal definition is as follows.

Definition 15. (Full-rank difference encoding, [9] Definition 3) Let S be a sender identity
space, R the ring of integers of a number field K and q a modulo. A function 𝐻 : 𝑆 → 𝑅𝑞 is a
full-rank difference encoding (FRD), iff it fulfills the following three properties:

1. For all 𝑢 ∈ 𝑆 , 𝐻 (𝑢) is invertible

2. For all 𝑢, 𝑣 ∈ 𝑆 with 𝑢 ≠ 𝑣 , the element 𝐻 (𝑢) − 𝐻 (𝑣) is invertible

3. H is computable in polynomial time

Bert et al. [9] showed a FRD onto cyclotomics. The underlying idea is to find a set of

invertible elements, which is closed under subtraction. For this, they used the following

theorem proven by Lyubashevsky and Seiler [32].
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Theorem 2. ([9], Theorem 2) Let 𝑛 ≥ 𝑟 > 1 be powers of 2, and q a prime such that 𝑞 = 2𝑟 +1(
mod 4𝑟 ). Then the cyclotomic polynomial 𝑋𝑛 + 1 factors in Z𝑞 [𝑋 ] as 𝑋𝑛 + 1 =

∏𝑟
𝑖=1
(𝑋𝑛/𝑟 − 𝑠𝑖),

for some distinct 𝑠𝑖 ∈ Z∗𝑞 such that the (𝑋𝑛/𝑟 − 𝑠𝑖) are irreducible in Z𝑞 [𝑋 ]. Moreover, any
𝑓 ∈ 𝑅𝑞 such that 0 < | |𝑓 | |𝑘,∞ < 𝑞1/𝑟/

√
𝑟 or 0 < | |𝑓 | |𝑘 < 𝑞1/𝑟 is invertible.

The theorem gives sufficient conditions for invertible polynomials, given that the modulo 𝑞

fulfills 𝑞 = 2𝑟 + 1 mod 4𝑟 for 𝑟 , a power of 2 smaller than 𝑛. The authors listed two methods

to realize the set of invertible polynomials. Either choose small coefficients or polynomials

of small degree. They opted for the latter option, leading to the following FRD.

Lemma 17. ([9], Proposition 1) Let 𝑛 ≥ 𝑟 > 1 be powers of 2, 𝑞 be a prime such that 𝑞 = 2𝑟 + 1

mod 4𝑟 and 𝑆 = Z𝑛/𝑟𝑞 \ {0}. Then the following map 𝐻 : 𝑆 → 𝑅𝑞 is an FRD.

(𝑚1, ...,𝑚𝑛/𝑟 ) ↦→
𝑛/𝑟∑︁
𝑖=1

𝑚𝑖𝑋
𝑖−1

The idea of the proof is to consider the polynomial𝐻 (𝑠) in the CRT basis. By Theorem 2, 𝑓 =

𝑋𝑛+1 factors into 𝑓𝑖 = 𝑋
𝑛/𝑟 −𝑠𝑖 . Therefore, Z𝑞 [𝑋 ]/𝑓 is isomorph to Z𝑞 [𝑋 ]/𝑓1× ...×Z𝑞 [𝑋 ]/𝑓𝑟 ,

where × denotes the tensor product. Thus, each element of Z𝑞 [𝑋 ]/(𝑋𝑛 + 1) can be uniquely

represented by the residues modulo 𝑓𝑖 . Because of the isomorphism, each element in

Z𝑞 [𝑋 ]/𝑓 is invertible iff each residue mod 𝑓𝑖 is. As Z𝑞 [𝑋 ]/𝑓𝑖 is a field for every i, elements

in it are invertible if and only if they are not zero. As H(s) has degree smaller than n/r and

is not zero, the modulo 𝑓𝑖 does not change anything and therefore the residues are all not

zero, making H(s) invertible. For two senders 𝑢, 𝑣 ∈ 𝑆 , the difference 𝐻 (𝑢) −𝐻 (𝑣) is again a

non-zero polynomial of degree smaller than n/r and therefore invertible.

2.10 Universal Composability

Universal composability (UC) is a framework introduced by Canetti [14], which aims to

decompose large protocols into modular components. The underlying setting is multi-party,

which means that there are multiple parties that follow a protocol to achieve a certain

functionality. Some of these parties are corrupted by an adversaryA, which aims to disrupt

the functionality intended by the protocol. In the case of secure channels this means gaining

information about messages that are sent between two honest parties or send messages

in the name of honest parties. In this work, we consider an active adversary with static

corruption. The former means that the adversary fully controls the corrupted parties and

can deviate from the protocol. The latter states that the adversary chooses the corrupted

parties before the protocol starts and may not adapt the set of corrupted parties throughout

the execution. To simulate the real world application, there is an environment Z that

instructs each party what it wants to achieve. In the case of the secure channel, it instructs

parties which messages should be sent to which party.
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The basic idea of UC is to define ideal functionalities, which represent a trusted third party

in an ideal setting. Other protocols then use these ideal functionalities to achieve more

complex functionalities. When instantiating the more complex protocols, the used ideal

functionalities can be instantiated with any protocol that UC-realizes them. UC-realize

intuitively means that no matter what the adversary does, the complete interaction between

all parties can be simulated with only publicly available information. That implies that

the adversary does not learn anything it is not intended to. More formally it is defined as

follows.

Definition 16. (UC-realize) A protocol 𝜋 UC-realizes an ideal functionality F , iff for every
adversary A, there is a simulator S, such that no environmentZ can distinguish, whether it
is interacting with 𝜋 and A or F and S. It is written as 𝜋 ≥𝑈𝐶 F .

A common ideal functionality is F𝐴𝑈𝑇𝐻 shown in Fig. 2.5. It defines authenticated commu-

nication, meaning that parties can send messages and the receiving party knows the sender

ID. This stops an adversary from sending messages in the name of other parties. However,

anyone and especially the adversary can read any sent messages. The adversary can block

any message and sent it in his own name.

Functionality F𝐴𝑈𝑇𝐻
Provides:
Single-receiver single-message single-sender authenticated message transfer with

constant message size.

Behavior:

• Upon invocation with input (send, 𝑠𝑖𝑑 , 𝑅,𝑚) from some party S, send backdoor

message (send, 𝑠𝑖𝑑 , 𝑆 , 𝑅,𝑚) to the adversary A.

• Upon receiving (send ok, 𝑠𝑖𝑑) from adversary A: If not yet generated output,

then output (sent, 𝑠𝑖𝑑 , 𝑆 , 𝑅, m) to R

• Ignore all further inputs

Figure 2.5: The Ideal F𝐴𝑈𝑇𝐻 Functionality

Canetti [15] showed how to realize F𝐴𝑈𝑇𝐻 with a signature scheme and a certificate authority

(CA). For this, they introduced the ideal functionality F𝐶𝐸𝑅𝑇 , which provides signatures that

are bound to the sender. It is depicted in Fig. 2.6. Note that the notation is adapted to be

consistent throughout this work. The Protocol 𝜋
F𝐶𝐸𝑅𝑇
𝐴𝑈𝑇𝐻

, which realizes F𝐴𝑈𝑇𝐻 using F𝐶𝐸𝑅𝑇
is depicted in Fig. 2.7. Intuitively, it uses F𝐶𝐸𝑅𝑇 to sign each message when sending and

verify the authenticity upon receiving. This puts the main task of verifying the authenticity

of the signature onto the protocol realizing F𝐶𝐸𝑅𝑇 . For this, the authors constructed the

protocol 𝜋
F𝐶𝐴
𝐶𝐸𝑅𝑇

. In their work, this protocol uses the ideal functionalities F𝑆𝐼𝐺 , which realizes
signatures and F𝐶𝐴 for the CA. The former is replaced with an EUF-CMA secure signature
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Functionality F𝐶𝐸𝑅𝑇
Provides:
Signatures that are bound to the parties.

Behavior:

• Upon receiving (Sign, 𝑠𝑖𝑑 = (𝑆, 𝑠𝑖𝑑′), 𝑚) from some party S, send (Sign, 𝑠𝑖𝑑 ,
𝑚) to the adversary. Upon receiving (Signature, 𝑠𝑖𝑑 ,𝑚, 𝜎) from the adversary,

verify that no entry (𝑚,𝜎, 0) is recorded. If it is, output an error message to S

and halt. Else, output (Signature, 𝑠𝑖𝑑,𝑚, 𝜎) to S and record entry (𝑚,𝜎, 1).

• Upon receiving a value (Verify, 𝑠𝑖𝑑,𝑚, 𝜎) from some Party P, hand

(Verify, 𝑠𝑖𝑑,𝑚, 𝜎) to the adversary. Upon receiving (Verified, 𝑠𝑖𝑑,𝑚, 𝜙) from
the adversary, do:

1. If (𝑚,𝜎, 1) is recorded then set 𝑓 = 1.

2. Else, if the signer is not corrupted and no entry (𝑚,𝜎′, 1) for any 𝜎′ is
recorded, then set 𝑓 = 0 and record the entry (𝑚,𝜎, 0).

3. Else, if there is an entry (𝑚,𝜎, 𝑓 ′) is recorded, then set 𝑓 = 𝑓 ′.

4. Else, set 𝑓 = 𝜙 and record the entry (𝑚,𝜎′, 𝜙).
Output (Verified, 𝑠𝑖𝑑,𝑚, 𝑓 ) to P.

Figure 2.6: The Ideal F𝐶𝐸𝑅𝑇 Functionality [15]

Protocol 𝜋F𝐶𝐸𝑅𝑇
𝐴𝑈𝑇𝐻

Provides:
Single-receiver single-message single-sender authenticated message transfer with

constant message size.

Behavior of Party P:

• Upon receiving (Send, 𝑠𝑖𝑑, 𝐵,𝑚), set 𝑠𝑖𝑑′ = (𝑃, 𝑠𝑖𝑑), 𝑚′ = (𝑚, 𝐵) and send

(Sign, 𝑠𝑖𝑑′,𝑚′) to F𝐶𝐸𝑅𝑇 . Upon receiving (Signed, 𝑠𝑖𝑑′,𝑚′, 𝑠), send (𝑠𝑖𝑑, 𝑃,𝑚, 𝑠)
to B.

• Upon receiving (𝑠𝑖𝑑, 𝐵,𝑚, 𝑠), set 𝑠𝑖𝑑′ = (𝐵, 𝑠𝑖𝑑), 𝑚′ = (𝑚, 𝑃) and send

(Verify, 𝑠𝑖𝑑′,𝑚′, 𝑠) to F𝐶𝐸𝑅𝑇 to obtain (Verified, 𝑠𝑖𝑑′,𝑚′, 𝑠, 𝑓 ). If 𝑓 = 1, then

output (Sent, 𝑠𝑖𝑑, 𝑃, 𝐵,𝑚) and halt. Else halt with no output.

Figure 2.7: The Protocol 𝜋 F𝐶𝐸𝑅𝑇

𝐴𝑈𝑇𝐻
Realizing F𝐴𝑈𝑇𝐻
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scheme, which was proven to realize the needed ideal functionality [15]. The latter is

depicted in Fig. 2.8 and will remain an ideal functionality throughout this work. It defines

the ability to register a public key at a trusted authority and retrieve the public key associated

with a party. Fig. 2.9 shows the resulting protocol 𝜋
F𝐶𝐴
𝐶𝐸𝑅𝑇

. The idea is to store the verification

key of the sending party in the CA. The receiver can then retrieve the verification key of the

sender and thus verify that the signature of the message is not only valid but also belongs

to the sender ID.

Functionality F𝐶𝐴
Provides:
Mapping from identities to verification keys.

Behavior:

• Upon receiving (Register, 𝑠𝑖𝑑, 𝑣𝑘) from party P, send (Registered, 𝑠𝑖𝑑, 𝑣𝑘) to
the adversary. Upon receiving ok from the adversary, and if 𝑠𝑖𝑑 = 𝑃 and this is

the first request from P, then record the pair (𝑃, 𝑣𝑘)

• Upon receiving amessage (Retrieve, 𝑠𝑖𝑑) from party P’, send (Retrieve, 𝑠𝑖𝑑, 𝑃 ′)
to the adversary, and wait for an ok from the adversary. Then, if there

is a recorded pair (𝑠𝑖𝑑, 𝑣𝑘) output (Retrieve, 𝑠𝑖𝑑, 𝑣𝑘) to P’. Else output

(Retrieve, 𝑠𝑖𝑑,⊥) to P’.

Figure 2.8: The Ideal Functionality F𝐶𝐴

The protocol 𝜋𝑆𝐼𝐺 realizing F𝑆𝐼𝐺 is adapted to allow for multiple messages being signed

by the same signing key. Without this adaptation, a new signing key would be generated

for each message, being highly inefficient. Canetti and Rabin [17] showed that this can

be achieved by creating the new protocol 𝜌 , which simulates multiple instances of 𝜋𝑆𝐼𝐺 .

Instead of receiving a single session identifier (sid), which changes with each call to 𝜋𝑆𝐼𝐺 , 𝜌

receives two session identifiers. The sid, which determines the instantiation of 𝜌 and the

subsession identifier (ssid), which indicates which instantiation of 𝜋𝑆𝐼𝐺 should be called. As

𝜌 is only instantiated once throughout the whole protocol, the sid is constant and not really

used. Therefore, it is omitted throughout this work for better readability and the given

𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , which changes, is the identifier to indicate which instantiation of 𝜋𝑆𝐼𝐺 should be

called. For multiple 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝜌 does not really instantiate new instances of 𝜋𝑆𝐼𝐺 , as this

would lead to many signing keys. Instead, the same signing key can be used if the 𝑠𝑖𝑑𝐴𝑈𝑇𝐻
is signed in addition to the message [17]. Of course, each party has its own signing key.

Another import fact is that the protocols using 𝜋
F𝐶𝐸𝑅𝑇
𝐴𝑈𝑇𝐻

have to check, that the same 𝑠𝑖𝑑𝐴𝑈𝑇𝐻
is not used twice to prevent replay attacks. Canetti [15] described two methods to ensure

this. One is to keep a list of used sids and compare with the list when receiving a message.

The other option is to negotiate the usable sids at the beginning of the protocol. Concretely,

the parties draw nonces at beginning and share them with each other. These shared nonces

are then used one after the other. This reduces the amount of stored data but introduces a
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Protocol 𝜋F𝐶𝐴
𝐶𝐸𝑅𝑇

Provides:
Signatures that are bound to the parties.

Parameters:

• EUF-CMA secure signature scheme Σ = (𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛,Vfy)

State of Party P:

• Keypair (𝑣𝑘, 𝑠𝑘) ∈ (𝑃𝐾, 𝑆𝐾) of own credentials

• Function 𝑓𝑃𝐾 : 𝑃 → 𝑃𝐾 of known public keys

Behavior of Party P:

• Upon receiving (Sign, 𝑠𝑖𝑑 = (𝑃, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ), m)

1. If (𝑣𝑘, 𝑠𝑘) does not exist, draw (𝑠𝑘, 𝑣𝑘) ← 𝐺𝑒𝑛(1𝜅), and send

(Register, 𝑃, 𝑣𝑘) to F𝐶𝐴.
2. Create 𝜎 ← 𝑆𝑖𝑔𝑛(𝑠𝑘, (𝑚, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 )). Output (Signature, 𝑠𝑖𝑑,𝑚, 𝜎)

• Upon receiving (Verify, 𝑠𝑖𝑑 = (𝑃 ′, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ),𝑚, 𝜎) check if 𝑓𝑃𝐾 (𝑃 ′) exists. If

it does not send (Retrieve, 𝑃 ′) to F𝐶𝐴 to obtain response (Retrieve, 𝑃 ′, 𝑣𝑘).
If 𝑣𝑘 = ⊥ output (Verified, 𝑠𝑖𝑑,𝑚, 0). Else set 𝑓𝑃𝐾 (𝑃 ′) = 𝑣𝑘 and output

(Verified, 𝑠𝑖𝑑,𝑚, 𝜎,Vfy(𝑝𝑘, (𝑚, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ), 𝜎)).

Figure 2.9: The Protocol 𝜋 F𝐶𝐴

𝐶𝐸𝑅𝑇
Realizing F𝐶𝐸𝑅𝑇 using an EUF-CMA Secure Signature Scheme

chance of error [15]. Throughout this work, we will assume there is a mechanism in place

that checks for duplicates and rejects them, when we write "fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ".
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This chapter describes the new construction of a SB-KEM and proves its correctness and

security in Theorem 3 and Theorem 4 respectively. The SB-KEM is an adaptation of the

one proposed by Benz et al. [7] to the ring setting. This reduces cipher and key sizes. The

security proof is based on decision-NRLWE but does not use the ROM. Thus, this SB-KEM

contributes to improving secure channels that do not rely on the ROM when used in the

KEM-DEM framework.

There are two variants of the construction: the computational variant and the statistical
variant. Both variants are secure against computational attackers, but the public key is

either computationally or statistically indistinguishable from uniform, depending on the

variant. This yields different bounds on the advantage of attackers on the scheme.

Let 𝐾 = Z[𝑋 ]/𝑓 (𝑋 ) be a cyclotomic number field with dimension n. Denote its ring of

integers under the canonical embedding as 𝐻𝐾 ⊂ 𝐻 and the corresponding lattice as Λ.
Let 𝐵Λ be the basis of Λ as in Eq. (2.2), which is also the change of basis matrix from the

coefficient embedding to the canonical embedding. Let 𝑞 be a modulo, 𝑘 = ⌈log𝑞⌉ and
𝐻𝑞 = 𝐻𝐾/𝑞𝐻𝐾 . Let𝐻 ∗𝑞 be the set of invertible elements of𝐻𝑞 . For a coefficient vector 𝑥 ∈ Z𝑛𝑞 ,
we denote with ⌊𝑥⌉𝑞/2 rounding each coefficient to 0 or 𝑞/2, which ever is closest mod 𝑞.

Additional building blocks are the gadget vector g with its 𝐼𝑛𝑣𝑒𝑟𝑡 function and Basis 𝐵𝑔 as

well as its Gram-Schmidt orthogonalization �̃�𝑔, a full-rank difference encoding function FRD,

which translates sender IDs to 𝐻𝑞 and a key derivation function KDF. Using the canonical

embedding, the gadget vector and FRD described in Section 2.8 and Section 2.9 can be

adapted to 𝐻𝑞 .

Let 𝑡 ∈ R+, such that for any diagonal matrix Σ,

𝛿 := 𝑃𝑟

[
∥𝑥 ∥2 > ∥

√
Σ∥2 ·

1

𝑡
·
√
𝑛 | 𝑥 ← DΛ,

√
Σ

]
≤ 𝜖 (𝑛) (3.1)

where 𝜖 (𝑛) is negligible in 𝑛. For 𝑡 ∈ (0, 1), 𝛿 is negligible in 𝑛 for any cyclotomic number

field as stated in Lemma 14.

For the statistical variant choose an integer 𝑚 ≥ 2, 𝛽𝑇 > 2𝑛 · 𝑞1/𝑚+2/(𝑚𝑛)
and 𝛼 with

1

𝛼
≥ 2𝛽𝑇 · | |�̃�𝑇𝑔 | |𝑘,∞ · | |𝐵−1

Λ | |2 ·
√︁
𝑛(2𝑛 + 1)𝑚 such that 𝑞 ≥ 1√

2𝜋 ·𝛼𝑡𝛽𝑇
√
𝑚
·
√
𝑛 · 𝜔 (

√︁
log𝑛). For

the computational variant instead choose𝑚 = 2, 𝛽𝑇 ∈ R, the bounds on 𝛼 and 𝑞 as in the

statistical variant, such that decision-NRLWE𝑞,𝜒 with 𝜒 = DΛ,𝑡𝛽𝑇 is hard.

Recall, that for 𝑒 ∈ 𝐻 , Σ𝑒 is the matrix with the squared norms on the diagonal. We define

the following SB-KEM Γ := (𝑔𝑒𝑛, 𝑒𝑛𝑐, 𝑑𝑒𝑐):
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gen(1
𝜅
):

• 𝑎0

$← 𝐻 ∗𝑞 , 𝑎
′ $← 𝐻𝑚−1

𝑞 , 𝑇 ← D𝑘×𝑚
Λ,𝑡𝛽𝑇

• 𝑎 = (𝑎0, 𝑎
′) ∈ 𝐻𝑚𝑞

• 𝑎1 = 𝑇𝑎 ∈ 𝐻𝑘
𝑞

• Return (𝑠𝑘, 𝑝𝑘) = (𝑇, (𝑎, 𝑎1))

enc(𝑝𝑘 = (𝑎, 𝑎1), S):

• 𝑒 ← DΛ,𝑡𝑞𝛼 , 𝑒 ← D𝑚
Λ,𝑡𝑞𝛼 , 𝑠𝑒𝑒𝑑

$← {0, 1}𝑛

• Σ𝑓 = 𝑡
2𝛽2

𝑇
(∑𝑚

𝑖=1
Σ𝑒𝑖 ) + 𝑡2𝛽2

𝑇
𝑚(𝑞𝛼)2𝐼𝑛

•
¯𝑓 ← D𝑘

Λ,
√
Σ𝑓

• 𝑠 = 𝐵Λ(𝑞/2 · 𝑠𝑒𝑒𝑑) + 𝑒 ∈ 𝐻𝑞
• 𝑐0 = 𝑎𝑠 + 𝑒 ∈ 𝐻𝑚𝑞
• 𝑐1 = (𝑎1 + 𝐹𝑅𝐷 (𝑆)𝑔)𝑠 + ¯𝑓 ∈ 𝐻𝑘

𝑞

• 𝐾0 = 𝐾𝐷𝐹 (𝑠𝑒𝑒𝑑)

• Return ((𝑐0, 𝑐1), 𝐾0)

dec(𝑐 = (𝑐0, 𝑐1), S, 𝑠𝑘 = 𝑇 ):

• 𝑠 = 𝐼𝑛𝑣𝑒𝑟𝑡 ((𝑐0, 𝑐1),−𝑇, 𝐹𝑅𝐷 (𝑆))

• 𝑒 = 𝑐0 − 𝑎𝑠, ¯𝑓 = 𝑐1 − (𝑎1 + 𝐹𝑅𝐷 (𝑆)𝑔)𝑠

• check | |𝑒𝑖 | |2 ≤ 𝑞𝛼
√
𝑛 (1 ≤ 𝑖 ≤ 𝑚), else return ⊥

• check | | ¯𝑓𝑖 | |2 ≤ 𝑞𝛼𝛽𝑇𝑛
√︁
(𝑛 + 1)𝑚 (1 ≤ 𝑖 ≤ 𝑘), else return ⊥

• 𝑠𝑒𝑒𝑑 = 2

𝑞
· ⌊𝐵−1

Λ 𝑠⌉𝑞/2

• check | |𝑠 − 𝑞

2
𝐵Λ · 𝑠𝑒𝑒𝑑 | |2 ≤ 𝑞𝛼

√
𝑛, else return ⊥

• 𝐾0 = 𝐾𝐷𝐹 (𝑠𝑒𝑒𝑑)

• Return 𝐾0

To uniformly draw invertible elements in the gen algorithm, there are two approaches. One

is rejection sampling, which means to draw an element in 𝐻𝑞 , check whether it is invertible

and draw again if it is not. As described in Section 2.3.4, it can be checked whether a

polynomial is invertible in 𝑅𝑞 in polynomial time. Elements in 𝐻𝑞 can be checked as well by

embedding them with the inverse of 𝜎 . An important fact for the runtime is that the fraction

of invertible elements in 𝐻𝑞 is polynomial in 𝑛 and log𝑞 as stated in Lemma 3. The other

approach requires knowledge of polynomials 𝑓𝑖 that are irreducible in Z𝑞 with 𝑓 =
∏
𝑖 𝑓𝑖

mod 𝑞 and 𝑓𝑖 ≠ 𝑓 𝑗 (𝑖 ≠ 𝑗). Then, one can sample non-zero polynomials in Z𝑞 [𝑋 ]/𝑓𝑖 (𝑋 ) for
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each 𝑖 and use the CRT to map back from Z𝑞 [𝑋 ]/𝑓1 × ... × Z𝑞 [𝑋 ]/𝑓𝑟 to 𝑅𝑞 . The resulting
polynomial is invertible by construction. In addition, this distribution is uniform on all

invertible polynomials as the set of all invertible polynomials is exactly the combinations of

non-zero polynomials in the smaller fields Z𝑞 [𝑋 ]/𝑓𝑖 . The polynomials are embedded into

𝐻𝑞 via 𝜎 .

Before starting with correctness and security, we first show some bounds on the smoothing

parameter of Λ to use Lemma 12 later.

Lemma 18. Let𝜓 be as in Eq. (2.1). For the parameters of Γ and 𝜖 > 0, it holds that𝜂𝜖 (𝜓 (Λ)) ≤
√

2𝜋 ·
√︁
Σ𝑓 , 𝜂𝜖 (𝜓 (Λ)) ≤

√
2𝜋 · 𝑡𝛽𝑇

√
𝑚𝑞𝛼 and 𝜂𝜖 (𝜓 (Λ)) ≤

√
2𝜋 ·𝐴−1

𝑒𝜈

√︂(
Σ−1

𝑓
+ (𝑡2𝛽2

𝑇
Σ𝑒𝜈 )−1

)−1

for 1 ≤ 𝜈 ≤ 𝑚 where 𝑒𝜈 ≠ 0.

Proof. First we prove that 𝜂𝜖 (𝜓 (Λ)) ≤
√

2𝜋 · 𝑡𝛽𝑇
√
𝑚𝑞𝛼 . Using the definition of q combined

with Lemma 8 and Lemma 5 and the fact that Γ uses a cyclotomic number field yields

𝜂𝜖 (𝜓 (Λ)) ≤ 𝜆𝑛 (𝜓 (Λ)) · 𝜔 (
√︁

log𝑛) ≤
√
𝑛 · 𝜔 (

√︁
log𝑛) ≤

√
2𝜋 · 𝑡𝛽𝑇

√
𝑚𝑞𝛼.

By definition of Σ𝑓 we have

Σ𝑓 = 𝑡
2𝛽2

𝑇 (
𝑚∑︁
𝑖=1

Σ𝑒𝑖 ) + 𝑡2𝛽2

𝑇𝑚(𝑞𝛼)
2𝐼 ⪰ 𝑡2𝛽2

𝑇𝑚(𝑞𝛼)
2𝐼

and therefore

𝜂𝜖 (𝜓 (Λ)) ≤
√

2𝜋 · 𝑡𝛽𝑇
√
𝑚𝑞𝛼𝐼𝑛 ≤

√
2𝜋 ·

√︁
Σ𝑓 .

For the last inequality let 𝑆 := 𝐴−1

𝑒𝜈

√︂(
Σ−1

𝑓
+ (𝑡2𝛽2

𝑇
Σ𝑒𝜈 )−1

)−1

. Let 1 ≤ 𝜈 ≤ 𝑚 be arbitrary but

fixed and 𝑒𝜈 =
(
𝑟1, ..., 𝑟𝑠1, 𝑐1, 𝑐1, ..., 𝑐𝑠2, 𝑐𝑠2

)𝑇
, 𝑟 𝑗 ∈ R, 𝑐 𝑗 = 𝑎 𝑗 +𝑏 𝑗𝑖 ∈ C. Recall that𝐴𝑒𝜈 is defined

as

𝐴𝑒𝜈 =

©«

𝑟1

. . .

𝑟𝑠1
𝑅𝑜𝑡1

. . .

𝑅𝑜𝑡𝑠2

ª®®®®®®®®¬
, 𝑅𝑜𝑡 𝑗 =

(
𝑎 𝑗 −𝑏 𝑗
𝑏 𝑗 𝑎 𝑗

)
,

and therefore

𝐴−1

𝑒𝜈
=

©«

𝑟−1

1

. . .

𝑟−1

𝑠1
1

𝑎2

1
+𝑏2

1

𝑅𝑜𝑡𝑇
1

. . .
1

𝑎2

𝑠
2
+𝑏2

𝑠
2

𝑅𝑜𝑡𝑇𝑠2

ª®®®®®®®®®®¬
.

35



3 Construction

Let 𝑦2

𝑗 = (
∑𝑚
𝜈=1

Σ𝑒𝜈 ) 𝑗 𝑗 +𝑚(𝑞𝛼)2. For 1 ≤ 𝑗 ≤ 𝑠1 let

𝑠𝑟𝑗 := 𝑟−1

𝑗

√√√(
1

𝑡2𝛽2

𝑇
𝑦2

𝑗

+ 1

𝑡2𝛽2

𝑇
𝑟 2

𝑗

)−1

.

For 1 ≤ 𝑗 ≤ 𝑠2, define the block matrix 𝑆𝑐𝑗 as

𝑆𝑐𝑗 :=
1

𝑎2

𝑗
+ 𝑏2

𝑗

·

√√√(
1

𝑡2𝛽2

𝑇
𝑦2

𝑗

+ 1

𝑡2𝛽2

𝑇
(𝑎2

𝑗
+ 𝑏2

𝑗
)

)−1

· 𝑅𝑜𝑡𝑇𝑗 ∈ R2×2.

Using that definitions, 𝑆 can be written as

𝑆 =

©«

𝑠𝑟
1

. . .

𝑠𝑟𝑠1
𝑆𝑐

1

. . .

𝑆𝑐𝑠2

ª®®®®®®®®¬
.

With that, 𝑆𝑆𝑇 comes down to (𝑠𝑟𝑗 )2 and 𝑆𝑐𝑗 (𝑆𝑐𝑗 )𝑇 , which is

(𝑠𝑟𝑗 )2 = 𝑟−2

𝑗 ·
(

1

𝑡2𝛽2

𝑇
𝑦2

𝑗

+ 1

𝑡2𝛽2

𝑇
𝑟 2

𝑗

)−1

=

(
𝑟 2

𝑗

𝑡2𝛽2

𝑇
𝑦2

𝑗

+ 1

𝑡2𝛽2

𝑇

)−1

=
𝑡2𝛽2

𝑇
𝑦2

𝑗

𝑟 2

𝑗
+ 𝑦2

𝑗

(∗)
≥
𝑡2𝛽2

𝑇

2

and

𝑆𝑐𝑗 (𝑆𝑐𝑗 )𝑇 =
1

𝑎2

𝑗
+ 𝑏2

𝑗

·
(

1

𝑡2𝛽2

𝑇
𝑟 2

𝑗

+ 1

𝑡2𝛽2

𝑇
(𝑎2

𝑗
+ 𝑏2

𝑗
)

)−1

· 𝐼2 =
(
𝑎2

𝑗 + 𝑏2

𝑗

𝑡2𝛽2

𝑇
𝑟 2

𝑗

+ 1

𝑡2𝛽2

𝑇

)−1

· 𝐼2
(∗∗)
⪰

𝑡2𝛽2

𝑇

2

· 𝐼2.

The inequalities (*) and (**) hold because 𝑟 2

𝑗 ≤ 𝑦2

𝑗 and 𝑎
2

𝑗 + 𝑏2

𝑗 ≤ 𝑦2

𝑗 , respectively. With that,

it holds that

𝑆𝑆𝑇 ⪰
𝑡2𝛽2

𝑇

2

𝐼𝑛 .

Using Lemma 5 and Lemma 8 with 𝑡
√
𝑛 as 𝜔 (

√︁
log𝑛) function yields

𝜂𝜖 (𝜓 (Λ)) ≤
√
𝑛 · 𝑡
√
𝑛𝐼𝑛 ≤ 𝑡

√
2𝑛 · 𝑞1/𝑚+2/(𝑚𝑛)𝐼𝑛 ≤

𝑡𝛽𝑇√
2

𝐼𝑛

≤ 𝐴−1

𝑒𝜈

√︂(
Σ−1

𝑓
+ (𝑡2𝛽2

𝑇
Σ𝑒𝜈 )−1

)−1

≤
√

2𝜋 · 𝐴−1

𝑒𝜈

√︂(
Σ−1

𝑓
+ (𝑡2𝛽2

𝑇
Σ𝑒𝜈 )−1

)−1

.

□

The following theorem shows the correctness of the SB-KEM.
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Theorem 3. The SB-Kem Γ = (𝑔𝑒𝑛, 𝑒𝑛𝑐, 𝑑𝑒𝑐) is correct with overwhelming probability over
the choices of 𝑒, 𝑒, ¯𝑓 .

Proof. For correctness, three parts have to apply. First, 𝐼𝑛𝑣𝑒𝑟𝑡 needs to return the correct

𝑠 . Second, the errors need to be small enough, such that the checks do not fail. Third, the

error 𝑒 needs to be small enough so that the seed can be recovered from 𝑠 .

As stated in Lemma 16, the 𝐼𝑛𝑣𝑒𝑟𝑡 function returns the correct 𝑠 if the following equation

holds:

𝑇𝑒 + ¯𝑓 ∈ 𝑞 · P1/2(�̃�−𝑇𝐺 ) (3.2)

where 𝐵𝐺 is the Gram-Schmidt orthogonalization of the basis of Λ⊥𝑞 (𝑔). This is equivalent
to

∥
[
�̃�𝑇𝐺 (𝑇𝑒 + ¯𝑓 )

]
𝑘,∞ ∥∞/𝑞 ≤

1

2

.

According to Lemma 12, each entry of 𝑇𝑒 + ¯𝑓 is distributed as DΛ,Σ, where Σ = Σ𝑓 +
𝑡2𝛽2

𝑇

∑𝑚
𝑖=1

Σ𝑒𝑖 . The bounds on the smoothing parameter hold by Lemma 18. Using the

definitions of Σ𝑓 and Σ𝑒𝑘 and

𝑟 2
:= 𝛽2

𝑇𝑚(𝑞𝛼)
2 + 2𝛽2

𝑇 ·max

𝑗

𝑚∑︁
𝑖=1

|𝑒𝑖 𝑗 |2

it holds that

Σ ≤ 𝑡2𝑟 2𝐼𝑛

where ≤ is on every entry. As each 𝑒𝑖 is drawn by a discrete Gaussian, Eq. (3.1) yields

|𝑒𝑖 𝑗 | ≤ ∥𝑒𝑖 ∥𝑐,2 ≤
√
𝑛𝑞𝛼

with overwhelming probability and thus

𝑟 2 ≤ 𝑚(𝑞𝛼)2𝛽2

𝑇 + 2𝑚𝑛(𝑞𝛼)2𝛽2

𝑇 = (2𝑛 + 1)𝑚(𝑞𝛼)2𝛽2

𝑇 .

By Eq. (3.1), each element of 𝑇𝑒 + ¯𝑓 has norm at most 𝑟
√
𝑛 and thus | |

[
𝑇𝑒 + ¯𝑓

]
𝑐,2
| |∞ ≤ 𝑟

√
𝑛

with overwhelming probability and therefore,

∥
[
�̃�𝑇𝐺 (𝑇𝑒 + ¯𝑓 )

]
𝑘,∞ ∥∞/𝑞 ≤ ∥�̃�

𝑇
𝐺 ∥𝑘,∞ · ∥

[
𝑇𝑒 + ¯𝑓

]
𝑘,∞ | |∞/𝑞

≤ ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥
[
𝑇𝑒 + ¯𝑓

]
𝑘,2
| |∞/𝑞

≤ ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥𝐵
−1

Λ ∥2 · ∥
[
𝑇𝑒 + ¯𝑓

]
𝑐,2
∥∞/𝑞

≤ ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥𝐵
−1

Λ ∥2 · 𝑟
√
𝑛/𝑞

≤ ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥𝐵
−1

Λ ∥2 · 𝛼𝛽𝑇
√︁
𝑛(2𝑛 + 1)𝑚

(∗)
≤ 1

2

.

The last inequality (*) holds because
1

𝛼
≥ 2𝛽𝑇 · ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥𝐵

−1

Λ ∥2 ·
√︁
𝑛(2𝑛 + 1)𝑚. Thus, the

errors are small enough with overwhelming probability so that Eq. (3.2) holds and 𝐼𝑛𝑣𝑒𝑟𝑡

returns the correct 𝑠 .
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3 Construction

The checks test the norm of elements of𝐻𝐾 drawn by a discrete Gaussian. The overwhelming

probability for a correct check for 𝑒𝑖 and (𝑠 −𝑞/2𝐵Λ · 𝑠𝑒𝑒𝑑) follow directly from Eq. (3.1) and

the variance of 𝑒 and 𝑒 , respectively. For the check on
¯𝑓𝑖 , using |𝑒𝑖 𝑗 | ≤ 𝑞𝛼

√
𝑛, it holds that

Σ𝑓 ≤ 𝑡2(𝑞𝛼)2𝛽2

𝑇𝑛(𝑛 + 1)𝑚 · 𝐼

where ≤ is on each entry. Thus, the check is successful with overwhelming probability by

Eq. (3.1).

The seed can be recovered from s with overwhelming probability as by Eq. (3.1) and the

variance of 𝑒 it follows

| |𝐵−1

Λ 𝑒 | |∞ ≤ ||𝐵−1

Λ 𝑒 | |2 ≤ ||𝐵−1

Λ | |2 · | |𝑒 | |𝑐,2 ≤ ||𝐵−1

Λ | |2 · 𝑞𝛼
√
𝑛 ≤ 𝑞

4

.

□

Before proving the security, we first show that the public key is indistinguishable from

uniform, depending on the variant either statistically or computationally.

Lemma 19. Let 𝑎0, 𝑎
′,𝑇 , 𝑘 = ⌈log𝑞⌉ be as in Γ. Then, the distribution (𝑎,𝑇𝑎) is statistically

close to (𝑎,𝑢) with uniformly distributed 𝑢 if the parameters of Γ are chosen according to the
statistical variant. If the parameters of Γ are chosen according to the computational variant,
(𝑎,𝑇𝑎) is computationally indistinguishable from (𝑎,𝑢) if the decision-𝑁𝑅𝐿𝑊𝐸𝑞,𝜒 assumption
holds for 𝜒 = DΛ,𝑡𝛽𝑇 . Concretely, for any attacker A on the indistinguishability, there is an
attacker A𝑑−𝑁𝑅𝐿𝑊𝐸 on d-NRLWE𝑞,𝜒 with

𝑎𝑑𝑣 𝐼𝑁𝐷A (𝜅) ≤ 𝑘 · 𝑎𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A𝑑−𝑁𝑅𝐿𝑊𝐸
(𝜅).

Proof. As𝑎0 is invertible, multiplying (𝑎,𝑇𝑎) = ((𝑎0, 𝑎
′),𝑇 (𝑎0, 𝑎

′))with𝑎−1

0
yields ((1, 𝑎−1

0
𝑎′),

𝑇 (1, 𝑎−1

0
𝑎′)). As 𝑎′ is uniformly random, 𝑎′′ := 𝑎−1

0
𝑎′ is too. In the statistical variant, each

row is statistically indistinguishable from random by Lemma 4 with 𝑘 = 1, 𝑙 = 𝑚. In the

computational variant, as𝑚 = 2 we have 𝑎′′ ∈ 𝑅𝑞 and

𝑇 (1, 𝑎′′) =
©«
𝑡11 + 𝑡12𝑎

′′

...

𝑡𝑘1 + 𝑡𝑘2𝑎
′′

ª®®¬ .
We prove with a hybrid proof that (𝑎′′,𝑤 := 𝑇 (1, 𝑎′′)) is indistinguishable from (𝑎′′, 𝑢) with
uniformly random 𝑢. In game 𝐻𝑖 , the first 𝑖 rows of 𝑤 are uniformly random instead of

𝑡 𝑗1 + 𝑡 𝑗2𝑎′′. In the game𝐺0 := 𝐻0,𝑤 is as in the construction and in𝐺1 := 𝐻𝑘 , it is completely

random. If there is an attacker A𝑖 , which distinguishes game 𝐻𝑖−1 from 𝐻𝑖 , there is an

attackerA𝑑−𝑁𝑅𝐿𝑊𝐸 on d-NRLWE𝑞,𝜒 with 𝜒 = DΛ,𝑡𝛽𝑇 . Given one NRLWE sample (𝑎𝑅𝐿𝑊𝐸, 𝑏),
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A𝑑−𝑁𝑅𝐿𝑊𝐸 embeds this sample in the i-th row and samples everything else as in game 𝐻𝑖 .

Specifically, it sets 𝑎′′ = 𝑎𝑅𝐿𝑊𝐸 and for𝑤 it chooses the vector

𝑤 =

©«

𝑢1

...

𝑢𝑖−1

𝑏

𝑡𝑖+1,1 + 𝑡𝑖+1,2𝑎𝑅𝐿𝑊𝐸

...

𝑡𝑘,1 + 𝑡𝑘,2𝑎𝑅𝐿𝑊𝐸

ª®®®®®®®®®®¬
, 𝑢𝑖 ←U, 𝑡𝑖 𝑗 ← DΛ,𝑡𝛽𝑇 .

Then, A𝑖 is run with input (𝑎′′,𝑤). If 𝑏 = 𝑎𝑅𝐿𝑊𝐸𝑠 + 𝑒 for some secret 𝑠 and error 𝑒 , this

simulates game𝐻𝑖−1. If𝑏 is random instead, it simulates game𝐻𝑖 . Therefore, for any attacker

A𝑖 we have ���𝑃𝑟 [
A𝐻𝑖
𝑖
(𝜅) = 1

]
− 𝑃𝑟

[
A𝐻𝑖−1

𝑖
(𝜅) = 1

] ��� ≤ 𝑎𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A𝑑−𝑁𝑅𝐿𝑊𝐸
(𝜅).

With that, we can bound the advantage of every attacker A against distinguishing 𝐺0 from

𝐺1 as

𝑎𝑑𝑣 𝐼𝑁𝐷A,𝐺0,𝐺1

(𝜅) =
��𝑃𝑟 [
A𝐺1 (𝜅) = 1

]
− 𝑃𝑟

[
A𝐺0 (𝜅) = 1

] ��
=

��𝑃𝑟 [
A𝐻𝑘 (𝜅) = 1

]
− 𝑃𝑟

[
A𝐻0 (𝜅) = 1

] ��
=

����� 𝑘∑︁
𝑖=1

𝑃𝑟
[
A𝐻𝑖 (𝜅) = 1

]
− 𝑃𝑟

[
A𝐻𝑖−1 (𝜅) = 1

] �����
≤

𝑘∑︁
𝑖=1

��𝑃𝑟 [
A𝐻𝑖 (𝜅) = 1

]
− 𝑃𝑟

[
A𝐻𝑖−1 (𝜅) = 1

] ��
≤ 𝑘 · 𝑎𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸

A𝑑−𝑁𝑅𝐿𝑊𝐸
(𝜅).

□

With that, the following theorem proves the security of the SB-KEM based on decision-

NRLWE.

Theorem 4. The statistical variant of the SB-Kem Γ = (𝑔𝑒𝑛, 𝑒𝑛𝑐, 𝑑𝑒𝑐) with parameters
(𝑛, 𝑞, 𝑘, 𝛼, 𝛽𝑇 ) is IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 secure given the decision-NRLWE𝑞,𝜒 assumption with
𝜒 = DΛ,𝑡𝑞𝛼 . Concretely, if there is an attackerA on the security of the SB-KEM, there exists an
attacker A𝐾𝐷𝐹 on the KDF and A𝑁𝑅𝐿𝑊𝐸 on the decision-NRLWE𝑞,𝜒 assumption with

𝐴𝑑𝑣
𝐼𝑁𝐷−𝑆𝐵−𝐶𝑃𝐴𝑆𝐵−𝐾𝐸𝑀
A,Γ (𝜅) ≤ 𝐴𝑑𝑣𝐾𝐷𝐹A𝐾𝐷𝐹 ,𝐾𝐷𝐹 (𝜅) + 𝑝𝑜𝑙𝑦 (𝑛, log𝑞) · 𝐴𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A𝑁𝑅𝐿𝑊𝐸
(𝜅) + 𝜖

where 𝜖 is negligible in 𝜅.
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The computational variant is IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 secure given the decision-NRLWE𝑞.𝑡𝛽𝑇 as-
sumption in addition to those of the statistical variant. Concretely, for every attacker A
on the security of the SB-KEM, there exists an attacker A𝐾𝐷𝐹 on the KDF, A𝑁𝑅𝐿𝑊𝐸 on the
decision-NRLWE𝑞,𝜒 assumption and A′𝑁𝑅𝐿𝑊𝐸 on the decision-NRLWE𝑞,𝑡𝛽𝑇 with

𝐴𝑑𝑣
𝐼𝑁𝐷−𝑆𝐵−𝐶𝑃𝐴𝑆𝐵−𝐾𝐸𝑀
A,Γ (𝜅) ≤ 𝐴𝑑𝑣𝐾𝐷𝐹A𝐾𝐷𝐹 ,𝐾𝐷𝐹 (𝜅) + 𝑝𝑜𝑙𝑦 (𝑛, log𝑞) · 𝐴𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝜒

A𝑁𝑅𝐿𝑊𝐸
(𝜅)

+ 𝑘 · 𝐴𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝑡𝛽𝑇
A′𝑁𝑅𝐿𝑊𝐸

(𝜅) + 𝜖

where 𝜖 is negligible in 𝜅.

Proof. We show the security through a series of game hops. The first game is the IND-

SB-CPA𝑆𝐵−𝐾𝐸𝑀 game and in the last game, the view of an attacker is independent of the

challenge bit. An attacker on the security of the SB-KEM can in particular distinguish

between the first and the last game.

Game 0: This is the IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 game as in Fig. 2.3.

Game 1: For this game, the generation of the public key is changed. Specifically, 𝑎1 is

changed to 𝑇𝑎 − 𝐹𝑅𝐷 (𝑆)𝑔 instead of just 𝑇𝑎. As 𝑎1 is indistinguishable from uniform

by Lemma 19, so too is 𝑇𝑎 − 𝐹𝑅𝐷 (𝑆)𝑔. Therefore, the two distributions are indistin-
guishable. For the statistical variant, this indistinguishability is statistically and thus,

the advantage of any attacker is negligible. In case of the computational variant, if

there is an attacker A, which distinguishes game 0 from game 1, there is an attacker

A𝑑−𝑁𝑅𝐿𝑊𝐸 on decision-NRLWE𝑞,𝑡𝛽𝑇 with

𝐴𝑑𝑣 𝐼𝑁𝐷A .𝑔0,𝑔1
(𝜅) ≤ 𝑘 · 𝐴𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸𝑞,𝑡𝛽𝑇

A𝑑−𝑁𝑅𝐿𝑊𝐸
(𝜅)

as stated in Lemma 19. Also, for 𝑆′ ≠ 𝑆 , 𝐹𝑅𝐷 (𝑆) − 𝐹𝑅𝐷 (𝑆′) is invertible by definition

of the FRD and therefore, decrypting ciphertexts for other senders is still possible.

For the sender 𝑆 it is not possible, but this request is not allowed by definition of

IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 .

Game 2: Here, the challenge cipher is changed. Instead of (𝑐∗
0
, 𝑐∗

1
) as in game 1, we draw

𝑐 ∈ 𝐻𝑚𝑞 uniformly random and set 𝑐∗
0
= 𝑐 + 𝑎(𝐵Λ(𝑞/2 · 𝑠𝑒𝑒𝑑)). For 𝑐∗

1
we draw

𝑒 ← D𝑘

Λ,𝑡𝛽𝑇𝑞𝛼
√
𝑚
and set 𝑐∗

1
= (𝑇𝑐∗

0
) + 𝑒 . To show that this is indistinguishable from

game 1, we use a reduction to decision-NRLWE𝑞,𝜒 by constructing an attackerA𝑁𝑅𝐿𝑊𝐸 .

Given a vector of m samples (𝑎𝑅𝐿𝑊𝐸, 𝑏),A𝑁𝑅𝐿𝑊𝐸 checks, whether any 𝑎𝑖 in the samples

is invertible. This is possible in polynomial time as described in Section 2.3.4. If non

exist, it aborts and guesses the challenge bit resulting in a win probability of one half.

Otherwise, A𝑁𝑅𝐿𝑊𝐸 simulates game 2, inserting the samples as follows. It sets the

invertible 𝑎𝑖 as 𝑎0 and the others as 𝑎
′
. These combined yield the public key 𝑎 = (𝑎0, 𝑎

′)
and 𝑎1 = 𝑇𝑎 − 𝐹𝑅𝐷 (𝑆)𝑔. Instead of drawing 𝑐 randomly, A𝑁𝑅𝐿𝑊𝐸 sets it to b, setting

𝑏𝑖 as first element to match the order of a.
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With the resorted samples (𝑎′
𝑅𝐿𝑊𝐸

, 𝑏′), if 𝑏′ = 𝑎′
𝑅𝐿𝑊𝐸

𝑥 + 𝑦 for some secret 𝑥 and error

𝑦, then (𝑐∗
0
, 𝑐∗

1
) is distributed as in game 1, as

𝑐∗
0
= 𝑏′ + 𝑎′𝑅𝐿𝑊𝐸𝐵Λ(𝑞/2 · 𝑠𝑒𝑒𝑑) = 𝑎′𝑅𝐿𝑊𝐸 (𝑥 + 𝐵Λ(𝑞/2 · 𝑠𝑒𝑒𝑑)) + 𝑦 ∼ 𝑎𝑠 + 𝑒 (3.3)

and

𝑐∗
1
= 𝑇𝑐∗

0
+ 𝑒 3.3∼ 𝑇 (𝑎𝑠 + 𝑒) + 𝑒 = 𝑇𝑎𝑠 +𝑇𝑒 + 𝑒

= (𝑎1 + 𝐹𝑅𝐷 (𝑆)𝑔)𝑠 +𝑇𝑒 + 𝑒
(∗)∼ (𝑎1 + 𝐹𝑅𝐷 (𝑆)𝑔)𝑠 + 𝑒.

For (*) to hold, we need that 𝑇𝑒 + 𝑒 ∼ 𝑒 . By Lemma 12, 𝑇𝑒 + 𝑒 is distributed as 𝐷𝑘
Λ,
√
Σ

with Σ = 𝑡2𝛽2

𝑇
(∑𝑚

𝑖=1
Σ𝑒𝑖 ) + 𝑡2𝑚(𝑞𝛼)2, which is the distribution of 𝑒 . The bounds on the

smoothing parameter hold by Lemma 18.

If 𝑏 is random, then 𝑐 is as well and A𝑁𝑅𝐿𝑊𝐸 simulates game 2. So if there is an

invertible 𝑎𝑖 in the samples, A𝑁𝑅𝐿𝑊𝐸 perfectly simulates one of the games. As the

fraction of invertible elements in cyclotomics is polynomial in log𝑞 and 𝑛 as stated

in Lemma 3, the chance that any of the m samples has an invertible 𝑎 is 1 − (1 −
𝑝𝑜𝑙𝑦 (𝑛, log𝑞))𝑚 . Therefore, the advantage of A𝑁𝑅𝐿𝑊𝐸 is

𝑎𝑑𝑣𝑑−𝑁𝑅𝐿𝑊𝐸
A𝑁𝑅𝐿𝑊𝐸

(𝜅) = 1

1 − (1 − 𝑝𝑜𝑙𝑦 (𝑛, log𝑞))𝑚𝑎𝑑𝑣
𝐼𝑁𝐷
A

1/2,𝑔1,𝑔2
(𝜅)

where A1/2 distinguishes between game 1 and 2.

Game 3: Now, 𝑐∗
0
is drawn uniformly random from 𝐻𝑚𝑞 , independently from the seed. As 𝑐

acted as one-time pad on 𝑎(𝐵(𝑞/2 · 𝑠𝑒𝑒𝑑)), the statistical view of the adversary does

not change.

Game 4: Lastly, 𝐾0 is drawn uniformly random. As an attacker has no information about

the seed, an attacker who can distinguish between game 3 and game 4 is an attacker

on the KDF.

In game 4, an attacker has to distinguish between two randomly drawn 𝐾0 and 𝐾1, while

the rest of the view is independent of these keys. Therefore, any attacker on game 4 has an

advantage of zero. An attacker on the security of the SB-KEM can in particular distinguish

between game 0 and game 4. However, the advantage of distinguishing these two is bound

by the bounds described in the games.

□

3.1 Concrete Parameters

This chapter describes concrete parameter choices for the SB-Kem Γ defined in Chapter 3.

For the cyclotomic number field K we choose the (2n)-th cyclotomic number field, where 𝑛 is

a power of two as these have a nice canonical embedding. Therefore, the error distributions
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translate nicely into the coefficient embedding as shown in Lemma 15. Additional parameters

are the second dimension𝑚, a modulo 𝑞, scaling 𝑡 , 𝛽𝑇 and 𝛼 . The scaling factor 𝑡 impacts

the probability of wrong decryption. It depends on the probability of a ring element drawn

by a discrete Gaussian with index 𝑆 , to have norm greater than 1/𝑡 ·
√
𝑛 · ∥𝑆 ∥2, formally

𝛿 := 𝑃𝑟

[
∥𝑥 ∥2 >

1

𝑡
· ∥𝑆 ∥2 ·

√
𝑛 | 𝑥 ← DΛ,𝑆

]
whereΛ = 𝜎 (𝑅) is the lattice of the canonically embedded ring of integers of K. By Lemma 14

we have

𝛿 < ( 1
𝑡
𝑒
− 1

2𝑡2
√
𝑒)𝑛 .

For concrete parameters, 𝛿 is a number instead of a function, so the concept of negligible

does not apply. Instead, the goal is to achieve that 𝛿 is small enough. We choose

𝛿 ≤ 2
−64.

This yields the values for 𝑡 depending on the dimension 𝑛 summarized in Table 3.1.

n 512 1024 2048

t 0.7216 0.7996 0.8566

Table 3.1: The values for 𝑡 depending on the dimension 𝑛 to achieve 𝛿 ≤ 2
−64

The modulo 𝑞 is the most decisive factor besides 𝑛, whether there are any suitable parameter

sets. It should be as small as possible, but if it is too small, 𝛼 becomes too small such that

the underlying NRLWE becomes too easy. The FRD requires that 𝑞 = 2𝑟 + 1 mod 4𝑟 for

some power of two 𝑟 . The parameter 𝑟 influences the number of available sender IDs, which

is 𝑞𝑛/𝑟 − 1. This limit comes from the FRD. On the other hand, as 𝜙2𝑛 =
∏𝑟
𝑖=1
(𝑋𝑛/𝑟 − 𝑠𝑖) for

some 𝑠𝑖 ∈ Z∗𝑞 as stated by Theorem 2, the calculations in 𝑅𝑞 can be performed in the fields

Z𝑞 [𝑋 ]/(𝑋𝑛/𝑟 − 𝑠𝑖), improving performance for larger values of 𝑟 [9]. We choose 𝑟 = 16.

The value for 𝑞 is found by trial and error. It is set to a value and adjusted, depending on

whether there are parameter sets.

The parameter 𝛼 is chosen as small as possible, which is
1

𝛼
= 2𝛽𝑇 · ∥�̃�𝑇𝐺 ∥𝑘,∞ · ∥𝐵

−1

Λ ∥2 ·√︁
𝑛(2𝑛 + 1)𝑚. The norm ∥�̃�𝑇

𝐺
∥𝑘,∞ was determined numerically and yielded ∥�̃�𝑇

𝐺
∥𝑘,∞ = 4

for every 𝑞 when the orthogonalization is performed in forward order. For the statistical

variant we choose 𝛽𝑇 = 2𝑛 · 𝑞 (𝑛+2)/(𝑛𝑚) , the smallest value possible. The parameter m is

balanced with q such that decision-NRLWE𝑞,𝑡𝑞𝛼 is hard. Increasing m increases 𝑞𝛼 , which

makes the problem harder, but also worsens the performance by increasing key and cipher

sizes. In the computational variant, 𝛽𝑇 can be chosen more freely, but needs to be large

enough such that decision-NRLWE𝑞,𝑡𝛽𝑇 is hard. The parameter m is set to 2, as increasing it

only worsens performance. For both variants the condition

𝑞 >
1

√
2𝜋 · 𝛼𝑡𝛽𝑇

√
𝑚
·
√
𝑛 ·

√︁
log𝑛

needs to be checked after setting the parameters.
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3.1.1 Concrete Ring-LWE hardness estimation

The main decisive factor for the parameters are the underlying NRLWE assumptions. In

case of the statistical variant this is only d-NRLWE𝑞,𝑡𝛼𝑞 . For the computational variant,

d-NRLWE𝑞,𝑡𝛽𝑇 needs to be hard as well. To estimate the hardness of NRLWE, we use the

lattice estimator [2], a tool frequently used to estimate the hardness of RLWE instances.

Concretely, we use commit "bfbd74e" and the cost model "MINZOV" [34]. Although the

estimator only estimates hardness of LWE, the assumption is that there are no attacks,

which leverage the addition structure of the ring. The lattice estimator needs a distribution

𝜒 in the coefficient embedding, but our definition of NRLWE is in the canonical embedding.

For power of two cyclotomics, the discrete Gaussian can be embedded into the coefficient

embedding by scaling the parameter by 1/
√
𝑛 as shown in Lemma 15. Therefore, we define

the adjusted parameters 𝛼𝑘 := 𝛼/
√
𝑛 and 𝛽𝑇𝑘 := 𝛽𝑇 /

√
𝑛.

Crockett and Peikert [21] analyzed many different parameter sets for LWE in terms of their

difficulty. However, for the relatively small values of 𝑞 in the analyzed sets, the width of the

Gaussian for the errors would be too small in our construction. Therefore, none of their

parameter sets can be used for this construction. Bossuat et al. [12] proposed parameter

sets for homomorphic encryption based on Ring LWE. These have larger modulo and are

therefore better suited for this construction.

The standard deviation for the error distribution is the most controversial part. From a

theoretical perspective, Peikert [39] proved instances to be secure against multiple attacks

if the standard deviation 𝑟 in the dual ring 𝑅∨ is greater than two. For the ring of integers

of power of two cyclotomics of dimension 𝑛, we have 𝑅 = 𝑛𝑅∨ [39] and therefore, this

corresponds to an standard deviation of 2𝑛. In practice, the error distribution is chosen

much narrower. For example, the guidelines for homomorphic encryption chose 3.19

independently of 𝑛 [12]. For parameter sets taken from the guidelines and more optimistic

sets we aim the standard deviation to be in the order of 3.19. For completeness, there are

two parameter sets with the more theoretical standard deviation of 2𝑛 as well.

3.1.2 Parameter Sets

Table 3.2 shows the different parameter sets. The values 𝑡𝛽𝑇𝑘 and 𝑡𝑞𝛼𝑘 are the width of the

discrete Gaussians for T and the errors respectively, when drawing them in the coefficient

embedding, meaning drawing from DZ𝑛,𝑠 . The column C/S indicates whether the set is

for the computational variant (C) or the statistical variant (S). In the column Seclvl, the

number of bits of security is provided. That means, an attacker on d-NRLWE𝑞,𝜒 requires

computational power and time equivalent to a brute force attack on a key with that amount

of bits. A security level with an L at the end is only determined by the lattice estimator.

Hereby, the metric used is ring operations (rop). Those with a P are for parameter sets that

have dimension, modulo and width as proposed by Bossuat et al. [12]. These security levels

are also confirmed by the lattice estimator. Note, that in the security proof of the scheme,

there is a polynomial advantage gain for an attacker on the scheme compared to an attacker

on NRLWE. However, this influences the success probability of the attacker, not its runtime.
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𝑛 𝑞 (log
2
𝑞) 𝑚 𝑡𝛽𝑇𝑘 𝑡𝑞𝛼𝑘 C/S SecLvl

size(pk)

= size(c)

size(sk)

512 0xF3d21 (20) 2 1.67 1.679 C 87 L 28.2 KB 51.2 KB

1024 0xF69A1 (20) 2 1.1 1.1 C 164 L 56.3 KB 102 KB

1024 0x31F7E1 (22) 2 1.996 2.16 C 165 L 67.6 KB 124 KB

1024 0x32C118A19E1 (42) 2 2048 2076 C 146 L 237 KB 452 KB

1024 0x1E36050A42A1 (45) 6 9222 2535 S 130 L 294 KB 1.56 MB

2048 0x1F24D205A1 (37) 5 13056 3.206 S 192 P 397 KB 1.75 MB

Table 3.2: Concrete parameters for the SB-Kem Γ with the resulting sizes of the public and secret

keys as well as the ciphers. C/S stands for computational or statistical variant. SecLvl indicates the

bit-security of the set.

The last two columns contain the sizes of the public and private key and the cipher. These

numbers are calculated based on the assumption that an element in Z𝑞 requires log𝑞 bits.

As the size of the public key is the same as the one of the cipher, they are combined into

one column to save space.

As can be seen, the computational variant has much better key sizes than the statistical

variant as 𝑞 and𝑚 can be chosen smaller for the same 𝑛 and 𝑞𝛼 because 𝛽𝑇 is much smaller.

The fourth and fifth parameters sets have the more theoretical width of 2𝑛. The fourth is

computational but significant worse than the other computational variants. Considering

the statistical variant, the key sizes are similar, though the estimated security of the fifth is

worse due to the larger 𝑞.

3.1.3 Comparison to existing KEMs

This section compares the key and cipher sizes of the new SB-KEM to existing KEMs. As this

work focuses on secure channels without the ROM, this comparison focuses on KEMs that

are not proven secure in the ROM. However, most KEMs, which aim to be secure against

quantum computers, use the Fujisaki-Okamoto transformation [23], which is proven in the

ROM. As representative for KEMs in the ROM, Kyber [43] is used as reference as it has

been standardized recently. To the best of our knowledge, the currently best KEMs without

the ROM are the LPN-based proposed by Xu and Li [45] and the RLWE-based proposed by

Yang, Ma, and Zhang [46].

Table 3.3 shows the parameters of the different KEMs. As can be seen, our SB-KEM is worse

than Kyber. However, Kyber is highly optimized and our SB-KEM is not. On the other side,

compared to the KEMs without the ROM our new SB-KEM performs way better. Although

the LPN-based reaches smaller ciphertext sizes, its key sizes are significantly worse. Our

SB-KEM is better than the RLWE-based in every category but for that the difference is

lower. Therefore, the new SB-KEM improved upon KEMs that proven without the ROM. In

particular, neither the keys nor the cipher has a size above one MB.
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Scheme SecLvl pk sk c

Kyber512 [43] 128 0.8 KB 1.632 KB 0.768 KB

Kyber768 [43] 192 1.184 KB 2.4 KB 1.088 KB

LPN-based [45] 128 50.78 MB 62.50 MB 4.54 KB

RLWE-based [46] 80 1.923 MB 0.96 MB 1.280 MB

Ours 87 28.2 KB 51.5 KB 28.2 KB

Ours 164 56.3 KB 102 KB 56.3 KB

Table 3.3: Comparison of the key sizes for our construction with existing KEMs.
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4 Secure Channels

This chapter describes secure channels and how the newly constructed SB-KEM is used to

realize one. More precisely, the goal is to UC-realize F𝑀−𝑆𝑀𝑇 [10] depicted in Fig. 4.1. This

ideal functionality describes multi-receiver multi-message multi-sender secure message

transfer of polynomially many parties. This means that multiple parties can send multiple

messages to different receivers and the adversary can neither see the sent messages in

plaintext nor change them. However, it can block any messages.

Benz et al. [7] showed that an SB-KEM can be combined with a DEM to realize F𝑀−𝑆𝑀𝑇
using F𝐴𝑈𝑇𝐻 by adjusting the protocol defined by Beskorovajnov et al. [10]. The latter uses

an PKE, which the SB-KEM and DEM realize. Hereby, the SB-KEM needs to be IND-SB-

CPA𝑆𝐵−𝐾𝐸𝑀 secure and the DEM IND-OT. As described in Section 2.10, F𝐴𝑈𝑇𝐻 on the other

hand can be realized by an EUF-CMA secure signature scheme combined with F𝐶𝐴. The
protocol 𝜋

F𝐶𝐴
𝑀−𝑆𝑀𝑇 combines the adjusted protocol with the protocols 𝜋

F𝐶𝐴
𝐶𝐸𝑅𝑇

and 𝜋
F𝐶𝐸𝑅𝑇
𝐴𝑈𝑇𝐻

to

realize F𝑀−𝑆𝑀𝑇 using only the ideal functionality F𝐶𝐴. The parameters and the states of

each party are described in Fig. 4.2, while Fig. 4.3 depicts the behavior of each party. The

protocol is secure under static corruption as the following lemma summarizes.

Lemma 20. Under static corruption, the protocol 𝜋F𝐶𝐴
𝑀−𝑆𝑀𝑇 UC-realizes F𝑀−𝑆𝑀𝑇 in the F𝐶𝐴-

hybrid model.

Functionality F𝑀−𝑆𝑀𝑇
Provides:
Multi-receiver multi-message multi-sender secure message transfer with constant

message size and polynomially many Parties 𝑃 ∈ P.
State:
Function 𝜌𝑀𝑠𝑔 : 𝑆𝐼𝐷 ×𝑀𝐼𝐷 → 𝑀 × P2

of pending messages.

Behavior:

• Upon receiving (send, 𝑠𝑖𝑑, 𝑅,𝑚) from some party 𝑆 , draw fresh 𝑚𝑖𝑑 , send

(send, 𝑠𝑖𝑑,𝑚𝑖𝑑, 𝑆, 𝑅) to the adversary A and append (𝑠𝑖𝑑,𝑚𝑖𝑑) ↦→ (𝑚, 𝑆, 𝑅)
to 𝜌𝑀𝑠𝑔.

• Upon receiving (send ok, 𝑠𝑖𝑑,𝑚𝑖𝑑) from the adversary A, look up (𝑚, 𝑆, 𝑅) :=

𝜌𝑀𝑠𝑔 (𝑠𝑖𝑑,𝑚𝑖𝑑). If it exists, output (sent, 𝑠𝑖𝑑, 𝑆,𝑚) to R.

Figure 4.1: The Ideal Functionality F𝑀−𝑆𝑀𝑇 .
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4 Secure Channels

Protocol 𝜋F𝐶𝐴
𝑀−𝑆𝑀𝑇

Realizes:
Multi-receiver multi-message multi-sender secure message transfer with constant

message size.

Parameters:

• An EUF-CMA secure Signature Scheme Σ = (Σ.𝑔𝑒𝑛, Σ.𝑒𝑛𝑐, Σ.vfy)

• An IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 Secure SB-KEM Γ = (Γ.𝑔𝑒𝑛, Γ.𝑒𝑛𝑐, Γ.𝑑𝑒𝑐)

• An IND-OT DEM = (DEM.enc, DEM.dec)

State of party P:

• Function 𝑓𝐶𝑅𝐸𝐷 : 𝑆𝐼𝐷 → (Γ.𝑃𝐾, Γ.𝑆𝐾) of own credentials for encryption.

• Keypair (𝑠𝑘Σ, 𝑣𝑘) ∈ (Σ.𝑉𝐾, Σ.𝑆𝐾) of own credentials for signing.

• Function 𝑓𝑃𝐾 : 𝑆𝐼𝐷 × 𝑃 → Γ.𝑃𝐾 of known public keys.

• Function 𝑓𝑉𝐾 : 𝑆𝐼𝐷 × 𝑃 → Σ.𝑉𝐾 of known verification keys.

• Function 𝑓𝑠𝑒𝑛𝑑 : 𝑆𝐼𝐷 × 𝑃 → 𝑀∗ of pending messages.

Figure 4.2: The Setup for the Protocol 𝜋
F𝐶𝐴

𝑀−𝑆𝑀𝑇 , which Realizes F𝑀−𝑆𝑀𝑇 using F𝐶𝐴

Proof. The lemma follows from (Canetti [15] Claim 3, Claim 4), (Benz et al. [7] Theorem 1)

and (Beskorovajnov et al. [10] Theorem 3). □

This and the next paragraph depict some intuition how the protocol works and protects

against multiple attacks. First, the underlying idea is explained. To send a plaintext from A

to B, A generates a symmetric key K with its corresponding cipher 𝑐1 with the SB-KEM, uses

K to encrypt the plaintext into ciphertext 𝑐2 with the DEM and signs its message consisting

of the two ciphers (𝑐1, 𝑐2) with the signature scheme. Upon receiving, B checks the signature.

If it is valid, it extracts K from 𝑐1 and uses it to decrypt 𝑐2. If B has not generated public

keys for the SB-KEM yet, A can send it a special message to ask it to do it. When generating

public keys, they are broadcast to every other party. The certificate authority enables the

parties to resolve a party ID into a verification key, so that signatures can verify the sending

party.

Second, some intuition how the protocol protects against attacks is depicted, starting with

resending a message in its own name. An attacker can send a message in its own name by

replacing the sender ID and the signature. However, if the message contains a cipher, it will

not decrypt correctly as the wrong sender ID is used in the SB-KEM. If it does not contain a

cipher, its information is publicly available for every party. Therefore, the attacker could

forge the whole message itself. To protect against forwarding attacks, the receiving party

48



Protocol 𝜋F𝐶𝐴
𝑀−𝑆𝑀𝑇

Behavior of Party P:

• Before signing for the first time: set (𝑠𝑘Σ, 𝑣𝑘) ← Σ.𝑔𝑒𝑛(1𝜅) and send (Register, 𝑃, 𝑣𝑘) to F𝐶𝐴
• Upon receiving (𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑆, (init, 𝑠𝑖𝑑), 𝜎) with fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , if there is no entry 𝑓𝐶𝑟𝑒𝑑 (𝑠𝑖𝑑) yet:

1. If 𝑓𝑉𝐾 (𝑆) does not exists, send (Retrieve, 𝑆) to F𝐶𝐴 to obtain (Retrieve, 𝑆, 𝑣𝑘). If 𝑣𝑘 = ⊥, ignore
the original message. Else set 𝑓𝑉𝐾 (𝑆) = 𝑣𝑘 .

2. Look up 𝑣𝑘𝑆 = 𝑓𝑉𝐾 (𝑆). If Σ.vfy(𝑣𝑘𝑆 , (init, 𝑠𝑖𝑑, 𝑃, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ), 𝜎) = 0, ignore the original message.

3. (𝑠𝑘, 𝑝𝑘) ← Γ.𝑔𝑒𝑛(1𝜅)
4. Append 𝑠𝑖𝑑 ↦→ (𝑠𝑘, 𝑝𝑘) to 𝑓𝐶𝑟𝑒𝑑
5. For each party 𝑃 ≠ 𝑃 ′: Draw a fresh 𝑠𝑖𝑑′

𝐴𝑈𝑇𝐻
, set 𝑚 = (inited, 𝑠𝑖𝑑, 𝑝𝑘), 𝜎 ←

Σ.𝑠𝑖𝑔𝑛(𝑠𝑘Σ, (𝑚, 𝑃 ′, 𝑠𝑖𝑑′𝐴𝑈𝑇𝐻 )) and send (𝑠𝑖𝑑′
𝐴𝑈𝑇𝐻

, 𝑃,𝑚, 𝜎) to 𝑃 ′

• Upon receiving (𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑃 ′, (inited, 𝑠𝑖𝑑, 𝑝𝑘𝑃 ′), 𝜎) with fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , if there is no entry 𝑓𝑃𝐾 (𝑠𝑖𝑑, 𝑃 ′) yet:
1. If 𝑓𝑉𝐾 (𝑃 ′) does not exists, send (Retrieve, 𝑃 ′) to F𝐶𝐴 to obtain (Retrieve, 𝑃 ′, 𝑣𝑘). If 𝑣𝑘 = ⊥, ignore

the original message. Else set 𝑓𝑉𝐾 (𝑃 ′) = 𝑣𝑘 .
2. Look up 𝑣𝑘𝑃 ′ = 𝑓𝑉𝐾 (𝑃 ′). If Σ.vfy(𝑣𝑘𝑃 ′, (inited, 𝑠𝑖𝑑, 𝑝𝑘𝑃 ′, 𝑃, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ), 𝜎) = 0, ignore the original

message.

3. Append (𝑠𝑖𝑑, 𝑃 ′) ↦→ 𝑝𝑘𝑃 ′ to 𝑓𝑃𝑘

4. For any𝑚 ∈ 𝑓𝑆𝑒𝑛𝑑 (𝑠𝑖𝑑, 𝑃 ′)
a) Remove m from 𝑓𝑆𝑒𝑛𝑑 (𝑠𝑖𝑑, 𝑃 ′)
b) (𝐾, 𝑐0) ← Γ.𝑒𝑛𝑐 (𝑝𝑘𝑃 ′, 𝑃)
c) 𝑐1 ← 𝐷𝐸𝑀.𝑒𝑛𝑐 (𝐾,𝑚)
d) Draw fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , set𝑚

′ = (𝑠𝑖𝑑, (𝑐0, 𝑐1))
e) Draw 𝜎 ← Σ.𝑠𝑖𝑔𝑛(𝑠𝑘Σ, (𝑚′, 𝑃 ′, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 )) and send (𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑃,𝑚′, 𝜎) to 𝑃 ′

• Upon receiving input (send, 𝑠𝑖𝑑, 𝑅,𝑚) with𝑚 ∈ {0, 1}𝑛 from environmentZ:

– If 𝑅 = 𝑃 report output (sent, 𝑠𝑖𝑑 , 𝑃 ,𝑚) to the environment

– Else if no entry 𝑓𝑝𝑘 (𝑠𝑖𝑑, 𝑅) exists yet:
1. Append𝑚 to 𝑓𝑆𝑒𝑛𝑑 (𝑠𝑖𝑑, 𝑅)
2. Draw fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻

3. For𝑚′ = (init, 𝑠𝑖𝑑) draw 𝜎 ← Σ.𝑠𝑖𝑔𝑛(𝑠𝑘Σ, (𝑚′, 𝑅, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 )) and send (𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑃,𝑚′, 𝜎) to 𝑅
– Else:

1. 𝑝𝑘𝑅 = 𝑓𝑝𝑘 (𝑠𝑖𝑑, 𝑅)
2. (𝐾, 𝑐0) ← Γ.𝑒𝑛𝑐 (𝑝𝑘𝑅, 𝑃)
3. 𝑐1 ← 𝐾𝐸𝑀.𝑒𝑛𝑐 (𝐾,𝑚)
4. Draw fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 . For𝑚

′ = (𝑠𝑖𝑑, (𝑐0, 𝑐1)) draw 𝜎 ← Σ.𝑠𝑖𝑔𝑛(𝑠𝑘Σ, (𝑚′, 𝑅, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 )) and send

(𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑃,𝑚′, 𝜎) to 𝑅
• Upon receiving (𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , 𝑆, (𝑠𝑖𝑑, (𝑐0, 𝑐1)), 𝜎) with fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 :

1. If 𝑓𝑉𝐾 (𝑆) does not exists, send (Retrieve, 𝑆) to F𝐶𝐴 to obtain (Retrieve, 𝑆, 𝑣𝑘). If 𝑣𝑘 = ⊥, ignore
the original message. Else set 𝑓𝑉𝐾 (𝑆) = 𝑣𝑘 .

2. Look up 𝑣𝑘𝑆 = 𝑓𝑉𝐾 (𝑆). If Σ.vfy(𝑣𝑘𝑆 , (𝑠𝑖𝑑, (𝑐0, 𝑐1), 𝑃, 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 ), 𝜎) = 0, ignore the original message.

3. Look up 𝑠𝑘 := 𝑓𝐶𝑅𝐸𝐷 (𝑠𝑖𝑑) and 𝑝𝑘 := 𝑓𝑝𝑘 (𝑠𝑖𝑑, 𝑆). If one of them does not exist, abort.

4. 𝐾 ← Γ.𝑑𝑒𝑐 (𝑠𝑘, 𝑐0, 𝑆)
5. 𝑚 ← 𝐾𝐸𝑀.𝑑𝑒𝑐 (𝐾, 𝑐1)
6. Report output (sent, 𝑠𝑖𝑑 , 𝑆 ,𝑚) to the environmentZ

Figure 4.3: The Behavior of Each Party in the Protocol 𝜋
F𝐶𝐴

𝑀−𝑆𝑀𝑇 , which realizes F𝑀−𝑆𝑀𝑇 using F𝐶𝐴
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is signed. Therefore, if an attacker takes a sent message and sends it to someone else, the

new receiver will reject the message as the signature does not verify. Replay attacks are

prevented by 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , which is also signed. As a receiver only accepts a fresh 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , a

replayed message is ignored. When the attacker changes 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , the signature is not valid

anymore.

4.1 Concrete Instantiation

This section describes a concrete instantiation of the protocol 𝜋
F𝐶𝐴
𝑀−𝑆𝑀𝑇 , which includes the

remaining cryptographic schemes as well as party and message spaces. On the side of

cryptographic schemes, an EUF-CMA secure signature scheme and an IND-OT DEM are

missing. Possible options for the DEM are a one-time pad resulting in messages of 𝑛 bits or

a pseudo number generator leading to larger messages. For simplicity we opt to use the

one-time pad leading to 512, 1024 or 2048 bit messages depending on the parameter set

used. Note that the pseudo number generator would also enable variable message size, but

the protocol only expects constant message size.

For the signature scheme, to the best of our knowledge, there are only few post-quantum

signature schemes, which do not rely on the random oracle model. We choose SPHINCS256

[8], which is a stateless hash-based signature scheme with pk and sk sizes of about 1KB and

signature size of 41KB. There is also SPHINCS+ [44], which is standardized and similar to

SPHINCS256. However, it is not an option as its security is proven in the ROM. Another

option is LMS [19], a stateful hash-based signature. The state requires more care in use and

thus, we do not choose LMS.

The following describes the concrete instantiation of the protocol. Let (𝑛, 𝑞, 𝑟,𝑚) be the
parameters chosen for Γ. The message space is𝑀∗ = {0, 1}𝑛 , determined by the one-time

pad. The party IDs have to fit into the input of the FRD of Γ, which is Z𝑛/𝑟𝑞 \ {0}. This can
encode log𝑞 · 𝑛/𝑟 bits. Therefore, the party ID space is P ⊆ {0, 1}log𝑞·𝑛/𝑟 \ {0}. In practice,

this could be the hash of the email addresses of the parties using a collision resistance hash

function. Note that 0 should not be a valid party ID, which can be enforced either by the

hash function itself or for example by appending a 1 at the end of the hash.

4.2 Analysis

This section analyzes the performance of the protocol, specifically the message size and

required storage. For concrete numbers, we use the second parameter set of𝑛 = 1024, log𝑞 =

20, 𝑟 = 16,𝑚 = 2 as it provides more than 128 bits of security. Let 𝑠 be the number of session

identifiers, 𝑝 be the number of parties. Each party has to store 𝑠 key pairs of Γ, one key pair

from SPHINCS256 and 𝑠 · 𝑝 public keys from Γ and verification keys from SPHINCS256.

As the plaintexts are only 128 bytes and only stored short term when waiting for the key
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4.2 Analysis

generation of the receiving party, we ignore them. This leads to the following formula of

required storage.

𝑠 · (32.6𝐾𝐵 + 56.3𝐾𝐵) + 1.088𝐾𝐵 + 1.056𝐾𝐵 + 𝑠 · 𝑝 · (56.3𝐾𝐵 + 1.056𝐾𝐵)

Depending on the number of parties, the most dominant part is either the key pairs of Γ
for each session or the public key of Γ for each party. Next, the analysis of the message

size follows. All messages contain 𝑠𝑖𝑑𝐴𝑈𝑇𝐻 , the sender ID, the payload and a signature. The

payload always contains the 𝑠𝑖𝑑 . The largest payload is the message containing the ciphers.

Assuming 64 bit sids and 256 bit sender IDs, the size of the messages is up to

8𝐵 + 32𝐵 + 56.3𝐾𝐵 + 32𝐵 + 41𝐾𝐵 ≈ 97.3𝐾𝐵.

Using the smallest parameter set instead, the message sizes are up to 69.3 KB, but the secure

channel only provides 87 bits of security.
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5 Implementation

A proof of concept for the SB-KEM described in Chapter 3 was implemented in python
1

version 3.12. This chapter describes implementation details and design choices.

The implementation is specifically for the parameter sets. That means it only supports a

power of two cyclotomic as number field. The reason for this is that all calculations are

performed in the coefficient embedding. More precisely, the used translation of Gaussian

distributions to the coefficient embedding requires a power of two cyclotomic.

5.1 Decomposition of 𝑓 (𝑋 ) = 𝑋𝑛 + 1

For the choice of 𝑞 = 2𝑟 + 1 mod 4𝑟 for some power of two 𝑟 , 𝑓 mod 𝑞 factors into 𝑟

polynomials 𝑓𝑖 as stated in Theorem 2. In addition, each 𝑓𝑖 = 𝑋
𝑛/𝑟 + 𝑎𝑖 has a very simple

structure and is determined by only one scalar 𝑎𝑖 ∈ Z∗𝑞 . By the CRT, we have

Z𝑞 [𝑋 ]/𝑓 (𝑋 ) � Z𝑞 [𝑋 ]/𝑓1(𝑋 ) × ... × Z𝑞 [𝑋 ]/𝑓𝑟 (𝑋 )

and therefore, operations in 𝑅𝑞 could be performed in the smaller fields Z𝑞 [𝑋 ]/𝑓𝑟 (𝑋 ) instead.
However, for this the concrete values of 𝑎𝑖 are needed. This section describes attempts at

finding these. The proof of Theorem 2 is a constructive proof [32]. It states, that there

are 𝑟 values 𝑎𝑖 ∈ Z∗𝑞 that have order 2𝑟 in Z𝑞 , which are the values in the polynomials 𝑓𝑖 .

Moreover, if one value 𝑎1 is known, the others can be calculated as 𝑎𝑘
1
, for 1 < 𝑘 < 2𝑟 with

𝑔𝑐𝑑 (𝑘, 2𝑟 ) = 1. As 𝑟 is a power of two, the values for 𝑘 are simply all odd numbers smaller

than 2𝑟 .

In the proof of concept, a method for calculating the decomposition of 𝑓 was implemented

by brute forcing one value 𝑎1 and then determining the others from this via 𝑎𝑘
1
for odd

𝑘 ∈ (1, 2𝑟 ). The brute force has random and ordered mode. In the ordered mode it iterates

over all numbers in ascending order and tests whether their order is 2𝑟 . The random mode

chooses random values instead. The order of 𝑥 is checked by the following two equations.

𝑥2𝑟 = 1 ∧ 𝑥𝑟 ≠ 1.

These two equations suffice as 𝑟 is a power of two. If 𝑥2𝑟 = 1, then the order has to divide

2𝑟 and thus, can only be a power of two. On the other hand, 𝑥𝑟 ≠ 1 implies that the order is

not any smaller power of two than 2𝑟 . For smaller values of 𝑞 with log𝑞 ≤ 20, either mode

1
www.python.org
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5 Implementation

works fine, however for larger values of 𝑞 like log𝑞 ≥ 35, the brute force takes too much

time independent of random or ordered. However, parallelism would speed up this process,

as each value of 𝑥 can be tested independent of each other.

5.2 Ring operations

The elements of the ring 𝑅𝑞 = Z𝑞 [𝑋 ]/(𝑋𝑛 +1) are represented as polynomials of degree 𝑛−1.

For this, the library numpy.polynomials
2
is used as it provides polynomial operations, more

specifically addition and multiplication. Division is implemented in the library. However,

it is performed within float numbers, instead of Z𝑞 as required. This poses a problem as

recovering the corresponding value in Z𝑞 from the float is unfeasible due to rounding errors.

For the reduction modulo 𝑓 = 𝑋𝑛 + 1, the library can be used as the coefficients of 𝑓 are

either one or zero. However, for arbitrary polynomials, a custom method is used. The ring

operations based on the CRT as in Section 5.1 was not implemented, instead all operations

are performed in 𝑅𝑞 .

The coefficients of the polynomials are stored as 64-bit integers. This increases the required

storage compared to the calculations in Section 3.1, as these assumed only log𝑞 bits per

coefficient. This increases the required storage for the private key to about 524 KB instead

of 51.2 KB when using the smallest parameter set. Note that no precise measurements of

the required storage in the implementation were done due to the fact that it is unoptimized.

This means that the value above is just for the raw data and in particular does not account

for overhead due to the structures like vectors.

For larger 𝑞, the 64-bit integers are not sufficient and overflows occur during multiplication.

To combat that, an option was implemented to store the coefficients as integer objects. This

in turn increases the runtime as the operations on 64-bit integers are more optimized. The

required storage with the integer objects in comparison to 64-bit integers was not measured

but is expected to increase. Testing indicates that for log𝑞 ≥ 28, big integers should be used

to ensure reliable results.

5.3 Gaussian Sampling

The construction requires sampling from a discrete Gaussian. This is approximated by

sampling from a continuous Gaussian distribution and then rounding each index to the

nearest integer. The 𝑛-dimensional continuous Gaussian of width 1 is sampled by sampling

𝑛 one-dimensional Gaussians of width 1. To sample 𝑥 with index 𝑆 ∈ R𝑛×𝑛, 𝑦 is sampled

from D𝑛
1
and 𝑥 = 𝑆𝑦. If 𝑆 = 𝑠𝐼𝑛 is a multiple of the identity, each index is sampled from an

one dimensional Gaussian of width 𝑠 instead.

2
https://numpy.org/doc/stable//reference/routines.polynomials-package.html
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5.3 Gaussian Sampling

A polynomial is sampled from the Gaussian distribution, by sampling the 𝑛 coefficients as

an 𝑛-dimensional discrete Gaussian as described above. For a uniform polynomial, each

coefficient is sampled uniformly from Z𝑞 . For the invertible elements, rejection sampling is

deployed. That means, a polynomial is sampled uniformly, checked whether it is invertible

and resampled until it is invertible. The probability of an invertible element can be estimated

using the decomposition of 𝑓 = 𝑋𝑛 + 1 into 𝑟 factors 𝑓𝑖 . By Theorem 2 there are

𝑓𝑖 = 𝑋
𝑛/𝑟 − 𝑎𝑖, 𝑎𝑖 ∈ Z∗𝑞, 1 ≤ 𝑖 ≤ 𝑟,

for which we have

𝑓 (𝑋 ) =
𝑟∏
𝑖=1

𝑓𝑖 mod 𝑞

and thus

Z𝑞 [𝑋 ]/𝑓 (𝑋 ) � Z𝑞 [𝑋 ]/𝑓1(𝑋 ) × ... × Z𝑞 [𝑋 ]/𝑓𝑟 (𝑋 ).

As each 𝑓𝑖 is a monic polynomial of degree 𝑛/𝑟 , Z𝑞 [𝑋 ]/𝑓𝑖 (𝑋 ) contains 𝑞𝑛/𝑟 elements for each

𝑖 . As an element in Z𝑞 [𝑋 ]/𝑓1(𝑋 ) × ... × Z𝑞 [𝑋 ]/𝑓𝑟 (𝑋 ) is invertible iff all polynomials are not

zero, there are (𝑞𝑛/𝑟 − 1)𝑟 invertible elements. For 𝑛 = 512, 𝑟 = 16, log𝑞 = 17, the chance of

a non-invertible polynomial is

1 − (𝑞
𝑛/𝑟 − 1)𝑟
𝑞𝑛

≈ 10
−163.

For larger values of 𝑛 and 𝑞, this chance only decreases. Therefore, with very high likelihood,

the rejection sampling has to perform only one sampling. Small testing of 10000 tests

reinforce that thesis. Thus, for the power of two cyclotomics with these values of 𝑞, one

might consider sampling a uniform polynomial and not checking whether it is invertible to

reduce runtime.

When it comes to the width of the discrete Guassians, if the width is a multiple of the identity,

the Gaussian can be drawn in the coefficient embedding after scaling its width with factor

1/
√
𝑛 as stated in Lemma 15. This is done for all discrete Gaussian distributions except the

one for the error
¯𝑓 . The parameter choice accounts for that and thus the given parameters

𝑡𝛽𝑇𝑘 and 𝑡𝑞𝛼𝑘 are those used in the implementation as width of the Gaussian for 𝑇 and the

errors respectively. However, for the error
¯𝑓 the variance is calculated dynamically. Its

equation in the canonical embedding is

Σ𝑓 = 𝑡
2𝛽2

𝑇 (
𝑚∑︁
𝑖=1

Σ𝑒𝑖 ) + 𝑡2𝛽2

𝑇𝑚(𝑞𝛼)
2𝐼𝑛 .

There is no formula to calculated Σ𝑒𝑖 from the coefficient embedding of 𝑒𝑖 without using the

canonical embedding. Hence, to calculate Σ𝑓 , the errors 𝑒𝑖 are canonically embedded by

calculating 𝐵𝐾 ·𝑒𝑖 for each 𝑖 . Then, the variance in the coefficient embedding is 𝐵−1

𝐾
Σ𝑓 𝐵

−𝐻
𝐾

as

stated in Lemma 15. The resulting matrix contains only real entries as Σ𝑓 has the same entry
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for the complex conjugated pairs in 𝐵−1

𝐾
, hence they cancel the imaginary part out. However,

the implementation suffers from rounding errors, which result in relatively small imaginary

parts unequal to zero. These imaginary parts are removed manually after confirming they

are small rounding errors. As the different parameter sets induce very different orders of

the values, checking the imaginary parts by comparing them to a constant value does not

work. Instead, the imaginary parts are compared to the real parts and checked that they are

multiple orders smaller. Note that this is the only occurrence of rounding errors as all other

operations are performed on integers.

5.4 Inverting RLWE

As the used cyclotomic is a power of two cyclotomic, the inversion algorithm described by

Lai, Cheung, and Chow [29] can be used to determine 𝑠 ∈ 𝑅𝑞 given 𝑏 = 𝑔𝑠 + 𝑒 with gadget

vector 𝑔 and small error 𝑒 . It is based on Babai’s nearest plane algorithm [4] and is as follows.

Let 𝑆 = (𝑠1, ..., 𝑠𝑛) be a basis of Λ⊥𝑞 (𝑔) and 𝑉 := 𝑞𝑆−𝑇 = (𝑣1, ..., 𝑣𝑛). The goal of the algorithm
is to recover 𝑠 ∈ 𝑅𝑞 from 𝑏 = 𝑔𝑠 + 𝑒 . For this, it considers all coefficients independent of

each other. The i-th coefficient is retrieved with Babai’s nearest plane algorithm, where the

input 𝑏𝑖,𝑘 ∈ Z𝑘𝑞 is the vector with the i-th coefficient of each polynomial in 𝑏. That means, if

the first index of 𝑏 is 𝑐1 + 𝑐2𝑋 + ... + 𝑐𝑛𝑋𝑛−1
, the first index of 𝑏𝑖,𝑘 is 𝑐𝑖 . The i-th coefficient 𝑧𝑖

of 𝑠 is recovered from 𝑏𝑖,𝑘 as follows.

1. Compute the Gram-Schmidt orthogonalization �̃� = (𝑣∗
1
, ..., 𝑣∗𝑛) of 𝑉 .

2. For 𝑗 = 𝑘 → 1:

a) Compute 𝑙𝑖, 𝑗 =
⟨𝑏𝑖, 𝑗 ,𝑣∗𝑗 ⟩
⟨𝑣∗
𝑗
,𝑣∗
𝑗
⟩

b) Set 𝑏𝑖, 𝑗−1 = 𝑏𝑖, 𝑗 − (𝑙𝑖, 𝑗 − ⌊𝑙𝑖, 𝑗⌉)𝑣∗𝑗 − ⌊𝑙𝑖, 𝑗⌉𝑣 𝑗

3. Return 𝑧𝑖 =
∑𝑘
𝑗=1
⌊𝑙𝑖, 𝑗⌉𝑐 𝑗 mod 𝑞, where 𝑣 𝑗 = 𝑐 𝑗𝑔 mod 𝑞

Hereby, ⌊𝑥⌉ denotes rounding 𝑥 to the nearest integer. Note that the Gram-Schmidt or-

thogonalization is only calculated once. For the basis 𝑆 , 𝐵𝑔 as in Eq. (2.3) is used. As each

polynomial in 𝐵𝑔 is a constant polynomial, so are the ones in 𝑉 . In addition, 𝑉 is a basis

of

{
𝑎𝑔 mod 𝑞 | 𝑎 ∈ 𝑅𝑞

}
[29]. Therefore, there is an 𝑐 𝑗 ∈ Z𝑞 such that 𝑣 𝑗 = 𝑐 𝑗𝑔 mod 𝑞. For

the implementation, 𝑐 𝑗 was determined by taking the first index of 𝑣 𝑗 modulo 𝑞 as 𝑔1 = 1.

Another important detail is that the vectors in the Gram-Schmidt orthogonalization are not

normalized.

For any 𝑎 ∈ 𝑅𝑘+𝑚𝑞 , 𝑐 = 𝑎𝑠 + 𝑒 is inverted as described in 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2.8.1. This means, that

𝑏 = (𝑇, 𝐼 )𝑐 , 𝑠 with 𝑏 = 𝑔𝑠 + 𝑒 is determined with the algorithm above and 𝑠 = ℎ−1𝑠 . As 𝑐 is

the cipher, it is split into 𝑐1 and 𝑐2. Therefore, the multiplication of (𝑇, 𝐼 ) is performed by

multiplying 𝑐1 with 𝑇 and adding 𝑐2.
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6 Conclusion

This work improves the current state of secure channels, which are proven secure without

the ROM by adapting the SB-KEM from Benz et al. [7] to the ring setting. In addition to

proving the correctness and security based on RLWE, concrete parameters for the new

construction are proposed. With these, the key sizes are in the orders of kilobytes, which

is a vast improvement over existing KEMs that do not use the ROM. However, it is still

significantly larger than Kyber, a standardized KEM proven secure in the ROM. The SB-KEM

is combined with the SPHINCS256 signature scheme and one-time pads to realize F𝑆𝑀𝑇 in

the UC framework using only F𝐶𝐴 as an ideal functionality. Thereby, a secure channel with

message sizes of about 69.2 KB for 87 bit and 97.3 KB for 128 bit security is proven. Lastly, a

proof of concept of the SB-KEM implemented in python confirms the theoretical results.

As the security proof of this SB-KEM is similar to the IND-CCA proof for the hybrid

scheme from Boyen, Izabachène, and Li [13], it covers many steps involved for proving

IND-CCA security for the SB-KEM. The missing detail is the binding property of Ring

LWE samples, which states that for a given 𝑎, 𝑏, there is only one 𝑠 such that it is 𝑏 =

𝑎𝑠 + 𝑒 for small 𝑒 . On the side of implementation, the proof of concept is not optimized.

Improvements in terms of runtime and required storage can be scope of future work. For

one, the decomposition described in Section 5.1 would speed up the ring operations. The

generation of the decomposition but also other calculations like the inversion algorithm

could profit from more parallelism. With these speed ups, the runtime of the SB-KEM might

be competitive to those of Kyber.
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Acronyms

CA Certificate Authority.

CRT Chinese Remainder Theorem.

d-NRLWE Decision Normal Ring Learning with Errors.

DEM Data Encapsulation Mechanism.

EUF-CMA Existential Unforgability under Chosen Message Attack.

FRD Full-Rank Difference Encoding.

ID Identity.

IND-aTAG-wCCA Indistinguishability under Selective-Tag Weakly Chosen Ciphertext Attack.

IND-aTAG-wCCA Indistinguishability under Adaptive-TagWeakly Chosen Ciphertext Attack.

IND-OT Indistinguishability under One-Time Attack.

IND-SB-CPA Indistinguishability under Sender-Binding Chosen Plaintext Attack.

IND-SB-CPA𝑆𝐵−𝐾𝐸𝑀 Indistinguishability under Sender-Binding Chosen Plaintext Attack.

IND-CCA Indistinguishability under Chosen Ciphertext Attack.

KB Kilobytes.

KDF Key Derivation Function.

KEM Key Encapsulation Mechanism.

LWE Learning with Errors.

MB Megabytes.

OW-CPA One-Way under Chosen-Plaintext Attacks.

PKE Public Key Encryption Scheme.

PPT Probabilistic Polynomial Time.
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Acronyms

RCCA Replayable Chosen Ciphertext Attack.

RLWE Ring Learning with Errors.

ROM Random Oracle Model.

sid Session Identifier.

s-NRLWE Search Normal Ring Learning with Errors.

SB-KEM Sender-Binding Key Encapsulation Mechanism.

SMT Secure Message Transfer.

ssid Subsession identifier.

TBE Tag Based Encryption.

TLS Transport Layer Security.

UC Universal Composability.
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[25] Kiyosi Itō and Nihon Sūgakkai. Encyclopedic Dictionary of Mathematics. Encyclopedic
Dictionary of Mathematics Bd. 1. MIT Press, 1993. isbn: 9780262590204. url: https:

//books.google.de/books?id=WHjO9K6xEm4C.

64

https://eprint.iacr.org/2024/463
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/CSFW.2004.1310743
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.1137/S0097539702403773
https://eprint.iacr.org/2016/782
https://books.google.de/books?id=WHjO9K6xEm4C
https://books.google.de/books?id=WHjO9K6xEm4C


[26] Dan Kalman. “The Generalized Vandermonde Matrix”. In:Mathematics Magazine 57.1
(1984), pp. 15–21. doi: 10.1080/0025570X.1984.11977069.

[27] Eike Kiltz. “Chosen-Ciphertext Security from Tag-Based Encryption”. In: Theory of
Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 581–600. isbn:

978-3-540-32732-5.

[28] Neal Koblitz and Alfred J Menezes. “The Random Oracle Model: a Twenty-Year

Retrospective”. In: Designs, Codes and Cryptography 77 (2015), pp. 587–610. doi:

10.1007/s10623-015-0094-2.

[29] Russell WF Lai, Henry KF Cheung, and Sherman SM Chow. “Trapdoors for Ideal

Lattices with Applications”. In: Information Security and Cryptology. Cham: Springer

International Publishing, 2014, pp. 239–256. isbn: 978-3-319-16745-9.

[30] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “A Toolkit for Ring-LWE

Cryptography”. In: Advances in Cryptology – EUROCRYPT 2013. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 35–54. isbn: 978-3-642-38348-9.

[31] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and Learn-

ing with Errors Over Rings”. In: Advances in Cryptology–EUROCRYPT 2010. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–23. isbn: 978-3-642-13190-5.

[32] Vadim Lyubashevsky and Gregor Seiler. “Short, Invertible Elements in Partially Split-

ting Cyclotomic Rings and Applications to Lattice-Based zero-knowledge Proofs”. In:

Advances in Cryptology – EUROCRYPT 2018. Cham: Springer International Publishing,

2018, pp. 204–224. isbn: 978-3-319-78381-9.

[33] Philip MacKenzie, Michael K Reiter, and Ke Yang. “Alternatives to Non-Malleability:

Definitions, Constructions, and Applications”. In: Theory of Cryptography. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 171–190. isbn: 978-3-540-24638-1.

[34] MATZOV. Report on the Security of LWE: Improved Dual Lattice Attack. https://
zenodo.org/records/6412487. Accessed 08-24-2024. 2022.

[35] Daniele Micciancio and Chris Peikert. “Trapdoors for Lattices: Simpler, Tighter, Faster,

Smaller”. In: Advances in Cryptology – EUROCRYPT 2012. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 700–718. isbn: 978-3-642-29011-4.

[36] Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions Based

on Gaussian Measures”. In: SIAM Journal on Computing 37.1 (2007), pp. 267–302. doi:

10.1137/S0097539705447360.

[37] Frédérique Oggier and Emanuele Viterbo. Algebraic Number Theory and Code De-
sign for Rayleigh Fading Channels. Foundations and trends in communications and

information theory. Now, 2004. isbn: 9781933019079.

[38] Dingyi Pei, Arto Salomaa, and Cunsheng Ding. Chinese Remainder Theorem: Applica-
tions In Computing, Coding, Cryptography. World Scientific Publishing Company, 1996.

isbn: 9789814498364. url: https://books.google.de/books?id=RQLtCgAAQBAJ.

[39] Chris Peikert. “How (Not) to Instantiate Ring-LWE”. In: Security and Cryptography
for Networks. Cham: Springer International Publishing, 2016, pp. 411–430. isbn: 978-

3-319-44618-9.

65

https://doi.org/10.1080/0025570X.1984.11977069
https://doi.org/10.1007/s10623-015-0094-2
https://zenodo.org/records/6412487
https://zenodo.org/records/6412487
https://doi.org/10.1137/S0097539705447360
https://books.google.de/books?id=RQLtCgAAQBAJ


Bibliography

[40] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryptog-

raphy”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40. doi: 10.1145/1568318.
1568324.

[41] Ronald L Rivest, Adi Shamir, and Leonard Adleman. “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems”. In: Communications of the ACM 21.2

(1978), pp. 120–126. doi: 10.1145/359340.359342.

[42] Peter W Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete

Logarithms on a Quantum Computer”. In: SIAM review 41.2 (1999), pp. 303–332. doi:

10.1137/S0036144598347011.

[43] National Institute of Standards and Technology. “Module-Lattice-Based Key-Encapsulation

Mechanism Standard”. In: Federal Information Processing Standards Publication (2024).

doi: 10.6028/NIST.FIPS.203.

[44] National Institute of Standards and Technology. “Stateless Hash-Based Digital Signa-

ture Standard”. In: Federal Information Processing Standards Publication (2024). doi:

10.6028/NIST.FIPS.205.

[45] Shengfeng Xu and Xiangxue Li. “Chosen-Ciphertext Secure Key Encapsulation Mech-

anism in the Standard Model”. In: IEEE Access 9 (2021), pp. 13683–13690. doi: 10.

1109/ACCESS.2021.3051047.

[46] Xiaopeng Yang,WenpingMa, and Chengli Zhang. “Efficient Chosen Ciphertext Secure

Key EncapsulationMechanism in StandardModel over Ideal Lattices”. In: International
Journal of Computer Mathematics 94.5 (2017), pp. 866–883. doi: 10.1080/00207160.
2016.1149578.

[47] Yu Yu and Jiang Zhang. “Cryptography with Auxiliary Input and Trapdoor from

Constant-Noise LPN”. In: Advances in Cryptology – CRYPTO 2016. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 214–243. isbn: 978-3-662-53018-4.

66

https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/359340.359342
https://doi.org/10.1137/S0036144598347011
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.1109/ACCESS.2021.3051047
https://doi.org/10.1109/ACCESS.2021.3051047
https://doi.org/10.1080/00207160.2016.1149578
https://doi.org/10.1080/00207160.2016.1149578

