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Abstract
Differential Privacy (DP) is the de facto standard privacy metric

in private learning. Its robust mathematical definition makes it

especially appealing for global data analytics without compromising

individual privacy.

However, DP resilience against state-of-the-art attacks is not

formalized consistently, and the interpretation of the privacy im-

plications of parameter choices is not intuitive. This formalization

is relevant because DP relies on the choice of a privacy budget,

which is crucial in obtaining a good trade-off between the privacy

of the individuals in the dataset and the utility of the results for

data analysis.

This paper presents a systematic overview of theoretical bounds

obtained in the literature on DP resilience against three types of

attacks: the membership-inference, the attribute-inference, and the

data reconstruction attacks. For each attack, we introduce tighter

theoretical bounds and analyze the limitations of existing perfor-

mance metrics. To overcome these limitations, we propose a new

attack performance metric: Unbiased Reconstruction Robustness. In

addition, we prove the relation between Unbiased Reconstruction

Robustness and the already existing metrics, showing its consis-

tency. Finally, we prove a new bound for this metric in the presence

of DP.

CCS Concepts
•Mathematics of computing→ Probabilistic algorithms; Hypoth-
esis testing and confidence interval computation; • Security and
privacy→ Data anonymization and sanitization.
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1 Introduction
While data analytics applications improve economic and societal

welfare, they also pose an increasing risk to individual privacy.

Several real-world attacks on private data have shown the risk of

publishing pseudonymized data [30, 26, 6, 7, 9, 31]. To deal with the

conflicting goals of extracting data statistics without harming indi-

viduals’ private information, several techniques and privacy notions

have been proposed [19]. Among them, Differential Privacy (DP)

has been established as the standard notion for privacy-preserving

data analysis [8], particularly in the field of private learning [13, 28,

20].

DP allows us to learn statistics about the population while pro-

viding strict privacy guarantees. The privacy guarantee of DP is

parameterized by the privacy budget 𝜀. The privacy budget con-

trols how similar the probabilities of observing the same output

are, independent of whether an individual participated in the data

collection or not [13]. The choice of this parameter is key. If 𝜀 is too

large, private information will be disclosed. Choosing 𝜀 too small

can significantly reduce the usefulness of the mechanism’s output

for data analysis [2].

DP has several desirable properties, such as the assumption of a

strong adversary, robustness to post-processing, and composabil-

ity [13]. However, its weak point compared to other notions is the

lack of a precise connection between the privacy parameters and

the interpretation of which privacy guarantees the user obtains [5,

23]. Among practitioners, there is no clear consensus on how to

choose the privacy budget [11, 23], and any scientific work that

seeks to explain the impact of the choice of 𝜀 focuses on specific

algorithms or settings (e.g., [25]).

The missing interpretation of DP parameters is particularly tan-

gible in the study of attack resilience of DP learning mechanisms.

We find three particular privacy attacks in the context of Machine

Learning (ML): Membership Inference Attacks (MIAs) [29], At-

tribute Inference Attacks (AIAs) [35], and Data Reconstruction

Attacks (DRAs) [1]. While these attacks can be applied to any infer-

ence process [36], they have been extensively studied in ML appli-

cations. Several empirical studies [2, 37, 34] show their success over

unprotected ML algorithms and demonstrate a tendency of DP to

be an effective mitigation strategy in practice. However, achieving

good model performance usually requires choosing larger privacy

budgets than is preferable from a formal perspective, and the exact

relationship between chosen privacy budgets and achieved protec-

tion remains an open question. This complicates the application of

DP as it is unclear what budget is required to prevent a particular

attack.
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Due to the need to understand the ability of attacks to infer

private information about participants, various attack performance

metrics have been introduced. An attack performance metric is a

measurement tool used to quantify the effectiveness and impact of

privacy attacks on a machine learning model. The particular case

of MIAs has been widely studied, and the standard performance

metric is the membership advantage [35]. Several bounds on the

advantage of a MIA under DP exist [18, 35, 14]. However, other

attacks, such as AIAs, have no general bounds on their performance

under DP protection. In the case of DRAs, we find one attack perfor-

mance metric, ReRo [1]. Balle et al. [1] provide a formal relationship

between this metric and DP, establishing the only general criterion

so far for quantifying the mitigation of arbitrary attack success due

to DP, as we discuss in Section 4.

However, the relationship between 𝜀 and ReRo proved in [1] is

generally not tight, leading to an overestimation of privacy risk and

thus an unnecessary loss of utility. Another problem is that ReRo

does not have the same interpretation as the state-of-the-art perfor-

mance metrics for MIAs and AIAs. Performance for these attacks is

measured with advantages that quantify the amount of information

(either about the membership or the attributes) of a target that is

leaked specifically by participating in the training of the mechanism

M. ReRo, on the other hand, is a success probability. Therefore,

the results of ReRo are difficult to compare with previous work

since it measures a different aspect of the corresponding attack

performance (see Section 4.3). In particular, we show in Section 6

that ReRo cannot distinguish whether an attack succeeds in recon-

structing a participant’s private information because this target

information has been learned by the mechanism (privacy leakage)

or because of some external source of information unrelated to

participation in the training, such as the global distribution of the

population (privacy fallacy). Hence, ReRo may overestimate the

privacy risk and is not directly comparable to existing metrics. Thus,

its ability to conclude which type of attack is particularly effective

under which learning algorithms and parameter choices for DP

is limited. Given that the choice of parameters directly affects the

privacy-utility trade-off, this issue needs further investigation [2].

In this work, we establish a general framework for assessing

the protection that DP provides against attacks on differentially

private learning. This framework allows us to establish consistent

comparisons between the protection against different attacks and a

precise interpretation that can be used as a criterion for choosing

the privacy parameters.

To this end, we perform a systematization of the adversarial

bounds of DP provided in the state-of-the-art research for MIAs,

AIAs, and DRAs. We provide interpretations and relationships for

the existing attack performance metrics and the bounds on these

performances derived from DP. We describe the current limitations,

including the overestimation of privacy leakage and inconsisten-

cies in the state-of-the-art research. In addition, we prove a tighter

bound for (0, 𝛾)-ReRo under DP protection, improving on the prob-

lem of the previous bound [1] that underestimates DP protection.

Finally, to overcome the discussed limitations, we propose a new

attack performance metric: Unbiased Reconstruction Robustness

(U-ReRo). We prove that DP bounds U-ReRo for arbitrary attacks

and give a bound that relates U-ReRo directly to 𝜀. Consequently, we

provide U-ReRo as a useful criterion for 𝜀-selection in DP learning

that overcomes the problems of ReRo.

Compared to ReRo, U-ReRo does not lose any generality since it

applies to any data distribution and attack against private learning.

Additionally, it overcomes the problem of the privacy fallacy, as

explained in Section 7. U-ReRo compares the probability that the

adversary correctly reconstructs the target recordwhen it is a record

from the dataset with the probability of correctly reconstructing a

record drawn from the underlying distribution. In this way, U-ReRo

only gives the adversary credit for correctly reconstructing the

participants when it fails to reconstruct non-participants. ReRo,

on the other hand, can be arbitrarily large for an attack where

the adversary’s reconstruction ability is the same for participants

and non-participants because the success comes from information

unrelated to participation in training, such as the global distribution

of the population. Therefore, U-ReRo outperforms the existing

metric for estimating the actual privacy risk.

Since U-ReRo’s estimate of privacy risk is more accurate than

ReRo’s, it allows for the selection of a higher 𝜀. We show in Section 7

that U-ReRo provides a significantly lower risk value. Hence, by

using our metric, practitioners can select larger 𝜀 values, which

imply less noise in DP mechanisms and thus more utility, while

maintaining the same privacy risk.

Moreover, U-ReRo is not a success probability like ReRo but

an advantage like the standard performance metrics for MIA (the

membership advantage) and AIA (the attribute advantage). We

show the consistency of U-ReRo with the previous advantages by

proving that when applied to the particular scenario in which these

metrics were defined, it yields the same values. We conclude that

U-ReRo is a generalization of the widely used membership and

attribute advantages, thus overcoming the inconsistency of ReRo.

The contributions of this paper are:

• We systematize the existing formal knowledge about DP

attack resilience and expose the limitations of ReRo as an

existing performance metric. We show the divergence be-

tween the interpretation of this metric and the other metrics

in the literature, pointing out its overestimation of privacy

leakage due to the privacy fallacy.

• We prove a tighter bound for (0, 𝛾)-ReRo, allowing for better
estimation and smaller consumption of the privacy budget.

• We define the new attack performance metric U-ReRo and

prove a result that directly relates U-ReRo and 𝜀. Our theo-

rem provides a novel criterion for choosing 𝜀 in DP learning.

Compared to ReRo, it gives a more accurate assessment of

the privacy risk of an individual’s participation, leading to an

improvement in the privacy-utility trade-off. Furthermore,

we prove the formal relationship between U-ReRo and the

attribute and membership advantages, thus showing its con-

sistency.

• We use U-ReRo to prove a novel bound for the advantage of

an arbitrary AIA under DP. We are the first in the literature

to do so.

We provide the theorems and proof intuitions throughout the

main body of this work. All formal proofs of our results can be

found in Appendix A.

 

156



Analysis and Measurement of Attack Resilience of Differential Privacy WPES ’24, October 14–18, 2024, Salt Lake City, UT, USA

2 Related Work
Studies on attacks on private data under DP have a strong focus on

ML. In this case, the adversary has access to a model trained on a

sensitive database and possibly additional information (such as the

distribution from which its training data was drawn). The attack

objective is to infer private information about individuals in the

training data.

The most studied privacy attacks against training data in the

context of DP are MIAs. Their goal is to determine if a specific

record is a member of the data used to train a given model. MIAs

have been analyzed both empirically [2, 37, 34] and formally. We

can find several theoretical bounds in literature (e.g., [35, 27, 18]).

AIAs are comparatively less explored and are usually studied

from an empirical rather than a theoretical standpoint (e.g., [15,

33]). Their goal is to infer an attribute of an individual record

that is assumed to be a member of the training data of a given

model. Explicit theoretical bounds for this attack remain to be

established. The only theoretical bounds for AIAs correspond to

the particular scenario in which the AIA is either performed as a

MIA [35] or is analyzed under special circumstances such as data

dependencies [32]. In this work, we overcome this issue by proving

a bound on the attribute advantage independently of the attack

strategy.

Recently, Balle et al. [1] formulated DRAs as a generalization of

possible attacks where the information inferred is compared to the

ground truth with an error function. They introduce the concept of

reconstruction robustness to analyze privacy leakage under recon-

struction attacks and subsequently demonstrate that reconstruction

robustness implies DP and vice versa. The results yield theoreti-

cal bounds for DP under DRAs. However, the bound provided for

this metric is not generally tight. We improve on this by proving a

tighter bound under perfect reconstruction. Furthermore, we show

the intrinsic limitations of ReRo in terms of interpretability due to

the privacy fallacy and its inconsistency with the membership and

attribute advantages.

Other aspects of attacks on private data have been presented

in the literature. One field of research focuses on the guarantees

that DP can provide under data dependencies and demonstrates

that established guarantees can be undermined if the entries in

the dataset are correlated (e.g. [32, 37]). Another related research

direction seeks implementation errors in DP algorithms that result

in violations of the theoretical guarantees (e.g. [3, 10]). Finally,

even if DP algorithms are implemented correctly, adversaries can

still exploit side-effects like computation time and memory usage

to gather information on a dataset [17]. These references present

relevant threats to the attack resilience of DP. However, since these

threats result from side effects like algorithmic implementation and

data dependencies, they are beyond the scope of this paper.

3 Background
In this section, we formalize our understanding of DP in the context

of private learning. A full overview of the notation used in this

paper can be found in Table 1.

Notation Meaning

𝑧 = (𝑥,𝑦) ∈ X × Y Data point with attributes 𝑥 and response 𝑦

Z = X ×Y Data domain

𝑍 ∼ 𝜋 Random variable following distribution of data records 𝜋

𝜋𝑛 Distribution over datasets of size 𝑛

Z𝑛
Space of datasets of size 𝑛

𝐷 Dataset

M : Z𝑛 → Θ Randomized learning mechanism

𝜃 ∼ M(𝐷) Random variable following the distribution

of output of the model trained on 𝐷

𝑂 ≡ M𝐷 Output model trained on 𝐷

𝐷− Training database missing one record

M𝑧 ≡ M(𝐷𝑧) Model trained on 𝐷− ∪ {𝑧}
𝐴 Attack

Table 1: Table of Notation.

3.1 Differential Privacy
DP aims to hide the record of any participant in a database when

an analyst extracts statistics about the whole population. It im-

plies that the ability of an adversary to learn private information

about individuals is limited. This limit on the inference abilities is

established as follows:

Definition 3.1 ((𝜀, 𝛿)-Differential Privacy [12]). A randomized

mechanismM : Z𝑛 → Θ is (𝜀, 𝛿)-differentially private if for all 𝑆 ⊆
Θ and for every pair of datasets 𝐷,𝐷′ ∈ Z𝑛

such that 𝑑𝐻 (𝐷, 𝐷′) ≤
1:

Pr[M(𝐷) ∈ 𝑆] ≤ e
𝜀
Pr[M(𝐷′) ∈ 𝑆] + 𝛿

where 𝑑𝐻 (𝐷, 𝐷′) denotes the Hamming distance.

The Hamming distance [24] returns the number of records that

need to be changed to transform 𝐷 into 𝐷′. Two databases 𝐷 and

𝐷′ are called bounded-neighboring, if it holds that 𝑑𝐻 (𝐷,𝐷′) = 1.

Note that variations of DP under other neighborhood definitions

exist. For instance, if we choose the symmetric difference between

multisets instead of the Hamming distance, we obtain unbounded
DP [22]. In this paper, we will only consider bounded DP.

Informally, given a DP mechanismM, Definition 3.1 tells us that

the probability thatM(𝐷) outputs 𝑂 is very close to the probabil-

ity thatM(𝐷′) outputs 𝑂 for any pair of neighboring databases,

where “very close” is determined by 𝜀. Thus, it cannot be easily

distinguished whetherM has been executed on 𝐷 or 𝐷′ based on

its output. Since 𝐷 and 𝐷′ only differ in one record, it follows that

the statistical significance of any inference about that record is

bound.

The bound on the inference ability is not a binary attribute

but a parameterized one. The parameters are the privacy budget

𝜀 and the parameter 𝛿 . The privacy budget controls the level of

indistinguishability between outputs provided by mechanismM.

A lower 𝜀 characterizes a stronger guarantee since the probabilities

of observing 𝑂 under 𝐷 and observing 𝑂 under 𝐷′ are closer.
The parameter 𝛿 introduces the possibility that the privacy guar-

antee postulated by the privacy budget 𝜀 may not hold in all cases.

Consequently, 𝛿 allows certain violations of 𝜀-DP while character-

izing how likely such failures are to occur. If we do not allow any

violations and 𝛿 = 0, we speak of pure DP.
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3.2 Learning algorithms in the context of DP
We introduce here the basic notation and concepts from learning

theory and its relation with DP following [1].

Let 𝑧 = (𝑥,𝑦) ∈ X×Y ≡ Z be a data record where 𝑥 represents a

set of features or attributes and𝑦 a response. We consider a learning

algorithmM : Z𝑛 → Θ such that, given a training database 𝐷 ∈
Z𝑛

, it produces a trainedmodel𝑂 =M𝐷 ∈ Θ. By abuse of notation,
we will denoteM(𝐷) as the distribution of output models when

trained in 𝐷 , and 𝜃 ∼ M(𝐷) as the random variable.

The goal ofM is to produce a trained modelM𝐷 that approxi-

mately minimizes the expected value of a loss function 𝑙 over 𝐷 . If

𝑧 = (𝑥,𝑦) ∈ 𝐷 , the loss function 𝑙 (M𝐷 (𝑥), 𝑧) measures how much

M𝐷 (𝑥) differs from 𝑦.

We assume an underlying distribution of data records 𝜋 , such

that each record 𝑧 is drawn independently from 𝑍 ∼ 𝜋 . Therefore,

the training data follows the distribution 𝜋𝑛 .

We consider the training data 𝐷 as the target of the attack. A

training algorithmM is 𝜀-DP when for all training databases 𝐷,𝐷′

such that 𝑑𝐻 (𝐷, 𝐷′) ≤ 1 and for all possible training algorithms

𝑂 = Θ it holds that:

Pr(M(𝐷) = 𝑂) ≤ e
𝜀
Pr(M(𝐷′) = 𝑂) .

The protected output is the combination of all training steps,

in other words, the trained model. This model can subsequently

be queried or analyzed in other ways at liberty. Here we make an

abuse of notation that will hold for the rest of the paper in which

Pr(M(𝐷) = 𝑂) represents the density function in the continuous

or the probability function in the discrete case.

4 Survey of DP Resilience Bounds against
Attacks on Private Training Data

In this section, we present an overview of the existing attacks

on training databases and the proven resilience bounds obtained

when the learning mechanism satisfies DP. We present the flaws

and limitations of current attack performance metrics and generic

bounds, which motivate the definition and analysis of a consistent

general attack performance metric in Section 7.

Adversaries are commonly distinguished in terms of the infor-

mation available for their attack. The first distinction is whether the

adversary has white-box or black-box access to the trained mecha-

nismM𝐷 . A white-box attack has information about the internal

structure ofM𝐷 while a black-box attack only knows input-output

pairs (𝑥,M𝐷 (𝑥)) derived from querying M𝐷 [16]. The second

distinction is how much information the adversary already has

about the target dataset and record. Following the state-of-the-art

nomenclature, we classify them as follows:

Definition 4.1 (Weak Adversary). LetM : Z𝑛 → Θ be a learning

algorithm and 𝑂 = M𝐷 be the output ofM after training with

dataset 𝐷 of size 𝑛. A Weak Adversary has access to

(1) the data distribution 𝜋𝑛 ,

(2) any released parameters pertaining to the output trained

model 𝑂 (if white-box) or the pairs (𝑥,𝑂 (𝑥)) (if black box).

Definition 4.2 (Informed Adversary [1]). LetM : Z𝑛 → Θ be a

learning algorithm and 𝑂 =M𝐷 be the output ofM after training

with dataset 𝐷 of size 𝑛. Let 𝑧 ∈ 𝐷 be an arbitrary record and

𝐷− = 𝐷 \ {𝑧} denote the remaining records. An Informed Adversary
has access to

(1) the fixed dataset 𝐷− and the distribution of data records 𝜋 ,

(2) any released parameters pertaining to the output trained

model 𝑂 and the mechanismM,

(3) (optional) background-knowledge aux about the unknown

record 𝑧.

Definition 4.3 (Strong Adversary [18]). LetM : Z𝑛 → Θ be a

learning algorithm and 𝑂 =M𝐷 be the output ofM after training

with dataset 𝐷 of size 𝑛. Let 𝑧 ∈ 𝐷 be an arbitrary record and

𝐷− = 𝐷 \ {𝑧} denote the remaining records. A Strong Adversary
has access to

(1) the fixed dataset 𝐷− and the distribution of data records 𝜋 ,

(2) any released parameters pertaining to the output trained

model 𝑂 and the mechanismM,

(3) the only two possible values {𝑧0, 𝑧1} for record 𝑧.

Complementary to the previous classification, we can look at the

adversary’s goal. In the literature, we find three models of attacks

against training data: MIAs [29], AIAs [35], and DRAs [1]. Given a

target record, MIAs aim to correctly determine whether this record

was part of the training database or not. The AIA seeks to complete

the partial information available for the target record that partici-

pated in the training database. Depending on the target attribute,

this could be a single bit of information (in the case of a binary

attribute like positive/negative in a medical test) or several bytes

worth of information (for example, the address). The DRA is the

most general attack and aims to infer any quantity of information

from a record in the dataset. The formalization of this attack can

also be applied to MIAs and AIAs, as we will show in Section 8

where we give bounds on the attack resilience of MIAs and AIAs

by modeling them as particular cases of DRAs.

4.1 Membership Inference Attacks
Among the listed attacks, MIAs have been investigated most con-

cerning the protection offered by DP (e.g., [14, 27, 18, 35]). We

find a variety of bounds for the accuracy of a MIA when DP is

enforced. Each establishes a direct relation between the DP pri-

vacy parameters (𝜀, 𝛿) and the maximum theoretical accuracy of

the attack.

The first bound was derived by Yeom et al. [35] for pure DP.

For their bound, they assume black-box access to the model and

consider a weak adversary (Definition 4.1). They design the mem-

bership experiment for a weak adversary to derive their bound.

The experiment proceeds as follows: It receives the distribution

𝜋𝑛 from which the dataset 𝐷 is sampled as input. 𝐷 is the training

dataset for the mechanismM that produces the trained mechanism

M𝐷 . The data owner then chooses a binary variable 𝑏 at random.

This variable determines the type of record 𝑧 that the adversary

receives. If𝑏 is zero, the adversary receives amember record (𝑧 ∈ 𝐷),

otherwise a record is drawn from the underlying distribution of

data points (𝑧 ∼ 𝜋 ). Finally, the adversary carries out the attack

𝐴(𝑧,M𝐷 , 𝜋), which outputs a bit indicating the membership status

of 𝑧. The membership experiment is formalized in Definition 4.4.
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Definition 4.4 (Weak Membership Experiment [35]). Let A be an

attack,M a learning algorithm and 𝜋𝑛 a distribution over databases.

The membership experiment proceeds as follows:

(1) Sample 𝐷 ∼ 𝜋𝑛 and letM𝐷 =M(𝐷).
(2) Choose 𝑏 ← {0, 1} uniformly at random.

(3) If 𝑏 = 0, draw 𝑧 ∈ 𝐷 , else draw 𝑧 ∼ 𝜋 .

(4) Exp
MIA (𝐴,M, 𝑛, 𝜋) = 1 if𝐴(𝑧,M𝐷 , 𝜋) = 𝑏, and 0 otherwise.

The success of a MIA is commonly measured with the mem-

bership advantage as per Definition 4.5. It expresses how well an

adversary can distinguish between a record from the database 𝑧 ∈ 𝐷
and a record sampled from the data distribution 𝑧 ∼ 𝜋 due to the

access to the trained model.

Definition 4.5 (Membership Advantage). Let A be the attack de-

scribed in Definition 4.4. The membership advantage for the mem-

bership inference attack is defined as

AdvMIA (𝐴,M, 𝜋) = 2 Pr[ExpMIA (𝐴,M, 𝑛, 𝜋) = 1] − 1.

Note that if we model our problem as hypothesis testing where

𝑏 = 0 is the null hypothesis (𝑧 belongs to the database) and 𝑏 = 1 is

the alternative hypothesis (𝑧 was drawn from the distribution of

possible data records), the membership advantage can be expressed

as the true positive rate minus the false positive rate:

Adv𝑀𝐼𝐴 = Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

(
Pr

𝑍∼𝐷
(𝐴(𝜃, 𝑍, 𝜋) = 0) − Pr

𝑍∼𝜋
(𝐴(𝜃, 𝑍, 𝜋) = 0)

)
= Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

(𝐴(𝜃 ) = 0|𝑏 = 0) − Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

(𝐴(𝜃 ) = 0|𝑏 = 1) (1)

Remark. An advantage ranges between -1 and 1 since it is a sub-

traction of probabilities. In particular, the membership advantage

does not give the adversary credit for correctly identifying a point

drawn from 𝜋 (i.e., 𝑏 = 1), even if it is a member of 𝐷 . As a result,

the maximum advantage that an adversary can hope to achieve is

1 − 𝜇 (𝑛, 𝐷) where 𝜇 (𝑛, 𝐷) = Pr𝐷∈𝜋𝑛,𝑧∼𝜋 [𝑧 ∈ 𝐷] is the probability
of resampling an individual from the training set into the general

population [35]. In a weak membership experiment, we expect the

set of possible members with size 𝑛 to be large. Then, 𝜇 (𝑛, 𝐷) has
almost no effect. However, we will see that the stronger the attack

gets, i.e., the lower the number of potential members, the larger

𝜇 becomes. In the extreme case of a strong membership inference

attack, it results in 𝜇 (𝐷, 2) ≥ 1/2.
The success of a weak membership experiment under DP private

learning was studied by Yeom et al. who obtained the first bound:

AdvMIA (𝐴,M, 𝑛,D) ≤ e
𝜀 − 1

Later on, this bound was improved by Erlingsson et al.:

Theorem 4.6 (Upper Bounds for Weak MIAs under Pure

DP [14]). LetM be an 𝜀-DP mechanism and A an attack. The mem-
bership advantage AdvMIA satisfies

AdvMIA (𝐴,M, 𝑛,D) ≤ 1 − e−𝜀

Therefore, the probability that the adversary can correctly distin-

guish between members and non-members of a dataset is limited

directly by the privacy budget 𝜀. The higher 𝜀 becomes, the weaker

this guarantee is.

Humphries et al. [18] improve the bound given by Erlingsson

et al. [14] and introduce a tighter bound under a strong adversary

assumption (Definition 4.3). The strong adversary MIA experiment

is a particular case of the weak adversary experiment and can be

formalized as follows:

Definition 4.7 (Strong Membership Experiment with Resampling).
Let A be an attack,M a learning algorithm and 𝜋 a distribution

over {𝑧0, 𝑧1}. The membership experiment proceeds as follows:

(1) Sample 𝑧′ ∼ 𝜋 and letM𝑧′ =M(𝐷 ∪ {𝑧′}).
(2) Choose 𝑏 ← {0, 1} uniformly at random.

(3) If 𝑏 = 0, draw 𝑧 = 𝑧′, else draw 𝑧 ∼ 𝜋 .

(4) Exp
MIA (𝐴,M, 𝑛, 𝜋) = 1 if𝐴(𝑧,M𝑧′ , 𝜋) = 𝑏, and 0 otherwise.

Note that the reason for allowing resampling 𝑧 ∼ 𝜋 when 𝑏 = 1

is to measure the degree to whichM𝐷 reveals membership and

not the effect of any prior background knowledge of 𝐷 encoded in

𝜋 [35].

Therefore, for a strong adversary under uniform priors, we can

simplify the experiment as proposed in [18]:

Definition 4.8 (Simplified Strong Membership Experiment [18]).
Let 𝐴𝑠

be an attack,M a learning algorithm and 𝜋𝑛 a distribution

over databases. The membership experiment proceeds as follows:

(1) 𝐴𝑠
receives 𝐷− , {𝑧0, 𝑧1} and 𝜋 .

(2) Choose 𝛼 ← {0, 1} uniformly at random.

(3) Train 𝑂 =M𝐷𝑧𝛼
.

(4) Exp
𝑀𝐼𝐴
𝑠 (𝐴,M, 𝜋) = 1 if 𝐴𝑠 (M𝐷𝑧𝛼

) = 𝛼 , and 0 otherwise.

Applying Definition 4.12 to this stronger experiment, we get the

advantage of a strong membership experiment:

Adv
𝑠
MIA

= 2 Pr[ExpMIA

𝑠 ] − 1 (2)

Note that, as we prove in Appendix B, we have the following

relationship between the advantage of a strong membership ex-

periment with resampling (Definition 4.4) and without resampling

(Definition 4.7):

AdvMIA = 2 Pr[Exp𝑀𝐼𝐴] − 1 = Pr[Exp𝑀𝐼𝐴
𝑠 ] − 1

2

=
1

2

Adv
𝑠
𝑀𝐼𝐴

This is coherent with the fact that AdvMIA is upper-bounded by
1

2
in

a strong membership experiment with resampling (cf. Section 4.1).

Adv
𝑠
MIA

, on the other hand, is upper-bounded by 1 when the adver-

sary always identifies themembership correctly and lower-bounded

by 0 when the adversary decides randomly. We call Adv
𝑠
MIA

the

strong membership advantage.

Humphries et al. [18] prove a bound of the strong membership

advantage that holds for all 𝜀 ≥ 0 and 0 ≤ 𝛿 ≤ 1 [18]. This bound

is stated in Theorem 4.9.

Theorem 4.9 (Upper Bound for MIAs under (𝜀, 𝛿)-DP [18]).

LetM be an (𝜀, 𝛿)-DP mechanism and 𝐴 an attack carried out by a
strong adversary. Then, the membership advantage Adv𝑀𝐼𝐴 satisfies

Adv
𝑆
𝑀𝐼𝐴 (𝐴,M, 𝑛,D) ≤ e

𝜀 − 1 + 2𝛿
e
𝜀 + 1 .

Note that Humphries et al.’s bound is tighter than the previously

discussed bounds for 𝛿 = 0. Moreover, they prove that their bound

also holds for the weakest adversary where the joint distribution

of a sequence of 𝑛 members and one non-member does not depend

on the order of the sequence.
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4.2 Attribute Inference Attacks
In the case of AIAs, instead of inferring the membership status of a

fully known record 𝑧, the adversary aims to complete the informa-

tion they have available on 𝑧 by inferring a target attribute of this

record [1]. Formally, the data point is now represented as a triple

𝑧 = (𝑣, 𝑡, 𝑦) where (𝑣, 𝑡) = 𝑥 ∈ X. 𝑣 describes the known features,

𝑡 the target attribute, and 𝑦 ∈ Y the output under mechanism

M𝐷 . A fixed function 𝜙 with domainZ describes the knowledge

of the adversary about a given record, 𝜙 (𝑧) = 𝑣 . The function 𝜑 (𝑧)
describes the correct value of the target attribute 𝑡 . The attribute

experiment is formalized in Definition 4.10.

Definition 4.10 (Weak Attribute Experiment [35]). Let 𝐴 be an

attack, 𝑛 a positive integer and 𝜋𝑛 a distribution over databases.

The attribute experiment proceeds as follows:

(1) Sample 𝐷 ∼ 𝜋𝑛 .

(2) Choose 𝑏 ← {0, 1} uniformly at random.

(3) If 𝑏 = 0, draw 𝑧 ∈ 𝐷 , else draw 𝑧 ∼ 𝜋 .

(4) Exp
AIA (𝐴,𝜙 (𝑧),M, 𝜋) = 1 if 𝐴(𝜙 (𝑧),M𝐷 , 𝜋) = 𝜑 (𝑧), and 0

otherwise.

The success of an AIA is also measured by an advantage, defined

in Definition 4.11. It measures the amount of information about the

target attribute 𝑡 leaked by mechanismM. The attribute advantage

compares the probability that the adversary successfully identifies

𝑡 when 𝑧 is a record from the dataset 𝐷 with the probability of

correctly identifying 𝑡 for a record drawn from the underlying

distribution 𝜋 . For instance, if the adversary generally has a high

chance of guessing the attribute correctly, the attribute advantage

will be lower because the probability of correctly inferring the value

of the target attribute for a record from the underlying distribution

increases. This is done because we are interested specifically in the

information leaked byM.

Definition 4.11 (Attribute Advantage [35]). The attribute advan-
tage of 𝐴 is defined as

AdvAIA (𝐴,M, 𝜋) =

Pr[ExpAIA (𝐴,M, 𝜋) = 1|𝑏 = 0] − Pr[ExpAIA (𝐴,M, 𝜋) = 1|𝑏 = 1] .

The previous section established that DP protects against MIAs

for certain values of 𝜀 and 𝛿 . However, the only formal adversarial

bound for AIAs that has been established applies when this attack

is performed using a MIA as a baseline. This is not the only strategy

to run an AIA but a particular possibility.

In essence, the attack tries all possible values 𝑡𝑖 for the target

attribute 𝑡 and uses them to complete a candidate record 𝑧𝑖 =

(𝑣, 𝑡𝑖 , 𝑦). This candidate record 𝑧𝑖 is then the input to the MIA

𝐴MIA (𝑧𝑖 ,M, 𝑛, 𝜋). If the record can be identified as a member of

dataset 𝐷 , the adversary can infer that 𝑡𝑖 was the correct value for

the target attribute. This strategy is formalized in Definition 4.12.

Definition 4.12 (AIA Strategy via MIA [35]). Let 𝑡1, . . . , 𝑡𝑚 be the

possible values of target 𝑡 . The attack 𝐴AIA→MIA has access to a

membership inference attack 𝐴MIA. With the input 𝜙 (𝑧),M, 𝑛 and

𝜋 , the attack proceeds as follows:

(1) Choose 𝑡𝑖 uniformly at random from {𝑡1, . . . , 𝑡𝑚}.
(2) Let 𝑧′ = 𝜙−1 (𝜙 (𝑧)) be a candidate record. Change the target

attribute 𝑡 such that 𝜑 (𝑧′) = 𝑡𝑖 .

(3) Run the MIA to obtain 𝑏 ← 𝐴MIA (𝑧′,M, 𝑛,D).
(4) If 𝑏 = 0, output 𝑡𝑖 .

One limitation of this strategy is immediately obvious: the attack

performance of this variant of the AIA is at most equal to the per-

formance of the MIA. The following discussion elaborates precisely

how much worse it is.

When comparing the advantage of attack 𝐴AIA→MIA to the per-

formance of 𝐴MIA, it can be shown that the attribute advantage of

𝐴AIA→MIA lies within a constant factor of the membership advan-

tage of 𝐴MIA. This relationship is given in Theorem 4.13.

Theorem 4.13 (Attribute Advantage Bound by Membership

Advantage [35]). Let 𝐴AIA→MIA be the attack described in Defini-
tion 4.12 which uses 𝐴MIA. For the advantage, it holds that

AdvAIA (𝐴AIA→MIA,M, 𝑛,D) = 1

𝑚
AdvMIA (𝐴MIA,M, 𝑛,D)

Without background knowledge, the probability of correctly

guessing the target attribute is
1

𝑚 , where𝑚 is the number of possible

attribute values.

Since an AIA using an MIA can only perform
1

𝑚 -times as well

as the MIA performs, the performance for this attack is deficient

for attributes with a high number of possibilities, e.g., last names

or addresses.

4.3 Data Reconstruction Attacks
MIAs and AIAs are particular cases of the more general DRAs [1].

The adversary in a DRA aims to produce an accurate reconstruc-

tion of the target record 𝑧. This reconstruction can aim for any

information about the record 𝑧, for instance, various attributes or

its membership status. As an example, for an image database, we

could try to guess the target’s eye color (AIA) or reconstruct an

image as close as possible to the individual’s record. This attack is

formalized as follows:

Definition 4.14 (DRA Experiment with Informed Adversary [1]).
LetM : Z𝑛 → Θ be a mechanism, 𝐷 a dataset that contains target

record 𝑧, 𝑙 an error-function and aux the background-knowledge.

Additionally, let 𝐷 = 𝐷− ∪ {𝑧}. Then, the reconstruction attack 𝐴

proceeds as follows

(1) 𝑧′ ← 𝐴(M, 𝐷− ; aux).
(2) Output 𝑙 (𝑧, 𝑧′) .

The attack produces a candidate record 𝑧′ and returns a measure

of the success of the attack based on the reconstruction error 𝑙 .

A lower error indicates a more successful reconstruction. Various

error metrics are possible for 𝑙 , which capture different aspects

of information leakage. Balle et al. use the mean square error, the

Kullback–Leibler (KL) divergence, and image-specific metrics such

as the Learned Perceptual Image Patch Similarity (LPIPS) in their

analysis [1].

Balle et al. [1] propose a metric of accuracy for this type of attack:

Reconstruction robustness (ReRo) as stated in Definition 4.15.

Definition 4.15 ((𝜂,𝛾)-Reconstruction Robustness (ReRo) [1] ). Let
𝜋 be a prior overZ and 𝑙 : Z×Z → R≥0 an error function. Mech-

anismM : Z𝑛 → Θ is (𝜂,𝛾)-reconstruction robust with respect to

𝜋, 𝑙 if for any dataset 𝐷− ∈ Z𝑛−1
and any reconstruction attack
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Figure 1: Bound on 𝛾 for (𝜂,𝛾)-ReRo proven by Balle et al.
for different 𝜅 values. The red line indicates the value of 1.
Since 𝛾 represents a probability, a bound larger than one triv-
ially is not tight. This figure shows how the bound obtained
by Proposition 4.16 exceeds one in most cases, even for small
values of epsilon.

𝐴 : Θ→Z it holds that

Pr

𝑍∼𝜋
𝜃∼M(𝐷−∪{𝑍 })

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂] ≤ 𝛾 . (3)

This definition prevents the reconstruction of unknown target 𝑧

from attaining an error lower than 𝜂 with a probability larger than

𝛾 . The parameter 𝜂 defines what we consider a successful attack,

while 𝛾 bounds the probability of success. Therefore, the larger the

𝜂 and the lower the 𝛾 , the less effective the attack.

Furthermore, Balle et al. [1] demonstrate that DP mechanisms

imply ReRo, i.e., protect against reconstruction attacks. The degree

of protection is then parameterized by the DP privacy parameters

𝜀 and the baseline error 𝜅 that is defined as

𝜅𝜋,𝑙 (𝜂) = sup

𝑧′∈Z
Pr

𝑍∼𝜋
[𝑙 (𝑍, 𝑧′) ≤ 𝜂] . (4)

Intuitively, 𝜅 describes the probability of an oblivious attack

to succeed. “Oblivious” means that the adversary does not use

any information from the training model or the trained data but

randomly tries to guess a correct reconstruction [1]. Therefore,

the success of an oblivious adversary is the same whether or not

the output of the trained model is shared or whether the target

participated in the training.

Proposition 4.16 (𝜀-DP implies ReRo [1]). Let 𝜋, 𝑙 and 𝜂 > 0

and𝜅 = 𝜅𝜋,𝑙 (𝜂). If a mechanismM satisfies 𝜀-DP, then it also satisfies
(𝜂,𝛾)-ReRo with 𝛾 = 𝜅e𝜀 .

Figure 1 shows how the bound on 𝛾 varies for different values

of 𝜀 and 𝜅 using Proposition 4.16.

ReRo is a performance metric that applies for any attack against

training data, and Proposition 4.16 allows us to relate this perfor-

mance metric to the DP parameters. Furthermore, it is the first

metric that allows us to measure the success of an attack that does

not perform a perfect reconstruction of the target information.

Since MIAs, AIAs, and DRAs can be modeled jointly by considering

the informed adversary (as presented in Definition 4.2), ReRo is a

promising performance metric that, together with the bound from

Proposition 4.16, could unify the state of the art and enhance the

interpretability of DP. However, we point out two main problems.

First, we can see in Figure 1 that the bound of Proposition 4.16 is

not tight since it yields values over 1 when bounding a probability

where 1 is the trivial bound. The untightness of Proposition 4.16

is a problem since using this bound as a criterion for choosing our

privacy parameters would result in a poor utility of the results

due to an overestimation of privacy leakage. This motivates us

to obtain a tighter bound on ReRo under DP protection that we

present in Section 5.

Second, ReRo does not have the same interpretation as the state-

of-the-art performance metrics for MIAs and AIAs. Both metrics,

AdvMIA and AdvAIA, measure the amount of information (either

about the membership or the attributes) of a target that is leaked

specifically by participating in the training of the mechanismM.

To this end, both advantages include a correction factor to remove

the probability of correctly guessing information about a target

even if the target did not participate in the training database. This

avoids overestimating the privacy risk if the attack’s success is

based only on the learned properties of the population and not on

the individuals in the training database.

However, ReRo does not contain any correcting factor, and there-

fore, its interpretability changes with respect to the usual metrics

since we are overestimating the leakage because of the statistical
privacy fallacy phenomenon [4]. In section Section 6, we elaborate

on these problems, and in Section 7, we propose the new perfor-

mance metric Unbiased Reconstruction Robustness (U-ReRo) that

takes the statistical privacy fallacy into account and generalizes the

state-of-the-art attack performance metrics.

Attack Summary: In this section, we discussed state-of-the-art

bounds relating to DP and the performance of three important at-

tacks on private data. An overview of these attacks can be found

in Table 2. We can see that, even if we find bounds for all the attacks,

these bounds are not general or comparable.

The first bound for the AIA [35] only holds for adversaries that

use a MIA to accomplish an AIA. This is a strong limitation in the

choice of attack strategy. Another problem is that each bound was

derived for the specific performance metric with different interpre-

tations. For instance, the bound for MIAs bounds the membership

advantage, whereas the bound for DRAs bounds the probability of

an accurate reconstruction. Since they represent different measures,

we cannot compare which attack is mitigated better by DP.

On the other hand, the bound for the ReRo of DRAs using Propo-

sition 4.16 applies to all attacks and allows us to establish a general

bound. However, this bound is not tight and does not consider the

bias of the privacy fallacy [4] as we will see in Section 6.

To solve these problems, we propose the standardized perfor-

mance metric U-ReRo in Section 7, using the DRA model as a base-

line and analyzing the other attacks as particular scenarios of this

attack model. This allows for a general and consistent comparison

of attack performance under DP.

5 Tighter bound for ReRo
Proposition 4.16 proves that DP bounds the reconstruction robust-

ness of reconstruction attacks. However, it does not provide a tight
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Attack Assumptions Performance Metric SOTA Bound Our Improved Bound

MIA [18] Strongest Adv
𝑠
𝑀𝐼𝐴

(Eq. 2) ≡ (0, 𝛾
2
)-U-ReRo 𝛾

2
≡ Adv

𝑠
MIA
≤ e

𝜀−1
e
𝜀+1 -

MIA Strongest (0, 𝛾)-ReRo (Def. 4.15) 𝛾 ≤ 1

2
e
𝜀 𝛾 ≤ 1

2

(
e
𝜀−1
e
𝜀+1 + 1

)

MIA

Informed

Adv𝑀𝐼𝐴(Def. 4.11)≡ (0, 𝛾)-U-ReRo Adv𝑀𝐼𝐴 ≤ e
𝜀−1
e
𝜀+1 𝛾 ≡ Adv𝐴𝐼𝐴 ≤ min{ 1𝑚 (e

𝜀 − 1), 𝑚−1𝑚
e
𝜀−1
e
𝜀+1 }Uniform prior

𝑚 possibilities

AIA [35] Strategy via MIA Adv𝐴𝐼𝐴(Def. 4.11) AdvAIA = 1

𝑚AdvMIA -

AIA Informed (0, 𝛾)-ReRo (Def. 4.15) 𝛾 ≤ 1

𝑚 e
𝜀 𝛾 ≤ min{ e𝜀𝑚 , 𝑚−1𝑚

(
e
𝜀−1
e
𝜀+1 + 1

)
}

AIA

Informed

Adv𝐴𝐼𝐴(Def. 4.11))≡ (0, 𝛾)-U-ReRo

-

𝛾 ≡ Adv𝐴𝐼𝐴 ≤ min{ 1𝑚 (e
𝜀 − 1), 𝑚−1𝑚

e
𝜀−1
e
𝜀+1 }Uniform prior

𝑚 possibilities

DRA [1] Informed (𝜂,𝛾)-ReRo (Def. 4.15) 𝛾 ≤ 𝜅𝜂e
𝜀

-

DRA Informed (0, 𝛾)-ReRo (Def. 4.15) 𝛾 ≤ 𝜅0e
𝜀 𝛾 ≤ min{𝜅0 (e𝜀 ), 𝜅0 (𝑚 − 1)

(
e
𝜀−1
e
𝜀+1 + 1

)
}

DRA Informed (𝜂,𝛾)-U-ReRo (Def. 7.1) - 𝛾 ≤ min{𝜅𝜂 (e𝜀 − 1), e
𝜀−1
e
𝜀+1 }

DRA Informed (0, 𝛾)-U-ReRo (Def. 7.1) - 𝛾 ≤ min{𝜅0 (e𝜀 − 1), 𝜅0 (𝑚 − 1) e
𝜀−1
e
𝜀+1 + 𝜅0 − 𝜅

−
0
}

Table 2: Overview of Attacks and Bounds for 𝜀-DP Mechanisms.

bound, i.e., the protection that DP offers against DRAs is underesti-

mated by this result.

This is indicated by two observations: First, we see in Figure 1

and Figure 2 that for 𝜅 = 0.5 and 𝜀 ≥ 1 the bound of ReRo is larger

than one, which is a trivial bound given that ReRo is a probability.

The second hint is given by Balle et al. [1]. According to the authors,

no meaningful protection can be ensured in theory when 𝜀 ≥ 1,

while empirically, even large values show a decrease in the attack

performance.

In this section, we give a tighter bound for ReRo for the particular

case of perfect reconstruction, 𝑙 (𝑧,𝐴(𝜃 )) = 𝜂 = 0, which means

that 𝐴(𝜃 ) perfectly reconstructs the real value 𝑧. We illustrate the

improvement with respect to Balle et al.’s bound in Figure 2.

Proposition 5.1 (Improved Bound for ReRo against perfect

reconstruction). Let 𝜋 be a prior over Z, 𝑙 : Z × Z → R≥0
an error function, |Z| = 𝑚 and 𝜅0 = 𝜅𝜋,𝑙 (0). If a mechanism
M : Z𝑛 → Θ satisfies 𝜀-DP, then it also satisfies (0, 𝛾)-ReRo with
𝛾 = min{𝜅0e𝜀 , 𝜅0

(
1 + (𝑚 − 1) e𝜀−1

e
𝜀+1

)
}, i.e.,

Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 ) ) = 0] ≤ min{𝜅0e𝜀 , 𝜅0

(
1 + (𝑚 − 1) e

𝜀 − 1

e
𝜀 + 1

)
}

We can simplify the bound in the case of uniform prior proba-

bility, where all possible reconstructions are equally likely before

Figure 2: Comparison of the ReRo bound for a perfect recon-
struction from [1] with our bound from Proposition 5.1 for
uniform priors. The dashed lines correspond to the bound
for ReRo using Proposition 4.16 (Balle et al.) under 𝜀-DP. The
continuous lines correspond to the improved bound that we
prove in Proposition 5.1.

performing the attack. We denote a set of possible reconstructions
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of size𝑚 as 𝜋 = 𝑈 [𝑚]. Then, we can simplify the bound to:

Pr

𝑧∼𝑈 [𝑚]
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 )) = 0] ≤ min{ e
𝜀

𝑚
,
1

𝑚
+ 𝑚 − 1

𝑚

(
e
𝜀 − 1
e
𝜀 + 1

)
}

As we see in Figure 2, this result provides a significantly better

bound when the set of possible reconstructions is small. Moreover,

while with Proposition 4.16 no protection is formally guaranteed

for 𝜀 ≈ 1 and 𝜅 = 0.5, our bound never surpasses 1.

6 ReRo and the Privacy Fallacy
The Statistical Inference Privacy Fallacy [4] can be illustrated with

the classic example of the smoking database [21]. Imagine a model

trained on medical data from a database 𝐷 that learns that the prob-

ability of having cancer is high (e.g., 0.9) for smokers. An adversary

who knows that an individual 𝑧 ∈ 𝐷 smokes directly infers that 𝑧

has cancer. However, this is not an issue that could be prevented

by privacy mechanisms: Even if 𝑧 would deny volunteering their

data for the training process, an adversary could still infer that they

have cancer. The reason is that the correlation between the two

attributes is a global statistic learned from the population without

ever exposing 𝑧’s private information directly.

The definition of ReRo as an attack performance metric overesti-

mates the privacy leakage of the learning mechanism due to this

fallacy. ReRo calculates the probability that the attack successfully

reconstructs a database member. However, it does not distinguish

whether the successful reconstruction is due to the informationM
learned about 𝑧 (an actual privacy leakage) or some other source. Ex-

amples include global statistics about the distribution of records 𝜋

learned during training or an auxiliary source such as previous stud-

ies. If the success of the attack comes from an external source, such

as a study showing that smoking causes cancer or the ability to learn

the correlation between smokers and cancer byM, then there is no

privacy risk for 𝑧 because the consequences would be the same even

without participating. To illustrate, we give the following example.

Given a data universe 𝜋𝑛 from which two databases with disjoint

sets of individuals 𝐷1, 𝐷2 are drawn, we use 𝐷1 to trainM as a clas-

sifier that, given a set of medical conditions 𝑥 , outputs whether this

patient has cancer. Now, we consider a reconstruction attack that

tries to infer whether 𝑧 has cancer using the background knowledge

𝑥 . Since 𝐷1, 𝐷2 are identically distributed, we can useM𝐷1
to clas-

sify whether a set of medical conditions implies cancer and perform

an attribute inference attack on 𝐷2. In this case, for all 𝑧2 ∈ 𝐷2,

Pr𝜃∼M(𝐷1 ) (𝑙 (𝑧2, 𝐴(𝜃 )) ≤ 𝜂) will be as large as the utility of our

classifier. However, no privacy leakage can occur for 𝑧2 ∈ 𝐷2 since

this individual never volunteered data for the training. Therefore,

if Pr𝜃∼M(𝐷𝑧
1
) [𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂] = Pr𝜃∼M(𝐷𝑧

1
) [𝑙 (𝑧2, 𝐴(𝜃 )) ≤ 𝜂]

with 𝑧1 ∈ 𝐷1 and 𝑧2 ∈ 𝐷2, the successful reconstruction of 𝑧1 is

not a privacy issue since it is the same for records that did not

participate, such as 𝑧2. The information leading to the successful

inference is external to the private information shared by 𝑧1.

More formally, if

𝛾 = Pr

𝑍 ∈𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂] = Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

Pr

𝑍 ′∉𝐷𝑍

[𝑙 (𝑍 ′, 𝐴(𝜃 )) ≤ 𝛾],

we know that the reconstruction success does not represent a pri-

vacy risk even if the 𝛾 in (𝛾, 𝜂)-ReRo is arbitrarily large. This relies

on the probability of a correct reconstruction for participants being

identical to the one of a correct reconstruction for non-participants.

Bothmembership advantage and attribute advantage incorporate

a correction factor to eliminate the bias of a successful attack based

on the privacy fallacy rather than the privacy leakage. However,

we demonstrated that ReRo cannot distinguish between both cases.

For the Adv𝑀𝐼𝐴 , the correcting factor Pr(𝐴 = 0|𝑏 = 1) is removed

from the probability of correctly guessing a member. Analogously,

Adv𝐴𝐼𝐴 includes the correction factor Pr(𝐸𝑥𝑝𝐴𝐼𝐴 (𝐴,M, 𝜋) = 1|𝑏 =

1). It adjusts the advantage by subtracting the probability of suc-

cessful attribute reconstruction when the target was drawn from

the overall data distribution instead of the actual database. This

correction term ensures that only the privacy leakage from training

M is measured, accurately reflecting the impact on the participant’s

privacy and avoiding overestimating the risk due to the privacy

fallacy.

This mismatch between the advantages and ReRo is especially

tangible if we compute the ReRo bound for the perfect reconstruc-

tion of membership. In this case, we see that even if both metrics

are measuring the same attack resilience, they yield different values:

Proposition 6.1. Given a learning mechanism M, consider a
strong membership experiment (Def. 4.8) where 𝐷− is known and the
two possible members {𝑧0, 𝑧1} are uniformly distributed. Given 𝑙 , the
membership error function (Eq. 7), such that 𝑙 (𝑧, 𝑧′) = 0 if 𝑧 = 𝑧′ and
1 otherwise, we obtain:

Adv
𝑠
MIA

= 2 Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

[𝑙 (𝑧𝑖 , 𝐴(𝜃 )) = 0] − 1.

As a consequence, ifM satisfies (0, 𝛾)-ReRo, it satisfies Adv𝑠
MIA

=

2𝛾 − 1. Since both metrics output different values for the same sce-

nario, it is clear that they are not measuring the same information.

Since 𝛾 ∈ [0, 1], we derive from this formula that 𝛾 is always bigger

than the membership Adv
𝑠
MIA

, showing that 𝛾 is an overestimation

of the actual privacy risk of a MIA.

7 Unbiased Reconstruction Robustness
(U-ReRo)

To address the fact that ReRo does not account for the privacy

fallacy, we propose a new general performance metric: U-ReRo.

It can be applied to DRAs, AIAs, and MIAs and takes the privacy

fallacy into account. Furthermore, we prove a result that relates

U-ReRo with DP’s privacy parameters and apply it to the particular

cases of MIAs and AIAs.

Definition 7.1 (Unbiased Reconstruction Robustness (U-ReRo)). Let
𝜋 be a prior overZ and 𝑙 : Z ×Z → R≥0 a reconstruction error

function. A randomized learning mechanismM : Z𝑛 → Θ is (𝜂,𝛾)-
unbiased reconstruction robust,(𝜂,𝛾)-U-ReRo, with respect to 𝜋

and 𝑙 if for any dataset 𝐷− ∈ Z𝑛−1
and any reconstruction attack

𝐴 : Θ→Z we have

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]−E𝑍0∼𝜋

 Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂

 ≤ 𝛾 .
(5)
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While ReRo bounds a probability, U-ReRo bounds an advantage.

It compares the probability that the adversary correctly reconstructs

the target record when it is a record from the dataset 𝐷 with the

probability of correctly reconstructing a record drawn from the

underlying distribution 𝜋 . In this way, U-ReRo only gives the adver-

sary credit for the probability of correctly reconstructing the target

record using exclusively the information that the model has learned

about that record. The second term of Equation (5) corresponds to

the probability of correctly reconstructing (with a reconstruction

error bounded by 𝜂) any record 𝑧, independently if 𝑧 was part of

the training database or not. This correcting factor removes those

cases in which the adversary would correctly reconstruct the tar-

get value even when the target did not participate in the database.

Therefore, it gives us a more sensible measure of the privacy risk

of participation.

The benefit of using U-ReRo instead of ReRo is exemplified in Fig-

ure 3. We plot the ReRo bound for 𝑘 = 0.5 in red and the U-ReRo

bound for the same 𝑘 value in blue. We can see that U-ReRo pro-

vides a significantly smaller risk value due to the correction factor.

By using our metric, practitioners can choose larger 𝜀 values, which

are associated with less noise in DP mechanisms and hence yield

more utility for the same privacy risk.

Furthermore, we provide a bound for U-ReRo under DP protec-

tion that can be used in practice to adjust the noise in a learning

mechanism to a desired limitation of attack performance:

Theorem 7.2 (𝜀-DP Implies (𝜂,𝛾)-U-ReRo). Let 𝜋, 𝑙 and 𝜂 ≥ 0

follow Definition 7.1, and 𝜅𝜂 ≡ 𝜅𝜋,𝑙 (𝜂). If a mechanismM satisfies
𝜀-DP, then it also satisfies (𝜂,𝛾)-U-ReRo with

𝛾 = min{𝜅𝜂 (e𝜀 − 1),
e
𝜀 − 1
e
𝜀 + 1 }

Note that this bound applies to any error 𝜂 of our reconstruction.

However, for 𝑙 (𝑧,𝐴(𝜃 )) = 𝜂 = 0, which means that 𝐴(𝜃 ) perfectly
reconstructs the real value 𝑧, we can obtain a tighter result.

Theorem 7.3 (𝜀-DP Implies (0, 𝛾)-U-ReRo). Let 𝜋 and 𝑙 follow
Definition 7.1, |Z| =𝑚 and 𝜅0 = 𝜅𝜋,𝑙 (0). If a mechanismM satisfies
𝜀-DP, then it also satisfies (0, 𝛾)-ReRo with

𝛾 = min{𝜅0 (e𝜀 − 1), 𝜅0 (𝑚 − 1)
e
𝜀 − 1
e
𝜀 + 1 + 𝜅0 − 𝜅

−
0
},

where, 𝜅−
0
≡ 𝜅−

𝜋,𝑙
(0) B inf𝑧′∈Z Pr𝑧∼𝜋 [𝑙 (𝑧, 𝑧′) = 0] is the lower

baseline error.

If we consider 𝜋 uniform over a set of possible reconstructions

of size𝑚, we obtain:

𝛾 = min{ 1
𝑚
(e𝜀 − 1), 𝑚 − 1

𝑚

e
𝜀 − 1
e
𝜀 + 1 } (6)

We show in Figure 3 how this bound of 𝛾 increases with 𝜀 for

different sizes of the possible reconstruction setZ. We also show

the upper bound in gray, independent of 𝜅 andZ.

In the following section, we show that U-ReRo is a consistent

generalization of the state-of-the-art performance measurements

for AIAs and MIAs. That is, by considering these particular scenar-

ios, we obtain the same values. Consequently, we apply our bound

proved in Theorem 7.2 to both attacks, obtaining a systematization

of attack resilience provided by DP that we summarize in Table 2.

Figure 3: U-ReRo bounds for a perfect reconstruction from
our Theorem 7.3 for different 𝜅 values under uniform priors.
The gray line corresponds to the bound for arbitrary error
𝜂 under arbitrary 𝜅 using Theorem 7.2. We highlight in red
the corresponding bound for ReRo that we proved in Propo-
sition 5.1 to show the extensive over-estimation.

8 Systematization of Attack Bounds via
Unbiased Reconstruction Robustness

In this section, we prove that U-ReRo provides equivalent results

for MIAs and AIAs to the previously studied performance metrics,

namely Adv
𝑠
MIA

, AdvMIA and AdvAIA. We demonstrate that it is

a correct generalization of attack performance metrics. From this,

we derive standardized bounds for all attacks under DP protection

using our bound theorem 7.2. In particular, we are the first to give

a general bound for the advantage of an attribute inference attack.

8.1 Membership Unbiased Reconstruction
Robustness under DP

In this section, we prove the equivalence between U-ReRo and the

membership advantages. We derive a membership reconstruction

bound for the Strongest Adversary in a MIA (Definition 4.3) using

our Theorem 7.2. First, we define the following error function 𝑙 for

this scenario:

𝑙 (𝑧, 𝑧′) =
{
0 if 𝑧 = 𝑧′,

1 if 𝑧 ≠ 𝑧′,
(7)

This is a perfect reconstruction error function in which the ad-

versary either guesses the member correctly or loses. We can then

prove the following relation between the membership advantages

and U-ReRo:

Proposition 8.1 (AdvMIA ⇔ U-ReRo). LetM : Z𝑛 → Θ be a
mechanism. For 𝐴 an informed MIA, it holds that

M is (0, 𝛾)-U-ReRo⇐⇒ AdvMIA (𝐴,M, 𝜋𝑛) ≤ 𝛾,

Additionally, if 𝐴𝑠 is a strong MIA under uniform priors (Def. 4.7),
then

M is (0, 𝛾
2

)-U-ReRo⇐⇒ Adv
𝑠
MIA
(𝐴,M, 𝜋𝑛) ≤ 𝛾 .

This result shows that U-ReRo is equivalent to both membership

advantages when applied to the corresponding scenarios. Therefore,

our bound for U-ReRo directly bounds𝐴𝑑𝑣𝑀𝐼𝐴 and𝐴𝑑𝑣𝑠
𝑀𝐼𝐴

as well,
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which was not the case for ReRo. The consistency of U-ReRo makes

it a suitable general metric for attack performance.

Finally, we apply Theorem 7.3 to obtain a bound for the U-ReRo of

a MIA. First, we need to compute 𝜅 . Without any further knowledge

about our reconstruction candidates {𝑧1, 𝑧2, . . . , 𝑧𝑚}, i.e., assuming

uniform priors, and with the error function from Equation (7), this

yields Pr𝑍∼𝜋 [𝑙 (𝑍, 𝑧′) = 0] = 𝜋 (𝑧′) = 1

𝑚

The supremum and infimum of these probabilities is
1

𝑚 , thus it

follows that 𝜅 = 𝜅− = 1

𝑚 under the given assumptions. According

to Theorem 7.2, we arrive at the following bound for the probability

of accurate reconstruction:

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 0] ≤ min{ 1
𝑚
(e𝜀 − 1), 𝑚 − 1

𝑚

e
𝜀 − 1
e
𝜀 + 1 }

In the case of the strongest MIA, this bound translates into:

Pr

𝑍∼𝑈 {0,1}
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 0] ≤ 1

2

e
𝜀 − 1
e
𝜀 + 1

where𝑈 {0, 1} denotes the uniform distribution over {0, 1}.
Therefore, we conclude thatM is at least (0, 1

2

e
𝜀−1
e
𝜀+1 )-U-ReRo

against strong MIAs.

8.2 Attribute Unbiased Reconstruction
Robustness under DP

In this section, we derive the relationship between U-ReRo for an

informed adversary in an AIA (Definition 4.2) and the attribute

advantage. Using this relation and Theorem 7.2, we give the first

bound for the attribute advantage that is independent of the attack

strategy.

Analogously to the previous section, we consider only perfect

reconstruction. Given the known attributes 𝜙 (𝑧) = 𝑣 and the target

attribute 𝜑 (𝑧) = 𝑡 , 𝑙 (𝐴(𝜙 (𝑍 ), 𝜃 ), 𝜑 (𝑍 )) = 0 if 𝐴(𝜃 ) = 𝜑 (𝑧) and 1

otherwise. Since𝜙 (𝑧) is known, it is equivalent to write 𝑙 (𝑧,𝐴(𝜃 )) =
0 if 𝑧 = 𝐴(𝜃 ) instead. In this scenario, we arrive at the following

result:

Proposition 8.2 (AdvAIA ⇔ U-ReRo). LetM : Z𝑛 → Θ be a
mechanism. For all data distributions 𝜋𝑛 and for all informed AIA
attacks 𝐴 that know 𝐷− and try to guess the attribute of a target
record 𝑧 from which 𝜙 (𝑧) is known, we have

M is (0, 𝛾)-U-ReRo⇐⇒ AdvAIA (𝐴,M, 𝜋𝑛) ≤ 𝛾 for all 𝐴.

This theorem shows that U-ReRo is equivalent to𝐴𝑑𝑣𝐴𝐼𝐴 for the

AIA. This is not the case with standard ReRo.

Finally, we use Theorem 7.3 to compute the U-ReRo bound for

AIAs. Considering Proposition 8.2, we can use the U-ReRo bound

to give, for the first time, a bound for the attribute advantage for

arbitrary attack strategies.

To compute the U-ReRo bound, we need to compute the baseline

error 𝜅 . GivenZ, the set of possible reconstructions, where for all

𝑧, 𝑧′ ∈ Z 𝜙 (𝑧) = 𝜙 (𝑧′) is the known information about the target

entry. The number of possible reconstructions for 𝑧 depends on the

number𝑚 of values the target attribute 𝑡 can take. Let 𝑧𝑖 be the

reconstruction candidate 𝑧 where the value of the target attribute 𝑡

has been replaced with 𝑡𝑖 (𝑖 ∈ {1, . . . ,𝑚}). For a fixed target record

𝑧 = 𝑧 𝑗 , the probability of an accurate reconstruction is

Pr

𝑍∼𝜋
[𝑙 (𝑍, 𝑡) = 0] = 𝜋 (𝑧) for all 𝑧′ ∈ Z

In the particular case where 𝜋 is uniform, i.e., the attacker does

not have any further background knowledge on the value of 𝑡 and

the prior distribution, all reconstruction candidates 𝑧𝑖 are equally

likely:

Pr

𝑍∼𝜋
[𝑙 (𝑍, 𝑡) = 0] = 1

|Z| for all 𝑧
′ ∈ Z

Calculating the supremum over these probabilities yields 𝜅 =

max𝑧∈Z 𝜋 (𝑧). Using Theorem 7.3, we arrive at the following bound:

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 0] ≤ min{𝜅0 (e𝜀−1), 𝜅0 (𝑚−1)
e
𝜀 − 1
e
𝜀 + 1 +𝜅0−𝜅

−
0
}

In the case of uniform priors, we get 𝜅 = 1

𝑚 where𝑚 = |𝑍 |. Follow-
ing Equation (6), we have:

Pr

𝑍∼𝑈 [𝑚]
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 0] ≤ min{ 1
𝑚
(e𝜀 − 1), 𝑚 − 1

𝑚

e
𝜀 − 1
e
𝜀 + 1 }

where𝑈 [𝑚] denotes the uniform distribution over [𝑚] = {0, 1, . . . ,𝑚−
1}.

Note that an adversary that has to choose a binary attribute

value has exactly the same success rate as a MIA.

The bounds obtained in this section allow us to systematize the

knowledge about the attack resilience provided by DP as summa-

rized in Table 2. We see that our results improve existing bounds.

To the best of our knowledge, we are the first to prove a general

bound for the attribute advantage without assumptions on the

attack strategy.

9 Discussion and Future Work
DP mechanisms require selecting an 𝜀 value that balances privacy

and utility. While 𝜀 can range from 0 to infinity, understanding

its exact meaning can be challenging. One approach to improve

interpretability is through adversarial bounds. Particularly, the

bound on membership inference advantage has been extensively

studied in the literature.

An advantage in an MIA ranges from -1 to 1, and its interpreta-

tion is well-understood in hypothesis testing. Translating 𝜀 into an

advantage bound provides a direct measure of attack protection,

aiding in choosing an appropriate 𝜀 value. However, other types of

attacks exist, necessitating a more generalized attack performance

metric and corresponding adversarial bounds.

In this context, our (𝜂,𝛾)-U-ReRo provides a generalization of

the membership and attribute advantages to arbitrary reconstruc-

tion attacks. Since we make no assumption on or restriction of

data distribution or attack model, our Theorem 7.2 can be used to

select the exact epsilon needed to limit the advantage of the attack

according to specific requirements. 𝛾 takes values between 0 and

1 − 𝜇 (𝑛, 𝐷, 𝜋) ≤ 1 where 𝜇 (𝑛, 𝐷, 𝜋) = Pr𝑍,𝑍0∼𝜋 [𝑍 = 𝑍0], i.e. the
probability of resampling from the distribution 𝜋 , analogous to the

cases of membership and attribute advantages as defined in [35].

This allows us to directly interpret 𝛾 as the increase in the ad-

versary’s probability of success due to the participation of a single
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record. If 𝛾 = 0, there is no risk (regarding the selected attack)

in participating because the probability of an adversary correctly

reconstructing the record is the same as it would be without par-

ticipating, e.g. random guessing. The higher the 𝛾 , the higher the

risk of participation, and if 𝛾 = 1 − 𝜇, then the risk of participation

concerning the considered attack is highest. This means that the

probability of a correct reconstruction of any participant’s record is

1 and the adversary always succeeds in reconstructing participant

information whereas the probability of correct reconstruction is 0

for any non-participant, i.e. the reason for success in reconstruc-

tion is participation. To simplify the parameter 𝛾 if we know 𝜇,

we can normalize the value analogously to Adv
𝑠
𝑀𝐼𝐴

which is the

normalized value of Adv𝑀𝐼𝐴 under uniform priors.

It follows that a randomized mechanismM that is (𝜂,𝛾)-U-ReRo
implies that the advantage—the difference between the adversary’s

probability of successful reconstruction of a participant 𝑧, and

the probability of successful reconstruction in general without 𝑧’s

record being part in the training—is limited by 𝛾 . The parameter

𝜂 encodes what we consider a successful reconstruction, i.e. a re-

construction 𝑧′ of 𝑧 such that the error is less than 𝜂, 𝑙 (𝑧, 𝑧′) ≤ 𝜂.

By considering the probability of correctly reconstructing the non-

participant records, we get the precise leakage generated using

the information the model has learned about a participant. There-

fore, by limiting 𝛾 , we control the impact of each participant in the

learning mechanism concerning a selected attack.

When putting our results into practice, the first step is to deter-

mine the parameters of our use case: the distribution of the data 𝜋 ,

the attack against which we aim to protect individuals, and what

is considered a successful attack, i.e. the error function 𝑙 and the

minimum allowed error 𝜂. For a DRA with arbitrary (non-uniform)

distributions and error 𝜂 > 0, we must use Theorem 7.2. For exam-

ple, given that a reconstruction of 90% of an individual’s DNA is

considered a successful reconstruction, we set𝜂 = 0.1 and, using the

distribution of the data 𝜋 , we compute 𝜅0.1. Now, if the participants

of the training data do not want the advantage to be greater than

𝛾 = 0.2, we can solve the formula and obtain the 𝜀 value needed to

train the model.

Moreover, under certain conditions, we can obtain tighter bounds.

For instance, when only perfect reconstructions are considered suc-

cessful, i.e., 𝜂 = 0. In this case, given a non-uniform distribution, we

can use Theorem 7.3 as a criterion. In addition, if the distribution is

uniform, we can use the improved bound presented in Equation (6)

which is directly applicable to attribute or membership inference

attacks.

Note that while our theorems provide improved bounds for gen-

eral and specific attacks (see Table 2), we have no general proof

of the tightness of our theorems. Hence, even if the estimation we

provide is better than previous work, we may still overestimate

the risk, thus incurring an excessive utility loss for the privacy

requirements of the participants.

In this direction, an empirical evaluation testing the gap between

our theoretical bound and the empirical𝛾 under DP protection could

be an interesting line of research to showwith an empirical example

that the bounds are tight, or otherwise to give an intuition about

the degree of untightness of our results. This would help in the

direction of a theoretical refinement of these bounds.

10 Conclusion
The trade-off between the utility and privacy of DP mechanisms

depends on an appropriate parametrization. This choice has proven

to be difficult because the effect on the actual privacy that an in-

dividual’s record enjoys is not intuitive. We analyzed this prob-

lem through the lens of attack resilience, considering membership-

inference (MIA), attribute-inference (AIA), and data-reconstruction

(DRA) attacks.

Surveying and analyzing published attack performance metrics,

we find that reconstruction robustness [1] is the only existing gen-

eral metric for arbitrary attacks. We showed that the relationship

between privacy parameters and this metric is not tight. This can

lead to an overestimation of the privacy risk, an overestimation of

the required privacy budget, and consequently to low utility results.

To address this issue, we provide a tighter bound for ReRo under

perfect reconstruction. We show the improvement of our bound

in Figure 2.

Furthermore, we found that ReRo is not a consistent general per-

formance metric concerning attribute and membership advantages.

The cause is an overestimation of privacy leakage, explained by the

privacy fallacy. We hence demonstrated this discrepancy between

the values of ReRo and the advantages.

We proposed a new, more general performance metric for attacks

in response: Unbiased Reconstruction Robustness (U-ReRo). This

metric corrects the privacy fallacy. Our results show that, in contrast

to ReRo, U-ReRo yields the established values when applied to the

particular scenarios of MIAs and AIAs. Therefore, we conclude that

U-ReRo is a consistent general attack performance metric, and we

used it to systematize DP resilience against various attacks.

Finally, we proved several results that bound (𝜂,𝛾)-U-ReRo un-

der DP. The bounds directly relate the attack mitigation to the

privacy parameters of DP. Therefore, we provide a criterion for se-

lecting 𝜀 for practitioners. Moreover, we highlight that our relation

between U-ReRo and 𝜀 allows us to select lower privacy values and

thus obtain higher utility while keeping the same 𝛾 that we would

estimate with ReRo. This results directly from avoiding the risk

overestimation of ReRo.

In conclusion, our newmetric U-ReRo and our bounds on it under

DP allow us to systematize the knowledge about attack resilience

provided by DP, as summarized in Table 2. In this table, we see

that our results improve on existing bounds. To the best of our

knowledge, we are the first to prove a general bound for the attribute

advantage without assumptions on the attack strategy. We also

improve the bounds for (0, 𝛾)-ReRo and provide a general metric

U-ReRo that allows us to systematically compare the protection

that DP provides against different attacks.
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A Appendix of Proofs
In this section, we provide all the mathematical proofs of the results

presented in this paper. We also prove some auxiliary lemmas that

allow us to complete the main proofs.

All the proofs use the notation of discrete random variables. To

obtain the analogous results for the continuous case, one must

replace Pr(M(𝐷) = 𝑂) by the density or probability function and

the sums by integrals.

Lemma A.1. Given 𝜀, 𝐴, 𝐵 ∈ R≥0. If the following inequalities are
satisfied:

(𝑎)𝐴 ≤ e
𝜀𝐵 and (𝑏) (1 − 𝐵) ≤ e

𝜀 (1 −𝐴)
then, 𝐴 − 𝐵 ≤ e

𝜀−1
e
𝜀+1 .

Proof. Using (a) we obtain:

𝐴 ≤ e
𝜀𝐵 ⇔ 1 −𝐴 ≥ 1 − e𝜀𝐵 ⇔ (1 −𝐴) + e𝜀𝐵 ≥ 1

Analogously, using (b) we obtain:

(1 − 𝐵) ≤ e
𝜀 (1 −𝐴) ⇔ 1 − 1 + 𝐵 ≥ 1 − e𝜀 (1 −𝐴)
⇔ 𝐵 + e𝜀 (1 −𝐴) ≥ 1

Summing both equations we obtain:

(1 −𝐴) + e𝜀𝐵 + 𝐵 + e𝜀 (1 −𝐴) ≥ 2⇔
(1 + e𝜀 ) (1 −𝐴 + 𝐵) ≥ 2⇔

𝐴 − 𝐵 ≤ e
𝜀 − 1
e
𝜀 + 1

□

Lemma A.2. GivenM : Z𝑛 → Θ an 𝜀-DP learning mechanism.
For any error function 𝑙 : Z × Z → R and for any pair of records
𝑧1, 𝑧2 ∈ Z, we obtain:

Pr

𝜃∼M(𝐷𝑧
1
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂] ≤ e

𝜀
Pr

𝜃∼M(𝐷𝑧
2
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂]

and,

1− Pr

𝜃∼M(𝐷𝑧
1
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂] ≤ e

𝜀

(
1 − Pr

𝜃∼M(𝐷𝑧
2
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂]

)
Proof. The first inequality follows directly from the definition

of 𝜀-DP:

Pr

𝜃∼M(𝐷𝑧
1
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂] =

∑︁
𝑂∈Θ

1{𝑙 (𝑧1,𝐴(𝑂 ) )≤𝜂} Pr(M(𝐷𝑧1 ) = 𝑂)

≤
∑︁
𝑂∈Θ

1{𝑙 (𝑧1,𝐴(𝑂 ) )≤𝜂}e
𝜀
Pr(M(𝐷𝑧2 ) = 𝑂)

= e
𝜀

∑︁
𝑂∈Θ

1{𝑙 (𝑧1,𝐴(𝑂 ) )≤𝜂} Pr(M(𝐷𝑧2 ) = 𝑂)

= e
𝜀

Pr

𝜃∼M(𝐷𝑧
2
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂]

Where 1{𝑙 (𝑧1,𝐴(𝑂 ) )≤𝜂} the characteristic function that outputs 1

when the condition 𝑙 (𝑧1, 𝐴(𝑂)) ≤ 𝜂 is satisfied and 0 otherwise.

The second inequality is derived from

1 − Pr

𝜃∼M(𝐷𝑧
1
)
[𝑙 (𝑧1, 𝐴(𝜃 )) ≤ 𝜂] = Pr

𝜃∼M(𝐷𝑧
1
)
[𝑙 (𝑧1, 𝐴(𝜃 )) > 𝜂],

applying the 𝜀-DP condition analogously to the first inequality. □

Proposition 5.1 (Improved Bound for ReRo against perfect

reconstruction). Let 𝜋 be a prior over Z, 𝑙 : Z × Z → R≥0
an error function, |Z| = 𝑚 and 𝜅0 = 𝜅𝜋,𝑙 (0). If a mechanism
M : Z𝑛 → Θ satisfies 𝜀-DP, then it also satisfies (0, 𝛾)-ReRo with
𝛾 = min{𝜅0e𝜀 , 𝜅0

(
1 + (𝑚 − 1) e𝜀−1

e
𝜀+1

)
}, i.e.,

Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 ) ) = 0] ≤ min{𝜅0e𝜀 , 𝜅0

(
1 + (𝑚 − 1) e

𝜀 − 1

e
𝜀 + 1

)
}

Proof. First, we apply the definition of 𝜅0 ≡ 𝜅𝜋,𝑙 (0) to the case

of perfect reconstruction,

𝜅0 B sup

𝑧∈Z
Pr

𝑍 ′∼𝜋
(𝑙 (𝑍 ′, 𝑧) = 0) = sup

𝑧∈Z
Pr

𝑍 ′∼𝜋
(𝑍 ′ = 𝑧) = sup

𝑧∈Z
𝜋 (𝑧),

where 𝜋 (𝑧) is the probability of drawing 𝑧 from 𝜋 .

Then, applying the 𝜀-DP condition to the definition of ReRo, we

obtain:

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

(𝑙 (𝐴(𝜃 ), 𝑍 ) = 0) =
∑︁
𝑧∈Z

Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0)𝜋 (𝑧 )

=
∑︁
𝑧≠𝑧0

Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0)𝜋 (𝑧 ) + Pr

𝜃∼M(𝐷𝑧
0
)
(𝑙 (𝐴(𝜃 ), 𝑧0 ) = 0)𝜋 (𝑧0 )

≤ sup

𝑧∈Z
𝜋 (𝑧 )

( ∑︁
𝑧≠𝑧0

Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0) + Pr

𝜃∼M(𝐷𝑧
0
)
(𝑙 (𝐴(𝜃 ), 𝑧0 ) = 0)

)
= 𝜅0

( ∑︁
𝑧≠𝑧0

Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0) + 1 − Pr

𝜃∼M(𝐷𝑧
0
)
(𝑙 (𝐴(𝜃 ), 𝑧0 ) > 0)

)
= 𝜅0

( ∑︁
𝑧≠𝑧0

Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0) + 1 −

∑︁
𝑧≠𝑧0

Pr

𝜃∼M(𝐷𝑧
0
)
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0)

)
= 𝜅0

(
1 +

∑︁
𝑧≠𝑧0

[
Pr

𝜃∼M(𝐷𝑧 )
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0) − Pr

𝜃∼M(𝐷𝑧
0
)
(𝑙 (𝐴(𝜃 ), 𝑧 ) = 0)

])
(∗)
≤ 𝜅0

(
1 +

∑︁
𝑧≠𝑧0

e
𝜀 − 1

e
𝜀 + 1

)
= 𝜅0

(
1 + (𝑚 − 1) e

𝜀 − 1

e
𝜀 + 1

)
where (∗) follows from direct application of LemmaA.1 and LemmaA.2.

□

Proposition 6.1. Given a learning mechanism M, consider a
strong membership experiment (Def. 4.8) where 𝐷− is known and the
two possible members {𝑧0, 𝑧1} are uniformly distributed. Given 𝑙 , the
membership error function (Eq. 7), such that 𝑙 (𝑧, 𝑧′) = 0 if 𝑧 = 𝑧′ and
1 otherwise, we obtain:

Adv
𝑠
MIA

= 2 Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

[𝑙 (𝑧𝑖 , 𝐴(𝜃 )) = 0] − 1.

Proof. First, we can rewrite the strong advantage of a MIA for

the strong MIA experiment (Def. 4.8) as follows:

Adv
𝑠
MIA
B 2 Pr[ExpMIA

𝑠 ] − 1

= 2

(
1

2

Pr

𝜃∼M(𝐷0 )
(𝐴(𝜃 ) = 𝑧0 ) +

1

2

Pr

𝜃∼M(𝐷1 )
(𝐴(𝜃 ) = 𝑧1 )

)
− 1

On the other hand since 𝜋 = 𝑈 {0, 1}, andZ = {0, 1} we have that,

Pr

𝑧∼𝑈 {0,1}
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 ) ) ≤ 0] =
1∑︁

𝑧=0

Pr

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 ) ) = 0] · 1

2

=
1

2

(
Pr

𝜃∼M(𝐷0}
(𝐴(𝜃 ) = 𝑧0 ) + Pr

𝜃∼M(𝐷1}
(𝐴(𝜃 ) = 𝑧1 )

)
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Therefore, we have that:

Adv
𝑠
MIA

=2 Pr

𝑧∼𝑈 {0,1}
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 ) ) = 0] − 1 (8)

⇔ Pr

𝑧∼𝑈 {0,1}
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 ) ) ≤ 0] = 1

2

(AdvMIA + 1)

□

Theorem 7.2 (𝜀-DP Implies (𝜂,𝛾)-U-ReRo). Let 𝜋, 𝑙 and 𝜂 ≥ 0

follow Definition 7.1, and 𝜅𝜂 ≡ 𝜅𝜋,𝑙 (𝜂). If a mechanismM satisfies
𝜀-DP, then it also satisfies (𝜂,𝛾)-U-ReRo with

𝛾 = min{𝜅𝜂 (e𝜀 − 1),
e
𝜀 − 1
e
𝜀 + 1 }

Proof. Following Lemma A.1 we denote:

• 𝐴 ≡ Pr 𝑧∼𝜋
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]

• 𝐵 ≡ E𝑍0∼𝜋

[
Pr 𝑍∼𝜋

𝜃∼M(𝐷𝑍
0
)
𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂

]
.

Using this notation, by definition of (𝜂,𝛾)-U-ReRo, we need to prove
that 𝛾 = 𝐴 − 𝐵 ≤ min{𝜅𝜂 (e𝜀 − 1), e

𝜀−1
e
𝜀+1 }.

Applying Lemma A.2 to 𝐵 we obtain:

𝐵 ≡ E𝑍0∼𝜋 Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]

=
∑︁
𝑧0∈Z

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂] 𝜋 (𝑧0)

(𝐴.2)
≥ e

−𝜀
∑︁
𝑧0∈Z

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂] 𝜋 (𝑧0)

= e
−𝜀𝐴

∑︁
𝑧0∈Z

𝜋 (𝑧0) = e
−𝜀𝐴.

In addittion„ Proposition 4.16 [1] states:

𝐴 ≡ Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂] ≤ 𝜅𝜋,𝑙 (𝜂)e𝜀 ≡ 𝜅𝜂e𝜀

Therefore, aggregating both results we obtain:

𝐴 − 𝐵 ≤ 𝐴 − e−𝜀𝐴 = 𝐴(1 − e−𝜀 )
(4.16)
≤ 𝜅𝜋,𝑙 (𝜂)e𝜀 (1 − e−𝜀 ). (9)

Applying Lemma A.2 to 𝐴, we obtain:

𝐴 ≡ Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]

=
∑︁
𝑧∈Z

Pr

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]𝜋 (𝑧)

(𝐴.2)
≤

∑︁
𝑧∈Z

e
𝜀

Pr

𝜃∼M(𝐷𝑧
0
)
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]𝜋 (𝑧)

= e
𝜀

Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧
0
)
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]

Since this is true for all 𝑧0 ∈ Z, applying the properties of the

expected value directly, we derive:

𝐴 ≤ E
e𝜀 Pr

𝑧∼𝜋
𝜃∼M(𝐷𝑧

0
)
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂]

 = e
𝜀𝐵.

Using Lemma A.2 again, we obtain that for all 𝑧0 ∈ Z,

1 − Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂] = Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) > 𝜂]

(𝐴.2)
≤ e

𝜀
Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) > 𝜂]

= e
𝜀
©­­«1 − Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]
ª®®¬

therefore,

1 − 𝐵 = 1 − E𝑍0∼𝜋 Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]

= E𝑍0∼𝜋 (1) − E𝑍0∼𝜋 Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]

= E𝑍0∼𝜋
©­­«1 − Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍

0
)
[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]

ª®®¬
≤ e

𝜀
©­­«1 − Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

[𝑙 (𝑍,𝐴(𝜃 )) ≤ 𝜂]
ª®®¬ = e

𝜀 (1 −𝐴)

So, applying Lemma A.1, we have that

𝐴 − 𝐵 ≤ e
𝜀 − 1
e
𝜀 + 1 . (10)

Aggregating the two bounds of Equation (9) and Equation (10), we

obtain the result.

□

Theorem 7.3 (𝜀-DP Implies (0, 𝛾)-U-ReRo). Let 𝜋 and 𝑙 follow
Definition 7.1, |Z| =𝑚 and 𝜅0 = 𝜅𝜋,𝑙 (0). If a mechanismM satisfies
𝜀-DP, then it also satisfies (0, 𝛾)-ReRo with

𝛾 = min{𝜅0 (e𝜀 − 1), 𝜅0 (𝑚 − 1)
e
𝜀 − 1
e
𝜀 + 1 + 𝜅0 − 𝜅

−
0
},

where, 𝜅−
0
≡ 𝜅−

𝜋,𝑙
(0) B inf𝑧′∈Z Pr𝑧∼𝜋 [𝑙 (𝑧, 𝑧′) = 0] is the lower

baseline error.

Proof. 𝛾 ≤ 𝑘0 (e𝜀 − 1) follows directly from previous Theo-

rem 7.2 applied to 𝜂 = 0. Therefore, we just need to prove that

𝛾 ≤ 𝑘0 (𝑚 − 1) e
𝜀−1
e
𝜀+1 + 𝑘0 − 𝑘

−
0
and we obtain the result.

From Proposition 5.1 we know that:

Pr

𝑧∼𝜋,𝜃∼M(𝐷−∪{𝑧})
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂] ≤ 𝜅0

(
e
𝜀 − 1
e
𝜀 + 1 + 1

)
Since 𝐴(𝜃 ) ∈ Z, by definition of 𝜅−

0
we have that:

E𝑧0∼𝜋

 Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧
0
)
𝑙 (𝑧,𝐴(𝜃 )) = 0

 ≥ E𝑧0∼𝜋
[
𝜅−
0

]
= 𝜅−

0
.

Joining both inequalities we obtain the result. □
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Proposition 8.1 (AdvMIA ⇔ U-ReRo). LetM : Z𝑛 → Θ be a
mechanism. For 𝐴 an informed MIA, it holds that

M is (0, 𝛾)-U-ReRo⇐⇒ AdvMIA (𝐴,M, 𝜋𝑛) ≤ 𝛾,
Additionally, if 𝐴𝑠 is a strong MIA under uniform priors (Def. 4.7),
then

M is (0, 𝛾
2

)-U-ReRo⇐⇒ Adv
𝑠
MIA
(𝐴,M, 𝜋𝑛) ≤ 𝛾 .

Proof. Following Section 4.1

Adv𝑀𝐼𝐴 = Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

Pr

𝑍∼𝐷
(𝐴(𝜃, 𝑍, 𝜋) = 0)

︸                                ︷︷                                ︸
𝐴

− Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

Pr

𝑍∼𝜋
(𝐴(𝜃, 𝑍, 𝜋) = 0)

︸                                ︷︷                                ︸
𝐵

Now, following Definition 4.4, since our adversary is informed and

we assume 𝐷− to be known, we model 𝜋𝑛 such that 𝜋𝑛 (𝐷) = 𝜋 (𝑧)
for all 𝐷 = 𝐷− ∪ {𝑧} ≡ 𝐷𝑧 , 𝑖 ∈ {0, 1} and 0 otherwise. When 𝑏 = 0,

we challenge 𝐴 with the real missing training record 𝑧, and when

𝑏 = 1, we challenge𝐴 with a random point of the distribution 𝑧 ∼ 𝜋 .

Therefore,

𝐴 = Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

Pr

𝑍∼𝐷
(𝐴(𝜃, 𝑍, 𝜋) = 0)

= Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧 )

(𝐴(𝜃, 𝑧, 𝜋) = 0)

= Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧 )

(𝐴(𝜃 ) = 𝑧) = Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧 )

(𝑙 (𝐴(𝜃 ), 𝑍 ) = 0)

Therewith, we have that,

𝐵 = Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

Pr

𝑍∼𝜋
(𝐴(𝜃, 𝑍, 𝜋) = 0)

= Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

Pr

𝑍 ′∼𝜋
(𝐴(𝜃, 𝑍 ′, 𝜋) = 0) = Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

Pr

𝑍 ′∼𝜋
(𝐴(𝜃 ) = 𝑍 ′)

= Pr

𝑍∼𝜋
𝜃∼M(𝐷 )

Pr

𝑍 ′∼𝜋
(𝑙 (𝐴(𝜃 ), 𝑍 ′) = 0) = E𝑍 ∈𝜋 Pr

𝑍 ′∼𝜋
𝜃∼M(𝐷𝑍 )

(𝑙 (𝐴(𝜃 ), 𝑍 ′) = 0),

which lead us to the desired result.

For the case of a strong membership experiment, following Defi-

nition 4.7, with 𝜋 = U{0, 1} we obtain,

E𝑍 ′∼𝜋
©­­« Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 ′ )

(𝑙 (𝐴(𝜃 ), 𝑍 ) = 0)
ª®®¬ = (11)

= E𝑍 ′∼𝜋

(
1

2

Pr

𝜃∼M(𝐷𝑍 ′ )
(𝐴(𝜃 ) = 𝑧0 ) +

1

2

Pr

𝜃∼M(𝐷𝑍 ′ )
(𝐴(𝜃 ) = 𝑧1 )

)
=

2

4

=
1

2

(12)

Additionally, Proposition 8.1 states that,

Pr

𝑧∼𝑈 {0,1}
𝜃∼M(𝐷𝑧 )

[𝑙 (𝑧,𝐴(𝜃 )) ≤ 0] = 1

2

(Adv𝑠
MIA
+ 1)

Combining both results we have that,

Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧 )
[𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂] − E𝑧0∼𝜋

 Pr
𝑧∼𝜋

𝜃∼M(𝐷𝑧
0
)
𝑙 (𝑧,𝐴(𝜃 )) ≤ 𝜂

 =

(13)

1

2

(Adv𝑠
MIA
+ 1) − 1

2

=
1

2

Adv
𝑠
MIA

(𝐴𝑝𝑝𝑒𝑛𝑑𝑖𝑥 𝐵)
= AdvMIA (14)

□

Proposition 8.2 (AdvAIA ⇔ U-ReRo). LetM : Z𝑛 → Θ be a
mechanism. For all data distributions 𝜋𝑛 and for all informed AIA
attacks 𝐴 that know 𝐷− and try to guess the attribute of a target
record 𝑧 from which 𝜙 (𝑧) is known, we have
M is (0, 𝛾)-U-ReRo⇐⇒ AdvAIA (𝐴,M, 𝜋𝑛) ≤ 𝛾 for all 𝐴.

Proof. Note that, an informed AIA experiment consists of the

following steps:

(1) Sample 𝑧′ ∼ 𝜋 .

(2) Sample 𝑏 uniformly from {0, 1}.
(3) If 𝑏 = 0 draw 𝑧 = 𝑧′, else 𝑧 ∼ 𝜋 .

(4) Run 𝐴(𝜙 (𝑧),M(𝐷𝑧′ ), 𝜋) ≡ 𝐴(𝜙 (𝑧),M(𝐷𝑧′ )).
Therefore,

Pr(𝐸𝑥𝑝𝐴 = 1 |𝑏 = 0) =
∑︁
𝑧′∈Z

Pr(𝐴(𝜙 (𝑧′ ), 𝜃 ) = 𝜑 (𝑧′ )𝜋 (𝑧′ )

= Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

(𝑙 (𝐴(𝜙 (𝑍 ), 𝜃 ), 𝜑 (𝑍 ) ) = 0)

and,

Pr(𝐸𝑥𝑝𝐴 = 1 |𝑏 = 1) =
∑︁
𝑧′∈Z

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑍 )

(𝐴(𝜙 (𝑧′ ), 𝜃 ) = 𝜑 (𝑧′ )𝜋 (𝑧′ )

=
∑︁
𝑧′∈Z

Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧′ )

(𝑙 (𝐴(𝜙 (𝑍 ), 𝜃 ), 𝜑 (𝑍 ) ) = 0)𝜋 (𝑧′ )

= E𝑍 ′∼𝜋 Pr

𝑍∼𝜋
𝜃∼M(𝐷𝑧′ )

(𝑙 (𝐴(𝜙 (𝑍 ), 𝜃 ), 𝜑 (𝑍 ) ) = 0)

Therefore,

M is (0, 𝛾 )-U-ReRo ⇔

⇔ Pr(𝐸𝑥𝑝𝐴 = 1 |𝑏 = 0) − Pr(𝐸𝑥𝑝𝐴 = 1 |𝑏 = 1) ≤ 𝛾

⇔ AdvAIA ≤ 𝛾

□

B Relation between Membership Advantages
The membership advantage presented in [35] takes the prior distri-

bution into account and measures the leakage that the mechanism

trained on 𝐷 produces by removing the effect of the prior distribu-

tion knowledge on the attack. When the prior is uniform, it does

not provide any advantage beyond the real privacy leakage, and

the advantage can be simplified.

Since we assume 𝐷− to be known, we model 𝜋𝑛 such that

𝜋𝑛 (𝐷) = 𝜋 (𝑧𝑖 ) = 1

2
for all 𝐷 = 𝐷− ∪ {𝑧𝑖 } ≡ 𝐷𝑧𝑖 , 𝑖 ∈ {0, 1}

and 0 otherwise. Therefore;

Adv𝑀𝐼𝐴 = Pr

𝐷∼𝜋𝑛

𝜃∼M(𝐷 )

(
Pr

𝑍∼𝐷
(𝐴(𝜃, 𝑍, 𝜋) = 0) − Pr

𝑍∼𝜋
(𝐴(𝜃, 𝑍, 𝜋) = 0)

)
= Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

Pr(𝐴(𝜃, 𝑧𝑖 , 𝜋) = 0) − Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

Pr

𝑍∼𝑈 {0,1}
(𝐴(𝜃, 𝑍, 𝜋) = 0)

Where,

Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

(Pr(𝐴(𝜃, 𝑧𝑖 , 𝜋) = 0)

=
1

2

Pr

𝜃∼M(𝐷𝑧
0
)
(𝐴(𝑧0, 𝜃, 𝜋) = 0) + 1

2

Pr

𝜃∼M(𝐷𝑧
1
)
(𝐴(𝑧1, 𝜃, 𝜋) = 0))
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and,

Pr

𝑧𝑖∼𝑈 {0,1}
𝜃∼M(𝐷𝑧𝑖

)

Pr

𝑍∼𝑈 {0,1}
(𝐴(𝜃, 𝑍, 𝜋) = 0)

=
1

4

Pr

𝜃∼M(𝐷𝑧
0
)
(𝐴(𝑧0, 𝜃, 𝜋) = 0) + 1

4

Pr

𝜃∼M(𝐷𝑧
1
)
(𝐴(𝑧1, 𝜃, 𝜋) = 0))+

1

4

Pr

𝜃∼M(𝐷𝑧
0
)
(𝐴(𝑧1, 𝜃, 𝜋) = 0) + 1

4

Pr

𝜃∼M(𝐷𝑧
1
)
(𝐴(𝑧0, 𝜃, 𝜋) = 0))

Therefore,

AdvMIA =

=
1

4

Pr

𝜃∼M(𝐷𝑧
0
)
(𝐴(𝑧0, 𝜃, 𝜋) = 0) + 1

4

Pr

𝜃∼M(𝐷𝑧
1
)
(𝐴(𝑧1, 𝜃, 𝜋) = 0))−

1

4

Pr

𝜃∼M(𝐷𝑧
0
)
(𝐴(𝑧1, 𝜃, 𝜋) = 0) − 1

4

Pr

𝜃∼M(𝐷𝑧
1
)
(𝐴(𝑧0, 𝜃, 𝜋) = 0))

=
1

2

Pr

𝛼∈{0,1}
𝜃∼M(𝐷𝑧𝛼 )

(𝐴𝑠 (𝜃 ) = 𝛼) − 1

2

Pr

𝑖∈{0,1}
𝜃∼M(𝐷𝑧𝛼 )

(𝐴𝑠 (𝜃 ) ≠ 𝛼)

=
1

2

Adv
𝑠
MIA
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