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A kinematic dataset of locomotion 
with gait and sit-to-stand 
movements of young adults
Simon Hanisch   1,2 ✉, Loreen Pogrzeba   3,4, Evelyn Muschter   1,3, Shu-Chen Li   1,3,4 & 
Thorsten Strufe   1,2,4

Kinematic data is a valuable source of movement information that provides insights into the health 
status, mental state, and motor skills of individuals. Additionally, kinematic data can serve as biometric 
data, enabling the identification of personal characteristics such as height, weight, and sex. In CeTI-
Locomotion, four types of walking tasks and the 5 times sit-to-stand test (5RSTST) were recorded from 
50 young adults wearing motion capture (mocap) suits equipped with Inertia-Measurement-Units (IMU). 
Our dataset is unique in that it allows the study of both intra- and inter-participant variability with 
high quality kinematic motion data for different motion tasks. Along with the raw kinematic data, we 
provide the source code for phase segmentation and the processed data, which has been segmented 
into a total of 4672 individual motion repetitions. To validate the data, we conducted visual inspection 
as well as machine-learning based identity and action recognition tests, achieving 97% and 84% 
accuracy, respectively. The data can serve as a normative reference of gait and sit-to-stand movements 
in healthy young adults and as training data for biometric recognition.

Background & Summary
Kinematic data of human motion is a rich source of information that has long been captured for use in the med-
ical field1, and now, with increasing digitization, is being captured more and more for use in Mixed Reality (MR) 
and the Tactile Internet2. For applications in both areas, movements need to be captured in great detail, includ-
ing their kinematics, to create a digital twin of that person, which could then be used to interact with the digital 
world. Examples of uses of kinematic data in this context include motion control of robots, animation of digital 
avatars in virtual meetings, or gesture control for applications. Consequently, increasingly more kinematic data 
is being collected outside the laboratory, providing insights into how individuals walk in everyday situations and 
enabling the development of interventions tailored to real or digitized scenarios. In addition, kinematic gait data 
provide valuable information about an individual’s locomotion, but also more generally about their functional 
abilities and limitations. Such data can assist the assessment of balance, sensorimotor coordination, and overall 
mobility, which are essential for activities of daily living and can serve as indicators of basic health status. A 
recent study used kinematic data to derive gait speed and spatiotemporal gait parameters in a young population, 
which made a valuable contribution for establishing reference values in gait assessments3. Furthermore, this 
type of data promotes the exploration and testing of gait features through machine learning, thereby facilitating 
the development of clinical applications4. Indeed, kinematic analyses of gait and other movement data gain 
increasing importance in clinical applications. By analysing gait pattern and stand-to-sit exercises5–7, clinicians 
can identify abnormalities8–13, track process14,15 or assess functional outcomes16,17, and make informed decisions 
regarding interventions and rehabilitation strategies (e.g. for designing auditory feedback in gait training for 
patients post-stroke18 or after unilateral hip arthroplasty19).

In recent years it has been shown that gait, and motion data in general, can be used as a biometric factor to 
identify individuals and infer private information about them20. Recognizing people from their gait patterns in 
2D videos is a field of research in its own right21–23. A recent extension of this research is to investigate gait rec-
ognition on 3D mocap data24,25. In addition, motion data can be used to infer attributes such as a person’s sex26 

1Technische Universität Dresden, Centre for Tactile Internet with Human-in-the-Loop, Dresden, 01062, Germany. 
2Karlsruhe Institute of Technology, Computer Science, Karlsruhe, 76131, Germany. 3Technische Universität Dresden, 
Chair of Lifespan Developmental Neuroscience, Dresden, 01062, Germany. 4Technische Universität Dresden, 
Research Hub 6G-life, Dresden, 01062, Germany. ✉e-mail: simon.hanisch@tu-dresden.de

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-024-04020-6
http://orcid.org/0000-0002-1525-3911
http://orcid.org/0000-0002-5420-7512
http://orcid.org/0000-0001-6870-5224
http://orcid.org/0000-0001-8409-5390
http://orcid.org/0000-0002-8723-9692
mailto:simon.hanisch@tu-dresden.de
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-024-04020-6&domain=pdf


2Scientific Data |         (2024) 11:1209  | https://doi.org/10.1038/s41597-024-04020-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

and age27. Due to these inference of identity and personal attributes motion data can further be used to develop 
and evaluate new privacy protecting techniques28.

In order to contribute to both the medical and biometric aspects of using motion data, we recorded a new 
dataset in a young adult sample. Our dataset has the advantages of capturing motion of the entire body with 
good precision in a relatively large sample of young adults performing four different types of gait movements 
and multiple repetitions of the sit-to-stand task. Such data allow intra-individual variability and its variations 
across individuals be taken into account for training machine learning methods. These features are better suited 
for medically relevant applications for which full body motion capture with a good accuracy are necessary for 
assessing functional status of different body parts. Further, having a large of number of participants in perform-
ing different types of tasks with high numbers of repetitions is important to train machine learning algorithms 
in identifying biometric features of individuals.

For motion tracking, we utilized an IMU mocap suit as it is a good compromise between setup complexity 
and tracking quality for full body motion. An IMU sensor consists of an accelerometer, gyroscope, and mag-
netometer that estimate the position and orientation of the IMU sensor. IMU based motion tracking offers a 
good accuracy of relative movements of the individual body parts. However, compared to optical marker-based 
tracking as the gold standard of motion capture, IMU motion capture is less accurate for positions and orienta-
tions. The difference between the two approaches is nevertheless slight (e.g., around +/−2 degrees, see Mihcin29 
and later in discussions). An important benefit of IMU based tracking over optical tracking is that it is not 
limited by a certain spatial volume in which the recording takes place, which makes it easier to capture longer 
sequences (e.g. Horst et al.24 capture only a single gait cycle per recording) or to avoid the need of using tread-
mills (e.g. Troje et al.30). In addition, the setup time of a recording session is much shorter, as putting on an IMU 
suit is much faster than sticking a full set of markers to the bodily landmarks of a participant and the calibration 
of the IMU system requires also less time.

In summary, kinematic data has been instrumental in advancing research in various fields, including reha-
bilitation, biomechanics, sport science and privacy science. With this new dataset we aim to facilitate the explo-
ration of new insights into human locomotion, and the development of advanced analysis techniques. Thus, the 
present dataset can be used both for reference in medical analysis for young healthy adults and in the field of 
biometric recognition for both identity and personal attributes. In addition, the dataset can be used to develop 
new privacy protections to prevent inference of identity and personal attributes28.

Methods
Participants.  Data was recorded from 50 young adults (28 male, 22 female; age mean 24.3 years, std. 4.7 
years; mass mean 73.5 kg, std. 16.2 kg; height mean 175.5 cm, std. 9.8 cm). An overview of the demographics can 
be seen in Fig. 1. All participants gave written informed consent and agreed to the publication of the study data. 
The study was approved by the Ethics Committee of the Technical University of Dresden (SR-EK-5012021) and 
was conducted in accordance with the tenets of the Declaration of Helsinki. Data were pseudonymized and a 
unique ID was assigned to each participant.

Acquisition Setup.  The dataset was recorded for each participant individually in the laboratory of Karlsruhe 
Institute of Technology. The single recording session on average lasted for about 60 minutes. Before the recording 
started, we marked the walking area of 3.5 m with two red crosses on the floor.

Anthropometric Data.  Anthropometric data was recorded for all participants using an anthropometric grid31 
for total height and arm span of the participants. Additionally, key anthropometric body measurements (i.e., 
shoulder height, shoulder width, pelvis height, pelvis width, knee height, foot length, and manus length) were 
taken manually with a generic measuring tape and ruler (stated accuracy  ± 0.9 mm) following the anthropo-
metric measurement template of the manufacturer of the mocap suits. This data was then used to create a body 
profile for each participant. Finally, a standard personal scale (Huawei AH100) was used to determine the weight 
of each participant (wearing a mocap suit and without shoes). The weight values are given with the mocap suit 
(about 1.2 kg) included.

Fig. 1  Overview of the demographics of the participants as histograms. Panel A shows the age distribution in 
years, Panel B shows the mass distribution in kg, and Panel C shows the height distribution in cm.
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Kinematic Data.  Motion data were collected using the Smartsuit Pro 1 (see Fig. 2 left and middle panel) and 
Rokoko Studio (version 1.20.5r) mocap technology provided by Rokoko (Rokoko, Denmark, https://www.
rokoko.com). The mocap suit contains a total of 19 IMU sensors (see Fig. 2 right), with one sensor each on the 
foot, shin, thigh, hand, forearm, upper arm, shoulder, and head. The remaining sensors are located on the torso, 
with two sensors each on the lower back and hips. The sensors are held in place by Velcro and the fabric of the 
suit. Mocap data is recorded at 100 Hz and transmitted via WiFi to the recording computer and then applied to 
the participants’ skeletal rig. The skeletal rig is a representation of the key body parts with the proportions of the 
participants’ body profile (described above).

Acquisition Procedure.  Figure 3 offers a schematic overview of the study protocol. Before the data acquisi-
tion started, participants were asked to change in a thin layer of sports garments, over which they wore the mocap 
suit. A private changing room was provided. Participants were asked to perform the exercises without shoes, 
wearing socks only. The mocap suit’s sensor locations on the limbs were carefully adjusted to the participants’ 
individual body morphologies according to the manufacturer’s guidelines. Next, participants were familiarized 
with the mocap suit and technology and given a general overview of the types of movements they had to perform. 
They were informed about how the movements and anthropometry of their body would be recorded. We then 
proceeded with the collection of anthropometric measurements.

The data acquisition started with the actor profile set up in Rokoko Studio where participant-specific ID, 
demographics, and anthropometric measurements were recorded and the system was calibrated. The calibra-
tion pose (straight pose with legs, arms, hands and fingers straightened, feet hip-wide apart) was used to set up 
the initial sensor position to ensure correct motion tracking. The neutral pose (stand upright with upper body 
straight, feet foot-width apart, weight evenly distributed on both feet, arms hanging loosely) served as a neutral 
reference pose from which the movements for all walking exercises were initiated. While the calibration pose 
places great emphasis on the correct alignment and rotation of body segments, the neutral pose should reflect a 

Fig. 2  Participant wearing Rokoko Smartsuit Pro 1 in calibration pose (left) and schematic sensor locations 
(middle andright) on the suit depicted from a posterior view. The sensors are color-coded, with light blue 
sensors (4, 5, 8, 9) positioned anteriorly. The segment and joint labels, provided by Rokoko Electronics Inc., are 
named according to the tracked centers of body segments, with rotation axes conforming to the standardized 
Joint Coordinate System (JCS) defined by the International Society of Biomechanics (ISB)32,33. A full overview 
of the channels of each recording can be found in the *_channels.tsv files.
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Fig. 3  The study protocol.
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natural and comfortable resting pose. Participants then performed a series of control movements covering the 
range of motion of multiple body parts (e.g., shoulder abduction and flexion, wrist flexion and extension, ankle 
plantar flexion and dorsiflexion) to ensure best mocap quality. If necessary, sensors were re-positioned and the 
calibration was restarted. For two participants (sub-K15 and sub-K35) minor recording errors persisted for their 
arms, as specified in the metadata of the participants.

Next, the participants were guided through the recording session, starting with the sequence of gait trials and 
finishing with the 5RSTST trials, in a predefined order (see also Table 1). Prior to each task, a mandatory calibra-
tion procedure was conducted to ensure accurate motion tracking. In order to capture potential intra-individual 
and inter-individual differences in gait movements, our comprehensive dataset includes kinematic data collected 
under four distinct conditions of walking. The first condition involved recording the natural walking speed and 
gait style of each participant at their preferred pace. In the second condition, participants were instructed to 
imagine being in a hurry, simulating a fast walking scenario. The third and fourth conditions focused on walking 
with an additional load at the participant’s preferred speed. Participants either carried a 5 kg backpack (total 
weight) or transported a standard bottle crate (measuring 400 mm x 300 mm x 270 mm, with a total weight of 5 
kg evenly distributed). For all gait movements, participants were provided with explicit instructions to initiate 
from a neutral pose and walk between two points marked on the ground with red tape, positioned 3.5 m apart 
(see Fig. 4 left). Additionally, participants were instructed to maintain a forward gaze aligned with their walking 
direction. Participants were given specific instructions to execute a controlled turn at the marked points before 
commencing the return walk. Each gait task consisted of five back-and-forth walks between the designated 
points. The experimenter verbally counted the number of trials completed during each task. In the final round, 
participants were instructed to execute an additional turn, ensuring they returned to the original starting posi-
tion and faced the initial direction.

Following the completion of the walking sequence, data collection proceeded with the 5RSTST trials (see also 
Fig. 3). Participants were provided with specific instructions to sit on a chair, crossing their arms in front of their 
chest, and perform rapid repetitions of standing up and sitting down (see Fig. 4 right) five times consecutively, 
without any intervals of rest. The execution time of each 5RSTST exercise was measured using a stopwatch, while 
the kinematic data was simultaneously captured using a mocap suit. Each participant performed this exercise twice.

Data Processing.  As part of the Rokoko Studio data recording pipeline, the position and orientation 
data was processed using the following filters. This involved the locomotion filter for all recordings that auto-
matically aligns the feet sensor to the ground plane for movement phases with (assumed) ground contact. 
Additionally, a drift filter was applied for all gait trials to correct for position drift in the gait trajectories. Since 
IMU sensors only record the relative motion of each body part, the global position of the suit is estimated by 
summing up all relative movements beginning from the initial position (established during calibration). Over 
recording time, this method can lead to increasing positional inaccuracy, known as global drift. Since the start 
and end point of the walking course in the gait tasks was at the same position, this information was used to cor-
rect for global drift. Data was then exported in CSV format. The data includes the absolute positions (x, y, z) of 
the center of mass of all 17 body segments in meters and the relative orientation of each joint as recommended 
by the International Society of Biomechanics (ISB)32,33. The ISB standard defines the local axis system of joints 
in degrees with two fixed axes and one “floating" axis. In total, the data contains 17 6-dimensional (6D) points 
per time frame.

task Ntotal

Naverage per 
participant

Nmin per 
participant

Nmax per 
participant

gait normal 1178 23.56 12 35

gait fast 846 16.92 9 23

gait bottle crate 1120 22.4 15 33

gait backpack 1029 20.58 11 30

1RSTS 499 9.98 9 11

Table 1.  Overview of the resulting number of segments (N) per task after processing.

Fig. 4  Schematic representation of a gait trial (left) shown from the top and 1RSTS trial (right) shown from the side.
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Finally, the data was processed using a custom Python (Python Software Foundation, USA, https://www.
python.org) script34 (see Fig. 5). The data was visually inspected for noisy data segments and sensors. Anomalous 
sensor behavior was identified at individual time points within the position data of two participants (sub-K8, 
sub-K58), characterized by abrupt signal increases in multiple orders of magnitude. To remedy these artifacts, an 
interpolation approach utilizing the neighboring data points was implemented. Subsequently, we proceeded with 
cutting the recordings into individual segments. For the gait task a segment is a single gait cycle (as defined by Perry 
et al.35), and for the 5RSTST task it is a single 1RSTS repetition. A 1RSTS repetition begins with a participant sitting 
upright in a chair and ends with the participant reaching the same sitting position after standing up. This segmen-
tation step allowed for a more granular analysis and examination of specific movements within each segment.

Data segmentation was based on the characteristics of the positional data signal. For tailoring the seg-
mentation approaches to the characteristics of the different tasks, selected positional values of the signal were 
processed and searched for distinct events, e.g., peak values, to subsequently crop the signal into segments. 
The positional values are mapped to a coordinate system with the starting point of the movement is set to the 
coordinate origin (set during calibration), with the x-axis reflecting the position in the transverse plane (e.g., 
shoulder positions left and right to the median plane), the y-axis describing the heights of body parts (e.g. the 
head height), and the z-axis displaying the translation in the median plane (e.g., a forward step). While straight 
walking, the distance between the shoulder x positions (reflecting the approximate width of the shoulder girdle) 
stays constant. The distance changes at the turning points of the walking course as the participant rotates around 
its own body axis, from positive to negative or vice versa.

The resulting segments were then cut into single gait cycles, i.e., the feet end in the same position as they 
started. We chose gait cycles as they contain all gait phases performed while walking. The gait cycles were iden-
tified by detecting the largest distance between the absolute z-positions of the participants’ feet. As a final pro-
cessing step, we normalized all gait cycle segments to start at the same coordinate point by setting the positional 
data of the hip at the starting frame of the segment as the new coordinate origin of the coordinate system (with 
translating all positional values accordingly). Next, we applied a rotation step to the positional values of each 
segment so that all segments reflected the same walking direction. This processing step was necessary, since the 
participants were walking back and forth at the walking course, resulting in different walking directions and 
corresponding positional values.

For the 5RSTST, we identified a single segment by observing the participant’s head position. We detected peak 
values in the (y, z) values of the head position, since these can be used to distinguish the sitting from the standing 
position. We automatically sliced them into five repetitions (integrating the standing and sitting phases into one rep-
etition). As with the gait data, we used the first hip position of each segment as the coordinate origin for this segment.

An overview of the resulting number of segments processed can be found in the Table 1. Note that the result-
ing amount of segments for each participant and task varies due to several factors: faster walking results in fewer 
segments per participant, individual physiology affects the number of segments per person, and because we 
excluded incomplete gait cycles. For 5RSTST, we also found an incorrect execution of the task, as one participant 
performed more repetitions than instructed.

Data Records
We provide the CeTI-Locomotion dataset34 on the figshare data exchange platform (https://figshare.com/). The 
dataset is formatted according to the BIDS36,37 standard (version 1.9) and is provided in both raw format (as 
exported from Rokoko Studio) and processed format (as described above). The repository contains a readme, 
license, BIDS dataset descriptor, and the Python code used for processing and technical validation. The partic-
ipants.tsv file stores the metadata for all participants, including their age, mass, height, anthropometric data, 
and 5RSTST completion time. Each subject folder contains the raw motion data for all tasks. The motion data 
is stored as a tab-separated values file (*_motion.tsv) accompanied by a metadata file (*_motion.json) and a 
channel descriptor of the motion file (*_channels.tsv). The processed data is located in the derivatives folder and 
follows a similar structure, but split into the processed segments.

Technical Validation
In general, the suitability of using the Rokoko Smartsuit for motion data recording has been validated by previ-
ous work. Mihcin et al.29 reported good agreement between the Smartsuit and an optical tracking system, with 
a maximal bias range -1.48 – 2.22 degrees for knee flexion and for hip abduction-adduction. We performed 
two types of validation, one prior to recording our data. Here, we visually inspected the tracking performance 
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Fig. 5  Data processing pipeline in custom Python script.
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of the Rokoko Smartsuit by having participants perform static control poses, such as a T-pose (with 90 degrees 
shoulder abduction) or lifting their legs. Only when we found the tracking to be accurate, we did start record-
ing the mocap data. The second validation was done after exporting and processing the data into Python. In a 
first step, we rendered the position data of a random selection of segments to visually inspect a natural-looking 
motion execution within the anatomically possible range of motion (ROM) (see Fig. 6). Following this initial 
manual inspection, we evaluated whether the minimal and maximal joint angles fell within the anatomically 
feasible ROM. For each participant, we first calculated the minimal/maximal joint angles across all motion 
segments, for each of the six raw recordings separately (5RSTS is split into two recordings). We then averaged 
the minimum and maximum joint angles for each participant across recordings. Figure 7 depicts the distribu-
tion of mean minimal (in blue) and mean maximal (in orange) joint angles for all participants in comparison 
to reference range of motion values from Ryf and Weymann38 (in gray). Note, that we only plot joint angles for 
which reference values are available. For most joints the values fall within the expected ROM. Outliers in knee 
flexion, hip external/internal rotation, and ankle inversion/eversion could be attributed to inaccurately executed 
calibration poses or faulty sensor measurements (e.g., for elbow flexion in sub-K9). Additionally, joint angles for 
wrist abduction exceeded the normal ROM for some participants, likely due to inconsistent positioning of the 
wrist during calibration.

In addition, a classification analysis was performed to assess the suitability of the processed data for machine 
learning applications. Our model setup is comparable to Horst et al.24 and we have provided the our source 
code as part of this Data Descriptor (see Section Code Availability). For classification, we employed a support 
vector machine (SVM)39,40. The SVM was utilized to classify the movement tasks, the sex of the participants, 
and the participants’ identities. We chose a SVM with a radial basis function (RBF) kernel, a regularization 
parameter (C) of 1, gamma which is 1/ (n_features*Var(X)). As a preprocessing step for machine learning, we 
standardized the length of each motion segment by resampling them to contain exactly 100 frames. Additionally, 
we concatenated the time frames, which consisted of 17 6D points, into a single vector representation, result-
ing in a vector of size 10200. To further prepare the data for machine learning algorithms, we applied scaling 

Fig. 6  Example of a visual inspection rendering of a gait (left) and 5RSTS (right) recording.

Fig. 7  Distribution of average minimum and maximum joint angles for all participants, as calculated across all 
raw recordings per participant. Anatomically typical range of motion (ROM) values reported in prior research38 
are shaded in gray.
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techniques to normalize the values within each dimension of the data. By scaling the values to a range between 
0 and 1, we ensured that all features contributed equally to the learning process, regardless of their original 
magnitude. To reduce the dimensionality of the dataset and capture the most relevant information, we employed 
principal component analysis (PCA)41. This technique transformed the high-dimensional feature space into a 
lower-dimensional representation while preserving the most significant variation in the data. This resulted in 
a segment vector of 3342 to 3363 elements (depending on how the split was performed), with the first 10 PCA 
components explaining 69%−68% of the variance. The kinematic data was split into a test (20%) and a training 
(80%) dataset. For the identification classification we split segment-wise, i.e. 80% of a participant’s segments 
are in the training dataset and the remaining 20% are in the test dataset. For sex and modality classification, we 
split participant-wise, with all segments of a participant in either the training or test dataset, with 80% of the 
participants in the training and 20% in the test dataset. On the training dataset we performed a stratified 10-fold 
cross-validation using balanced accuracy (mean of the recall per class) as the metric to select the most appropri-
ate model before testing it on the test dataset.

The metrics accuracy (number of correct predictions divided by total predictions) and F1-scores42 were used 
to evaluate the performance of classification models and are reported in Table 2. As both metrics achieve com-
parable results we only discuss the accuracy in the following. Our classification model achieves 97% identifica-
tion accuracy, a 81% sex recognition accuracy, and a 84% action recognition (gait normal: 90%, gait fast: 93%, 
gait backpack: 88%, gait bottle create: 97%, and 1RSTS: 100%). For action recognition, a similar result can be 
found when we plot the actions in two dimensions using t-SNE43 (perplexity 30), see Fig. 8. t-SNE is a stochastic 
method for visualizing high dimensional data as two dimensional data points while preserving the similarity 
of the data points. The clusters of the 1RSTS and gait bottle crate segments are clearly distinguishable from the 
remaining task segments. The clusters for the remaining task segments overlap and cannot be clearly separated, 
showing their similarity. Note that for each gait modality we see two clusters. The plot is in line with the results of 
the classification experiments, as 1RSTS and bottle crate gait are easily separated from the other modalities due 
to their uniqueness, while the separation of the remaining gait modalities is more difficult.

Related Datasets
Comparing our dataset (cmp. Table 3) with other IMU-based datasets, we have a high number of tracked body 
points. Furthermore, our number of participants, tasks, and samples are in the middle between the high and 
low number datasets. The category where we score the lowest compared to the other datasets is the total record-
ing time, as we only record 1.5 hours in total. The comparison shows the trade-off we chose for these datasets, 

classification accuracy f1 score C Naverage Nmin Nmax

identity 97% 97% 50 93.44 61 129

sex 81% 81% 2 2336 2046 2626

action all 84% 85% 5 934.4 499 1178

1RSTS 100% 100% 2 2336 499 4173

gait normal 90% 83% 2 2336 1178 3494

gait fast 93% 78% 2 2336 846 3826

gait backpack 88% 72% 2 2336 1029 3643

gait bottle crate 97% 94% 2 2336 1120 3552

Table 2.  The classification results given as accuracy and F1-score for different attributes, we also report the 
number of classes (C) and number of segments per class (N) used for the classification.

Fig. 8  t-SNE plot colored for different motion tasks.
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instead of maximizing a single category of the dataset, we decided to spread our resources across all categories 
to get a good variety in all of them.

Usage Notes
The motion data and additional metadata are stored as tab-separated values (.tsv) and JSON (.json) files, 
and are as such compatible with a wide range of software applications and programming languages, thus 
promoting interoperability and seamless integration in different environments, as well as data processing 
efficiency. We recommend to use the processed data in derivates/cut_segments for analysis and classification, 
as the single repetitions already contain a lot of information. For the comparison of the classification of the 
identity or the actions performed, the code provided for the verification experiments can be used as a sim-
ple baseline. For the BIDS standard36 there are specialized libraries, such as PyBIDS44,45, for importing and 
processing the data.

Code availability
The custom code used for processing and technical validation are available along with the associated dataset34. The 
required libraries to execute the custom scripts have been included in the files requirements.txt and requirements.
yaml. These files allow for the installation of the necessary libraries either directly via The Python Package Index 
(PyPI, https://pypi.org) or via the Anaconda software distribution (2020.11, https://www.anaconda.com). The 
script preprocess_data.py encompasses all the data processing steps that were performed subsequent to the export 
from Rokoko studio. To facilitate the replication of the technical validation, the script verification_experiments.
py has been provided. This script allows for the execution of the technical validation on the processed data. 
Furthermore, the script render_sequence.py allows for the rendering the position data from *_motion.tsv files for 
visual analysis and verification. For additional details on the usage and execution of the custom code, please refer 
to the README file, which provides comprehensive instructions and guidelines.
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