KIT | KIT-Bibliothek | Impressum | Datenschutz

A benchmark of categorical encoders for binary classification

Matteucci, Federico; Arzamasov, Vadim 1; Boehm, Klemens 2
1 Institut für Theoretische Informatik (ITI), Karlsruher Institut für Technologie (KIT)
2 Institut für Programmstrukturen und Datenorganisation (IPD), Karlsruher Institut für Technologie (KIT)

Abstract:

Categorical encoders transform categorical features into numerical representations that are indispensable for a wide range of machine learning models. Existing encoder benchmark studies lack generalizability because of their limited choice of (1) encoders, (2) experimental factors, and (3) datasets. Additionally, inconsistencies arise from the adoption of varying aggregation strategies. This paper is the most comprehensive benchmark of categorical encoders to date, including an extensive evaluation of 32 configurations of encoders from diverse families, with 36 combinations of experimental factors, and on 50 datasets. The study shows the profound influence of dataset selection, experimental factors, and aggregation strategies on the benchmark's conclusions -- aspects disregarded in previous encoder benchmarks.


Volltext §
DOI: 10.5445/IR/1000176781
Veröffentlicht am 19.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Programmstrukturen und Datenorganisation (IPD)
Institut für Theoretische Informatik (ITI)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2023
Sprache Englisch
Identifikator KITopen-ID: 1000176781
Verlag arxiv
Schlagwörter Machine Learning (cs.LG)
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page