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1. Introduction

The integration of Industry 4.0 technologies, particularly 
laser-cutting systems, has significantly advanced 
manufacturing efficiency through high-precision and optimal 
utilization of material. However, these technologies also pose 
environmental challenges due to their high energy consumption 
and therefore emissions. In Germany, the industrial sector 
accounts for approx. 29% of total energy use in 2021, where
machinery contributes significantly to CO2 emissions [1]. This 

underscores the need for sustainable manufacturing practices, 
especially in energy-intensive sectors like laser cutting. The 
European Corporate Sustainability Reporting Directive 
(CSRD) further emphasizes the need for transparent 
environmental impact reporting, pushing industries toward 
sustainable practice. Leveraging Industry 4.0's data analytics 
could optimize resource use and reduce environmental effects
in manufacturing [2]. As a contribution, this research aims to 
align laser-cutting technology with environmental 
sustainability by minimizing resource consumption and 
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enhancing operational efficiency. This is addressed by 
utilization of explainable machine learning (XML) techniques, 
which provide insights into the influences of different features 
on the prediction of the resource consumption.

2. Literature Review

2.1. Data-driven Sustainability in Product Generation
Engineering

Complex mechatronic systems, are developed iteratively 
based on existing product generations, enabling systematic 
improvements through modification and recomposition of 
systems [3]. With the increasing degree of digitalization of 
mechatronic systems, an increasing amount of data is 
generated, providing the possibility to better understand the 
individual usage of the system in manufacturing facilities. 
Utilizing these field-gathered machine usage data, the system 
of objectives can be validated early in the product development 
process, resulting in a reduction of uncertainties by supporting
decision-making based on data analysis results [4]. With such 
a data-driven approach, inefficiencies and areas for 
improvement can be identified to optimize the performance of 
new product generations [5]. Therefore, design modifications 
can be derived based on real-world performance metrics of the 
mechatronic system [6].

The CSRD [7] emphasizes the need for greater transparency 
in reporting sustainability. Therefore, integrating sustainability 
into the development of cyber-physical systems is crucial to 
meet the requirements of directives such as the CSRD. By 
using machine usage data gathered from the operation of
existing manufacturing systems, new product generations of 
mechatronic systems can be designed more resource-efficient. 
Further, such data-driven approach in the development process 
of mechatronic systems not only helps companies comply with 
sustainability regulations but also offers a competitive edge by 
creating more sustainable products. 

The emphasis on data-driven decision-making in the 
Product Generation Engineering aligns with global 
sustainability objectives by enabling the development of 
products that are more responsive to environmental 
requirements [8]. Through the strategic use of data, companies 
can ensure compliance with new regulations like the CSRD, 
while also driving innovations that contribute to a more 
sustainable future. This approach not only meets regulatory 
demands but also positions companies better within a 
competitive market increasingly focused on sustainability.

2.2. Machine Learning and Data-driven Optimization in the 
Development of more Sustainable Mechatronic Systems

While the literature on mechatronic systems such as laser 
machines has often placed a secondary emphasis on 
sustainability, this aspect is increasingly becoming a focal point 
in broader manufacturing research [9]. A contribution to this 
field is the systematic literature review by Sihag and Sangwan 
(2020) [10], which focuses on the energy consumption of 
machine tools. This review categorizes and models energy 
consumption, explores strategies for reducing energy use, and 

evaluates approaches to enhancing energy efficiency. By 
analyzing over 226 articles, Sihag and Sangwan (2020)
[10] provide a comprehensive overview of the research
conducted, highlighting both the achievements and the existing 
gaps in this area. Notably, their review underscores the critical 
but under-represented role of machine learning and data 
analytics in developing energy-saving strategies and assessing 
energy efficiency. It also emphasizes the need for deploying
machining energy models to enhance the sustainability of 
machine tools. This literature review will serve as a pivotal 
guide for this paper, particularly concerning the classification 
and modeling of energy consumption.

Despite the increasing focus on sustainability within the 
broader manufacturing sector, literature specifically addressing 
the resource consumption of laser-cutting machine tools 
remains relatively scarce. This gap presents an opportunity for 
this research to contribute by applying established energy-
efficient strategies to laser-cutting technologies.

The work of Kellens et al. (2014) [11] provides a crucial 
reference in this area, offering an environmental assessment of 
laser-cutting processes. This study not only identifies energy 
consumption as a major sustainability key performance 
indicator (KPI) but also highlights the roles of assist gas and 
waste material in the environmental impact of these processes. 
Moreover, Kellens [11] discusses strategies for improving 
resource and energy efficiency, which are vital for enhancing 
the sustainability of laser-cutting operations.

Further contributing to this discourse, Goffin et al. (2023)
[12] conducted a case study that partially aligns with the aims 
of this research. Their research identifies several optimization 
strategies for laser-cutting processes, such as minimizing idle 
times and the number of idles, optimizing the arrangement of 
parts on sheets of metal, reducing machine power during idle 
periods, and refining processing parameters. These findings 
underscore potential areas for improving efficiency and 
reducing resource waste in laser-cutting applications.

Additionally, He et al. (2022) [13] reviewed various laser-
cutting methods, including vaporization, fusion, and reactive 
melting cutting, detailing their benefits, applications, and 
environmental impacts. This review highlights significant 
environmental concerns associated with laser cutting, such as 
emissions of dust, smoke, and aerosols, which pose health 
risks. He et al. [13] propose several pollution control strategies, 
including advanced dedusting technologies like screen 
filtration, bag filtration, electrostatic filtration, and activated 
carbon filtration.

Collectively, these studies underline the need for targeted 
research on the environmental impact and optimization of 
laser-cutting machine tools, therefore this research offers 
valuable insights that could aid in bridging existing gaps and 
furthering sustainability in this field. The research focused on 
enhancing the environmental performance of laser-cutting 
machine tools has predominantly centered on CO2 lasers, with 
solid-state lasers receiving considerably less attention in the 
context of sustainability. This oversight highlights a significant 
gap in the literature, indicating an opportunity for pioneering 
research in this area.
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3. Research Question and Methodology

The broader aim of this research is to support developers to 
utilize data analyses of field-gathered machine usage data, to 
optimize machine design for a more sustainable machine 
operation. Such optimizations are intended to enhance 
sustainability in the operation of mechatronic systems. This 
study specifically analyzes the resource consumption of laser-
cutting machine tools, focusing on how different operational 
settings and programs influence energy and process gas usage.
A data-driven approach using explainable machine learning 
techniques is used to gain deeper understanding of the 
prediction of resource consumption during machine operation. 
To operationalize the aim of this work, the following research 
questions are formulated:
• Q1: How can the resource consumption of laser-cutting 

machine tools be predicted and how well does such a 
prediction model perform?

• Q2: Which variables influencing the resource consumption 
of laser-cutting machine tools can be identified?

• Q3: In what ways can the gained understanding of 
resource consumption in laser-cutting machine tools 
inform strategies for achieving more sustainable 
production?

The methodological approach of this research is based on
the Design Research Methodology (DRM) framework 
proposed by Blessing & Chakrabarti (2009) [14]. This 
framework outlines four distinct stages: Research Clarification, 
Descriptive Study I, Prescriptive Study, and Descriptive Study 
II, each designed to support a systematic investigation into 
optimizing laser-cutting machine tools through data-driven 
decision-making and the application of AI and machine 
learning techniques.

Stage 1, Research Clarification, involves conducting a 
literature review to define the research problem and uncover 
gaps in the current understanding of AI and ML applications 
for machine tool optimization. This stage develops focused 
research questions based on identified gaps, setting the 
foundation for the subsequent studies.

Stage 2, Descriptive Study I, includes detailed data 
collection, cleaning, and pre-processing. This stage aims to 
prepare a comprehensive dataset that accurately represents the 
operational parameters of laser-cutting machines. The 
meticulous preparation of data ensures its suitability for 
sophisticated analytical models, crucial for effective modeling
and subsequent analysis.

Stage 3, Prescriptive Study, involves developing and 
optimizing predictive models using various machine-learning
random forest regressions. These models are evaluated based 
on performance metrics as Mean Squared Error (MSE) and 
Root Mean Squared Error (RMSE). Before, features get pre-
selected over a stepwise linear regression based on the AIC. 

Stage 4, Descriptive Study II, then focuses on analysing the 
significant features identified in the previous stage. This final 
phase leverages insights from feature impact analysis to 
propose data-driven improvements, aiming to enhance the 
efficiency and sustainability of laser-cutting operations. The 
culmination of these stages synthesizes the findings into 

actionable insights for advancing sustainable manufacturing 
practices.

4. Data Overview

The dataset aggregates data from various sources, primarily 
from the internal analytics data of a German machine tool 
manufacturer on a fully automated solid-state laser-cutting 
machine tool, and encompasses specific resource consumption 
data alongside technical and logistical parameters. Initial data 
collection involved sensors on the machine to record the 
consumption of electric energy and process gases (compressed 
air, nitrogen, oxygen) over a time span of three months. The 
detailed consumption data is recorded on a per-second basis, 
with subsequent conversions to align data granularity with 
program runs, crucial for linking broad data spectrums to 
proposed consumption metrics.

The data from pre-production programming and operations 
significantly enrich the dataset. This standardized JSON data 
varies per machine functionality, providing critical operational 
contexts such as laser settings and metal sheet specifications. 
The programming data includes detailed variables like laser 
power, speed, gas pressure, and cutting kerf under various 
scenarios. Additionally, geometry data extracted from program 
runs include metrics on part contours, areas, and complexity 
metrics like undercuts, which are vital for assessing the 
operational efficiency and resource consumption of the 
machine tool.

Further, data generated directly by the machine during 
production offers refined or modified operational data, 
enhancing the dataset with insights into machine performance 
and operation. This category includes characteristics of parts 
produced and details on program runs, such as operational 
states, durations, and machine feed rates. This layer enriches 
the analysis by providing a nuanced view of the machine's 
operational dynamics and efficiency, essential for the 
research's focus on environmental performance and 
optimization.

Pre-processing included data cleaning, handling of missing 
values, and management of outliers and interruptions. Missing 
values were addressed by assigning zeroes or excluding 
incomplete data entries, ensuring dataset integrity. Outlier 
management retained significant outliers to capture a 
comprehensive view of operational variability. The distribution 
analysis involved transformations to correct skewness in the 
data, enhancing the interpretability and reliability of the 
analysis. The final dataset consisted of 898 program runs, data 
points, 51 features, and four target variables for resource 
consumption with electrical energy, nitrogen, oxygen, and 
compressed air.

5. Prediction of the Resource Consumption of 
Mechatronic Systems

The first research question of this work critically examines 
the predictability of resource consumption for laser-cutting 
machine tools, focusing on the robustness and accuracy of 
developed predictive models. The methodology involved a 
rigorous selection and pre-processing of variables that 
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significantly explain observed variances in the dataset. This 
process is crucial for identifying and training the most suitable 
predictive models for four key consumption metrics: energy, 
compressed air, nitrogen, and oxygen. Each model's 
performance was quantitatively assessed using three statistical 
metrics: mean-squared-error (MSE), root-mean-squared-error 
(RMSE), and symmetric mean absolute percentage error 
(SMAPE).

Energy Consumption Analysis: The analysis starts with a 
correlation study to determine which features significantly 
influenced energy usage. Only six variables displayed absolute 
correlations greater than 0.5, which quantifies the strength and 
direction of the relationship between two variables, ranging 
from -1 (perfect negative correlation) to +1 (perfect positive 
correlation), with 0 indicating no correlation. A comprehensive 
model using stepwise linear regression guided by the Akaike 
Information Criterion (AIC) initially included 15 variables, of 
which 9 were significant to the 0.05 level, but an iterative 
refinement process was applied due to multicollinearity 
concerns, ultimately focusing on 8 variables. Performance 
metrics for this refined model were reliable, achieving an MSE 
of 0.214, RMSE of 0.465, and SMAPE of 4.45%, indicating 
high accuracy in predicting energy consumption.

Compressed Air Consumption Analysis: Despite initially 
weak correlations among the dataset features with compressed 
air consumption, the stepwise regression model includes seven 
variables that explain approximately 97% of the data variance 
(R² of 0.974). This model identified five significant variables, 
with two variables dropped due to multicollinearity and 
minimal impact on the model's predictive capacity. The 
complex dynamics of compressed air usage in laser-cutting 
operations seem not to be captured thoroughly, with an MSE of 
1.346, RMSE of 1.216, and SMAPE of 48.96%.

Nitrogen Consumption Analysis: The nitrogen model is
developed under the challenge of low initial correlations. 
Through stepwise regression, 12 variables were initially 
selected, however, due to multicollinearity and overlapping 
predictive influence, one variable was dropped. The remaining 
11 variables significantly contributed to achieving an R² of 
0.935. The performance metrics revealed an MSE of 4.76, 
RMSE of 2.33, and SMAPE of 24.2%, indicating sufficient
predictive accuracy across varied operational conditions 
despite the complexity of variable interactions.

Oxygen Consumption Analysis: The oxygen consumption 
model showed the strongest initial correlations, with seven 
variables demonstrating significant relationships. After 
stepwise regression and further evaluation for 
multicollinearity, one variable was excluded, leaving six 
impactful variables. This model achieved an exceptionally high 
R² of 0.996, illustrating its nearly perfect explanatory power. 
The robust model demonstrated its precision with an MSE of 
0.072, RMSE of 0.268, and an SMAPE of 2.2%, making it the 
most accurate of the consumption models developed. These 
analyses underscore the complexity and challenges of 
predictive modelling in industrial applications. The systematic 
approach of variable selection, assessment for 
multicollinearity, and iterative refinement of models ensured 
the development of reliable predictive tools. These models 
provide crucial insights into the operational efficiency and 

resource management of laser-cutting machines, offering 
significant opportunities for optimization and advancing 
sustainable manufacturing practices.

6. Influencing Parameters of the Resource Consumption 
of Mechatronic Systems 

The sufficient to very accurate performances of the 
prediction models lead to a further analysis of feature 
importance, particularly focusing on models that show stronger 
performance. To quantify the impact of each feature on the 
model outcomes, the SHAP (SHapley Additive exPlanations) 
method is used [15]. This game-theoretic approach assigns 
Shapley values to distribute the predictive contributions 
equitably among the features, providing a clear and 
interpretable measure of each feature's influence. In the energy 
consumption model, eight variables stood out from an original 
set of 51 for their significant impact on predictions. The SHAP 
analysis consisted of different plots showing the influence of 
features on the models and revealed that the total duration of 
operation was the most dominant feature, far outweighing the 
influence of the other seven variables. This finding underlines 
the critical role of operational time in determining energy 
consumption, suggesting potential areas for efficiency 
improvements within laser-cutting operations. The SHAP 
values for a specific prediction instance indicate how each 
feature adjusted the base prediction value. Notably, the total 
duration of running alone adjusted the base value by about 8%, 
highlighting its substantial impact compared to other features. 
This analysis provided deep insights into the complex interplay 
of features and underscored the significant role of operational 
time in driving energy consumption. The bee swarm plot (see 
figure 1) further emphasized the importance of operational 
time, showing a linear relationship between running time and 
its effect on the model's predictions. It shows how the single 
predictions, seen as the points, affect the model output. While 
the colour indicates the size of the input values, showing small 
values in blue to high values in red, the SHAP values show a
positive or negative impact on the model output. This plot 
confirmed that while other features contributed to the accuracy 
of the model, their impact was minimal compared to the 
duration of operation. This insight is crucial for understanding 
the driving factors of energy consumption and for identifying 
strategies to enhance energy efficiency.

Fig. 1. Bee swarm plot for the energy model.

For compressed air consumption, the SHAP analysis also 
identified the total duration of running as the most impactful 
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variable, with its influence even more pronounced than in the 
energy model. Additional variables like the count of inner 
contours and mid-normal gas pressure also significantly 
affected compressed air consumption, highlighting a complex 
set of interactions influencing this resource use. The 
corresponding waterfall plot (see figure 2) for compressed air 
demonstrated how each feature influenced a specific 
prediction, with operational time again playing a dominant 
role. This detailed breakdown helped to unravel the interactions 
among features that determine compressed air consumption for 
a specific program run. The bee swarm plot for compressed air 
revealed a pronounced impact from variables beyond 
operational time, providing insights into how different feature 
values contribute to the model's output. This plot highlighted 
the influence of material properties, represented by the e-
module, and operational parameters like gas pressure and 
speed, on compressed air consumption.

Fig. 2. Waterfall plot for the compressed air model.

Lastly, the analysis of nitrogen and oxygen consumption 
models reiterated the significant influence of operational time. 
In both cases, the total duration of running emerged as the most 
critical predictor, dominating the model outcomes, and 
affirming its universal role across different types of resource 
consumption in laser-cutting processes. For the oxygen model 
this is illustrated by the average absolute SHAP values of each 
feature in figure 3.

Fig. 3. Average SHAP values for the oxygen model.

These findings not only illustrate the efficacy of predictive 
models in understanding resource consumption but also 
emphasize the importance of operational time as a key factor 
across all models. This comprehensive analysis using SHAP 

provided valuable insights into the behavior of predictive 
models and highlighted critical features that significantly 
determine resource consumption in laser-cutting operations.

7. Enhancing the environmental performance in the 
operational phase

Building on confirmation that running duration significantly 
affects resource consumption in laser-cutting processes, a 
detailed analysis is conducted, to understand the underlying 
factors influencing operational times. This deeper scrutiny 
utilized a similar analytical framework that proved effective in 
previous models. The analysis starts with a correlation analysis 
which suggests that, although most features showed low 
correlation, seven features exhibited correlations exceeding 
0.5, indicating their potential importance in predicting 
operational times. This pattern, consistent with earlier model 
behaviors, suggested a basis for robust model performance. To 
refine the selection of influential variables, stepwise linear 
regression is applied, initially identifying 31 variables that 
improve the model's predictive accuracy as evidenced by 
changes in the AIC. Of these, 23 variables are statistically 
significant. To enhance the model's robustness, 18 features are
subsequently dropped due to multicollinearity or minimal 
impact, focusing the analysis on the most significant factors 
affecting running durations. The refined set of variables 
includes operational, technical, and design elements such as 
total contours, count of finished parts, and big kerf. These 
variables were crucial in determining the length of program 
runs in laser-cutting operations. A random forest model is 
subsequently trained to predict running durations, which 
demonstrate excellent accuracy. The model's effectiveness is
confirmed by metrics such as an MSE of 0.029, a RMSE of 
0.167, and a SMAPE of 1.31%, indicating precise predictions 
across most data points, aside from two slightly underpredicted 
and anomalously long durations. To understand the intricacies 
of the model's predictions, the SHAP analysis is applied. This 
analysis highlights the total length of contours as the most 
influential feature on running duration, underscoring its critical 
role in operational efficiency. Unlike its dominant impact in 
resource consumption models, the total contours length has a 
significant but less pronounced influence here.

Fig. 4. Bee swarm plot for the running duration model.

Further analysis using SHAP values and feature 
contributions elaborated on the roles of various features. The 
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analysis showed that total contour length had a substantial 
impact on model predictions, with the number of inner contours 
also emerging as notably influential, albeit to a lesser extent. 
Other features have minimal impact.

The bee swarm plot (see figure 4) reinforced the linear 
association between feature values and SHAP values, 
particularly highlighting how the total number of contours 
predominantly influenced the model's output. This plot also 
shows the impact of sheet dimensions, and the number of 
finished or waste parts, providing a comprehensive view of the 
factors driving running durations in laser-cutting operations.

8. Discussion and Outlook

The study on energy and gas consumption in laser-cutting 
processes employing XML techniques identified total 
operation duration as a pivotal factor affecting resource use 
across different models such as energy, compressed air, 
nitrogen, and oxygen. Findings highlight that consumption 
patterns are strongly linked to operational time rather than 
machine-specific settings, due to the automated nature of the 
laser machines studied and the high constant consumption of 
the machine. This insight emphasizes the impact of machine 
design over manual adjustments, suggesting that reducing 
operational times could significantly enhance efficiency and 
sustainability in laser-cutting environments.

Discussion within the research points towards the negligible 
effect of machine settings on resource consumption, 
underlining the importance of operational efficiency for 
sustainability. The exclusion of runs with interruptions, which 
generally show higher consumption, further validates the need 
for continuous operations without stops. These conclusions 
focus on optimizing machine run durations, which can be 
directly addressed by part design and complexity, and 
maintaining uninterrupted operations as key strategies for 
reducing energy and gas use, thus promoting a more 
sustainable production approach. This study presents 
promising results; however, further validation is necessary to 
enhance the generalizability of these findings. The analysis was 
conducted using data from a single machine type with a very 
high degree of automation, which may limit the applicability of 
the results to other systems. To robustly compare the outcomes, 
additional data from a variety of machines across different 
operational environments are required. This expansion of the 
dataset would allow for a more comprehensive assessment of 
the model's performance and its potential variability. Thus, 
future research should focus on incorporating a broader array 
of data sources to substantiate and extend the conclusions 
drawn in this study.

Future research should explore methods to optimize 
production speeds and minimize idle times, aiming to reduce 
costs and environmental impact. This research suggests 
incorporating design elements as contour length and inner 
contour counts as environmental KPIs of sheet-metal parts to 
be cut, potentially leading to significant reductions in resource 
consumption and fostering more sustainable practices in the 
manufacturing sector.
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