

Influencing the Product Quality in Chemical Recycling of Mixed Thermoplastics by Temperature-staged Pyrolysis

DGMK-Conference: Energy and Material Flows in Sustainable Petrochemistry – Opportunities and Implications Niklas Netsch, Aljoscha Tauber, Orhan Keskin, Daniela Merz, Britta Bergfeldt, Salar Tavakkol, Dieter Stapf

www.kit.edu

Perspectives for the plastic lifecycle

Integrating pyrolysis as thermochemical recycling

Condensate requirements for re-integration

WEEE

4

Institute for Technical Chemistry

Requirements on pyrolytic recycling process chains

Optimization options in plastic pyrolysis

Feedstock restrictions

- Avoidance of non-plastic contaminations and heteroatomcontaining polymers
- Restricted use of functionalized plastics

Parameter variations

- Process parameters adjustment
- \rightarrow Reactor temperature
- → Reactor pressure

. . .

 \rightarrow Gas residence times

Process design

- Influencing pyrolysis by
- → Catalyst / sorbent
- \rightarrow Integrated gas filtration
- \rightarrow Reflux of high boiling products
- \rightarrow Temperature-staged pyrolysis

Optimizing target product yields and quality Optimizing target product yields and quality

6

Fundamentals of plastic pyrolysis

Plastics production (in EU_{27+NO/CH/UK} 2019)

Degradation kinetics of thermoplastics

→ Reaction rate at specific temperatures differs by polymer type

→ Few plastic types dominate the market (75 m.%) and therefore plastic waste fractions

Thermoplastic interactions during pyrolysis

- Polymer-dependent interactions
 - → Heteroatoms and polymer backbone configuration
- Minor and intensive degradation interactions visible

→ Accelerated PET and PA6 degradation may improve temperature staging effect

Temperature staging of thermoplastic mixtures

Retrospective view

Study of on stepwise pyrolysis via thermogravimetry and in a cascade reactor system of circulating steel spheres

Two-staged thermogravimetry – ternary mixtures

Experimental setup

Stirred tank

- Polymer mass: 250 g
- Quartz sand as homogenizing agent
 → Sand/Polymer ratio: 8:1
- Nitrogen atmosphere (2.3 I_N/min)
- Reactor featuring enforced mixing by helical impeller

	Characteristics
Residence time ➡ ∑ ➡	Secondary gas phase reactions minimized by low residence time
Spatial gradients	 Homogeneous material distribution Sand buffers temperature gradients
Validation	Reproducibility and accuracy validated with reference material

Feedstock and experimental procedure

Experimental procedure

- Two isothermal and one staged pyrolysis runs
- Preheating of quartz sand in reactor
- Immediate feedstock addition

Pyrolysis product yields

Elemental analyses of condensable products

	400 °C Stage										500 °C Stage						
						Conc	lensate	e C1:	0.7 m.%			Condensate C1:			48.9 m.%		
Condensate vield: 59.5 m.%						C m.%	H m.%	N m.%	CI m.%	O 1) m.%	H₂O m.%	C m.%	H m.%	N m.%	CI m.%	O 1) m.%	H₂O m.%
No aqueous phase obtained						77.8	11.4	1.5	2.2	5.2	1.9	82.8	13.3	0.4	0.1	3.4	0.0
C m.%	H m.%	N m.%	CI m.%	O 1) m.%	H₂O m.%	Condensate C2: 2.2 m.%						Condensate C2: ²⁾ 5.2 m.%					
82.1	13.3	0.4	0.5	2.7	1.0	C m.%	H m.%	N m.%	CI m.%	O 1) m.%	H ₂ O m.%	C m.%	H m.%	N m.%	CI m.%	O 1) m.%	H₂O m.%
¹⁾ Difference to 100					4.7	8.6	0.9	23.3	2.3	60.2	n.a	n.a	n.a	1.1	-	0.0	
²⁾ Sample not measurable																	

- Selective N, O, and CI enrichment in products of the 400 °C pyrolysis stage
- Low yields at 400°C stage reduce the condensate improvement effect of staged pyrolysis
 - \rightarrow Optimization potential for parameter adjustment and condenser design

Analyses of gaseous products

• MSD: Organic gas compounds

Analyses of gaseous products

Institute for Technical Chemistry

Conclusion and Outlook

- Laboratory scale Thermogravimetry
- → Mechanism of complex mixtures evaluated
- → Synergistic effects by polymer interactions

Batch pyrolysis processes

- **→**∑→
 - Adaptation of temperature program to reaction rate of polymers in waste

Promising option for discharging contaminants from target products

Technical scale - Stirred tank reactor
 → Enrichment of heteroatom-containing compounds in gaseous and condensable products of 400 °C pyrolysis stage

System

System-specific optimization

Adjustment of reaction temperature and time in isothermal segments required

Continuous pyrolysis processes

- Implementing pretreatment pyrolysis
- \rightarrow Feeding from high-temp. extruder
- → Feeding from screw reactor

