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Abstract
It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-
colorable if and only if it contains no bridge. We consider the question of which planar graphs are
subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient
recognition algorithm that given an n-vertex planar graph, augments this graph in O(n2) steps to a
planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools
involve the Generalized (Anti)factor-problem for the fixed embedding case, and SPQR-trees for
the variable embedding case.
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1 Introduction

Whether or not the 3-Edge Colorability-problem is solvable in polynomial time for planar
graphs is one of the most fundamental open problems in algorithmic graph theory:

▶ Question 1. Can we decide in polynomial time, whether the edges of a given planar graph
can be colored in three colors such that any two adjacent edges receive distinct colors?

In other words, can we decide for a planar graph G in polynomial time whether χ′(G) ≤ 3,
where χ′(G) denotes the chromatic index of G? Clearly, it is enough to consider planar
graphs G of maximum degree ∆(G) = 3. If G is planar and 3-regular, then by the Four-
Color-Theorem [1, 2] and the work of Tait [26] we know that G is 3-edge-colorable if and
only if G is bridgeless. An edge is a bridge if its removal increases the number of connected
components (note that this definition also applies to disconnected graphs). As we can check
the existence of bridges in linear time [28], we hence can decide in polynomial time whether
a given 3-regular planar graph is 3-edge-colorable.

In particular, subgraphs of bridgeless 3-regular planar graphs are 3-edge-colorable. How-
ever, this does not answer Question 1 yet (as sometimes wrongly claimed, e.g., in [7]), because
it is for example not clear which planar graphs of maximum degree 3 are subgraphs of
bridgeless 3-regular planar graphs, and whether these can be recognized efficiently.

In this paper we consider the corresponding decision problem: Given a graph G, is
there a bridgeless 3-regular planar graph H, such that G ⊆ H? In other words, can G be
augmented, by adding edges and (possibly) vertices, to a supergraph H of G that is planar,
3-regular, and contains no bridge? For brevity we call such a supergraph H a 3-augmentation
of G and denote the above decision problem as 3-Augmentation. Our main result is that
3-Augmentation is in P.
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(a) A planar graph G1 with a
3-augmentation H1.

(b) A different planar embed-
ding of G1 that does not allow
a 3-augmentation.

(c) A graph G2 with a 3-regular
planar supergraph H2. However,
there is no 3-augmentation of G2.

Figure 1 Example instances for the 3-Augmentation problem.

▶ Theorem 2. For a given n-vertex graph G we can construct in O(n2) time a 3-regular
bridgeless planar supergraph H of G, or conclude that no such exists.

Theorem 2 is the main result of the present paper and we emphasize that this does not
answer Question 1 yet. In fact, admitting a 3-augmentation is a sufficient condition for
3-edge colorability; but it is in general not necessary. For example, K2,3 admits a proper
3-edge coloring but no 3-augmentation. Question 1 remains open and we discuss it and its
connection to 3-augmentations in more detail in Section 3.

In order to decide the existence of a 3-augmentation (i.e., proving Theorem 2), we may of
course assume that the graph G itself is planar and of maximum degree at most 3. Observe
that in this case it is always possible to find a 3-regular planar supergraph of G, for example
by adding the small gadget K

(1)
4 consisting of K4 with one subdivided edge to each vertex

that has not degree 3 yet, see Figure 1c. The difficult part is to prevent bridges in the
resulting graph, even if the input graph G is already bridgeless. In fact, our task boils down
to finding a suitable planar embedding of G such that for each vertex v of G and each missing
edge at v, we can assign an incident face at v that should contain the new edge. We avoid the
creation of bridges by assigning each face either no or at least two such new edges. Having
assigned k new edges to a face f , we insert the small gadget K

(k)
4 consisting of K4 with one

edge subdivided k times into f . See Figure 1a for an example. Let us note that this might
only work for some planar embeddings of G. See Figure 1b for a negative example.

We show Theorem 2 in three steps. First, we show that G admits a 3-augmentation
if and only if each inclusion-maximal 2-connected component, called a block, of G admits
a 3-augmentation. As all blocks can be found in linear time [27], we may restrict to the
2-connected case henceforth. Second, we consider a 2-connected G with a fixed planar
embedding E and use the Generalized Antifactor-problem to test whether G admits a
3-augmentation H ⊇ G with a planar embedding whose restriction to G equals E . Finally,
for a 2-connected G with variable embedding, we use an SPQR-tree of G to efficiently go
through the possible planar embeddings of G with a dynamic program and to identify one
such embedding that allows for a 3-augmentation, or conclude that no such exists.

Outline. After discussing related work below, we give necessary definitions in Section 1.1,
including the Generalized Antifactor-problem and SPQR-trees. In Section 2 we develop
our algorithm for the 3-Augmentation-problem, where we reduce to the 2-connected case
in Section 2.1, and handle the fixed embedding in Section 2.2, and variable embedding in
Section 2.3. Finally, in Section 3 we complete the loop back to the 3-Edge Colorability-
problem for planar graphs. Lemmas marked with ∗ are proven in the full version [13].
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Related work. Hartmann, Rollin and Rutter [16] studied a similar augmentation problem
for planar graphs, where we are only allowed to add edges (but no vertices) to the graph. In
particular, for given c, k ∈ {1, . . . , 5} they define the c-Connected Planar k-Regular
Augmentation-problem where one seeks to add edges to a given planar graph G, so that
the resulting supergraph H of G is planar, c-connected, and k-regular. Observe that the
2-Connected Planar 3-Regular Augmentation-problem is more restrictive than the
3-Augmentation-problem: The former forbids to add new vertices, therefore refuses all
input graphs with an odd number of vertices, and requires the result to be connected,
therefore refusing all input graphs that are 3-regular and disconnected. In fact, reducing
from Planar 3Sat, they show that 2-Connected Planar 3-Regular Augmentation
is NP-complete [16, Theorem 3], while we show that 3-Augmentation lies in P.

Let us mention a few more examples from the rich and diverse area of augmentation
problems. Eswaran and Tarjan [12] pioneered the systematic investigation of augmentation
problems. They presented algorithms to find in O(|V | + |E|) a smallest number of edges
whose addition to a given (not necessarily planar) graph G = (V, E) results in a 2-connected
respectively 2-edge-connected graph (a connected graph with no bridge), while the weighted
versions of either problem is NP-complete. If we additionally require the result to be planar,
already both unweighted problems are NP-complete [18,22]. Other problems of augmenting to
a planar graph consider augmenting to a grid graph [3], or triangulating while minimizing the
maximum degree [9, 19], avoiding separating triangles [4], creating a Hamiltonian cycle [11],
or resulting in a chordal graph [20], just to name a few.

1.1 Preliminaries

All graphs considered here are finite, undirected, and contain no loops but possibly multiedges.
We write ∥G∥ for the size of G (its number of edges) and denote the degree of a vertex v

by deg(v), the minimum degree in G by δ(G), and the maximum degree in G by ∆(G).
A graph G is d-regular, for some non-negative integer d, if we have δ(G) = ∆(G) = d. A
3-regular graph is also called cubic, while a graph G is subcubic if ∆(G) ≤ 3.

A bridge in a graph G is an edge e whose removal increases the number of connected
components, i.e., G − e has strictly more components than G. Equivalently, e is a bridge if e

is not contained in any cycle of G. A bridgeless graph is one that contains no bridge. Note
that a bridgeless graph may be disconnected. On the other hand, for a positive integer k,
a graph G = (V, E) is k-connected if |V | ≥ k + 1 and for any set U of k − 1 vertices in G

the graph G − U is connected. In particular, a graph G of maximum degree ∆(G) ≤ 3 is
2-connected if and only if G is connected and bridgeless. A 2-connected graph is sometimes
also called biconnected, while a 3-connected graph is sometimes also called triconnected.

A planar embedding E of a (planar) graph G is (in a sense that we need not make precise
here) an equivalence class of crossing-free drawings of G in the plane. In particular, a
planar embedding determines the set F of all faces, the distinguished outer face f0 ∈ F , the
clockwise ordering of incident edges around each vertex and the boundary of each face as a
set of facial walks, each being a clockwise ordering of vertices and edges (with repetitions
allowed). The edges and vertices incident to the outer face are called outer edges and outer
vertices, while all others are inner edges and inner vertices. For every embedding E of G

we define the flipped embedding E ′ to be the embedding obtained from E by reversing the
clockwise order of incident edges at each vertex. This operation changes neither the set of
faces nor the outer face. Whitney’s Theorem [30] states that a 3-connected planar graph G

has a unique embedding (up to the choice of the outer face and flipping).

ESA 2022
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Generalized (Anti)factors. If G is a subgraph of H, denoted G ⊆ H, and v is a vertex of G,
then we denote the degree of v in G by degG(v). If V (G) = V (H), then G is called a spanning
subgraph of H. If each vertex v of H is assigned a set B(v) ⊆ {0, . . . , degH(v)}, then a
spanning subgraph G of H is called a B-factor of H if and only if degG(v) ∈ B(v) for every
vertex v. Lovász [21] introduced B-factors and the Generalized Factor-problem that,
given graph H and for each vertex v in H a set B(v), asks whether H admits some B-factor.
A set B(v) is said to have a gap of length ℓ ≥ 1 if there is an integer i ∈ B(v) such that
i + 1, . . . , i + ℓ /∈ B(v), and i + ℓ + 1 ∈ B(v). While the Generalized Factor-problem
is NP-complete in general [21], it can be solved in polynomial time if all gaps of each B(v)
have length one [8].

Now let B(v) ⊆ {0, . . . , degH(v)} be another set assigned to each vertex v. A spanning
subgraph G of H is called a B-antifactor, if and only if degG(v) ̸∈ B(v). One can think
of B(v) as forbidden degrees for v in G. The Generalized Antifactor-problem asks
whether H admits a B-antifactor. Note that the set {0, . . . , degH(v)} \ B(v) is finite, so
the Generalized Antifactor-problem is indeed a special case of the Generalized
Factor-problem. Therefore, an instance of the Generalized Antifactor-problem with
no two consecutive integers in any B(v) corresponds to an instance of the Generalized
Factor-problem with gaps of length at most one1 and can be solved in polynomial time [8].

In Section 2.2 we use a theorem by Sebö [24], giving an efficient algorithm to compute
generalized antifactors without two consecutive forbidden degrees.

▶ Theorem 3 (Sebö [24]). Let H = (V, E) be a graph and for each vertex v ∈ V let
B(v) ⊆ {0, . . . , degH(v)} be a set containing no two consecutive integers. Then we can
compute a B-antifactor in time O(|V | · |E|), or conclude that no such exists.

SPQR-Tree. The SPQR-tree is a tree-like data structure that compactly encodes all planar
embeddings of a biconnected planar graph. It was introduced by Di Battista and Tamassia [10]
and can be computed in linear time [15]. Its precise definition includes quite a number
of technical terms, of which we define the crucial ones below. This makes our exposition
self-contained, while also ensuring the established terminology for experienced readers. We
give an illustrating example in Figure 2.

The SPQR-tree of a biconnected planar graph G is a rooted tree T , where each vertex µ

of T is associated to a multigraph skel(µ) that is called the skeleton of µ. This multigraph
skel(µ) must be of one of four types determining whether µ is an S-, a P-, a Q- or an R-vertex:

S-vertex: skel(µ) is a simple cycle.
P-vertex: skel(µ) consists of two vertices and at least three parallel edges.
Q-vertex: skel(µ) consists of two vertices with two parallel edges.
R-vertex: skel(µ) is triconnected.

Some of the edges of the skeletons can be marked as virtual edges. An edge e = µν of the
SPQR-tree T corresponds to two virtual edges, exactly one in skel(µ) and one in skel(ν).
Conversely, each virtual edge corresponds to exactly one tree edge of T in this way. We refer
again to Figure 2 for an example.

Under above conditions, the defining property of the SPQR-tree T is that G can be
obtained by gluing along the virtual edges: For each tree edge e = µν, the skeletons skel(µ)
and skel(ν) are identified at the corresponding endpoints of the two virtual edges associated
to e and then the virtual edges are removed.

1 Let us point out a subtlety here illustrating that this correspondence is not one-to-one. Requiring
that B(v) does not contain two consecutive integers is stronger than requiring gaps of length 1 in B(v) :=
{0, . . . , degH(v)} \ B(v). For example, consider a vertex v with degH(v) = 5 and B(v) = {1, 3, 4, 5}.
Then B(v) = {0, 2} has a gap of length 1, even though B(v) contained consecutive integers.
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Figure 2 A graph with an edge eρ (left) and its SPQR-tree rooted at the Q-vertex ρ corresponding
to eρ (right). Each tree node µ shows the skeleton skel(µ) in which the virtual edge to its parent is
shown thicker. The (blue) tree edges indicate the associated pairs of virtual edges.

We additionally require that no two S-vertices and no two P-vertices are adjacent in T ,
as otherwise the skeletons of two such vertices can be merged into the skeleton of a new
vertex of the same type. Further, exactly one of the two parallel edges in a Q-vertex is a
virtual edge while S-, P- and R-vertices contain only virtual edges. Under these conditions
the SPQR-tree of G is unique. There is exactly one Q-vertex per edge in G and these form
the leaves of the SPQR-tree. The inner S-, P- and R-vertices correspond more or less2 to the
separation pairs (that is, pairs of vertices forming a cut set) of G [10].

Assume that an arbitrary vertex ρ of T is fixed as the root. For some vertex µ in T let π

be its parent. Further, let u, v be the endpoints of the virtual edge in skel(µ) associated
with the tree edge µπ in T . Then the graph obtained by gluing skel(µ) with all skeletons in
its subtree and without the virtual edge uv is called the pertinent graph of µ and denoted
by pert(µ). Note that pert(µ) is always connected.

SPQR-Tree and Planar Embeddings. If the SPQR-tree T is rooted at a Q-vertex ρ

corresponding to an edge eρ of G, then T represents all planar embeddings of G in which eρ

is an outer edge [10]. When G is constructed by gluing corresponding virtual edges, one has
the following choices on the planar embedding:

Whenever the corresponding virtual edges of an S-, P- or R-vertex µ and its parent are
glued together, this leaves two choices for the planar embedding: Having decided for an
embedding Eµ of pert(µ) already, we can insert Eµ or the flipped embedding E ′

µ.
The parallel virtual edges of a P-vertex µ associated to virtual edges of children can be
permuted arbitrarily. Every permutation leads to a different planar embedding of skel(µ).
Gluing at the virtual edge of a Q-vertex µ replaces the virtual edge uv by the “real”
edge uv in G. This has no effect on the embedding.

Let E be a planar embedding of G having eρ as an outer edge. Further, let µ be an inner vertex
of the SPQR-tree and uµ, vµ be the endpoints of the virtual edge in skel(µ) corresponding to
the parent edge of µ in T . Lastly, let Eµ be the restriction of E to pert(µ) and let fo

µ be the
outer face of Eµ. As eρ is an outer edge of E , it follows that uµ and vµ are outer vertices
in Eµ. The uµvµ-path in pert(µ) having fo

µ to its left (right) is the left (right) outer path
of Eµ. Lastly, we define the left (right) outer face of Eµ inside E to be the face of E left (right)
of the left (right) outer path of Eµ.

2 In fact they correspond to so-called split pairs. However, we omit their formal discussion, as it is not
needed here.

ESA 2022
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2 The 3-Augmentation-Problem

2.1 Reduction to the 2-Connected Case
▶ Proposition 4. For a disconnected graph G with connected components G1, . . . , Gk, k ≥ 2,
we have that

(i) G has a 3-augmentation if and only if each Gi has a 3-augmentation, i = 1, . . . , k, and
(ii) G has a 2-connected 3-augmentation if and only if each Gi has a 3-augmentation and

no Gi is 3-regular, i = 1, . . . , k.

Proof.
(i) Any 3-augmentation of G is also a 3-augmentation of each Gi, showing already necessity.

For sufficiency, observe that the 3-augmentations of different Gi are vertex-disjoint and
hence their union is a 3-augmentation of G.

(ii) Like above, a 2-connected 3-augmentation H of G is also a 3-augmentation of each Gi,
i = 1, . . . , k. Moreover, as H is connected, each Gi has a vertex with at least one
incident edge in E(H) − E(G), showing that Gi is not 3-regular.
On the other hand, for i = 1, . . . , k let Hi be a 3-augmentation of Gi. Without loss of
generality each Hi is connected (hence 2-connected since 3-augmentations are bridgeless).
As Gi is not 3-regular, we can pick an edge ei from E(Hi) − E(Gi), i = 1, . . . , k. Next,
choose a planar embedding E of the disjoint union H1 ·∪ · · · ·∪Hk where each of e1, . . . , ek

is an outer edge. Finally, add a copy of K
(2k)
4 into the outer face of E , delete e1, . . . , ek,

and connect the 2k degree-2 vertices of H1 ·∪ · · · ·∪ Hk with the 2k degree-2 vertices of
K

(2k)
4 by a non-crossing matching. The result is a 2-connected 3-augmentation of G (by

definition a 3-augmentation is bridgeless, so connectivity implies 2-connectivity). ◀

▶ Proposition 5. A graph G admits a 3-augmentation if and only if ∆(G) ≤ 3 and each
block of G admits a 3-augmentation.

Proof. If G is bridgeless, then each connected component is a single block and thus admits
a 3-augmentation by assumption. The disjoint union of these is a 3-augmentation of G.

Otherwise, consider G with a bridge e = uv. Let G1 be the connected component of
G − e containing u, and let the remaining graph be G2 = G − G1. It is enough to show
that if G1 and G2 have 3-augmentations H1 respectively H2, then G has a 3-augmentation,
too. To this end, consider an edge e1 ∈ E(H1) − E(G1) incident to u and an edge e2 ∈
E(H2) − E(G2) incident to v. These edges exist as degG1(u), degG2(v) ≤ ∆(G) − 1 ≤ 2
but degH1(u) = degH2(v) = 3. Choose a planar embedding of H1 ·∪ H2 with e1 and e2
being outer edges. Denoting by a, b the endpoints of e1, e2 different from u, v, we see that
(H1 − e1) ·∪ (H2 − e2) ∪ {uv, ab} is a 3-augmentation of G, as desired. ◀

2.2 The Fixed Embedding Setting
As usual for embedding-dependent problems for planar graphs, it makes sense to distinguish
between the planar graph G being given with a fixed embedding that shall not be altered,
and the setting with variable embedding where we solely have G as the input and shall find
a suitable embedding for G or decide that no such exists. The 3-augmentation problem is
formulated in the variable embedding setting. However, let us treat the variant with a fixed
embedding first, as this will be a crucial subroutine for the variable embedding setting later.

▶ Proposition 6. Let G be an n-vertex 2-connected planar multigraph of maximum de-
gree ∆(G) ≤ 3 with a fixed planar embedding E. Then we can compute in time O(n2) a
3-augmentation H of G with a planar embedding EH whose restriction to G equals E, or
conclude that no such exists.
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Proof. Let V ′ denote the subset of the vertices of G with degG(v) ≤ 2 and let F denote
the set of faces of E . Note that since G is 2-connected, all v ∈ V ′ have degG(v) = 2.
We consider the bipartite vertex-face incidence graph I = (V ′ ·∪ F, E(I)) with vertex-set
V ′ ·∪ F and edge-set E(I) := {vf | v ∈ V ′, f ∈ F, v is incident to f}. Note that I has O(n)
vertices and at most 2n edges, since ∆(G) ≤ 3. We define an instance of the Generalized
Antifactor-problem by assigning each vertex x of I (corresponding to a vertex in G or a
face in F ) a set B(x) ⊆ {0, . . . , degI(x)}:

B(x) :=
{

{0, 2} for x ∈ V ′

{1} for x ∈ F

Note that no B(x) contains two consecutive integers.

▷ Claim 7. Graph G admits a 3-augmentation H extending the embedding E if and only
if I admits a B-antifactor.

Proof. First assume H is a 3-augmentation of G with a planar embedding EH that extends E .
Hence every edge e ∈ E(H) − E(G) lies in a unique face of E . We construct a B-antifactor
of I as follows. For each degree-2 vertex v of G, let fv be the face of E that contains the
unique edge in E(H) − E(G) incident to v. We claim that J = (V ′ ·∪ F, {vfv | v ∈ V ′}) is a
B-antifactor of I. In fact, degJ (v) = 1 for each degree-2 vertex v ∈ V . Now if we would have
degJ(f) = 1 for some face f ∈ F , then exactly one vertex v ∈ V ′ has exactly one incident
edge e lying in face f . In particular, the other endpoint of e is not a vertex of G. But then e

is a bridge and H is not a 3-augmentation. Hence degJ (f) ̸= 1 for each f ∈ F and I indeed
admits a B-antifactor.

Conversely assume now that I has some B-antifactor J . Then we construct the desired
3-augmentation H of G as follows. Inside each face f of E with degJ (f) > 0 place a copy Kf

of K
(degJ (f))
4 . Connect the degJ(f) degree-2 vertices v ∈ V ′ with vf ∈ E(J) by a non-

crossing matching with the degJ(f) degree-2 vertices of Kf . Call the resulting graph H

and its resulting planar embedding EH . Then H is 2-connected (in particular bridgeless)
as G is 2-connected and degJ(f) ̸= 1 for each f ∈ F . Moreover, H is 3-regular. In fact, for
each vertex v ∈ V ′ we have degH(v) = degG(v) + 1 = 3, as J is a B-antifactor. Finally,
restricting EH to G gives back embedding E . ◁

Now Claim 7 immediately finishes the proof because no B(x) contains two consecutive
integers. Hence, by Sebö’s algorithm [24] (cf. Theorem 3) we can compute a B-antifactor
of I in O(n2) time, or conclude that no such exists. ◀

2.3 The Variable Embedding Setting
Even an unlabeled 2-connected subcubic planar graph G can have exponentially many different
planar embeddings (e.g., the (2×n)-grid graph). Thus, iterating over all embeddings of G and
applying the algorithm from Proposition 6 to each of them is not a polynomial-time algorithm
and hence no feasible approach for us. In this section we describe how to use the SPQR-tree
of G to efficiently find a planar embedding E of G such that there is a 3-augmentation H of G

extending E , or conclude that no such embedding exists. The algorithm from Proposition 6
will be an important subroutine.

▶ Proposition 8. Let G be an n-vertex 2-connected planar graph of maximum degree ∆(G) ≤ 3.
Then we can compute in O(n2) time a 3-augmentation H of G or conclude that no such
exists.

ESA 2022
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Overview. The proof of Proposition 8 uses a bottom-up dynamic programming approach on
the SPQR-tree T of G rooted at a Q-vertex ρ corresponding to some edge eρ in G. Consider a
vertex µ ̸= ρ in T . Let uv be the virtual edge in skel(µ) that is associated to the parent edge
of µ. Recall that each embedding E of G with eρ on the outer face, when restricted to the
pertinent graph pert(µ), gives an embedding Eµ of pert(µ) whose inner faces are also inner
faces of E , and with u and v being outer vertices of Eµ. The outer face of Eµ is composed of
two (not necessarily edge-disjoint) u-v-paths; the left and right outer path of Eµ, which are
contained in the left and right outer face of Eµ inside E , respectively. We seek to partition
the (possibly exponentially many) planar embeddings of pert(µ) with u, v on its outer face
into a constant number of equivalence classes based on how many edges in a 3-augmentation
of G could possibly “connect” pert(µ) with the rest of the graph G inside the left or right
outer face of Eµ inside E . This corresponds3 to the number of degree-2 vertices on the left
and right side in so-called inner augmentations of Eµ. Loosely speaking, it will be enough for
us to distinguish three cases for the left side (0, 1, or at least 2 connections), the symmetric
three cases for the right side, and to record which of the nine resulting combinations are
possible. Note that this grouping of embeddings of Eµ into constantly many classes is the
key insight that allows an efficient dynamic program.

Whether a particular equivalence class is realizable by some planar embedding Eµ of pert(µ)
will depend on the vertex type of µ (S-, P- or R-vertex) and the realizable equivalence classes
of its children µ1, . . . , µk. In the end, we shall conclude that the whole graph G has a
3-augmentation if and only if for the unique child µ of the root ρ of T the equivalence class
of embeddings of pert(µ) for which neither the left nor the right side has any connections is
non-empty.

Most of our arguments are independent of SPQR-trees and we instead consider so-called
uv-graphs, which are slightly more general than pertinent graphs. We shall introduce inner
augmentations of uv-graphs, which then give rise to label sets for uv-graphs, both in a
fixed and variable embedding setting. These label sets encode the aforementioned number
of connections between the uv-graph as a subgraph of G and the rest of G in a potential
3-augmentation. After showing that we can compute even variable label sets by resorting
to the fixed embedding case and Proposition 6, we then present the final dynamic program
along the rooted SPQR-tree T of G.

uv-Graphs and Labels. A uv-graph is a connected multigraph Guv with ∆(Guv) ≤ 3,
two distinguished vertices u, v of degree at most 2, together with a planar embedding Euv

such that u and v are outer vertices. A connected multigraph Huv ⊇ Guv with planar
embedding EH is an inner augmentation of Guv if

EH extends Euv and has u, v on its outer face,
each of u, v has the same degree in Huv as in Guv,
every vertex of Huv except for u, v has degree 1 or 3,
every degree-1 vertex of Huv lies in the outer face of EH and
every bridge of Huv that is not a bridge of Guv is incident to a degree-1 vertex.

Because u, v are outer vertices in EH , one could add another edge euv (oriented from u to v)
into the outer face of EH preserving planarity (this edge is not part of the inner augmentation).
Then euv splits the outer face into two faces fA, fB left and right of euv, respectively. Each
degree-1 vertex of Huv now lies either inside fA or fB .

3 up to the fact that left and right outer path may share degree-2 vertices, each of which sends however
its third edge into only one of the left and right outer face
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We are interested in the number of degree-1 vertices in each of these faces of EH and write
d(Huv, EH) = (a, b) if an inner augmentation Huv of Guv has exactly a degree-1 vertices
inside fA and exactly b degree-1 vertices inside fB .

▶ Lemma 9. Let Huv be an inner augmentation of Guv with d(Huv, EH) = (a, b). If a ≥ 2,
then Guv has an inner augmentation H0

uv with d(H0
uv, E0

H) = (0, b) and an inner augmentation
H1

uv with d(H1
uv, E1

H) = (1, b). A symmetric statement holds when b ≥ 2.

Proof. Add edge uv to the inner augmentation Huv such that it has a degree-1 vertices
in fA. We add a copy of K

(a)
4 into fA and identify the a degree-2 vertices of K

(a)
4 with the a

degree-1 vertices in fA in a non-crossing way. Ignoring edge uv, the obtained graph is the
desired inner augmentation H0

uv with d(H0
uv, E0

H) = (0, b). We obtain H1
uv by additionally

subdividing an edge of K
(a)
4 that is incident to fA once and by attaching a degree-1 vertex

to it into fA. ◀

Motivated by Lemma 9, we focus on inner augmentations Huv with d(Huv, EH) = (a, b)
where a, b ∈ {0, 1}, and assign to Huv in this case the label ab with a, b ∈ {0, 1}.

The embedded label set Lemb(Guv, Euv) contains all labels ab such that there is an inner
augmentation Huv of Guv with label ab. Allowing other planar embeddings of Guv, we
further define the variable label set as Lvar(Guv) =

⋃
E Lemb(Guv, E), where E runs over all

planar embeddings of Guv where u and v are outer vertices. As this in particular includes for
each embedding E of Guv also the flipped embedding E ′ of Guv, it follows that ab ∈ Lvar(Guv)
if and only if ba ∈ Lvar(Guv). Whenever this property holds for a (variable or embedded)
label set, we call the label set symmetric. Hence, all variable label sets are symmetric, but
embedded label sets may or may not be symmetric.

For brevity, let us use ⋆ as a wildcard character, in the sense that if {x0, x1} is in
an embedded or variable label set for some x ∈ {0, 1}, then we shorten the notation and
replace them by a label x⋆. Symmetrically, we use the notation ⋆x and in particular define
{⋆⋆} := {00, 01, 10, 11}. Using this notation, the eight possible symmetric label sets are:

∅, {00}, {01, 10}, {11}, {0⋆, ⋆0}, {00, 11}, {1⋆, ⋆1}, {⋆⋆} (1)

The following lemma reveals the significance of inner augmentations and label sets.

▶ Lemma 10. Let G be a 2-connected graph with ∆(G) ≤ 3 and E be an embedding of G

with some outer edge e = xy. Further, let Guv be the uv-graph obtained from G by deleting e

and adding two new vertices u, v with edges ux and vy into the outer face of E. Then G has
a 3-augmentation if and only if 00 ∈ Lvar(Guv).

Proof. First let H ⊇ G be a 3-augmentation of G and let EH be an embedding of H with
e = xy being an outer edge. Then deleting e and adding two new vertices u, v with edges ux

and vy into the outer face of EH results in an inner augmentation Huv of Guv with respect
to the embedding of Guv inherited from EH . As adding an edge euv from u to v into Huv

gives a graph with no degree-1 vertices, we have 00 ∈ Lvar(Guv).
Conversely, assume that 00 ∈ Lvar(Guv). Then there is an embedding Euv of Guv that

allows for some inner augmentation Huv with embedding EH for which Huv + euv has no
degree-1 vertices, where euv = uv denotes a new edge between u and v. Thus, in Huv the
vertices u and v have degree 1 (as in Guv), every vertex of Huv except u, v has degree 3, and
the only bridges of Huv are the edges ux and vy. Then we obtain a 3-augmentation H of G

by removing ux, vy from Huv and adding the edge xy into the outer face of EH . In case, Huv

already contains the edge xy, this is replaced by a copy of K
(2)
4 with two non-crossing edges

between x, y and the two degree-2 vertices of K
(2)
4 . ◀
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u

v

(a) Lemb(Y, EY )={00}.
u

v

x

(b) Lemb(Y, EY )={01, 10}.
u

v

` r

(c) Lemb(Y, EY )={00, 11}.
u

v

r

`

(d)Lemb(Y, EY )={11}.

u

v

z

y

x

(e) Lemb(Y, EY )={⋆⋆}.
u

v

` r
x

(f) Lemb(Y, EY )={0⋆, ⋆0}.
u

v

` r

x z

y

(g) Lemb(Y, EY )={1⋆, ⋆1}.

 

(h) Only degree 3.

Figure 3 a–g The seven gadgets for the seven non-empty variable label sets Lvar(Guv) of a
uv-graph Guv. h Modification to locally replace a degree-2 vertex by four degree-3-vertices.

Gadgets. In our algorithm below, we aim to replace certain uv-graphs X (with variable
embedding) by uv-graphs Y with fixed embedding EY , such that the variable label set Lvar(X)
equals the embedded label set Lemb(Y, EY ). This will allow us to use Proposition 6 from the
fixed embedding setting as a subroutine.

The following lemma describes seven uv-graphs, each with a fixed embedding, corres-
ponding to the seven different non-empty variable label sets as given in (1). For this purpose,
each such gadget is itself a uv-graph Y with a fixed embedding EY .

▶ Lemma* 11. For every uv-graph Guv with Lvar(Guv) ̸= ∅ there exists a gadget Y with an
embedding EY such that u, v are outer vertices and Lemb(Y, EY ) = Lvar(Guv).

Lemma 11 is proven in the full version [13], but the claimed gadgets are shown in Figure 3.

Computing a Label Set. In our algorithm below we want to compute the variable label sets
of pert(µ) for vertices µ of the rooted SPQR-tree T of G. As we will see, we can reduce this
to a constant number of computations of embedded label sets of certain uv-graphs that are
specifically crafted to encode all the possible embeddings of pert(µ). The following lemma
describes how to do this.

▶ Lemma* 12. Let Guv be an n-vertex uv-graph and Euv a planar embedding where u and v

are outer vertices. Then we can check each of the following in time O(n2):
Whether 00 ∈ Lemb(Guv, Euv).
Whether 01 ∈ Lemb(Guv, Euv) or 10 ∈ Lemb(Guv, Euv).
Whether 11 ∈ Lemb(Guv, Euv).

In particular, if Lemb(Guv, Euv) is symmetric, then this is sufficient to determine the exact
embedded label set Lemb(Guv, Euv).

The idea for Lemma 12 is similar to Lemma 10: For each check, we do some small
local modifications to Guv in order to obtain an embedded planar graph G+

uv that has a
3-augmentation extending its embedding if and only if Lemb(Guv, Euv) contains the specific
label. Then the result follows from Proposition 6. A full proof is given in the full version [13].
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Algorithm for Variable Embedding. In order to decide whether a given biconnected planar
graph G admits some planar embedding which admits a 3-augmentation, we use the SPQR-
tree T of G. Rooting T at some Q-vertex ρ, the pertinent graph pert(µ) of a vertex µ in T

is a subgraph of G. Moreover, if uµvµ is the virtual edge in skel(µ) associated to the parent
edge of µ, then pert(µ) is a uv-graph (with uµ, vµ taking the roles of u, v in the uv-graph).
Now the variable label set Lvar(pert(µ)) is a constant-size representation of all possible labels
that any possible embedding of an inner augmentation of pert(µ) can have (having uµ and vµ

on its outer face). The remainder of this section describes how the variable label sets of all
vertices in the SPQR-tree can be computed by a bottom-up dynamic program.

▶ Lemma* 13. Let µ be an inner R-, S-, or P-vertex of the SPQR-tree and µ1, . . . , µk

be its children. Further assume that the variable label sets Lvar(pert(µi)), for i = 1, . . . , k,
are non-empty and known. Then the variable label set Lvar(pert(µ)) can be computed in
time O(∥ skel(µ)∥2).

The idea to prove Lemma 13 is to consider skel(µ) with its essentially unique embedding
and to replace for each µi the associated virtual edge by the embedded gadget Y from
Lemma 11 (cf. Figure 3) with Lemb(Y, EY ) = Lvar(pert(µi)). Then the virtual edge uv

associated to the parent of µ gets removed to obtain an embedded uv-graph on O(∥ skel(µ)∥)
vertices, whose embedded label set can then be computed with Lemma 12. A full proof is
given in the full version [13].

Lemma 13 computes the variable label set of an inner vertex of the SPQR-tree, requiring
that the variable label sets of its children are non-empty. If this condition is not satisfied,
i.e., at least one vertex µ has Lvar(pert(µ)) = ∅, then the following lemma applies:

▶ Lemma 14. If Lvar(pert(µ)) = ∅ for some vertex µ of the SPQR-tree T of G, then G has
no 3-augmentation.

Proof. Assuming that G has a 3-augmentation H, we shall show that Lvar(pert(µ)) ̸= ∅ for
every vertex µ of T . If µ is the root, let u, v be the two unique vertices in skel(µ) (because
µ = ρ is a Q-vertex). If µ is not the root, let u, v be the endpoints of the virtual edge
associated to the parent edge of µ.

By the definition of labels, Lvar(pert(µ)) ̸= ∅ if there is some inner augmentation of pert(µ)
for at least one of its planar embeddings with u, v on its outer face. But the 3-augmentation H

of G induces an inner augmentation of pert(µ) as follows: Let EH be a planar embedding
of H with outer edge eρ and EG its restriction to G. Recall that then u, v are outer vertices
of pert(µ) in EG. Consider the embedded subgraph of H consisting of pert(µ) and all vertices
and edges of H inside inner faces of pert(µ) in EG. For each vertex w ̸= u, v on the outer face
of pert(µ) in EG incident to an edge of H in the outer face of pert(µ), we add a new pendant
edge at w into the outer face of pert(µ) in EG. The resulting graph is an inner augmentation
of pert(µ) and hence Lvar(pert(µ)) ̸= ∅. ◀

Now that we considered S-, P- and R-vertices, we are finally set up to prove Proposition 8.
There we claim that we can decide in polynomial time whether a biconnected planar graph G

with ∆(G) ≤ 3 has a 3-augmentation.

Proof of Proposition 8. As mentioned above, we use bottom-up dynamic programming on
the SPQR-tree T of G rooted at an arbitrary Q-vertex ρ corresponding to an edge eρ in G.

The base cases are the leaves of T , all of which are Q-vertices. The variable label set of a
leaf µ is Lvar(pert(µ)) = {00}: pert(µ) is just a single edge and the only inner augmentation
of pert(µ) is pert(µ) itself, and as such has label 00.
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Now let µ be an inner vertex of T and thus be either an S-, a P- or an R-vertex. All its
children µ1, . . . , µk have already been processed and their variable label sets Lvar(pert(µi))
are known. Then the variable label set Lvar(pert(µ)) can be computed in time O(∥ skel(µ)∥2)
(which is actually O(1) in case of a P-vertex) by Lemma 13. To apply this lemma, we need
to guarantee that the variable label sets Lvar(pert(µi)) of the children are non-empty. If
this is not the case, then by Lemma 14 graph G has no 3-augmentation and we can stop
immediately.

It remains to consider the root ρ of the SPQR-tree. Recall that pert(ρ) = G. Following
the setup of Lemma 10, let x, y be the two unique vertices of skel(ρ) and xy be the unique
non-virtual edge, i.e., the edge eρ = xy of G. Let Guv be the uv-graph obtained from
G = pert(ρ) by deleting eρ = xy and adding two new pendant edges ux, vy. Note that x

and y have the same degree in Guv as in G. By Lemma 10, G has a 3-augmentation if and
only if 00 ∈ Lvar(Guv).

To check whether 00 ∈ Lvar(Guv), let µ be the unique child of ρ. Thus we have
pert(µ) = G − eρ. We have already computed Lvar(pert(µ)) and can assume by Lemma 14
that it is non-empty. Consider the gadget Y with embedding EY from Lemma 11 such that
Lemb(Y, EY ) = Lvar(pert(µ)). Let u′ and v′ denote the two degree-1 vertices in Y . If both x

and y have degree 3 in G (hence also in Guv), then Lvar(Guv) = Lvar(pert(µ)) = Lemb(Y, EY )
and we already know whether or not 00 is contained in these label sets.

If x has degree 2 in G (hence also degree 2 in Guv, while degree 1 in pert(µ)), then x

receives a new edge in inner augmentations of Guv but not in inner augmentations of pert(µ).
For Y to model Lvar(Guv) instead of Lvar(pert(µ)), we subdivide in Y the edge at u′ by
a new vertex x′. Similarly, if y has degree 2 in G, we subdivide in Y the edge at v′. For
the resulting graph Y ′ with embedding EY ′ it follows that Lvar(Guv) = Lemb(Y ′, EY ′) and
we can check whether 00 is contained in these label sets by calling Lemma 12 on Y ′ with
embedding EY ′ . This takes constant time, as Y ′ has constant size.

The overall runtime is the time needed to construct the SPQR-tree plus the time spent
processing each of its vertices. Gutwenger and Mutzel [15] show how to construct the
SPQR-tree in time O(n). The time for the dynamic program traversing the SPQR-tree T is

O
( ∑

µ∈V (T )

∥ skel(µ)∥2)
⊆ O

(( ∑
µ∈V (T )

∥ skel(µ)∥
)2)

⊆ O(n2),

where the first step uses that for a set of positive integers the sum of their squares is at most
the square of their sum, and the second step uses that the SPQR-tree has linear size. ◀

3 Discussion and Open Problems

In this paper we showed how to test in polynomial time whether a planar graph G is a
subgraph of some bridgeless cubic planar graph H. (We call such H a 3-augmentation of G.)
Our motivation was to test whether G admits a proper 3-edge-coloring, because admitting a
3-augmentation is sufficient to conclude that χ′(G) ≤ 3. (This follows from the Four-Color-
Theorem [1, 2] and the work of Tait [26].) However, there are 3-edge-colorable planar graphs
with no 3-augmentation; K2,3 is an easy example. For another class of examples, consider for
instance any 3-connected 3-regular plane graph G (that is, the dual of a plane triangulation)
and subdivide (with a new degree-2 vertex each) any set of at least two edges, where no
two of these are incident to the same face of G (so their dual edges form a matching in the
triangulation). The resulting graph G′ has only one embedding (up to the choice of the
outer face) and clearly no 3-augmentation. On the other hand, Conjecture 15 below predicts
that G′ is 3-edge colorable.
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The computational complexity of the 3-Edge Colorability-problem for planar graphs
remains open, while it is known to be NP-complete already for 3-regular, but not necessarily
planar, graphs [17]. Similarly to our methods in Section 2.1, one can easily show that a
planar subcubic graph is 3-edge-colorable if and only if all of its blocks (inclusion-maximal
biconnected subgraphs) are 3-edge-colorable, i.e., 3-Edge Colorability reduces to the
2-connected case. A simple counting argument shows that a 2-connected subcubic graph G

with exactly one degree-2 vertex is not 3-edge-colorable (independent of whether G is planar
or not). The following conjecture, attributed to Grötzsch by Seymour [25], states that in the
case of planar graphs, this is the only obstruction.

▶ Conjecture 15 (Grötzsch, cf. [25]). If G is a 2-connected planar graph of maximum
degree ∆(G) ≤ 3, then G is 3-edge-colorable, unless it has exactly one vertex of degree 2.

If Conjecture 15 is true, 3-Edge Colorability would be in P, as its condition is easy
to check in linear time.

Finally, let us also briefly discuss planar graphs of maximum degree larger than 3. Vizing
conjectured in 1965 that all planar graphs of maximum degree ∆ ≥ 6 are ∆-edge-colorable,
proving it only for ∆ ≥ 8 [29]. As of today, it is known that all planar graphs of maximum
degree ∆ ≥ 7 are ∆-edge-colorable [14, 23, 31], and optimal edge colorings can be computed
efficiently in these cases. The case ∆ = 6 is still open, while for ∆ = 3, 4, 5 there are planar
graphs of maximum degree ∆ that are not ∆-edge-colorable [29], and at least for ∆ = 4, 5
the ∆-Edge Colorability-problem is suspected to be NP-complete for planar graphs [6].

Generalizing Conjecture 15, Seymour’s Exact Conjecture [25] states that every planar
graph G is ⌈η′(G)⌉-edge-colorable, where η′(G) denotes the fractional chromatic index of G.
It is worth noting that Seymour’s Exact Conjecture implies Vizing’s Conjecture, as well as
the Four-Color-Theorem; see e.g., the recent survey [5].
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