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Abstract
Evenness is an essential indicator of road quality. Accelerometer sensors in smartphones offer an accessible and cost-efficient
solution for monitoring road evenness. However, the accelerometer signal from smartphones is influenced by various internal
and external factors beyond the road’s actual evenness. External factors, in particular, can introduce systematic bias due to
differences in vehicle suspension or smartphone mounting methods. In this study, we investigate specific external factors
affecting windshield-mounted smartphones and propose a method to automatically adapt accelerometer processing pipelines,
improving robustness against such external influences.

Keywords Evenness · Road · Infrastructure · Accelerometer · Adaptable processing

1 Introduction

The quality of a road is closely linked to its evenness,which is
a critical factor in ensuring safe and efficient transportation
networks. Continuous monitoring of road evenness facili-
tates timely repairs and enables authorities to improve overall
road safety. Accelerometer-equipped smartphones offer sig-
nificant opportunities for assessing road infrastructure. They
have high-quality sensors, are widely available, easily adapt-
able, and provide seamless data transfer.

However, the raw accelerometer signals recorded by
smartphones do not correlate directly with the underlying
road surface. The signals are influenced by a combination
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of internal and external factors. On the one hand, internal
factors such as vehicle speed, gear ratio, braking and driv-
ing direction vary during the recording of the accelerometer
signal. On the other hand, external factors, including suspen-
sion characteristics, vehicle type, tire pressure, sprung mass,
sensor position, and sampling rate [1–5], remain constant
during recording and uniformly affect the accelerometer sig-
nal. Therefore, a robust approach is needed to evaluate road
evenness based onmobile phone sensors, taking into account
both internal and external factors.

Previous studies [6–13] compute road quality measures
based on accelerometer signals and vehicle speed, focus-
ing primarily on compensating for internal factors while
overlooking external factors. This leads to unpredictable
and inconsistent results when the external and internal
factors change (e.g., a different vehicle is used). Yu
et al. [14] propose a comprehensive framework for compar-
ing accelerometer-based evenness estimation methods. The
framework considers the accuracy of the evenness estima-
tion as well as the robustness to external factors, taking into
account the vehicle type, vehicle speed, and mounting type.
The article goes on to evaluate three different methods and
selects the method in [2] as the best performing in terms
of evenness prediction and robustness against external fac-
tors. The method in [2] is a calibration-based approach that
creates a physical (half car) model with unknown parame-
ters to compensate for external factors such as sprung mass.
These parameters are estimated based on the response of
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the physical model to a known flatness (5 cm high speed
bump) at a known speed (10 km/h). This method is capable
of estimating evenness consistently at the cost of dedicated
calibration drives. However, the approach fails when the
user changes vehicles and frequently reinstalls a smartphone.
Another method with a self-calibrating algorithm, as pro-
posed by Yamamoto et al. [15], calibrates the parameters of
a physical model during signal acquisition, eliminating the
need for a separate calibration run, but at the same time lim-
iting the possible smartphone positions to a rigid mounting
on the vehicle floor. This limitation reduces the number of
parameters to be calibrated, but is particularly problematic
if the goal is to support other types of smartphone mount-
ing (e.g., windshield mounting), as it introduces additional
parameters such as mount stiffness and smartphone weight.
External factors are also a challenge for commercial applica-
tions such as RoadLab [16], RoadRoid [17], and RoadBump
[18], which rely on the user to manually select the vehicle
type and its suspension type (hard/medium/soft). This allows
the application to select the appropriate set of parameters for
its underlying algorithm and adapt the flatness estimation
to the current vehicle. This method only supports a limited
number of options and is not able to adapt to more complex
scenarios involving complex attachments such as windshield
mounts.

While there are methods that can adapt to external fac-
tors, they come with significant drawbacks such as dedicated
calibration runs or do not support complex mounts (e.g.,
windshield mount). The windshield mount configuration is
of particular interest because it allows users to conveniently
access smartphone information while driving and enables
data collection using the smartphone’s camera.

In this paper, we propose a method that is able to automat-
ically adapt to external factors and achieve accurate evenness
estimation, while not restricting the type of mount or requir-
ing calibration runs. To evaluate our method, we present a
diverse real-world dataset consisting of different vehicles,
smartphones, mounts, and speeds. The use case presented in
this paper focuses on windshield-mounted smartphones.

2 Method

2.1 Overview

Our method is outlined in Fig. 1. In the first step, we define
an algorithm that is able to provide an evenness prediction ŷ
based on an accelerometer signal x . This includes the general
structure, such as the number and type of processing steps
and the order of processing steps.

In the second step, we adapt the algorithm blueprint to
our use case. When recording accelerometer signals x , we
consider external factors as static and summarize them as the

Figure 1 We aim to predict the evenness of the road based on an
accelerometer signal while being robust against deviations from the
sensor setup. First, we define the general algorithm. This general algo-
rithm is then adapted to the given data set based on our scoring system.

sensor setup. Each use case requires a different set of sensor
setups, and it is important to adapt the algorithm blueprint
accordingly. We accomplish this by introducing a scoring
method that considers both internal factors and the sensor
setup when evaluating the evenness prediction.

The adapted algorithm can then be used to process
accelerometer signals and estimate road surface evenness.
This method allows the user to quickly adapt and optimize
an algorithm for different sensor setups.

2.2 Definition Algorithm Blueprint

In our application,we require an algorithm that can transform
an accelerometer signal x of arbitrary length to an evenness
prediction ŷ. We call this algorithm an Accelerometer Signal
Processing Pipeline (ASPP). An ASPP is a series of signal
processing operations with an aggregation operation at the
end. The signal processing operations transform the input
signal x into a new signal x∗. This can remove noise or cer-
tain frequencies from a signal. Aggregation summarizes the
processed signal into a scalar evenness prediction ŷ. The
evenness estimation ŷ is not calibrated and does only corre-
late with the evenness y.We define the algorithm blueprint as
a general ASPP GASPP-C of complexity C , where C is the
number of signal processing operations before aggregation.
The GASPP-C is visualized in Fig. 2.

Figure 2 The GASPP-C is able to compute an evenness prediction ŷ
for an accelerometer signal x . The complexity C indicates the number
of signal processing operations before the mandatory aggregation. The
GASPP-C defines the parameter spaces P with NP possible configura-
tions, where a specific configuration is referred to as ASPP.
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Besides the general structure and number of processing
operations, we can further specify the type of operations for
each step and the corresponding parameters. These define
the parameter space P of the GASPP-C, where an ASPP is
a parameterized version of the GASPP-C. For signal pro-
cessing operations, we consider the Moving Average Filter
(AVG) and Bandwidth Filtering (BND) operations as sug-
gested in [4]. As aBNDfilterwe have chosen theButterworth
bandwidth filter [19]. In addition, we test other filter kernels
such as the Ramp Filter (RMP). For the average and ramp
filters, we consider kernel sizes 3, 5, 7, 9, and 11. The band-
width filters are parameterized to filter three wide frequency
bands of 0-25Hz, 25-50Hz, and 10-40Hz, and five smaller
frequency bands of 0-10Hz, 10-20Hz, 20-30Hz, 30-40Hz,
and 40-50Hz.

Signal aggregations are commonly used in other publica-
tions, so we evaluate Root Mean Square (RMS) [3, 9, 11],
Mean of the FFT magnitudes (MOM) [6], Maximum of the
FFT (MFFT) [13], andStandardDeviation (STD) [13].While
STD and RMS are similar, STD removes the mean and may
produce more stable results when going up and down a hill.

We evaluate three categories ofGASPP-C with increasing
complexity (C = 0, 1, 2) to assess the impact of addingmore
signal processing operations before aggregation.

Depending on the complexity C and the given operations
and their parameters, we can specify the size of the parameter
space P , where NP is the total number of possible parame-
ter combinations ofGASPP-C. With the specified operations
and corresponding parameters we get NP (C = 0) = 6,
NP (C = 1) = 108 and NP (C = 2) = 1944 possible param-
eter combinations.

2.3 Adaption Algorithm Blueprint

Our proposed method, as visualized in Fig. 3, automatically
adapts theGASPP-C to a specific use case represented by the

provided dataset. The dataset contains a set of N accelerom-
eter signals, where each signal xi with i ∈ N is a time series
of arbitrary length. Each signal xi has a corresponding even-
ness grade yi and supplementary information such as sensor
setup si , location li of the recording, and velocity vi during
the recording.

Using this information, we score all possible ASPP of the
GASPP-C in the predefined parameter space P based on two
factors: the inter-setup stability and the correlation with the
reference evenness y. This ensures that the selected config-
uration can be applied to all relevant sensor setups while
providing a high quality evenness estimation as well. The
scoring process takes velocity into account because previous
research has shown that velocity affects the accelerometer
signal. By considering velocity in the scoring process, we
aim to account for its impact on the overall assessment of
setup and evenness. Scores are computed using the evenness
predictions ŷ of each ASPP.

The setup score, denoted as SS , quantifies the robust-
ness against inter-setup deviation on a range from 0 to 1.
To compute this score, we group accelerometer signals xi
by their location li . On the same location an ASPP needs
to have the same evenness prediction ŷ regardless of the
sensor setup used to record the signal. In the following we
compare all setups pairwise for all locations. We normalize
all evenness predictions ŷ by dividing them by their maxi-
mum and minimum values, resulting in a range from 0 to 1.
Next, we calculate the absolute average difference between
the response values of each pair of setups at each location and
average these differences. The resulting average differences
represent the dissimilarity between the setups. To convert this
dissimilarity into a similarity score, we subtract the average
differences from 1. In this way, higher values of the Setup
Score indicate greater consistency between setups, while a
score of 0 indicates no similarity.

The evenness score, denoted as SE , assesses the cor-
relation between the evenness y in the dataset and the

Figure 3 The method adapts the GASPP-C to the data set by evaluat-
ing all configurations in the predefined parameter space. Each ASPP is
scored for their inter-setup deviation (SS) and their evenness prediction

capabilities (SE ). The best performing ASPP on the given data set is
selected and can be further applied to the use case.
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evenness predictions ŷ of an ASPP. The velocity vi affects
the accelerometer signal x̄i . So we group the accelerometer
signals x̄i based on their velocity vi and divide them into
bins with 10 km/h intervals. This allows us to score the even-
ness predictions ŷwithout considering the velocitywithin the
ASPP itself.Within each bin, we calculate the Pearson corre-
lation coefficient between evenness y and the corresponding
evenness prediction ŷ as an individual score for each velocity
bin. The final value is obtained by averaging the correlation
coefficients across all velocity bins.

The overall score S is then calculated as:

S = 1

2
(SS + SE ). (1)

Finally, our method selects the ASPP with the highest
score S. This evaluation process ensures that the ASPP that
performs best on the given dataset is selected. It is per-
formed automatically, making the method transferable to
other datasets and use cases. By leveraging these findings,
researchers and practitioners can apply the optimal ASPP to
estimate road evenness in different contexts and improve the
reliability of their results.

2.4 Application

The final and parameterized ASPP is static and can predict
accelerometer signals x of arbitrary length. Its evenness pre-
diction ŷ is not calibrated and the user may set thresholds to
match their desired evenness prediction standards.

3 Dataset

The data set used in this publication serves as a benchmark
for the presented method and represents the use case. The
evaluated GASPP-C are tested for evenness correlation and
inter-setup deviation. Thus, we require data that covers many
separate individual setups as well as different degrees of
evenness. We have recorded the same area with 10 different
setups. These setups include five different vehicles and three
different iPhonemodels, as shown inTable 1. The accelerom-
eter signal is recorded at a sample rate of 100Hz and we only
consider the vertical axis in the smartphone accelerometer.
Since we are focusing on windshield mounted smartphones,
all data is recorded using a windshield mount as shown in
Fig. 4.

For the ground truth evenness y, we rely on the German
standardized system for grading road conditions known as
ZEB (Zustandserfassung und -bewertung) [20]. The ZEB

Table 1 Summary of all test runs and setups.

Id Vehicle iPhone version

SUV Cupra formentor (SUV) 11 / 13

Van 1 Opel vivaro (Van) 11

Van 2 VW Caddy (Van) 11 / 13

Van 3 Mercedes benz vito 116L (Van) 11 / 13 / XR

Car Nissan micra (Car) 11 / 13

In total, we collected 10 individual setups, with each setup covering a
distance of 17,171m (324 segments)

systemuses special vehicles equippedwith laser scanners and
multiple cameras to assess road conditions. Within the ZEB
system, road condition is graded based on various factors,
including evenness along and perpendicular to the direction
of travel. We focused solely on evenness in the direction of
travel, which is assigned a grade ranging from 1 (good) to 5
(bad).

The ZEB divides roads into segments and assigns a grade
to each segment. These segments are typically either 20
meters long in cities or 100 meters long outside of cities. A
segment corresponds to a location and has an evenness grade
yi attached to it. A data point in our dataset corresponds to a
recording of a segment, adding the average speed in km/h, the
setup identifier, and the accelerometer signal xi . In total, our
dataset contains 324 segments with a total length of 17.171
km. All segments were recorded 10 times (once with each
setup).

In order to explore the malicious effects of different
setup parameters, we conduct a dedicated test series focus-
ing on different aspects ofwindshield-mounted smartphones,
such as the position behind the windshield. By systemati-

Figure 4 Exemplary sensor setup used to record the dataset.
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Table 2 Results of the GASPP-0 focusing on different aggregation
methods applied to raw accelerometer signals without pre-processing.

Aggregation SE SS S

RAW-MAX 0.502 0.937 0.72

RAW-STD 0.58 0.909 0.744

RAW-RMS 0.586 0.909 0.747

RAW-MOM 0.532 0.937 0.735

RAW-MFFT 0.359 0.946 0.653

The best results are highlighted in bold

cally varying these parameters and evaluating the resulting
accelerometer signals, we gain insight into the potential
biases and limitations introduced by windshield mounting.
This analysis provides valuable information on the chal-
lenges and constraints associated with utilizing smartphones
as sensors for road evenness estimation in this particular
setup.

• Windshield Position: Comparison of two equally config-
ured smartphones, both positioned at different locations
behind the windshield.We compare a position in the cen-
ter and to the right of the windshield.

• Mount Strength: Mounts can be installed with tightened
and loose screws.

• Mounting Type: Different windshield mounts can affect
the accelerometer signal. We compare a one-joint and a
two-joint mount.

• Different iPhone types: The type of smartphone canmake
a difference, especially considering the corresponding
weight differences (iPhone 13 Pro / iPhone 13 XR with
and without case).

4 Results

4.1 Overview

In this section, we present and discuss the results of our eval-
uation. We examine three versions of the GASPP-C, where

Table 3 The top 5 results for the different configurations of GASPP-1.

ASPP Conf. SE SS S

AVG5-STD 0.590 0.951 0.770

AVG5-RMS 0.593 0.948 0.770

RMP3-RMS 0.601 0.937 0.769

RMP3-STD 0.596 0.938 0.767

RMP5-STD 0.582 0.952 0.767

Sorted by highest overall score S

Figure 5 Effect of the average filter with different kernel sizes on the
two scores SS and SE for the aggregation methods RMS, STD and
MOM. We observe that larger kernel sizes improve the setup score SS ,
while reducing the evenness score SE .

C = 0, 1, 2 represents the number of signal processing oper-
ations before aggregation. By categorizing the GASPP-C
based on their complexity C , we can systematically analyze
the impact of different processing techniques on the esti-
mation of road evenness using accelerometer signals. This
approach allows us to understand the effectiveness of differ-
ent combinations of preprocessing and aggregation methods
in capturing the relevant information and achieving accurate
results.

4.2 GASPP-0

The results in Table 2 provide insight into the performance of
different aggregation methods for estimating road evenness
using the raw accelerometer signals without pre-processing.
Among the aggregation methods considered, those that take
the full signal into account, such as STD and RMS, exhibit
the highest evenness scores (SE ≥ 0.58), indicating a strong
correlation between the prediction ŷ and the evenness y. This
suggests that these aggregations effectively capture the vari-
ation in road conditions.

Table 4 The top 5 results for the different configurations of GASPP-2.

ASPP Conf. SE SS S

AVG3AVG3-RMS 0.599 0.943 0.771

AVG3RMP3-RMS 0.597 0.944 0.771

RMP3AVG3-RMS 0.597 0.944 0.771

RMP3RMP3-RMS 0.595 0.945 0.770

RMP3RMP3-STD 0.592 0.948 0.770

Sorted by highest overall score S
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Figure 6 The evenness predictions ŷ of the highest performing GASPP-C separated by individual setups. [Left: GASPP-0 (Configuration: RAW-
RMS), Middle: GASPP-1 (Configuration: AVG5-STD), Right: GASPP-C (Configuration: AVG3AVG3-RMS)].

When it comes to evaluating the consistency across differ-
ent setups, the MFFT, MOM, and MAX aggregations show
the highest setup scores (SS = 0.946), indicating a rela-
tively low deviation of about SS ± 0.054 between different
setups. The other aggregations show a higher setup deviation
of about SS ± 0.1. This suggests that the former aggrega-
tions are more robust and less affected by variations in setup
parameters.

Considering the overall performance, the RMS method
stands out as themost effective approach, achieving the high-
est average score (S = 0.747). The RMS method takes into
account the offset to zero, which contributes to its superior
performance compared to the STD method (S = 0.744).

In the following evaluations we will focus only on the
aggregation methods RMS, STD, since they have a higher
score S compared to other aggregation methods.

4.3 GASPP-1

The next set of experiments evaluates a GASPP-1 with a
signal processing operation. As specified in Section 2.2,
we consider three different filters (AVG, RMP, and BND).
The results are shown in Table 3. The highest scores were

achieved by the AVG5-STD configuration with SE = 0.590,
SS = 0.951 and S = 0.770, and by the AVG5-RMS con-
figuration with SE = 0.593, SS = 0.948 and S = 0.770.
The results of the ramp filter are similar to those of the
average filter. The BNDfilter, on the other hand, cannot com-
petewith the best performing configuration, BND00/10-STD
(S = 0.760).

In comparison to the previous results of GASPP-0, the
introduction of one preprocessing operation improves the
evenness score SE = +0.004 and the setup score SS =
+0.042.

We have done a detailed study of the effect of the moving
average filter with different kernel sizes (3, 5, 7, 9, 11). The
results are visualized in Fig. 5. We observe that the filter-
ing process with increasing kernel size reduces the evenness
score SE while increasing the setup score SS , indicating a
trade-off between the two.

4.4 GASPP-2

In this section we cover the category GASPP-2, which uses
two preprocessing methods. The results are summarized in
Table 4. The best performing GASPP-2 is the AVG3AVG3-

Figure 7 The evenness prediction ŷ of the highest performingGASPP-C divided into velocity bins (10 km/h) and corresponding ZEB grades. [Left:
GASPP-0 (Configuration: RAW-RMS), Middle: GASPP-1 (Configuration: AVG5-STD), Right: GASPP-C (Configuration: AVG3AVG3-RMS)].
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Table 5 Comparison of the setup score SS for the three top performing
ASPP for each complexity category.

ASPP Conf. GASPP-0 GASPP-1 GASPP-2

Position 0.952 0.978 0.975

Mount strength 0.895 0.853 0.841

Mount type 0.898 0.976 0.938

Phone type 0.895 0.970 0.942

RMS configuration (SE = 0.599, SS = 0.943 and S =
0.771). Increasing the number of preprocessing operations
results in an overall improvement of +0.001 compared to
GASPP-1. The evenness score SE = +0.009 improves, com-
pensating for the diminished setup score SS = −0.008.

4.5 Visualization

Wevisualized the results in two plots, the first focusing on the
interpretation of the setup score SS (Fig. 6) and the second
focusing on the evenness score SE (Fig. 7). For both plots,
we predict the accelerometer signal x of each segment from
our dataset using the three best performing ASPPs for each
complexity (RAW-RMS, AVG5-STD, AVG3AVG3-RMS).

InFig. 6wegroup all evenness predictions ŷ by their setup,
where each setup has a unique combination of smartphone
and vehicle type. Since all setups cover the same locations,
we expect the distribution of evenness predictions ŷ of each
setup to be the same.

We can observe a systematic impact of the sensor setup
on the evenness prediction ŷ, even when the accelerometer
signal x was recorded from within the same vehicle. Specifi-
cally, we observe that the iPhoneXRhas the highest evenness
prediction ŷ range, followed by the iPhone 13 Pro and then
the iPhone 11. These differences show a clear trend, but they
are of differentmagnitude, sowe expect other external factors
besides smartphone type to influence the signal. The differ-
ences between cars are less obvious and seem to be random.

The GASPP-0 (RAW-RMS) is most affected by the influ-
ence of the sensor setup and shows the highest relative
deviation related to the sensor setup. Our experiments in
Sections 4.3 and 4.4 show the positive impact of preprocess-
ing operations on the setup score SS . This can also be seen in
Fig. 6. We can see that the different setups are more homo-
geneous than before.

We compare the evenness prediction ŷ and the evenness
grade y in Fig. 7. We observe a clear influence of the vehi-
cle velocity on the evenness prediction ŷ. There is also a
noticeable correlation between the evenness y and the pre-

diction ŷ, although there is some overlap, especially at lower
velocities. The evenness prediction ŷ is increasingly dis-
tinct formore preprocessing operations. The overlap between
different grades is highest for GASPP-0 (RAW-RMS) and
lowest for GASPP-2 (AVG3AVG3-RMS), which is particu-
larly noticeable for the 60 km/h speed bin. Here the classes
are clearly separated fromGASPP-1 (AVG5-STD). The gen-
eral problem of speeds below 30 km/h is still present, where
there are hardly any differences between the grades.

4.6 Windshield Related Parameters

In this section, we will discuss the impact of windshield-
specific factors on the sensor setup. For each isolated factor,
we collected a test series and evaluated the impact on differ-
ent ASPP configurations. For each test series, we compare
the behavior of the best performing ASPP for each complex-
ity category (GASPP-0: RAW-RMS,GASPP-1: AVG5-STD,
GASPP-C: AVG3AVG3-RMS) to provide detailed insight
into the effect of using pre-processing operations.

The results are summarized in Table 5. We can see that
the impact of the windshield position is small compared to
the other test series, as the setup score is generally high
SS ≥ 0.952 even when no preprocessing is used. Over-
all, the introduced preprocessing operations improve the
setup score SS (position: +0.026 / +0.023, mounting type:
+0.078 / +0.04 and phone type: +0.065 / +0.047). The
only setup parameter that cannot be improved by prepro-
cessing is the mounting strength (−0.042 / −0.054). In this
case, the mounting screws were loose and we suspect that the
mounting was permanently displaced. All other cases were
successfully compensated by our GASPP-1 and GASPP-2.

5 Conclusion

In this paper we present a general algorithm (GASPP-C)
that is able to predict the evenness ŷ based on a provided
accelerometer signal x . We provide a new method to adapt
this GASPP-C to a data set. Our method automatically eval-
uates all configurations of the GASPP-C on the dataset
considering two main aspects: robustness against sensor
setup deviations and correlation with evenness. The method
selects the configuration with the highest combined score.
This process ensures that the ASPP is adapted to the intended
use case presented by the dataset. Thismethod allows the user
to adapt the GASPP-C to a new use case as long as a dataset
can be provided.
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We benchmark our method using our dataset, which is
focused on evenness detection with windshield-mounted
smartphones. The dataset is diverse, with different sensor
setups for recording the smartphone accelerometer signals,
and corresponding high quality ground truth recorded with
dedicated measurement vehicles.

We compare three different complexities of ASPP and
conclude our tests with the best performing ASPP being
AVG3AVG3-RMS, which uses two moving average filters
with kernel size 3 and root mean square as aggregation.
In additional experiments, we show that averaging filters
increase robustness to variations in sensor setup. We iden-
tify loose mountings as the remaining setup parameter that
cannot be compensated by our method.

In future work, we aim to record a continuous velocity
signal and all accelerometer axes to prevent events such as
breakage from affecting the signal processing. Additionally,
we want to analyze the impact of individual shocks unrelated
to road evenness, such as from driving over manholes, speed
bumps, and sidewalks. These events can trigger a high even-
ness prediction while not necessarily reflecting the evenness
of the road surface.

Appendix A Score Evaluation

Weassessed the functionality of the evenness score SE and
the setup score SS through three experiments. The results
are presented in Table 6. We use the dataset presented in
Section 3 as a foundation and create hypothetical ASPPs to
generate evenness predictions for each accelerometer signal
x̄i in the dataset.

The first hypothetical ASPP (RNG), generates random
evenness predictions. As expected, the evenness score (SE )
is low at 0.154 since there is no correlation possible with the
random evenness predictions. On the other hand, the setup
score (SS) is high at 0.985 since there is no pattern corre-
sponding to the setup ai . The second hypothetical ASPP
(GTR) outputs the existing reference evenness ŷ for any

Table 6 These experiments showcase the general functionality of the
introduced scoring system to evaluate different response values.

Experiment SE SS S

RNG 0.154 0.985 0.569

GTR 1.0 1.0 1.0

SET 0.114 0.0 0.057

[RNG: Randomly generated response values, GTR: evenness ground
truth as response value, SET: Encoded setup as response values]

accelerometer signal x̄i . As the reference evenness ŷ repre-
sents the true evennesswithout any correlationwith the setup,
it achieved perfect scores (SE = 1 and SS = 1) for both even-
ness and setup. The last hypothetical ASPP (SET) outputs for
each accelerometer signal x̄i the unique ID for each setup as
referenced in the data set. Since these fixed values had no
correlation with evenness, both evenness (SE = 0.114) and
setup (SS = 0.0) scores were low.

Appendix B GASPP-1

In the evaluation of the top 20 GASPP-1 configurations
(Table 7), we can clearly observe the influence of the RMP
filter and the BND filter on the scores. The RMP filter shows
a remarkable performance that is close to the average filter.
Overall, the RMP filter shows a higher evenness score (SE ),
whereas the average filter outperforms in terms of the setup
score (SS). On the other hand, the BNDfilter performsworse,
but still better than all ASPP-0 (without any pre-processing)
with an overall score of S = 0.760. Note that only the low
frequency of the BND filter performs well.

Table 7 The top 20 results for the different configurations of ASPP-0
and ASPP-1.

ASPP Conf. SE SS S

AVG5-STD 0.590 0.951 0.770

AVG5-RMS 0.593 0.948 0.770

RMP3-RMS 0.601 0.937 0.769

RMP3-STD 0.596 0.938 0.767

RMP5-STD 0.582 0.952 0.767

AVG3-RMS 0.601 0.931 0.766

RMP5-RMS 0.582 0.950 0.766

AVG9-STD 0.575 0.954 0.764

AVG7-STD 0.580 0.948 0.764

AVG3-STD 0.595 0.932 0.764

AVG11-STD 0.572 0.955 0.763

AVG7-RMS 0.579 0.946 0.763

AVG9-RMS 0.573 0.951 0.762

RMP7-STD 0.570 0.954 0.762

AVG11-RMS 0.570 0.952 0.761

BND00/10-STD 0.576 0.945 0.760

BND00/10-RMS 0.576 0.945 0.760

RMP9-STD 0.566 0.954 0.760

RMP7-RMS 0.568 0.951 0.760

RMP11-STD 0.563 0.954 0.759

Sorted by highest overall score S
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Appendix C GASPP-2

We show the top 20 GASPP-2 considering all complexity
categories (GASPP-0, GASPP-1, GASPP-2). We notice that
the improvement from GASPP-1 to GASPP-2 (+0.1%) is
not as significant as from GASPP-0 to GASPP-1 (+2.4%).
In addition, we find that the bandwidth filter still does not
perform as well as the average and ramp filters.

Table 8 The top 20 results for all ASPP complexity categories (ASPP-
0, ASPP-1, ASPP-2).

ASPP Conf. SE SS S

AVG3AVG3-RMS 0.599 0.943 0.771

AVG3RMP3-RMS 0.597 0.944 0.771

RMP3AVG3-RMS 0.597 0.944 0.771

AVG5-STD 0.590 0.951 0.770

AVG5-RMS 0.593 0.948 0.770

RMP3RMP3-RMS 0.595 0.945 0.770

RMP3RMP3-STD 0.592 0.948 0.770

RMP3AVG3-STD 0.594 0.947 0.770

AVG3RMP3-STD 0.594 0.947 0.770

AVG3AVG3-STD 0.595 0.945 0.770

RMP3-RMS 0.601 0.937 0.769

AVG3AVG5-STD 0.585 0.952 0.768

AVG5AVG3-STD 0.585 0.952 0.768

AVG5RMP3-STD 0.584 0.952 0.768

RMP3AVG5-STD 0.584 0.952 0.768

AVG3AVG5-RMS 0.586 0.949 0.768

AVG5AVG3-RMS 0.586 0.949 0.768

RMP3-STD 0.596 0.938 0.767

AVG5RMP3-RMS 0.585 0.949 0.767

RMP3AVG5-RMS 0.585 0.949 0.767

Sorted by highest overall score S

Author Contributions Conceptualization: Friedrich Münke
– Methodology: Friedrich Münke
– Formal analysis and investigation: Friedrich Münke, Manuel
Schenk, Markus Reischl
– Writing – original draft preparation: Friedrich Münke, Markus
Reischl
– Writing – review and editing: Friedrich Münke, Sandra Murr,
Manuel Schenk, Markus Reischl
– Funding acquisition: Sandra Murr, Markus Reischl
– Supervision:Markus Reischl

Funding Open Access funding enabled and organized by Projekt
DEAL. This publication results from the project “Sensorik- und KI-
basierte Straßenzustands-Analyse - SEKISA,” funded by the BMDV
mFUND, Förderrichtlinie 1 “Mobilität der Zukunft.”

Availability of Data andMaterials The dataset is available upon request
from the corresponding author.

Code Availability The code is available upon request from the corre-
sponding author.

Declarations

Conflict of Interest/Competing Interests The authors declare that they
have no financial, non-financial, or other competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Islam, S., Buttlar, W., Aldunate, R., & Vavrik, W. (2014). Use of
cellphone application to measure pavement roughness. In: Con-
ference: Second Transportation Development Congress 2014, (pp.
553–563). https://doi.org/10.1061/9780784413586.053

2. Zhao, B., & Nagayama, T. (2017). IRI Estimation by the frequency
domain analysis of vehicle dynamic responses.Procedia Engineer-
ing, 188, 9–16.

3. Wang, G., Burrow, M., & Ghataora, G. (2020). Study of the factors
affecting road roughness measurement using smartphones. Jour-
nal of Infrastructure Systems, 26(3), 04020020. https://doi.org/10.
1061/(ASCE)IS.1943-555X.0000558

4. Alatoom,Y. I., &Obaidat, T. I. (2022).Measurement of street pave-
ment roughness in urban areas using smartphone. International
Journal of Pavement Research and Technology, 15, 1021–122.
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