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A Framework to Compute Resonances Arising from Multiple
Scattering

Jan David Fischbach,* Fridtjof Betz, Nigar Asadova, Pietro Tassan, Darius Urbonas,
Thilo Stöferle, Rainer F. Mahrt, Sven Burger, Carsten Rockstuhl, Felix Binkowski,
and Thomas Jebb Sturges

Numerous natural and technological phenomena are governed by
resonances. In nanophotonics, resonances often result from the interaction of
several optical elements. Controlling these resonances is an excellent
opportunity to provide light with properties on demand for applications
ranging from sensing to quantum technologies. The inverse design of large,
distributed resonators, however, is typically challenged by high computational
costs when discretizing the entire system in space. Here, this limitation is
overcome by harnessing prior knowledge about the individual scatterers that
form the resonator and their interaction. In particular, a transition matrix
multi-scattering framework is coupled with the state-of-the-art adaptive
Antoulas–Anderson (AAA) algorithm to identify complex poles of the optical
response function. A sample refinement strategy suitable for accurately
locating a large number of poles is introduced. The AAA algorithm is tied into
an automatic differentiation framework to efficiently differentiate
multi-scattering resonance calculations. The resulting resonance solver allows
for efficient gradient-based optimization, demonstrated here by the inverse
design of an integrated exciton-polariton cavity. This contribution serves as an
important step towards efficient resonance calculations in a variety of
multi-scattering scenarios, such as inclusions in stratified media, periodic
lattices, and scatterers with arbitrary shapes.

1. Introduction

Resonances play an integral role in many photonic applica-
tions. Deliberately tailored resonances can force the light in
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nanophotonic systems to obtain desired
properties for specific applications. For
example, they can promote and shape
the emission of dipolar (quantum)
emitters[1–3] and lasers.[4,5] They are
fundamental to various wavelength-
selective devices like multiplexers and
all-pass filters.[6] The interplay among
multiple resonances can lead to the emer-
gence of complex behavior in observable
quantities,[7] including Fano resonances[8]

and the optical Vernier effect.[9]

The interaction between coupled res-
onators can create a rich resonance spec-
trum beyond the original resonances of
the uncoupled building blocks. By altering
the shape and arrangement of subcells of
such composite resonators, their spectrum
can be tailored on demand. As a result,
composite resonators play an enabling role
in various fields of science and technology,
including photonic crystal cavities, e.g.,
as interfaces for quantum computing,[3,10]

coupled-resonator optical waveguides[11]

for broadband but sharp integrated optical
filters,[12] high contrast grating cavi-
ties for silicon integrated lasers,[4] and

all-optical polariton transistors.[13] Similarly, resonant metamate-
rials formed by regular arrangements of subcells are of current
interest.[14–16] As such, they find applications as mirrors in, e.g.,
macroscopic Fabry–Perot resonators.[17]
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Figure 1. Schematic representation of the workflow of our proposed method: Single scatterers are arranged to form a resonator. The optical response
is efficiently evaluated by multiple-scattering simulations at complex frequency samples zk. A scalarized response function f (zk) is computed from the
simulated optical response. Then, the AAA algorithm is used to construct a rational approximation from the samples in the complex frequency plane.
While the resonance frequencies can be directly obtained from the resulting approximation, a single additional scattering simulation is performed to
obtain the correspondingmodal fields.Moreover, the sensitivities of the resonance frequencies and their contribution to observable quantities (expressed
in terms of its residue) w.r.t. any degree of freedom characterizing the system can be obtained thanks to the automatic differentiation of the computational
workflow. As a consequence, we can subject the resonances to the inverse design of the composite resonator (not shown).

Electromagnetic resonances are known bymany names across
the literature, including quasi-normal modes, resonant states,
natural modes, decaying states, and leaky modes. They are solu-
tions to the time-harmonic source-free Maxwell equations obey-
ing radiative boundary conditions. In passive systems with
radiative and/or material losses, this eigenproblem is non-
Hermitian. This results in complex-valued resonance frequen-
cies z̃, with a negative imaginary part (in the sign conven-
tion at hand), which corresponds to the resonances’ decay rate.
The non-Hermitian character challenges the normalization of
the modal fields that diverge away from the resonator. Vari-
ous normalization strategies addressing this field divergence
have been extensively debated. For the sake of brevity, we re-
fer the interested reader to the following collection of recent
articles.[18–24]

Accurately and efficiently determining the resonances in com-
plex photonic systems is an ongoing research challenge.[25] Pro-
posed strategies include the harmonic inversion of time-domain
simulations,[26,27] perturbative methods[28] such as the so-called
resonant state expansion,[29,30] and the use of Fredholm-type inte-
gral equations.[26,31] Nevertheless, most state-of-the-art methods
for computing electromagnetic resonances follow one of two dis-
tinct approaches. The first approach directly treats the nonlin-
ear eigenproblem (NEP) posed by the source-free Maxwell equa-
tions in dispersive media. This approach most commonly relies
on some finite-element discretization paired with schemes to lin-
earize the NEP.[32,33]

In a second approach, the resonances can be found by consid-
ering a related inhomogeneous problem, where auxiliary sources
are introduced into the system. This scattering problem will be
formalized in Section 2.1. Crucially, its analytic continuation has
singularities at complex frequencies that correspond directly to
the resonances of the original system. These singularities can be
searched for via a variety of methods, e.g., gradient descent[34]

and contour integration (with the Cauchy residue theorem).[35,36]

Owing to the fixed excitation frequency, this approach con-
veniently allows us to use any solver capable of evaluating the
scattering problem at complex frequencies. Thus, it enables the
use of further efficient problem-specific evaluation strategies,
like the boundary element method,[34,37,38] or the Fourier modal

method.[39–41] When treating the entire resonator as a single large
system, one challenge pertinent to both approaches are the dif-
ferent length scales involved in many relevant compound res-
onators. Such treatment requires extensive memory and com-
puting power. However, it is not necessary to consider the entire
space occupied by a given photonic resonator when it is com-
posed of multiple individual elements.[35,42,43]

Here, we instead address the subcells individually and a-
posteriori include their mutual coupling. Figure 1 indicates
schematically howwe combine establishedmethods formultiple-
scattering resonance calculations. Specifically, we use analytical
expressions for the electromagnetic wave propagation in a homo-
geneous background medium via the transition matrix formal-
ism (TMF).[35,44] Tominimize the number of function evaluations
while robustly recovering all relevant resonances, we choose the
AAA algorithm[45] for pole finding.[46] In contrast to contour inte-
gration methods, it allows us to freely add and remove frequency
samples, thus supporting fine-grain adaptive refinement strate-
gies, which is crucial to efficiently determining the rich reso-
nance spectra of large ensembles of scatterers.
Additionally, we combine the established derivatives within the

AAA algorithm[46] with automatic differentiation[47] of the TMF
to obtain gradients of the resonance frequencies. Having these
gradients at hand, we demonstrate the inverse design of reso-
nances for a cavity of contemporary interest.[13] We demonstrate
how to optimize the quality factor of a selected mode, achieving a
level where it only remains limited by nonradiative losses. The
considered system is an integrated cavity defined by dielectric
posts in a stratified medium, arranged sequentially to form two
mirrors. The stratified medium contains the ladder-type polymer
MeLPPP that supports room-temperature exciton-polaritons.[48]

These quasiparticles, which arise from the coupling of photons
and excitons, form in the strong light-matter interaction regime
when the polymer is placed in a wavelength-scale optical mi-
crocavity with a sufficiently high quality factor. These exciton-
polariton devices have the potential to become crucial compo-
nents of integrated all-optical computing platforms. To develop
sophisticated polaritonic circuits and systems, it is essential to
in-silico optimize individual cavities and arrangements of cou-
pled cavities.
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Figure 2. Flowchart detailing the procedure to determine resonance frequencies of a given arrangement 𝜉 of scatterers. The scattering problem is solved
for an initial set of samples z0. The solutions are scalarized as chosen by the user (via the choice of g(Tlocal)). The sample pairs are aggregated into
the vectors zi and fi. The AAA algorithm is then used to estimate the pole positions z̃0, equivalent to the complex resonance frequencies. To ensure
the accuracy of these resonance frequencies, samples are iteratively added in the vicinity of poles, which are selected according to Algorithm ISR. User
inputs are indicated in the blue box to the left. Methods to calculate sensitivities of the resonances (indicated in red) are further discussed in Section 3.4.

2. Experimental Section

In the following, a detailed description of the proposed com-
putational workflow will be provided. Figure 2 guides the
reader through the approach, starting with the central multiple-
scattering formalism and continuing clockwise.

2.1. The Scattering Problem: Transition Matrix Formalism

Instead of directly treating the NEP, the second approach men-
tioned in the introduction was taken and the resonances were
identified as singularities of the time-harmonic Maxwell equa-
tions including sources:[36]

∇ × 𝜇−1(r, z)∇ × E(r, z) − z2𝜀(r, z)E(r, z) = izJ(r, z) . (1)

Here, E(r, z) is the position dependent total electric field result-
ing from the excitation by the source current J(r, z) at the complex
frequency z, in and around the entire resonator. The e−izt sign
convention is used in this contribution.
Let us consider a resonator consisting of an ensemble of in-

dividual optical elements (denoted as scatterers) embedded in a
homogeneous background. With all sources located outside the
individual scatterers, their individual response can be described
in terms of the scattered field Escat resulting from some incident
field Einc [

[18], Annex 2]. The incident and scattered fields can be
expanded into a set of basis functions that are elementary solu-
tions to Maxwell’s equations in the background medium. The
vector cylindrical waves (VCW; 2D) and vector spherical waves

(VSW; 3D) each form a complete basis of such solutions. By ex-
pressing the incident and scattered field at a complex frequency z
as coefficient vectors in such a basis, the scattering response from
an individual scatterer can be encapsulated into the operator T(z)
defined by:

p(z) = T(z)a(z) , (2)

where a(z) are the incident field coefficients and p(z) are the
scattered field coefficients. To make the expressions numerically
tractable, the multipolar basis of a(z) and p(z) is typically trun-
cated by a maximum multipolar order mmax (2D) or degree lmax
(3D). Truncating the multipolar order permits the expression of
T(z) as a finite matrix. The error introduced by the truncation
is discussed in Section S3 (Supporting Information). Determin-
ing T(z) is at the core of solving the scattering problem for a
single scatterer. A variety of methods to numerically evaluate
T(z) for arbitrarily shaped scatterers exist.[49–51] Analytical expres-
sions for T(z) are available for high-symmetry scatterers, such
as infinitely extended cylinders (circles in 2D) and spheres.[52]

These are commonly referred to as (generalized) Mie coefficients
(first block of “Multiple Scattering” in Figure 2). As shown in
the Section S1.1 (Supporting Information), the Mie coefficients
can be evaluated at complex frequencies z and are meromor-
phic with respect to z in the relevant section of the complex
plane.
By considering the scattered field of one scatterer as part

of the incident field to all other scatterers arranged to form
the resonator, and vice versa, one can fully describe the effect
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of multiple scattering in a cluster (central block of “Multiple
Scattering” in Figure 2):[44]

plocal(z) =
[
1 − Tdiag(z)C

(3)(z)
]−1

Tdiag(z)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Tlocal(z)

alocal(z) . (3)

Here, Tdiag(z) is the block diagonal matrix constructed from
the T(z) for each isolated constituent scatterer. C(3)(z) encapsu-
lates the translation coefficients to transform the scattered field
from one scatterer into the basis of the other scatterers. It was
noted that C(3)(z) is holomorphic in z in the relevant domain
(Section S1.2, Supporting Information). The field coefficients
and the total transition matrix in Equation (3) are expressed
in the joint local basis of the constituent particles, containing
VSWs/VCWs around all scatterers. A basis change to a global ba-
sis with VSWs/VCWs around a single shared origin is possible.
The collective response of the cluster to every possible exci-

tation is encapsulated in the resulting Tlocal-matrix. As a conse-
quence, Tlocal(z) contains all resonances that interact with the
environment as poles of its entries. The fact that the tran-
sition matrix, and equivalently the scattering matrix S = 1 +
2T,[53] contain the resonances of the object they describe is
well established.[54–57] The T-matrix permits various scalariza-
tion strategies to arrive at a scalar meromorphic response func-
tion f (z), later used for pole finding. This choice determines the
residues, which can help to emphasize poles of interest. Con-
trary to the scattering problem in terms of a source current J(r, z),
within the T-matrix formalism it is optional to select a source (in-
dicated by the translucent third block of “Multiple Scattering” in
Figure 2, also see Section 3.3 for possible benefits). Alternatively,
the transition matrix, which already contains the response to all
possible excitations, can be scalarized by some linear function
g(Tlocal(z)), for example, linear combinations of selected entries
or the determinant of Tlocal(z).

2.2. Complex Pole Finding: AAA Rational Approximation

With this strategy to efficiently evaluate the scalarized response
function f (z) in place, it remains to identify its poles. In prin-
ciple, any of the aforementioned pole-finding methods could be
applied. The recently published AAA algorithm was used for ra-
tional approximation[45,46] due to its multiple benefits:

1. It is less dependent on initial values to identify all relevant
poles. Methods based on gradient descent particularly suffer
from this limitation.

2. It provides excellent convergencewith the number of frequency
samples.

3. The convergence characteristics are complemented by the
freedom to add and remove samples. As such, it permits re-
finement strategies to iteratively add a small number of sam-
ples around relevant poles (see Algorithm ISR). This feature
distinguishes the approach from contour integral methods,
as numerical quadratures require specific sampling strategies
for a comparable convergence.

Algorithm ISR Algorithm to reduce the number of function evaluations
needed for convergence of the poles estimated via the AAA approxima-
tion. Starting from a vector of initial samples z0 a first AAA approximation
is constructed and the corresponding poles z̃ are determined. In the first
iteration, one additional sample per estimated pole is placed in the pole’s
vicinity (at a fixed distance R and random direction 𝜑rand from the pole) if
it lies within the domain of interest . In successive iterations, additional
samples are only placed if the corresponding pole is not matched by any
pole in the previous iteration (within some specified tolerance), i.e., the
pole’s position has not yet converged. The algorithm terminates after all
poles have converged. l is the iteration number. zl, fl, and z̃l are vectors
containing the frequency samples, corresponding function values, and es-
timated poles, respectively. z−1, f−1, and z̃−1 are empty. The ⊕ symbol
indicates the concatenation of vectors.

Algorithm ISR Iterative Sample Refinement

zadd ← z0
While zadd not empty do

zl ← zl−1 ⊕ zadd
fl ← fl−1 ⊕ [f (z) for z ∈ zadd]

z̃l ← AAA(zl , fl)

zadd ← [z̃ + Rei𝜑rand for z̃ ∈ z̃l ∩

if min|z̃ − z̃l−1| > tol]

l ← l + 1

end while

The barycentric rational form is at the heart of the AAA algo-
rithm:

r(z) =
n(z)
d(z)

=
m∑
j=1

wjfj
z − zj

/
m∑
j=1

wj

z − zj
≈ f (z) . (4)

It possesses the interpolation property of reproducing
limz→zj

r(z) = fj. Using this property, the approximation is
iteratively constructed by greedily aggregating a selection of
considered samples zj from the set of all samples (with elements
zk). In every step, the corresponding weights wj are chosen to
minimize the residual error at the remaining samples (schemat-
ically indicated in “AAA-Algorithm” in Figure 2). The poles
and their residues are easily accessible from the constructed
approximation (see “Output” in Figure 2). However, they might
not yet have the desired accuracy at this point.
The third property of the AAA algorithm mentioned above al-

lows us to freely place additional samples near estimated poles to
refine them.[46] Here, this idea was generalized to an iterative ag-
gregation scheme for zk (see Algorithm ISR indicated in Figure 2
by “Adaptive Refinement”). This modification allows us to effi-
ciently and simultaneously find a large number of relevant poles
(see Section 3.3). It avoids overly refining poles that have already
been localized to a satisfactory degree.
As discussed in ref. [46], the samples not incorporated in

r(z) can be used to find the derivatives of wj w.r.t. the sampled
values f . A Python implementation of the derivatives compat-
ible with JAX automatic differentiation is provided with this
contribution[58] (represented by the lower red box in Figure 2).
In conjunction with the automatically differentiable TMF (rep-
resented by the upper red box in Figure 2), this allows us to
compute the gradients of the poles (i.e., resonance frequencies)
relative to all degrees of freedom in the design. This ability is
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Figure 3. Convergence study of the proposedmethod for a small resonatormade from an assembly of cylindrical scatterers. Thirteen resonances between
1.6 and 2.7eV are considered simultaneously a) Dominant field component of the resonance with the lowest losses located at z̃ ≈ (2.142 − 0.074i)eV.
The field is not evaluated inside the cylindrical scatterers, where the expansion of the scattered field into radiating VCWs is not valid. b) Execution time
on a single core per function evaluation depending on the truncation order mmax of the cylinders’ T-matrix. c) Convergence of the error in resonance
frequencies with an increasing number of frequency samples, given as the maximum relative error (here denoted as “Error”) of the relevant poles
compared to reference poles evaluated withmmax = 11. To clearly show the convergence behavior, the samples were selected by Algorithm ISR modified
to yield at least three new samples (close to the most volatile poles) for 38 iterations.

key to performing gradient-based inverse design as described in
Section 3.4. Implementation details for the AAA derivatives are
laid out in Section S2 (Supporting Information).

3. Results

Due to their strong and ultrafast nonlinearity, exciton-polaritons
hold great potential as a platform for all-optical logic operations.
However, chip integration is required to scale up and leverage
their ultra-fast switching in complex circuits. Ongoing efforts use
cavities formed by high contrast grating (HCG) meta-mirrors for
this purpose.[13] These cavities are fabricated in an SOI platform
by nanostructuring the top-silicon layer, which is optically iso-
lated from the silicon substrate by a buried oxide layer. The or-
ganic ladder-polymer MeLPPP is spin-coated onto the cavity and
encapsulated by a layer of Al2O3 deposited by atomic layer depo-
sition (see Figure 5a). As the encapsulated polymer has a higher
refractive index than the SiO2 below and the air above, it supports
vertically confined slab modes. Lateral photonic confinement is
realized by the lithographically defined silicon nanopillars.
The examples we will treat throughout the rest of this con-

tribution are chosen to showcase selected aspects of the pro-
posed method, while introducing relevant concepts, later used
in the inverse design of such integrated polariton cavities. We
start by examining the computational cost and convergence of
finding the resonance frequencies for a small number of coupled
scatterers. We then demonstrate how modal fields can be evalu-
ated and go over methods for emphasizing or suppressing res-
onances using an appropriate choice of excitation. In particular,
we study a macroscopic cavity formed by metamaterial mirrors,
robustly recovering its rich spectrum and modal fields. Tracking
relevant modes becomes particularly important when using the
available sensitivities for gradient-based inverse design, which is
discussed last.

3.1. Resonance Frequencies

Let’s consider the first example resonator made of 6 dispersive
silicon pillars (the parameters of the Lorentz oscillator model
are provided in Section S4, Supporting Information) embed-
ded in a background permittivity 𝜀r,bg = 2.9 + 0.001i as shown

in Figure 3a. The pillars have a radius of R = 55nm and are
positioned such that the center-to-center distance of the cen-
tral cylinders is 700 nm. The upper and lower posts are dis-
placed by 200 nm in the y-direction and 50 nm inwards along
the x-direction. Light is scattered between the cylinders leading
to the formation of collective resonances. Figure 3a illustrates the
electric field distribution of one such resonance with frequency
z̃ ≈ (2.142 − 0.074i)eV. In the following, we will analyze the accu-
racy and computational cost of determining multiple resonance
frequencies simultaneously using our method.
Figure 3b shows how the error of the resonance frequencies

converges while adaptively adding frequency samples according
to Algorithm ISR. The number of samples needed to obtain
satisfactory accuracy has to be scaled by the computational cost
to evaluate f (z). The single-threaded time spent to evaluate the
scattering problem at one complex frequency is displayed in
Figure 3c for different truncation orders mmax. The shown error
is the maximum relative error amongst thirteen resonances
falling in the considered domain of the complex frequency plane
between (1.6–0.4i) and (2.7 + 0.1i) eV. The error is dominated by
theT-truncation from ca. 70 samples onwards formoderatemmax.
In Section S3 (Supporting Information), we compare the

found resonances to the results of a state-of-the-art eigensolver
based on Arnoldi iteration, which is part of the commer-
cially available finite element method (FEM) software package
JCMsuite. The resonance frequencies found by the AAA approx-
imation converge to the reference solution with a remaining
maximum relative error of ∼10−9, which is within the expected
accuracy of the FEM solution (see Figure S1b, Supporting
Information).
Considering the combination of Figure 3b, and 3c reveals

the trade-off between computational effort and accuracy of our
method. For example, a desired accuracy of 1 × 10−9 would re-
quiremmax ≥ 7 with approximately 85 frequency samples, result-
ing in a total single-threaded execution time of less than 2s. Com-
paring that to the Arnoldi iteration, which takes more than 200 s
for the same accuracy (Figure S1b, Supporting Information), we
observe a computational advantage of about two orders of mag-
nitude for the system at hand. For larger systems, especially in
3D, our proposed method should offer even further savings in
computational cost. Furthermore, the computational complexity
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Figure 4. Modes of a large composite resonator made of 30 cylinders. The central figure shows the complex resonance frequencies of the modes, and
the plots above and below show the corresponding field distribution of a few selected modes. Only the dominating Ey component is shown in these field
plots. A few magnified fractions of the images illustrate the symmetries in the field plots. The scalarized response function f (z) is chosen as a linear
function of the scattered field (Scheme 2.1 in Figure 2) under dipole excitation with variable position. When the source is placed in the resonator such
that it possesses an even symmetry, modes of odd symmetry along the same axis are suppressed (gray lines indicate odd symmetry, green indicates
even in the x-direction, orange indicates even in the y-direction). In the legend of the central figure, the axis is set in bold when the source is placed in a
high symmetry position relative to that axis and a normal font when not.

of the TMF generally reduces for a wider spacing of the scatterers
(because a lower mmax is needed to capture near-field interaction
accurately).

3.2. Modal Fields

Besides its resonance frequency, a mode is characterized by the
corresponding field distribution. As shown in ref. [46], it is pos-
sible to construct the modal fields by a weighted superposition
of the fields at the sample frequencies zk. This is equally possi-
ble when the fields are expressed in the VSW/VCW-basis. How-
ever, in contrast to ref. [46], we do not necessarily calculate f (z)
as a linear function of the scattered field. Therefore, we evalu-
ate the modal fields using a single scattering simulation close to
the pole of interest. The response to any source that couples to a
non-degenerate mode will take the form of such mode when the
excitation frequency approaches the resonance frequency of the
mode.[59] We further note that for increased efficiency, only the
scattered field distribution has to be evaluated, as it will dominate
over the incident field when approaching the pole.
As demonstrated numerically in Section S3 (Supporting In-

formation), the modal fields converge to the state-of-the-art ref-
erence eigensolver with the exception of the fields very close to
the cylinders. The observed error hasmore thanmmax oscillations
around the scatterers and decreases in magnitude when increas-
ingmmax. It is thus attributed to the error introduced by the trun-
cation in the multipolar order. The fields shown in Figure 3a and
in further figures were calculated with that approach.

3.3. Selective Excitation

Let us now move on to a more complex resonator comprising
30 scatterers. The scatterers are placed in 200 nm steps to form
two opposing meta-mirrors with a distance of 5200 nm. The ma-
terial model for silicon is replaced in favor of a nondispersive
𝜀r = 17.77 + 0.2j. All other parameters are as given in the first
example. The resonator supports a rich spectrum of modes as
shown in Figure 4. The central scatter plot contains the posi-
tions of the found resonances in the complex frequency plane for
different excitations (indicated by different markers). The corre-
sponding electric field distributions are illustrated above and be-
low the scatter plot for two sets of resonances, which are grouped
by the number of nodes along the horizontal x direction (this
grouping is also displayed in the scatter plot by the thick strokes).
Even symmetries in the modal fields are indicated by a colored
symmetry axis (green for x-, orange for y-symmetry), while a gray
axis indicates odd symmetry. The threemagnified regions shown
on the right of Figure 4 serve to visualize the described symme-
tries.
Robustly recovering the rich resonance spectrum involving a

large number of modes is enabled by the adaptive refinement
strategy described in Algorithm ISR. It can be further helped by
deliberately suppressing unwanted modes, which is possible by
an appropriate choice of the scalarized response function f (z).
Here, f (z) is chosen as one coefficient of the scattered field plocal,
under illumination from an electric dipole inside the cavity. The
symmetry of the source inside the resonator is selectively broken
by offsetting it from the center.

Adv. Theory Simul. 2024, 2400989 2400989 (6 of 9) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH
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Figure 5. Inverse design of integrated polariton cavity formed by silicon cylinders for maximumQ-factor. The ladder polymer MeLPPP supports exciton-
polaritons when placed in a resonator with sufficientQ. a) Layer stack for SOI chip integrated polariton cavity. A slab mode guided in the active MeLPPP
layer is confined laterally by high contrast gratings formed from silicon posts. A thick layer of buried oxide isolates the resulting resonator from the silicon
substrate. b) The posts’ positions are parameterized by a Gaussian curve with variable amplitude A, standard deviation 𝜎. Further free parameters are
the center-to-center distance of the posts d and the mirror distance at the cavity center L. The posts radius is fixed to r = 55nm. c) The evolution of the
Q-factor with optimization iterations. Insets show the modal fields as an intensity distribution with a logarithmic colormap, allowing to clearly identify
the radiative loss in the unoptimized geometry. After the optimization concludes barely any radiative loss remains visible.

All modes couple to the source with broken symmetry in x
and y (i.e., the grey × is present for all resonances). Excitations
symmetric along one or more axes do not couple to modes an-
tisymmetric along these axes. The orthogonality between excita-
tion and mode becomes apparent by the absence of the respec-
tive pole. The divergent entries of the Tlocal-matrix are canceled in
Tlocalalocal, while all entries of alocal are non-zero. This can be un-
derstood as the extreme case of a vanishing residue due to a mis-
match between excitation and mode. During the inverse design
presented in the last section, we will analogously use the residue
as a similarity measure between source and mode, to pre-select
relevant resonances.

3.4. Inverse Design

As mentioned in Section 2.2, the AAA algorithm allows us to cal-
culate the gradients of the resonance poles. At the same time,
gradients of theMie coefficients and the TMF can be obtained via
automatic differentiation. Thus, it is possible to efficiently differ-
entiate the full solver chain with respect to, e.g., material param-
eters, geometry, and position of the scatterers. The availability of
such gradients unlocks the efficient inverse design of modes of
resonators made from multiple scatterers. Let us now demon-
strate the inverse design of a photonic microcavity as employed
for integrated polariton transistors,[13] withmeta-mirrors consist-
ing of silicon pillars. The top-down nanofabrication allows the ac-
curate placement of the silicon pillars on demand. Therefore, the
inverse design of the pillar arrangement opens the opportunity to
suppress surplus optical losses of the photonic cavity resonance
(i.e. increase the quality factor Q = −ℜ{z̃}∕2ℑ{z̃}[60]), which is
critical to enable exciton-polariton condensation.[13]

Making the layered structure shown in Figure 5a accessible
to our method requires reducing it to constituents of high sym-
metry. Here, this is possible using an effective index approxima-
tion, which permits the description of the silicon posts as in-
finitely extended cylinders in a homogeneous background. As
shown in Section S6, the found modes and their relative posi-
tions agree with the experimental results for the right choice
of effective dispersive permittivities. However, the effective in-
dex approximation has the limitation that out-of-plane radiation
losses are not considered. Such a limitation could be circum-

vented phenomenologically, e.g., by adding a shell of a lossy ma-
terial around each post. To ease reproducibility, we, however, keep
the same permittivities as in the previous example, which approx-
imately coincide with the calibrated effective refractive indices at
z = 2.5eV.
To keep the complexity of this demonstration to a minimum,

we will fix the posts’ radius to R = 55nm, while the positions are
parameterized to follow a Gaussian mirror shape inspired by ref.
[13] (see parameters indicated in Figure 5b). Indeed, theGaussian
parameterization is sufficient to reach Q-factors limited by non-
radiative losses. The chosen objective function balances two sub-
objectives by the weighting factor 𝜂 = 1 × 10−2:

Fobj = ℑ{z̃∗}2
⏟⏟⏟
primary

− 𝜂(ℜ{z̃∗} − 𝜔target)
4

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
penalty

. (5)

The primary objective is to maximize the quality factor (or, equiv-
alently, to minimize the distance between the pole and the real
axis). A penalty term is added to keep the (real) resonance fre-
quency approximately fixed, which ensures the resonance stays
inside the search domain. As Fobj solely depends on the position
of the selected pole z̃∗, the sensitivities of all other poles do not
contribute to the update step.
The resonator geometry changes with every iteration, conse-

quently modifying the resonance spectrum. The gradients gen-
erally differ between resonances. Thus, keeping track of the rel-
evant resonance during the optimization is vital. A combination
of three strategies accomplishes this.

1. As discussed in Section 3.3, selected resonances are empha-
sized by an appropriate choice of f (z).

2. The resulting residues are combined with ℑ{�̃�i} to assign a
relevance score to the poles in the considered spectral window
(e.g., Rel(z̃∗) := Res(z̃∗)∕ℑ{z̃∗}2).

3. Lastly, to clearly identify the resonance of interest amongst the
remaining most relevant resonances, we compare the modal
profiles to a reference mode determined for the initial config-
uration of posts. For numerical efficiency, the comparison is
performed by a small set of point evaluations.

The optimization is performed using the Adam stochastic gra-
dient descent algorithm[61] with low momentum terms 𝛽1 = 0.8

Adv. Theory Simul. 2024, 2400989 2400989 (7 of 9) © 2024 The Author(s). Advanced Theory and Simulations published by Wiley-VCH GmbH
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and 𝛽2 = 0.9. Figure 5c shows the evolution of the quality factor
Q throughout the iterative optimization. The optimizer swiftly
finds an optimized arrangement of posts, suppressing the in-
plane radiation loss through the mirrors. Note how Q does not
increasemonotonically due to themomentum terms of theAdam
optimizer and the penalty term used to keep the resonance fre-
quency’s real part approximately fixed. The insets show how the
radiative loss is clearly visible for the initial configuration, with
little radiative loss after the optimizer has converged. Section S7
(Supporting Information) discusses the evolution of design pa-
rameters throughout the optimization. The optimizer pushes the
Gaussian tails outwards, approaching a parabolic mirror shape.
To further maximize Q while reducing the resonator footprint,
more degrees of freedom could be unlocked. Possible design free-
doms include the individual placement of scatterers and their ge-
ometry. Core-shell cylinders or even freeform structures could re-
place the posts. Here, we refrain from such measures to guaran-
tee compatibility with established fabrication techniques.
From additional simulations selectively suppressing loss chan-

nels, we conclude that the loss remaining for the final design is
dominated by dissipation, predominantly in the silicon pillars.
It should be noted that due to the effective index approximation
out-of-plane radiation losses are not considered. To remedy this
in the future, we suggest generalizing the proposedmethod to ar-
bitrarily shaped objects (i.e., cylinders of finite length) and their
inclusion in stratified media, which are both compatible with the
TMF.[62] Careful treatment of the branch cuts emerging from a
nonuniform background will be required.

4. Conclusion

This contribution introduces an efficient method to calculate res-
onance frequencies and associated field profiles of composite res-
onators. The introduced method is most suitable for geometries
that are well described by the underlying transition matrix for-
malism (TMF). It has been demonstrated elsewhere[63] that the
TMF is capable to faithfully handle finite clusters of thousands
of particles. We are confident that these capabilities extend to
our method for resonance calculation by AAA approximation.
We demonstrated that our method shows good agreement to es-
tablished eigen-solvers in the presence of dispersive media. The
method requires that the electromagneticmaterial properties can
be evaluated at complex frequencies. Fitting tabulated data toma-
terialmodels presents a physicallymeaningful way to obtain such
permittivity models valid on the complex plane. Appropriate fit-
ting algorithms are openly accessible,[64,65] and pre-fitted mod-
els are available for a wide variety of materials such as TiO2 and
SiO2,

[66] which are commonly used in dielectric nanoparticles, or
gold and silver,[65] which can support plasmon polaritons.
We demonstrate the use of automatic differentiation, includ-

ing custom derivatives for the AAA algorithm, to inversely de-
sign a composite resonator with the goal of maximizing its Q-
factor. Further, selective excitation and post-selection of relevant
modes are used to track the resonance of interest throughout
the optimization. In this work, we have applied our method to
high symmetry scatterers (core-shell spheres and infinite cylin-
ders), for which the T-matrix is known semi-analytically. To in-
corporate arbitrarily shaped scatterers in the optimization, an ef-
ficient method to evaluate the T-matrix of such scatterers for a

high number of complex frequency samples is needed. A repre-
sentation of the T-matrix of an isolated scatterer in terms of a few
relevant modes could potentially serve that purpose. Numerous
applications beyond finite clusters are based on (locally) periodic
arrangements, which can be numerically accommodated for in
the TMF by infinite lattice sums.[62] Such periodic configurations
are known to introduce branch cuts in the optical response func-
tion, which requires a generalization of the pole finding method.
This would additionally allow the incorporation of stratified em-
beddings and substrates by expanding the field into a finite set
of plane waves. The developments presented in this contribu-
tion will serve as a foundation for future efforts addressing these
open questions.
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