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A B S T R A C T

Craze and crack propagation in glassy polymers under cyclic mode I loading are investigated
by employing a recently developed continuum-micromechanical model for crazing. This model
accounts for the local morphology change from microvoids to fibrils during craze initiation,
viscoplastic drawing of bulk material into fibrils, and viscoelastic creep recovery of the
fibrillated craze matter during unloading. To ensure consistency between the bulk and craze
model parameters, the material parameters of the craze model are normalised and calibrated
based on a hybrid approach integrating experimental findings from the literature and molecular
dynamics results. This yields a generic, yet representative glassy polymer response.

In the framework of 2D plane strain finite element simulations, we study brittle as well
as ductile glassy polymers and assess the results by drawing comparisons to the experimental
and numerical literature. For brittle materials, characterised by a purely elastic bulk behaviour,
the model reproduces craze characteristics such as the craze opening contour, the craze length-
to-width ratio, a double stress peak at the craze and crack tip, and a non-proportional stress
redistribution during loading-unloading cycles. In ductile glassy polymers, the interaction of
shear yielding in the bulk and crazing along the ligament is analysed. In particular, shear bands
emanate from the crack tip in each loading cycle and arch forward towards the craze. This
plastic zone shares resemblance to the so-called epsilon-shaped deformation zone. The current
simulations capture normal fatigue crack propagation, where craze and crack growth occur near
the peak load in every cycle and the craze length remains relatively constant across the loading
cycles. Moreover, findings from this study suggest that plasticity-induced unloading of the craze
adjacent to the crack tip impedes crack growth.

. Introduction

Crack growth in glassy polymers is typically accompanied by crazing in a narrow zone ahead of the crack tip. This damage
rocess involves the formation and coalescence of microvoids, fibrillation of the polymer material in between and drawing of new
aterial into the load-bearing fibrils. By ultimate rupture of the latter the craze zone locally turns into a crack. The energy dissipated

n this process zone determines the fracture toughness of the material and hence is of practical importance. Crazing may occur as
he sole inelastic deformation process in brittle glassy polymers such as polystyrene (PS), or it may take place in conjunction with
hear yielding of the surrounding material in more ductile polymers such as polycarbonate (PC). Crazing in the course of crack
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propagation under monotonic as well as cyclic (e.g. fatigue) loading conditions has been subject of numerous experimental studies;
see, e.g., the review articles in Kambour (1973), Kausch (1983, 1990), Narisawa and Yee (1993), Haward and Young (1997). Some
key findings in case of cyclic loading are as follows: The fibrillated craze matter displays a pronounced viscoelastic behaviour in
terms of deformation and creep recovery during the loading and unloading stages (Kambour and Kopp, 1969; Hoare and Hull, 1972).
Compressive stresses at a crack tip upon unloading, which are likely to result from folding (or jamming) of the loose-hanging craze
fibrils, are reported e.g. in Schirrer et al. (1984), Pruitt and Suresh (1993). Moreover, in the range of low loading amplitudes crack
dvance may take place not in every cycle but by jumps after remaining stationary for hundreds of fatigue cycles, which is referred

to as discontinuous or retarded fatigue crack growth, e.g. Skibo et al. (1977), Könczöl et al. (1990), in contrast crack advance in each
cycle is understood as normal fatigue crack growth. During retarded fatigue crack growth and between successive crack jumps, the
thickening of the craze in the first half of its lifetime is primarily due to fibril drawing, whereas in the second half it is predominantly
nfluenced by fibril creep, as reported in Könczöl et al. (1990). Crack growth in ductile glassy polymers under cyclic loading may
xhibit an interesting interaction of crazing and shear yielding which gives rise to the occurrence of a regularly spaced 𝜀-shaped

plastic zone accompanying the advancing crack tip (Mills and Walker, 1980; Takemori, 1982). Such an interaction is understood to
significantly increase the material’s load bearing capacity under cyclic (fatigue) loading conditions (Takemori, 1990).

Theoretical-computational studies of craze and crack propagation in glassy polymers have followed various modelling approaches
with the majority restricted to monotonic loading conditions. Early studies employed a Barenblatt–Dugdale type representation of
the craze zone ahead of an advancing crack tip, e.g. Cotterell (1968), Kramer and Hart (1984), Imai and Ward (1985). Other
approaches, e.g. Wang and Kramer (1982), Bevan et al. (1986), Ungsuwarungsri and Knauss (1988), Pulos and Knauss (1998),
aimed at determining the mechanical response of the craze matter by computing the normal stress distribution along a craze in
a linear elastic medium from the measured opening displacement profile (craze contour). It has, however, been shown in Warren
et al. (1989) that in this approach small deviations in the input displacement profile give rise to significant changes in the computed
stress. Fatigue crack propagation in polymers was investigated, e.g., in Maiti and Geubelle (2005) who utilised a phenomenological
cohesive zone model and focused on the overall response of the fracture process in terms of Paris’ law. A more advanced cohesive
zone model that incorporates physical details of the crazing process such as initiation and drawing of material into fibrils until
ultimate breakdown has been developed by Van der Giessen and co-workers (Tijssens et al., 2000b). Utilising this model, mode
I craze and crack propagation under monotonic loading was studied in brittle (elastic) glassy polymers by Tijssens et al. (2000a)
and in ductile glassy polymers by Estevez et al. (2000) who particularly analysed the interaction of shear yielding and crazing. The
resent work is aimed as a continuation of these studies by focusing on cyclic loading conditions.

Modelling the mechanical response of the fibrillated craze matter under cyclic loading is more involved than under monotonic
loading where it is essentially governed by a (rate-dependent) drawing stress. For instance, the structural response of the fibrillated
craze matter during unloading and reloading is ambiguous and hence is its proper representation. This includes relaxation and creep
recovery during unloading stages when fibril drawing is interrupted, the occurrence of compressive stresses due to fibril jamming
as well as cyclic damage accumulation. In order to capture these aspects, a novel continuum-micromechanical model for crazing
has recently been developed in Laschuetza and Seelig (2024). In a finite strain setting, the model builds upon micromechanical
considerations by Boyce and co-workers (Socrate et al., 2001; Sharma et al., 2008) to distinguish between the already fibrillated
and the not yet fibrillated bulk portions of a representative craze element and their conversion in the course of the crazing process. In
the present work, this model serves as a traction separation law in the process zone ahead of a mode I crack initiating and advancing
in a glassy polymer under cyclic loading. However, while the model developed in Laschuetza and Seelig (2024) aims to capture
mportant physics of the cyclic crazing process through its micromechanical basis, it still suffers from inconclusive knowledge about
he structural response of the craze matter and insufficient calibration methodologies to estimate an adequate material parameter
cope. This is an issue as insight into both aspects is difficult to obtain from experiments. However, molecular dynamics simulations
ight provide remedy. This type of bottom-up computational investigation has in the last decades significantly contributed to the
nderstanding of the crazing process and its dependence on macro-molecular characteristics such as the entanglement density; see,
.g. Rottler and Robbins (2003), Venkatesan and Basu (2015), Ge et al. (2017). While these and other studies so far have focused

on monotonic loading conditions, molecular dynamics simulations of the crazing process under cyclic loading have only recently
been conducted in Laschuetza et al. (2024). Insights from that study verify the structural assumption of string-like craze fibrils
n Laschuetza and Seelig (2024). In this work, we utilise and extend results from Laschuetza et al. (2024) to enrich the original

crazing model from Laschuetza and Seelig (2024) by adding additional features, e.g. fibril jamming, and by using molecular dynamics
simulations to calibrate material parameters, which are not accessible from experiments. The model is then used to study craze and
crack growth under cyclic mode I loading, while comparisons to the aforementioned experiments are drawn.

The present work is organised as follows: In Section 2 the micromechanical crazing model is presented and the methodology of
he parameter calibration is discussed as well as some numerical aspects. Details on the molecular dynamics based calibration are
rovided in Appendix A. Finite element simulations of craze and crack growth in glassy polymers under cyclic mode I loading are

subject of Sections 3 and 4. Section 3, which also includes the set-up of the boundary value problem and details on the computational
treatment, focuses on brittle glassy polymers where the bulk material surrounding the craze and crack is considered linear elastic.

he interaction of crazing and shear yielding during crack growth under cyclic loading in ductile glassy polymers is studied in
ection 4. The constitutive model utilised to describe finite strain viscoplastic shear yielding in the bulk material is based on the
ell-known model by Boyce and co-workers (Boyce et al., 1988) in a setting which is briefly presented in Appendix B.

The notation throughout this paper makes use of the standard symbolic bold face representation of vectors and second order
tensors as well as the Cartesian index notation of their components.
2 
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Fig. 1. Schematic of mode I craze and crack growth with different stages of crazing process; (a) prior to craze initiation, (b) unloaded state after craze initiation
and (c) loaded state after craze initiation.

2. Continuum-micromechanical model for crazing

The main topic of this paper is the computational investigation of craze and crack growth in glassy polymers under cyclic mode
I loading (cf. Fig. 1 top). Therefore, a continuum-micromechanical model for the cyclic craze response developed in Laschuetza and
Seelig (2024) is utilised in the present study to provide a macro-scale traction-separation law. This model considers a representative
craze element where an elementary volume of initial bulk material (Fig. 1(a)) transitions into crazed material with a current unloaded
and loaded configuration sketched in Fig. 1(b) and (c), respectively. Details of the model are briefly summarised in the following
three subsections, while details on the parameter calibration, the model response and the numerical treatment are provided in
Sections 2.4, 2.5 and 2.6, respectively.

2.1. Micromechanical model

Prior to craze initiation, the craze element consists of bulk material of the initial primordial thickness ℎ0. At some time 𝑡 after
craze initiation, the craze element comprises layers of fibrillated matter with the current unloaded length 𝜉0(𝑡) and bulk material
with the current unloaded length 𝜒0(𝑡) as indicated in Fig. 1(b); the corresponding lengths in the currently loaded configuration are
denoted by 𝜉(𝑡) and 𝜒(𝑡), respectively (cf. Fig. 1(c)). The complex craze microstructure is idealised by neglecting cross-tie fibrils and
considers only string-like fibrils in the direction 𝑒𝑒𝑒1 of the maximum principal stress (Fig. 1). Mass conservation links the thicknesses
of the two phases as

ℎ0 = 𝜒0 +
𝜉0
𝜆𝑐

, (1)

where 𝜆𝑐 denotes the fibril extension ratio, defined here as the ratio of the constant bulk density 𝜌𝑏 to the density 𝜌𝑐 of the fibrillated
craze matter:

𝜆𝑐 =
𝜌𝑏
𝜌𝑐

. (2)

In order to capture the change of 𝜌𝑐 (and hence 𝜆𝑐) due to the morphological transition during craze formation from isolated voids
to an interconnected void space with isolated fibrils, the extension ratio 𝜆𝑐 is taken to evolve with the unloaded fibril length 𝜉0 from
𝜆𝑐 = 1 (bulk value) to a saturation value 𝜆𝑐 = 𝜆∗𝑐 that corresponds to mature fibrils. The transition of 𝜆𝑐 (𝜉0) is depicted in Fig. 2
where 𝜉 = 𝜆∗ ℎ is the unloaded fibril length at rupture and 𝛼 defines its fraction upon which mature fibrils exist.
0,max 𝑐 0
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Fig. 2. Phenomenological ansatz to account for effect of morphology change on evolution of extension ratio 𝜆𝑐 as well as drawing resistance 𝜎𝑐 𝑟 with fibril
ength 𝜉0. Both relations are modelled by similar exponential relations that approximately connect the limit states. Sketches serve to facilitate interpretation of
orphology stages.

The stress state in the fibrils is taken as homogeneous and uniaxial, yielding

𝜎𝜎𝜎𝑓 = 𝜎𝑓𝑒𝑒𝑒1 ⊗ 𝑒𝑒𝑒1 , (3)

where 𝜎𝑓 is the Cauchy fibril stress. Likewise, the stress state in the bulk portion of the craze element

𝜎𝜎𝜎𝑏 =
3
∑

𝑖=1
𝜎𝑏𝑖 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖 , (4)

is assumed to be homogeneous. Homogenisation of the layered bulk-craze structure of the element yields through the rule of mixtures
the macroscopic Cauchy stress 𝜎̄𝜎𝜎 as

𝜎̄𝜎𝜎 = 𝜎𝑏1 𝑒𝑒𝑒1 ⊗ 𝑒𝑒𝑒1 +
𝜒

𝜒 + 𝜉

3
∑

𝑖=2
𝜎𝑏𝑖 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖 . (5)

The overall deformation of the craze element is described by the macroscopic stretch tensor

𝜆̄𝜆𝜆 =
3
∑

𝑖=1
𝜆̄𝑖 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖 , (6)

which is related to the bulk stretch tensor

𝜆𝜆𝜆𝑏 =
3
∑

𝑖=1
𝜆𝑏𝑖 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖 (7)

and the fibril stretch in 𝑒𝑒𝑒1-direction 𝜆𝑓 = 𝜉∕𝜉0 by

𝜆̄1 =
𝜉 + 𝜒
ℎ0

= 𝜆𝑏1
𝜒0
ℎ0

+ 𝜆𝑓
𝜉0
ℎ0

, 𝜆̄2 = 𝜆𝑏2 , 𝜆̄3 = 𝜆𝑏3 . (8)

Force equilibrium in 𝑒𝑒𝑒1-direction and the assumption of isochoric fibril deformation yields (for details see eqs. (10)-(14)
in Laschuetza and Seelig (2024))

𝜎𝑏1 = 𝜎𝑓

𝜆𝑓 𝜆𝑐 𝜆𝑏2 𝜆
𝑏
3

, (9)

which by virtue of (5) provides a coupling between the fibril stress and the macroscopic stress in 𝑒𝑒𝑒1-direction.
The fibril’s string-like microstructure suggests that its load-bearing capacity is essentially limited to tension:

𝜎𝑓 ≥ 0 . (10)

The notion of string-like fibrils which are loose hanging when traction free was corroborated by recent molecular dynamics
simulations (Laschuetza et al., 2024), which are also discussed in Appendix A. Additionally, the study revealed a macroscopic
compressive stress due to fibril jamming prior to reaching macroscopic compressive deformation, i.e. 𝜎̄1 < 0 while 𝜆̄1 > 1, which has
also been computed from experimentally measured craze profiles (cf., e.g., Bevan et al., 1986). This is incorporated in the present
craze model via the ratio

𝜆̂ =
𝜉0 + 𝜒0 , (11)
1 ℎ0

4 
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from which the logarithmic Hencky strain

𝜀̂1 = ln 𝜆̂1 (12)

can be computed, which is utilised below in (17). Fibril jamming is then considered for

𝜀̄1 = ln 𝜆̄1 < 𝛽𝑐 𝜀̂1 (13)

where 𝛽𝑐 is a material parameter that controls the onset of fibril jamming. The craze element’s compressive response is modelled
by the bulk material.

2.2. Craze initiation, fibril drawing and breakdown

Although various more involved craze initiation criteria exist in the literature, e.g. accounting for the effect of hydrostatic stress,
raze initiation in the present work is simply associated with a critical normal stress

𝜎𝑏1 = 𝜎0𝑐 𝑟 . (14)

Upon craze initiation, fibril drawing is described by the flow rule

𝜉̇0 =
ℎ0
𝜂𝑑

⟨

𝜎𝑏1 − 𝜎𝑐 𝑟
⟩

≥ 0 , (15)

which makes use of the standard notation for viscoplastic models with the Macaulay bracket ⟨⋯⟩ and where 𝜂𝑑 is the drawing
viscosity. The drawing resistance 𝜎𝑐 𝑟 is taken to decline from an initial value 𝜎0𝑐 𝑟 to a saturation value 𝜎∗𝑐 𝑟 in order to model the
change in stress state in the course of the morphology change between craze initiation by cavitation and fibril drawing (see Fig. 2).
This has a similar effect as a craze initiation criterion involving hydrostatic stress as employed, e.g., in Tijssens et al. (2000a),
Estevez et al. (2000), Estevez and van der Giessen (2005). The corresponding relation is depicted by the magenta line in Fig. 2.

Fibril breakdown is taken here to occur upon complete consumption of the primordial thickness ℎ0, i.e. at 𝜒0 = 0, which yields

𝜉0,𝑚𝑎𝑥 = 𝜆∗𝑐 ℎ0 . (16)

2.3. Constitutive equations of bulk and craze layer

The material behaviour in the bulk portion of the craze element is given by

𝜎𝜎𝜎𝑏 = 2𝜇𝑏
(

ln𝜆𝜆𝜆𝑏 +
𝜈𝑏

1 − 2𝜈𝑏
t r [ln𝜆𝜆𝜆𝑏]111

)

, (17)

where 𝜇𝑏 and 𝜈𝑏 denote the bulk shear modulus and Poisson’s ratio, respectively, and by virtue of (13) ln 𝜆𝑏1 = 𝜀̄1 − 𝛽𝑐 𝜀̂1 to account
for fibril jamming.

The craze fibrils are modelled as viscoelastic in a three-dimensional finite strain setting. The fibril deformation is for simplicity
onsidered to be isochoric, yielding the fibril stretch tensor 𝜆𝜆𝜆𝑓 as

𝜆𝜆𝜆𝑓 = 𝜆𝑓𝑒𝑒𝑒1 ⊗ 𝑒𝑒𝑒1 +
3
∑

𝑖=2

1
√

𝜆𝑓
𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑖 . (18)

In accordance with the viscoelastic model shown in Fig. 3, the fibril stretch is multiplicatively decomposed

𝜆𝑓 = 𝜆𝑒 𝜆𝑣 (19)

into an elastic 𝜆𝑒 and viscous contribution 𝜆𝑣, while the fibril stress is additively given by

𝜎𝑓 = 𝜎𝑓EC + 𝜎𝑓NH . (20)

The network stress 𝜎𝑓EC is modelled via the incompressible eight-chain model by Arruda and Boyce (1993)

𝜎𝑓EC =
𝜇𝑓 ,EC
𝜆𝐶

−1(𝜆𝐶∕𝜆𝐿)
−1(1∕𝜆𝐿)

(

𝜆𝑓 2 − 1
𝜆𝑓

)

, (21)

with the inverse Langevin function −1(𝑥) replaced by the Padé approximation (Cohen, 1991)

−1(𝑥) = 𝑥3 − 𝑥
2

1 − 𝑥2 (22)

and the mean chain stretch 𝜆𝐶 simplifies under uniaxial stress and isochoric deformation to

𝜆𝐶 =

√

√

√

√

t r
[

𝜆𝜆𝜆𝑓 2
]

3
=
√

1
3

(

𝜆𝑓 2 + 2
𝜆𝑓

)

. (23)

Eq. (21) involves two material parameters, namely the initial shear modulus 𝜇𝑓 ,EC and the limit stretch 𝜆𝐿 corresponding to the
entanglement density of the glassy polymer. An additional nonlinear spring in series to the dashpot (Fig. 3, element B) is included
to enable a realistic response upon instantaneous loading. The stress is given by an incompressible neo-Hookean material model

𝑓
(

𝑒 2 1 )
𝜎NH = 𝜇𝑓 ,NH 𝜆 −
𝜆𝑒

, (24)

5 



T. Laschuetza and T. Seelig

r

f
l

c

y

m
𝜏
w
p
m

W

Journal of the Mechanics and Physics of Solids 194 (2025) 105901 
Fig. 3. Fibril model comprising viscoplastic drawing from the active zone and viscoelastic fibril deformation.

which introduces a second shear modulus 𝜇𝑓 ,NH as a material parameter. The viscous fibril deformation is described by the flow
ule

𝜆̇𝑣 = 2
3 𝜂𝑐

𝜎𝑓NH𝜆
𝑣 . (25)

Fig. 3 illustrates the arrangement of rheological models of viscoelastic fibril deformation and viscoplastic fibril drawing. For
urther details on the craze model and particularly a motivation and discussion of various constitutive assumptions, e.g. the simplified
inear flow models with constant viscosities in (15) and (25), the reader is referred to Laschuetza and Seelig (2024).

2.4. Remarks on parameter calibration

We aim to obtain a generic, yet representative craze response for glassy polymers. This presents the challenge that craze and
bulk parameter scopes are not independent as they should describe the same (generic) material. Unlike the bulk parameters, which
an be calibrated from experiments, the craze parameter calibration is difficult due to the small length scale. We address this issue

in several steps to obtain a physically plausible parameter scope of the craze parameters:
First, we take bulk model parameters from the literature (cf. Appendix B), which are representative for glassy polymers. This

yields the shear modulus 𝜇𝑏 and the Poisson’s ratio 𝜈𝑏 for an elastic bulk material (cf. Section 3) and additionally the initial shear
ield strength 𝑠0 for an inelastic bulk material (cf. Section 4).

Second, we normalise the craze parameters with 𝜇𝑏 and 𝑠0 where applicable. With the known bulk parameters, the craze
odel encompasses ten additional constants as well as the primordial thickness ℎ0. We normalise the two characteristic times
𝑑 = 𝜂𝑑∕𝜇𝑏 and 𝜏𝑐 = 𝜂𝑐∕𝜇𝑏, which describe the fibril drawing and the fibril creep behaviour of the craze element, respectively,
ith a characteristic loading time 𝑇0 into the two dimensionless parameters 𝜏𝑑∕𝑇0 and 𝜏𝑐∕𝑇0. The geometry of the boundary value
roblem in Section 3 is scaled with ℎ0 and the primordial thickness is set to 2ℎ0 = 1μm, which is comparable to previous continuum
odelling (Sharma et al., 2008). The primordial thickness can be understood as a material property which is determined by the

(measurable) extension ratio and the (measurable) fibril length (craze opening displacement) at failure (𝜒0 = 0) according to (1).
Third, we use experimental and numerical findings from the literature to deduce representative values for the extension ratio

𝜆∗𝑐 , the craze initiation stress 𝜎0𝑐 𝑟, the saturation drawing stress 𝜎∗𝑐 𝑟 and the two viscosities 𝜂𝑑 and 𝜂𝑐 : The extension ratio 𝜆∗𝑐 has been
extensively studied in experiments and 𝜆∗𝑐 ≈ 2 is representative of the bulk parameters in Table B.2 (cf., e.g., Donald and Kramer,
1982). Craze initiation is taken to occur at a representative stress magnitude for glassy polymers, given by 𝜎0𝑐 𝑟∕𝜇𝑏 = 0.11 ≈ 1.2𝑠0∕𝜇𝑏.

e set the saturation drawing stress to 𝜎∗𝑐 𝑟 = 2𝜎0𝑐 𝑟∕3, which corresponds to 𝜎∗𝑐 𝑟 ≈ 0.8𝑠0 as used in Estevez et al. (2000). This facilitates
later comparisons under monotonic loading. With set 𝜎0𝑐 𝑟, the fibril drawing viscosity 𝜂𝑑 significantly influences the crack propagation
speed and hence, the macroscopic stress in the far field. Linear elastic fracture mechanics is used to estimate a far field stress as
experimentally observed for the mode I boundary value problem outlined in Section 3. The considered range of values for 𝜏𝑑∕𝑇0
and 𝜏 ∕𝑇 is given in Section 3.1 after the boundary value problem has been presented.
𝑐 0

6 
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Fourth, we employ molecular dynamics (MD) simulations to obtain the parameter scope for the remaining parameters, including
the elastic fibril properties 𝜇𝑓 ,EC and 𝜇𝑓 ,NH, the limit stretch 𝜆𝐿, the parameter 𝛽𝑐 controlling fibril jamming and the fraction 𝛼 upon
which mature fibrils exist. MD simulations complement well the micromechanical approach by providing insight into microscale
mechanisms that are otherwise challenging to access experimentally due to their small length scale. The details of the non-standard
molecular dynamics calibration are presented in Appendix A, with key considerations summarised as follows: The elastic part of
he constitutive craze fibril model (cf. Fig. 3) is fitted to the stress–strain response of the MD simulations, yielding 𝜇𝑓 ,EC, 𝜇𝑓 ,NH and
𝐿. The parameter scope is further assessed by normalising the quantities with the MD bulk stiffness 𝜇𝑏, leading to 𝜇𝑏∕𝜇𝑓 ≈ 10 and
𝑓 ,𝑁 𝐻∕𝜇𝑓 ≈ 0.5, where 𝜇𝑓 = 𝜇𝑓 ,EC + 𝜇𝑓 ,NH. According to Laschuetza et al. (2024), the fibril length in the MD simulations is closely

linked to the deformation. Combined with (13), this correlation is used to determine the onset of fibril jamming as function of the
craze fibril length 𝜉0, resulting in 𝛽𝑐 ≈ 0.15. Similar to the idea of the morphology change depicted in Fig. 2, the MD simulations
llow to determine the instant after cavitation upon which the mature craze density prevails, leading to 𝛼 ≈ 0.07.

Finally, we investigate different parameter combinations to study their influence on the (generic) response.

2.5. Response of calibrated craze model

To study later the effect of 𝜇𝑏∕𝜇𝑓 and 𝜆𝐿, three materials are selected as shown in Table 1. Material 1 utilises 𝜇𝑏∕𝜇𝑓 = 1 and a
elatively high limit stretch 𝜆𝐿. By contrast, material 2 takes 𝜇𝑏∕𝜇𝑓 = 10 according to the MD findings and material 3 additionally
s based on a low 𝜆𝐿 corresponding to the MD results.

Table 1
Material parameter sets of craze model, where 𝑠0 and 𝜇𝑏 are given by the bulk material in Table B.2.

set 𝜇𝑏∕𝜇𝑓 𝜈𝑏 𝜇𝑓 ,𝑁 𝐻∕𝜇𝑓 𝜎0𝑐 𝑟∕𝜇𝑏 𝜎0𝑐 𝑟∕𝜎∗𝑐 𝑟 𝜆∗𝑐 𝛼 𝜆𝐿 𝛽𝑐 2ℎ0 [μm]

1 1 0.38 0.5 1.2𝑠0∕𝜇𝑏 1.5 2 0.07 2 0.15 1
2 10 0.38 0.5 1.2𝑠0∕𝜇𝑏 1.5 2 0.07 2 0.15 1
3 10 0.38 0.5 1.2𝑠0∕𝜇𝑏 1.5 2 0.07 1.2 0.15 1

Following the study in Laschuetza and Seelig (2024), the evaluation of the three materials under uniaxial deformation in a
train controlled bilinear cyclic loading programme is depicted in Fig. 4. The characteristic loading time 𝑇0 is set to the reciprocal

of the overall deformation rate 𝑇0 = 1∕ ̇̄𝜆1. All three materials exhibit qualitatively similar traits: an initial peak stress followed by a
transition to a constant drawing stress plateau, while during unloading fibrils are stress-free and loose hanging until fibril jamming
occurs. Notably during reloading in the 2nd cycle, material 1 shows the most pronounced hysteresis and fibril creep recovery while
the fibrils are stress-free, which is represented by the offset between unloading and subsequent reloading in the next cycle (cf.
magenta marking in Fig. 4 for material 1). Except for the curvature of the unloading–reloading curves, material 2 and 3 behave
very similar during cyclic loading. We conclude that the change in stiffness 𝜇𝑏∕𝜇𝑓 exhibits the most pronounced influence on the
results and thus, we use material 2 as the base case in the subsequent study unless indicated otherwise.

Fig. 4. Uniaxial strain response of continuum-micromechanical craze model for three consecutive loading cycles and materials outlined in Table 1. (𝜏𝑐∕𝑇0 = 0.1,
𝑑∕𝑇0 = 0.1).

2.6. Numerical aspects

The craze model is defined by a system of differential algebraic equations and implemented as a user material subroutine in
the finite element programme Abaqus (ABAQUS, 2023). To compute the tangent directly within the Newton–Raphson scheme,
he Fortran implementation employs dual number automatic differentiation. To that end, we extended the dual number automatic
7 
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differentiation tool developed by Yu and Blair (2013) to accommodate the specific operations required in the implementation.
Both, the craze model described in Section 2 and the bulk model for shear yielding outlined in Appendix B, are implemented
with this methodology. This computational approach has been successfully deployed on the high-performance computing platform
bWUniCluster 2.0, where both material models have been simultaneously applied.

3. Craze and crack growth in brittle glassy polymers

3.1. Model set-up and computational aspects

The 2D plane strain boundary value problem (BVP) of a rectangular plate with an edge crack of initial length 𝑎0 subjected to
mode I loading is depicted in Fig. 5. Loading is imposed in terms of a displacement controlled bilinear cyclic loading programme
𝑢𝑦(𝑡, 𝑇 , 𝑅𝑢) with time 𝑡, period 𝑇 , displacement velocity 𝑢̇𝑦 and load ratio 𝑅𝑢 = 𝑢𝑦,𝑚𝑖𝑛∕𝑢𝑦,𝑚𝑎𝑥 as sketched in Fig. 5(b). The notch tip
adius 𝑟𝑡 = 50ℎ0 (see Fig. 5(c)) is introduced to alleviate mesh distortions and the 𝑟𝑡 magnitude is comparable to Estevez et al.

(2000), Estevez and van der Giessen (2005). Mode I symmetry is exploited and one layer of craze elements with initial thickness ℎ0
s placed along the ligament indicated by the red line in Fig. 5. All length dimensions scale with the primordial thickness ℎ0. The
VP is solved with the commercial finite element (FE) software Abaqus/Explicit (ABAQUS, 2023) to properly capture dynamic effects

during potentially unstable crack growth. In contrast to various other studies, e.g. Tijssens et al. (2000a), Estevez et al. (2000), the
occurrence of dynamic effects also has led us to avoid a small scale yielding BVP. Instead the entire specimen is modelled as shown
in Fig. 5(a). Both, craze and bulk material are implemented as user material subroutines and craze elements are removed once the
failure criterion of a critical craze thickness 𝜉0 = 𝜉0,max is met (cf. (16)). Elements along the ligament are quadratic in shape with a
imension of ℎ0. The ratio 𝑟𝑡∕ℎ0 = 50 provides an indication of the mesh resolution.1 Since this type of BVP is prone to hourglassing,

the finite elements are fully integrated.

Fig. 5. (a) Mode I boundary value problem with (b) displacement controlled cyclic loading history and (c) detail of the round crack tip.

The maximum displacement 𝑢𝑦,𝑚𝑎𝑥 (Fig. 5(b)) is chosen to yield a realistic far field stress as observed in experiments. With
inelasticity limited to a small region around the crack tip, linear elastic fracture mechanics arguments are employed to estimate 𝜎𝑦
in the far field. For the current BVP, the stress intensity factor is 𝐾𝐼 = 𝐹 𝜎𝑦

√

𝜋 𝑎0 with a shape factor 𝐹 ≈ 0.9 according to table
C10.15 in Fett (2008). We consider two cases: one for an elastic and one for an inelastic bulk material. In the case of a purely elastic
bulk response, the fracture toughness of glassy polymers typically ranges around 𝐾𝐼 𝑐 ≈ 1MPa

√

m. This yields a realistic far field
tress 𝜎𝑦 ≈ 7.5MPa. The magnitude for more ductile glassy polymers is deduced from experiments where both crazing and shear
ielding take place. According to Takemori (1990), crack tip plastic zones involving a strong interaction of both mechanisms in PC

occur in the range of up to 𝛥𝐾𝐼 = 1.3MPa
√

m for 𝑅 = 𝐹𝑚𝑖𝑛∕𝐹𝑚𝑎𝑥 = 0.1. This leads to 𝜎𝑦 ≈ 10.5MPa as far field stress.
The fibril drawing viscosity 𝜂𝑑 is chosen so that crack initiation does not take place in the first cycle while, on the other hand,

voiding a fatigue loading regime where thousands of cycles are necessary. To compare varying loading periods 𝑇 due to, for
nstance, different 𝑅𝑢, the reciprocal of the strain rate in the far field is used as characteristic time 𝑇0 = ℎ∕𝑢̇𝑦. This results in

1 The FE mesh is visible in Fig. 6, showing the situation at some instant after crack initiation.
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𝜏𝑑∕𝑇0 ≈ 10−4. We remark that the small value arises from the choice of the far field velocity. Rescaling with the ratio of specimen
height and primordial thickness ℎ∕ℎ0 = 5 ⋅ 104 yields 𝜏𝑑∕𝑇0 ≈ 5, which is more comparable to the values given in Fig. 4. However,
since the far field velocity is more representative in experiments, this rescaling is omitted. As a normalised measure of the loading
magnitude, the far field strain, given by 𝜀𝑦 = 𝑢𝑦∕ℎ, is introduced.

In the following, the evaluation mainly focuses on quantities along the ligament. The craze length 𝑙𝑐 is computed as the longest
contiguous craze segment. That is, 𝑙𝑐 neither includes craze sections separated by a crack nor by un-crazed elements. This method
helps to focus on the evolution of the most dominant, i.e. longest, craze, which is important since crack initiation may not occur at
the notch tip. On the other hand, the crack length 𝑎 is calculated as the cumulative sum of all cracks, i.e. including separated crack
sections.

3.2. Numerical results

We first study the situation of a purely linear elastic bulk material with craze material 2 (cf. Table 1) and corresponding elastic
bulk parameters 𝜇𝑏 and 𝜈𝑏. Cyclic loading with 𝑅𝑢 = 0 and 𝜀𝑦,𝑚𝑎𝑥 = 2.5 ⋅ 10−3 is considered, resulting in an average far field stress
of 𝜎𝑦 ≈ 7.6MPa. If not indicated differently, the normalised drawing and fibril creep viscosities are taken as 𝜏𝑑∕𝑇0 = 5 ⋅ 10−4 and
𝜏𝑐∕𝑇0 = 10−4, respectively.

Fig. 6 presents a snapshot of the vertical stress field 𝜎𝑦 along with the finite element mesh close to the notch tip at peak load
in the 31st cycle some time after crack initiation. As annotated in Fig. 6, the stress distribution exhibits a double peak at the crack
tip and at the craze tip. The craze extends between those peaks, while elements on the right-hand side of the craze tip have not yet
initiated.

Fig. 6. Stress field 𝜎𝑦 at the notch tip at peak load in the 31st cycle.

The stress distribution and the craze opening contour in terms of the fibril length are shown at four instants throughout the
31st cycle in Fig. 7 during loading (black line), at peak load (magenta line), during unloading (green line) and at overall zero
displacement (orange line). As the elements on the right-hand side of the craze tip have not yet initiated, they still exhibit elastic
bulk behaviour, resulting in a quasi-identical stress distribution in stage 1 and stage 3 (Fig. 7(a)). The double stress peak is visible
in instant 2, where the stress at the crack tip exceeds the stress at the craze tip.

In contrast, in stages 1 and 3 the stress at the craze tip is higher than at the crack tip. Moreover, the stress at the crack tip
during loading (black line) is higher than during unloading (green line), despite the smaller craze width (cf. Fig. 7(b)). This effect is

Fig. 7. (a) Normalised stress distribution and (b) craze contour in terms of normalised fibril length along ligament at four loading stages.
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attributed to the elongation of the craze fibrils due to drawing and creep deformation throughout the loading cycle. The relatively
onstant shift in the craze contour between stage 1 and 3 (Fig. 7(b)) suggests uniform drawing along the craze. In contrast, creep
eformation depends on the current (relaxed) fibril length 𝜉0 and becomes more dominant for longer fibrils (cf. Laschuetza and
eelig, 2024), as prevailing at the crack tip. Consequently, the deviation in crack tip stress between instant 1 and 3 is attributed to

the fibril creep viscosity. Instant 4 displays the influence of fibril jamming, which is again most pronounced at the crack tip where
𝜉0 reaches its maximum value. The slight horizontal shift of the stress curves throughout the cycle indicates the small amount of
crack propagation.

The influence of the fibril creep viscosity 𝜂𝑐 on the ligament stress and the evolution of the craze and crack length is studied
over a range of four orders of magnitude of the dimensionless parameter 𝜏𝑐∕𝑇0 in Fig. 8. Higher 𝜏𝑐∕𝑇0 values enhance fibril stiffness,
resulting in higher stress, which is most pronounced at the crack tip with the longest craze fibrils 𝜉0 (cf. Fig. 8(a)). In all cases, craze
initiation occurs at the notch tip at 40% of the peak load during the first loading cycle. Thereafter, the craze length 𝑙𝑐 monotonically
grows over multiple cycles prior to failure, representing cyclic damage accumulation (cf. Fig. 8(b)). The inset in Fig. 8(b) illustrates
that craze growth is interrupted by arrest phases during unloading. Crack initiation also takes place at the notch tip and is delayed
from the 17th to the 23rd loading cycle as 𝜏𝑐∕𝑇0 decreases. The correlation between 𝜎𝑦 and 𝜏𝑐∕𝑇0 results in a faster crack propagation
after initiation, whereas the craze length 𝑙𝑐 shortens with increasing 𝜏𝑐∕𝑇0.

Fig. 8. Influence of fibril creep viscosity in terms of 𝜏𝑐∕𝑇0 = [10−5 , 10−4 , 10−3 , 10−2] on (a) stress distribution along ligament at peak load and on (b) temporal
craze length and crack length evolution with a zoom.

The influence of the loading magnitude is analysed by increasing the overall deformation by 20% in Fig. 9, allowing for
comparisons with experimental findings discussed below. The craze contour at peak load in cycles with approximately equal crack
extensions is shown in Fig. 9(a). The evolution of the craze and crack length during the cyclic loading history is depicted in Fig. 9(b).
The craze width at the crack tip 𝜉(𝑥 = 𝑎), the craze length 𝑙𝑐 and the crack growth rate all increase with 𝛥𝑢𝑦. However, the most
notable difference is the change in the evolution of 𝑙𝑐 , which exhibits a more pronounced variation for the higher loading amplitude.

Fig. 9. Influence of load increase by 20% on (a) craze contour and (b) craze and crack length evolution.

3.3. Discussion

The simulation results, including the parameter choice, are assessed by drawing comparisons to experiments and previous
umerical analyses from the literature. The double stress peak at the crack tip and the craze tip is in accordance with previous results
or various brittle glassy polymers, e.g. in Wang and Kramer (1982), Bevan et al. (1986), Ungsuwarungsri and Knauss (1988), Pulos

and Knauss (1998), who calculated the normal stress distribution along a craze based on experimentally measured craze opening
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contours and the assumption of a linear elastic bulk response. A non-proportional stress redistribution along a craze during a loading-
unloading cycle similar to Fig. 7(a) is also reported in Pulos and Knauss (1998). In addition, the stress profile at unloading computed
in Bevan et al. (1986) shows a compressive stress at the crack tip and a slight tensile stress at the craze tip, which corresponds to
the possible effect of fibril jamming at the unloaded crack tip and agrees well with our result (orange line) in Fig. 7(a). A further
quantity which has been studied extensively is the craze profile, from which characteristic ratios of craze length vs. craze opening
displacement 𝑙𝑐∕(2𝜉𝑚𝑎𝑥) can be derived. A representative range for glassy polymers is 𝑙𝑐∕(2𝜉𝑚𝑎𝑥) = 10 − 20, cf. Döll and Könczöl
(1990), while the results here yield 𝑙𝑐∕(2𝜉𝑚𝑎𝑥) ≈ 11.3, which is well within the experimental range. We remark, however, that this
ratio is influenced by the choice of craze parameters, for instance, 𝜆∗𝑐 = 3 yields 𝑙𝑐∕(2𝜉𝑚𝑎𝑥) ≈ 14. Finally, increasing the loading
amplitude results in an increase in craze length 𝑙𝑐 and craze opening displacement at the crack tip 𝜉(𝑥 = 𝑎) due to the modelled
viscosities, which also aligns with experimentally observed trends (Könczöl et al., 1990).

4. Interaction between crazing and shear yielding in ductile glassy polymers

4.1. Modelling aspects

In the following, we study the interaction of crazing and shear yielding under cyclic mode I crack growth as it may occur
in more ductile glassy polymers. This extends the work by Van der Giessen and co-workers who considered monotonic loading
conditions (Estevez et al., 2000; Estevez and van der Giessen, 2005). The objective far field stress outlined in Section 3.1 is obtained
by the maximum deformation 𝜀𝑦,𝑚𝑎𝑥 = 3.3⋅10−3, resulting in an average far field stress of 𝜎𝑦 ≈ 10MPa in the simulations. Additionally,
following the cyclic loading conditions outlined by Takemori (1990), the load ratio is set to 𝑅𝑢 = 0.1. This load ratio enables to
exploit mode I symmetry, as it mitigates the effect of crack closure due to compression at the crack tip resulting from the crack tip
plastic zone (cf. Rice, 1967). The viscoplastic behaviour of the bulk material is described by a modified version (Hempel, 2016) of the
standard glassy polymer model by Boyce et al. (1988) (see Appendix B for details). The bulk parameters, which are representative
for PC, are outlined in Table B.2. The analysed craze materials in this section are given in Table 1 and the drawing and fibril
creep viscosities are taken as 𝜏𝑑∕𝑇0 = 𝜏𝑐∕𝑇0 = 10−4. This choice, in conjunction with the nonlinear Eyring-type viscosity of the bulk
model (cf. Appendix B), guarantees that in the following numerical studies, focusing only on a generic glassy polymer, all inelastic
mechanisms (fibril drawing and creep as well as bulk shear yielding) are active.

4.2. Numerical results

At first, craze material 2 (cf. Table 1) is investigated. The field output for the accumulated plastic strain 𝛾𝑝, i.e. the plastic zone, is
displayed in Fig. 10 for three instants in the first cycle: just prior to craze initiation (Fig. 10(a)), after craze initiation (Fig. 10(b)) and
at load maximum (Fig. 10(c)). All instants fall within the first (monotonic) loading stage, allowing for comparisons with previous
work (Estevez et al., 2000). The grey area along the ligament shows the location of the un-crazed elements, while the black area
indicates craze elements after initiation, i.e. 𝜉0 > 0, and therefore the craze length 𝑙𝑐 . The following is notable: Craze initiation,
occurring at 𝜀𝑦 ≈ 0.4𝜀𝑦,𝑚𝑎𝑥, is preceded by shear yielding (cf. Fig. 10(a) and (b)). Although the overall plastic zone is still small
in size and magnitude (cf. Fig. 10(b) and (c)), craze initiation takes place at an approximately 20% higher load compared to the
elastic bulk response (cf. Section 3.2). Additionally, the craze initiates ahead of the notch root at the tip of the plastic zone where
the local stress 𝜎𝑦 attains a maximum (cf. Fig. 10(b)). Upon initiation, the craze grows in both directions, towards the notch tip and
along the ligament (cf. Fig. 10(c)), while the plastic zone develops the characteristic plane strain pattern observed in experiments,
e.g. Ishikawa et al. (1977), and previous simulations, e.g. Estevez et al. (2000), Estevez and van der Giessen (2005). Craze initiation
ahead of a plane strain notch is consistent with experimental results in PC (Ishikawa et al., 1977; Ishikawa and Narisawa, 1983),
where the craze initiated at the intersecting shear bands. Furthermore, it aligns with simulation results reported in Estevez et al.
(2000), Estevez and van der Giessen (2005), where the location of craze initiation shifted from the notch tip into the bulk material
with increasing craze initiation stress.

Fig. 10. Accumulated plastic strain 𝛾𝑝 in first cycle during loading (a) at instant prior to craze initiation, (b) at instant after craze initiation and (c) at load
maximum. Black zone along ligament indicates craze. Data for craze material 2 in Table 1.
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The response of craze material 2 in the course of continuous cyclic loading is analysed using snapshots of the plastic zone and
craze evolution. For this, Fig. 11 displays contour plots of 𝛾𝑝 at three instants: after crack initiation in the 4th cycle (Fig. 11(a)) and
at peak load in the 6th (Fig. 11(b)) and the 8th cycle (Fig. 11(c)). To enhance visualisation, the colour bar is capped at 𝛾𝑝 = 1.5, with
the maximum value also indicated. After craze initiation, fibril damage accumulates over three cycles through fibril drawing, leading
to craze breakdown at the outermost intersecting shear band in the 4th cycle (cf. Fig. 11(a)). To account for the Bauschinger effect
in glassy polymers, the shear yielding model (cf. Appendix B) incorporates kinematic hardening, resulting in a continuous increase
in the 𝛾𝑝 magnitude with each loading cycle. Despite the quantitative increase, the plastic zone remains qualitatively stationary
after the 1st cycle (cf. Figs. 10(c) and 11(a)). With further cyclic loading, the crack propagates in both directions and connects with
the notch root (cf. Fig. 11(c)). Right at the load maximum in the 6th cycle, thin shear bands form at the right-hand side crack
tip (cf. Fig. 11(b)). A weaker shear band to its left forms during unloading in the 5th cycle. Both shear bands arch forward in the
direction of the ligament. Each subsequent load cycle is accompanied by the formation of two additional shear bands originating
from the propagating crack tip (cf. Fig. 11(c)). The first band forms at the load maximum and a second, less pronounced band during
unloading, leading to the fracture pattern observed in Fig. 11(c).

Fig. 11. Accumulated plastic strain 𝛾𝑝 (a) at crack initiation in cycle 4 and at load maximum in (b) cycle 6 and (c) cycle 8. Black zone along ligament indicates
craze. Data for craze material 2 in Table 1.

The cyclic response is further investigated by examining the evolution of the craze length 𝑙𝑐 and crack length 𝑎 over eight
consecutive loading cycles shown in Fig. 12(a) and with a detail view of the 7th cycle shown in Fig. 12(b). Fig. 12(a) is supplemented
with the normalised loading programme (green line) and three vertical grey dotted lines indicating the start of craze growth during
loading, the load peak and the end of craze growth during unloading in the 2nd cycle. Similar to the case of purely elastic bulk
material (cf. Figs. 8(b) and 9(b) in Section 3.2), the craze length grows continuously until crack initiation. The vertical dotted lines
indicate that growth of 𝑙𝑐 is confined to a range around load maximum prior to crack initiation. However, since the lines are not
equidistantly spaced, 𝑙𝑐 increases asymmetrically with respect to 𝜀𝑦,𝑚𝑎𝑥. The craze length rapidly drops at crack initiation, primarily
due to the computation methodology of 𝑙𝑐 outlined in Section 3.1. The further decline of 𝑙𝑐 in the 5th cycle is indeed associated with
a shrinking craze zone of the right-hand side craze in Fig. 11(a). After crack initiation, the crack advances continuously with each
cycle. The initial crack growth during the remainder of the 4th cycle is small, as initiation occurs during unloading. Subsequently,
the crack propagates in both directions (cf. Fig. 11(b)) until it reaches the notch tip in the 7th cycle. The transition from two
propagating crack tips to one combined with an initially higher crack velocity in the direction of the notch results in a large crack
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Fig. 12. Craze length (black) and crack length (magenta) evolution for (a) 8 loading cycles with normalised load (green) and (b) detailed view of 7th cycle.
Data for craze material 2 in Table 1.

growth increment 𝛥𝑎 in the 5th cycle, which thereafter declines. Throughout one cycle, 𝑙𝑐 initially decreases while crack propagation
commences (cf. Fig. 12(b)). That is, the leading edge of the craze remains stationary while the trailing edge at the crack tip advances.
Coinciding with the formation of the first shear band at load maximum (cf. Fig. 11(c)), the leading edge of the craze accelerates,
while the crack speed slightly declines (cf. Fig. 12(b)). The formation of the second shear band in Fig. 11(c) occurs right at the 𝑙𝑐
peak during unloading.

Fig. 13. Accumulated plastic strain 𝛾𝑝 (a) at crack initiation in cycle 2 and at load maximum in (b) cycle 3 and (b) cycle 6. Black zone along ligament indicates
craze. Data for craze material 1 in Table 1.
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To elucidate the role of the crack tip plastic zone on the crack and craze advancement, craze material 1 (cf. Table 1) with
𝜇𝑏∕𝜇𝑓 = 1 is investigated in the following. With the bulk parameters remaining the same, the change in material corresponds to
a higher fibril stiffness. Likewise to above, snapshots of the plastic zone and craze evolution at three instance – featuring crack
initiation in the 2nd cycle and load maxima in the 3rd and 6th cycle – are shown in Fig. 13. At crack initiation, the plastic zone
resembles that of the previous material (cf. Figs. 11(a) and 13(a)). Moreover, crack initiation essentially occurs at the same location.
However, the higher fibril stiffness results in higher craze stress (cf. Fig. 4), leading to accelerated fibril drawing and, consequently,
the earlier crack initiation in the 2nd cycle. Similarly, this leads to faster crack propagation and elevated plastic activity, resulting
in a much more pronounced plastic zone depicted in Fig. 13(c).

For material 1, the quantitative evolution of the fracture process over six consecutive loading cycles is shown in Fig. 14, displaying
the craze length 𝑙𝑐 (black line) and crack length 𝑎 (magenta line) with a detail view of the 5th cycle. Additionally, Fig. 14(b) includes
three vertical grey dotted lines indicating the load maximum and two equidistant instants, where the left line marks the instant before
the formation of a plastic zone at the current crack tip. The following traits are qualitatively similar to those of material 2: First,
craze initiation is succeeded by a monotonic increase in 𝑙𝑐 until crack initiation. Second, the crack propagates continuously in each
cycle, with the largest crack increment occurring in the cycle immediately after initiation. Finally, the trailing and leading edges of
the craze advance at different velocities throughout a cycle, resulting in the non-monotonic variation of 𝑙𝑐 .

Fig. 14. Craze length (black) and crack length (magenta) evolution for (a) 6 loading cycles with normalised load (green) and (b) detailed view of 5th cycle.
Data for craze material 1 in Table 1.

The role of the crack tip plastic zone can be deduced from Fig. 14(b) in combination with Fig. 15, which shows snapshots
of the plastic zone for the three instants marked by the vertical lines in Fig. 14(b). Crack growth starts at 𝜀𝑦 = 0.64𝜀𝑦,𝑚𝑎𝑥 and is
primarily confined to the loading stage (i.e. 𝑡∕𝑇 < 4.5). The crack propagates initially into an elastic medium (cf. Fig. 15(a)) and
without energy dissipation of the bulk, the crack growth is comparatively fast. However, it significantly slows down once a crack
tip plastic zone (CTPZ) develops in form of shear bands during loading at 𝜀𝑦 = 0.84𝜀𝑦,𝑚𝑎𝑥, coinciding with the minimum craze length
in Fig. 14(b). The plastic zone continues to develop (cf. Fig. 15(b)), while crack growth slows down. Simultaneously, 𝑙𝑐 rapidly
increases from 83ℎ0 to 116ℎ0, corresponding to a rise of approximately 40% in craze length. Just preceding crack arrest, the crack
tip plastic zone becomes stationary and maintains the shape in Fig. 15(c). The crack arrests during unloading at a load level of
𝜀𝑦 = 0.76𝜀𝑦,𝑚𝑎𝑥, which is nearly 20% higher than the load that initiated crack growth in that cycle. The pronounced plastic zone
prior to 𝜀𝑦,𝑚𝑎𝑥 and the delayed crack growth behaviour is in contrast to material 2 (cf. Figs. 11 and 12(b)). Hence, we conclude that
the crack tip plastic zone impedes significantly the crack advance.

To investigate the driving mechanism behind the observed delayed crack propagation, the craze contour is shown in Fig. 16(a)
for material 2 and in Fig. 16(b) for material 1 at equidistant time intervals of ±0.1𝛥𝑡∕𝑇 around peak loading at the indicated

Fig. 15. Detail of crack tip plastic zone in 5th cycle (a) instant just prior to crack tip plastic zone formation at 𝑡∕𝑇 = 4.4, (b) at peak load 𝑡∕𝑇 = 4.5 and (c)
during unloading at 𝑡∕𝑇 = 4.6. Vertical lines in Fig. 14(b) indicate instants. Black zone along ligament indicates craze. Data for craze material 1 in Table 1.
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load cycle. Note that for material 1 (Fig. 16(b)), these time instants correspond to the snapshots in Fig. 15 and the vertical lines
n Fig. 14(b). The following trends apply to both materials but are much more pronounced for material 1 (Fig. 16(b)): Prior to

crack tip plasticity (black lines), the craze width monotonically declines from the crack tip. Once the crack tip plastic zone forms,
the craze contour exhibits a locally confined plateau at the crack tip (magenta and green lines). This plateau corresponds to a
lasticity-induced local unloading of the craze fibrils, which impedes crack propagation. Further fibril growth is necessary before

additional crack advancement can occur, which is enabled by the increase in craze length 𝑙𝑐 seen in Fig. 14(b). The plateau is most
pronounced for the largest crack tip plastic zone (green line in Fig. 16(b)), where crack propagation is most impeded. Concluding,
this analysis suggests that the delayed crack propagation results from the unloading of the crack tip due to the crack tip plastic
one. Subsequently, 𝑙𝑐 must first grow (cf. Fig. 14(b)) to reach a critical craze width, which then permits further crack advance.

Fig. 16. Craze contour at equidistant time intervals around peak loading (±0.1𝛥𝑡∕𝑇 ) of indicated cycle for (a) craze material 2 and (b) craze material 1 for
which the vertical lines in Fig. 14(b) indicate instants.

Reducing the limit stretch 𝜆𝐿 in the craze model so it aligns with the MD results (cf. material 3 in Table 1), yields similar results
to material 2. For conciseness, results are therefore only presented and briefly discussed in Appendix C.

4.3. Discussion

The name-giving shape of the epsilon crack tip plastic zone where shear bands and a craze emanate from the crack tip was
reported by Mills and Walker (1980) and extensively studied by Takemori, e.g. Takemori and Kambour (1981), Takemori (1990),
in the context of discontinuous crack growth under cyclic (fatigue) loading. The formation of shear bands increases the load bearing
capacity, which Takemori (1990) attributed to a shielding of the craze by reducing the hydrostatic stress. The simulation results (cf.
Figs. 11 and 13) exhibit qualitative similarity to those presented in Fig. 2 and Fig. 15 of Takemori (1990). In both cases, shear bands
initiate at the crack tip and arch towards the craze. Moreover, the craze length varies in the course of crack propagation which is a
feature also observed in discontinuous crack growth. However, unlike the experimental observations, our simulations show normal
crack growth, i.e. the crack propagates in each cycle and additionally the craze length varies throughout one cycle. Nonetheless, a
oteworthy similarity is observed in the delayed crack propagation once a pronounced plastic zone forms. The mechanisms driving
his crack deceleration and potential arrest are attributed to local crack tip plasticity-induced unloading. This provides a physical
xplanation for the delaying crack propagation, which may be extended to discontinuous crack growth.

For materials with less crack tip plasticity, such as material 2, the simulation results align well with the experimental picture
obtained from measuring fatigue striations as discussed in the review (Döll and Könczöl, 1990). In these cases, the crack advances
predominantly near the load maximum. Moreover, the crack growth precedes craze growth, so that the crack initially propagates
into the stationary craze (cf. Fig. 12(b)). Once crack and craze growth arrests, the craze length returns approximately to its initial
length at the beginning of the cycle (cf. Fig. 12(a)). Yet, the simulations provide additional insights, showing that the craze length
rapidly increases and ceases to grow before the crack arrests.

5. Concluding remarks

Craze and crack propagation in glassy polymers under cyclic mode I loading were investigated numerically by employing a
ecently developed continuum-micromechanical model for crazing. A particular challenge was the parameter calibration, as craze
nd bulk parameters need to be chosen consistently to yield a generic, but representative glassy polymer response. To address this,
he bulk model parameters were based on a glassy polymer calibration from the literature. Subsequently, the craze parameters
ere normalised with the bulk parameters accordingly. Parameter scopes of the craze model, which cannot be obtained from the
xperimental literature, were identified using molecular dynamics simulations of the cyclic craze response.

Two types of craze and crack growth simulations were conducted, namely in brittle and in ductile glassy polymers. The
raze model reproduces important craze characteristics from the experimental literature for brittle glassy polymers. This includes
easurements such as the ratio of craze length to craze width, the craze contour and experimental trends, for instance, the

increased crack opening displacement and craze width with higher load amplitudes due to the modelled viscosities. Moreover,
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similar to experimental findings on normal fatigue crack growth, both, crack and craze, grew near load maximum and arrested
during unloading. The simulation results also aligned with previous experimental and theoretical results, indicating a double stress
peak at the crack and craze tips and compression at the crack tip during unloading. Additionally, building upon work by Van der
Giessen and co-workers (Estevez et al., 2000), the competition of crazing and shear yielding under cyclic loading for ductile glassy
polymers was analysed. The presence of a plastic zone was found to increase the load for craze initiation and, in accordance with
experiments (Ishikawa et al., 1977) and previous simulations (Estevez et al., 2000), craze and crack initiation occurred ahead of
the notch root. The plastic zone exhibited similarity with the epsilon crack tip plastic zone observed in cyclic (fatigue) loading. The

odel replicated the initiation of shear bands at the current crack tip, which grew and arched towards the craze. A salient finding of
this study was the delayed crack propagation due to crack tip plasticity. This delay was attributed to plasticity-induced unloading of
the craze adjacent to the crack tip, which required additional craze growth prior to further crack advance. The size of the unloaded
area, influencing the delay, correlated to the amount of crack tip plasticity.

The study faces some limitations: First, the results were obtained using a generic glassy polymer and hence, limiting the results
to qualitative assessment. Second, the simulations do not yet capture the so-called discontinuous or retarded crack growth, where the
crack advances by jumps after remaining stationary for hundreds of loading cycles. It is hypothesised that thermal fatigue of the
craze fibrils in close vicinity to the crack tip might influence this behaviour (cf., e.g., Döll and Könczöl, 1990). We, on the other
hand, considered only isothermal conditions. However, insights from experiments and molecular dynamics suggest a hysteretic craze
response. The associated dissipation could be a source of heating and hence, adiabatic or coupled thermo-mechanical simulations
could offer valuable insight. Yet, this approach presents significant challenges as it demands accurately determining the mechanical
response of crazes at elevated temperatures.

Concluding, an interesting direction for future work appears to be experimental investigations of the cyclic craze response. An
mphasis on the cyclic uniaxial craze behaviour across various strain rates and temperatures will be of great value. This data can

contribute to (in-)validate the molecular dynamic results, which would help with additional physically motivated model refinements.
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Appendix A. Parameter calibration via molecular dynamics simulations of cyclic crazing

The molecular dynamics (MD) based calibration builds upon recent work (Laschuetza et al., 2024) where a generic bead–spring
model was used to investigate the cyclic craze response in glassy polymers subjected to uniaxial deformation. The focus here is
solely on utilising the results to estimate the material parameters. Since the MD model is standard and has been extensively used
in previous craze studies (e.g. Rottler and Robbins, 2003; Ge et al., 2017), the reader is referred to Laschuetza et al. (2024) for
details on model and simulation. In the following, the overall stretch and the axial stress of the MD system is denoted by 𝜆 and
𝜎, respectively. They correspond to 𝜆̄1 and 𝜎̄1 of the craze model in Section 2. The loading programme, the stress response and a
snapshot of the craze at peak deformation is shown in Fig. A.17. The initially isotropic glass is uniaxially deformed to a maximum
tretch 𝜆𝑚𝑎𝑥 = 10 (grey dotted line in Fig. A.17(a) and in favour of visibility only partially shown in (b)), which leads to a full

conversion of bulk material to fibrillated craze matter (cf. snapshot in Fig. A.17). Subsequently, the craze is subjected to a cyclic
loading programme with varying unloading magnitudes 𝜆𝑚𝑖𝑛 = [1, 2, 3, 5, 8], followed by reloading to 𝜆𝑚𝑎𝑥. The stress response of
the five independent simulations is shown in Fig. A.17(b) exhibiting a hysteresis and a reloading behaviour which depends on 𝜆𝑚𝑖𝑛.
Furthermore, it is noteworthy that the craze exhibits a pronounced compressive stress (cf. black dashed line Fig. A.17(b)) prior to
eaching the macroscopic undeformed state 𝜆 = 1. This stress arises from the intermolecular resistance (cf. Laschuetza et al., 2024)

and is macroscopically interpreted as fibril jamming.2
Additional useful information from the MD simulations is the interaction between bulk and craze material subjected to uniaxial

yclic loading. Those bulk-craze systems are created by reducing 𝜆𝑚𝑎𝑥. Scaling the deformation in terms of the engineering strain
of each system with its value at 𝜆𝑚𝑎𝑥 defines the scaled engineering strain 𝜀𝐸 = (𝜆 − 1)∕(𝜆𝑚𝑎𝑥 − 1). The thus rescaled stress–strain

2 For a detailed analysis of the driving mechanisms leading to this mechanical response, the reader is referred to Laschuetza et al. (2024).
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Fig. A.17. Snapshot from MD simulation for craze at 𝜆𝑚𝑎𝑥 = 10 (top) and (a) uniaxial deformation controlled cyclic loading programme with (b) stress response
of sole fibrillated craze matter for five unloading magnitudes 𝜆𝑚𝑖𝑛.

response is depicted in Fig. A.18 for sole craze matter (𝜆𝑚𝑎𝑥=10) and two additional bulk-craze systems. To provide a notion of
the bulk-craze composition for 𝜆𝑚𝑎𝑥 = 5 and 𝜆𝑚𝑎𝑥 = 2, snapshots for the two systems at their respective 𝜆𝑚𝑎𝑥 are also displayed in
Fig. A.18. An interesting observation is the quasi-collapse of the stress–strain curves, which implies a scaling of the craze response
with 𝜆𝑚𝑎𝑥. This, on the other hand, is related to the maximum fibril length as discussed in detail in Laschuetza et al. (2024) and
which aligns well with the micromechanical framework of the continuum model.

Fig. A.18. Quasi-collapse of hysteresis for several bulk-craze compositions 𝜆𝑚𝑎𝑥 when scaled to 𝜀𝐸 (left) and snapshots for 𝜆𝑚𝑎𝑥 = [2, 5] (right).

Insights from Figs. A.17 and A.18 are used in the following to identify the parameters of the elastic behaviour of the fibrillated
craze matter (𝜇𝑏∕𝜇𝑓 , 𝜇𝑓 ,𝑁 𝐻∕𝜇𝑓 and 𝜆𝐿), the deformation at which fibril jamming occurs during unloading (parameter 𝛽𝑐 in (13))
and the fraction upon which mature fibrils exist (parameter 𝛼 in Fig. 2).

A.1. Elastic craze fibril parameters: 𝜇𝑏∕𝜇𝑓 , 𝜇𝑓 ,𝑁 𝐻∕𝜇𝑓 and 𝜆𝐿

Although 𝜆∗𝑐 is taken from experiments, 𝜆∗𝑐 from the MD simulation is needed to determine the elastic craze fibril parameters
𝜇𝑏∕𝜇𝑓 , 𝜇𝑓 ,𝑁 𝐻∕𝜇𝑓 and 𝜆𝐿. Recall that 𝜆𝑐 describes the density-ratio in the unloaded configuration (cf. (2)). Hence, the bulk density 𝜌𝑏
is taken as that of the initially undeformed isotropic glass. In contrast, the craze density 𝜌𝑐 is computed at the instant 𝜎 = 0 during
unloading (dashed lines in Fig. A.17(a)), which is assumed to approximately coincide with the unloaded configuration, yielding
a MD based value of 𝜆∗𝑐 ≈ 6.5. This high value is an inherent issue with the MD model, which poses challenges for transferring
information from the MD model to the continuum model. This issue is addressed by normalising the MD based parameters and
investigating a range of parameters associated with the elastic part of the fibril model in the continuum model (cf. Table 1).

With 𝜆∗𝑐 ≈ 6.5, a least square fitting of the elastic craze fibril model is employed for the parameter calibration. Using only the
elastic part of the craze fibril behaviour is based on the following considerations: To separate the bulk and craze response and to
avoid potentially transient behaviour while bulk and craze coexist, e.g. due to fibril drawing, the cyclic MD results for sole fibrillated
craze matter shown in Fig. A.17 are used as fitting data. This corresponds to the viscoelastic fibril deformation behaviour of the
continuum model. Furthermore, the hysteresis in Fig. A.17(b) exhibits negligible rate dependencies as discussed in Laschuetza et al.
17 
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(2024). Combined with the inherently high deformation rates in MD simulations, we concluded that the dashpot in the craze fibril
odel is most appropriately taken as stiff during calibration with the MD data. This reduces the viscoelastic fibril response to the

purely elastic fibril response of two springs in parallel.
For simplicity, the continuum model is fitted to the results for 𝜆𝑚𝑖𝑛 = 5, which comprises two advantages: Firstly, fibrils are

ssumed to be loose hanging for deformations smaller than 𝜆𝑐 = 6.5, which is sufficiently close to 𝜆𝑚𝑖𝑛 = 5. Secondly, 𝜆𝑚𝑖𝑛 = 5 avoids
the complicated case of pore space closure for 𝜆 ≤ 2, altering significantly the structural craze response (cf. Laschuetza et al., 2024).
The result of the fit is shown in magenta in Fig. A.19 with one standard deviation error bars. The black lines represent the MD
result already shown in Fig. A.17(b), but with the exception that the case 𝜆𝑚𝑖𝑛 = 1 is dropped to enhance visibility. The dashed line
is the objective data used in the fitting. To obtain the ratio of bulk and fibril stiffness, the bulk stiffness is calculated as the secant
stiffness of the glass prior to cavitation. This leads to 𝜇𝑏∕𝜇𝑓 = 10.7, 𝜇𝑓 ,𝑁 𝐻∕𝜇𝑓 = 0.48 and 𝜆𝐿 = 1.13.

Fig. A.19. Least square fit of elastic part of craze fibril model based on MD result for 𝜆𝑚𝑖𝑛 = 5 (dashed line).

A.2. Fibril jamming: parameter 𝛽𝑐

Fibril jamming is observed in the MD simulations for 𝜆𝑚𝑖𝑛 ≤ 2 in Fig. A.17(b) and more generally for different craze-bulk
compositions below 𝜀𝐸 < 0.2 in Fig. A.18. To make use of (13), 𝜆𝑚𝑎𝑥 needs to be related to 𝜉0, which is in the MD simulations
he maximum attained craze length throughout deformation. Likewise to above, it is assumed that the configuration at 𝜎 = 0 during
nloading closely resembles the unloaded configuration and hence, 𝜉0 and 𝜒0 are calculated at 𝜎 = 0. Fig. A.18 is then rescaled with
̂1 from (12), which defines the scaled Hencky strain 𝜀𝐻 = ln 𝜆∕ ln 𝜆̂1, leading to Fig. A.20. This relates the deformation to the fibril
length 𝜉0 and as additional benefit, it improves the collapse for 𝜀𝐻 < 0.25, which is the region of interest here.

As described in Section 2.1, fibril jamming is considered via the elastic bulk response. Therefore, it is approximated in a simplified
linear manner indicated by the orange lines in Fig. A.20. The lines represent the secants connecting 𝜀𝐻 = 0 and the normalised
stress 𝜎 = −0.5. Latter comprises a subjective component and was selected here due to its relevant stress magnitude with respect,
for instance, to the drawing stress plateau. This results in 𝛽𝑐 ≈ 0.15, which is indicated by the black vertical marker in Fig. A.20.

Fig. A.20. Estimation of fibril jamming parameter 𝛽𝑐 by scaling deformation to 𝜀𝐻 .

A.3. Morphology change: parameter 𝛼

To identify 𝛼 depicted in Fig. 2, the instant upon which mature fibrils exist during craze formation from the isotropic glass, i.e.
here the density reaches 𝜌∗𝑐 = 𝜌𝑏∕𝜆∗𝑐 , is identified. For this, the evolution of the density profile (colour coding) in axial direction

(abscissa) as function of the deformation (ordinate) is shown in Fig. A.21. The initial normalised bulk density (𝜌 ≈ 1) rapidly drops
𝑏
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during cavitation. As assumed in the continuum model, the MD results show that the creation of mature fibrils is a continuous
process requiring further overall deformation upon cavitation. The instant 𝜌 = 𝜌∗𝑐 is indicated by the black horizontal line. This
configuration is then used to calculate 𝛼 via the mass balance: 𝛼 = 1 − 𝜒∕ℎ0, which assumes 𝜒0 ≈ 𝜒 . For a normalised mature craze
density of 𝜌∗𝑐 = 0.18, this yields 𝛼 ≈ 0.07.

Similar to experiments, a general difficulty arising from MD simulations is its statistical nature. This results in a certain
subjectivity when selecting thresholds such as the craze density 𝜌∗𝑐 . However, in this case, the influence of 𝜌∗𝑐 is relatively insensitive
as, e.g., 𝜌∗𝑐 = 0.14 leads to 𝛼 = 0.08.

Fig. A.21. Normalised density distribution (colour coding) along axial simulation box length (abscissa) evolving with deformation (ordinate). MD snapshot at
𝜆 = 1.3 indicates local density distribution and serves to facilitate plot interpretation. Black dashed horizontal line marks instant upon which mature fibrils have
formed.

Appendix B. Constitutive model for shear yielding

Building upon the early work by Boyce et al. (1988), there are well established constitutive models describing finite strain shear
yielding in glassy polymers, e.g. Wu and van der Giessen (1993), Arruda et al. (1995), Anand and Gurtin (2003), Holopainen (2013),
Hempel (2016). We use the version by Hempel (2016), for which the rheological model and its components are shown in Fig. B.22
and which is briefly summarised in the following.

The rheological model leads to the standard multiplicative decomposition of the deformation gradient (cf. Anand and Gurtin,
2003)

𝐹𝐹𝐹 = 𝐹𝐹𝐹 𝑒𝐹𝐹𝐹 𝑝 (B.1)

into an elastic 𝐹𝐹𝐹 𝑒 and plastic contribution 𝐹𝐹𝐹 𝑝 , yielding the elastic right 𝐶̂𝐶𝐶𝑒 = 𝐹𝐹𝐹 𝑒T𝐹𝐹𝐹 𝑒 and inelastic left Cauchy–Green tensor
𝑏̂𝑝 = 𝐹𝐹𝐹 𝑝𝐹𝐹𝐹 𝑝T in the intermediate (i.e. relaxed) configuration 𝛺̂. The velocity gradient 𝑙𝑙𝑙 is then additively split

𝑙𝑙𝑙 = 𝐹̇𝐹𝐹 𝐹𝐹𝐹−1 = 𝑙𝑙𝑙𝑒 +𝐹𝐹𝐹 𝑒 𝑙𝑙𝑙𝑝𝐹𝐹𝐹 𝑒−1 , (B.2)

where 𝑙𝑙𝑙𝑒 = 𝐹̇𝐹𝐹 𝑒𝐹̇𝐹𝐹 𝑒−1 is the elastic velocity gradient in the current configuration 𝛺 and 𝑙𝑙𝑙𝑝 is the plastic component in 𝛺̂, which can
be further decomposed in the symmetric rate of deformation tensor 𝑑̂𝑑𝑑𝑝 and the skew-symmetric inelastic spin tensor 𝑤̂𝑤𝑤𝑝:

𝑙𝑙𝑙𝑝 = sy m 𝑙𝑙𝑙𝑝 + sk w 𝑙𝑙𝑙𝑝 = 𝑑̂𝑑𝑑𝑝 + 𝑤̂𝑤𝑤𝑝 . (B.3)

Fig. B.22. Rheological model for bulk material.
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The constitutive description of the model is placed in the intermediate configuration 𝛺̂, for which the isotropic neo-Hooke
yperelasticity is given by the Mandel stress

𝛴̂𝛴𝛴 = 𝜇𝑏(𝐶̂𝐶𝐶
𝑒
− 111) + 𝜆𝑏 (𝐽 𝑒 − 1) 𝐽 𝑒111 , (B.4)

where 𝐽 𝑒 = det𝐹𝐹𝐹 𝑒 and which is symmetric due to the assumption that the elastic free energy contribution 𝜓𝑒 and inelastic free
nergy contribution 𝜓𝑝 are isotropic functions of 𝐶̂𝐶𝐶𝑒 and 𝑏̂𝑏𝑏𝑝, respectively. The model features the two Lamé parameters 𝜆𝑏 and the
hear modulus 𝜇𝑏. Note, as the difference is negligible for small elastic deformations, we omit correcting the elastic bulk constants
ue to the different elasticity models in (17) and (B.4) for the craze and bulk model, respectively.

The resistance against plastic molecular network deformation is described by the eight-chain model (Arruda and Boyce, 1993)

𝜏𝜏𝜏𝑏 =
𝐶𝑅𝜆𝐿
3𝜆𝐶

−1(𝜆𝐶∕𝜆𝐿)𝑏̂𝑏𝑏
𝑝′ , (B.5)

where 𝑏̂𝑏𝑏𝑝′ is the deviatoric part of 𝑏̂𝑏𝑏𝑝 and 𝜆𝐶 is the mean chain stretch reading

𝜆𝐶 =
(

t r 𝑏̂𝑏𝑏𝑝
3

)1∕2

. (B.6)

Analogous to (22), the inverse Langevin function −1(𝑥) is replaced by the Padé approximation. Eq. (B.5) involves the rubber
modulus 𝐶𝑅 and the limit stretch 𝜆𝐿 as material parameters.

In accordance with experimental observations on shear yielding in glassy polymers, the inelastic flow is modelled incompressible,
which is given by

det𝐹𝐹𝐹 𝑝 = 1 . (B.7)

Furthermore, the inelastic flow in the intermediate configuration is assumed to be irrotational, i.e. 𝑙𝑙𝑙𝑝 ≡ 𝑑̂𝑑𝑑𝑝, which yields the update
or the inelastic deformation as

𝐹̇𝐹𝐹 𝑝 = 𝑑̂𝑑𝑑𝑝𝐹𝐹𝐹 𝑝 . (B.8)

To comply with the inelastic incompressibility condition in Eq. (B.7), 𝑑̂𝑑𝑑𝑝 needs to be deviatoric and hence the flow rule is
constitutively prescribed as

𝑑̂𝑑𝑑𝑝 = 𝛾̇𝑝 𝛴̂𝛴𝛴∗′

‖𝛴̂𝛴𝛴∗′
‖

, (B.9)

which is a function of the deviatoric driving stress

𝛴̂𝛴𝛴∗′ = 𝛴̂𝛴𝛴
′
− 𝜏𝜏𝜏𝑏

′ . (B.10)

The inelastic shear strain rate in (B.9) is modelled by an Eyring-type flow

𝛾̇𝑝 = 𝛾̇𝑝0
(

exp
[𝐴
𝑇

(

‖𝛴̂𝛴𝛴∗′
‖ − 𝑠

)]

− exp
[

−𝐴
𝑇
𝑠
])

, (B.11)

where 𝛾̇𝑝0 and 𝐴 are material parameters and 𝑇 is the absolute temperature. Note, (B.11) is slightly different to the original double
kink model by Argon (1973) by taking the exponent 5∕6 as 1 and by incorporating a second term which ensures 𝛾̇𝑝 = 0 for ‖𝛴̂𝛴𝛴∗′

‖ = 0.
As suggested by Boyce et al. (1988), the pressure dependence of inelastic flow and the softening upon yielding, from an initial value
𝑠0 to a saturation value 𝑠𝑠, observed in polymers is incorporated via the yield strength

𝑠(𝛾𝑝) = 𝑠𝑠 +
(

𝑠0 − 𝑠𝑠
)

exp
[

−
ℎ𝛾𝑝

𝑠𝑠

]

−
𝛼𝑝
3

t r 𝛴̂𝛴𝛴 . (B.12)

The model is implemented as a user material subroutine in the finite element programme Abaqus/Explicit (ABAQUS, 2023), which
requires due to the corotational framework the corotated Cauchy stress 𝜎𝜎𝜎𝑟 as update. This is readily obtained by a push-forward
operation of Eq. (B.4), defined as

𝜎𝜎𝜎𝑟 =
1
𝐽
𝑅𝑅𝑅T𝐹𝐹𝐹 𝑒−T𝛴̂𝛴𝛴 𝐹𝐹𝐹 𝑒 𝑇𝑅𝑅𝑅 , (B.13)

where 𝑅𝑅𝑅 is the rotation tensor obtained from the polar decomposition of 𝐹𝐹𝐹 .
The model features 10 independent material parameters. We take the material parameters for polycarbonate (PC) at room

temperature as characterised in Hund (2022) and summarised in Table B.2.

Table B.2
Material parameters of the bulk model, being representative of PC at room temperature.
𝜇𝑏∕𝑠0 𝜈𝑏 𝑠𝑠∕𝑠0 𝐴𝑠0∕𝑇 ℎ∕𝑠0 𝛼𝑝 𝜆𝐿 𝐶𝑅∕𝑠0 𝑠0 [MPa] 𝛾̇𝑝0 [s−1]

11.3 0.38 0.6 152 0.06 1.64 1.64 0.22 82 1014
20 



T. Laschuetza and T. Seelig

d

i

Journal of the Mechanics and Physics of Solids 194 (2025) 105901 
Appendix C. Interaction between crazing and shear yielding for material 3

In craze material 3 (cf. Table 1), the limit stretch 𝜆𝐿 is reduced to align with the MD results, which constraints the overall
axial extension of the craze fibril, leading to an essentially quasi-stiff fibril deformation behaviour. Compared to material 2, this
changes under uniaxial deformation primarily the curvature of the unloading–reloading curve during cyclic loading (cf. Fig. 4(c)).
The evolution of the craze length (black line) and the crack length (magenta line) with the normalised load programme (green
ashed line) for material 3 is shown in Fig. C.23. Similar to before, the craze length grows over multiple cycles prior to crack

initiation. Thereafter, the crack propagates in each cycle. Qualitatively, the results are very similar to Fig. 12(a). The key difference
s the earlier onset of crack initiation in the 3rd cycle and the faster crack growth due to the stiffer craze fibril.

Fig. C.23. Craze length (black) and crack length (magenta) evolution with normalised load (green) for craze material 3 in Table 1.

Data availability

Data will be made available upon reasonable request from the corresponding author(s).
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