KIT | KIT-Bibliothek | Impressum | Datenschutz

Achieving stable lithium metal anode via constructing lithiophilicity gradient and regulating Li$_3$N-rich SEI

Wang, Xi; Chen, Zhen ; Xue, Xilai 1; Wang, Jian 1; Wang, Yuxuan; Bresser, Dominic 1; Liu, Xin ; Chen, Minghua ; Passerini, Stefano 2
1 Karlsruher Institut für Technologie (KIT)
2 Helmholtz-Institut Ulm (HIU), Karlsruher Institut für Technologie (KIT)

Abstract:

Three-dimensional (3D) current collectors are studied for the application of Li metal anodes in high-energy battery systems. However, they still suffer from the preferential accumulation of Li on the outermost surface, resulting from an inadequate regulation of the Li$^+$ transport. Herein, we propose a deposition regulation strategy involving the creation of a 3D lithiophilicity gradient structure of MoN on Cu$_3$N nanowire-grown Cu foam (MCNCF) to induce a “bottom-up” Li deposition. During the initial Li deposition, the reaction between Li and Cu$_3$N leads to the formation of Li$_3$N while the lithiophilic MoN located at the bottom promotes the downward Li$^+$ migration, resulting in the generation of a Li$_3$N gradient. Such a “bottom-up” Li$_3$N distribution results in the formation of a stable and Li$_3$N-rich solid electrolyte interphase layer, facilitating the Li⁺ transport and promoting a uniform Li nucleation. Computational simulations and experimental results corroborate the preferential deposition of Li on the bottom of the substrate, leading to a uniform Li nucleation and growth throughout the electrode. The MCNCF electrode offers a significantly improved reversibility of the Li deposition, achieving a lifespan of more than 1200 h at a current density of 1 mA cm$^{−2}$ in symmetric Li||Li cells. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176842
Veröffentlicht am 09.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2025
Sprache Englisch
Identifikator ISSN: 2211-2855, 2211-3282
KITopen-ID: 1000176842
Erschienen in Nano Energy
Verlag Elsevier
Band 133
Seiten 110439
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page