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Abstract
In the context of growing sustainability demands, businesses are increasingly adapting their production practices by integrat-
ing remanufacturing. However, companies often face challenges in profitably implementing remanufacturing due to complexi-
ties arising from uncertainties in processes, product quality, and market conditions. This highlights the need for effective 
decision support in remanufacturing processes. Addressing this challenge, our research introduces an algorithm designed to 
identify cost-efficient process plans that optimize order fulfillment while considering a company’s specific capabilities and 
inventory levels. By modeling the remanufacturing planning process as a Markov process, our algorithm comprehensively 
accounts for both process-related and quality-related uncertainties. This approach enables the evaluation of all Pareto optimal 
process plans in terms of cost efficiency and reliability. We validate our methodology through a real-world application in the 
automation industry, specifically focusing on the remanufacturing of variable speed drives. This case study demonstrates the 
practical relevance of our approach and a potential for significant cost reductions, enhanced process efficiency, and improved 
labor productivity. Overall, businesses gain critical insights into the financial prospects of their remanufacturing efforts, 
identifying opportunities for optimization and expansion into new product quality categories. This enhances their economic 
potential and aligns with consumer preferences for distinct product qualities.
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1 Introduction

The concept of the circular economy has gained prominence 
as a sustainable alternative to the traditional linear economic 
model of "take, make, dispose." The Circular economy con-
cept emphasize the importance of resource efficiency, waste 
minimization, and the continuous use of materials through 
practices such as recycling, remanufacturing, and product 
life extension [1, 2]. Adopting circular economy practices 
can lead to significant environmental benefits, including 
reduced greenhouse gas emissions, lower energy consump-
tion, and minimized waste generation [1]. Economically, cir-
cular economy practices can enhance cost efficiency, create 
new business opportunities, and improve resilience against 
resource scarcity [3]. However, implementing circular 

economy practices in manufacturing presents challenges, 
such as optimizing remanufacturing processes to balance 
environmental and financial objectives [1, 4]. With the 
sharp rise in global resource consumption, remanufacturing 
is becoming increasingly important [5, 6]. Remanufactur-
ing involves restoring used products to like-new conditions, 
offering significant environmental and economic benefits 
by decoupling production from resource use and achieving 
substantial cost savings [7]. Unlike repair, which focuses 
on fixing specific faults to make a product functional again, 
remanufacturing includes complete disassembly, inspection, 
refurbishment, and replacement of worn components, result-
ing in a product that meets or exceeds the original perfor-
mance specifications [8].

Despite these advantages, businesses encounter signifi-
cant challenges in adopting remanufacturing due to the pres-
sures of competitive markets and the uncertainties inherent 
in remanufacturing processes. These challenges are further 
compounded by the need to integrate circular economy into 
existing manufacturing systems, which requires innovative 
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process planning and decision-making frameworks to opti-
mize both environmental and financial outcomes [9].

Therefore, the aim of this work is to develop a systematic 
approach that addresses these challenges by providing effec-
tive decision support in remanufacturing process planning. 
We introduce an algorithm designed to identify cost-efficient 
process plans that optimize order fulfillment, considering 
the specific capabilities and inventory levels of a company 
while accounting for uncertainties in processes and product 
quality.

Our research introduces several key innovations. First, we 
develop a comprehensive approach to quality data modeling, 
enabling more accurate assessments of returned products. 
Next, we propose an algorithm for automated process plan-
ning that minimizes the need for manual intervention, reduc-
ing errors and increasing efficiency. Finally, we implement 
an optimization framework that carefully balances quality, 
reliability, and cost factors, ensuring that remanufacturing 
operations are not only sustainable but also profitable given 
a specific demand. This research is validated through a real-
world application in the automation industry, specifically 
focusing on the remanufacturing of speed drives. The valida-
tion demonstrates the practical relevance of our approach, 
showcasing its potential.

The manuscript is organized as follows: Sect. 2 presents 
a detailed review of existing literature on quality data mod-
eling and remanufacturing process planning (RPP), high-
lighting the current gaps in research. Section 3 outlines our 
methodological approach, including the modeling of prod-
uct quality, the formulation of RPP as a Markov problem, 
and the development of optimized process plans. Section 4 
presents an application of our approach in the automation 
industry. Section 5 discusses these results. Finally, Sect. 6 
concludes with a summary of key findings, contributions, 
and potential directions for future research.

2  Fundamentals and literature review

This section reviews the literature on remanufacturing 
process planning (RPP), focusing on three key criteria: 
quality data modeling, remanufacturing uncertainties, and 
optimization. Quality data modeling refers to how studies 
represent and manage the variability and characteristics 
of product quality in remanufacturing. This includes the 
methods used to assess, classify, and utilize quality infor-
mation of returned products (cores) in the planning pro-
cess. Remanufacturing uncertainties involve the inherent 
uncertainties in remanufacturing processes, such as the 
unpredictable condition of returned products, variabil-
ity in processing times, and the probabilistic outcomes 

of remanufacturing tasks. Studies are evaluated based on 
how comprehensively they address these uncertainties in 
their models. Optimization criteria pertain to the extent 
to which studies incorporate optimization aspects-specifi-
cally, cost, quality, and reliability considerations-into their 
remanufacturing process planning models. This involves 
developing methods or algorithms that aim to optimize 
one or more of these factors, such as minimizing costs 
while ensuring product quality and process reliability.

2.1  Methodology of literature review

We used the term “remanufacturing process planning” and 
key criteria as keywords for our literature search, along 
with various combinations and synonyms. Additionally, 
we included the keyword “reinforcement learning,” recog-
nizing it as a key alternative method for solving remanu-
facturing process planning problems. A manual search in 
databases such as Web of Science, Google Scholar, and 
ScienceDirect yielded a preliminary list of 190 papers. 
These papers were selected based on a quick review of 
their titles, abstracts, and keywords to ensure they were 
within the scope of this work. We then applied inclusion 
criteria focusing on studies that addressed quality data 
modeling, remanufacturing uncertainties, and/or optimiza-
tion. Papers not meeting these criteria-such as those focus-
ing on carbon emission calculations or lacking empiri-
cal evidence-were excluded. This process resulted in 25 
papers selected for in-depth review.

In Table 1, we evaluate each selected paper based on the 
three criteria, indicating the degree to which each study 
considers them. The level of consideration is represented 
using symbols ranging from not considered (◯) to fully 
considered (●), with intermediate levels at approximately 
25% (◔), 50% (◑), and 75% (◕). For example, an article 
that only partially addresses cost optimization but does not 
consider quality or reliability would be indicated as par-
tially considering the ’Optimization criteria,’ representing 
approximately 25% consideration.

2.2  Analysis of the literature

Remanufacturing process planning involves designing and 
optimizing the sequence of operations required to restore 
used products to like-new conditions. This task is inherently 
complex due to the varying conditions of returned products 
and the need to balance multiple objectives such as cost, 
quality, and process reliability [26]. The quality of cores in 
remanufacturing, which is crucial for process planning, is 
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also complex, involving both inherent product characteris-
tics and customer perceptions [34]. Therefore, quality data 
models must be flexible enough to account for product usage 
histories and uncertainties.

Studies often classify core quality with fixed values or 
ranges (cf. [16, 18, 25, 35, 36]), but these classifications can 
be ambiguous and fail to capture true quality differences. 
Some researchers address this by basing quality on specific 
fault features (cf. [17, 26]), while others use more neutral 
criteria (cf. [10, 11, 14, 22, 23]). Research on quantitatively 
evaluating the quality of remanufactured products is limited. 
Approaches like the Taguchi quality concept assess qual-
ity loss based on deviations from target values [30]. Other 
methods estimate quality as a fraction of non-conforming 
items, which can neglect significant quality differences [12, 
15, 20]. It is crucial to consider product features that impact 
overall functionality, as emphasized in quality management 
studies [37, 38].

Integrating these nuanced quality assessments into reman-
ufacturing process planning is therefore essential. Takahashi 

et al. [13] propose an adaptive strategy that balances manu-
facturing and remanufacturing rates to minimize inventory 
costs, integrating process planning with inventory manage-
ment to respond to fluctuations in product returns and market 
demand. Similarly, Aydin et al. [18] develop a multi-period 
model addressing quality uncertainties in returned prod-
ucts, facilitating dynamic process planning by considering 
the probabilistic nature of product conditions. Yanıkoğlu 
and Denizel [25] explore the impact of variable core qual-
ity on remanufacturing costs and process times through a 
robust optimization framework, emphasizing the need for 
flexible process plans that accommodate variations in prod-
uct quality. Stavropoulos et al. [27] introduce a two-stage 
decision support system aimed at integrating manufacturing 
processes in microfactories for electric vehicles, optimiz-
ing both feasibility and cost, and addressing economic and 
environmental benefits by evaluating technology integration 
from feasibility and ROI perspectives. Liu et al. [28] incor-
porate uncertain machining effects and quality losses into 
the process planning model, highlighting the importance of 

Table 1  State of the Art

not considered ◯    ◔    ◑    ◕    ● fully considered

 References Quality data mod-
eling

Remanufacturing uncer-
tainties

Optimi-
zation 
criteria

Fernández et al. (2008) [10] ◔ ◑ ◑
Wadhwa et al. (2009) [11] ◔ ◑ ◕
Jin et al. (2013) [12] ◔ ◑ ◕
Takahashi et al. (2014) [13] ◯ ◑ ◑
Dehghanbaghi et al. (2016) [14] ◔ ◑ ◕
Yang et al. (2016) [15] ◔ ◑ ◕
Cui et al. (2017) [16] ◔ ◑ ◕
Wang et al. (2017) [17] ◑ ◑ ◕
Aydin et al. (2018) [18] ◯ ◑ ◑
Ji and AbouRizk (2018a) [19] ◑ ● ◔
Ji and AbouRizk (2018b) [20] ◑ ● ◯
Stavropoulos et al. (2019) [21] ◑ ◑ ◑
Jiang et al. (2019) [22] ◔ ◑ ◑
Meng et al. (2020) [23] ◔ ◑ ◕
Li et al. (2021) [24] ◔ ◑ ◑
Yanıkoğlu and Denizel (2021) [25] ◔ ◑ ◯
Yanxiang Chen et al. (2021) [26] ◑ ◑ ◕
Stavropoulos et al. (2021) [27] ◯ ◑ ◑
Liu et al. (2022) [28] ◑ ● ◑
Allagui et al. (2023) [29] ◯ ◑ ◕
Liu et al. (2023) [30] ◑ ● ◯
Paraschos et al. (2023) [31] ◯ ◑ ◑
Paraschos et al. (2024) [32] ◯ ◑ ●
Wang et al. (2024) [33] ◯ ◔ ◕
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accounting for variability in remanufacturing operations. Ji 
and AbouRizk [19] present a Markov-chain model focusing 
on quality-induced rework, capturing probabilistic transi-
tions between different quality states and enabling process 
plans that account for potential rework requirements. Stavro-
poulos et al. [21] developed a decision support system for the 
assembly/disassembly of multi-material components, facili-
tating efficient material flow management within the circular 
economy framework. Their system integrates considerations 
of material compatibility and disassembly sequences into 
process planning, improving remanufacturing effectiveness. 
Fernández et al. [10] utilize conditional rules to optimize 
recovery strategies based on product value and useful life, 
providing insights into prioritizing different recovery paths. 
Jiang et al. [22] employ case-based reasoning to match new 
cases with similar past scenarios, facilitating adaptive pro-
cess planning leveraging historical data. Wang et al. [17] 
propose a hybrid method integrating genetic algorithms and 
neural networks to optimize process plans based on fault fea-
tures, demonstrating the potential of combining evolutionary 
algorithms with machine learning techniques. Dehghanbaghi 
et al. [14] apply fuzzy inference systems to rank recovery 
options, providing a nuanced method for evaluating multiple 
criteria. Yanxiang Chen et al. [26] develop multi-objective 
optimization models simultaneously considering cost, qual-
ity, and assembly accuracy, underscoring the multifaceted 
nature of remanufacturing process planning.

Recently, reinforcement learning (RL) has emerged as 
a novel alternative to traditional optimization methods in 
remanufacturing process planning. Several studies have 
explored the application of RL to address complex decision-
making problems.

Paraschos et al. [31] present a reinforcement learning 
framework combined with ad-hoc control policies to opti-
mize manufacturing processes in a flexible, multi-stage sys-
tem. The study highlights the importance of adaptive plan-
ning and scheduling in maintaining sustainability amidst 
frequent system failures. Through RL, the proposed frame-
work enhances decision-making for material management 
and system maintenance, integrating lean manufacturing 
practices such as CONWIP and opportunistic maintenance. 
The approach assumes steady operational conditions, limit-
ing adaptability where product conditions fluctuate.

Furthermore, Allagui et al. [29] focus on optimizing dis-
assembly sequence planning (DSP) using a Q-network RL 
algorithm to reduce disassembly costs and time in both par-
tial and full disassembly processes. The approach addresses 
key optimization parameters such as minimizing tool and 
direction changes, optimizing time, and prioritizing critical 
wear parts. A demonstrative example validates the approach, 
showing improvements in DSP generation and execution. 

While RL effectively optimizes DSP, the study does not fully 
address product quality and uncertainties.

Wang et al. [33] focus on integrating remanufacturing 
process planning and scheduling to optimize energy con-
sumption and enhance production efficiency. Their pro-
posed method, Energy-aware Remanufacturing Process 
Planning and Scheduling (ERPPS), incorporates flexibility 
in machine operations and sequence planning. A novel 
RL-based particle swarm optimization (RL-PSO) algo-
rithm is applied, incorporating energy-saving techniques 
such as machine speed-switching rather than turn on/off 
strategies. The study demonstrates the superiority of this 
approach in optimizing both energy consumption and pro-
duction flow. While the paper strongly integrates energy 
awareness and scheduling with process planning, it pri-
marily focuses on operational efficiency, leaving aspects 
like product quality uncertainties underexplored.

Paraschos et al. [32] address production sustainability 
within the framework of Industry 4.0, focusing on reman-
ufacturing systems. They propose an RL-based decision-
making system designed to optimize multi-stage manufac-
turing and remanufacturing processes while maintaining 
lean and green principles. The system optimizes operations 
like predictive maintenance and material reuse, contributing 
to lowering operational costs and reducing environmental 
impact. Experimental analysis validates the method, demon-
strating improvements in system sustainability and material 
reuse efficiency. However, the paper’s approach is limited in 
addressing uncertainties in remanufactured product quality.

2.3  Summary of literature findings

The reviewed studies collectively highlight diverse 
approaches to remanufacturing process planning, ranging 
from adaptive strategies and robust optimization to probabil-
istic models, advanced decision support systems, and emerg-
ing reinforcement learning methods. These contributions 
emphasize the necessity of integrating quality assessment, 
uncertainty management, and multi-criteria optimization to 
develop effective and efficient remanufacturing processes 
within the circular economy.

Despite significant advancements, gaps remain in fully 
integrating quality data modeling, remanufacturing uncer-
tainties, and optimization criteria into a unified framework. 
Many studies address these aspects partially, as shown in 
Table 1, indicating the need for comprehensive approaches 
that simultaneously consider all three criteria to enhance 
remanufacturing process planning.

While reinforcement learning approaches offer novel 
solutions, they often lack transparency and may not be 
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suitable for companies with high manual labor, which is 
dominant in current remanufacturing practices. The com-
plexity and interpretability of RL models can pose chal-
lenges for adoption in environments where human opera-
tors play a significant role, underscoring the importance of 
developing methods that are both effective and practical for 
industry implementation. As a result, there are companies 
that specifically demand solutions that are easy to under-
stand, transparent, and seamlessly integrate with their exist-
ing manual processes, as it is the case in the use case later 
on.

3  Methodical approach for remanufacturing 
planning

To fill the research gap, we start by modeling the RPP prob-
lem as a Markov process. Each state in the model thereby 
represents a specific quality class and each action describes 
a feasible remanufacturing process. As the RPP problem is a 
sequential process, we need to derive an optimal policy that 
specifies the remanufacturing tasks that are to be chosen, 
given that a certain quality state is reached at a certain stage. 
The intention is thereby to maximize the aggregated amount 
of expected rewards, i.e., to minimize the associated costs 
and simultaneously maximize the corresponding transition 
probabilities. The corresponding quality data model that we 
considered in our model is specified in the first subsection of 
this chapter (see Sect. 3.1). Subsequently, a detailed descrip-
tion of the developed process model for RPP and order man-
agement is provided in the Sects. 3.2, 3.3 and 3.4. Given that 
remanufacturing currently relies heavily on human expertise 
and manual processes, our approach aims to support human 
decision-making by providing a comprehensive overview 
of alternative process plans. This comprehensive view is 
essential for human workers to make informed decisions 
during the transition to higher levels of automation. Our 
method serves as an intermediate solution that facilitates 
semi-automated support, bridging the gap between manual 
labor and fully automated systems.

3.1  Quality data modeling

Quality data modeling comprises the specification of suit-
able quality parameters and their admissible value ranges as 
well as the formation of the respective quality classes.

3.1.1  Quality parameter and quality class definition

Each product can be described as a composition of multiple 
quality parameters {QP1, ...,QPN} . In terms of the quality 

parameter selection process, it is essential to capture the 
specific quality characteristics of the product at focus. The 
identified set of quality parameters should therefore include 
all the relevantcharacteristic product features that can be dif-
ferently affected, depending on the respective product usage 
history. This is important to enable the representation of 
varying core quality conditions. From a market perspective, 
additional criteria like the product age or functionality can 
be relevant. Thus, to enable a suitable reflection of distinct 
customer preferences, these parameters should be identified 
and integrated in the quality data model.

For example, a remanufactured hydraulic motor may have 
quality parameters that include:

– QP1 : Seal Condition (e.g., ’New’, ’Worn’, ’Damaged’)
– QP2 : Housing Integrity (e.g., ’Intact’, ’Minor Wear’, 

’Cracked’)
– QP3 : Shaft Wear Level (measured in mm, e.g., 0.01 mm, 

0.05 mm, 0.10 mm)
– QP4 : Bearing Status (e.g., ’Good’, ’Fair’, ’Needs 

Replacement’)
– QP5 : Cleanliness Level (measured in particle concentra-

tion, e.g., 50 ppm, 100 ppm)
– QP6 : Functional Test Result (e.g., ’Pass’, ’Fail’)

Each selected quality parameter thereby has to be defined 
in terms of its admissible parameter value range. Depend-
ing on the specification of the permissible parameter value 
range, parameter values can be categorical (e.g., ’Pass’ or 
’Fail’), ordinal (e.g., ’Good’, ’Fair’, ’Needs Replacement’), 
or numerical (e.g., wear in mm, particle concentration in 
ppm).

A product quality class is a unique combination of spe-
cific quality parameter values. Hence, it can be defined by 
assigning particular values to each of the predefined quality 
parameters QP1 − QPN.

For instance, a specific quality class of the hydraulic 
motor might be:

– Quality Class QC Example:

– QP1 : Seal Condition = ’New’
– QP2 : Housing Integrity = ’Intact’
– QP3 : Shaft Wear Level = ’Low’
– QP4 : Bearing Status = ’Good’
– QP5 : Cleanliness Level = ’Clean’
– QP6 : Functional Test Result = ’Pass’

The set of potential quality classes QC1, ...,QCM can thus 
be determined by creating all possible combinations of 



 Production Engineering

quality parameter values (see Fig. 1). For example, if we 
have 3 options for QP1 , 3 options for QP2 , 3 options for 
QP3 , 3 options for QP4 , 2 options for QP5 , and 2 options 
for QP6 , the total number of potential quality classes would 
be 3 × 3 × 3 × 3 × 2 × 2 = 324 . Theoretically, the number 
of potential combinations increases exponentially with the 
number of quality parameters and quality parameter values.

However, in practice, not all of these combinations are 
feasible or relevant. To manage this problem, we classify 
and handle infeasible combinations using the following 
approaches:

– Logical Constraints: Some combinations are logically 
inconsistent and can be excluded. For example, a product 
cannot simultaneously have a ’new’ and a ’worn’ condi-
tion for the same parameter. By defining logical rules 
that specify incompatible parameter values, we eliminate 
such combinations from consideration.

– Manufacturing Capability Constraints: Certain 
quality classes may not be achievable due to limita-
tions in the manufacturing or remanufacturing pro-
cesses. For instance, a facility may lack the equip-
ment or technology to upgrade a parameter to a certain 
value. By considering the company’s capabilities, we 
exclude quality classes that are unattainable.

– Market Relevance: Some combinations may not be 
relevant or desirable from a market perspective. If 
customers do not demand products with certain com-
binations of quality parameters, those quality classes 
can be disregarded. Market analysis helps identify and 
focus on quality classes with commercial viability.

– Regulatory and Compliance Constraints: Regula-
tions may prohibit certain combinations of parameter 
values. For example, safety standards may require that 
certain components meet minimum quality levels. 
Combinations violating these standards are excluded.

The definition and application of these rules are car-
ried out manually by engineers or trained personnel. The 
experts analyze the product characteristics, manufactur-
ing processes, market demands, and regulatory require-
ments to establish the relevant constraints. It is possible 
to support this task computationally, e.g. checking logical 
rules. This systematic elimination of infeasible combina-
tions addresses the problem of exponential growth in the 
number of potential quality classes, making the approach 
practical for real-world applications.

The introduction of different quality classes as com-
binations of specific parameter values enables the quan-
tification of quality differences between products based 
on the corresponding parameter value differences. It is 
therefore a suitable approach to account for the prevailing 
quality uncertainties induced by varying usage histories 
of cores or machine failures. Moreover, it enables distinc-
tions between varying customer preferences at a suitable 
level of detail.

3.2  Process modeling—fundamental definitions

In this section, the foundations of the developed RPP 
model are outlined. This includes further specifications 
with regard to quality transformation processes, remanu-
facturing process applications and the generation of fea-
sible process plans.

3.2.1  Transformation definition

A transformation specifies a concrete product transforma-
tion from one quality class to another quality class. The 
developed approach thereby also considers potential prod-
uct quality deterioration, resulting from process or machine 
failures. Each transformation is defined by the corresponding 
transition probability, the associated costs and the respec-
tive modification value for each quality parameter. Trans-
formations need further specification with respect to their 
transformation types. Possible types of transformation are 
a simple replace operation, an additive or a multiplicative 
transformation. In the case of a replace operation, previous 
parameter values are substituted by the respective transfor-
mation values. For example, in remanufacturing a hydraulic 
motor, replacing a worn-out seal with a new one changes 

Fig. 1  Quality parameter and quality classes
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the quality parameter ’seal condition’ from ’worn’ to ’new’. 
In the additive case, the parameter-specific transformation 
values are added to the corresponding preceding values. For 
instance, if the ’surface roughness’ parameter of a cylinder 
is improved by honing, the roughness value is decreased by 
a adding a negative number, representing an additive change 
to the surface quality. In the multiplicative case, the trans-
formation values define the percentage change, according 
to which the previous parameter values are to be adjusted.
An example is cleaning internal components to reduce con-
tamination levels; the ’contaminant concentration’ parameter 
value is multiplied by a factor less than 1 (e.g., 0.5), indicat-
ing a 50% reduction in contamination levels after cleaning.

Figure 2 illustrates a product transformation from qual-
ity class x to quality class y. The depicted transformation 
succeeds with probability p and creates costs in the amount 
of c. The particular modification of each quality parameter 
QP1 − QPN thereby depends on the specified transforma-
tion type.

3.2.2  Task definition

In the following, production steps with one or multiple com-
ponents as in- and outputs will be referred to as tasks (com-
pare [39]). In this work, the definition of a task comprises 
every single transformation that may occur with a certain 
probability if this particular task is executed. This implies 
that the application of a task o to a core of quality class 
QCstart can yield various quality classes QCend as process 
outcomes (see Fig. 3). The probabilities of all these potential 
outcomes need to sum up to 1 (see Formula 1).

By considering all the potential transformations that can 
result from a specific task execution, the proposed approach 
achieves to account for the predominant process-related 
uncertainties in the remanufacturing context.

(1)
T
∑

k=1

pk = 1

Fig. 2  Transformation

Fig. 3  Task

Fig. 4  Process plan
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A task can thereby be applied to cores of varying 
quality classes, i.e., of distinct QCstart . Since in prac-
tice some tasks might not be applicable to every quality 
class, the developed approach allows to define parameter 
value requirements for task applications. More precisely, 
minimal and maximal parameter values can optionally 
be defined and need to be fulfilled in order to enable the 
execution of a particular task.

For a holistic analysis in terms of remanufacturing pro-
cess planning, the developed tool considers a whole set of 
tasks OA . This set comprises all remanufacturing tasks that 
a company is currently capable of, based on its available 
machines and equipment. The definition of the capabilities 
is done manually. By concatenating single tasks with match-
ing output-input relations, so-called bill of processes, can be 
generated [39]. In the following, these will be referred to as 
process plans.

3.2.3  Process plan definition

In this work, a process plan describes a sequence of task 
applications.

For modeling purposes, process plans are logically split 
up into smaller components. The process plan depicted in 
Fig. 4, for example, consists of l components in total. Each 
process plan component is thereby characterized by a range 
of different parameters. Subsequently, we will illustrate these 
parameters for one particular component, i.e., for component 
l in Fig. 4. The first parameter specifies a particular task ol 
out of the set of all feasible tasks. The second parameter 
describes a concrete quality class QCl that can be obtained 
by applying this task. Hence, it refers to one particular 
transformation out of all the possible transformations that 
can be induced by performing task ol . The corresponding 
probability pl of this specific transformation forms the third 
parameter. Each component is additionally characterized by 
its accumulated probability pl

acc
 . This accumulated probabil-

ity also considers the transition probabilities of all previous 
components in the respective process plan. For component 
l, pl

acc
 can be obtained by multiplying its transition prob-

ability pl with the accumulated transition probability pl−1
acc

 

of the previous component l − 1 . Formally, this implies the 
following:

Moreover, we define a parameter to specify the costs cl that 
are associated with the execution of task ol . To addition-
ally quantify the accumulated costs for all tasks related to 
obtaining QCl , we introduce the parameter cl

acc
 . For its cal-

culation, the costs cl of performing task ol are added to the 
accumulated costs cl−1

acc
 of the previous component l − 1 (see 

equation 3).

The last parameter newl evaluates whether the attainable 
quality class QCl in this component has already been reached 
in any of the preceding components of the respective process 
plan. In case we obtain a new quality class, newl is set to true 
for the corresponding component l.

The proper definition of a process plan with all its compo-
nents and the corresponding parameter values is essential in 
order to derive the set of the Pareto optimal process alterna-
tives. The respective procedure is depicted in further detail 
in the Appendix 7.2.

3.3  Remanufacturing process planning model

In this section, the developed method of evaluating the fea-
sible set of Pareto optimal process plans is presented. The 
first Sect. 3.3.1 provides a general overview of the respective 
procedure, whereas Sect. 3.3.2 and 3.3.3 further specify the 
underlying local and global optimization criteria.

3.3.1  General procedure

First of all, companies need to identify the relevant quality 
parameters of the targeted product and provide information 
about all realistic values of these parameters with respect to 
product returns. Based on these parameter values, the algo-
rithm automatically derives the set of potential core quality 
classes. For each of these quality classes, the algorithm then 

(2)pl
acc

= pl−1
acc

⋅ pl

(3)cl
acc

= cl−1
acc

+ cl

Fig. 5  Quality improvement
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sequentially evaluates a set of Pareto optimal remanufactur-
ing process plans SPareto . In this respect, it simultaneously 
considers attainable quality characteristics, associated costs 
and transition probabilities.

In every attainable quality state, all of the applicable 
remanufacturing tasks are therefore executed and possibly, 
the set of Pareto optimal process plans is updated. The 
associated update criteria will be outlined in the follow-
ing subsection. The procedure terminates once no further 
quality improvement can be obtained. Thus, to be part of 
SPareto , the application of each task in the corresponding 
process plan needs to result in an actual quality improve-
ment with respect to at least one quality parameter (see 
Sect. 3.3.2). In case we obtain a quality state that can also 
be reached by any other alternative in SPareto , we need to 
check for Pareto optimality of the respective process plan 
(see Sect. 3.3.3).

3.3.2  Local optimization criteria: quality improvement

Assume PP to be a particular process plan of SPareto with l 
components. The initial quality class before applying pro-
cess plan PP is the quality class associated with the first 
element in PP, here defined as QCstart (see Fig. 5). After 
applying a set of tasks {o1, ..., ol} , we reach QCl

start+c
 . As 

PP is part of SPareto , an actual quality improvement in at 
least one quality parameter must be obtained after each task 
execution. This implies that inequality 4 must hold, whereas 
c > b > a and a, b, c ∈ ℕ⧵{0}.

We now assume that task ol+1 is a feasible task and 
that QCl

start+c
 fulfills the parameter requirements for its 

(4)QCstart+c > QCstart+b > ... QCstart+a > QCstart

application. The feasibility of a task ol+1 is determined based 
on two main criteria:

– Parameter Requirements: Each task has specific param-
eter value requirements, such as minimum or maximum 
allowable values for certain quality parameters. A task is 
considered feasible for the current quality class QCl

start+c
 

if all these requirements are met. This ensures that the 
task is applicable and can be successfully executed on the 
product in its current state.

– Quality Improvement: Applying the task must result in 
a quality class that is strictly better than the current qual-
ity class. This means there must be an improvement in 
at least one quality parameter without any deterioration 
in others. Tasks that do not improve the quality or lead 
to quality stagnation or deterioration are not considered 
feasible, as they would not contribute to an optimal pro-
cess plan.

By enforcing these criteria in our solution automatically, we 
ensure that only tasks that are both applicable and beneficial 
are considered in the process planning.

As a result of performing ol+1 , we get a set of attainable 
quality classes QCattain . For each of these attainable qual-
ity classes we check whether it has already been attained 
in any previous component in the underlying process plan 
PP. Only those paths that result in a better (higher) qual-
ity class than QCl

start+c
 will be respected for further analy-

sis (see Fig. 5). This is a reasonable conclusion since the 
application of tasks is associated with costs. If no quality 
improvement is achieved, the respective quality class can 
be obtained at a lower cost and hence, this path can never 
be optimal. Within a single path, a quality class can there-
fore never occur more than once. For the example illustrated 
in figure 5, this implies that only the bottom path is added 

Fig. 6  Extensive tree structure
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to SPareto as it fulfills the following inequalities under the 
assumption that x ∈ ℕ ⧵ {0}:

The remaining two paths in Fig. 5 are both not added to 
SPareto as they result in a quality stagnation (middle path) 
or even in a quality deterioration (upper path). Hence, the 
quality improvement criterion cannot be fulfilled (compare 
inequality 6 for the middle path and inequality 7 for the 
upper path).

3.3.3  Global optimization criteria: Pareto optimality

So far, we only considered the application of one single 
task in a particular quality state. In the next step, we extend 
this analysis to the whole set of feasible tasks, such that 
we obtain an extensive tree structure, comprising all Pareto 
optimal process plans for a specific quality class of cores.

For illustration purposes, we assume a core to be of qual-
ity class QCk and determine all the attainable quality classes 
QCattain by performing each task in OA that is applicable to 
a product of class QCk (compare oa − of  in Fig. 6). Of the 
attainable quality classes we consider only those classes that 
represent an actual path-specific quality improvement. With 
regard to Fig. 6, we therefore assume that QCk+x > QCk and 
QCk+y > QCk with x, y ∈ ℕ⧵{0} . Otherwise, the respective 
paths would end at this point. The underlying process plans 
for obtaining QCk+x and QCk+y are added to SPareto and cap-
tured in the so-called look-up table (compare PP1 and PPi 
in Table 5).The look-up table in this context is a structured 
table that records all the Pareto optimal process plans evalu-
ated for each attainable quality class starting from a specific 
core quality class. It systematically organizes the following 
information for each process plan:

– Core Quality Class: The initial quality class of the core 
product before any tasks are applied.

– Attainable Quality Class: The quality class achieved 
after applying the sequence of tasks in the process plan.

– Process Plan (PP): A unique identifier for the process 
plan.

– Tasks: The sequence of tasks applied to reach the attain-
able quality class.

– Costs: The accumulated costs associated with the pro-
cess plan.

(5)QCl+1
start+c+x

> QCl
start+c

> ... QC1
start+a

> QCstart

(6)QCl+1
start+c

≯ QCl
start+c

(7)QCl+1
start+c−x

≯ QCl
start+c

– Reliability: The accumulated transition probability (suc-
cess probability) of achieving the attainable quality class 
through the process plan.

By compiling this information, the look-up table serves as 
a comprehensive reference that allows decision-makers to 
quickly identify and compare all Pareto optimal process 
plans. It facilitates the selection of the most suitable pro-
cess plans based on specific criteria such as cost minimiza-
tion or reliability maximization. The look-up table effec-
tively bridges the gap between the extensive tree structure 
of possible process plans and practical decision-making 
needs by presenting the essential information in an acces-
sible format.

We conduct a breadth-first search and follow the same 
procedure in each attainable quality state until no further 
quality improvement can be achieved by performing any 
of the applicable tasks in OA . Information related to each 
individual Pareto optimal process scheme is captured in the 
look-up-table. As soon as the set SPareto of QCk is not empty 
anymore, we must additionally assure Pareto optimality 
of each process plan that is added to this set. Thus, after 
ensuring the compliance of the respective attainable qual-
ity class with the local optimization criteria (see previous 
subsection), we evaluate whether this quality class can also 
be reached by applying any other process sequence in SPareto 
of QCk . If this is not the case, we add the respective process 
plan for attaining this specific quality class to SPareto of QCk . 
Otherwise, i.e., if this quality class can also be attained by at 
least one other process sequence in SPareto of QCk , we com-
pare the conditions under which it can be reached. We distin-
guish between three different cases, in which the respective 
quality class is either obtained under: 

1. strictly better,
2. strictly worse or
3. Pareto optimal conditions.

If a process plan PPnew strictly dominates over all process 
schemes in SPareto of QCk (case 1), we replace the current set 
of Pareto optimal process plans in SPareto with PPnew . Strict 
dominance thereby implies that the same quality class is 
either reached at lower cost (and equal or higher probability) 
or with a higher probability (and equal or lower costs). Thus, 
for each process plan PPh ∈ SPareto of QCk either condition 8 
or condition 9 holds.

(8)
∀PPh ∈ SPareto(QCk) ∶

(

cPPnew < cPPh ∧ pPPnew ≥ pPPh

)

∨

(9)
(

cPPnew ≤ cPPh ∧ pPPnew > pPPh

)
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In the second case, at least one process plan PPh in SPareto of 
QCk strictly dominates over PPnew . Consequently, PPnew is 
not added to SPareto . Formally, this implies that there exists 
at least one process plan PPh ∈ SPareto of QCk through which 
the same quality class is obtained at lower cost (and equal or 
higher probability) or with a higher probability (and equal or 
lower costs). Consequently, one of the subsequent conditions 
10 or 11 is fulfilled.

In the third case, PPnew is Pareto optimal. This means that 
the accumulated costs and the accumulated probability of 
PPnew are both either lower or higher, compared to each 
process plan in SPareto of QCk . PPnew hence fulfills one of 
the following conditions in a direct comparison with each 
process plan PPh ∈ SPareto of QCk:

In the special case of equality regarding the associated costs 
and probabilities (see equation 14), PPnew is only added 
to SPareto of QCk if the respective process plans PPh and 

(10)
∀PPh ∈ SPareto(QCk) ∶ (cPPnew < cPPh ∧ pPPnew ≤ pPPh ) ∨

(11)(cPPnew ≥ cPPh ∧ pPPnew > pPPh )

(12)
∀PPh ∈ SPareto(QCk) ∶ (cPPnew > cPPh ∧ pPPnew > pPPh ) ∨

(13)(cPPnew < cPPh ∧ pPPnew < pPPh )

PPnew are not completely identical with regard to the sets 
of tasks that are applied. The order of tasks is thereby of no 
relevance.

We denote that the same quality class may be repeatedly 
obtained under Pareto optimal conditions by performing 
distinct process plans, i.e. by following different paths in 
the tree structure. As a reminder, within a single path, i.e. 
within the single process plan, a quality class never occurs 
more than once.

This comprehensive analysis yields a lookup table dis-
playing all attainable quality classes based on distinct core 
quality conditions. For the illustrated tree structure in Fig. 6 
we record Table 2.

QCk+x , QCk+y , QCk+x+x , QCk+x+y and QCk+y+y are added 
to SPareto of QCk since these particular quality classes imply 
a quality improvement and are not obtained by any other 
process plan in SPareto of QCk.

QCk+y+x is equal to QCk+x+y and therefore already part of 
SPareto for QCk . Hence, a comparison of the corresponding 
process plans PPn and PPm is required in order to determine 
whether they are both added to SPareto of QCk and thus, are to 
be recorded in the look-up table. Depending on the respec-
tive parameter values, the number of alternatives that are 
captured in the look-up table can vary (see Table 3).

For a comprehensive analysis, we conduct the same 
analysis for each possible core quality level to account for 
the varying quality conditions of cores. This results in an 
extensive tree structure, as it is depicted in Fig. 6, for each 
potential core quality class.

3.4  Order management optimization

In the previous section, we pointed out how the developed 
approach enables companies to obtain a comprehensive 
overview of all feasible and simultaneously Pareto opti-
mal process alternatives in the form of a look-up table. 
This overview is considered as the first main asset of the 
approach as it gives companies a general idea of their cur-
rent scope of action, based on their expertise and available 
technologies.

In this section, we present two further functionalities 
of the approach that companies can embrace to enhance 

(14)cPPnew = cPPh ∧ pPPnew = pPPh

Table 2  Look-up table

Core 
quality 
class

Attainable 
quality 
class

Process 
Plan

Tasks Costs Reliability

QCk QCk+x PP1 oa c(oa) pa
x

.. .. .. .. ..
QCk+y PPi oa c(oa) pa

y

.. .. .. .. ..
QCk+x+x PPj oa → ob c(oa) + c(ob) pa

x
⋅ pb

x

.. .. .. .. ..
QCk+x+y PPm oa → ob c(oa) + c(ob) pa

x
⋅ pb

y

PPn oa → od c(oa) + c(od) pa
y
⋅ pd

x

.. .. .. .. ..
QCk+y+y PPz oa → od c(oa) + c(od) pa

y
⋅ pd

y

.. .. .. .. ..

Table 3  Requirements to be part of the look-up table (for a pairwise comparison of process plans)

Look-up table Requirements costs and reliability Further requirements

Add only PPm c(PPm) < c(PPn) ∧ p(PPm) ≥ p(PPn) ∨ c(PPm) ≤ c(PPn) ∧ p(PPm) > p(PPn) x > 0

Add only PPn c(PPn) < c(PPm) ∧ p(PPn) ≥ p(PPm) ∨ c(PPn) ≤ c(PPm) ∧ p(PPn) > p(PPm) y > 0

Add PPm and PPn c(PPm) < c(PPn) ∧ p(PPm) < p(PPn) ∨ c(PPm) > c(PPn) ∧ p(PPm) > p(PPn) x, y > 0;b ≠ d
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their order management and RPP efficiency. One of them 
is the opportunity to conduct feasibility analyses for spe-
cific product quality classes by considering the current 
inventory levels of cores and remanufactured products. 
The second one is the ability to derive cost minimal pro-
cess plans for optimal order completion.

Figure 7 provides a generic overview of these three 
main assets. The illustration highlights how the developed 
approach achieves to align companies’ capabilities with 
alternating market dynamics.

3.4.1  Customized queries

Since the look-up table rapidly increases in size, it is 
essential to provide companies with the opportunity to 
request more targeted information. To achieve this, a prac-
tical understanding of how quality classes are formed and 
utilized is necessary.

In practice, quality classes are formed by first identifying 
the key quality parameters that define a product’s condition 
and functionality. These parameters may include factors such 
as physical wear, functional performance, cosmetic appear-
ance, and software version, among others. Each parameter 
is assigned specific values or ranges based on measurable 
criteria or inspection results. By combining these param-
eter values, distinct quality classes are created, representing 
unique combinations of product attributes (cf. Sect. 3.1).

By classifying products into these quality classes, 
companies can systematically assess and categorize their 
inventory. This categorization allows for efficient match-
ing of inventory items to customer demands, optimizing 
the use of available cores and remanufactured products.

In our developed tool, companies can utilize the quality 
classes to address their current inventory levels in the fol-
lowing ways:

– Inventory Assessment: The company can evaluate the 
existing cores and remanufactured products by assigning 
them to the appropriate quality classes based on their 
inspected parameter values.

– Demand Matching: When a customer requests a product 
of a specific quality class, the system can quickly identify 
whether an exact match exists in the inventory.

– Feasibility Analysis: If an exact match is not available, 
the system can determine which cores can be remanufac-
tured to achieve the desired quality class. This involves 
identifying the necessary remanufacturing tasks, associ-
ated costs, and probabilities of success.

– Optimization of Remanufacturing Efforts: By under-
standing the quality classes of inventory items, the com-
pany can prioritize remanufacturing efforts on cores that 
can be upgraded to meet demand with minimal cost and 
high reliability.

– Inventory Optimization: The company can make 
informed decisions about acquiring additional cores or 
disposing of surplus inventory based on the distribution 
of quality classes and anticipated demand.

Fig. 7  Generic overview
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Therefore, the developed tool allows companies to receive 
information regarding the feasibility of particular quality 
classes based on their current inventory levels of cores 
and remanufactured products. For each of the requested 
quality classes, the system evaluates whether a product of 
this specific quality class, or alternatively of a better qual-
ity class, is available in the company’s current inventory. 
If this is the case, companies obtain the information that 
the product of the requested quality class can be supplied 
without performing any remanufacturing tasks.

Moreover, a list is provided, comprising all products 
in stock that are suitable for obtaining a product of the 
requested quality class through remanufacturing. The asso-
ciated costs and transition probabilities are displayed in 
this list as well. This enables the company to make stra-
tegic decisions on which cores to remanufacture to fulfill 
orders cost-effectively and efficiently, ultimately enhanc-
ing inventory management and customer satisfaction.

The required information to create this list is derived 
from the previously determined look-up table. Based on 
customized inventory levels and a company’s individual 
capabilities, a feasibility matrix for obtaining the requested 
quality classes is generated. The rows of this feasibility 
matrix represent the quality classes d1 − dy which are to 
be attained, i.e. the market demand to be fulfilled. The col-
umns define all cores and remanufactured products i1 − iz 
that are currently available in the company’s inventory. 
A matrix entry of 1 indicates that a core/remanufactured 
product is suitable for fulfilling the respective demand. In 
contrast, a matrix entry of 0 indicates that the demanded 
quality class is not feasible through remanufacturing the 
corresponding core/remanufactured product.

For all matrix entries of 1 in the feasibility matrix, the 
corresponding costs and transition probabilities are cap-
tured in two separate matrices, the cost and the reliability 
matrix.

With respect to single order management, this overview 
can provide sufficient support for decision-making in terms 
of RPP. However, when multiple orders need to be fulfilled, 
order management becomes more complex and hence, further 
solutions based on optimization algorithms are required.

3.4.2  Cost‑efficient process planning

Sequential order handling can lead to inefficiencies when 
certain orders cannot be fulfilled due to the selected order of 
processing the incoming orders. For an efficient order manage-
ment, companies need to encompass multiple orders simul-
taneously. In this work, an integer linear programming (ILP) 
problem is used to model the resulting optimization problem.

The optimization variables thereby represent all potential 
output-input-relations between the products currently available 
in stock and the demanded product quality classes. Their val-
ues indicate whether to select or not to select a specific output-
input-relation in order to ensure the fulfillment of all incoming 
orders. The decision related to each output-input-relation is 
consequently a yes (selection) or no (rejection) decision. Thus, 
it is to be modeled as a binary variable with 1 indicating the 
selection of a particular output-input-relation and 0 indicating 
its rejection. For d = d1, ..., dy and i = i1, ..., iz we define:

If the quality classes of an incoming order and a product in 
stock are identical, then the costs of attaining the demanded 
product quality class are set to 0 and the transition prob-
ability is set to 1. The transition probability of infeasible 
relations, i.e., entries of 0 in the feasibility matrix, is set 
to 0. The respective costs are set to a very high value that 
exceeds the upper bound of permissible cost values, such 
that these output-input-relations can never be part of a fea-
sible solution. Available cores/remanufactured products of 
higher quality classes that could potentially be used to fulfill 
a certain order are neglected in this work as they induce 
opportunity costs. In terms of further developments of the 
tool, these opportunity costs could be quantified and addi-
tionally included in the analysis.

The objective is to find the process plan/s that minimize/s 
the associated costs (see 16).

Here,

– d refers to one specific demand of a customer.
– i refers to one specific core in the storage.

(15)xdi =

{

1, if output-input-relation di is selected

0, otherwise

(16)min

dy
∑

d=d1

iz
∑

i=i1

Cdi ⋅ xdi

(17)s.t.

iz
∑

i=i1

xdi = 1, d = d1, ..., dy

(18)
dy
∑

d=d1

xdi ≤ 1, i = i1, ..., iz

(19)xdi = 0 or 1, d = d1, ..., dy, i = i1, ..., iz

(20)
xdi = 0, d = d1, ..., dy, i = i1, ..., iz

if xdi is infeasible
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– xdi defines if demand d is to be fulfilled by remanufactur-
ing of core i.

– Cdi represents the cost coefficients corresponding to xdi 
derived by the available process plans.

Every feasible solution thereby has to fulfill four underly-
ing constraints (17, 18, 19,20). The first constraint guar-
antees that each order is fulfilled exactly once. Each core/
remanufactured product in stock can thereby be used at 
maximum once, which is ensured by the second constraint. 
The third constraint additionally restricts the solution 
space by only allowing value assignments of 0 or 1 to 
the optimization variables. The last constraint prevents 
infeasible solutions.

The javascript-lp-solver library is used in this work to 
implement and solve the above depicted ILP. As a result, 
the solver yields all feasible process plans that minimize the 
corresponding costs. These insights can help companies to 
enhance their order management and RPP efficiency.

4  Application in the automation industry

A variable speed drive that covers motor power ratings 
up to 15 kW serves as the study subject. In this section, 
we describe the exemplary application of the developed 
approach and present the corresponding results. The code 
was implemented with TypeScript and can be found together 
with all use case data in [40].

4.1  Introduction to the use case

The producing firm is a global specialist in energy manage-
ment and automation that already conducts remanufacturing 
in a profitable manner for product variants of higher price 
segments. However, the prevailing lack of decision support 
impedes profitable remanufacturing for their lower price 
product variants. The high degree of manual tasks makes 
it challenging to withstand the prevailing cost pressure in 
those competitive market environments. In this use case, 
the processes primarily involve replacing and testing parts, 
without encompassing all typical remanufacturing steps such 
as cleaning that can lead to different quality classes. While 
the use case focuses on these specific replacement processes, 
the developed approach is designed to be general and appli-
cable to the full spectrum of remanufacturing activities. By 

Fig. 8  Hardware- and software-
related quality parameters
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handling processes in an abstract way, the algorithm can 
accommodate additional remanufacturing steps, including 
disassembly, cleaning, repair, reassembly, and testing, which 
are common in remanufacturing practices.

First, we elaborated a process diagram that depicts the 
typical remanufacturing process of a variable speed drive, 
focusing on the remanufacturing steps practiced by the com-
pany. The obtained process diagram facilitated the identifica-
tion of the corresponding quality parameters and the further 
specification of the associated remanufacturing tasks. In 
total, eleven quality parameters QP1 − QP11 were identified, 
nine of which are hardware-related ( QP1 − QP9 ) and two are 
software-related ( QP10 − QP11 ). On the hardware side, each 
parameter can be mapped to one of the three main hardware 
components: the palower unit (housing included), the control 

board, and the fan. On the software side, quality parameters 
refer to the parameter setting or the installed software ver-
sion. Figure 8 provides an overview of the characteristic 
quality parameters that we elaborated.

To achieve product quality improvements, seven tasks 
were identified that are available for application (see 
Table 4). The company acquires used products with the pros-
pect of reusing their components. The control board and 
the fan can alternatively be replaced with brand new spare 
parts. The re-usage of used spare components is associated 
with a higher level of uncertainty compared to the usage 
of new spare components. This results in a lower process 
reliability, indicated by a lower success probability of the 
respective tasks.

Table 4  Set of feasible tasks Task Definition Costs [€] Reliability Parameter 
require-
ments

o1 Replace housing and power unit with used spare part 40 0.90 None
o2 Replace control board with new spare part 69 0.95 Yes
o3 Replace control board with used spare part 28 0.90 Yes
o4 Replace fan with new spare part 18 0.95 Yes
o5 Replace fan with used spare part 5 0.90 Yes
o6 Parameter reset 2 0.99 Yes
o7 Software update 3 0.99 Yes

Table 5  Extract from the obtained look-up table

Core quality class Attainable quality class Process plan Tasks Costs [€ ] Reliability

[Housing,0], … , [Software version,0] [Housing,0.5], … , [Software version,0] 1 o1 40 0.9000
[Housing,0.5], … , [Software version,0] 2 o1 → o2 109 0.8550
[Housing,0.5], … , [Software version,0] 3 o1 → o3 68 0.8100
[Housing,0.5], … , [Software version,0] 4 o1 → o4 58 0.8550
[Housing,0.5], … , [Software version,0] 5 o1 → o5 45 0.8100
[Housing,0.5], … , [Software version,0] 6 o1 → o2 → o5 114 0.7695
[Housing,0.5], … , [Software version,0] 7 o1 → o3 → o5 73 0.7290
[Housing,0.5], … , [Software version,0] 8 o1 → o3 → o4 86 0.7695
[Housing,0.5], … , [Software version,1] 9 o1 → o3 → o5 → o7 76 0.7217
[Housing,0.5], … , [Software version,1] 10 o1 → o2 → o5 → o7 117 0.7618
[Housing,0.5], … , [Software version,1] 11 o1 → o3 → o4 → o7 89 0.7618
[Housing,0.5], … , [Software version,1] 12 o1 → o2 → o4 → o7 130 0.8041
[Housing,0.5], … , [Software version,0] 13 o1 → o2 → o4 127 0.8122
[Housing,0.5], … , [Software version,1] 14 o1 → o3 → o7 71 0.8019
[Housing,0.5], … , [Software version,1] 15 o1 → o2 → o7 112 0.8464

.. .. .. .. .. ..
[Housing,0], … , [Software version,1] [Housing,0.5], … , [Software version,1] 1900 o2 69 0.9500

[Housing,0.5], … , [Software version,1] 1901 o4 18 0.9500
[Housing,0.5], … , [Software version,1] 1902 o2 → o4 87 0.9025
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To derive the realistic quality classes of cores, all poten-
tial quality parameter values were considered, except for the 
parameter value ’no’ for the ’usage history’ parameters of 
QP3,QP5,QP7,QP9 . The definition of a core justifies this 
conclusion. Consequently, 192 realistic quality classes of 
cores were obtained.

4.2  Results

The results were obtained by following the approach 
described in the previous sections. In the following, the 
details of the application are explained in two subsections. 
Section 4.2.1 outlines the evaluated set of Pareto optimal 
process plans. In Sect. 4.2.2, we consider an exemplary 
batch of incoming orders to exemplify the results of assess-
ing the feasibility of order fulfillment and determining the 
corresponding cost-minimal process plan.

4.2.1  Process planning

For each possible quality class of cores, we followed the 
above-described procedure to determine the list of all Pareto 
optimal process plans. Based on the 192 potential conditions 
of cores, a total amount of 1902 Pareto optimal alternatives 
were evaluated (see look-up Table 5). For details regarding 
the individual tasks, refer to Table 4. Note that the param-
eter values of quality classes (compare first two columns in 
Table 5) were abbreviated for illustration purposes.

For example, a core with the worst possible parameter 
value combination can be processed through 15 distinct 

process alternatives (compare first 15 entries of the look-
up table in Table 5). Thereof, alternative 2 is one instance 
of a feasible option that comprises two tasks, i.e., the 
replacement of the power unit with a used spare part as 
well as the replacement of the control board with a new 
spare part. Its execution is consequently associated with 
expenses of 109 euros (= 40 + 69) and a success prob-
ability of 85.5 percent (= 0.9 × 0.95).

The results clearly show that the look-up table rapidly 
increases in size as the number of potential core qual-
ity classes rises. Even by restricting the solution space 
through defining parameter value requirements for the 
application of particular tasks, the size of the solution 
space remains large.

4.2.2  Feasibility analysis and implications for order 
management

We generated an exemplary system query to assess the feasi-
bility of fulfilling a set of incoming orders based on the com-
pany’s capabilities as well as their current inventory level of 
cores and remanufactured products. Therefore, we consider 
a scenario where the company receives three orders of spe-
cific quality classes. To fulfill these orders, it can utilize 
four different products which are currently available in stock 
(see Fig. 9 for further specifications regarding the respective 
quality parameter values).

Based on the previously determined look-up table, we 
derive the corresponding feasibility matrix. Remember that 
the matrix rows represent the quality classes d1 − d3 which 

Fig. 9  Feasibility analysis and remanufacturing process planning
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are to be attained, and the columns define the products i1 − i4 
that are currently available in the company’s inventory of 
cores and remanufactured products. The obtained feasibility 
matrix indicates that from an isolated point of view, each of 
the incoming orders can individually be fulfilled as each row 
contains at least one entry of value 1. The demanded quality 
class d3 , for example, can either be attained by product i3 or i4 
of the inventory. However, the individual feasibility of each 
incoming order does not automatically imply that the whole 
set of incoming orders can be completed simultaneously. For 
instance, if d1 − d3 were all only attainable through remanu-
facturing i1 , then solely one of these orders could be fulfilled, 
whereas the other two would remain unsatisfied.

Whenever a demanded quality class and an available qual-
ity class coincide in every quality parameter value, the cor-
responding costs for attaining this demand are set to 0 and 
the respective success probability is set to 1. This particular 
case applies for d1 and i1 . Insights regarding the availability 
of cores/remanufactured products with a higher quality are 
provided in the form of a separate Excel sheet. With respect 
to d1 , we get the information that a product of a higher qual-
ity class, namely i2 , is available in stock. However, as we 
have no information about the associated opportunity costs, 
those products of higher quality classes in the inventory are 
not considered in terms of feasibility analyses. Refining the 
approach in this respect could be a future research direction.

By solving the ILP, we obtain the following cost-optimal 
solution with an objective value of 70 euros (see Fig. 9):

• d1 is fulfilled by i1 at costs of 0 euros (no remanufacturing 
required)

• d2 is fulfilled through remanufacturing i3 at costs of 2 
euros

• d3 is fulfilled through remanufacturing i2 at costs of 68 
euros

In the following, the advantage of batch-wise order man-
agement compared to sequential order handling will be 
highlighted by means of an example. Therefore, we con-
sider two timelines which differ in their chronologies of 
incoming orders (compare Figs. 10 and 11). With respect 
to the timeline depicted in Fig. 10, order fulfillment can be 
achieved through sequential as well as through batch-wise 
order processing.

Based on the timeline illustrated in Fig. 11, order d3 is 
received before d2 . Hence, in the case of sequential order 
processing, d3 is obtained by means of remanufacturing i4 
since this implies the lowest expenses. As a consequence, the 
subsequent order d2 cannot be fulfilled. In contrast, through 
batch-wise processing of d1 − d3 , the order fulfillment rate 
can be improved since all incoming orders can be completed 
(see Fig. 11). To ensure economic viability, the time frame 
for batch-wise order processing must be adequately chosen.

The example clearly shows that in terms of sequential 
order management, the processing order determines whether 
a set of incoming orders can be completed or not.

5  Discussion

The use case shows that the developed approach effectively 
generates and identifies cost-minimal process plans for 
optimal order completion, considering the company’s capa-
bilities and inventory. By accounting for both quality and 
process uncertainties, it captures the unique characteristics 
of remanufacturing, helping companies understand their 
economic potential and identify opportunities for optimiza-
tion and automation.

Although the use case focuses on replacement tasks such 
as replacing and testing parts, the approach is designed to 
be general and applicable to the full spectrum of remanu-
facturing processes. By modeling processes and quality 
parameters in an abstract way, it can accommodate typical 
remanufacturing steps like cleaning, repairing, and refinish-
ing, which may lead to different quality classes. This flex-
ibility allows companies to adapt the approach to various 
products and remanufacturing scenarios.

As highlighted in the literature review, many existing 
approaches either focus on predefined quality standards or 

Fig. 10  Comparison of optimal sequential and batch-wise order pro-
cessing with respect to timeline 1

Fig. 11  Comparison of optimal sequential and batch-wise order pro-
cessing with respect to timeline 2
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lack comprehensive integration of quality data modeling, 
remanufacturing uncertainties, and optimization criteria. 
Our approach addresses these gaps by exploring all feasible 
product quality classes and integrating these key aspects into 
a unified framework. Unlike traditional methods that focus 
on predefined quality standards, this approach explores all 
feasible product quality classes, allowing companies to cater 
to a broader range of customer preferences. This can help 
assess the profitability of extending product portfolios and 
identify high-margin products, particularly in competitive 
lower-price segments.

However, several limitations should be considered when 
applying this approach. First, the effectiveness of the model 
depends on the availability and accuracy of quality data and 
cost estimates. Incomplete or inaccurate data can impact the 
validity of the generated process plans. Second, the model 
involves certain assumptions and simplifications, such as 
task independence, which may not fully capture the com-
plexities of real-world remanufacturing operations. Third, 
while the approach was validated in the automation industry, 
its applicability to other industries may require adjustments 
to account for different remanufacturing characteristics and 
constraints.

Additionally, implementing the approach in practice may 
present challenges, including integration with existing sys-
tems, the need for staff training, and potential resistance to 
change. The approach also focuses primarily on economic 
optimization and may not fully consider environmental 
impacts or sustainability metrics, which are increasingly 
important in modern manufacturing. While the feasibility 
matrix offers a comprehensive list of potential solutions, the 
approach may be limited in handling highly complex plan-
ning problems. More advanced methods like reinforcement 
learning might be necessary for such cases. As noted in the 
literature, reinforcement learning approaches have shown 
promise in optimizing complex remanufacturing tasks [29, 
31–33], but they often lack transparency and may not be suit-
able for companies with high manual labor. Our approach, 
while perhaps limited in handling highly complex planning 
problems due to computational time, offers a transparent and 
comprehensive method that can be understood and imple-
mented by companies relying on manual processes.

However, we believe that providing a comprehensive 
overview of alternatives remains essential, especially 
during the current transitional phase of remanufacturing. 
Since remanufacturing processes are still predominantly 
manual, human decision-makers benefit from having 
access to all possible alternatives. This comprehensive 
overview supports transparency, allows for human exper-
tise to be applied effectively, and aids in training and 
gradually introducing automation into the workflow. As 
remanufacturing scales up and more tasks are automated, 

methods like reinforcement learning may become more 
applicable. Nevertheless, our approach serves as a val-
uable tool to bridge the gap between manual labor and 
fully automated systems, supporting semi-automated pro-
cesses and aiding in a smoother transition toward future 
advancements.

Overall, the approach provides valuable tools for opti-
mizing remanufacturing processes, balancing comprehen-
siveness with the ability to identify optimal solutions. The 
economic benefits, including cost savings and enhanced 
efficiency, demonstrate its potential to improve profitability 
and competitiveness in the remanufacturing sector. How-
ever, a limitation is the computational time needed for the 
calculation.

6  Conclusion

The shift towards circular production is pushing companies 
to adapt their manufacturing approaches, particularly in 
managing the variability of product quality from returns. 
This study addressed quality modeling, process plan genera-
tion, and cost optimization based on customer demand and 
core inventory.

The main outcomes of this research include a compre-
hensive overview of Pareto optimal process plans across 
various quality levels and an algorithm that identifies cost-
efficient plans tailored to a company’s specific capabilities 
and inventory. These tools enable businesses to align their 
remanufacturing processes with market demands, enhancing 
profitability and supporting sustainable production.

Our approach was validated through a real-world applica-
tion in the automation industry, demonstrating its practical 
relevance and potential. Moreover, the developed method is 
generalizable and can be applied to a wide range of remanu-
facturing processes beyond the case study, accommodating 
additional steps such as cleaning, repairing, and refinishing.

Looking forward, this algorithm lays the groundwork for 
further advancements in automated remanufacturing, includ-
ing autonomous quality inspection and adaptive process con-
trol. By providing effective decision support, our approach 
facilitates a smoother transition from manual processes to 
higher levels of automation, ensuring that human expertise 
remains integral during this transformation.

Appendix

List of abbreviations

See Table 6.
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Table 6  List of Abbreviations

Abbreviation Full form Description

cacc Accumulated Cost The total cost accumulated while applying a sequence of tasks in a process 
plan

Cdi Cost Matrix Cost matrix corresponding to xdi
c(o) Cost of Task o The monetary cost associated with executing a specific refurbishing task
d1 − dy Specific Demands/Orders Orders received by the company, each requiring fulfillment through 

remanufacturing to meet specific quality classes
ILP Integer Linear Programming A mathematical optimization technique used to find the best outcome in 

a model whose requirements are represented by linear relationships and 
integer variables

i1 − iz Inventory Products Products currently available in the company’s inventory that can be used to 
fulfill incoming orders through remanufacturing

l Number of Components l represents the number of components and also describes the last compo-
nent in a row

new Parameter of a Process Plan Component new indicates whether the associated quality class has already been reached 
within the tree structure

o1 − o7 Specific Refurbishing Tasks Identified tasks involved in the remanufacturing process, such as replacing 
components or performing software updates

OA Set of Remanufacturing Tasks All feasible refurbishing tasks available for application based on the com-
pany’s resources and capabilities

pk Probability of Outcome k The likelihood that a particular outcome will result from executing a spe-
cific task

pacc Accumulated Probability The total probability of success accumulated while applying a sequence of 
tasks in a process plan

PP Process Plan A sequence of tasks or operations applied to remanufacture a product from 
its current quality class to an improved one

PPh , PPi , PPj , 
PPm , PPn , 
PPnew

Specific Process Plan A specific sequence of tasks used to remanufacture a product, identified 
uniquely in the look-up table. PPnew references a newly created sequence

QP Quality Parameter Specific parameters that define the quality attributes of a product, both 
hardware and software-related

QPmod Modified Quality Parameter The quality parameter modified by the transformation in the remanufactur-
ing task

QC Quality Class(es) Classification of a product based on its quality parameters, indicating its 
condition or performance level

QCattain Attainable Quality Classes Attainable quality classes after performing one task
QCend Attainable Quality Class at the End The quality class achieved after applying a sequence of remanufacturing 

tasks to a product
QCstart Initial Quality Class The starting quality class of a product before any remanufacturing tasks are 

applied
QCstart+c Quality Class after c Tasks The quality class of a product after applying c remanufacturing tasks start-

ing from QCstart

RL Reinforcement Learning A method of the field of machine learning
RPP Remanufacturing Process Planning The process of planning and organizing remanufacturing operations to 

restore used products to like-new conditions
SPareto Set of Pareto Optimal Process Plans A collection of process plans that are non-dominated, meaning no other 

plans are better in all considered criteria simultaneously
Ttype Transformation Type The type of transformation applied to the quality parameters, e.g., additive, 

multiplicative, or replace
xdi Decision Variable x for demand d and inventory i A binary variable indicating whether inventory product i is used to fulfill 

demand d (1 if used, 0 otherwise)
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Algorithm

Algorithm 1  Remanufacturing process planning model
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