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1. Introduction

The usage of Machine Learning (ML) methods in indus-
trial manufacturing is still on the rise. With the possible use
cases ranging from machine-specific tasks like predictive main-
tenance to workpiece-specific ones like quality prediction, there
remains much untapped potential [1]. This holds especially true
in the world of industrial robotics, where many of the advanced
supervision methods already established for more traditional
production machines are still in their infancy [2]. Since robotic
systems are gaining importance in industrial contexts due to in-
creasing demands for both flexibility and productivity [3], the
potential benefits of implementing ML based prediction and
fault detection methods are also increasing.

To unlock this potential, hurdles like data availability, suit-
able model design and the need for computing resources must
first be overcome [4]. An additional challenge that needs to be
addressed before using a newly trained model is its deploy-

ment [5]. Deployment describes the process between the devel-
opment and execution of a piece of software [6]. It includes, but
is not limited to, installing, integrating, activating, and updating
the software [7]. In order to effectively deploy an ML model
problems like data transfer to and from the model, environment
management, and software testing need to be addressed [8].

A previous work presents a structure for a standardized ML
data pipeline [9]. It separates the process steps that need to be
close to the machine (data collection) and those that can be ex-
ecuted elsewhere (data processing, persistence, visualization)
into separate containers and connects them using a message
broker.

This approach is the first step towards unifying the deploy-
ment of ML methods. It succeeds in providing reusable build-
ing blocks for the separate process steps and an easily mod-
ifiable communication between them. However, there are im-
provements to be made. Using multiple separate data sources
requires significant implementation efforts, as does introducing
additional processing steps.
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To improve on those shortcomings, this paper presents an
approach based on the Robotic Operating System (ROS). In
robotic research contexts, ROS has become the de-facto stan-
dard messsaging service provider [10]. Its successor ROS2 in-
creases its usability for industrial environments by improving
upon factors like security, reliability, and support for large scale
embedded systems [11]. We aim to utilize those improvements
to achieve a highly modular low-code deployment pipeline for
both robotic and non-robotic production equipment that can be
easily introduced into existing robotic infrastructures.

2. State of the Art

Additionally to the previous work mentioned in section 1,
numerous other approaches to ease and standardize deployment
of ML models exist in the state of the art. Some notable exam-
ples are evaluated in the following.

2.1. General ML Pipelines

The Kubeflow Pipelines platform [12] enables the compila-
tion of multiple components into an executable and container-
ized pipeline. This ensures cross-platform portability and effi-
cient use of computing resources. While it provides a reliable
way to implement the data processing steps, the data transfer
from the machine to the model still requires significant coding
effort.

In [13], a pipeline for the automation of data preparation and
model training is presented. At the time of writing, it is only
suitable for binary classification tasks, however, it is still in ac-
tive development. Training data is provided in a file format, the
pipeline is not suitable to be integrated into an existing data in-
frastructure. Its intended use case is the comparison and training
and not the active deployment of models.

A bigger scope is presented in [14]. The pipeline proposed
there encompasses not only the deployment of the model, but
also the problem analysis, feature engineering, and model de-
velopment. The presented steps needed to use a model, i.e. data
extraction, data preparation, and model usage, are similar to
those in [9]. Being a more structural analysis of the develop-
ment of ML models, no sample implementation is provided.

General ML pipelines offer good ways to train models and
get inference results. The deployment of the model, however,
still requires manual adaptation to the environment at hand. In
the following, existing approaches with the ROS environment
in mind are evaluated.

2.2. ROS Deployment Infrastructures

[15] proposes a robot-centric deployment approach that is
not unsimilar to ours. It uses ROS for communication with the
robotic agent and splits the separate tasks within the pipeline
into separate nodes. However, it focuses on image classification
and how that can be used to infer control decisions like avoiding
detected obstacles. As such, abstracting this approach for cases
with non-image data or differing ML methods would require
considerable development effort.

A similar approach is explored in [16], where in addition to
image data, a separate track of nodes handles audio input in
order to provide a holistic human-robot-interface. While inte-
grating multiple different data sources, the developed pipeline
is not meant to be adapted to different use cases and is instead
focused on solving a specific problem.

In conclusion, according to our research there is currently no
modular and scalable approach to provide a data pipeline for the
deployment of generic ML models in the context of industrial
robots. A generalized implementation that is compatible with
existing infrastructure has the potential to save development ef-
fort over specialized solutions for every possible problem.

3. Proposed Deployment Pipeline Architecture

The goal of our development efforts is therefore to develop a
generally applicable deployment pipeline that offers high mod-
ularity and scalability. In the following, the proposed pipeline
and the design decisions made to achieve those objectives are
presented. The level of detail examined increases from the big
picture to a detailed examination of the individual elements.

3.1. The pipeline as a whole

Similar to the existing approaches shown in [9] and [15],
we split up all functionality into separate independently exe-
cutable programs. The primary building blocks of the pipeline
consist of preprocessing, processing, and persistence. For this

Fig. 1. Proposed Pipeline. The functionality implemented within the processor
object depends on the use case, communication functionality is provided by the
processing node. Own illustration based on [9].
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Fig. 2. Setup process and data path between the processing node, the processor object, and the ROS network.

first stage of development, it is assumed that all data sources,
i.e. sensors and robots, are already integrated into a ROS net-
work and no further integration is needed. The general structure
of the pipeline is shown in Fig. 1.

The individual processing and persistence units are imple-
mented as nodes within the context of ROS. This allows them
to be executed independently of and in parallel to other nodes
from any machine within the same ROS network. This network
allows communication between any pair of individual units and
is therefore able to handle all communication. A single data
adaptation node running on a lightweight embedded system
close to the monitored machine with the actual processing units
running on a separate computer is as feasible a use case as all
functionality being executed on an edge device with no external
communication. Both cases are supported by our pipeline and
functionality developed with one in mind can be used for the
other without additional effort.

3.2. Detailed view of the individual units

This subsection aims to provide an overview of the func-
tionality implemented within the separate nodes used for data
(pre-)processing and data persistence. A specific unit for data
visualization is not deemed necessary, since ROS specific tools
like rqt allow for extensive visualization options.

3.2.1. Data processing
Modularity for the processing node is achieved by packaging

all actual processing functionality into an exchangeable proces-
sor object that is defined at node creation. This object is ex-
pected to have an execute function, which is called periodically
with a defined frequency. The gathered input data is transferred
to this function and the output published backed into the ROS
network, where it can be visualized or processed further. This
structure allows using the concept of the processing unit for all
tasks that fall within the preprocessing and processing blocks.

The processor object allows the definition of parameters.
These are automatically linked to newly created ROS para-
meters, which enables the control of the unit functionality at
runtime. For an example unit that provides resampling function-
ality, one possible parameter would be the sampling frequency.
This allows dynamic changes to the provided output and a quick
adaptation to new use cases. The setup process and data path
between the processing node, the processor object and the ROS
network are shown in Fig. 2.

The processing node uses publisher-subscriber patterns to
transmit data, due to most sensory equipment providing data
in this format. Additionally, this enables easy scalability by al-
lowing multiple subscribers or publishers on the same topic. For
example, if multiple different features need to be extracted from
the raw source data, multiple processing units implementing
separate extraction functionalities can be developed, improved
and implemented independently, allowing a clear separation of
tasks.

Generalizability is achieved by a dynamic creation of pub-
lishers and subscribers according to a config file. The structure
of this config file for one of the encoder nodes in the exemplary
use case (see section 4) is shown in Fig. 3. All inputs neces-
sary for executing the processing function are defined under the
Inputs header. For each, the ROS topic publishing the data is
defined in the “Topic” field. ROS messages consist of multiple
fields carrying separate pieces of data. They can also carry other
ROS messages, generating a structure with arbitrary depth. The
specific field the data relevant to the processing unit at hand
can be found is specified under “Field”. To ensure that the mes-
sage types of the topics can be handled correctly, they have to
be imported at runtime. For this, the Imports header defines the
packages and modules that need to be imported. The outputs
of the processing function are published under the respective
topics in the Outputs header. They are defined analogous to the
inputs.
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Inputs:

Effort0:

Description: "Effort0"

Topic: "effort_split_lp"

Field: ["effort0"]

MessageType: "SplitEfforts"

Outputs:

Loss:

Description: "Encoder Loss"

Topic: "encoder_loss_0"

Field: ["loss"]

MessageType: "EncoderLoss"

Imports:

SplitEfforts:

Package: "ros_ml_messages.msg"

Module: "SplitEfforts"

EncoderLoss:

Package: "ros_ml_messages.msg"

Module: "EncoderLoss"

Fig. 3. Exemplary config structure.

If already developed units are to be deployed into a differ-
ing environment with different communication standards (topic
names, topic types) the effort of deployment is reduced to the
adaptation of the unit individual config files. Optional descrip-
tions for each input and output can help identify the appropriate
data sources in scenarios where the user of the processing unit
differs from the developer.

3.2.2. Data persistence
ROS-native tools like rosbag can be used to intuitively

record and save messages published on relevant topics. Since
the recorded bags are large in size and not suitable for training
models, our pipeline provides a recording node that operates on
the same config as the processing node. It does not process or
publish data; it records the topics under Inputs and saves the
relevant fields into a csv-file. This file can then be used for data
analysis or model training. This naturally also works on existing
rosbags. Additionally, nodes can be set up to record the topics
into a time series database such as InfluxDB.

4. Exemplary Use Case

As the previous chapter described the design and structure
of our pipeline, this section presents an exemplary practical use
case that implements and utilizes it. The goal of this is to show
the ease of the deployment process offered by our approach.

The presented use case concerns the monitoring of a han-
dling robot during a reassembly task. The robot used is a Uni-
versal Robots UR5e (Datasheet available at [17]), the assembly
group in question consists of a 3D printed replica of an electric
hairpin motor. The setup is shown in Fig. 4 (a). The task for the
robot is to take the lid of the motor and place it on the table they

both stand on before picking it back up and placing it back. To
avoid crashes and generate movement commands, the process is
run in parallel on a digital twin (shown in Fig. 4 (b)) and move-
ment commands as well as gripper actuation are received via
a ROS2 interface and a publisher/subscriber and client/service
setup, respectively. More information about the planing of the
disassembly and the generation of the commands can be found
in [18].

For monitoring and control purposes, the ROS2 interface
publishes various data about the robot into the network. This
includes but is not limited to the position, velocity and torque
(called “effort” for generalizability reasons) for each joint. To
detect deviations and errors during the reassembly we use
torque data recorded during error-free runs to train an autoen-
coder for each joint. To record the data in the first place, the
recording node mentioned in subsubsection 3.2.2 is used. The
csv-file it exports contains the torque values for each joint for
each sampling point during the reference runs (the joint states
topic the torque values are sent on is published with a frequency
of 500 Hertz). Using this data, an autoencoder specific to each
joint is trained. The structure of the encoders is identical; they
have 50 input and 50 output neurons and reduce the data down
to four neurons at the minimum.

To deploy the autoencoders, a pipeline of multiple different
units is set up (shown in Fig. 5). The joint effort values are low-
pass filtered and passed to the individual encoders. The calcu-
lated encoder loss values (that is, the mean squared error be-
tween the real signal and the signal reconstructed by the au-
toencoder) are then low-pass filtered again before checking if
any of them are above a threshold. The low-passes are intro-
duced to reduce noise and ensure that only real anomalies are
detected. All individual processing steps are implemented using
separate processing units, and parameters like the low-pass cut-
off frequencies and the threshold value can be changed dynam-
ically. In addition to the output of the threshold unit, tools like
rqt can be used to monitor every data transfer between units.

To test both the pipeline and the developed autoencoders, the
reassembly process is deliberately obstructed in multiple differ-
ent ways. The resulting maximum and average encoder losses
for Joints 5, 4, and 0 are shown in Table 1. The induced anoma-
lies and their effect on the encoder losses are discussed in the
following.

Fig. 4. (a) Experimental setup and robot joint numbers; (b) Simulated environ-
ment
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Fig. 5. Logical dataflow for the exemplary use case.

With no obstruction to the task, the maximum losses for
joints 5 and 4 are nearly twice the maximum loss for joint 0,
while the average losses are close to identical. A possible ex-
planation is the interaction with the lid. Because the movement
commands originate from a simulation not perfectly aligned to
reality, the robot presses the lid lightly into the motor when re-
placing it, resulting in a momentarily higher torque.

For the first obstruction, the operator pushes manually
against the robot’s shoulder joint (joint 0) and subsequently
blocks its movement as it tries to move the lid to the side. This
results in a maximum encoder loss of around two times the un-
obstructed value.

For a second scenario, the lid of the motor is held in place
as the robot tries to remove it from the housing. This results in
the robot not being able to grip the lid, continuing the rest of
the program with an empty gripper. Ultimately, this results in
the robot crashing into the lid as it tries to place the lid it should
be carrying onto the housing. This leads to a maximum encoder
loss of nearly five times the unobstructed value for joints 4 and
5, with joint 0 not being affected.

Table 1. Maximum (and average) encoder loss for joints 5, 4, and 0 during each
scenario.

Scenario Joint 5 Joint 4 Joint 0

No obstruction 0.36 (0.05) 0.31 (0.06) 0.17 (0.06)
Blocked shoulder 0.38 (0.06) 0.34 (0.07) 0.33 (0.08)
Blocked lid 1.52 (0.10) 1.48 (0.11) 0.16 (0.05)

The obstructions lead to significant increases in the encoder
losses for both cases, but the magnitude of the impact differs.
This could be addressed by using different threshold values for
each joint, requiring only a slight modification to the threshold
units processing object.

5. Summary and Outlook

In this paper, a pipeline for the efficient deployment of ML
models in industrial environments is presented. It achieves high
modularity and ease of use by offering an automated setup of
communication channels based on intuitively structured con-
fig files. It is generally applicable to a variety of use cases by
not restricting the form, structure, amount, or frequency of data

processing. While the development and training of new mod-
els still require development effort, the proposed pipeline helps
to get both new models into existing environments and existing
models into new environments.

Future work will expand the test domain to non ROS-native
environments like traditional machine tools. For that, a data
adaption node that reads data from the communication proto-
col currently at use and publishes that data to the ROS network
is needed. Additionally, the pipeline will be used to deploy to
more complex use cases to key out limitations and potentials
for improvement.
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