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Abstract: Lyapunov-Krasovskii functionals of robust type have recently been introduced for
the stability analysis in time-delay systems. They are inspired by the wide-spread Lyapunov-
Krasovskii functionals of complete type, but aim at improved robustness results. The present
paper recaps the most important aspects and proposes a numerical method to solve the defining
equation of these functionals numerically. The numerical method relies on a Legendre-tau-
based ODE approximation of the time-delay system and has recently been shown to yield
convincing results for the finite-dimensional approximation of Lyapunov-Krasovskii functionals
of complete type. In the latter case, a Lyapunov equation has to be solved. In the case of
Lyapunov-Krasovskii functionals of robust type, an algebraic Riccati equation has to be solved
instead.
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1. INTRODUCTION

An important application of complete-type Lyapunov-
Krasovskii (LK) functionals (Kharitonov and Zhabko,
2003) and of related concepts (Alexandrova, 2020) is the
question of robustness. The LK functional is constructed
for an asymptotically stable nominal linear system ẋ(t) =
A0x(t) + A1x(t − h). It aims at characterizing admissible
added terms in

ẋ(t) = A0x(t) +A1x(t− h)︸ ︷︷ ︸
f(xt)

+ g̃(x(t), x(t− h))︸ ︷︷ ︸
g(xt)

(1)

(A0, A1 ∈ Rn×n, g̃ is locally Lipschitz, g̃(0n, 0n) = 0n).
For instance, g̃(x(t), x(t − h)) might address higher order
remainder terms from a linearization, a saturation nonlin-
earity, or additional linear terms that amount to uncer-
tainties in the coefficient matrices A0, A1. The robustness
statement derivable from complete-type LK functionals
provides a linear norm bound on such terms

∥g̃(x(t), x(t− h))∥2 ≤ γ
∥∥∥
[
x(t−h)
x(t)

]∥∥∥
2
, γ < γmax (2)

with some γmax > 0, see Melchor-Aguilar and Niculescu
(2007). If this perturbation restriction is satisfied, the
stability of the zero equilibrium of the nominal system is
not compromised by the perturbation g̃(x(t), x(t− h)).

A main advantage of LK-functional-based methods com-
pared to mere frequency domain methods (e.g., Bliman
(2000)) is the ability to cope with nonlinearities that
reside only locally within the perturbation restriction. In
that case, a regional stability statement can be derived in
further steps; Melchor-Aguilar and Niculescu (2007); Villa-
fuerte and Mondié (2007); Alexandrova (2020). In order to
obtain such an estimation of the domain of attraction, the
existence statement of the LK functional and the resulting
perturbation restriction is not enough. Such applications

also require the explicit knowledge of the LK functional (to
make sense of a sublevel set) as well as non-conservative
bounds on that functional. The common formula for the
computation of complete-type LK functionals is based on
an a priori calculation of the so-called delay Lyapunov
matrix function (Kharitonov, 2013). As an alternative,
we have recently proposed an approach to derive LK
functionals of complete type numerically without such an
intermediate step (Scholl et al., 2024). The approach also
comes along with improved bounds on the functional. It
relies on an ODE approximation of the time-delay system.
Only a finite-dimensional Lyapunov equation has to be
solved to obtain a finite-dimensional approximation of the
LK functional of complete type. This numerical approach
however can also be applied to more general defining
equations of LK functionals and thus paves the way to
a more adapted construction of the LK functional.

The prevalent problem of LK functionals of complete type
is that the obtainable robustness statement is very restric-
tive, i.e., γmax in (2) is small. This to improve has been
the main objective of the introduction of LK functionals
of robust type in Scholl (2023). So far, however, only the
definition of LK functionals of robust type, their existence,
the achievable robustness statements, and properties of the
functional have been presented. The question of how to
compute the functional remained unanswered, despite of
being crucial for the above described application.

To answer this question is the objective of the present pa-
per. We are going to use the above mentioned ODE-based
approach that has proven to yield convincing results for
LK functionals of complete type in Scholl et al. (2024). The
defining equation of LK functionals of robust type is more
involved, but in terms of the matrix equation that arises in
the numerical approach, in the end, the Lyapunov equation
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A0x(t) + A1x(t − h). It aims at characterizing admissible
added terms in
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A0x(t) + A1x(t − h). It aims at characterizing admissible
added terms in
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1. INTRODUCTION

An important application of complete-type Lyapunov-
Krasovskii (LK) functionals (Kharitonov and Zhabko,
2003) and of related concepts (Alexandrova, 2020) is the
question of robustness. The LK functional is constructed
for an asymptotically stable nominal linear system ẋ(t) =
A0x(t) + A1x(t − h). It aims at characterizing admissible
added terms in

ẋ(t) = A0x(t) +A1x(t− h)︸ ︷︷ ︸
f(xt)

+ g̃(x(t), x(t− h))︸ ︷︷ ︸
g(xt)

(1)

(A0, A1 ∈ Rn×n, g̃ is locally Lipschitz, g̃(0n, 0n) = 0n).
For instance, g̃(x(t), x(t − h)) might address higher order
remainder terms from a linearization, a saturation nonlin-
earity, or additional linear terms that amount to uncer-
tainties in the coefficient matrices A0, A1. The robustness
statement derivable from complete-type LK functionals
provides a linear norm bound on such terms

∥g̃(x(t), x(t− h))∥2 ≤ γ
∥∥∥
[
x(t−h)
x(t)

]∥∥∥
2
, γ < γmax (2)

with some γmax > 0, see Melchor-Aguilar and Niculescu
(2007). If this perturbation restriction is satisfied, the
stability of the zero equilibrium of the nominal system is
not compromised by the perturbation g̃(x(t), x(t− h)).

A main advantage of LK-functional-based methods com-
pared to mere frequency domain methods (e.g., Bliman
(2000)) is the ability to cope with nonlinearities that
reside only locally within the perturbation restriction. In
that case, a regional stability statement can be derived in
further steps; Melchor-Aguilar and Niculescu (2007); Villa-
fuerte and Mondié (2007); Alexandrova (2020). In order to
obtain such an estimation of the domain of attraction, the
existence statement of the LK functional and the resulting
perturbation restriction is not enough. Such applications

also require the explicit knowledge of the LK functional (to
make sense of a sublevel set) as well as non-conservative
bounds on that functional. The common formula for the
computation of complete-type LK functionals is based on
an a priori calculation of the so-called delay Lyapunov
matrix function (Kharitonov, 2013). As an alternative,
we have recently proposed an approach to derive LK
functionals of complete type numerically without such an
intermediate step (Scholl et al., 2024). The approach also
comes along with improved bounds on the functional. It
relies on an ODE approximation of the time-delay system.
Only a finite-dimensional Lyapunov equation has to be
solved to obtain a finite-dimensional approximation of the
LK functional of complete type. This numerical approach
however can also be applied to more general defining
equations of LK functionals and thus paves the way to
a more adapted construction of the LK functional.

The prevalent problem of LK functionals of complete type
is that the obtainable robustness statement is very restric-
tive, i.e., γmax in (2) is small. This to improve has been
the main objective of the introduction of LK functionals
of robust type in Scholl (2023). So far, however, only the
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obtain such an estimation of the domain of attraction, the
existence statement of the LK functional and the resulting
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also require the explicit knowledge of the LK functional (to
make sense of a sublevel set) as well as non-conservative
bounds on that functional. The common formula for the
computation of complete-type LK functionals is based on
an a priori calculation of the so-called delay Lyapunov
matrix function (Kharitonov, 2013). As an alternative,
we have recently proposed an approach to derive LK
functionals of complete type numerically without such an
intermediate step (Scholl et al., 2024). The approach also
comes along with improved bounds on the functional. It
relies on an ODE approximation of the time-delay system.
Only a finite-dimensional Lyapunov equation has to be
solved to obtain a finite-dimensional approximation of the
LK functional of complete type. This numerical approach
however can also be applied to more general defining
equations of LK functionals and thus paves the way to
a more adapted construction of the LK functional.

The prevalent problem of LK functionals of complete type
is that the obtainable robustness statement is very restric-
tive, i.e., γmax in (2) is small. This to improve has been
the main objective of the introduction of LK functionals
of robust type in Scholl (2023). So far, however, only the
definition of LK functionals of robust type, their existence,
the achievable robustness statements, and properties of the
functional have been presented. The question of how to
compute the functional remained unanswered, despite of
being crucial for the above described application.

To answer this question is the objective of the present pa-
per. We are going to use the above mentioned ODE-based
approach that has proven to yield convincing results for
LK functionals of complete type in Scholl et al. (2024). The
defining equation of LK functionals of robust type is more
involved, but in terms of the matrix equation that arises in
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will simply be replaced by an algebraic Riccati equation.
As a result, the implementation effort remains similarly
low, while, at the same time, the obtained functional comes
along with a significantly improved robustness statement.

The paper is organized as follows. First, the most impor-
tant aspects of LK functionals of robust type are discussed
in Section 2. Then, Section 3 presents the proposed numer-
ical approach. Its applicability is finally confirmed by an
example in Section 4, before Section 5 concludes the paper.

2. LK FUNCTIONALS OF ROBUST TYPE

LK functionals of robust type have the structure

V (ϕ) = ϕ⊤(0)Pxx ϕ(0) + 2

∫ 0

−h

ϕ⊤(0)Pxz(η)ϕ(η) dη

+

∫ 0

−h

∫ 0

−h

ϕ⊤(ξ)Pzz(ξ, η)ϕ(η) dη dξ

+

∫ 0

−h

ϕ⊤(η)Pzz,diagϕ(η) dη, (3)

where Pxx, Pzz,diag ∈ Rn×n, Pxz ∈ L2([−h, 0],Rn×n), and
Pzz ∈ L2([−h, 0] × [−h, 0],Rn×n). Thus, the structure is
the one known from complete-type LK functionals, respec-
tively, it is slightly simpler since Pzz,diag(η) ≡ Pzz,diag ∈
Rn×n is constant. Note that complete-type LK function-
als (Kharitonov, 2013, Def. 2.7) are defined via their
derivative D+

f V along solutions of the unperturbed linear

nominal system ẋ(t) = A0x(t) + A1x(t − h) =: f(xt). In
order to be a complete-type LK functional, that derivative
must have a very special structure. It depends on three
arbitrarily chosen positive definite matrices that have to
be chosen a priori when constructing such a functional.
LK functionals of robust type are also defined in terms
of the derivative D+

f V . However, the derivative does not
show the special structure required for being a complete-
type LK functional. Moreover, contrary to complete-type
LK functionals, the derivative is not prescribed by a fixed
ansatz with arbitrarily chosen matrices.

Instead,D+
f V in the defining equation of LK functionals of

robust type is tailored to the class of perturbations g(xt) in
(1) that shall be tackled in the robustness analysis. To this
end, it incorporates a characterization of the perturbation
g(xt) in terms of the perturbation structure and in terms
of a compatible sector-shaped perturbation restriction. We
are going to take a closer look at these ingredients before
the defining equation is finally stated in Sec. 2.3.

2.1 Perturbation Structure

The perturbation structure is described via a tuple (B, C),
referring to the decomposition of the perturbation as

g(xt) = −Ba(Cxt), (4)

where xt : [−h, 0] → Rn;xt(θ) = x(t+θ) denotes the state.
The matrix B ∈ Rn×m encodes which components of the
system equation are affected by the injection of the pertur-
bation, whereas the operator C : C([−h, 0],Rn) → Rp gen-
erates the argument of the core nonlinearity a : Rp → Rm.
Since the perturbation only depends on x(t) = xt(0) and
x(t− h) = xt(−h), this operator C takes the form

Cϕ =

[
C1ϕ(−h)
C0ϕ(0)

]
, i.e., Cxt =

[
C1 x(t− h)
C0 x(t)

]
, (5)

γ

−γ

a(ζ)

ζ

α

(a)

Πζζ = γ2

Πζa = 0

Πaa = −1

1
ρ

a(ζ)

ζ

α

(b)

Πζζ = 0

Πζa = 1
2

Πaa = −ρ

k2

k1

a(ζ)

ζ

α

(c)

Πζζ = −k1k2

Πζa = k1+k2
2

Πaa = −1

Fig. 1. If p= m=1, then w(ζ, α) ≥ 0 with w from (7) de-
scribes a sector in the (ζ, α) plane (non-gray region).

C0 ∈ Rp0×n, C1 ∈ Rp1×n. The result of (5) has the overall
number of rows p = p0 + p1. A vanishing C0 or C1, i.e.,
p0 = 0 or p1 = 0, is also possible. Still, to establish
some desired properties in the later defined LK functional
(e.g., certain lower bounds on V (ϕ) or upper bounds on
D+

(f+g)V (ϕ)), full rank matrices for C0 and/or C1 might

be desirable. Consider a simple example (Scholl, 2023).

Example 2.1. In the described framework,

g(xt) =

[
0

−x3
1(t− h)

]

can be expressed via B =
[
0
1

]
, C1 = [1 0], and p0 = 0,

with the core nonlinearity a(ζ) = ζ3 in (4). An alternative
choice isB =

[
0
1

]
, full-rank matrices C1 =

[
1 0
0 ε

]
, C0 = εI2,

ε ∈ R, and a([ζ1, ζ2, ζ3, ζ4]
⊤) = ζ31 .

As a consequence, the perturbation restriction, which will
be discussed in the sequel, only needs to refer to the specific
function ζ → a(ζ) from (4). Choosing

B = C0 = C1 = In (6)

leads again to an unstructured consideration of the overall

g̃(x(t), x(t− h))
(4),(1)
= −Ba

([
C1x(t−h)
C0x(t)

])
(6)
= −a

([
x(t−h)
x(t)

])

as in the result (2) from complete-type LK functionals.

2.2 Perturbation Restriction

The concept allows to choose a type of perturbation
restriction that fits best to the nonlinearity a(·).
Example 2.2. For simplicity, consider p = m = 1, i.e.
ζ → α = a(ζ) in (4) is a scalar map. A possible type of
perturbation restriction is a linear norm bound |a(ζ)| ≤
γ|ζ|, see Fig. 1a. The robustness statement will then
describe the maximum slope γ similarly to the statement
known from complete-type LK functionals in (2). However,
for a nonlinearity like a(ζ) = ζ3, the sector in Fig. 1b
fits much better. The robustness statement then describes
the admissible upper slope 1

ρ which might be considerably

larger than γ. As a result, the range of ζ, for which
a(ζ) = ζ3 resides within the sector, will also be larger. For
a saturation nonlinearity, we rather choose Fig. 1c with a
fixed k2, and determine the admissible lower slope k1.

The perturbation restriction will be specified via three ma-
trices (Πζζ ,Πζa,Πaa), where the last one Πaa is required
to be negative definite (Πζζ = Π⊤

ζζ ∈ Rp×p,Πaa = Π⊤
aa ∈

Rm×m,Πζa ∈ Rp×m). These matrices define an indefinite
quadratic form in [ζ⊤, α⊤]⊤

w(ζ, α) := ζ⊤Πζζζ + 2ζ⊤Πζaα+ α⊤Πaaα. (7)
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number of rows p = p0 + p1. A vanishing C0 or C1, i.e.,
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some desired properties in the later defined LK functional
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choice isB =
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as in the result (2) from complete-type LK functionals.

2.2 Perturbation Restriction

The concept allows to choose a type of perturbation
restriction that fits best to the nonlinearity a(·).
Example 2.2. For simplicity, consider p = m = 1, i.e.
ζ → α = a(ζ) in (4) is a scalar map. A possible type of
perturbation restriction is a linear norm bound |a(ζ)| ≤
γ|ζ|, see Fig. 1a. The robustness statement will then
describe the maximum slope γ similarly to the statement
known from complete-type LK functionals in (2). However,
for a nonlinearity like a(ζ) = ζ3, the sector in Fig. 1b
fits much better. The robustness statement then describes
the admissible upper slope 1

ρ which might be considerably

larger than γ. As a result, the range of ζ, for which
a(ζ) = ζ3 resides within the sector, will also be larger. For
a saturation nonlinearity, we rather choose Fig. 1c with a
fixed k2, and determine the admissible lower slope k1.

The perturbation restriction will be specified via three ma-
trices (Πζζ ,Πζa,Πaa), where the last one Πaa is required
to be negative definite (Πζζ = Π⊤

ζζ ∈ Rp×p,Πaa = Π⊤
aa ∈

Rm×m,Πζa ∈ Rp×m). These matrices define an indefinite
quadratic form in [ζ⊤, α⊤]⊤

w(ζ, α) := ζ⊤Πζζζ + 2ζ⊤Πζaα+ α⊤Πaaα. (7)

If p = m = 1, then w(ζ, α) ≥ 0 describes a sector in the
(ζ, α) plane shown in Fig. 1. The nonlinearity a(ζ) might
satisfy the accordingly defined perturbation restriction

w(ζ, a(ζ)) ≥ 0 (8)

either locally for some ζ or even globally for all ζ ∈ Rp.

The simplest perturbation restriction is described by

Πζζ = γ2Ip, Πζa = 0p×m, Πaa = −Im (9)

with some parameter γ > 0. It amounts by (7) and (8) to

w(ζ, a(ζ)) = γ2ζ⊤ζ − a⊤(ζ)a(ζ) ≥ 0. (10)

Thus, (9) stands for a⊤(ζ)a(ζ) ≤ γ2ζ⊤ζ, which is nothing
else than the linear norm bound

∥a(ζ)∥2 ≤ γ∥ζ∥2. (11)

In the unstructured case (6), the latter describes the
same type of restriction like (2) from complete-type LK
functionals, but γ can become significantly larger. These
admissible values of γ depend on the robustness of the
nominal system under the given perturbation structure
(B, C). Namely, all

γ < γmax :=
1

supω∈R ∥G(iω)∥2
=

1

∥G∥H∞

(12)

are admissible, based on the transfer function

G(s) =
[
C1e

−sh

C0

]
(sI −A0 − e−shA1)

−1B. (13)

If γ < γmax, then an LK functional of robust type exists,
i.e., the defining equation that will be described below is
solvable. If, however, γ > γmax, then no LK functional
of robust type exists. In Scholl (2023), both statements
are proven by means of an operator-valued version of
the Kalman-Yakubovich-Popov lemma (Likhtarnikov and
Yakubovich, 1977, Thm. 3). For admissible parameter
values (cf. ρ and k1 in Fig. 1) arising in other types of
perturbation restrictions, see Scholl (2023).

2.3 Defining Equation

A final term that will also be encountered is

v(ϕ) := Pxx ϕ(0) +

∫ 0

−h

Pxz(η)ϕ(η) dη, (14)

which relies on a part of the searched functional (3).
Altogether, we have the following definition (Scholl, 2023).

Definition 2.1. (LK functional of robust type).
A functional V : C([−h, 0],Rn) → R≥0 that has the
structure (3) is called a Lyapunov-Krasovskii functional
of robust type with respect to

• the nominal linear system ẋ(t) = f(xt),
• the perturbation structure (B, C), and
• the perturbation restriction matrices (Πζζ ,Πζa,Πaa)

if for all ϕ ∈ C([−h, 0],Rn) it holds

D+
f V (ϕ) = −(Cϕ)⊤ΠζζCϕ−

[
v⊤(ϕ)B

− (Cϕ)⊤Πζa

]
(−Πaa)

−1
[
B⊤v(ϕ)−Π⊤

ζa Cϕ
]
,

(15)
where v : C([−h, 0],Rn) → Rn is given by (14).

Using the linear-norm-bound perturbation restriction (9),
the defining equation (15) simplifies to

D+
f V (ϕ) = −γ2(Cϕ)⊤Cϕ− v⊤(ϕ)BB⊤v(ϕ), (16)

where (Cϕ)⊤Cϕ = ϕ⊤(0)C⊤
0 C0ϕ(0) + ϕ⊤(−h)C⊤

1 C1ϕ(−h).

2.4 What is Achieved by the Defining Equation

For complete-type LK functionals, the restrictive bound on
the perturbation in (2) shall ensure that the perturbation
cannot turn the nonpositive chosen derivative D+

f V (ϕ)

into a D+
(f+g)V (ϕ) that is no longer nonpositive. In con-

trast, for LK functionals of robust type, nonpositivity of
D+

(f+g)V (ϕ) is – by construction – ensured for all ϕ for

which

w(Cϕ, a(Cϕ)) ≥ 0, (17)

i.e., only the perturbation restriction (8) must be satisfied.
This result emerges from ℓ(ζ) ≡ 0 in the following theorem.

Theorem 2.1. (Scholl (2023)). Let V be an LK functional
of robust type (Definition 2.1). For any ϕ ∈ C([−h, 0],Rn)
for which the perturbation restriction is exceeded by a
given offset function ℓ : Rp → R in the sense of

w(Cϕ, a(Cϕ)) ≥ ℓ(Cϕ), (18)

where w is defined in (7), the derivative of V along
solutions of the perturbed equation satisfies

D+
(f+g)V (ϕ) ≤ −ℓ(Cϕ). (19)

To make the result more plausible we shortly recap the
proof for the special case of (16), i.e., a linear norm bound.

Proof. The effect of the perturbation on the deriva-
tive can (analogously to a known result from complete-
type LK functionals, cf. Kharitonov (2013)) shown to be
D+

(f+g)V (ϕ) = D+
f V (ϕ) + 2v⊤(ϕ)g(ϕ). By (4), we have

D+
(f+g)V (ϕ) = D+

f V (ϕ)− 2v⊤(ϕ)Ba(Cϕ)
(16)
= −γ2(Cϕ)⊤Cϕ− v⊤(ϕ)BB⊤v(ϕ)− 2v⊤(ϕ)Ba(Cϕ)
(10)
= −w(Cϕ, a(Cϕ))− ∥B⊤v(ϕ) + a(Cϕ)∥22

(18)

≤ −ℓ(Cϕ).
�

The effect of a small positive definite function ℓ(ζ) in (18)
is indicated by the turquoise shading in Fig. 1. In terms of
the linear norm bound, choosing a quadratic ℓ(ζ) = k3∥ζ∥22
with some small k3 > 0 means that the reduced bound

∥a (Cxt)∥2 ≤
√
γ2 − k3 ∥Cxt∥2 (20)

(which is (18) combined with (10) for ℓ(ζ) = k3ζ
⊤ζ )

already implies

D+
(f+g)V (xt) ≤ −k3 ∥Cxt∥22 . (21)

Besides of an upper bound on D+
(f+g)V (ϕ), also a lower

bound on V (ϕ) is of interest for the usability of the LK
functional. See Scholl (2023) for respective results.

Altogether, for the linear norm bound and with full rank
matrices C0 and C1, LK functionals of robust type are very
similar to LK functionals of complete type. They share
all the advantages but overcome the problem of a usually
much too restrictive robustness statement.

3. THE NUMERICAL APPROACH

The LK functional V maps the state function xt = ϕ ∈
C([−h, 0],Rn) to a scalar value V (xt) ∈ R. The idea
of the numerical approach applied in the present paper
is to map instead a polynomial approximation of the
state function to a scalar value. Since a polynomial is
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uniquely represented by a finite number of coefficients
(e.g., Legendre coordinates, interpolation coordinates, or
monomial coefficients), which can be collected in a vector
c, such an approximation of the quadratic LK functional
simplifies to a quadratic form

V (ϕ) ≈ c⊤Pcc (22)

in the polynomial coordinates c. Thus, it is fully described
by a finite dimensional matrix Pc. The coordinates c will be
created from ϕ = xt via a projection that relies on taking
integrals and on ϕ(0). Therefore, the resulting c⊤Pcc, when
written out in terms of the original function ϕ = xt, even
stands for an expression having the form (3) with some
explicitly known kernel functions. However, there is no
need to write it out since the finite-dimensional quadratic
form c⊤Pcc is much simpler to handle.

The numerical approach, which thus only has to find an
appropriate matrix Pc in (22), directly tackles the defining
equation of the LK functional. The defining equation (15)
refers to the derivative of V (xt) along the solution of
the nominal linear time-delay system, i.e., the directional
derivative in the direction in which the state xt evolves.
Thus, in view of c⊤Pc c, we have to clarify how coordinates
c(t) that provide an approximation of xt evolve with time t.
Spectral methods like the Legendre tau method, which
has been applied to time-delay systems by Ito and Teglas
(1986), exactly address that task. See Hesthaven et al.
(2007) for a general introduction. The result is an ODE

ċ = Ac c (23)

that describes the evolution of such polynomial coordi-
nates. Consequently, the left-hand side of the defining
equation (15) becomes handleable in terms of matrices

D+
f V (ϕ) ≈ D+

(ċ=Acc)
c⊤Pcc = c⊤PcAcc+ c⊤A⊤

c Pcc. (24)

In contrast to complete-type LK functionals, the right-
hand side of the defining equation (15) also depends on the
unknown functional. In total, an algebraic Riccati equation
will arise in (50), from which Pc can be computed. Re-
garding the underlying operator-valued equation, cf. Scholl
(2023), the result is along the lines of Ito and Teglas (1987),
who approximate operator-valued algebraic Riccati equa-
tions that arise in optimal control problems.

3.1 Polynomial Approximation of the State xt

Let us make the approach sketched above more explicit.
The state function θ → xt(θ) at each time t ≥ 0 shall
be approximated by a polynomial on θ ∈ [−h, 0]. A
polynomial of degree N is uniquely determined by N + 1
coordinates which represent the coefficients of some basis
polynomials. Legendre basis polynomials pk : [−1, 1] → R
are originally defined on [−1, 1] and therefore first have to
be scaled and shifted via a composition with

ϑ : [−h, 0] → [−1, 1]; θ → ϑ(θ) := 2
hθ + 1 (25)

to cope with the domain [−h, 0]. Then, the approximating
polynomial for xt at time t ≥ 0 can be written as

xt(θ) ≈
N

k=0

ck(t) pk(ϑ(θ)). (26)

Since xt(θ) is Rn-valued, any Legendre coordinate ck(t) is
also Rn-valued, referring to a vector-valued component of

c(t) = [(c0(t))⊤, . . . , (cN (t))⊤]⊤ ∈ Rn(N+1). (27)

3.2 Exact Evolution of the State xt

In order to derive the time evolution of the coordinates t →
c(t) ∈ Rn(N+1) that uniquely describe the approximated
state, first the time evolution of the exact state t → xt ∈
C([−h, 0],Rn) =: C must be clarified. It obeys an abstract
differential equation d

dtxt = Axt on the state space C,
respectively, noting that ϕ ∈ C gives rise to ϕ(·)

ϕ(0)


∈ C × Rn ⊂ L2 × Rn =: M2, (28)

an abstract differential equation

d

dt

 xt(·)
xt(0)


= A

 xt(·)
xt(0)


(29)

for the embedding in the larger space M2. So far, however,
it suffices to recognize the underlying PDE that arises if
not only the time t but both t and θ are understood as
independent variables in (t, θ) → xt(θ) ∈ Rn. Note that
xt(θ) := x(t + θ) inevitably has equal derivatives w.r.t.
both t and θ and that ẋ(t) = A0x(t) + A1x(t− h) relates
ẋ(t) = ∂

∂txt(θ)|θ=0 with x(t)=xt(0) and x(t−h)=xt(−h).
Therefore, (t, θ) → xt(θ) obeys

∂

∂t
xt(θ) =

∂

∂θ
xt(θ), θ ∈ [−h, 0), t ≥ 0, (30a)

∂

∂t
xt(0) = A0xt(0) +A1xt(−h), t ≥ 0. (30b)

3.3 Ac in the Legendre-Tau-Based ODE Approximation

We are going to apply the Legendre tau method to (30) in
order to obtain Ac in (23), see also (Ito and Teglas, 1986).

Assume for a moment that ϕ : [−h, 0] → R; θ → ϕ(θ)
is a scalar polynomial of degree N , described by its
Legendre coordinates c ∈ RN+1. Its derivative θ → ϕ′(θ) =
d
dθϕ(θ) is a polynomial of degree N − 1 and thus can still
be represented in the same basis. In fact, ϕ′ is exactly
represented by the Legendre coordinates Dcc, where the
differentiation matrix Dc ∈ R(N+1)×(N+1) is given by

Dc = ϑ′




0 1 0 1 0 1 0 1 . . . 0
0 0 3 0 3 0 3 0 . . . 3
0 0 0 5 0 5 0 5 . . . 0
0 0 0 0 7 0 7 0 . . . 7
0 0 0 0 0 9 0 9 . . . 0
0 0 0 0 0 0 11 0 . . . 11
0 0 0 0 0 0 0 13 . . . 0
0 0 0 0 0 0 0 0 . . . 15

. . .
0 0 0 0 0 0 0 0 . . . 0




with ϑ′ =
2

h
, (31)

cf. (Hesthaven et al., 2007, eq. (5.8)), with ϑ′ from (25);
exemplarily, (31) is shown for N even, otherwise a last col-
umn [1, 0, 5, 0, 9, . . . , 0, (2N − 1), 0]⊤ has to be appended.

Thus, if θ → xt(θ) was a scalar polynomial of degree at
most N , which is uniquely represented by its Legendre
coordinates c(t), then (30a) is represented by ċ = Dcc. If
it was Rn-valued, with c stacked as in (27), then (30a) was
exactly described by the coordinate representation

ċ = (Dc ⊗ In)c. (32)

However, the boundary condition (30b) must somehow be
incorporated. This is where the various spectral methods
differ (in fact, the differentiation matrices for different
coordinate choices, e.g., Dy for interpolation coordinates
used in Breda et al. (2016) and Dc for Legendre coordi-
nates, are related by a similarity transform). The Legendre
tau method replaces the last row of (32) by an equation
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uniquely represented by a finite number of coefficients
(e.g., Legendre coordinates, interpolation coordinates, or
monomial coefficients), which can be collected in a vector
c, such an approximation of the quadratic LK functional
simplifies to a quadratic form

V (ϕ) ≈ c⊤Pcc (22)

in the polynomial coordinates c. Thus, it is fully described
by a finite dimensional matrix Pc. The coordinates c will be
created from ϕ = xt via a projection that relies on taking
integrals and on ϕ(0). Therefore, the resulting c⊤Pcc, when
written out in terms of the original function ϕ = xt, even
stands for an expression having the form (3) with some
explicitly known kernel functions. However, there is no
need to write it out since the finite-dimensional quadratic
form c⊤Pcc is much simpler to handle.

The numerical approach, which thus only has to find an
appropriate matrix Pc in (22), directly tackles the defining
equation of the LK functional. The defining equation (15)
refers to the derivative of V (xt) along the solution of
the nominal linear time-delay system, i.e., the directional
derivative in the direction in which the state xt evolves.
Thus, in view of c⊤Pc c, we have to clarify how coordinates
c(t) that provide an approximation of xt evolve with time t.
Spectral methods like the Legendre tau method, which
has been applied to time-delay systems by Ito and Teglas
(1986), exactly address that task. See Hesthaven et al.
(2007) for a general introduction. The result is an ODE

ċ = Ac c (23)

that describes the evolution of such polynomial coordi-
nates. Consequently, the left-hand side of the defining
equation (15) becomes handleable in terms of matrices

D+
f V (ϕ) ≈ D+

(ċ=Acc)
c⊤Pcc = c⊤PcAcc+ c⊤A⊤

c Pcc. (24)

In contrast to complete-type LK functionals, the right-
hand side of the defining equation (15) also depends on the
unknown functional. In total, an algebraic Riccati equation
will arise in (50), from which Pc can be computed. Re-
garding the underlying operator-valued equation, cf. Scholl
(2023), the result is along the lines of Ito and Teglas (1987),
who approximate operator-valued algebraic Riccati equa-
tions that arise in optimal control problems.

3.1 Polynomial Approximation of the State xt

Let us make the approach sketched above more explicit.
The state function θ → xt(θ) at each time t ≥ 0 shall
be approximated by a polynomial on θ ∈ [−h, 0]. A
polynomial of degree N is uniquely determined by N + 1
coordinates which represent the coefficients of some basis
polynomials. Legendre basis polynomials pk : [−1, 1] → R
are originally defined on [−1, 1] and therefore first have to
be scaled and shifted via a composition with

ϑ : [−h, 0] → [−1, 1]; θ → ϑ(θ) := 2
hθ + 1 (25)

to cope with the domain [−h, 0]. Then, the approximating
polynomial for xt at time t ≥ 0 can be written as

xt(θ) ≈
N

k=0

ck(t) pk(ϑ(θ)). (26)

Since xt(θ) is Rn-valued, any Legendre coordinate ck(t) is
also Rn-valued, referring to a vector-valued component of

c(t) = [(c0(t))⊤, . . . , (cN (t))⊤]⊤ ∈ Rn(N+1). (27)

3.2 Exact Evolution of the State xt

In order to derive the time evolution of the coordinates t →
c(t) ∈ Rn(N+1) that uniquely describe the approximated
state, first the time evolution of the exact state t → xt ∈
C([−h, 0],Rn) =: C must be clarified. It obeys an abstract
differential equation d

dtxt = Axt on the state space C,
respectively, noting that ϕ ∈ C gives rise to ϕ(·)

ϕ(0)


∈ C × Rn ⊂ L2 × Rn =: M2, (28)

an abstract differential equation

d

dt

 xt(·)
xt(0)


= A

 xt(·)
xt(0)


(29)

for the embedding in the larger space M2. So far, however,
it suffices to recognize the underlying PDE that arises if
not only the time t but both t and θ are understood as
independent variables in (t, θ) → xt(θ) ∈ Rn. Note that
xt(θ) := x(t + θ) inevitably has equal derivatives w.r.t.
both t and θ and that ẋ(t) = A0x(t) + A1x(t− h) relates
ẋ(t) = ∂

∂txt(θ)|θ=0 with x(t)=xt(0) and x(t−h)=xt(−h).
Therefore, (t, θ) → xt(θ) obeys

∂

∂t
xt(θ) =

∂

∂θ
xt(θ), θ ∈ [−h, 0), t ≥ 0, (30a)

∂

∂t
xt(0) = A0xt(0) +A1xt(−h), t ≥ 0. (30b)

3.3 Ac in the Legendre-Tau-Based ODE Approximation

We are going to apply the Legendre tau method to (30) in
order to obtain Ac in (23), see also (Ito and Teglas, 1986).

Assume for a moment that ϕ : [−h, 0] → R; θ → ϕ(θ)
is a scalar polynomial of degree N , described by its
Legendre coordinates c ∈ RN+1. Its derivative θ → ϕ′(θ) =
d
dθϕ(θ) is a polynomial of degree N − 1 and thus can still
be represented in the same basis. In fact, ϕ′ is exactly
represented by the Legendre coordinates Dcc, where the
differentiation matrix Dc ∈ R(N+1)×(N+1) is given by

Dc = ϑ′




0 1 0 1 0 1 0 1 . . . 0
0 0 3 0 3 0 3 0 . . . 3
0 0 0 5 0 5 0 5 . . . 0
0 0 0 0 7 0 7 0 . . . 7
0 0 0 0 0 9 0 9 . . . 0
0 0 0 0 0 0 11 0 . . . 11
0 0 0 0 0 0 0 13 . . . 0
0 0 0 0 0 0 0 0 . . . 15

. . .
0 0 0 0 0 0 0 0 . . . 0




with ϑ′ =
2

h
, (31)

cf. (Hesthaven et al., 2007, eq. (5.8)), with ϑ′ from (25);
exemplarily, (31) is shown for N even, otherwise a last col-
umn [1, 0, 5, 0, 9, . . . , 0, (2N − 1), 0]⊤ has to be appended.

Thus, if θ → xt(θ) was a scalar polynomial of degree at
most N , which is uniquely represented by its Legendre
coordinates c(t), then (30a) is represented by ċ = Dcc. If
it was Rn-valued, with c stacked as in (27), then (30a) was
exactly described by the coordinate representation

ċ = (Dc ⊗ In)c. (32)

However, the boundary condition (30b) must somehow be
incorporated. This is where the various spectral methods
differ (in fact, the differentiation matrices for different
coordinate choices, e.g., Dy for interpolation coordinates
used in Breda et al. (2016) and Dc for Legendre coordi-
nates, are related by a similarity transform). The Legendre
tau method replaces the last row of (32) by an equation

that addresses the boundary condition (30b). For the
ansatz (26), (30b) becomes

N
k=0

ċk(t) pk(ϑ(0))  
1

= A0

N
k=0

ck(t)

1  
pk(ϑ(0))+A1

N
k=0

ck(t)

(−1)k  
pk(ϑ(−h)) (33)

The first part of
N

k=0 ċ
k(t) =

N−1
k=0 ċk(t) + ċN (t) on the

left-hand side is the sum of the rows in (32), which yield
N−1
k=0

ċk(t) = ϑ′
N

k=0

k(k + 1)

2
ck(t). (34)

Altogether, the ODE approximation from the Legendre
tau method (Ito and Teglas, 1986) is (23) with

Ac = Dc ⊗ In +




0n×n 0n×n 0n×n ··· 0n×n
...

...
...

...
0n×n 0n×n 0n×n ··· 0n×n

A0+A1 A0−A1 A0+A1 ··· A0+(−1)NA1




+ 2
h




0 ··· 0
...

...
0 0 0 0 0 ··· 0

0 −1 −3 −6 −10 ··· −
N(N+1)

2


⊗ In. (35)

3.4 Deriving c for a Given Function ϕ

Let an argument ϕ ∈ C([−h, 0],Rn) of V (ϕ) in (22) or
an initial function ϕ = x0 be given. The function ϕ might
already be a polynomial of degree at most N . Then the
coordinates to be chosen are the Legendre coordinates
that represent ϕ exactly. Clearly, ϕ can also be represented
by any other coordinate choice, which might be easier to
derive. For instance, interpolation coordinates are simply
the pointwise evaluations

yk = ϕ(θ̃k) (36)

on some grid {θ̃k}k∈{0,...,N} (preferably Chebyshev nodes).

The coordinates y = (yk)k∈{0,...,N} can be converted to

c = Tcyy (37)

via a transformation matrix Tcy (see Scholl et al. (2024)
for implementation hints) which establishes that

ϕ(θ) =

N
k=0

ykℓk(ϑ(θ)) =

N
k=0

ckpk(ϑ(θ)) (38)

is a change from Lagrange interpolation basis polynomials
{ℓk(ϑ(·))}k to Legendre basis polynomials {pk(ϑ(·))}k.
Even if ϕ is not yet a polynomial, the interpolating
polynomial (38) that is built from the evaluations (36),

using Chebyshev nodes for θ̃k, gives usually a very good
approximation of ϕ. Therefore, (37) with (36) can in
practice also be used for non-polynomial functions.

Strictly speaking, however, if ϕ is not yet a polynomial
of degree at most N , the projection that gives the ap-
proximating polynomial (respectively its Legendre coordi-
nates c) the Legendre tau method relies upon is as follows.
First note that ϕ can be written as a Legendre series

ϕ(θ) =
∞
k=0

c̃kpk(ϑ(θ)), (39)

with c̃k =
2k + 1

2

 1

−1

ϕ(ϑ−1(ϑ̃))pk(ϑ̃) dϑ̃. (40)

However, the N + 1 coordinates (ck)k∈{0,...,N} that define

ϕ[N ](θ) :=

N
k=0

ckpk(ϑ(θ)) ≈ ϕ(θ) (41)

are not straightforwardly taken from truncating that series
(which would be the L2-optimal polynomial approxima-
tion). Instead, analogously to the treatment of the residual
in the Legendre tau method described above, the last co-
ordinate c̃N is replaced and chosen such that the boundary

value at θ = 0, which is
N

k=0 c
kpk(ϑ(0)) =

N
k=0 c

k, co-
incides with ϕ(0). Consequently, cf. Ito and Teglas (1986),

ck =





c̃k, if k < N,

x̂−
N−1
k=0

c̃k, if k = N, with x̂ = ϕ(0)
(42)

are the searched N + 1 Legendre coordinates c in (41).

3.5 How to Determine Pc

Consider the system with in- and output

ẋ(t) = A0x(t) +A1x(t− h) +Bu(t) (43)

ζ(t) = Cxt =


C1x(t− h)
C0x(t)


. (44)

Combined with the feedback u(t) = −a(ζ(t)), the latter
describes the perturbed system ẋ(t) = A0x(t) + A1x(t −
h)−Ba(

C1x(t−h)
C0x(t)


). Its Legendre-tau-based discretization

ċ(t) = Acc(t) +Bcu(t) (45)

ζ(t) = Ccc(t)

relies on Ac from (35) and on an input matrix

Bc =

0nN×m

B


(46)

that reflects that (1) only affects the last row of the ODE
approximation. Moreover, the output is

Cϕ ≈ Cϕ[N ] = Ccc, (47)

where, analogously to (33), ϕ[N ](0) =
N

k=0 c
k and

ϕ[N ](−h) =
N

k=0(−1)kck, and therefore

Cc =


C1 −C1 C1 · · · (−1)NC1

C0 C0 C0 · · · C0


. (48)

Altogether, with D+
f V (ϕ) ≈ c⊤(PcAc+A⊤

c Pc)c from (24),

Cϕ ≈ Ccc from (47), and

v⊤(ϕ)B ≈ c⊤PcBc, (49)

the finite-dimensional approximation of the defining equa-
tion (15) is the algebraic Riccati equation (ARE)

PcAc +A⊤
c Pc = −C⊤

c ΠζζCc −

PcBc

− C⊤
c Πζa


(−Πaa)

−1

B⊤

c Pc −Π⊤
ζaCc


(50)

for the searched matrix Pc = P⊤
c . In view of the con-

vergence proof (see outlook), we are only interested in the
so-called stabilizing solution of the ARE, which is a unique
solution. For the special case (16), (50) simplifies to

PcAc +A⊤
c Pc = −γ2C⊤

c Cc − PcBcB
⊤
c Pc. (51)

3.6 Change of Coordinates

When using (37), it might be more convenient to transform
the quadratic form once by

V (ϕ) ≈ c⊤Pcc = y⊤T⊤
cyPcTcyy = y⊤Pyy. (52)
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Fig. 2. Error between c⊤Pcc (equivalently χ⊤Pχχ) and its
converged value for some exemplary ϕ(θ). See Sec. 4
for the considered problem. Solid lines rely on the
correct c from (42), dotted lines on c from (36), (37).

An alternative coordinate choice are the mixed coordinates

χ = [(c0)⊤, . . . , (cN−1)⊤, x̂⊤]⊤ (53)

where x̂ =
∑N

k=0 c
k, cf. (42). In particular,

Pχ = T⊤
cχPcTcχ with Tcχ = T−1

χc =
[

InN 0nN×n

−1⊤N ⊗In In

]
(54)

contains the Legendre coefficients of the kernel functions 1

in the approximation of V (ϕ), taking the special role of
x̂ = ϕ(0) in (3) into account. From a numerical point of
view, it is preferable to state the overall ARE (50) in these
coordinates, replacing (Ac, Bc, Cc) by

(Aχ, Bχ, Cχ) = (TχcAcTcχ, TχcBc, CcTcχ) (55)

and replacing Pc by Pχ. In the end, c⊤Pcc = χ⊤Pχχ.

4. EXAMPLE

We consider the example

ẋ(t) =

[
0 1
−1 −2

]
x(t) +

[
0 0
−1 1

]
x(t− 1) + g(xt), (56)

which in (Kharitonov and Zhabko, 2003, Example 1) sup-
plements the introduction of complete-type LK function-
als. As already shown in Scholl (2023), γmax = 0.0227
from a LK functional of complete type in (2) improves to
γmax = 1

∥G∥∞
= 0.1059 for an LK functional of robust type

with B = C0 = C1 = I2. If (56) stems from a second order

system in x1, it can be expected that g(xt) =
[

0
g2(xt)

]
.

Choosing thus B = [0, 1]⊤, even γmax = 1
∥G∥∞

= 0.2462

is obtained. A first observation is that γ [N ]
max = 1

∥G[N]∥∞

from G[N ](s) = Cc(sIn − Ac)
−1Bc converges rapidly, with

|γ [N ]
max − γmax| < 10−8 for all tested N ≥ 4. We choose

γ = (1− 10−5)γmax. The ARE (51) must be solved for Pc

or, preferably, its counterpart with (55) must be solved for
Pχ. We use the standard Matlab implementation icare.
The convergence of the approximation of V (ϕ) for some
exemplary ϕ ∈ C is shown in Fig. 2. The vector c is
derived from the argument ϕ according to (42). As an
alternative, we obtain c from the interpolating polynomial
by applying (36) and (37). Besides of the possibility to
evaluate V (ϕ), we are also interested in the lower bound on
the functional. To this end, we compute the coefficient in
k[N ]

1 ∥x̂∥22 ≤ c⊤Pcc = χ⊤Pχχ, for which a formula is given in
Scholl et al. (2024). This coefficient also converges rapidly
as indicated by the black lower line in Fig. 2.

1 If p1 ̸= 0 in (5), a splitting approach in Scholl (2023) establishes
the separation between Pzz(ξ, η) and Pzz,diag.

5. CONCLUSION AND OUTLOOK

The paper proposes a numerical approach for the recently
introduced LK functionals of robust type V (ϕ). Only
an algebraic Riccati equation (50) has to be solved for
a matrix Pc. Then c⊤Pcc approximates V (ϕ) based on
coordinates c that represent a polynomial approximation
of the argument ϕ. An example already indicates a rapid
convergence as the approximation order N increases.

The proof that c⊤Pcc indeed converges to V (ϕ) for any
given ϕ ∈ C will, due to space reasons, be given sepa-
rately. Using an operator-based description and a splitting
approach from Scholl (2023), this proof benefits from a
known convergence analysis by Ito and Teglas (1987) on
Legendre-tau-based results for optimal control problems.
Still, due to the different type of equation, aspects like the
existence of solutions and uniform boundedness are proven
differently.
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