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Abstract
The neoclassical ambipolarity condition governing the radial electric field in stellarators can
have several solutions, and sudden transitions (in radius) between these can then take place. The
radial position and structure of such a transition cannot be determined from local transport
theory, and instead a non-rigorous model based on a diffusion equation for the electric field is
usually employed for this purpose (Turkin et al 2011 Phys. Plasmas 18 022505). We compare
global (full plasma volume) drift-kinetic simulations of neoclassical transport in the
Wendelstein 7-X stellarator with this model and find significant discrepancies. The position r0
of the transition is not predicted correctly by the diffusion model, but the radial structure of the
transition layer is in reasonable agreement if the diffusion coefficient is chosen appropriately. In
particular, it should depend on the plasma temperature in the same way as the plateau-regime
coefficient of neoclassical transport theory or the gyro-Bohm diffusion coefficient. In the
small-gyroradius limit, the prediction of r0 by the diffusion model simplifies to the so-called
Maxwell construction (Shaing 1984 Phys. Fluids 27 1567–9; Shaing 1984 Phys. Fluids 27
1924–6). However, this property also emerges from a wide range of other mathematical models
in the appropriate limit. The basic assumption underlying these models is that the diffusion, or
generalisations thereof, is independent of the radial electric field, which is however unlikely to
be the case in practice. Presumably this fact explains the discrepancy between the diffusion
model and the drift-kinetic simulations. Finally, it is found that global simulations replicate the
phenomenon of spontaneous root transitions driven by variations in the electron-to-ion
temperature ratio, as predicted by local theory in the small-gyroradius limit.

a See Grulke et al 2024 (https://doi.org/10.1088/1741-4326/ad2f4d) for the W7-X Team.
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1. Introduction

Recent advancements in high-performance computing have
significantly expanded the capabilities of computational
plasma physics. Notably, in the area of magnetic confinement
fusion, full-device simulations have become possible, which
were previously limited by computational constraints. In stel-
larator research, gyrokinetic simulations can nowadays be car-
ried out using global codes in which the computational domain
includes the entire plasma volume rather than a single flux
tube or a single flux surface. Global codes include GENE-
3D [1], a continuum gyrokinetic code for turbulence simu-
lations, FORTEC-3D [2], a particle-in-cell code for global
neoclassical simulations, and EUTERPE [3], a particle-in-
cell code capable of both global turbulence and neoclassical
simulations.

Although global codes offer amore comprehensive descrip-
tion of plasma behaviour than local ones, their substan-
tial computational costs still remain a significant limita-
tion. Consequently, for specific applications, such as routine
transport calculations for comparison with experimental data,
reduced models are frequently preferred. However, employing
these models necessitates a thorough understanding of their
applicability limits. In the context of gyrokinetic simulations,
this motivates the importance of comparing flux-tube, flux-
surface, and global simulations, as conducted, for example,
in studies of the ion-temperature-gradient (ITG) and trapped-
electron-modes [4], as well as zonal flows [5].

Similarly, ‘conventional’ local neoclassical transport the-
ory can be generalised by the inclusion of global effects. The
local ansatz is adequate for calculating the neoclassical trans-
port under most conditions, and has been used to great effect
over the years. The Wendelstein 7-X (W7-X) stellarator was
optimised for small neoclassical losses calculated in this way,
and, indeed, a reduction in neoclassical energy transport was
experimentally confirmed [6]. This accomplishment consti-
tutes a significant milestone of local neoclassical theory.

Using numerical simulations two decades ago, it was veri-
fied that global effects are negligible for the low-collisionality
neoclassical fluxes in W7-X [7]. This is because the temper-
ature threshold, beyond which these effects become signific-
ant, is so high that it will not be reached under the typical
operational conditions of the machine. However, under cer-
tain plasma conditions, the local ansatz can be violated, mak-
ing global theory essential for a comprehensive description
of plasma behaviour. One such situation, which is the central
topic of this article, is the electron-to-ion root transition of the
radial electric field Er, characterised by the electric field chan-
ging from a positive to a negative value within a narrow radial
region. This phenomenon has been experimentally observed
in various stellarators [8] and also appears in tokamaks [9],
though the physical origin of this phenomenon is different in

this type of confinement devices [10]. The study of electron-
to-ion root transitions is important for fusion research, since
they can be favourable for confinement in future stellarator-
type reactors. First, an electron root (Er > 0) can be bene-
ficial for expelling heavy impurities from the plasma core
region. Secondly, the competing effects of the magnetic- and
electric poloidal drifts can lead to large radial displacement
of α-particles with reduced energy, which can be exploited
for expelling helium ash in a stellarator-type reactor [11].
Furthermore, in the proximity of the transition location r0
where Er = 0, the strongly sheared E×B flow has the poten-
tial to suppress turbulence [12]. Due to the rapid spatial vari-
ations of Er, in this scenario the local ordering is violated, and
thus a global model is necessary. In particular, the question of
accurately determining r0 seems to lie outside of the scope of
the local theory.

Nevertheless, a diffusion equation for the radial electric
field that models nonlocal effects has been proposed, allow-
ing an estimation of the transition point r0 of the electric field
[13, 14]. Despite early criticism [15–17], this model remains
widely used for the verification of experimental data [18], as it
usually produces a qualitative agreement between theory and
experiment. In this article, we identify operational scenarios
of W7-X where quantitative differences between the model
electric field and the self-consistent, global neoclassical elec-
tric field are apparent. In particular, we analytically demon-
strate that, in the limit of infinitely narrow transitions, a broad
class of potential generalisations of the local theory all res-
ult in the same prediction for r0, irrespective of the exact
form of the diffusion coefficient assumed in this model. We
then show numerically that a constant diffusion term can-
not explain the large discrepancies observed between r0 cal-
culated with local and global simulations. Moreover, using
global simulations, we verify a long-standing prediction of
local neoclassical transport theory, i.e. the possibility of spon-
taneous transitions from ion to electron roots with a small vari-
ation in electron temperature at a given plasma radius [14].
Based on this analysis and studies of electron-root plasmas in
the low electron-to-ion-temperature-ratio regime, we conclude
that assuming a constant electric-field diffusion coefficient in
the electric-field diffusion model is inappropriate for describ-
ing the transition region. To address this problem,we propose a
radially dependent electric-field diffusion model that, in addi-
tion to resolving several issues encounteredwith the ‘standard’
model, accurately accounts for the dependence of the max-
imum of | dErdr | on the density and temperature plasma profiles
for various configurations of W7-X. Our results do not, how-
ever, entirely eliminate the requirement for global simulations.
In particular, for a given set of plasma density and temperat-
ure profiles and a magnetic configuration, the generalised dif-
fusion model does not reliably predict the electric-field trans-
ition location found through global simulations with similar
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parameters. Nevertheless, the model proves to be a compu-
tationally inexpensive tool for assessing the structure of the
radial electric field in the W7-X stellarator, for instance, in the
analysis of the impact of the sheared E×B flow on plasma
turbulence, or for extrapolation of results obtained with global
simulations. We note that this work builds on [19], which
focused on the implementation of global neoclassical simula-
tions in the gyrokinetic code EUTERPE. The following over-
view of the the local and global neoclassical transport models
is intended to complement the review found therein.

2. Review of local neoclassical transport theory

2.1. The linearised drift-kinetic equation

In this work, we consider a single species plasma with ions
indexed by i, and electrons by e. However, we will typic-
ally omit the species index for brevity, including it only when
necessary. The distribution function of each species will be
denoted by f(t,R,H,µ), where R is the gyrocentre position,
µ= mv2⊥/2B the magnetic moment, and H= mv2/2+ZeΦ
the energy. Here, Φ is the electric potential, e the elementary
charge, Z the atomic number of the species,m their mass, and v
the magnitude of the velocity vector with v∥, v⊥ its component
parallel and perpendicular to the magnetic field B. This results
in the drift-kinetic equation

∂f
∂t

+
(
v∥ + vd

)
· ∂f
∂R

= C( f) , (1)

where C(f ) is a collision operator, whose form is given below.
Furthermore, vd = vB+ vΦ, with

Ṙ= v∥b︸︷︷︸
v∥

+
m
Ze

1
B∗

[
µb×∇B+ v2∥b×κ

]
︸ ︷︷ ︸

vB

+
1
B∗ b×∇Φ︸ ︷︷ ︸

vΦ

, Ḣ= 0, µ̇= 0, (2)

where B∗ = B+ m
Zev∥b · (∇× b), and b×κ= 1

B
[b×∇B+(∇×B)⊥]. Depending on the ordering of the con-
stituents in equation (1), expressions for transport in different
magnetic configurations and collisionality regimes can be
derived [20, 21, chapter 8.2]. Also, from a numerical per-
spective, solving equation (1) can be challenging because
of the disparity between the timescales associated with the
particles’ motion along the magnetic field, their radial drift,
and collisional scattering [22]. This problem can be addressed
by expanding equation (1) around a local Maxwellian and
linearising the resulting equation. Introducing the order para-
meter ρ∗ = ρ/L, with ρ the largest Larmor radius (typically
ρ= ρi) and L∼ B/|∇B| ∼ Φ/|∇Φ|, the macroscopic scale of
interest, for each species, the distribution function is written
as

f= f0 + δf, (3)

f0 = n
( m
2πT

)3/2
exp

(
−H−ZeΦ

T

)
, (4)

where the density n(r), temperature T(r), and Φ(r) are taken
to be flux-functions, and δf/f0 ∼ O(ρ∗). We use the radial
coordinate r= a

√
s, with a the minor radius of the plasma

edge, and s ∈ [0,1] the normalised toroidal flux. The mag-
netic drift motion satisfies vB/v∥ = O(ρ∗), and hence, under
the assumption that δf varies on the length scale L, the follow-
ing ordering estimate holds,

vB ·
∂δf
∂R

/
v∥ ·

∂f0
∂R

∼ O
(
ρ∗

2
)
. (5)

Finally, the collision operator is linearised. In the simplest
case, only its pitch-angle scattering part is considered, which
takes the form

C( f) = νL( f) = ν
1
2
∂

∂p

(
1− p2

) ∂f
∂p

, (6)

with p= v∥/v the pitch-angle variable, and ν the collision fre-
quency, which is the sum of the inter- and intra-collision fre-
quencies, given by [21, chapter 3.3]

ν =
∑
β

να/β , να/β = ν0
α/β

erf(xβ)−G(xβ)
x3α

. (7)

Here, the normalised particle velocity is denoted by xβ =

v/vTβ , where vTβ =
√

2Tβ/mβ is the thermal velocity of the
species β, and a reference collision frequency ν0

α/β is written
as

ν0
α/β =

nβ (Zαe)
2
(Zβe)

2 log(Λ)

4πϵ20m
2
αv

3
Tα

, (8)

where log(Λ) is the Coulomb logarithm, and ϵ0 the vacuum
permittivity. The error function erf(x) and the Chandrasekhar
function G(x) appearing in equation (7) have the definitions

erf(x) =
2√
π

ˆ x

0
exp
(
−t2
)
dt, G(x) =

erf(x)− x d
dx erf(x)

2x2
.

(9)

We note that ion-electron collisions effectively act as a
small friction force on the ions [21, chapter 3.5], scaling as
νii
√
me/mi, and therefore will be disregarded throughout this

article.
If the time derivative is assumed second order in ρ∗ [21,

chapter 6.5], this procedure results in the following linearised
drift-kinetic equation,(

v∥ + vΦ
)
· ∂δf
∂R

− νL(δf) =−vd ·
∂f0
∂R

, (10)

where it should be noted that vΦ is tangential to flux sur-
faces since ∇Φ = Φ ′(r)∇r. From a numerical perspective,
equation (10) has the significant advantage of being local and
‘mono-energetic’, that is r enters the equation as a mere para-
meter (i.e. no derivatives with respect to r are present), so that
each flux surface can be treated independently, irrespective
of the transport properties of other surfaces. Due to the sim-
plified collision operator used, the same is true for the mag-
nitude of the velocity v, which also enters only as a parameter.
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A detailed discussion of various numerical techniques used
to solve the linearised local drift-kinetic equation is given in
[20]. In our work, local neoclassical simulations are performed
using the code Neotransp, which utilises the mono-energetic
diffusion coefficients data tabulated with DKES [22, 23] for
the calculation of the radial electric field. In other words, using
DKES, at each flux surface the mono-energetic transport coef-
ficients are obtained by solving equation (10) for a fixed value
of the electric-field. The reader is referred to [20] for more
details regarding this calculation. Then, using Neotransp the
value of the electric field at the considered flux surface is selec-
ted in accordance with the electric-field diffusion model to be
introduced in the next section.

2.2. Ambipolarity condition and the electric-field diffusion
model

The mono-energetic transport coefficient D11 (r,ν/v,Er/vB)
obtained with DKES depends on the minor radius (and con-
sequently on the magnetic geometry), normalised collision
frequency and the normalised electric field value only. Here,
Er(r) =−Φ ′(r) is the local value of the electric field. In prin-
ciple, for a selected magnetic equilibrium and for a choice of
density and temperature profiles, the particle flux can be calcu-
lated for any desired value of Er. For instance, for stellarators
without a large Ohmic current, it follows that the total particle
flux Γ(Er,r) across the considered flux surface is given by

Γ≡
〈ˆ

δfvd ·∇rdv3
〉
=−nL11

(
n ′

n
− ZeEr

T
− 3

2
T ′

T

)
− nL12

T ′

T
, (11)

L1j =
2√
π

ˆ ∞

0
K3/2−je−KD11 (K)dK, (12)

where ⟨·⟩ is the flux-surface average, primes represent differ-
entiation with respect to r, the index j is equal to either 1 or 2,
and K= mv2/(2T). In general it is also important to include
the contribution of the inductive electric field to the particle
flux (known as the Ware pinch [20]) in equation (11), which
involves the mono-energetic coefficient D13. For brevity, it
is not written explicitly here, since the parallel electric field
⟨E ·B⟩ is zero.

To close the system with an equation for the electric field,
we can apply the flux-surface average to the radial component
of Ampère’s law with the polarisation current retained, res-
ulting in the following ambipolarity constraint on the particle
flux,

∂Er
∂t

=
e
ϵ
(Γe−ZiΓi) , (13)

where we introduced ϵ, the neoclassical plasma permittivity.

ϵ=
mpne
B2
00

(
1+

b210
(r/R)2 ι2

)
, (14)

with ι the rotational transform. B00 and b10 = B10/B00 are
terms in the Boozer decomposition of B with b10 character-
ising the principal variation of B in the poloidal direction. It is

worth noting that in the region where the electric field trans-
ition occurs, ϵ is approximately constant. In this case, ϵ can
be interpreted as determining a time-scale for the evolution
of the electric field, and thus in a stationary state its value is
unmiportant. For simplicity, in Neotransp the above formula
is evaluated at r= a/2, except for the electron density, whose
value is taken at the magnetic axis. It is important to note that
equation (13) holds even if most particle transport is caused by
turbulence, because turbulent fluxes are inherently ambipolar
to this order in ρ∗ if governed by standard gyrokinetic theory
[24–26]. In a steady state, we thus obtain

Γe = ZiΓi. (15)

It follows that, on each flux surface, the electric field can be
calculated by finding the value Er such that equation (15) is
satisfied. (An exception occurs in axisymmetric and quasi-
symmetric devices, where the ambipolarity condition is auto-
matically satisfied.) When Er < 0, the plasma is said to be in
the ion-root, which is the usual situation in stellarators, partic-
ularly in an equithermal plasma, Te = Ti, whereas Er > 0 des-
ignates an electron-root, which can arise, for instance, when
the electrons are significantly hotter than the ions, Te > Ti.

However, this approach has limitations. In a typical stel-
larator experiment with strong ECRH heating in the core, the
plasma exhibits an electron-root close to the centre while fur-
ther out, where the ion and electron temperatures are com-
parable, the ion-root is instead present [27]. Hence, at some
intermediate radius, Er must transition between the two roots,
crossing Er = 0. Since this is typically a narrow transition, the
ordering in equation (5) is violated. Instead,

vB ·
∂δf
∂R

/
v∥ ·

∂f0
∂R

∼ O(ρ∗) , (16)

and thus, close to the transition region, nonlocal terms must be
retained. When calculating the electric field in the framework
of the local theory in these cases, this requirement is manifes-
ted by unphysical, multi-valued solutions of equation (15): an
ion root Eir, an electron root Eer , and a third intermediate one,
which is always unstable [28]. A widely adopted method for
obtaining the electric field in the transition region is then to
modify the ambipolarity equation, adding a diffusive term as
follows [29],

∂Er
∂t

− 1
V ′

∂

∂r
DV ′r

∂

∂r
Er
r

=
e
ϵ
(Γe−ZiΓi) , (17)

whereV ′(r) is the derivative of the volume enclosed by the flux
surface labeled by r, and D is the electric-field diffusion coef-
ficient. Then, in a steady-state and in the limit of vanishingly
narrow transition layer width (corresponding to D→ 0+), this
model results in a single-valued electric field. By calculating
the following integral

ˆ Eer

Eir

(ZiΓi−Γe)dEr


> 0 : ion root

(
Er = Eir

)
= 0 : transition location

< 0 : electron root (Er = Eer)

,

(18)
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it is possible to determine which of the two solutions of
equation (15) will be attained by the electric field in the trans-
ition layer. This criterion is called the Maxwell construction
and results in an electric field characterised by a discontinu-
ity located at the transition location r∗. However, for D ≠ 0,
the discontinuity is not present in the steady-state solutions
of equation (17), but determining a suitable diffusion coeffi-
cient presents a significant issue, since it is unknown for gen-
eral non-axisymmetric devices. In practical applications, it is
usually treated as a free, constant parameter. This approxim-
ation already poses significant issues, since from a theoretical
standpoint, D in the very least should depend on the particle
gyroradius. In this case, it is unclear whether the Maxwell
construction is recovered in the small-gyroradius-limit. As we
shall see, it is possible to formulate diffusion equations, which
violate theMaxwell construction, resulting in a different trans-
ition location of the electric-field than the one presented in
equation (18). In the next section, we therefore analytically
analyse various generalisations of equation (17) in the limit
of vanishingly narrow transitions. In particular, we determine
sufficient conditions for the Maxwell construction.

3. Maxwell construction for the electric field
diffusion model

3.1. The standard case

To begin, consider the equation

D
d2Er
dr2

= J(Er,r) , (19)

where J(Er,r) = (ZiΓi(Er,r)−Γe(Er,r))e/ϵ.We now demon-
strate that this equation, in the limit D→ 0+, leads to the
Maxwell construction (equation (18)).

As mentioned above, the ambipolarity equation
(equation (15)) has one or three zeros as a function of Er.
We thus assume the existence of two points rmin and rmax

such that for r< rmin, the plasma is in the electron root, for
r> rmax it is in the ion root, and rmin < r< rmax is the region
of multiple solutions, on which we now focus. Furthermore,
J> 0 for a large positive electric field and J< 0 for a large
negative electric field. We denote the corresponding smallest
(largest) solution as Eir (E

e
r). Figure 1 shows a typical scenario

as described above.
Let us first introduce a stretched coordinate x≡ (r−

r∗)
√
J∗/D∗, where r∗ is the transition location, λD =√

D∗/J∗ is a typical length scale of the diffusion pro-
cess for characteristic values of the diffusion coefficient D∗
and particle flux J∗. We are interested in the limit where
λD/r∗ → 0, in which the transition region becomes very nar-
row, and thus introduce a small parameter ϵ= λD/r∗ ≪ 1.
We also write xmin = (rmin − r∗)/λD, and xmax = ((rmax)−
r∗)/λD. With the convention D̃= D/D∗ (and accordingly for
J̃), we obtain

D̃
d2Er
dx2

= J̃(Er,x) , (20)

We impose the following boundary conditions,

Er (xmin) = Eer , (21)

Er (xmax) = Eir, (22)

and note that, somewhere in the interval [xmin,xmax], Er will
‘jump’ from Eer to E

i
r over a transition layer of width of order

unity when measured in terms of the stretched coordinate x but
of order ϵr∗ in terms of the radius r. The location of this jump,
i.e. where x= 0, can be found by noting that

D̃
2

d
dx

[(
dEr
dx

)2
]
= J̃(Er,x)

dEr
dx

, (23)

which follows from multiplying equation (19) by dEr
dx . We

integrate this equation over an interval that is much wider than
the transition region but much narrower than the minor radius,
e.g. by computing

ˆ ϵβ

−ϵβ
J̃(Er,x)

dEr
dx

dx=
D̃
2

(
dEr
dx

)2
∣∣∣∣∣
x=ϵβ

x=−ϵβ

, (24)

where β is any constant between −1 and 0. The result
becomes, in the limit ϵ→ 0,

ˆ Eir(0)

Eer(0)
J̃(Er,x)dEr = 0, (25)

if D̃ does not vary on the short length scale of λD.
Consequently, equation (19) satisfies the Maxwell construc-
tion. We provide a geometrical interpretation of this result in
figure 1.

Furthermore, we observe that this procedure works equally
well for any equation of the form

Df(r)
d
dr

(
g(r)

dh(r)Er
dr

)
= J(Er,r) , (26)

for smooth, positive functions f (r), g(r), and h(r), in the
limit D→ 0. With a change of variables, multiplication by
g(x) dh(x)Erdx /f(x), and integration across the transition region
we obtain

D̃
ˆ ϵβ

−ϵβ

dh(x)Er
dx

g(x)
d
dx

(
g(x)

dh(x)Er
dx

)
dx=

D̃
2

ˆ ϵβ

−ϵβ

d
dx

×

[(
g(x)

dh(x)Er
dx

)2
]
dx→ 0, (27)

in the limit ϵ→ 0, and similarly,

ˆ ϵβ

−ϵβ
J(Er,x)

g(x)

f(x)

dh(x)Er
dx

dx=
ˆ h

(
ϵβ

)
h(−ϵβ)

J(Er,x)
g(x)

f(x)
Erdh (28)

+

ˆ Er
(
ϵβ

)
Er(−ϵβ)

J(Er,x)
g(x)

f(x)
h(x)dEr →

g(0)
f(0)

h(0)
ˆ Eir(0)

Eer(0)
J(Er,x)dEr,

(29)

5



Nucl. Fusion 65 (2025) 016019 M.D. Kuczyński et al

Figure 1. Illustration of the typical relationship between particle flux and radial electric field in stellarators. The red and blue lines
correspond to the ion- and electron-root regimes, respectively, for which there is a unique value of the electric field satisfying the
ambipolarity condition. The black line represents the region where multiple solutions occur. Depending on the area under this curve, for
each radial location, either the ion- or electron-root solution is selected. Maxwell construction identifies the radial position r∗, at which this
area is identically zero.

since h(x) is continuous. As a corollary, in this limit, the
stationary state of equation (17) satisfies the Maxwell con-
struction, since we can identify f(r) =−1/V ′, g(r) = V ′r, and
h(r) = 1/r.

3.2. Further generalisations

It is instructive to identify other generalisations of
equation (15), for which the Maxwell construction holds.
For instance, the argument provided in the previous section
can also be applied for a fourth-order operator, i.e. for an
equation,

D
d4Er
dr4

= J(Er,r) , (30)

since

D̃
ˆ ϵβ

−ϵβ
E ′
rE

′ ′ ′ ′
r dx= D̃

ˆ ϵβ

−ϵβ

d
dx

(
E ′
rE

′ ′ ′
r − E ′ ′2

r

2

)
dx→ 0.

(31)

Yet more generally, this approach is applicable to any sum of
differential operators of even order,

∑
n

Dn
d2nEr
dr2n

= J(Er,r) , (32)

which follows from an analogous calculation.
Further generalisation is also feasible. Consider, for

instance, the integral operator

D̃ϵ [Er] =
ˆ ϵβ

−ϵβ
k(x− x ′)Er (x

′)dx ′, (33)

where k is integrable and even, k(y) = k(−y). Then,

ˆ ϵβ

−ϵβ

dEr
dx

D̃ϵ [Er]dx=−
ˆ ϵβ

−ϵβ
Er

dD̃ϵ [Er]
dx

dx

=

ˆ ϵβ

−ϵβ

ˆ ϵβ

−ϵβ
Er (x)k

′ (x− x ′
)
Er

(
x ′
)
dxdx ′ = 0,

(34)

since k′ is odd. Thus, the solution to the equation Dϵ [Er] =
J(Er,r) satisfies the Maxwell construction in the limit ϵ→ 0.

Even more generally, if D is any self-adjoint operator, i.e.
ˆ ∞

−∞
fD [g]dr=

ˆ ∞

−∞
gD [f ]dr, (35)

we have

0=
ˆ ∞

−∞

d
dx

(
ErD̃ [Er]

)
dx=

ˆ ∞

−∞

(
E ′
rD̃ [Er] +ErD̃ [E ′

r ]
)
dx

= 2
ˆ ∞

−∞
E ′
rD [Er]dx, (36)

provided that d
dr commutes with D.

These arguments show that the Maxwell construction
works in a wide spectrum of cases, as long as the term that
‘regularises’ the transition is symmetric and linear in Er. In the
case of neoclassical transport, however, the assumption of lin-
earity seems unlikely to be satisfied. If the usual contribution
to the radial current from the local theory, J(Er,r), is nonlinear
in Er, why should the nonlocal one be linear? For example, if
D depends on Er and r in some known way but is independent
of E ′

r(r), i.e. D(Er,r) = ϵF(Er,r), equation (19) becomes

ϵ
d2Er
dr2

=
J(Er,r)
F(Er,r)

, (37)

and the transition occurs at the point where

ˆ Eer

Eir

J(Er,r)
F(Er,r)

dEr = 0, (38)

which is different from equation (18). Therefore, to determine
the applicability of diffusion models such as equation (17), it
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is necessary to compare the transition location r∗ predicted
by the Maxwell construction with the results of the global
simulations.

Another intriguing aspect of the neoclassical theory in the
small gyroradius limit is that, for a fixed radial location, the
transition between the electron- and ion-roots due to variations
in the electron temperature is expected to be spontaneous [13,
14]. This ‘jump’ is phenomenologically similar to the first-
order phase transition between the liquid and gas phases of the
ideal gas. It is a compelling question to determine whether this
critical transition can also be reproduced by global simulations
and how it compares with the corresponding prediction of the
local, diffusive electric field model (equation (17)). However,
as ρ∗ decreases, the computational cost of global simulations
increases, making simulations at small values of the normal-
ised gyroradius impractical. Instead, we focus on comparing
the predictions of local theory with global simulations using
plasma profiles relevant for experiments in the W7-X stellar-
ator rather than a larger device with smaller ρ∗.

Appendix provides a proof of the Maxwell construction
found in the current literature, which is based on a variational
formulation of equation (15). We note that our results extend
this finding to a wide range of generalisations of the diffusion
coefficient.

4. Self-consistent, global neoclassical transport
simulations

4.1. Governing equations

Having discussed the calculation of the electric field in the
framework of the local neoclassical theory and presented
the derivation of the Maxwell construction, we now turn
to the topic of self-consistent, global neoclassical transport
equations. In our EUTERPE [3] global simulations, we solve
the drift kinetic equation (equation (1)) for each species in
coordinates (R,v∥,µ), so that

∂f
∂t

+
(
v∥ + vd

)
· ∂f
∂R

+ v̇∥
∂f
∂v∥

= C( f) , (39)

where the equation of motion for the energy (equation (2)) is
replaced by

v̇∥ =−µ∇B ·
[
b+

m
q

v∥
BB∗ (∇×B)⊥

]
− q
m

[
b+

m
q

v∥
B∗ b×κ

]
·∇Φ. (40)

In these coordinates, the distribution function is written as

f = f0 + δf, f0 =
n0

(
√
πvT)

3 e
−

v2∥+v2⊥
v2T , (41)

with n0(r) the unperturbed density profile. However, we main-
tain the ordering given in equation (16), which restricts us from

making any further simplifications. In the EUTERPE code, δf
is allowed to be of arbitrary magnitude, but writing the distri-
bution function this way has a numerical advantage for near-
Maxwellian plasmas. We close the system self-consistently,
calculating the electric potential by coupling the drift-kinetic
equation to the gyrokinetic quasineutrality condition,

−mi

qi
∇·
(n0,i
B2

∇⊥Φ
)
= ni− ne, (42)

where the perturbed density for each species is calculated by
n=
´
fdv3. Equation (42) is supplemented by the following

boundary conditions: Φmn = 0 at the plasma boundary, and
the natural regularity conditions at the magnetic axis, that is
Φ ′

0n = 0, and Φmn = 0, for m ̸= 0 [3]. Thanks to the optimisa-
tion of W7-X, the Φmn ̸=Φ00 Fourier components are gen-
erally small in the absence of magnetic islands and plasma
impurities. Thus, in this work we use a Fourier filter to sim-
ulate only the Φ00 component of the electric potential. Finally,
the electric potential is initialised as Φ = 0 at t= 0.

So far, no timescale separation has been imposed on the
evolution of Φ, Ti, Te and n profiles. However, provided that
the relative changes in the n, Ti and Te profiles which occur
during the simulation are small, we can approximate C(f ) as
the pitch-angle scattering operator (equation (6)). This is valid
for global simulations ofW7-X because its confinement is suf-
ficiently optimised, so that energy scattering would have neg-
ligible influence on the results of global simulations [19].

We conclude this section with numerical aspects of the sim-
ulations: The simulation time is equal to one ion collision time
of the ions in the core, which is on the order of 5× 10−3 s.
The time-step is set to a fixed value of ∆t= 0.5/Ωi, where
Ωi is the ion gyrofrequency on the magnetic axis. The spa-
tial grid is divided into Nr = 32 radial, Nθ = 16 poloidal, and
Nϕ = 16 toroidal points. The total number of markers is set to
Ne = 108 for electrons andNi = 107 for ions. Upon leaving the
simulation domain, the markers are reinserted in a stellarator-
symmetric way, whilst their weight is set to 0. This bound-
ary condition represents a perfectly absorbing wall. Another
possibility for the boundary conditions in EUTERPE is to
keep the particles’ weights unaltered during the reinsertion.
However, we verified that for simulations in W7-X the choice
between these two types of boundary conditions does not
affect the steady-state solution for the radial electric field. This
is because the particles are sufficiently well confined on the
simulation timescale. Furthermore, periodic boundary condi-
tions are employed in the toroidal direction, so that it is only
necessary to simulate a single field period. A more detailed
discussion of numerical aspects of the simulations is provided
in [19, 30].

We remark that our approach is computationally intensive,
typically requiring 105 CPU hours for standard simulations.
In contrast, for the local theory, using precalculated mono-
energetic transport coefficients from theDKES code, for a spe-
cific set of Ti, Te, n profiles, Neotransp calculations of the elec-
tric field, whether using the Maxwell construction or the dif-
fusion equation, can be completed in seconds for each plasma
radius, on single-threaded applications.
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Figure 2. Quantities of interest for the benchmarking of local and global electric-field simulations. The simulated plasma profiles for both
cases are shown in (a). The global electric field Er, as well as its maximum rmax, its inflection point ri, and its zero r0, are depicted in (b).
The corresponding solution of the electric field diffusion model, EDr , with a demonstrative choice of the diffusion coefficient D= 20 m2 s−1

is presented in (c). Solutions associated with the limit D→ 0 are also included, that is the electron-root solution Eer , the ion-root solution Eir,
and the transition location corresponding to the Maxwell construction r∗. Finally, a comparison of derivatives of Er and EDr is shown in (d),
with their minima indicated by the horizontal lines, accordingly.

4.2. Quantities of interest for the analysis of the results

From this point onward, for a specified set of profiles n, Te,
and Ti, and a chosenmagnetic configuration, the global electric
field simulated using EUTERPE is denoted by Er =−Φ ′(r).
The local ion and electron root solutions, computed from the
ambipolarity equation (equation (15)), are denoted by Eir and
Eer , respectively. For a given value of D, the model elec-
tric field calculated from equation (17) is denoted by EDr .
The transition location according to the Maxwell construction
(equation (18)) is denoted by r∗, and is calculated by taking
the limit D→ 0 of equation (17). This location can then be
compared with the zero of Er, represented by r0, or with its
inflection point, ri. We further denote the location of the max-
imum of Er as rmax. For the electric field diffusion model, rD0 ,
rDi , and r

D
max are defined accordingly. We also introduce the

notion of submaximal transitions [19], for which themaximum
of the global electric field occurs at a smaller radius than the
maximum of the local electron root solution, i.e. rmax < remax,
with remax the maximum of Eer . This distinction will be bene-
ficial for the interpretation of our results. An empirical obser-
vation regarding the submaximal transitions is that the inflec-
tion point lies in the middle between the maximum and the
zero of the electric field, r0 − ri ≈ ri− rmax, so that rmax can
be identified as the beginning of the transition, ri as its centre
and r0 as its end. In contrast, for supramaximal transitions,
i.e. when rmax = remax, the maximum of the global electric field
does not coincide with the beginning of the transition, and as

a consequence, determining the width of the transition layer
becomes challenging. Due to this difficulty, we avoid com-
paring the transition layer widths of the electric field cal-
culated with the diffusion model and the global simulations
in this work. Instead, we calculate and compare the minima
of the radial derivatives of the electric fields, since they are
defined unambiguously. Figure 2 visualises the quantities dis-
cussed above for local and global simulations in the standard
configuration of the W7-X stellarator for interpolated experi-
mental plasma profiles obtained from [31], further denoted as
nexp = ni,exp = ne,exp, Ti,exp, and Te,exp. These profiles are typ-
ical for electron root discharges obtained during W7-X opera-
tion phase 1.2b.

4.3. Profile parameterisation and the dimensionless plasma
parameters

Wewish to investigate the behaviour of the electric field based
on the following, dimensionless plasma parameters; the ion
collisionality, the normalised ion gyroradius, and the electron-
to-ion temperature ratio,

ν∗i =
aνth,i
vth,i

, ρ∗i =
vth,i
Ωia

, τ =
Te
Ti
, (43)

where νth,i = ν0
i/i (see equation (8)), and Ωi = ZeB/mi is the

ion gyrofrequency. Written in terms of plasma profiles, these
expressions become

8
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ν∗i =
a(Ze)4 log(Λ)

16πϵ20

n

T2
i

, ρ∗i =

√
2mi

ZeBa

√
Ti, τ =

Te
Ti
. (44)

We introduce a parameter α, scaling the nexp, Te,exp, and Ti,exp
profiles such that two of the three dimensionless plasma para-
meters are held constant, while the remaining one varies lin-
early with α:

• For ρ∗i , α= αρ∗ ∈ {0.75,0.875,1,1.125,1.25,1.5}, and

Te = α2
ρ∗Texp,e, n= α4

ρ∗nexp, Ti = α2
ρ∗Texp,i. (45)

• For ν∗i , α= αν∗ ∈ {0.5,1,1.5,2,2.5,3}, and

Te = Texp,e, n= αν∗nexp, Ti = Texp,i. (46)

• For τ , α= ατ ∈ {0,0.5,0.52,0.54,0.56,0.58,0.6,
0.7,0.8,0.9,1,1.5,2,2.5}, and

Ti = Texp,i, n= nexp, Te = ατ (Texp,e−Texp,i)+ Texp,i.
(47)

Note that this parameterisation ensures Ti = Te at the edge
independently of ατ , and that ατ = 0 corresponds to an
equithermal plasma.

These parameterisations will be our basic tool for the explor-
ation of the solution space of the self-consistent, global neo-
classical transport equations. For each of these simulations, we
aim at comparing the earlier introduced quantities of interest
between the global simulations and the corresponding predic-
tions of the electric-field diffusion model based on local the-
ory. First, in the subsequent section, we focus on the results
concerning the Maxwell construction, i.e. the limit D→ 0 of
equation (17).

5. Verification of the Maxwell construction

5.1. Comparison of the transition location

We begin by exploring the relationship between the trans-
ition location calculated using the Maxwell construction, with
the zero, inflection point, and the location of the maximum
of the global electric field, as a function of the dimension-
less plasma parameters. Figure 3 illustrates the dependency
of these four locations on the parameters ατ , αρ∗ , and αν∗

introduced above. Focusing first on the global quantities, for
the dependence on the ion-to-electron temperature ratio, we
can distinguish three regions. For ατ < 0.58 only the ion root
solution is present, and consequently rmax, ri, and r0 are not
depicted in figure 3(c) for this region. For each simulation, we
compared the maxima of the local electron root and the global
electric field and concluded that for 0.58⩽ ατ ⩽ 1, the trans-
itions are submaximal and for 1.5⩽ ατ , they are supramax-
imal. Therefore, the change between the two types of trans-
ition occurs somewhere in the interval 1< ατ < 1.5. For the
dependence on the normalised ion gyroradius in figure 3(a),
the transitions are submaximal for αρ∗ ⩽ 1 and supramaximal
for αρ∗ ⩾ 1.125. For the dependence on ion collisionality in

figure 3(b), the transitions are always submaximal. However,
it is possible that this would not be the case if the calculation
were repeated for higher values of collisionality, causing the
transition to shift further inward, where the submaximal trans-
itions tend to occur. Perhaps surprisingly, the transition type
depends on the ion gyroradius in the global simulations, unlike
the local calculations, which are very weakly dependent on the
particle gyroradius.

Qualitatively, we can see that the zero and the inflection
point of the global electric field follow a trend similar to that of
the transition location according to the Maxwell construction
for the ion-to-electron temperature ratio and ion collisional-
ity parameterisations. The same is true for the dependence of
the location of the maximum of the global electric field, espe-
cially when the transitions are submaximal. Altogether, this
leads to the hypothesis that for high-τ plasmas, the variation
of rmax, ri, and r0 with τ and ν∗i coincides with the changes in
r∗. This means that in a practical setting, if a transition location
for certain plasma profiles is determined with a global simu-
lation or measured experimentally, the transition location of
the plasma with scaled τ and ν∗i profiles can be determined
by much faster, local simulations of r∗. On the other hand,
the Maxwell construction does not provide a reliable predic-
tion of the shift in the transition location with changing ion
gyroradius.

This difficulty can be circumvented by referring to an ana-
lytical relation between the plasma parameters in the electron
root regime. Based on the assumption that the electron roots
are predominantly caused by the electron transport being in
the 1/ν regime, and the ion- in the

√
ν regime, the following

expression has been derived [19]

τ = Cµ1/7
i/e

(
r
a

ν∗i
ϵeffρ∗i

)3/7(b10
ϵt

)4/7

, (48)

where C is a constant, µi/e is the ion to electron mass ratio, ϵeff
is the effective ripple, and ϵt = r/R with R the major radius.
Provided that the constant C is determined from global sim-
ulations, this equation can be solved for the transition loca-
tion estimate rC, allowing an analysis of its dependence on the
plasma parameters. Overall, for W7-X, r∗ is a better indic-
ator of the shifts in the transition location with changes in τ
and ν i∗ for the high τ plasmas, however rC outperforms the
Maxwell construction when considering changes in ρi∗ [19].
This finding suggests the most important factors in establish-
ing an electron root, are the neoclassical flux of electrons in
the 1/ν regime, and that of ions in the

√
ν regime.

The results presented so far consider only the standard con-
figuration of W7-X. We conclude this section by outlining
simulation results for the experimental plasma temperature
and density profiles in two additional magnetic configura-
tions of theW7-X stellarator, namely the low- and high-mirror
configurations [32]. Table 1 shows that in this case, the trans-
ition location according to the Maxwell construction is in
quantitative disagreement with the zero and the inflection point
of the electric field calculated with the global simulations, sim-
ilar to what was found for rC in our previous work. Thus, when
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Figure 3. Comparison of the transition location r∗ according to Maxwell construction, with quantities rmax, ri, and r0, calculated with
global simulation, for ρi∗, ν

i
∗ and τ parameterisations. Results obtained for the plasma profiles nexp, Ti,exp, and Te,exp correspond to

αρ∗ = αν∗ = ατ = 1, and are visible in each plot. The green (red) region indicates submaximal (supramaximal) transitions. The change in
the two transition types occurs in the orange region. For the presented submaximal transitions, rmax can be interpreted as the beginning of
the transition, ri as the middle, and r0 as the end.
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considering changes in the magnetic geometry, both indicators
of the transition location bear only a qualitative merit.

Two key questions follow from this analysis. First, is it pos-
sible to choose a suitable constant diffusion coefficient in the
electric field diffusion equation, such that the resulting model
captures the dependence of the transition location on the con-
sidered plasma parameters: ν i∗,ρ

i
∗, τ , and the magnetic config-

uration? Secondly, can this model allow for an accurate pre-
diction of the absolute location of root transitions for arbitrary
plasma profiles, without referring to comparisons with global
simulations? In the next section, we endeavour to address
these problems, beginning with analyses of the small τ regime
included in our parameterisation.

5.2. Radial dependency of the electric-field diffusion
coefficient and spontaneous root transition

We proceed with a comparison between the global simulations
and the local diffusion model for the electron-to ion temper-
ature ratio parameterisation. Our studies reveal that the dis-
crepancy between the global and local predictions of the exist-
ence of the electron root for 0.42⩽ ατ < 0.58 can be mitig-
ated by carefully choosing D ̸= 0 in equation (17). Figure 4(c)
shows that a value of D= 20 m2 s−1 ensures that the electron
root vanishes for ατ < 0.58. However, comparing figures 4(c)
and 3(c), we notice that for this choice of the diffusion coef-
ficient, the location of the maximum and the zero of the elec-
tric field calculated with the local diffusion model differ sig-
nificantly from their global counterparts. To understand what
causes this disagreement, we first focus on the limit of D→ 0.
In this case, the following equalities hold for submaximal
transitions, rDi = rD0 = rDmax and for supramaximal transitions,
rDmax < rDi = rD0 . Then, in both cases, by increasingD, the relat-
ive positions of rDmax, r

D
i , and r

D
0 are modified, typically leading

to rDmax ̸= rDi ̸= rD0 . However, it appears that this shift is not sub-
stantial enough to reproduce the relation |rmax − ri| ≈ |ri− r0|
visible in figure 3(c) for the submaximal transitions. For supra-
maximal transitions, the discrepancy between the zero of the
global electric field and the zero of the electric field calculated
with the local diffusion model becomes smaller for large val-
ues of the electron-to-ion temperature ratio. However, for this
choice of the diffusion coefficient, the disagreement between
the location of the correspondingmaxima persists for allατ . In
fact, we found that the zero and the inflection point of the elec-
tric field calculated with the local diffusion model are insens-
itive to changes in the diffusion coefficient. In other words,
varying it in general cannot solve the problem of the discrep-
ancy of the location of the transition between local and global
models. Trivially, it follows that it is not possible to choose
a constant value of D, such that the electric field calculated
with the local diffusion model and global simulations agree
throughout the plasma volume. This is further supported by
the fact that the electric-field diffusionmodel predicts submax-
imal transitions for ατ ∈ [0.58,0.62], whereas for the global
simulations, the submaximal transitions span the intervalατ ∈
[0.58,1], possibly extending into the region ατ ∈ [1,1.5].

Figure 4(a) also shows that the dependences on the nor-
malised ion gyroradius of the inflection points of the electric

field calculated with local diffusive model and global simula-
tions are in disagreement for this choice of the electric field
diffusion constant, which is an issue we had anticipated to
be addressed by introducing D ̸= 0 in equation (17). In fact,
this discrepancy persists regardless of the choice of the con-
stant D. Further, table 1 shows the comparison of the radial
location of interest between global and local simulations for
the experimental profiles across different magnetic configur-
ations of W7-X. We notice a discrepancy of the order of the
transition layer width between these locations for the low- and
high-mirror configurations. Consequently, the constant diffu-
sion coefficient model, while improving on the results of the
Maxwell construction and the analytical scaling law presented
in the previous section, does not capture the full complexity of
the electric-field root transitions.

The Maxwell construction can also incorrectly describe the
electric-field root transitions. To demonstrate this, we now
return to the limit D→ 0 of the local theory, addressing the
question of the existence of spontaneous root transitions of the
radial electric field with small variations in the electron-to-ion
temperature ratio as predicted by the local theory. We compare
how the global and local diffusive model electric fields depend
on the electron-to-ion temperature ratio for two selected radii,
r= 6 cm and r= 18 cm. Figure 5(a) shows that for r= 6 cm,
the electric field spontaneously transitions from the ion- to
electron-root solution in both global simulation and in the limit
ofD→ 0 of local simulations. Nevertheless, there is a discrep-
ancy between the critical value of ατ at which this transition
occurs, since the local code predicts a transition at a slightly
lower value of ατ ≈ 0.49 compared to the global prediction of
ατ ≈ 0.52. For r= 18 cm, we see that the transition to the elec-
tron root is gradual in the global case, as opposed to the local
calculation, for which the transition is always spontaneous.
This shows that close to the plasma core, the electric field can
spontaneously transition between the ion- and electron-roots
under small perturbations in the electron-to-ion temperature
ratio.

It is currently unclear whether the initial condition for Φ at
t= 0 influences the stationary solution of global simulations.
In this study, we use the most common initial conditions for
each code: Φ = 0 for the global EUTERPE simulations, and
the electric field calculated according to theMaxwell construc-
tion for the local, diffusive model simulations in Neotransp.
The observed disagreement of the existence of electron roots
in the low τ regime could potentially be attributed to these
differing initial conditions, though we do not expect the initial
conditions to impact the stationary state for a sufficiently large
τ . This is also the reason why no hysteresis cycle is visible in
figure 5. In a further study the existence of hysteresis in these
models will be investigated.

Figures 5(c) and (d) show that by introducing D ̸= 0 into
the electric field diffusion equation, it is possible to improve
on the solution of the ambipolarity equation. In particular, for
D≈ 6 m2 s−1, both the global and local solutions align well
for r= 6 cm. However, for r= 18 cm, we see that this value of
D does not provide an agreement between the global and local
codes. A suitable value ofD for this radius, which matches the
electric field between the local and global solutions, is found
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Figure 4. Dependence of rD0 , r
D
i , and r

D
max on α for ρi∗, ν

i
∗ and τ parameterisation, for D= 20 m2 s−1 in the constant diffusion coefficient

model. The purple line corresponds to ri calculated with global simulations. The lines representing the remaining positions, r0 and rmax are
illustrated in figure 3 and have been omitted for a clearer presentation.

to be D≈ 2 m2 s−1. This suggests that the electric field dif-
fusion coefficient decreases with r. This observation aligns
with the findings of the previous paragraph, wherein a value of
D= 20 m2 s−1 was necessary to ‘suppress’ local electron-root

solutions for ατ < 0.58, which occur in close proximity to
the magnetic axis. Additionally, for this value of the diffusion
coefficient, figure 2(c) shows a significant difference between
the electric field calculated with the diffusion equation and
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Table 1. Comparison of the location of the maximum of the electric field rmax, its inflection point ri, its zero r0 and transition location
according to Maxwell construction r∗ for different magnetic configurations of W7-X (all in cm). Results for local simulations with a
diffusion coefficient value of D= 20 m2 s−1 are also shown.

Configuration rmax ri r0 r∗ rDmax rDi rD0

High-mirror 23.7 26.3 27.9 24.2 18.2 25.1 25.5
Low-mirror 18.9 21.1 23.1 19.0 13.6 18.4 19.0
Standard 16.4 18.3 20.6 18.2 12.7 18.5 19.2

Figure 5. The relationship between Er and ατ for r= 6 cm (left) and r= 18 cm (right). The blue lines represent global solutions, while the
orange lines represent local solutions. Local solutions are associated with D= 0 m2 s−1 (top) and D= 6 m2 s−1 (bottom). Notably, the
root-transition is not spontaneous for the global calculation at r= 18 cm, since the electron-root exists already at ατ = 0.9.

the ‘pure’ ion-root solution, which is not an expected result,
since the local neoclassical ordering (equation (5)) is applic-
able in this regime, which in turn necessitates D≈ 0 m2 s−1.
As a consequence of these findings, it is natural to consider
a generalisation of the electric field diffusion equation, where
D(r) is a function of radius. However, rather than estimating
this dependency directly, from a physical perspective, for a
chosen magnetic configuration, it is much more instructive to
study the dependence of the diffusion coefficient on the plasma
parameters, i.e. D(τ,ρ∗i ,ν

∗
i ). Such a representation of the dif-

fusion coefficient is admissible for equation (17) [33]. This is
the problem addressed in the next section.

6. Generalisation of the electric-field diffusion
equation

6.1. Proposed metric for comparison of global and local
calculations

Before proposing a generalisation of equation (17), we shall
quantify the differences between the global electric field and

that calculated with the local diffusion model, for various val-
ues of the diffusion coefficient and plasma parameters: ν∗i , ρ

∗
i ,

and τ . We propose the following metric

d≡
∣∣E ′

r (ri)−E ′D
r

(
rDi
)∣∣ . (49)

We note that limD→∞ E ′D
r

(
rDi
)
= 0, and that limD→0 E ′D

r

(
rDi
)

diverges. In addition, E ′D
r

(
rDi
)
is a monotonic function of D,

so that for any choice of plasma profiles and magnetic con-
figuration, the metric d is optimised for a unique D. From a
practical point of view, E ′D

r

(
rDi
)
is related to the E×B shear-

ing rate, which has the potential to suppress microturbulence,
such as ITGs. Determining this shearing rate without resort-
ing to global simulations is the objective of the analysis in this
section.

Figure 6 shows the dependence of d on D and α, for the
ρ∗i , ν

∗
i , and τ parameterisations. For the dependence on the

normalised ion gyroradius, visible in figure 6(a), we observe
that there is a strong, positive correlation between the optimal
value of D and αρ∗ . An intuitive interpretation of this obser-
vation is that the importance of nonlocal effects scales pos-
itively with the magnitude of ρ∗i . For the dependence on ion
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Figure 6. Dependence of the metric d on D and α for the ρ∗i , ν
∗
i and τ parameterisations for the constant diffusion coefficient electric field

model. For each α, the black crosses indicate where d= 0, from which the optimal value of D is obtained.

collisionality, shown in figure 6(b), we notice that there is no
significant variation of the optimal value ofD on αν∗ . An ana-
logous observation holds for the supramaximal transitions in
the electron-to-ion temperature ratio parameterisation, indic-
ated in figure 6(c). Finally, for the submaximal transitions in
the latter parameterisation, we observe that there is a negat-
ive trend with increasing ατ . Since these transitions typically
occur close to the magnetic axis, this aligns with the earlier
finding that the diffusion coefficient is a decreasing function of
the radius. Overall, themost significant variation in the optimal
diffusion coefficient is found for the dependence on the norm-
alised ion gyroradius.

Finally, we note that alternative metrics, such as |r0 − rD0 |,
or |ri− rDi | may not be appropriate for this analysis, since
these measures are insensitive to variations in D, as indic-
ated in section 5.2. In fact, further investigation has shown
that these metrics are typically optimised for a wide range
of D, for instance D ∈ (5,30) m2 s−1. We are thus in a pos-
ition to propose a model with which we attempt to min-
imise the metric d by incorporating the strong dependece
of the electric field diffusion coefficient on the particle
gyroradius.

6.2. Generalised diffusion equation for the electric field

A straightforward and conceptually appealing approach is to
relate the electric field diffusion coefficient to the neoclassical
particle diffusion coefficient L11. According to the scalings
associated with the 1/ν,

√
ν, plateau and Pfirsch-Schlüter col-

lisionality regimes, the plateau regime has the desired property

that the diffusion coefficient varies inversely with the mag-
netic field (and consequently with ρ∗i ) and is independent of
ν i∗. Therefore, we propose the following generalisation of the
electric field diffusion equation:

∂Er
∂t

− 1
V ′

∂

∂r
ζLp

11V
′r
∂

∂r
Er
r

=
e
ϵ
(Γe−ZiΓi) , (50)

where the constant ζ is to be determined from global simula-
tions, and

Lp
11 =

(π
2

)1/2 G
Rι

(
T
qB

)3/2( m
qB

)1/2

(51)

is the particle diffusion coefficient Lp
11 for the plateau regime,

where q is the particle charge, and G a geometry-dependent
factor. For the W7-X stellarator, the following approximation
can be applied,

G=

(
b10

R
r

)2

. (52)

Figure 7 illustrates Lp
11 calculated for the plasma profiles Ti,exp,

Te,exp, and nexp in the W7-X standard configuration. We notice
that Lp11 decreases with r except in the vicinity of the magnetic
axis.

To find the optimal value of ζ, we minimised the metric d,
analogously to what was done earlier for the case of the con-
stant diffusion coefficient electric field model. The value of d
was calculated by taking d≡

∣∣∣E ′
r (ri)−E ′ζr

(
rζi

)∣∣∣, where the

index ζ refers to the quantities of interest calculated for the
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Figure 7. Radial dependency of Lp11 for the plasma profiles
Ti,exp,Te,exp, and nexp in the standard configuration of W7-X.

generalised electric field diffusion model, the electric field Eζ
r ,

its inflection point rζi , zero r
ζ
0 , and the location of themaximum

rζmax. The resulting dependence of d on ζ and parameters ατ ,
αρ∗ , and αν∗ is illustrated in figure 8. For the ion collision-
ality and electron-to-ion temperature ratio dependencies, vis-
ible in figures 8(b) and (c), the observed trends are similar to
those corresponding to the constant diffusion coefficient seen
in figures 6(b) and (c). However, for the normalised ion gyrora-
dius dependence shown in figure 8(a), we observe that ζ is not
correlated with αρ∗ , which is different from the dependence of
D on α∗

ρ seen in 6(a). This suggests that the model proposed
in equation (50) correctly reproduces the dependence of the
global E ′

r(ri) on ρ∗i , ν
∗
i , and τ . The obtained value ζ = 240

shows that the diffusion coefficient of the electric field is sig-
nificantly larger than the diffusion coefficient of particles in
the plateau regime, on which we based our fit. Figure 9 shows
the comparison between the local electric field Eζ

r calculated
with the generalised diffusion equation for this value of ζ and
the global Er for the profiles Ti,exp, Te,exp, and nexp in theW7-X
standard configuration. We observe that the slope of the elec-
tric fields in the transition region are in qualitative agreement.
Furthermore, due to the radial dependency of Lp11, for large r,
Eζ
r does not depart significantly from the ion root solution, in

contrast to what is visible in figure 2(c) for the constant dif-
fusion coefficient model. Nevertheless, for this simulation, we
observe that the transition region of Eζ

r is shifted inward with
respect to the global Er.

We now analyse the dependence of the locations of interest
of the electric field calculated with the generalised diffusion
equation on the dimensionless plasma parameters. Figure 10
shows these results, the interpretation of which is similar to
what was established above for the constant diffusion coef-
ficient electric field model. That is, the existence of electron
roots is correctly characterised in the low electron-to-ion tem-
perature ratio regime. The trend of the inflection points of
global and local calculations align for both, ν∗i and τ para-
meterisations, but not for the ρ∗i parameterisation. In all cases,
the curves of the maxima and the zeros do not align between
the two models. For the inflection point, we noted earlier that
rDi is not susceptible to changes in D for the constant diffu-
sion coefficient electric field ambipolarity equation. This prop-
erty is also reproduced for the variations of ζ in the now radi-
ally dependent diffusion coefficient. Therefore, the analytical

results of section 3 suggest that the transition location will
be close to the location predicted by the Maxwell construc-
tion for both models, irrespectively of the chosen values of D
and ζ. To circumvent this issue, it is thus necessary to modify
equation (17), for instance, by allowing the diffusion coeffi-
cient to depend on the electric field (see equation (38)).

We conclude this section with a comparison of quantities
of interest between global simulations and the local, radially
dependent diffusion-coefficient model for different magnetic
configurations of W7-X. Table 2 summarises this informa-
tion for the simulations with the experimental plasma profiles
Ti,exp, Te,exp, and nexp. It is observed that there was no clear
improvement compared to the constant-diffusion-coefficient
model for various indicators of the transition location. We also
notice that E ′

r (ri) and E
′ζr

(
rζi

)
are in qualitative agreement,

with the observed relative differences of the same order as for
fitted data.

The arguments provided in this section have shown that
the generalised diffusion equation model for the calculation of
the electric field has the advantage over the commonly imple-
mented constant diffusion coefficient model in that it is able
to correctly account for the maximum of the derivative the
electric field. However, as mentioned earlier, the discrepan-
cies between the transition location can be in general large.
Nevertheless, for many discharges inW7-X, the transition loc-
ation agrees qualitatively with the local theory. In the next
section, we show that in such cases the generalised diffusion
equation model can be utilised to estimate the importance of
the radially sheared poloidal plasma flow on the turbulence
suppression.

7. Possible suppression of turbulence in the
transition region

The results of the preceding section encourage an investiga-
tion of the applicability of the radially-dependent diffusion-
coefficient model for W7-X discharges, which were not
included in the fitting procedure of the parameter ζ described
in the earlier section. Before delving into this comparison,
we estimate the width of the region over which turbulence is
expected to be reduced thanks to the shear of the E×B flow.

The growth rate γ of the ITG instability can be approxim-
ated as follows [34, 35],

γ ≈ ς
vTi
LT

, (53)

where LT = Ti/|∇Ti| is the characteristic length scale associ-
ated with the ion temperature gradient.We use a representative
value of the constant ς = 0.05, which was determined by lin-
ear, electrostatic, gyrokinetic simulations of growth rates in
the W7-X high-mirror configuration, for the radial location
r/a= 0.7, where the fluctuations are the strongest [36]. We
employ the well-knownWaltz criterion for the condition of the
suppression of ITG growth rates due to the strongly sheared
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Figure 8. Dependence of the metric d on ζ and α for the ρ∗i , ν
∗
i and τ parameterisations for the proposed, radially-dependent diffusion

coefficient model. For every α, the black crosses show where d= 0, corresponding to the optimal value of ζ.

Figure 9. Radial electric field and its derivative calculated with global simulations and local, radially dependent diffusion coefficient
models with ζ= 240 for the plasma profiles Ti,exp, Te,exp and nexp depicted in figure 2(a). The electric field plot also shows the ion- and
electron-root solutions and the transition location according to Maxwell construction.

E×B flow in the transition region as follows [37, 38]∣∣∣∣E ′
r

B

∣∣∣∣> γ. (54)

Turbulence is then expected to be suppressed in the region
where this inequality is satisfied.

As an example, we use experimental data from W7-X
plasma discharge 20 221 214.028, 2.5–2.9 s, whose magnetic
configuration is described in detail in [39]. The Thomson scat-
tering diagnostic was employed for the measurements of ne
and Te, while Ti was obtained from the the x-ray imaging crys-
tal spectrometer diagnostic. These measured profiles and the
corresponding dimensionless plasma parameters are denoted
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Table 2. Comparison of global quantities relating to the transition location with their local counterparts in the radially dependent diffusion
coefficient model. A comparison of the minima of the electric field derivative is also presented.

Configuration rmax ri r0 rζmax rζi rζ0 E ′
r (ri) E ′ζr

(
rζi

)
High-mirror 23.7 26.3 27.9 19.2 25.3 25.6 −492.7 −525.1
Low-mirror 18.9 21.1 23.1 14.8 19.0 19.5 −281.1 −297.2
Standard 16.4 18.3 20.6 13.6 18.7 19.2 −332.9 −276.7

with a ~ sign, and a single ion species is assumed, i.e. ñ≡
ne = ni.

Figure 11 shows the results of global simulations and the
local radially dependent diffusion coefficient model for this
discharge. The agreement of the maxima of the electric field
derivatives between the generalised diffusion model and the
global simulations confirms the validity of the plateau model
for the diffusion coefficient. For this specific case, the trans-
ition location for both models agrees well, which may seem
surprising in the light of the discussion above. To understand
this result, let us first compare the ratio of the dimensionless
plasma parameters, τ̃ /τexp, ν̃ i∗/ν

i
∗,exp, and ρ̃

i
∗/ρ

i
∗,exp. Figure 12

shows that these ratios are close to unity in most of the plasma.
Earlier, it was found that the transition location according to
the Maxwell construction coincided with the inflection point
of the global simulation for the experimental profiles Ti,exp,
Te,exp and nexp in the W7-X standard configuration (this can be
seen in figure 3 for α= 1).

Aside from the dependence on the magnetic configuration,
the distance between the inflection points of the electric field
calculated from the generalised diffusive model and the global
simulations is most significantly dependent on the value of the
normalised ion gyroradius (figure 10). Since ρ̃i∗ is smaller than
ρi∗,exp by approximately 13% throughout most of the plasma,

referring to figure 10(a), for αρ∗ = 0.87 we also expect rζi ≈
ri. Finally, since r

ζ
i ≈ r∗, we can form a hypothesis that the

Maxwell construction gives a reasonable approximation to ri
for W7-X plasmas characterised by a similar density profile
to nexp. However, caution should be taken when applying this
result, since the dependence of r∗ − ri on the magnetic config-
uration has not yet been studied in detail, though our results
suggest that it is accurately captured by the local models, at
least on the qualitative level.

Figure 11(b) also shows the threshold for the derivative of
the electric field beyond which turbulence is expected to be
mitigated. Therefore, based on these results, we can expect
that the shear of the E×B flow suppresses the turbulence in
a region around the maximum of the derivative of the elec-
tric field. In fact, this is the case for all the simulations dis-
cussed in this study but it may not always hold. The criterion
of equation (54) may not be satisfied, particularly if the elec-
tron root is weak. Therefore, for turbulence-related applica-
tions, it is essential that the local model accurately predicts the
existence of the electron roots and the associated value of the
minimum of the electric field, which we have shown to be the

case for the radially dependent diffusion coefficient proposed
in this article.

8. Conclusions and outlook

We have presented a comparison between the diffusion-
equation model for the radial electric field and self-consistent,
global neoclassical simulations for the Wendelstein 7-X stel-
larator. The latter are of course much more rigorous but com-
putationally expensive, and it is therefore of interest to assess
how well the diffusion model performs in practice.

In the limit of a small diffusion coefficient, D→ 0+, the
diffusion model reduces to the Maxwell construction famil-
iar from thermodynamics, but this is also the case for a broad
class of generalisations of this model. For instance, the diffu-
sion coefficient can be taken to depend on radius, or the diffu-
sion operator can be replaced by a self-adjoint higher-order
differential operator, or by a linear integral operator with a
symmetric kernel. In the appropriate limit, the prediction of all
these models reduces to the Maxwell construction as long as
the diffusion coefficient, or the generalisation thereof, does not
depend on the radial electric field.When compared with global
drift-kinetic simulations, the Maxwell construction is however
found to be in quantitative disagreement with global indicat-
ors of the transition location, such as the zero and the inflection
point of the electric field. Furthermore, the transition location
calculated with the Maxwell construction does not have the
same scaling properties as global indicators when variations
in the normalised ion gyroradius are considered (figure 3(a)).
It does however provide an excellent agreement for the vari-
ations with ion collisionality and electron-to-ion temperature
ratio. Taking both these facts into account, we can conclude
that the agreement of the transition location according to the
Maxwell construction with the inflection point of the global
electric field (visible in figures 3(c) and (b)) in these para-
meterisations seems to be coincidental. Additionally, when
the electron-to-ion temperature ratio is small, the Maxwell
construction can predict an electron-root solution of the elec-
tric field which is not observed in global simulations. On the
other hand, spontaneous root transitions with variations in the
electron-to-ion temperature ratio, as predicted by the Maxwell
construction, have been observed in the global simulations.
Within the framework of global theory, it was found that these
critical phenomena are likely to be observed close to the mag-
netic axis, with transitions from ion- to electron-roots at larger
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Figure 10. Dependence of rζ0 , r
ζ
i , and r

ζ
max on α for ρi∗, ν

i
∗ and τ parameterisation, for ζ= 240.63 in the proposed diffusion coefficient

model. The purple line represents ri. The positions r0 and rmax are illustrated in figure 3. Figure 4 shows the corresponding results of the
constant diffusion coefficient model.

radii being gradual. For future research, a comparison between
the transition location according to the Maxwell construction
with global simulations in the small ion gyroradius regime is
of importance, since it is potentially relevant for future fusion
reactors.

Despite fundamental discrepancies between the predic-
tions of the diffusion model and global kinetic simulations,
the former model can be made to perform relatively well
if the diffusion coefficient is taken to depend appropriately
on the local plasma parameters. A simple recipe has been
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Figure 11. Comparison of electric field and its derivative calculated with global simulations and local radially dependent diffusion
coefficient model for testing its predictive capability. The simulated profiles are shown in (a), and the electric field and its derivative are
depicted in (b). The green line depicts the threshold value E ′

r for which ITGs are expected to be suppressed. The results consider the
FMM002 configuration of W7-X. For the profiles in (a), error bars represent three standard deviations.

Figure 12. Comparison of τ̃ /τexp, ν̃ i∗/ν
i
∗,exp, and ρ̃i∗/ρ

i
∗,exp for the

two experimental discharges of W7-X presented in this work. The
green line denoted the ρ̃i∗/ρ

i
∗,exp ratio, which is approximately

constant and close to unity. Since the ion gyroradius determines
rζi − ri, we expect this difference to be similar for both experimental
discharges.

constructed, D(r) = ζLp
11, where Lp

11 neoclassical particle dif-
fusion coefficient in the plateau regime, and ζ ∼ 240, a con-
stant obtained by a fitting procedure. For simulations in the
W7-X stellarator, this model correctly accounts for the exist-
ence of electron-roots in the low ion-to-electron-temperature-
ratio regime. Perhaps most significantly, it replicates the min-
imum value of the derivative of the global electric field with a
considerable degree of precision. Since Lp11 is proportional to
the square of the gyroradius, the width of the transition layer is
inversely proportional to B in the diffusion model. As seen in

the gyrokinetic simulations, the layer therefore narrows and
the derivative of the electric field becomes large if ρ∗ → 0.
However this is not necessarily evidence that the electric field
indeed satisfies a diffusion equation. The width of the trans-
ition layer could, for instance, be set by the orbit width of
the trapped-ion trajectories or by the distance a trapped elec-
tron or ion drifts radially in a collision time, which would also
be inversely proportional to B. A significant drawback of this
and simpler local models is that they cannot be used gener-
ally to accurately predict the location of the electron-to-ion-
root transition. Similarly, as for the case of the Maxwell con-
struction, the agreement of the inflection points calculatedwith
the diffusion models and the global simulations (as seen in
figures 4(b), (c) and 10(b), (c)) is interpreted to be coincid-
ental. Nevertheless, the overall scaling of the points of interest
with ion collisionality and electron-to-ion temperature ratio is
reproduced accurately by the diffusion models. However, the
diffusion models fail to accurately capture the scaling beha-
viour with respect to the normalised ion gyroradius (figure 4(a)
and 10(a)).

In the transition region, the radial electric field varies rap-
idly with radius, leading to a strongly sheared E×B flow,
which could locally suppress, or at least reduce, plasma tur-
bulence. If the resulting transport barrier is large enough,
overall plasma confinement would improve substantially. As
we have seen, the electric field shear can be estimated
with the introduced diffusion model, which should be help-
ful for assessing the possible formation of such transport
barriers.
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Appendix. Formulation of the electric-field diffusion
equation using Prigogine’s theorem

The electric-field diffusion equation can be derived by apply-
ing Prigogine’s theorem to the neoclassical transport theory of
non-axisymmetric stellarators. This approach aligns with the
historical development of the neoclassical theory and will be
discussed subsequently.

Prigogine’s theorem states that a thermodynamic system
evolves in such a way that the entropy production rate is at a
minimum in the stationary state. A sufficient condition for this
theorem to hold is that the Onsager matrix of transport coeffi-
cients, which relates the generalised forces to fluxes, is a con-
stant matrix. However, the requirement that the relationship
between thermodynamic forces and the resulting neoclassical
fluxes be linear is violated for neoclassical transport [16]. For
instance, considering the ‘pure’

√
ν low-collisionality trans-

port regime, it is apparent that the mono-energetic diffusion
coefficient D11 scales as |Er|−3/2, making L11 dependent on
Er. Thus, for neoclassical transport, the Prigogine’s theorem
may, at best, only be treated as an approximate tool [17]. With
this assumption, the entropy production rate is given by

Ṡ [Er] =
ˆ a

0

{
e
ϵ

ˆ Er

(ZiΓi−Γe)dE
′
r

}
V ′dr. (55)

This functional has a local minimumwhen Er is equal to either
Eir or Eer . The global minimum is obtained at every radius
by choosing Er as the root that gives the lowest value of the
integral in the brackets. This immediately implies theMaxwell
construction.

If D is independent on Er, equation (55) can be generalised
as follows [29],

Ṡ=
ˆ a

0

{
D
2

(
E ′
r −

Er
r

)2

+
e
ϵ

ˆ
(ZiΓi−Γe)dEr

}
V ′dr,

(56)

where the first term models the heat production rate, ensur-
ing that its contribution vanishes for rotation with constant
angular frequency (Er ∝ r) [40]. Solving the Euler–Lagrange
equations for equation (56) results in

− 1
V ′r

∂

∂r
DV ′r2

∂

∂r
Er
r

=
e
ϵ
(Γe−ZiΓi) . (57)

It is apparent that this equation differs from the stationary-state
of equation (17). However, in this work we, decided to study
equation (17), since this is the equation implemented in the
code NTSS [29], which is a popular tool for the analysis of
neoclassical transport in stellarators. It should be noted that
the choice between equations (17) and (57) is to some extent
arbitrary, since in either case, they merely attempt to model
the nonlocal effects by introducing a diffusive term not derived
from first principles.

Finally, we remark that the Maxwell construction still
applies to equation (57), since by choosing f(r) =−1/rV ′,
g(r) = V ′r2, and h(r) = 1/r, it can be written in the form
of equation (26). Should there be a discrepancy between the
transition location derived from the Maxwell construction and
that obtained from global simulations in the limit ρ∗ → 0, it
would indicate (unsurprisingly) that Prigogine’s theorem does
not hold for neoclassical transport in stellarators.
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