KIT | KIT-Bibliothek | Impressum | Datenschutz

Influence of Grain Size on the Electrochemical Performance of Li$_{7‐3x}$La$_{3}$Zr$_{2}$Al$_{x}$O$_{12}$ Solid Electrolyte

Botros, Miriam 1; Gonzalez-Julian, Jesus; Scherer, Torsten 1,2; Popescu, Radian 3; Loho, Christoph; Kilmametov, Askar 1; Clemens, Oliver; Hahn, Horst 1
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
3 Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT)

Abstract:

Contemporary Li-ion batteries are facing substantial challenges like safety and limited energy density. The development of all-solid-state battery cells mitigates safety hazards and allows the use of Li-metal anodes increasing energy density. Garnet-type solid electrolytes can be vital to achieving an all-solid-state cell and an understanding of the influence of its microstructure on the electrochemical performance is crucial for material and cell design. In this work the influence of grain size on the Li-ion conductivity of Li7-3xLa3Zr2AlxO12 (x=0.22) is presented. The synthesis and processing procedure allows changing the ceramic grain size, while maintaining the same synthesis parameters, eliminating influences of the synthesis on grain boundary composition. Field assisted sintering technology is a powerful method to obtain dense, fine-grained ceramics with an optimal grain size of 2–3 μm, where the conductivity is double that of the counterpart (0.7 μm). A total Li-ion conductivity of 0.43 mS cm−1 and an activation energy of 0.36 eV were achieved. The oxide-based all-solid-state battery cell combining the garnet-type electrolyte, a Li-metal anode and a thin-film LiCoO2 cathode was assembled and cycled at room temperature for 90 hours. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000176916
Veröffentlicht am 03.12.2024
Originalveröffentlichung
DOI: 10.1002/batt.202300370
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Laboratorium für Elektronenmikroskopie (LEM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 11.2024
Sprache Englisch
Identifikator ISSN: 2566-6223
KITopen-ID: 1000176916
HGF-Programm 38.02.01 (POF IV, LK 01) Fundamentals and Materials
Weitere HGF-Programme 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Batteries & Supercaps
Verlag John Wiley and Sons
Band 7
Heft 11
Seiten e202300370
Vorab online veröffentlicht am 25.06.2024
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page