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1. Introduction

The past two years have seen breakthrough success of deep
learning (DL) and related artificial intelligence (AI) approaches
in a variety of domains such as natural language and image pro-
cessing. In industrial robotics, AI promises to leverage large
amounts of data to automatically optimize robot programs [1]
or enable seamless human-robot collaboration [2], saving costs,
addressing shortages of qualified labor and increasing the pre-
cision or robustness of robot-based production processes [3, 4].
Despite this potential, AI in the manufacturing industry remains
far from widespread [5]. With the introduction of digital tech-
nologies in manufacturing such as Enterprise Resource Plan-
ning (ERP) and Manufacturing Execution Systems (MESs), a
“skill gap” between the IT skills required to configure, oper-
ate and maintain the novel systems and the lack of such skills
among the workforce slowed the digital transformation of the
manufacturing industry [6]. A similar skill gap is evident for

AI technologies, with workers lacking the required skills and
experience in mathematics, programming or data science to de-
ploy, interact with or understand state-of-the-art AI methods
[7]. Explainable artificial intelligence (XAI) has been identified
as a key component of increasing industry adoption of AI, with
interpretability tools considered a “main catalyzer” of indus-
trial AI [5]. To be useful in practical applications, XAI meth-
ods must be paired with Explanation User Interfaces (XUIs)
to display explanations and facilitate user interaction [8]. Sev-
eral principles for the systematic development of XUIs have
been proposed [9]. However, comparatively few real-world XUI
systems have been studied from a human-machine interaction
(HMI) perspective. Studies of XUIs for AI agents in strategy
games [10] and loan applications [11] are notable examples.
While in the manufacturing domain, XAI methods have been
proposed for a wide range of applications such as forecasting,
decision making and job scheduling [12], to our knowledge, no
study of XUIs for robot programming has yet been undertaken.

In this paper, we present an XUI for a state-of-the-art DL-
based method for optimizing industrial robot programs and de-
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Fig. 1. Overview of the proposed system: A user interface enables intuitive
interaction of a human user with an AI system for robot program optimization.

scribe its underlying design principles. We present a prelimi-
nary, small-scale user study on a realistic assembly use case,
which evaluates to what extent our proposed XUI enables in-
dustry practitioners to use AI for robot program optimization.
Lastly, we propose a study design for a planned large-scale user
study to evaluate the potential of XUI methods in industrial
manufacturing.

2. An Explanation User Interface for AI-based Robot Pro-
gram Optimization

Industrial robots are currently programmed by experts us-
ing textual or graphical programming interfaces. Particularly
the task-specific parametrization of robot programs during the
ramp-up phase of robot workcells has been identified as a major
cost factor in industrial automation [13]. We present an XUI for
an AI-based robot program optimizer to enable industry practi-
tioners the use of state-of-the-art AI methods (see Fig. 1).

2.1. AI-based Robot Program Optimization

Shadow Program Inversion (SPI) is a novel, deep-learning-
based approach for optimizing robot program parameters [1, 3].
Given a parameterized robot program P with parameters x, the
execution of this program will result in a robot trajectory Θ.
Initially, SPI learns a shadow model P̂ of the program: A differ-
entiable, neural model, which is trained on data from executions
of P to predict the expected execution of P given some param-
eters x. It then uses P̂ in a model-based iterative first-order op-
timization process to optimize the parameters x to maximize a
task-specific objective function. We refer to the literature for a
detailed description of the approach [1, 3]. From a user’s per-
spective, SPI requires the following three-step workflow:

1. Dataset definition: The training data for P̂ consists of
input-label pairs (x,Θ). For AI novices, it is challenging

to determine whether a given dataset is suitable for train-
ing. Poor data quality due to e.g. outliers can severely im-
pact optimization results. One aspect generally missed by
AI novices is the requirement for the inputs x to cover the
range of the parameter space over which optimization is to
be performed, and to have sufficient variance.

2. Model training: P̂ contains neural networks, which must
be trained. Challenges involve the choice of appropriate
hyperparameters such as learning rates or network sizes,
depending on the task. After a model has finished training,
it is challenging for non-experts to access the quality of the
trained model.

3. Parameter optimization: The program parameters are
optimized with respect to a task-specific objective func-
tion. At the time of writing, SPI supports process metrics
such as cycle time, path length and task success proba-
bility, as well as a threshold on the forces that are al-
lowed to occur during program execution, and arbitrary
weighted combinations of these objectives. Choosing the
appropriate objective function(s) and weights is challeng-
ing for non-experts, as is the choice of appropriate hyper-
parameters for the optimizer. The assessment of the qual-
ity of the optimization results is likewise challenging for
naive users, as the relationship between program parame-
ters and robot behavior is not always immediately obvious,
depending on the parameter.

2.2. Guiding Principles for UI Design

A UI is required to enable the practical use of a complex AI
approach such as SPI. We propose that to enable AI novices
to use SPI and similar systems, UI designers ought to empha-
size user adaptability and explainability, in addition to general
UI design principles such as informative feedback, consistency,
minimal memory load and user control [14].

2.2.1. User Adaptability
The skill gap between the level of algorithmic and data com-

petence required to use complex AI systems and the lack of
experience of practitioners in industry with such systems often
prevents the practical use of AI [7]. Adaptable user interfaces,
where the UI can be reconfigured to adapt to the needs of users,
can help bridge this gap [15]. We propose an adaptation mecha-
nism by which the user can switch between “Guided” and “Ex-
pert” modes of the UI. In Guided mode, several features which
give the user direct control over the AI system, such as hyper-
parameter selection, are simplified or hidden and replaced by
defaults. UI elements directly visualizing technical aspects of
the AI system, such as loss curves, are simplified, removed or
replaced by more intuitive, but less information-dense metrics,
and additional textual explanations are added. In Expert mode,
all control options, such as training and optimization hyperpa-
rameters, are exposed to the user; plots have a higher degree
of information density, and all default settings can be manually
overridden. Users can freely toggle between these modes.
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Fig. 2. Workflow and corresponding UI elements, with variation points for user adaptability ( ) and explainability features ( ). Screenshots for data visualization
(left), LRP (center left, bars illustrate the relative impact of individual program parameters on model output), hyperparameter specification (center right), specification
of the optimization objective (2nd from right) and visualization of optimization results (far right) are shown.

2.2.2. Explainability
Explainability has been identified as a crucial factor in

human-AI interaction [8], significantly improving both trust in
the system as well as task success [16]. We conceptualize the
proposed interface as an XUI, integrating explainability fea-
tures at every step of the workflow (see Fig. 2). We take a broad
view of XAI that includes both explanations of the behavior of
the deep neural networks (DNNs) at the heart of the system,
but also the input-output relationships of the system as a whole.
The following paragraphs outline the integrated XAI features at
each step of the workflow.

2.3. XUI Workflow

The UI was realized as a component of ArtiMinds Learning
& Analytics for Robots (LAR), a software platform for the col-
lection and analysis of robot data. Robot programs are assumed
to have been created through ArtiMinds Robot Programming
Suite (RPS), an integrated development environment (IDE) for
industrial robots based on a task-based programming paradigm.
When an RPS program is executed on a robot, data such as end-
effector poses, joint states or forces and torques are streamed to
LAR and automatically annotated with semantic information
about the currently executed robot skill, as well as user-defined
tags such as serial numbers or part variants. The UI guides the
user through the SPI workflow outlined in Section 2.1. Fig. 2
illustrates the workflow and the realized adaptability and expla-
nation features at each step. At the beginning of the interaction,
the user selects the robot program and one or more robot skills
(the target skills) in the program to optimize (the target pro-
gram). Once a workflow step has been completed, the user can
press “Next” to continue to the next workflow step, and can re-
turn to completed workflow steps at any time to make changes.

2.3.1. Dataset definition
To facilitate the definition of a suitable dataset for model

training, the user is provided with UI elements for exploring
and visualizing collected data. To prevent the user from select-
ing invalid data, only data collected from executions of the tar-
get program are displayed. The user can filter training data by

timestamp or any tags applied to the data at collection time. In
Expert mode, the user can adjust further technical details of the
dataset, such as the length with which trajectories are padded.
Visualizations such as 3D plots of spatial data are displayed to
provide the user with an understanding of the data. The chal-
lenges most frequently encountered when specifying datasets
for SPI are a lack of variance in the inputs, the presence of out-
liers in the labels, as well as the definition of successful skill
executions. To allow users to quickly gauge the variance in the
inputs, the input distribution of the current data selection is dis-
played as box plots. Additionally, for each input parameter, a
textual message is displayed informing the user whether the
variance in that parameter is sufficient to allow later optimiza-
tion of that parameter. The trajectory distribution is displayed
in two plots, the first shows the end effector motion as a 3D
line plot, the second displays the force-torque distribution over
time. The trajectories are colored by their success, allowing
easy identification of unsuccessful executions. When the user
is satisfied with the data selection, they are prompted to provide
a name for the dataset, which serves for later identification.

2.3.2. Model training
To allow the user to train shadow models for the target skills

given the training data, the user is presented with a list of avail-
able pretrained models (base models) which match the types of
the target skills. For each target skill, they can choose to use a
base model as-is, to finetune the base model on the previously
configured dataset, or to train a new model from scratch. For
each model to be trained, they are guided through a dialog to
specify a name for the model for later identification, and hyper-
parameters for training, such as a learning rate, batch size, net-
work size etc. Sensible defaults are provided for each setting.
After training, loss curves and training metrics are displayed,
as well as graphs comparing model predictions with ground-
truth labels held out from the training data. In Guided mode,
the UI for hyperparameter specification is simplified to hide
all parameters but the learning rate and training duration. Ad-
ditionally the loss curves are simplified significantly, giving a
summarized overview over the training process. In both modes,
training results are classified into “good performance”, “over-
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Fig. 3. UI for the optimization step, Guided (left) and Expert modes (right). Fig. 4. Experiment set-up for robotic gearbox as-
sembly.

fitting”, “underfitting”, “regularization” (dropout rate too high)
and “erroneous training data”, along with explanative descrip-
tions. To explain the trained network’s behavior, LRP is com-
puted to determine the relevance of each input parameter for the
model’s predictions. This permits domain experts to check the
model’s outputs for plausibility; predicted forces, for example,
should typically increase with the velocity of the motion.

2.3.3. Program optimization
One typical user challenge when optimizing program pa-

rameters is the specification of the objective function. Process
metrics such as task success, cycle time or path length are of-
ten contradictory, and simultaneous optimization for multiple
metrics may result in parameterizations which are not intu-
itive to users, or the optimizer may fail to converge. In Expert
mode, supported task objectives can be toggled, and their rel-
ative weights specified via sliders. In Guided mode, only tog-
gling of objectives is allowed, and weights are assigned based
on sensible defaults. Expert users have additional control over
the hyperparameters of the optimizer, such as the step size and
number of iterations (see Figure 3). The optimized parameteri-
zation is displayed alongside the initial parameterization, allow-
ing a quick overview of how the program would change with
optimization. To facilitate an intuitive understanding of opti-
mization results and the behavior of the optimizer, we provide
two explanation features. The model predictions for each opti-
mization iteration are plotted together and the best iteration is
highlighted, allowing the user to gauge the plausibility of the
optimization results in terms of the robot’s motions. Addition-
ally, the user can interactively change the optimized parameters
and the resulting model predictions are plotted, providing an in-
tuitive method for the user to sanity-check model predictions:
If they increase the velocity of the robot, the predicted impact
force should also increase and vice versa.

Model training and parameter optimization are typically per-
formed more than once, as bad model performance such as in-
sufficient generalization often becomes apparent once it is used
for optimization. The UI permits users to navigate back and
forth between training and optimization to repeat steps or fine-
tune hyperparameters as needed.

3. Preliminary User Study

To quantify the influence of a targeted system design on
the cooperation between human and machine for AI-based pro-
gramming, a preliminary user study is conducted. Participants
are tasked to solve a practical robot programming use case us-
ing the proposed system. The use case consists of optimizing a
robot program for the assembly of the gearbox of a small elec-
tric motor, in which the robot grasps a gear, approaches the axle,
performs force-controlled spiral search for the exact pose of the
axle and inserts the gear onto the axle (see Figure 4). A prelim-
inary study has been carried out and the results are discussed
below (see Section 3.2). As the results are promising, a further
investigation of the user interface is planned (see Section 4).

3.1. Study Design

The preliminary study comprised a total of 12 participants.
While they were all familiar with robotics, 5 participants had
a background in mechanical engineering, 6 in computer sci-
ence, and 1 in product management. Based on their accounts
of prior AI experience, we classified 4 of the participants as AI
experts and 8 as AI novices. All participants were males over
the age of 20 with at least one university degree. Each partici-
pant was presented a short task description. No additional help
was provided. In a survey subsequent to the experiment, the
topics (1) success, (2) usefulness, (3) usability, (4) user adapta-
tion, (5) cognitive load and (6) transparency were evaluated on
a unipolar Likert scale ranging from 1 (“not at all”) to 5 (“com-
pletely”). Questions (1), (5.1), (5.2), (5.3) and (5.4) are a subset
of the NASA TLX questionnaire [17]. The questions on system
explainability (6.1 - 6.9) are adapted from the “XAI question
bank” [18].

3.2. Results

The results of the survey are shown in Figure 5. First, the
overall perceived success of the users is evaluated (1). It shows
a high variance, which might be due to different expectations of
the system’s capabilities. Within the sub-tasks, perceived suc-
cess is similarly high for both user groups with identical means
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for both the context selection task (2.1) and the data genera-
tion and analysis task (2.2). This might be due to the simplicity
of the tasks, where the extra expertise of AI experts is not re-
quired. Model training and evaluation (2.3) however requires a
more comprehensive understanding of AI, which the AI experts
leverage. This holds true for the final task of parameter opti-
mization (2.4) as well. Participants understood each sub-task’s
objective and were able to generate a dataset, train a neural net-
work and obtain predictions with that model. The provided tex-
tual explanations as well as default values were deemed useful
by both participant groups (3).

The interface left the choice of the user mode (Guided or
Expert) to the users. This decision is not adjusted to the spe-
cific task, which is unknown in advance. Thus users might find
themselves facing unexpectedly difficult tasks or being limited
by a simplified interface. During the experiment, it could be
observed that only one participant changed the mode from Ex-
pert to Guided during the optimization task, motivated by the
user’s curiosity. Most users decided for one mode and never
changed it (4.1). This indicates that users are able to self esti-
mate their level of experience, and that the level of complexity
was adequately adapted. (4.2) targets the user’s perception of
limited agency. The low scores (µnovice = µexpert = 1.75) indi-
cate that users of both groups seldom felt limited in their work-
flow. AI novices still had enough interaction possibilities while
presented a reduced version of the user interface.

The pace of work (5.1) and negative emotions like stress or
insecurity (5.2) were higher for AI novices which indicates a
need for more guidance. Further, the experiment task was men-
tally demanding for most users of both user groups. In combi-
nation with the results on acquired guidance, it can be suggested
that this might be due to the task being too complex.

To facilitate practical use of AI in real-world applications,
AI-based decisions must be made transparent. The results
showed that the source of the data was mostly understood by
both user groups (µnovice = 4.125, µexpert = 4.0) (6.1). More
complex tasks like the prediction of outputs was understood
less well by AI novices (6.4). The implemented LRPs plot was
not fully understood (6.9). While the calculated feature impor-
tance score can serve as a starting point, explaining the neural
network in depth remains a challenge.

3.3. Discussion

The preliminary study results indicate that the proposed sys-
tem enables both AI novices and experts to use an AI-based
robot program optimizer. The usefulness and intuitive usabil-
ity of the system was ranked favorably, and users were able to
perform a practical real-world program optimization task with
acceptable cognitive load. The results showed high variance in
perceived success, usefulness, and usability, which might be
due to different expectations and understanding of the system’s
capabilities. The study emphasizes the need for additional guid-
ance for AI novices, as well as more advanced techniques for
explaining neural network behavior. The reliability of the re-
sults from the AI expert group is limited by the observed ten-
dency of the expert participants to “play” with the system out

Fig. 5. Survey results of 12 participants, 8 of which are classified as AI novices
and 4 as AI experts. ▲ indicates the median response.

of curiosity, rather than using the system with determination to
achieve the task. Future studies will investigate methods to im-
prove the comparability of results from different user groups.

4. Large-Scale User Study

In a large-scale study, the preliminary study will be system-
atized and the number of subjects increased to achieve statisti-
cal significance. The subjects will be students of engineering,
computer science, and related disciplines, PhD candidates as
well as engineers working in the field of automation or robotics.

4.1. Study Design

The two independent variables of the study are the level of
explainability and the level of control of the system. For both,
a distinction is made between low and high, resulting in a 2x2
matrix defining four variants of the user interface. We propose a
double-blind between-subject design: To every participant, only
one variant of the interface is presented, and neither the par-
ticipants nor the experimenter know which of the four groups
they are assigned to. Participants are asked to fill out a pre-task



596 Benjamin Alt  et al. / Procedia CIRP 130 (2024) 591–596

questionnaire collecting demographic data (e.g. age, gender),
self-reported level of experience with AI, industrial automation
and robotics, attitude towards robots (GAToRs [19]), attitude
towards AI (GAAIS [20]) and technology commitment [21].

For the explainability variable, several features have been
defined and made available in the UI. These include statistics
to explain the data, explanations of the model quality, and an
evaluation of the relevance of individual elements. The level of
control is expressed in the extent of possible hyperparameter
tuning, both for model training and trajectory optimization.

During execution, the task completion time, success rate
and UI interaction metrics such as the number of clicks are
recorded. After the task, participants complete a questionnaire,
including standardized measures for cognitive load (NASA
TLX [17]), quality of explanations (Explanation Satisfaction
Scale [22]) and trust in the system (Trust in Automation Ques-
tionnaire [23]). The exact design of the metrics is subject to fur-
ther determination. A number of 120 subjects should be reached
in order to achieve sufficient statistical power.

5. Conclusion

We present an XUI for an AI-based robot program optimizer,
aiming to enable industry practitioners to use state-of-the-art
AI methods for practical robot programming applications. The
XUI is designed to address the skill gap between the AI com-
petence required to use complex systems and the lack of expe-
rience of practitioners in industry, as well as to foster appro-
priate levels of trust in the correctness and performance of the
AI system. The interface emphasizes user adaptability and ex-
plainability as guiding principles, and proposes explainability
and intuitive user interaction mechanisms for each step in the
workflow. We outline a preliminary user study on a realistic as-
sembly use case and propose a study design for a planned large-
scale user study. This study will focus on the level of explain-
ability and control afforded by system, aiming to draw gener-
alizable conclusions about the design of user interfaces for in-
tuitive, trustworthy human-AI interaction in the manufacturing
industry.
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