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1. Introduction

Manufacturing of the future needs flexibility and changeabil-
ity from product design throughout all manufacturing areas [1]
to dynamically react to a highly volatile environment. Increas-
ingly dynamic manufacturing stemming from demand, regula-
tion and the possibility to include a circular economy require
changes in product portfolio leading to more complex manufac-
turing environments that facilitate matrix production [2]. At the
same time it becomes apparent that the design of manufactur-
ing systems and the ability to reconfigure instead of rebuilding
from scratch has strong effects on sustainability [3]. Thus, re-
configurable manufacturing systems provide a promising path
to deal with these increasing dynamics [4], especially coupled
with reconfigurability extension into production networks [5].

Matrix production systems make up the most sophisticated
and widely used implementation of this reconfigurability on
production system level [6]. Matrix production, with its flexi-
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ble and modular setup, addresses these challenges by enabling
simultaneous production of multiple products on shared assets,
such as Automated Guided Vehicles (AGVs), to streamline ma-
terial flows and optimize resource utilization and overall pro-
ductivity. This versatility allows for quick reconfiguration of
production lines to respond promptly to changing market trends
and unforeseen disruptions, ensuring competitiveness and re-
silience in fast-paced environments.

While the extensive planning of such matrix production and
reconfigurable systems has been widely studied [7], production
control itself is likewise frequently studied, in particular in ma-
trix production systems [8]. Besides production control, layout
planning is crucial for matrix production as it determines the
spatial arrangement of manufacturing stations and resources,
optimizing material flow, minimizing transportation distances,
and facilitating efficient utilization of shared assets, thereby am-
plifying flexibility beyond the scope of production control alone
[9]. The performance of matrix production hinges upon the syn-
ergistic coordination of decisions of both layout planning and
production control, which has been neglected in the existing
studies.
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In this study, we extend the current research landscape in
matrix production by formulating optimization models to tackle
two primary challenges: the layout planning problem and the
selection of scheduling and dispatching. Our evaluation en-
compasses a comprehensive assessment of matrix production
performance across various objectives, including utilization,
throughput, delay, among others, aimed at thoroughly evalu-
ating decisions in the context of a highly volatile production
environment. In this contribution, an approach is suggested en-
abling a joint consideration of both using a practical example
the incorporates the aforementioned complexities. These com-
plexities culminate in semiconductor manufacturing [10] mak-
ing it an ideal system to study such an dynamic integrated lay-
out planning an production control.

The paper is structured as follows: section 2 introduces the
state-of-the-art in layout planning for matrix production and re-
lated systems, as well as the corresponding typical production
control selections. The proposed integrated, dynamic simulative
layout planning and production control is presented in section 3.
It is validated in simulation studies and a real-world semicon-
ductor case in section 4. The results are discussed in section 5
and concluded with an outlook in section 6.

2. State-of-the-art

2.1. Layout planning in matrix production

Layout planning in manufacturing is the process to deter-
mine a relative location among equipment and assets in the
manufacturing system [11]. Both forms with predefined loca-
tions [11] and flexible layout arrangements [12] are equally
present. Nowadays, using simulations to plan manufacturing
systems and their respective layout is a state-of-the-art approach
[13]. In this case the dynamic behavior of the manufacturing
system given a selected layout is analyzed and iteratively, of-
ten manually, improved [13]. Matrix production systems offer
a much higher degree of flexibility in material flow than tra-
ditional manufacturing systems, which complicates the layout
planning process [6]. In general, reconfigurable manufacturing
systems require a multi-objective optimization, which can us
simulations with genetic algorithms to improve the layout [14].
The integration of planning a layout and the production control
at the same time has been neglected in literature, in so far as
only basic assumptions about the used production control, in a
fixed manner, are assumed [14].

2.2. Production control in matrix production

In the realm of production planning and control the classi-
cal job shop problem stands out due to its complexity [15]. In-
terestingly, layout planning is regarded less frequently in such
job shops [16]. Due to the complexity, however, the study of
production control, typically heuristics to be adaptable [17] is
predominant. Production control in general aims at optimally
utilizing available equipment within a manufacturing system
through changing the production plan, also called scheduling

[15] or in a real-time manner adapting to the current situation
in the production system and taking decisions about the ma-
terial flow one by one [18]. In matrix production systems the
usage of priority rules, such as first-in-first-out (FIFO), shortest
processing time (SPT), earliest due date (EDD) and nearest job
first (NJF), have gained popularity and represent the state of the
art [19]. Thereby, the semiconductor manufacturing perfectly
mirrors a use case with the aforementioned challenges [17].

2.3. Multi-objective optimization in matrix production

Matrix production systems often involve multiple objec-
tives [14], such as minimizing lead time, maximizing through-
put, reducing costs, and reducing emissions. Multi-objective
optimization techniques are employed to find optimal solu-
tions that balance trade-offs between these objectives [20].
The Non-dominated Sorting Genetic Algorithm II (NSGA-II)
has emerged as a popular and effective method for solving
multi-objective optimization problems [21]. The integration of
NSGA-II with simulation models has proven to be a power-
ful approach for evaluating and optimizing production systems
[12, 14]. However, the application of NSGA-II in the context
of matrix production systems has been limited. In particular,
the simultaneous optimization of layout planning and produc-
tion control strategies using population based algorithms, such
as NSGA-II, has not been extensively explored in the literature.

3. Dynamic simulative integrated layout planning and pro-
duction control

In this section a detailed overview on the selected approach
is provided on a highlevel as well as a formalized problem.

3.1. Conceptual approach

Production system design is a decision with major impact
on a company’s success and imposes challenges on decision
makers. The design spans from the selection of resources to the
allocation of orders to resources and rules definition. A multi-
tude of options encourages a simulative assessment of decisions
and system performance, as it has been, for example, done long
time for layout design [9], but also for the evaluation of produc-
tion control [8]. In our case, a multitude of design parameters is
used, which are then used as starting points for a simulation to
determine relevant key performance indicators (KPIs). An op-
timization is applied to further improve system design and to
identify the non-dominated solutions. The system design vari-
ables chosen may vary. In the approach presented dispatching
(transporting orders between machines or equipment), order se-
quencing (selecting the priority in buffers) and the layout (loca-
tions of machines or equipment) are selected as variables.

The machines’ positions on the shopfloor are variable and
their locations are determined using a tuple of integer numbers
indicating their coordinates on the shopfloor, or in predeter-
mined position cases through an allocation. Following the se-
lected policies and positions, a simulation of the complex ma-
trix production system is run as visualized in Figure 1. This is
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Fig. 1. Conceptual approach

particularly important if transport time is a critical success fac-
tor for order completion. In order to evaluate the decisions, sev-
eral objective criteria are determined during the simulation run.
Besides classical multi-objective optimization towards through-
put, utilization or delays [15] increasing sustainability, in par-
ticular in matrix production systems, is gaining attention [18].
In this case, throughput, utilization, lead time and order delay
are selected, however, an extension towards sustainable objec-
tives is possible. The determinants for the production system
are encoded to allow the application of a genetic algorithm. In
this case, an NSGA-II is used for multi-objective optimization
based on a randomized initial population. Sorting the solutions
non-dominated solutions can be selected and used for the next
generation and therefore the next series of simulation runs. A
further specification of the optimization problem is given in the
following section.

3.2. Problem formalization

In this section, an optimization model to balance diverse ob-
jectives in matrix production is developed. We modeled the ma-
trix production as a system comprising i ∈ I machines and sta-
tions interconnected by Automated Guided Vehicles (AGVs).
Both layout planning and production control were considered
simultaneously and modeled as two types of decision variables.

For the production control, we define the two decision vari-
ables: transportation dispatching rule t, and order sequencing
rule m for selecting the optimal transporting schedule of AGVs
and production order sequencing. Considering the nature of the
matrix production, we consider the transportation dispatching
rule (t) to be selected from four alternatives: FIFO, SPT, EDD,
and NJF, and the order sequencing rule (m) can be chosen from
three alternatives: FIFO, SPT, and EDD. The decision of layout
planning is represented by the position (pi) of each machine,
including spatial coordinates in both the x and y dimensions,
denoted as xi ∈ R and yi ∈ R respectively, representing the
location of each machine within the available factory space.

Each set of decision variables will be assessed using the
discrete-event simulation model detailed in Section 3. The deci-
sion variables are selected to optimize the following objectives:
1) maximizing throughput ft the number of orders processed

per unit time; 2) minimizing delay fd: the difference between
the actual completion time and the due date of orders; 3) maxi-
mizing asset utilization rate fu: the proportion of time each ma-
chine is actively processing orders; and 4) minimizing lead time
fl: the total time an order spends in the system from its arrival
to its completion. To strike a balance among these objectives,
we formulate a multi-objective optimization model as follows:

[OM] min
t,m,pi

(− ft, fd,− fu, fl) (1a)

s.t. t ∈ [FIFO, SPT, EDD, NJF] (1b)
m ∈ [FIFO, SPT, EDD] (1c)
pi = (xi, yi), x ∈ (0, A), y ∈ (0, B), ∀i (1d)

ft =
n − n0

t − t0
(1e)

fd =

∑n
n0

Dn

n − n0
(1f)

fu =
∑

i Ui

I
(1g)

fl =

∑n
n0

Ln

n − n0
(1h)

where, 1a defines the objective function. Constraints 1b, 1c, 1d
defines the scope of decisions, A and B are the upper bound of
x and y, respectively. Throughput ft, as in (1e), is calculated as
the number of orders n processed minus the baseline number to
reach steady state n0, divided by the elapsed time t after reach-
ing this state t0. Delay fd, as in (1f), is calculated by the average
of the delays Dn for all orders in steady state. Utilization fu, as
in (1g), is calculated by the average of the machine utilization
Ui for all machines. Lead time fl, as in (1h), is calculated by the
average of the lead times Ln for all orders in steady state.

4. Validation

For the validation, we consider a semiconductor matrix pro-
duction system with a decision space defined by the dimensions
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A = 35 and B = 25. We use Discrete Event Simulation (DES)
which has been fit to the real-world semiconductor system in
previous studies. The system processes a total of n = 6000 or-
ders, and it reaches a steady state after processing n0 = 1000 or-
ders. The production layout consists of I = 8 machines, which
can be positioned at various locations within the decision space.
The objective is to optimize the target KPI of the manufactur-
ing system by selecting appropriate dispatching rules for trans-
portation (t) and order sequencing (m), as well as determining
the optimal positions (pi) for each machine.

4.1. Flexible layout planning and production control selection

In the generalized case a flexible layout is assumed. The op-
timization model was solved using the NSGA-II algorithm, ini-
tializing the process with a population of 200 individuals, which
serves as the starting point from which the algorithm begins its
search for optimal solutions. Through 200 iterations spanning
generations, conducted using Python, Pareto fronts comprising
39 non-dominated solutions were ultimately generated.

4.1.1. Production control
In analyzing the selection of dispatching rules, we first chose

decisions that showed the best performance for each individual
objective, which are shown in Table 1. The strategy in the first
row demonstrates the best performance among all Pareto fronts
in terms of throughput ft and utilization fu. The strategies in
the second and third rows excel in minimizing delay ( fd) and
lead time ( fl), respectively. Based on the results, the best per-
formance of a certain individual objective often occurs when
applying the same rule for both transportation dispatching and
order sequencing. This can be explained by the fact that each
rule is designed to align goals between logistics and produc-
tion scheduling functions, allowing the system to focus on opti-
mizing a single objective effectively. It is noteworthy that each
dispatching rule is inherently suited to specific layout pairings.
The selection of an appropriate dispatching rule should consider
not only the objectives of the system but also the specific layout
constraints and designs, to fully harness its efficacy.

Table 1. Optimal Solution for Individual Objectives from Pareto Fronts

t, m pi ft fd fu fl

SPT, SPT [12, 11] [21, 14] [17, 15] [16, 8]
[24, 12] [26, 9] [24, 4] [24, 13] 0.34 26 0.84 92

EDD, EDD [23, 15] [11, 14] [13, 18] [15, 13]
[12, 12] [18, 11] [15, 14] [18, 10] 0.32 17 0.77 94

FIFO, FIFO [22, 10] [20, 14] [18, 13] [14, 5]
[26, 8] [31, 15] [24, 19] [21, 7] 0.33 22 0.76 90

While the same rules may optimize one objective, it is at
the price of lowering other objects. However, combining dif-
ferent rules can help strike a balance among multiple objec-
tives. The selected Pareto fronts presented in Table 2 demon-
strate that choosing different dispatching rules for t and m can
lead to balanced results. Comparing the performance from Ta-
ble 1, while applying the SPT rule alone improves throughput

Fig. 2. Machine Positions Across Pareto Solutions

( ft) and utilization rate ( fu), the combination of NJF and FIFO
offers a more balanced solution by improving delay ( fd) at a
slight cost to utilization rate. Similarly, using EDD and FIFO
rules separately optimizes delay ( fd) and lead time ( fl), respec-
tively. However, combining EDD and FIFO achieves a balanced
solution for both objectives ( fd and fl) without significantly
compromising the other two objectives. On the other hand, the
combination of SPT and EDD enhances lead time ( fl) while
not compromising the other objectives, showcasing the selec-
tion trade-off.

Table 2. Balanced Solutions Selected from Pareto Fronts

t, m pi ft fd fu fl

NJF, FIFO [17, 25] [23, 23] [31, 15] [1, 18]
[33, 21] [3, 6] [3, 9] [1, 19] 0.34 22 0.82 93

EDD, FIFO [22, 16] [12, 11] [12, 16] [16, 12]
[13, 11] [16, 13] [19, 15] [18, 9] 0.33 18 0.81 92

FIFO, EDD [10, 15] [12, 15] [20, 15] [15, 13]
[21, 14] [14, 8] [16, 12] [17, 14] 0.33 20 0.80 92

SPT, EDD [22, 10] [21, 14] [18, 13] [14, 4]
[27, 7] [31, 15] [24, 19] [21, 7] 0.33 23 0.79 91

4.1.2. Layout planning
Following the assessment of dispatching rules, Fig. 2 illus-

trates the machine position selections for the 8 machines (Mc1
to Mc8) across the Pareto solutions. The positions for each ma-
chine are represented using different colors on the graph. It is
evident that the machines tend to gravitate towards the center
of the factory space, which can be explained by the distance
minimization to the in and out queue.

The variation in machine positions across the Pareto solu-
tions further confirms that different dispatching rules may have
different optimal positions for the machines. This underscores
the significance of the matrix production layout, wherein the
flexibility in machine positions enhances adaptability not only
to the selected dispatching rules but also to future manufactur-
ing demands. Such adaptability is pivotal in ensuring the re-
silience and efficacy of manufacturing systems amidst evolving
operational requirements and dynamic market conditions.
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Fig. 3. Pareto Front of Flexible Layout General Case.

4.1.3. Trade-offs between objectives
Fig. 3 presents the Pareto fronts of the four objectives ob-

tained from the multi-objective optimization. These 2D plots
reveal the trade-offs among the objectives. In subplots (a) and
(b) as throughput increases, lead time and delay tends to be
longer. This can be explained by the fact that higher through-
put requires processing more parts simultaneously, resulting in
longer waiting times and consequently extended lead times and
delays. Moreover, in subplot (c), the positive correlation be-
tween throughput and utilization is apparent, as higher through-
put necessitates machines to operate at higher capacity to meet
the increased demand. Subplot (e) indicates a trade-off between
utilization and lead time. As utilization increases, lead time also
rises. Machines with higher utilization operate near their full ca-
pacity, resulting in longer wait times and lead times. Subplot (d)
further reinforces this observation by demonstrating that higher
utilization is associated with higher delay. No clear relationship
is shown between delay and lead time, as remarked in subplot
(c).

4.2. Semiconductor use-case

We evaluate the effectiveness of the model in a real-world
semiconductor use case. Due to spatial constraints, instead of
allowing unrestricted repositioning of machines throughout the
entire factory space, a finite number of predetermined loca-
tions (from the actual fab) are allocated for machine place-
ment. According to the data from a local factory, the ma-
chine location pi is selected from the set of predetermined
positions P of the machines are as follows, namely, pi ∈
P= {[1.5, 19], [18.5, 19], [32.7, 23.4], [32.7, 18.3], [30.7, 10.6],
[9, 11.3], [11, 11.3], [9, 2.7]}. By substituting the constraint (1a)
outlined in model [OM], we conducted the optimization for pro-
duction control and layout planning specific to semiconductor
applications.

The selected solutions from the computed Pareto front of
the fixed layout use case in Table 3 indicate that layout deci-
sions correlate with delay and lead time. Choosing NJF and
SPT achieves the best results for throughput and utilization
rate but leads to poor performance in delay and lead time. In

Fig. 4. Pareto Front of Fixed Layout Semiconductor Use-case.

contrast, the combination of EDD and FIFO provides a bal-
anced solution, yielding slightly lower throughput and utiliza-
tion while maintaining good delay and lead time performance.
On the overall evaluation, the manual optimization in the real-
world system is Pareto-dominated by the found solutions of the
proposed approach with a margin higher than 1%.

Table 3. Solutions Selected from Semiconductor use-case

t, m pi ft fd fu fl

NJF, SPT [1, 3, 5, 4, 6, 7, 8, 2] 0.338 27.1 0.840 99.6

FIFO, SPT [5, 2, 1, 4, 7, 8, 6, 3] 0.325 23.6 0.819 95.6

EDD, EDD [2, 8, 1, 3, 4, 6, 5, 7] 0.326 18.2 0.777 95.8

EDD, FIFO [3, 8, 4, 6, 5, 7, 2, 1] 0.327 18.8 0.811 91.8

The Pareto solution from the semiconductor use case is
shown in Fig. 4. Comparing these results to Fig. 3, it becomes
apparent that the trade-off between utilization and delay, uti-
lization and lead time persists as shown in subplot (d) and (e),
respectively. Additionally, in subplot (c), throughput and uti-
lization maintain a weak positive correlation. However, no dis-
cernible correlation can be observed between throughput and
lead time (subplot (a)). No clear relationship is shown between
throughput and delay, delay and lead time, as in subplots (b)
and (f). This comparison suggests that layout decisions have a
notable impact on the objectives of delay and lead time, leading
to less pronounced trade-offs in a fixed layout.

5. Discussion

The results of this study provide valuable insights into the
complex dynamics of multi-objective optimization of matrix
production systems. The choice of dispatching rules signifi-
cantly influences the prioritization and objectives. By strategi-
cally positioning machines aligned with dispatching rules and
prioritized objectives, manufacturers stand to improve the effi-
ciency and effectiveness of their production processes.

The Pareto fronts obtained from the multi-objective opti-
mization reveal the trade-offs among the objectives. The anal-
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ysis of these trade-offs highlights the importance of consider-
ing balanced Pareto fronts in decision-making. For instance, the
trade-off between throughput and lead time as well as utilization
and lead time suggests that increasing throughput increases lead
times due to the increased processing time and waiting times.

The study also demonstrates the suitability and feasibility
of employing the NSGA-II algorithm for multi-objective op-
timization in matrix production. The algorithm’s capability to
effectively explore the solution space and generate a diverse set
of Pareto-optimal solutions underscores its potential for sup-
porting decision-making in matrix production systems.

6. Conclusion and outlook

The approach selected for a complex matrix production sys-
tem optimization considers a variety of manufacturing system
decision variables (dispatching, order sequence and layout) and
uses a simulation to determine the optimal system performance
considering multiple objectives, including, throughput, uptime,
leadtime, delay. A multi-objective optimization problem is for-
mulated and solved by NSGA-II. The approach is applied in
general and validated in a semiconductor use case represent-
ing scenarios with flexible layout and fixed layout respectively.
For the holistic layout and production control multi-objective
optimization an NSGA-II is used. Pareto fronts are created in
order to select Pareto optimal solutions. It can be found that
for different choice of allocation algorithms (i.e. for dispatch-
ing and order sequence) different objectives are in favor. The
inclusion of layout design suggests different positions for each
dispatching approach. However, a tendency towards the center
to minimize transport time is observable.

However, it is essential to acknowledge the limitations of
this study. The findings are based on a simulation context and
idealized scenario. Future research endeavors should aim to en-
hance the generalizability of the proposed method by incorpo-
rating comprehensive considerations of real-world production
constraints and uncertainties. In a next step, the simulatively as-
sessed approach must be transferred to reality. In addition, the
KPI system applied can be extended further towards for manu-
facturing sustainabiltiy. Considering KPI, it could be of greater
interest to explain the impacts of different system design param-
eters on these objectives. System description and the degree of
modeling detail could be further increased.
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