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In this contribution we assess the performance of Sym- ,; structure. This means that, at the end of the SR process, there
bolic Regression (SR) when used to model the optical = isa closed-form expression that provides results equivalent to
»s  those obtained with a computationally expensive electromag-
. . 2 netic method. This expression is an explicit relationship between
this end, we search for analytical closed-form expres- ,; the optical response and different geometrical parameters of the
sions that model the reflectance spectra related to the = studied structure. The approach based on SR presents an im-
2 portant advantage over a neural network-based meta-model [6],

. . . . 30 since the latter does not provide a closed-form expression but
inspired on the Cyphochilus insulanus beetle. Our nu- _, only a numerical model.

response of biological and bio-inspired structures. To

Tersina viridis bird’s plumage and the porous structure

merical results demonstrate the high prediction accuracy

of the employed Symbolic Regression scheme. The re-
trieved models not only capture the dependency of the
optical response on various relevant geometrical and
illumination parameters, they are are dimensionally ho-
mogeneous.

http://dx.doi.org/10.1364/a0. XX. XXXXXX

The advent of increasingly powerful computers, together
with great advances in computer science over the past decades,
have made the use of Artificial Intelligence (AI) a common ac-

tivity in physical sciences [1]. Notwithstanding this progress, Fig. 1. Two examples of photonic biological structures found
the readability and interpretability of Deep Learning models are in nature, and the structural morphology responsible for their
still under discussion, and significant efforts are currently being coloration. a) Male Tersina viridis bird, with a TEM image of a
conducted in that direction [2]. On the other hand, Symbolic transversal cut section of a barb from a back feather. b) White
Regression (SR) is an Al method that explores, unlike traditional beetle Cyphochilus insulanus, with a sectional view of an SEM
regression techniques which adjust data to predefined models, a image of the white scales that cover its body (adapted from
wide space of functions to identify an appropriate closed-form Ref. [7] Licensed under CC BY 4.0. [No changes were made to
expression that describes a fundamental problem [3]. the original image]).

Recently, some of us have successfully employed SR to char-
acterize the optical properties of dielectric and biological mate- 32 In this letter, we make use of SR to model the optical re-

rials [4, 5]. Those works illustrated the capability of SR to find 33 sponses of the Tersina viridis bird’s plumage [8] and of a scat-
readable dispersion models from far-field spectral information, s tering polymeric porous film, inspired by the scale of the
without the need for any preliminary hypothesis concerning the s  Cyphochilus insulanus beetle’s wing [7], both shown in Fig. 1.
algebraic form of the expression to be retrieved. Furthermore, 3 These are interesting illustrations of the structural coloration
the results obtained also suggested the possibility of using SR sz mechanism, a consequence of the interaction between light and
as a meta-model to compute the optical response of a given s the multiple scattering centers present in their complex mor-


http://dx.doi.org/10.1364/ao.XX.XXXXXX

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Letter ‘

phology [9, 10]. The novelty and importance of this work lies
in its potential to establish, from experimentally measured or
numerically generated data, readable closed-form meta-models
that characterize the optical response of the biological structure
studied. This can be particularly useful in situations where the
existing models are not suitable for the problem at hand or they
are computationally expensive. SR also provides an alternative
approach to settle the basis for the characterization of the optical
response and design of photonic bio-inspired structures.

Throughout this work we use the state-of-the-art open-source
Python library, recently proposed by Tenachi et al., known as
Physical Symbolic Optimization (PhySO) [11]. This novel frame-
work enhances SR’s capabilities by incorporating dimensional
analysis into the optimization process. Traditional SR methods
frequently overlook the physical units of the data, often leading
to solutions without a physical meaning. PhySO addresses this
issue by narrowing the search space to physically plausible so-
lutions. This ensures that the expressions found adhere to unit
constraints. PhySO’s workflow begins with the data collection
and preprocessing, followed by the generation of symbolic ex-
pressions using a combination of deep reinforcement learning
and Recurrent Neural Networks (RNNs). These expressions are
then iteratively refined through optimization techniques, bal-
ancing model complexity and performance to produce readable
and accurate models. This iterative refinement ensures that the
resulting symbolic expressions are dimensionally homogeneous,
making PhySO particularly useful for applications in physics
and related disciplines. In a practical situation, PhySO requires
to pre-define the dimensions of the target expression, the vari-
ables involved, and any constants that might be present in the
final expression. It is noteworthy to mention that in this work we
follow the rule of thumb established by the authors of Ref. [11]:
we allow at least one free constant for each independent variable
with its corresponding dimensions and at least one free constant
with the dimensions corresponding to the expression sought.
Furthermore, to ensure dimensional homogeneity PhySO en-
forces that all the operations take into account the units of its
operands.

p——
| Input data !
Lt
PhySO
RNNs retrieved
. = f=p |Evaluation|—p model
Genetic f
RMSE
operations F(x) vsy f

Fig. 2. Flux-diagram of the PhySO framework as "glass-box".
It illustrates the generality of the SR implementation, where
there is an input dataset (x,y), and a closed-form f expression
as output.

Figure 2 illustrates the work-flow of PhySO, where for the
sake of clarity we consider only one one-dimensional function
f such that y = f(x). For more details, we refer the interested
reader to Ref. [11] describing PhySO’s operating principles. The
work-flow of PhySO begins with the generation, as described
in the previous paragraph, of a dimensionally homogeneous
closed-form expression f, which is evaluated on each of the
input values of x to give = f(x). Then, as indicated in Fig. 2, §
is compared to the input data y using a metric, the Root Mean

86

87

88

89

90

91

92

93

94

95

96

97

98

99

2

=
[N

Square Error (RMSE) in this work. The RMSE quantifies the fit,
with a perfect match at RMSE = 0. The numerical evidence in
our work suggests that values RMSE < 0.05 are an acceptable
match. If f does not fit the precision criterion to reproduce
the input data y, then it is redirected again to the first step to
undergo genetic variations and optimization. On the other hand,
if f accurately reproduces the input data v, the regression loop
ends and the expression f is given as a result.

As stated previously, to assess the performance of SR within
the context of this contribution, we consider as our case studies
the green-blue colored feather’s structure depicted in Fig. 1(a)
and the white scattering polymeric porous structure depicted
in Fig. 1(b). To facilitate the visualization and discussion of our
results, we use the following line styles for all our numerical
experiments: the spectra that serve as input to the SR scheme are
depicted with a dotted blue line while the spectra generated with
the expression retrieved through SR are depicted with orange
cross-like markers.

Case Study 1: Spectral reflectance of Tersina viridis bird’s plumage.
Some of us have previously studied the structural color mech-
anism of the Tersina viridis plumage [8] depicted in Fig. 1(a),
whose hue changes remarkably from greens to blues as the angle
between the illumination and observation directions increases.
This color effect is a consequence of the microstructure present
in the feathers’ barbs, which consist of quasi-spherical air voids
in a B-keratin matrix. The barbs’ microstructure was modeled
considering the geometrical model illustrated in Fig. 3. It con-
sists of an N-layer system of air-filled spherical voids of radius r
in a matrix. The voids are arranged in a hexagonal lattice with
lattice parameter a. To simulate the disorder present in the natu-
ral prototype, the reflectance curves were obtained by averaging
the responses corresponding to a set of identical structures that
differ in their lattice constant.

air

B-keratin

Fig. 3. Geometrical model considered for the KKR compu-
tations. The composite system is illuminated with an non-
polarized plane wave of wavelength A, at an incident angle 6;
with respect to the surface normal.

The spectral information that serves as input to PhySO could
have been measured experimentally, or numerically generated
with any well suited numerical method. However, for this case
study, we made use of the KKR method and the averaging tech-
nique described in Ref. [8]. The results of our numerical simu-
lations are depicted in Fig. 4, where the spectra were obtained
assuming unpolarized illumination and six different angles of
incidence. The closed-form expression retrieved through our SR
scheme, from the input spectra in Fig. 4(a) is

Ay
R(A/ 91) = 2(A

—Ay + A(Bl + Sin(381 + By +6; + 1317:/\)))
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where the values of the free constants are A; = —0.063 um,
Ay = 0227 ym, By = —0.331, and B, = —0.809. Note that
the variable 6; in Eq. 1 should be considered in radians, but for
clarity we use degrees in the text and figures.
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Fig. 4. (a) Reflectance spectra and corresponding sRGB colors
for Tersina viridis feathers at different angles 6;. The upper
right corner shows the spectrum-related color and AE}; in CIE-
Lab. RMSE between the input data and SR prediction is also
shown. (b) Colors predicted by Eq. 1.

In Fig. 4(a) we present a visual comparison between the input
spectra and the predictions of Eq. 1, and their corresponding
RMSE metric values. We observe a good agreement for angles
of incidence up to 6; = 50°. The SR model captures the essen-
tial features of all the input reflectance spectra, including the
peak position and the overall shape, showing its effectiveness
in approximating the bird’s spectral response. Furthermore, the
model accurately follows the trend of decreasing reflectance at
higher wavelengths. As the incident angle increases, there is
a noticeable shift and broadening of the reflectance peak. The
SR model successfully captures these changes, illustrating its
robustness in handling variations in the optical response due to
different incident angles.

A complementary test, to assess the performance of our SR
scheme, is to compare the colors related to Eq. 1 with those
associated with the input spectra shown in the insets in Fig. 4(a).
To make this comparison in an objective way we used the color
difference AEj, metric from the CIE-Lab color space, which
stipulates that two colors are perceptually indistinguishable if
AEj, < 1[12].

The results presented in Fig. 4(a) indicate that, despite signifi-
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cant color differences AEj, in some cases, the spectra predicted
by Eq. 1 closely replicate the expected coloration of the bird’s
plumage. Additionally, in Fig. 4(b), we showcase SR’s potential
to predict the structure’s chromatic response at different angles
of incidence not included in the input dataset. To do so, we
used Eq. 1 to calculate R(A, 6;) for intermediate 6; values in the
training range [0°,50°], and then we used these spectra to com-
pute their corresponding colors. These figures visually illustrate
the high accuracy of the model’s predictions, as they not only
reproduce the coloration for the input 6; angles but also show
good agreement with the expected green-blue tones of the bird’s
plumage.

Case Study 2: Spectral reflectance of Cyphochilus insulanus beetle
bio-inspired structure.  For the second case study, the input to
our SR scheme are the experimentally measured reflectance
spectra originally reported by some of us in Ref. [7]. In that work,
the structure of the scales of the Cyphochilus insulanus beetle,
shown in Fig 1(b), were replicated using a foaming process by
saturation with CO;. As schematically represented in Fig. 5(a), a
PMMA resist was spin-coated on glass, covered with a second
glass slide, and clamped between two neodymium magnets
to prevent film deformations during foaming. This assembly
was placed in a custom-built high-pressure cell connected to a
CO; source. As shown in Fig. 5(b), the application of suitable
pressure up to 50 MPa, along with controlled temperature and
saturation times, forms a nano-cellular foam during the final
rapid depressurization step.

a)
Spin coating  Fixation Saturation Foam

Fig. 5. a) Schematic of the foaming process by saturation with
CO,, b) SEM images of the porous films, showing that the geo-
metrical parameters of the structure depend on the fabrication
temperature varied between 60° and 90° (adapted from Ref.
[7], Licensed under CC BY 4.0.

In this example we searched, from the reflectance spectra in
Fig. 6, for a closed-form expression of R dependent on relevant
geometrical parameters of the porous film such as, the thickness
D and the average pore size d. The model retrieved by the SR
scheme is of the form

Ay — A A
R(A,D,d) = — -
(A, D,d) B1+ By + A AT A (2)
Al — A Aq
D Az—d—-D '
with free constants values Ay = —0.003 um, A, = 3.866 um,

Az = 10.274 uym, By = 0.643, and By = 1.357. Eq. 2 provides a
compact and readable model for the reflectance of the porous
PMMA structure. The third and fourth terms capture the de-
crease in reflectance with increasing wavelength observed in
the experimental data. The last two terms indicate an inverse
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relationship of the reflectance with the geometrical parameters
of the structure.
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Fig. 6. Reflectance spectra and sRGB colors for the porous film
in Fig. 5(b) for varying film thickness D and average pore size
d. The upper right corner of each subplot shows the color and
AEg, in CIE-Lab. RMSE values between the input data and SR
prediction are also provided. The colors appear gray on the
white background.

In Fig. 6 we visually compare the input experimental re-
flectance spectra, related to the polymeric porous film in Fig. 5,
and the reflectance spectra predicted by Eq. 2. As in the pre-
vious case study, we also use the RMSE metric to make our
comparisons quantitatively. We observe a good agreement be-
tween the experimental and predicted spectra. Moreover, each
plot corresponds to a different set of parameters (A, D, d), with
A € [04,0.8] um. The SR model captures the trend of decreasing
reflectance with increasing wavelength across all conditions. Al-
though there are slight differences between the predicted and
the experimental data, the SR model reliably approximates the
overall behavior of the reflectance spectra. As we did in the
first case study, in Fig. 6 we also show the colors generated by
the experimental and the predicted reflectance spectra, together
with their respective color differences AE(, in the CIE-Lab color
space. The previous comparison suggests that the spectra gen-
erated through the SR’s model reproduce the white scattering
coloration of the Cyphochilus insulanus beetle-inspired structure.

In both of the case studies presented, the differences we ob-
served between the target data and the SR’s predictions can
be attributed to two causes. The first is the random nature of
the SR’s operating principles, as the solution obtained depends
on the initial state of the algorithm. The second cause is that
the same closed-form expression that models the reflectance
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spectrum, should reproduce not only the input data but any
other spectrum that also verifies the illumination conditions es-
tablished for our numerical experiments. Despite this strong
constraint, SR provides accurate and readable models.

A first conclusion of this work is that, contrary to Deep
Learning-based approaches, SR is a glass-box that finds a closed-
form expression, which establishes an explicit relationship be-
tween the optical response of complex biological or bio-inspired
structures and the geometrical or illumination parameters of
the problem. Furthermore, SR can be used as a meta-model
to solve the direct problem, and in this way, avoid the use of
computationally expensive methods.

The results presented in this contribution are encouraging.
However, further work is still required to establish the valid-
ity limits of SR-based approaches. Furthermore, although the
closed-form expressions found are readable and their dimen-
sional homogeneity is verified, their physical meaning is still an
open question.

Due to its generic nature, there are not visible restrictions
to extend the predictive capability of SR to other applications
requiring precise optical characterizations, such as in materials
science and biomimetics. The ability to generate readable closed-
form models, that capture dependencies on multiple parameters,
makes SR a valuable tool for designing and understanding com-
plex optical materials and systems.
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