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In this contribution we assess the performance of Sym-
bolic Regression (SR) when used to model the optical
response of biological and bio-inspired structures. To
this end, we search for analytical closed-form expres-
sions that model the reflectance spectra related to the
Tersina viridis bird’s plumage and the porous structure
inspired on the Cyphochilus insulanus beetle. Our nu-
merical results demonstrate the high prediction accuracy
of the employed Symbolic Regression scheme. The re-
trieved models not only capture the dependency of the
optical response on various relevant geometrical and
illumination parameters, they are are dimensionally ho-
mogeneous.
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The advent of increasingly powerful computers, together4

with great advances in computer science over the past decades,5

have made the use of Artificial Intelligence (AI) a common ac-6

tivity in physical sciences [1]. Notwithstanding this progress,7

the readability and interpretability of Deep Learning models are8

still under discussion, and significant efforts are currently being9

conducted in that direction [2]. On the other hand, Symbolic10

Regression (SR) is an AI method that explores, unlike traditional11

regression techniques which adjust data to predefined models, a12

wide space of functions to identify an appropriate closed-form13

expression that describes a fundamental problem [3].14

Recently, some of us have successfully employed SR to char-15

acterize the optical properties of dielectric and biological mate-16

rials [4, 5]. Those works illustrated the capability of SR to find17

readable dispersion models from far-field spectral information,18

without the need for any preliminary hypothesis concerning the19

algebraic form of the expression to be retrieved. Furthermore,20

the results obtained also suggested the possibility of using SR21

as a meta-model to compute the optical response of a given22

structure. This means that, at the end of the SR process, there23

is a closed-form expression that provides results equivalent to24

those obtained with a computationally expensive electromag-25

netic method. This expression is an explicit relationship between26

the optical response and different geometrical parameters of the27

studied structure. The approach based on SR presents an im-28

portant advantage over a neural network-based meta-model [6],29

since the latter does not provide a closed-form expression but30

only a numerical model.31

Fig. 1. Two examples of photonic biological structures found
in nature, and the structural morphology responsible for their
coloration. a) Male Tersina viridis bird, with a TEM image of a
transversal cut section of a barb from a back feather. b) White
beetle Cyphochilus insulanus, with a sectional view of an SEM
image of the white scales that cover its body (adapted from
Ref. [7] Licensed under CC BY 4.0. [No changes were made to
the original image]).

In this letter, we make use of SR to model the optical re-32

sponses of the Tersina viridis bird’s plumage [8] and of a scat-33

tering polymeric porous film, inspired by the scale of the34

Cyphochilus insulanus beetle’s wing [7], both shown in Fig. 1.35

These are interesting illustrations of the structural coloration36

mechanism, a consequence of the interaction between light and37

the multiple scattering centers present in their complex mor-38
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phology [9, 10]. The novelty and importance of this work lies39

in its potential to establish, from experimentally measured or40

numerically generated data, readable closed-form meta-models41

that characterize the optical response of the biological structure42

studied. This can be particularly useful in situations where the43

existing models are not suitable for the problem at hand or they44

are computationally expensive. SR also provides an alternative45

approach to settle the basis for the characterization of the optical46

response and design of photonic bio-inspired structures.47

Throughout this work we use the state-of-the-art open-source48

Python library, recently proposed by Tenachi et al., known as49

Physical Symbolic Optimization (PhySO) [11]. This novel frame-50

work enhances SR’s capabilities by incorporating dimensional51

analysis into the optimization process. Traditional SR methods52

frequently overlook the physical units of the data, often leading53

to solutions without a physical meaning. PhySO addresses this54

issue by narrowing the search space to physically plausible so-55

lutions. This ensures that the expressions found adhere to unit56

constraints. PhySO’s workflow begins with the data collection57

and preprocessing, followed by the generation of symbolic ex-58

pressions using a combination of deep reinforcement learning59

and Recurrent Neural Networks (RNNs). These expressions are60

then iteratively refined through optimization techniques, bal-61

ancing model complexity and performance to produce readable62

and accurate models. This iterative refinement ensures that the63

resulting symbolic expressions are dimensionally homogeneous,64

making PhySO particularly useful for applications in physics65

and related disciplines. In a practical situation, PhySO requires66

to pre-define the dimensions of the target expression, the vari-67

ables involved, and any constants that might be present in the68

final expression. It is noteworthy to mention that in this work we69

follow the rule of thumb established by the authors of Ref. [11]:70

we allow at least one free constant for each independent variable71

with its corresponding dimensions and at least one free constant72

with the dimensions corresponding to the expression sought.73

Furthermore, to ensure dimensional homogeneity PhySO en-74

forces that all the operations take into account the units of its75

operands.76

Fig. 2. Flux-diagram of the PhySO framework as "glass-box".
It illustrates the generality of the SR implementation, where
there is an input dataset (x, y), and a closed-form f expression
as output.

Figure 2 illustrates the work-flow of PhySO, where for the77

sake of clarity we consider only one one-dimensional function78

f such that y = f (x). For more details, we refer the interested79

reader to Ref. [11] describing PhySO’s operating principles. The80

work-flow of PhySO begins with the generation, as described81

in the previous paragraph, of a dimensionally homogeneous82

closed-form expression f̃ , which is evaluated on each of the83

input values of x to give ỹ = f̃ (x). Then, as indicated in Fig. 2, ỹ84

is compared to the input data y using a metric, the Root Mean85

Square Error (RMSE) in this work. The RMSE quantifies the fit,86

with a perfect match at RMSE = 0. The numerical evidence in87

our work suggests that values RMSE < 0.05 are an acceptable88

match. If f̃ does not fit the precision criterion to reproduce89

the input data y, then it is redirected again to the first step to90

undergo genetic variations and optimization. On the other hand,91

if f̃ accurately reproduces the input data y, the regression loop92

ends and the expression f is given as a result.93

As stated previously, to assess the performance of SR within94

the context of this contribution, we consider as our case studies95

the green-blue colored feather’s structure depicted in Fig. 1(a)96

and the white scattering polymeric porous structure depicted97

in Fig. 1(b). To facilitate the visualization and discussion of our98

results, we use the following line styles for all our numerical99

experiments: the spectra that serve as input to the SR scheme are100

depicted with a dotted blue line while the spectra generated with101

the expression retrieved through SR are depicted with orange102

cross-like markers.103

Case Study 1: Spectral reflectance of Tersina viridis bird’s plumage.104

Some of us have previously studied the structural color mech-105

anism of the Tersina viridis plumage [8] depicted in Fig. 1(a),106

whose hue changes remarkably from greens to blues as the angle107

between the illumination and observation directions increases.108

This color effect is a consequence of the microstructure present109

in the feathers’ barbs, which consist of quasi-spherical air voids110

in a β-keratin matrix. The barbs’ microstructure was modeled111

considering the geometrical model illustrated in Fig. 3. It con-112

sists of an N-layer system of air-filled spherical voids of radius r113

in a matrix. The voids are arranged in a hexagonal lattice with114

lattice parameter a. To simulate the disorder present in the natu-115

ral prototype, the reflectance curves were obtained by averaging116

the responses corresponding to a set of identical structures that117

differ in their lattice constant.118

Fig. 3. Geometrical model considered for the KKR compu-
tations. The composite system is illuminated with an non-
polarized plane wave of wavelength λ, at an incident angle θi
with respect to the surface normal.

The spectral information that serves as input to PhySO could119

have been measured experimentally, or numerically generated120

with any well suited numerical method. However, for this case121

study, we made use of the KKR method and the averaging tech-122

nique described in Ref. [8]. The results of our numerical simu-123

lations are depicted in Fig. 4, where the spectra were obtained124

assuming unpolarized illumination and six different angles of125

incidence. The closed-form expression retrieved through our SR126

scheme, from the input spectra in Fig. 4(a) is127

R(λ, θi) =
A1

−A2 + λ(B1 + sin(3B1 + B2 + θi +
2(A1+λ)

A2
))

,

(1)
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where the values of the free constants are A1 = −0.063 µm,128

A2 = 0.227 µm, B1 = −0.331, and B2 = −0.809. Note that129

the variable θi in Eq. 1 should be considered in radians, but for130

clarity we use degrees in the text and figures.131

Fig. 4. (a) Reflectance spectra and corresponding sRGB colors
for Tersina viridis feathers at different angles θi. The upper
right corner shows the spectrum-related color and ∆E∗

00 in CIE-
Lab. RMSE between the input data and SR prediction is also
shown. (b) Colors predicted by Eq. 1.

In Fig. 4(a) we present a visual comparison between the input132

spectra and the predictions of Eq. 1, and their corresponding133

RMSE metric values. We observe a good agreement for angles134

of incidence up to θi = 50◦. The SR model captures the essen-135

tial features of all the input reflectance spectra, including the136

peak position and the overall shape, showing its effectiveness137

in approximating the bird’s spectral response. Furthermore, the138

model accurately follows the trend of decreasing reflectance at139

higher wavelengths. As the incident angle increases, there is140

a noticeable shift and broadening of the reflectance peak. The141

SR model successfully captures these changes, illustrating its142

robustness in handling variations in the optical response due to143

different incident angles.144

A complementary test, to assess the performance of our SR145

scheme, is to compare the colors related to Eq. 1 with those146

associated with the input spectra shown in the insets in Fig. 4(a).147

To make this comparison in an objective way we used the color148

difference ∆E∗
00 metric from the CIE-Lab color space, which149

stipulates that two colors are perceptually indistinguishable if150

∆E∗
00 ≤ 1 [12].151

The results presented in Fig. 4(a) indicate that, despite signifi-152

cant color differences ∆E∗
00 in some cases, the spectra predicted153

by Eq. 1 closely replicate the expected coloration of the bird’s154

plumage. Additionally, in Fig. 4(b), we showcase SR’s potential155

to predict the structure’s chromatic response at different angles156

of incidence not included in the input dataset. To do so, we157

used Eq. 1 to calculate R(λ, θi) for intermediate θi values in the158

training range [0°,50°], and then we used these spectra to com-159

pute their corresponding colors. These figures visually illustrate160

the high accuracy of the model’s predictions, as they not only161

reproduce the coloration for the input θi angles but also show162

good agreement with the expected green-blue tones of the bird’s163

plumage.164

Case Study 2: Spectral reflectance of Cyphochilus insulanus beetle165

bio-inspired structure. For the second case study, the input to166

our SR scheme are the experimentally measured reflectance167

spectra originally reported by some of us in Ref. [7]. In that work,168

the structure of the scales of the Cyphochilus insulanus beetle,169

shown in Fig 1(b), were replicated using a foaming process by170

saturation with CO2. As schematically represented in Fig. 5(a), a171

PMMA resist was spin-coated on glass, covered with a second172

glass slide, and clamped between two neodymium magnets173

to prevent film deformations during foaming. This assembly174

was placed in a custom-built high-pressure cell connected to a175

CO2 source. As shown in Fig. 5(b), the application of suitable176

pressure up to 50 MPa, along with controlled temperature and177

saturation times, forms a nano-cellular foam during the final178

rapid depressurization step.179

Fig. 5. a) Schematic of the foaming process by saturation with
CO2, b) SEM images of the porous films, showing that the geo-
metrical parameters of the structure depend on the fabrication
temperature varied between 60◦ and 90◦ (adapted from Ref.
[7], Licensed under CC BY 4.0.

In this example we searched, from the reflectance spectra in180

Fig. 6, for a closed-form expression of R dependent on relevant181

geometrical parameters of the porous film such as, the thickness182

D and the average pore size d. The model retrieved by the SR183

scheme is of the form184

R(λ, D, d) =− B1 + B2 +
A2 − λ

A3
− λ

λ + A2

− A1 − A2
D

− A1
A3 − d − D

,
(2)

with free constants values A1 = −0.003 µm, A2 = 3.866 µm,185

A3 = 10.274 µm, B1 = 0.643, and B2 = 1.357. Eq. 2 provides a186

compact and readable model for the reflectance of the porous187

PMMA structure. The third and fourth terms capture the de-188

crease in reflectance with increasing wavelength observed in189

the experimental data. The last two terms indicate an inverse190
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relationship of the reflectance with the geometrical parameters191

of the structure.192

Fig. 6. Reflectance spectra and sRGB colors for the porous film
in Fig. 5(b) for varying film thickness D and average pore size
d. The upper right corner of each subplot shows the color and
∆E∗

00 in CIE-Lab. RMSE values between the input data and SR
prediction are also provided. The colors appear gray on the
white background.

In Fig. 6 we visually compare the input experimental re-193

flectance spectra, related to the polymeric porous film in Fig. 5,194

and the reflectance spectra predicted by Eq. 2. As in the pre-195

vious case study, we also use the RMSE metric to make our196

comparisons quantitatively. We observe a good agreement be-197

tween the experimental and predicted spectra. Moreover, each198

plot corresponds to a different set of parameters (λ, D, d), with199

λ ∈ [0.4, 0.8] µm. The SR model captures the trend of decreasing200

reflectance with increasing wavelength across all conditions. Al-201

though there are slight differences between the predicted and202

the experimental data, the SR model reliably approximates the203

overall behavior of the reflectance spectra. As we did in the204

first case study, in Fig. 6 we also show the colors generated by205

the experimental and the predicted reflectance spectra, together206

with their respective color differences ∆E∗
00 in the CIE-Lab color207

space. The previous comparison suggests that the spectra gen-208

erated through the SR’s model reproduce the white scattering209

coloration of the Cyphochilus insulanus beetle-inspired structure.210

In both of the case studies presented, the differences we ob-211

served between the target data and the SR’s predictions can212

be attributed to two causes. The first is the random nature of213

the SR’s operating principles, as the solution obtained depends214

on the initial state of the algorithm. The second cause is that215

the same closed-form expression that models the reflectance216

spectrum, should reproduce not only the input data but any217

other spectrum that also verifies the illumination conditions es-218

tablished for our numerical experiments. Despite this strong219

constraint, SR provides accurate and readable models.220

A first conclusion of this work is that, contrary to Deep221

Learning-based approaches, SR is a glass-box that finds a closed-222

form expression, which establishes an explicit relationship be-223

tween the optical response of complex biological or bio-inspired224

structures and the geometrical or illumination parameters of225

the problem. Furthermore, SR can be used as a meta-model226

to solve the direct problem, and in this way, avoid the use of227

computationally expensive methods.228

The results presented in this contribution are encouraging.229

However, further work is still required to establish the valid-230

ity limits of SR-based approaches. Furthermore, although the231

closed-form expressions found are readable and their dimen-232

sional homogeneity is verified, their physical meaning is still an233

open question.234

Due to its generic nature, there are not visible restrictions235

to extend the predictive capability of SR to other applications236

requiring precise optical characterizations, such as in materials237

science and biomimetics. The ability to generate readable closed-238

form models, that capture dependencies on multiple parameters,239

makes SR a valuable tool for designing and understanding com-240

plex optical materials and systems.241
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