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Abstract

This paper presents a comprehensive approach for solving the View Planning
Problem (VPP) in robotic inspection using Reinforcement Learning (RL). Build-
ing on a prior framework, this work takes a significant step forward by integrating
a detailed robotic simulation environment with essential modules for trajectory
and reachability planning. This allows for the development of an RL agent that
not only selects adaptive viewpoints but also considers kinematic constraints
and collision-free paths, which are crucial for practical, real-world inspections.
The study specifically targets the initial inspection of returned products with
high variability, demonstrating the feasibility of RL to manage complex tasks
in remanufacturing. The RL-based solution is evaluated using Soft Actor-Critic
(SAC) and Proximal Policy Optimization (PPO) algorithms, with SAC showing
superior performance. The learned strategies where validated on a real inspec-
tion station, showing the capability of using RL based inspection strategies. This
research offers a robust, adaptable solution for inspection challenges, bridging the
gap between theoretical models and application-ready inspection systems.

Keywords: Visual inspection, Automation, Reinforcement Learning, Robotics

1



1 Introduction

Companies are increasingly tasked with integrating remanufacturing strategies due to
the anticipated scarcity of global resources [1, 2]. Remanufacturing focuses on restoring
used products to a like-new condition, requiring accurate inspection and reconstruc-
tion of products to assess their suitability for further remanufacturing steps [3]. A
crucial initial phase in remanufacturing is the optical inspection to form a preliminary
assessment of its condition, guiding subsequent processing decisions.

Robotic inspection has emerged as a pivotal research area to enhance the efficiency
and accuracy of this initial assessment [4]. Traditionally, these systems use predefined
tool paths based on digital models. However, returned products often deviate from
their original CAD models due to wear, modifications, or damage [3], necessitating
adaptive strategies where fixed-path methods fall short [5]. Addressing these challenges
centers around solving the View Planning Problem (VPP) for optimal coverage and
efficient inspection. Building on previous research that developed RL frameworks for
the VPP [6, 7], this paper extends these frameworks by integrating a detailed robot
simulation and trajectory planning modules as well as validating the method on the
real inspection station.

2 State of the Art

This section provides an overview of the current research landscape related to view
planning and the application of RL for adaptive robotic inspection. It highlights
existing methods, their limitations, and the need for advanced solutions capable of
addressing the challenges in complex and dynamic inspection tasks.

2.1 View Planning

View planning is the process of determining optimal sensor poses and imaging param-
eters for inspecting or reconstructing an object. The objective is to achieve complete
coverage of the target object while minimizing the number of views and total path
length [8].

This problem is inherently sequential, as each new view must build upon pre-
viously acquired data to optimize coverage and efficiency. RL has proven effective
for sequential decision-making problems [9], offering an agent-based approach where
agents interact with an environment, perceive its state, make decisions, and receive
feedback based on their actions [10]. The effectiveness of RL has been demonstrated
in various applications within robotics, including path planning, object manipulation,
and complex production system control [11, 12].

2.2 View Planning using Heuristic and Analytical Solutions

Heuristic and analytical solutions, such as those benchmarked in [6], offer fixed-path
strategies for view planning using predefined models. Heuristic methods offer sim-
ple strategies by positioning sensor poses based on basic geometric structures, while
analytical approaches often involve extensive sampling of viewpoints to identify opti-
mal poses. However, these methods face notable limitations: heuristic solutions may
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struggle with adaptability for complex geometries, and analytical methods can require
substantial computation times due to the exhaustive evaluation of multiple viewpoints.

Such high computational demands make analytical methods impractical for real-
time applications, where highly flexible system are require and rapid trajectory and
reachability planning are critical. RL offers a promising alternative, enabling adaptive
decision-making with reduced computation time.

2.3 View Planning using Reinforcement Learning

RL has emerged as a powerful tool for acquisition planning in various domains. Early
works in active object recognition, such as [13] and [14], focused on next-best-view
strategies to improve object classification by using RL to select optimal viewpoints.
A significant advancement was made by Kaba et al. [15], who formulated the VPP
as a Markov Decision Process and applied RL to solve it, demonstrating the poten-
tial of RL in view planning tasks. Building on these foundations, subsequent studies
explored different environmental state representations to enhance VPP resolution. For
instance, [16] utilized occupancy grids and sensor poses, allowing for more precise
planning in complex environments. However, these approaches often oversimplified
the problem by relying on low-resolution grids or fixed sensor poses, which could hin-
der the development of optimal strategies for intricate geometries. More recent works,
such as [17], [6], and [7], have addressed some of these limitations. These studies
demonstrated that RL agents could achieve competitive surface coverage with fewer
acquisitions and substantially faster computation times. This efficiency makes them
suitable for runtime use in remanufacturing, where variability and model-free scenar-
ios are common. Despite significant advancements, existing methods have yet to fully
integrate realistic robotic simulations that account for trajectory planning and kine-
matic constraints—key aspects needed for practical, model-free runtime scenarios in
remanufacturing.

3 Approach

Building upon the foundation laid in previous publications [22], [6] and [7], which intro-
duced a comprehensive framework for addressing the VPP through RL approaches,
this paper extends the framework by integrating a robot simulation and modules essen-
tial for trajectory planning. The objective of this extension is to illustrate the practical
applicability of RL within a simulated environment and to bridge the Sim2Real gap,
enhancing the transferability of learned strategies to real-world applications.

The framework employed for VPP solution is depicted in Figure 1. Central to this
approach is the simulation environment SSim, which embodies a detailed representa-
tion of a real-world system comprising a robot, a fringe projection 3D scanner, and
a rotary clamping system. This scanner is capable of capturing data with a level of
precision comparable to human visual assessment, enabling informed decision-making
regarding the product.

The agent interface, denoted as IAgent, serves as a crucial bridge, translating the
actions generated by the planning agent APlan into executable poses for the acqui-
sition system. Additionally, it is responsible for computing the system’s status and
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Fig. 1 Left: Real setup of the reconstruction station including robot, acquisition system, and rotary
clamping system. Right: Overview of the simulation framework proposed in this work.

determining the reward. The individual components of SSim, IAgent, and APlan are
further elaborated in the subsequent sections.

3.1 Simulation Environment

SSim contains a scanning module and uses sensor and object models to perform
simulative acquisitions. Both are explained in detailed in prior work [6].

The object model is specified in STL format, representing the object´s surface as
triangular facets. Ray tracing is used to simulate a 3D acquisition process.

An acquisition at step t triggers an observation update from step t − 1 to t. The
observation vector ot stores all information given to IAgent to deduce states st and to
calculate the reward rt given to the agent. This information is then used for training
of a RL agent.

The simulation environment represents a core contribution of this work, establish-
ing a highly detailed yet efficient virtual inspection station. This station mirrors the
setup described in [21], comprising a basic table equipped with modular extensions
for adaptive configurations. Positioned on one of these modules is a UR10e robot,
integrated with a Zivid RGB-D camera to facilitate adaptive acquisition view plan-
ning. This arrangement enables comprehensive inspection capabilities with varying
perspectives.

The simulation environment is constructed within the ROS (Robot Operating Sys-
tem) framework and utilizesMoveIt for motion planning. Key to accurately replicating
the physical station is the definition of kinematic relationships and coordinate systems.
The robot operates with two primary coordinate systems: CR for the base and CE

for the end-effector. The rotary clamping system has a designated coordinate system,
CRot, while the 3D acquisition setup is defined by CA. Additionally, each inspection
object is assigned a coordinate system, C0.

Transformations between these coordinate systems, such as TB→Rot (from the
robot base to the rotary table) and TE→A (from the end-effector to the acquisition
system), are calculated using hand-eye calibration techniques. These calibrated trans-
formations ensure the virtual environment accurately emulates the physical station’s
spatial relationships, providing a reliable training platform for RL agents.
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3.2 Planning Module

The planning module within the simulation environment is essential for the RL agent’s
training, offering precise trajectory planning and collision-free pose validation. To
facilitate this, the module comprehensively models the kinematic behavior of the
inspection station, leveraging ROS and MoveIt to implement efficient motion planning
algorithms.

Given the transformations between coordinate systems, the planning module can
dynamically assess a target pose pt for feasibility based on the current configuration
of the robotic system. The module performs collision checks and plans trajectories
that ensure safe navigation of the end-effector while avoiding any obstructions in the
simulated space. Only poses that meet these criteria are returned as valid, allowing the
agent to explore potential strategies without risk of unrealistic or damaging operations.

The efficiency of the planning module is paramount due to the high sampling rates
required by RL processes. By streamlining the trajectory calculations and minimizing
computational overhead, the module supports rapid pose validation and trajectory
generation. This is achieved through optimized path planning strategies withinMoveIt,
enabling the environment to maintain low computation times and ensure the RL
training progresses smoothly without delays.

3.3 State Module

The state module encodes the information contained in ot into a format suitable for
the RL agent APlan. It is important to note that various state modeling strategies
were explored in prior research, as described in [6]. The approach yielding the best
results was selected for this work, ensuring an effective state representation tailored
to the RL agent’s requirements. Specifically, the state modeling st involves providing
the agent with a downsampled representation of the cumulative point cloud Pcov,t−1

gathered up to step t in the current episode. The state representation st is structured
as a matrix that encodes the coordinates of each point m in the downsampled point
cloud. Each row of the matrix corresponds to an individual point, defined by its 3D
coordinates (x, y, z).

3.4 Action module

The action module is responsible for managing the actions defined by the RL agent.
Various mapping strategies and action types were explored in prior work [6], and the
action variants selected for this study showed the best performance in terms of coverage
and efficiency. These approaches were expanded here to incorporate control over the
rotary system, ensuring comprehensive adaptability in the acquisition process. In this
work, two action variants are evaluated: 3T1R and 3T3R.

3T1R: The 3T1R action representation consists of an action vector with four com-
ponents, each constrained to the range [−1, 1]. The first three components represent
the translational parameters, expressed in spherical coordinates ϕ, θ, and r, which are
used to calculate the x, y, and z coordinates for the camera pose. The orientation of
the camera is determined heuristically, using the Euler angles α and β in the x-y′-z′′
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convention, while the angle γ is fixed at zero to account for the near rotational symme-
try of the camera’s frustum. The fourth component (1R) of the action vector controls
the rotation angle ϑ of the rotary clamping system, enabling the agent to adjust the
object’s positioning on the turntable.

3T3R: The 3T3R action representation expands upon the 3T1R structure by
including additional control over the camera’s orientation. Here, the agent outputs
an action vector with six components. The first three entries are identical to those in
3T1R, representing the spherical coordinates ϕ, θ, and r for translational positioning.
The additional three components include two entries that allow the agent to adjust
the Euler angles α and β for fine-tuning the camera’s orientation, and one entry for
controlling the rotation angle ϑ of the rotary clamping system (3R).

The agent’s output, limited to the range [−1, 1], is mapped to the actual operational
range of the parameters. For instance, angular corrections for α and β are mapped
to [−10◦, 10◦]. The spherical coordinates are restricted to ϕ ∈ [45◦, 135.5◦] and θ ∈
[22.5◦, 67.5◦], reflecting the robot’s limited range of motion. Despite these limitations,
the full surface of the object can still be covered through the use of the rotary table,
which allows for complete rotation with ϑ ∈ [0◦, 360◦]. The radius parameter r is
mapped to the interval [0 cm, 100 cm], corresponding to the working range of the 3D
scanner.

3.5 Reward module of IAgent

The agent learns based on the reward. The aim is to achieve a given surface cov-
erage of the object while minimizing the number of images required. In this work,
dense and sparse reward functions to achieve this goal are evaluated and compared.
Dense rewards RDense are given to the agent after each individual action, while sparse
rewards RSparse are only provided at the end of an episode.

RDense =
∆Ψt

100−Ψt−1
(1)

RDense rewards the agent based on the percentual coverage of surface area of the
inspection object ∆Ψt in the last acquisition that has not yet been covered by previous
acquisitions, thus aiming at maximizing object surface coverage. Furthermore, RDense

scales ∆Ψt by the maximum possible surface area of the inspection object to be covered
in the last acquisition to always set the maximum reachable reward to 1. In a sparse
reward setting, the agent only receives a reward once at the end of an episode when
reaching the learning goal. RSparse is based on the coverage Ψt divided by the number
of acquisitions nt which were needed to reach the goal. The goal of an agent is reached
when the surface coverage exceeds a threshold of 90% (Ψt ≥ 90%). An episode is
additionally terminated when the agent has performed 10 successive acquisitions and
did not reach the learning goal. In that case, the agent does not receive a reward.

RSparse =

{
Ψt

nt
,goal reached

−1 ,else
(2)
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3.6 Agent AP lan

This work employs the Proximal Policy Optimization (PPO) and Soft Actor-Critic
(SAC) learning algorithms, given the continuous action (pose) and observation space
(point clouds) utilized in the environment. These algorithms are implemented using
the RL library stable-baselines3 [18], offering seamless compatibility with OpenAI
Gym environments.

Table 1 Hyperparameters of the learning algorithms

Learning parameters
Learning rate 8e-5*

Gamma 0.9
Train frequency 8 episodes

Number of training steps 150,000
Environment modelling

Required object coverage ψ 90%
Maximum acquisitions 10
Feed forward structure 256-128-64-[output dim]**

* Linear decay, with final value of 0

** Output dimension for 3T1R is 4 and for 3T3R the dimension is 6

Both PPO and SAC employ an actor-critic policy framework, leveraging neural
networks for action selection. For feature extraction from the input point clouds, we use
the Point Completion Network encoder [19], which is a lightweight variant of PointNet.
This encoder is integrated to efficiently process point cloud data. Fully connected
layers are appended to the feature extraction network to facilitate the agent’s action
output. The feedforward network structure is configured to output the appropriate
number of free parameters, with four parameters for 3T1R and six for 3T3R.

In prior work detailed in [6], various network architectures were evaluated to
identify the optimal configuration. The chosen architecture demonstrated superior per-
formance in terms of achieving high coverage while minimizing the number of scans
and computation time.

4 Use Case: Starter Motor

A data set of synthetically generated starter motors is used to represent the large num-
ber of product variants that can occur in remanufacturing. The data set is generated
based on a presented pipeline (cf. [20]). The motors are randomly generated based on
9 basic components (e.g. solenoid, gear housing and flange). The individual compo-
nents are further varied by 28 different parameters (e.g. length or diameter). Realistic
parameter limits and defined relationships to each other guarantee that a diverse and
realistic data set is generated. We generated 100 such engines with random parameters
in STL format for agent training. Two examples are shown in Figure 2.
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Fig. 2 Synthetically generated starter motors

Fig. 3 Comparison of coverage, reward and number of acquisition (scans) for different learning
algorithms and a random benchmark

4.1 Learning setup and evaluation criteria

To investigate the extent to which RL is suitable for solving the problem, the RL
algorithms PPO and SAC are compared with each other. In addition, a random agent
is used, which chooses a random action in each step. The agent is also benchmarked
against an often-used analytical solution method that formulates the VPP as a Set
Covering Problem (SCP) and solves it. VPP solution via solving the SCP involves
discretizing and evaluating multiple acquisition system poses, and then sequentially
selecting them based on their coverage of the object’s surface to obtain a view plan.
Due to the random behavior of an RL agent, three training runs were performed for
each agent and averaged. For the training, the parameters depicted in Table 1 were
used. The training results are shown in Figure 3. The following performance metrics
are introduced to evaluate the success of the training. Firstly, the cumulative reward
of the agent over an episode is used. This allows a statement to be made as to whether
the agent learns to optimize the strategy. Coverage is also considered. This is the
agent’s main objective. The total surface area should be maximized, and a target state
is only reached when at least Ψ = 90% total coverage is achieved. The number of
scans required for this is also considered. In order to optimize in the context of the
VPP and to increase efficiency, these should be minimized as far as possible while
achieving the surface coverage of Ψ = 90%. These performance metrics are plotted
against the number of episodes in Figure 3. An episode comprises the acquisition
process of an object model by the agent. Since several agents were trained for each
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agent configuration, the diagrams in Figure 2 contain the average progression of the
performance metrics in a bold line. In addition, the minimum and maximum values
of all trained agents for each episode are shown.

4.2 Comparison of action modeling alternatives

The action variants described in section 3.4 are compared below. The results of the
training are depicted in Table 2. The last 500 episodes in the converged state are
averaged over 3 runs for each action variant. 3T1R achieves a higher average coverage
and reward that 3T3R. By achieving the target of Ψ = 90% more reliable, 3T1R
requires an average of 1.5 scans less than 3T3R. In average 3T3R chooses one pose
per episode that is deemed non-reachable by MoveIT. This can be attributed to the
additional variation of α and β.

4.3 Comparison of reward modeling alternatives

For reward comparison, the averaged results of these training runs are shown in Table
2. If the agent is rewarded by a dense reward function based on the gained object
surface of a step, the performance indicators used can be optimized. The required
target of Ψ = 90% can be reliably achieved and the number of scans required can
be reduced accordingly. In contrast, a reward that is only distributed at the end of
an episode and is only positive when a target state is reached is not effective. In this
scenario, reaching a target state is too difficult to achieve without an accompanying
reward.

Table 2 Training results for different reward and
action types (mean values)

Metrics
Reward Types Action Types
Dense Sparse 3T1R 3T3R

Coverage 89.62 42.54 89.62 87.88
Reward 1.57 -10.0 1.57 1.50
Scans 8.60 11.0 8.60 10.17

5 Validation on the real inspection station

Finally, the methodology is also validated at the real inspection station with used
starter methods. For this purpose, two agents, ASparse and ADense, are trained in
the simulation environment and then transferred to the real inspection station. The
action type used is 3T3R. Both agents are benchmarked against a random strategy
and a heuristic. In the heuristic, a fixed viewpoint is set above the rotary table, with
the acquisition system aligned horizontally. The motor rotates 60◦ per acquisition,
totaling six.

Results shown in 4 indicate that both ASparse and ADense, trained in a virtual
environment, successfully transfer to the real inspection station, outperforming the
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Fig. 4 Comparison of coverage and number of acquisition (scans) for different learning algorithms
and benchmarks

random benchmark. Within five acquisitions, both agents achieve 80–90% surface cov-
erage. ASparse, trained with a sparse reward, reaches comparable coverage to ADense

with fewer acquisitions, confirming that simulation findings translate well to real con-
ditions. Notably, both agents surpass the heuristic benchmark in early acquisitions
(1–4), as the heuristic requires multiple rotations (60◦ increments) for full coverage.
The RL agents’ strategies prioritize maximizing coverage in each acquisition, though
potentially impacting later stages. Overall, simulation results align with real-world
outcomes, with the heuristic slightly outperforming; this gap may be reduced by
fine-tuning the RL agents for the real application.

6 Conclusion

In conclusion, this research developed and evaluated a Reinforcement Learning (RL)
model to solve the View Planning Problem in robotic inspection. Using Soft Actor-
Critic (SAC) and Proximal Policy Optimization algorithms, SAC showed superior
performance, consistently achieving over 90% surface coverage in virtual tests. Fur-
thermore, real validation tests have shown that the strategies learned in the simulation
can also be transferred to the real use case. A key advancement of this work is the inte-
gration of robot simulation and trajectory planning, allowing the RL agent to consider
kinematic constraints and physical reachability for greater adaptability. These innova-
tions enabled the methodology to be validated on a real use case and the framework to
be confirmed as a promising methodology for solving the VPP. This enables efficient,
adaptive view planning for returned products, supporting comprehensive inspections
to inform further processing.
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