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ABSTRACT

Common and different properties of particles and quasiparticles are discussed and, in
particular, the difference between real and quasimomentum is clarified.

I. INTRODUCTION

The concept of elementary excitations or quasiparticles has turned out to be an ex-
traordinary powerful tool to describe the low lying excitations of condensed matter: In
many cases the excited states can be viewed as a gas of approximately noninteracting
particles with energies €, which contribute to total energy according to

E{n.} = Zeana. (1)

a’s label single particle states and {n,} = {ni,ns,...} denote the set of (nonnega-
tive integer) occupation numbers. In many respects, these quasiparticles behave like
ordinary particles, e.g. they are bosons or fermions with ng = 0,1,2,... or nqg = 0,1,
respectively.

Some authors reserve the name quasiparticle to cases where « has the property of
momentum. Nevertheless, there are differences between particles and quasiparticles, in
particular there is a subtle difference between momentum and quasimomentum which
is not always fully respected.

The concept of quasiparticles was originally developed by Landau [1] who realized that
there is a continuous mapping of the low energy excitation spectrum with interparticle
interactions. Amagzingly, this description holds even in relatively strong interacting
systems like in metals or in superfluid helium.

A well known example of classical “quasiparticles” is the introduction of relative and
center of mass coordinates of a two body problem interacting via a central force

F(r) = f(|r|)r, see Fig. 1. The two particles are located at positions r;(t) (i = 1,2)
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Fig. 1. (a) Classical two body system interacting via a central force F and (b) the
decoupled motion of the relative— and center of mass coordinates which describe the
motion of two noninteracting “quasiparticles”. Dashed and dotted lines indicate possible
trajectories.

and the forces between the particles obey Newton’s law actio=reactio. We omit for
simplicity external forces and obtain:
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mQW = f(|1'2—1'1|)(1'2—1'1)- (3)

By introduction of relative r and center of mass coordinates R

miTy + Mol
r=r—r;,, R=——"- (4)
mi + Mo
the dynamics of the two interacting particles at positions ry, ry is transformed formally
to the dynamics of a system of two noninteracting particles

d*r(t) d*R(t)

m— = f(|r)r, MWZ(L (5)

with reduced mass m and total mass M
mzw, M:m1+m2. (6)

mi + me

We can call the two entities associated with r and R quasiparticles. In contrast to
the original particles, however, these particles are not material bodies, i.e. there is no
matter located at positions r and R so that there will be no collision at R = r. The
procedure outlined above for a classical quasiparticle is obviously very similar to the
one sketched in [2] when introducing the concept of quasiparticles in solids such as
phonons, plasmons, magnons, or excitons.



Fig. 2 (a) Linear monoatomic chain with equal masses m and nearest neighbour springs
D and periodic boundary conditions, (b) frequency spectrum for N = 10 “atoms”.

The aim of this note is to discuss and to clarify the quasiparticle properties of con-
densed matter by using the linear chain as a prominent example in section II. Then,
the equivalence of bosons and oscillators is sketched in section III. In Section IV we
summarize common and different properties of particles and quasiparticles and give two
examples.

II. LATTICE VIBRATIONS

As a prominent example for collective excitations in condensed matter we consider
the vibrations of a linear chain, Fig. 2a. The longitudinal displacements u; from the
equilibrium positions ycg = ja,j = 1,2....N where a denotes the lattice constant, obey
the Newton-equation of motion:

d*u;(t)

m =D (uj1 —uy) — D (uj — uj-1). (7)
Imposing periodic boundary conditions uyy; = u; we find two different types of solu-
tions:

ui™(t) = u+uvt, independent of j (8)

L 2
ut) = Re et g, = 2T 9)
a

Eq.(8) describes the rigid motion of the chain, corresponding to the center of mass
motion, counting as one degree of freedom whereas Eq.(9) describes N — 1 vibrations
labeled by a = +1,+2,£[&]. (For even N, —[J] is excluded.) %, ¥ are two real
constants and A, are complex constants which are fixed by the initial conditions. The
frequency spectrum of the chain

/D a
w(ga) =2 - ‘sin%

is depicted in Fig. 2b. Note, a = 0 is definitely excluded because the corresponding
solution u$(t) = const is already contained in Eq.(8) as a special case with o = 0
which describes a static displacement. Nevertheless, this property is often formulated
in jargon, even in theoretical texts e.g. Kittel [4] p. 15

(10)



energy cnergy

A
bosons oscillators
occupation |
. number 3 —
E Ill('l I I
g4 0 : I —
6 —— 2 —%—
5 —
4 ——
€
&4 oo 2 3 — | —— 3
2 g
€1 eeee— 4 1 2
€
0 0—+ 0 —I—l 0 0 —x%
1 2 3--..--

Fig. 3 Equivalence of a system of N (noninteracting) bosons with single—particle ener-
gies €, and occupation numbers n, and an infinite (uncoupled) set of harmonic oscil-
lators with frequencies wo, = €4 /h. Note that the zero—point energies of the oscillators
are omitted. Dots symbolize particles, crosses excited states, respectively. N = 6.

“The total momentum involves only the ¢ = 0 mode which is a uniform
translation of the system”.

Obviously, this statement is inappropriate as u;”(t) describes only the relative motion
of the masses so that the total momentum is zero just by construction.

Quantization of the chain is almost trivial as each mode represents a harmonic oscillator.
In particular, the total energy of the chain is

: 1
E{nq}z 21;\6;;;14— E hwq <nq+§), nq:0’1’2’_._’ (11)
q

where p., denotes the total (center of mass) momentum and, as usual, the N — 1
independent modes are conveniently described by a wave number in the first Brillouin
zone, | ¢ |[<7/a

IITI. BOSONS AND OSCILLATORS

A harmonic oscillator has the unique property that the excitation spectrum is repre-
sented in terms of integer multiples of iw above the zero point energy %hw. Equivalently,
one might view the excited states as realized by adding hypothetical particles with en-
ergy fiw to the “vacuum” state |0 > as shown in Fig. 3. For a single oscillator the “life”
of these particles is rather “dull” because these paricles have no degrees of freedom.

If we have, however, a set of oscillators (or of quasiparticles) with different quantum
numbers like those of the linear chain in Fig. 2b, then a quasi-particle may be forced
to “jump” from one (single particle) state a to another one /. This analogy can be
put further and leads to the formulation of “second quantization” (occupation number
representation) as sketched in Fig. 3.



Each N—boson state (described by a symmetric wave function) and each operator O can
be translated to the occupation number representation so that the expectation values
are the same in both representations.

‘Ijal,az,...(rlar%---) — ‘nannaza"' >, (12)
O(rlarZV"aplapZa"') — @<{aaaa’l¢})‘ (13)

A

Conveniently, operators O are represented in terms of ladder operators af,as with
a,|0 >= 0 and commutation relations

[aa,a;} =0ap, |Ga>as] =0, [ag,ag] =0. (14)

In “particle language”, the oscillator quantum numbers are termed occupation numbers,
whereas, a:g, q, are called creation and annihilation operators for particles in the (single—
particle) states labeled by «a.

For example, the operator of total momentum is translated as

N
P=ij — P:Z< o'|pla > al,aq, (15)
j=1 a,o!
where p is the momentum operator of a single particle, p = —iAV.

However, the equivalence of bosons and oscillators is not one to one! The occupation
number representation is more versatile than the traditional representation in terms
of wave functions. The particle number is no longer just a parameter but becomes a
dynamic variable described by the operator

N = Za&aa. (16)

The eigenvalues of N, = ala, are just n, = 0,1,2,.... As all N, commute, these
operators have simultaneous eigenstates which are labeled by {n,}.

Operators which conserve the particle number, e.g. Eqgs.(15,16), are composed of pro-
ducts with equal numbers of a, and ag.

The equivalence theorem gives the possibility to go the other way and associates bosons
with a set of oscillators, too. In the case of lattice vibrations, these bosons are called
phonons. The displacement—operator of the chain (see [4] p.16), however,

B
_ E z) (1
= ~\| 2Nmw, e (“—q’ ““f’) (17)
q

changes the phonon number by one and, thus, cannot be handled with wave functions.
Fermionic systems may be mapped to two-level systems, where all commutators Eq.(14)
are replaced by anticommutators. For details, we refer to standard textbooks, e.g.
Kittel [4].
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Fig. 4 The dispersion relation of (longitudinal) acoustic phonons extended over several
Brillouin zones.

IV. QUASIPARTICLES

In particular cases, e.g. for vibrations of a crystalline lattice or for electrons in a
periodic potential, « displays the characteristic properties of momentum. This is easiest
recovered by using the extended zone scheme to define the crystal-momentum

p=Nh(q+ G), (18)
where q is restricted to the first Brillouin zone and G denotes an appropriate vector
of the reciprocal lattice. Now €(p) becomes a periodic function of p which is a general
property of excitations in crystals, as shown in Fig. 4 for acoustic phonons. The quan-
tity p is called quasi—, crystal- or pseudo—-momentum and, in the “everyday laboratory
jargon” often simply momentum. For most practical purposes a phonon (or other quasi-
particles in crystals) acts as if p is the momentum but there are subtle differences. In
the following, we shall present aspects in which quasiparticles behave like real particles
and also in which they are different.

As an exotic example, we present the collective excitations in suprafluid and solid helium
*He which both are of phonon—type at small q. Interestingly, the “roton”-minimum in
the liquid phase near ¢ ~ 247! seems to be the remniscent of the longitudinal phonons
in the crystalline phase near q &~ 0 when shifted to the next Brillouin zone.
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Fig. 5 Spectrum of (longitudinal) elementary excitations in helium *He: (a) superfuid
and (b) bee crystalline phase as determined by inelastic neutron scattering. According
to Henshaw et al. [6] and Osgood et al. [7]. The parabola in (a) represents the kinetic
enerqy of free *He atoms



A. Common properties of particles and quasiparticles

1.

quasiparticles describe a transport of momentum and energy through condensed
matter like ordinary particles do in vacuum. This transport is characterized by
an energy - quasimomentum relation also called dispersion relation

e = €(p). (19)

For excitations in crystals, ¢(p) is a periodic function of p where p is usually called
crystal-momentum. For relativistic particles (in vacuum) there is a universal
function

e(p) = V/(moc?) + (cp)?, (20)

where ¢ is the velocity of light in vacuum and my is the rest mass.

. The transport velocity of energy and momentum is given by

0
Vp = 66<II))) .

(21)

In the wave-picture this conforms with the group—velocity if € and p are substi-
tuted by hw and hk, respectively.

. Interaction with (temporary and spatially) slowly varying external forces is gov-

erned by the equation of motion

dp(t

% == Fe:l:t<t)- (22)
This equation is analogous to the Newton—equation in classical mechanics and it
is valid provided the perturbation does not induce transitions between different

branches of the quasiparticle spectrum (so-called quasiclassical dynamics).

. Interaction with other particles (e.g. neutrons) or quasiparticles (e.g. phonons,

Bloch electrons etc.) may create, destruct or scatter quasiparticles. These pro-
cesses are governed by the conservation laws for energy and (quasi)momentum.
For example, the creation of a phonon by a neutron scattered from P; to Py is
governed by

P,—P;=p, E,—E;=¢p). (23)

Note, the participation of reciprocal lattice vectors is already included in Eqgs.(23)
by using the extended zone scheme.

. quasiparticles are either bosons or fermions provided the interaction between

them is weak i.e., the density of quasiparticles is low. Collective excitations,
e.g. phonons, magnons or plasmons are (mostly) bosons and, thus, the change
of their number is not restricted. Fermionic quasiparticles, however, can only be
created or diminished in pairs as e.g., for electron-hole pair excitations near the
Fermi-surface of a metal. In a semiconductor, such electron-hole pairs can form
hydrogenic bound states (=excitons) which act as bosons at low density and if
the excitation energy is smaller than the binding energy, see e.g., [2].

. Quasiparticles are described by delocalized states, e.g., by plane waves or Bloch

waves.



7. Quasiparticles have a finite life time 7. According to the energy - time uncertainty
relation this life time causes a finite width Ae = /7 of the dispersion curve ¢(p).
A consistent quasiparticle description requires Ae < e.

Properties 1-7 strongly support the view that (real) momentum and quasimomentum
describe — apart from the name — the same quantity. However, there are at least three
subtle differences.

B. Differences between real momentum and quasimomentum

1. Symmetries and conservation laws [5].
Associated with every symmetry of a Hamiltonian is a conservation law. This is
the famous Noether—theorem: The Hamiltonian of the linear chain (with periodic
boundary conditions, see Fig. 2a) is invariant under (arbitrary) translations which
are intimately connected to the conservation of total momentum. For example,
scattering of a neutron with momentum P; to P transfers (real) momentum to
the crystal as a whole

which is carried by the center of mass degree of freedom.

The Hamiltonian of the linear chain is also invariant under the discrete transfor-
mation x; — x; + a which, — in contrast to the previously considered continuous
transformation — would also be present if the masses would be tied to the “ground”
by additional springs. This discrete symmetry (=renumbering of the atoms) leads
to the conservation of crystal momentum of the interacting quasiparticles

ij:O (mod G). (25)

Of the two conservation laws Eqs.(24,25), crystal momentum is by far more im-
portant in solid state physics than ordinary momentum.

2. Transformation properties [8].
Energy ¢ and momentum p of a non-relativistic particle with mass m can be
changed by changing the frame of reference R. If ¢, p are defined in R, a Galilei-
transformation to R’ (which moves with velocity —V with respect to R) yields:

e'=e+pV+%V2, p =p+mV (26)

so that the relation between energy and momentum is form-invariant in all inertial
systems: € = €(p’). This is the principle of classical relativity. Quasiparticles,
however, transform differently:

¢ =e+pV, p =p. (27)

¢ —p'V and p’ are invariant with respect to Galilei-transformations. Eqs.(27) are
closely related to the transformation properties of wave phenomena in material
media

Ww=w+qV, d=q. (28)

The second equation of (28) states that (apart from relativistic effects) the wave
length A\ = 27 /|q| remains unchanged whereas the frequency is Doppler-shifted.
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Fig. 6. Inelastic scattering of a neutron with momentum transfer pem = P; — Py to
the crystal and the production of a phonon with wave vector q = Pem mod G.

3. For phonons, magnons, and other “lattice excitations” the number of modes is
determined by the number of different wave vectors within a single Brillouin zone.
For real particles, however, e.g. free electrons or photons, momentum is not
restricted: There is a minimum wavelength a/m for lattice vibrations but not for
free electrons or photons.

C. Example 1: Neutron scattering

As an illustration we first consider the excitation of phonons by neutron scattering as
is discussed in Kittel [3], chapter 5. The following conservation laws hold:

momentum: P; = Pj;+ p.., (29)
crystal-momentum: p = Pen, (30)
Pim

energy: E; = E;+¢€(p)+ SN

The scattered neutron transfers momentum to the crystal, which is carried by the center
of mass degree of freedom. Simultaneously, a phonon with wave number q = p mod
G is created provided this process is allowed by the conservation of energy, see Fig.
6. A model calculation is sketched in appendix A whereas Fig. 7 gives some selected
experimental results .

Fig. 7a displays the non—primitive cubic bcc unit cell, the first Brillouin zone, and
the dispersion relations for (metallic) potassium. Since there is only one atom in the
primitive cell there are only (three) acoustic branches. Note the different dispersion of
the LA and TA branches along various directions in the Brillouin zone. Fig. 7b dis-
plays the neutron count rate of a certain (zone-boundary) optical phonon in (insulating)
La;Cu0Oy at (reduced) wave number (0.5,0.5,0) when excited in three different Brillouin
zones: The maximum energy loss of the neutron is with about 157 Hz (or 65meV’) al-
ways at the same frequency ( or energy transfer) while the momentum transfer differes
by reciprocal lattice vectors (2,2,0), (2,2,2), and (2,2,4) (in units of 27”, 27”, 27”, where
a, b, c denote the lattice constants). Therefore, the same phonon may be created in dif-
ferent Brillouin—zones yet with different scattering cross sections. LasCuQ, crystallizes
in the body centered orthorhombic structure so that the Brillouin zone boundary in
(1,1,0) direction is at (0.5,0.5,0). The spectral width is due to the finite phonon life
time as well as to the instrumental resolution. Note, Sr—doped La,CuQ, was the first
HTc superconductor which was discovered by Bednorz and Miiller [11] in 1986.
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Fig. 7. (a) bce structure, Brillouin zone, and phonon dispersion curves for potassium.
Along the horizontal azis we plot q, q/v/2, and q/\/3 for the (1,0,0), (1,1,0), and
(1,1,1) directions, respectively. (b) excitation of a particular optical phonon (“scissor”
mode) of LaaCuQ, when excited with the participation of different reciprocal lattice
vectors. According to Cowley et al.[9] and Pintschovius [10].
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Fig. 8. Transport of momentum and energy through a linear arrangement of masses
which interact only by central collisions.

D. Example 2: Transport of momentum and energy through a chain [§]

We consider the transport of momentum and energy through a piece of matter which is
initially at rest. Next, we transfer a certain amount of momentum to one side e.g., by
the hit of a hammer. The question arises how this momentum and the related energy
will be passed from one volume element to the neighboring one. As a trivial example
we consider the arrangement depicted in Fig. 8. The momentum p, which is transfered
to particle # 1, will be transported by successive collisions. Although, this momentum
is numerically equal to the total momentum of the chain, there is — in a naive view —
no motion of the system as a whole at least for very large systems (see below). For a
finite system the center of mass moves to the right however, with a speed proportional
to the inverse of the number of masses involved. Yet, there is transport of momentum
and energy with velocity vz = p/m through the system.

In another frame of reference R’ (moving with —V with respect to R) the total mo-
mentum and energy are transformed according to (see also Eq.(26)):

2 2
P
Po= Nm)V, E  =-—+pV+ .
Doy p+( m) ’ tot 2 p Q(N )

For fixed p the minimum of the energy can be reached in a frame of reference which
moves with velocity Vj.

(32)

p? 1

Ejy is the internal energy. For large systems, Fy is almost identical with the energy in
R where, by definition, V=0. In all other frames of reference, however, the total energy
as well as the total momentum scales to infinity with N — oo. A meaningful definition
of the transported momentum and energy, however, must contain only those parts of
Eqs.(32) which are independent of N in the limit of N — oo. These terms are:

2
p
e(p) = Etot - N,U = % +pV, p' =p. (34)



The quantity p = mV?/2, which is necessary to add a particle with mass m, is the
chemical potential. The system defined by Eqgs. (34) is again called a quasiparticle.

V. CONCLUSIONS

Concerning the transport of energy and momentum through matter, quasiparticles be-
have like ordinary particles and quasimomentum plays the part of ordinary momentum.
Nevertheless, quasimomentum is not the generator of translations, and energy and mo-
mentum behave differently with respect to Galilei-transformations.

Although the quasiparticle description was originally developed for weakly interacting
systems, this concept proved to be fruitful even for moderately strong interactions like
real metals and liquid helium 3 He and * He at low temperatures. For strong interactions,
however, new types of quasiparticles appear. For example the spin and charge degrees
of freedom may separate (spinons, holons), charges may become fractional (as in the
fractional Quantum Hall effect), or non Bose/Fermi statistics occurs (Anyons in two
dimensional systems) [12].

The great advantage and success of the quasiparticle picture lies in the fact that ther-
modynamic as well as transport properties can be simply described. Examples are the
temperature dependence of the specific heat in ordinary and Heavy—Fermion metals [13],
de Haas van Alphen effect, cyclotron dynamics in semiconductors, or the Gunn—effect
(3]

On the other hand, if a quasiparticle picture is inappropriate, like in amorphous solids
or (normal) liquids, even a qualitative description is difficult. Fortunately, phonons still
exist in the long wavelength limit where a continuum description always holds. For
electrons in amorphous solids, on the other hand, all states become localized above a
critical degree of disorder (=Anderson localization) [14]. The situation becomes even
worse in (1-dimensional) quasicrystals, i.e. solids with nonperiodic but deterministic
structure where the energy spectrum is not even continuous but is a Cantor—set [15].
In appendix B we try to sketch a similar chain of arguments as developed above for the
quasimomentum for the angular momentum of quasiparticles.
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APPENDIX A

To establish the origin of the conservation laws stated in section IV we present a simple
calculation of the phonon excitation rate upon neutron scattering. We consider a three
dimensional harmonic crystal with one atom per unit cell which is described by the
Hamiltonian

~2

A~ . p 1_

H= SN + E hwqalag. (35)
q

p, are the center of mass momentum and coordinates of the crystal. To lighten the
notation we have indicated only one of the three phonon branches w(q). The external
particle with mass M (“neutron”) is described by operators P, R and Hamiltonian

. P2

Hepp = —. 36
= (36)



Stationary states of the (uncoupled) system “neutron - crystal” are labeled by K (=neu-
tron momentum), k (=total momentum of the crystal) with ik = p, and {ng},

ezKR ikr

K.k, {nq} > = \/—\/—|{nq}> (37)
E(K,k {ng}) = (ZK) 2Nm+Zhwq (nq ) (38)

Q) is the volume of the crystal.
The interaction between the neutron and the crystal is:

Z i+10+14)). (39)

V(...) denotes the interaction potential with a single atom of the crystal at position
r+ rg + u;, where r gives the position of the center of mass of the crystal and 0, the
displacement of atom #j from its equilibrium position at rg. According to the Golden

Rule, H;,; induces transitions between stationary states Eq.(37) with a rate I'; ¢
2 oA 2
Fi_>f = % < Z‘Hmt|f > (S(E, — Ef), (40)

where the delta—function displays the conservation of energy.
As an initial state we chose a crystal at rest, i.e. k = 0, {nq = 0} for all q. Then the
transition matrix element becomes:

. PR [ &
< f[Hin i >=/ / T i(Ki—K R _’krz<{nq}|V( —r—1)—u;)[0> (41)

j=1

which can be rewritten as:

N

- R R 1 4 .
< flHimli >= / i(Ki-Ky—k / Je T Py~ Zelkf?<{nq}\ezk“j|o >). (42)

j:l
The first integral is nonzero only for
K, -K;=k (43)

which is the conservation of (total) momentum, Eq.(24). The second integral yields the
Fourier—transform of the atomic potential, V' (k), which is called the structure factor of
the atom.

For small displacements, we may expand the exponential operator

e =1+ iku; . .. (44)

The matrix element of the first term is nonzero only for ngy = 0 which describes purely
elastic (Bragg—-) scattering:

A N
< f|Hmt|’L >= 5Ki’Kf+kV Z(Sk7GV(k) (45)
G



The next term in the expansion changes the phonon number by one. To evaluate
these matrix elements we use the representation of u; in terms of phonon creation and
destruction operators aIl, aq, Eq. (17):

Ao o
“jzg N € ealay + ). (46)

e, denotes the polarization vector (normalized eigenvector of the dynamical matrix).
As a result, we obtain for elastic and single phonon excitation processes:

h

o N .
< f|Hmt|Z >= 5K¢,Kf+k§ ; (51(,(3 + Z(keq) m

5k_q,G) V) (47

The first Kronecker—delta describes again the convervation of total momentum, Eq.(24),
whereas the conservation of crystal momentum, Eq. (25), is captured by the Kronecker—
deltas in the bracket. Note, that the one—phonon transition rate depends on the total
transferred momentum - not on the wave number q within the first Brillouin zone.
For crystals with more than one atom in the primitive cell, V (k) is replaced by the
structure factor, see [3]. Higher order terms in the expansion (44) lead to multiphonon
processes and to the Deye-Waller factor. Note further, that the transition rate I';_,f
is proportional to N? which indicates that for Bragg—scattering as well as for inelastic
phonon scattering all atoms of the crystal contribute coherently.

APPENDIX B

In the following, we try to explore if a similar chain of arguments as given above for
the quasimomentum of quasiparticles can be found also for the angular momentum.
Free space has spherical symmetry i.e. it is invariant against any rotation around any
axis. As a consequence (the Noether—theorem applies again) J? and its projection onto
a quantization axis (usually called z-axis) are conserved commuting quantities, i.e., their
eigenvalues are “good” quantum numbers

J2|jajz >= .7(.7 + 1)h2|jajz >, lejajz >= ]zh|]a.7z >, (48)
where j =0,3,1... and j, = —j,—j + 1,...].
The angular momentum J of a particle can be decomposed into an orbital part L = rxp
and an inner part S which is in some cases called spin. In a classical picture L vanishes
in a frame of reference in which the trajectory of the center of mass of the particle under
consideration passes through the origin.
For the following discussion we consider only the inner part of angular momentum. In
contrast to free space (see above), a crystalline solid is invariant only under rotations
of £3, +7, i%’r, and +7 around selected axes. Strictly speaking, angular momentum
is therefore not a “good” quantum number for the classification of quasiparticles. The
“good” quantum numbers follow from the irreducible representations of the point group
of the solid (see e.g. [16]). However, the inspection of the compatibility tables of the
full spherical group and of finite point groups of solids, shows that for crystals with
high symmetry and in the vicinity of k = 0 i.e. close to the I' point and partly also
along some directions of high symmetry, the angular momentum is up to j = % with
1, = i%,i% a “reasonably good” quantum number. Examples are the cubic point
groups Oy, and Ty. In uniaxial hexagonal systems like Cg, similar statements hold at



least for the projection of the angular momentum on the hexagonal axis. In an arbitrary
direction in k-space or in crystals of low symmetry, the concept of angular momentum
cannot be used in solids. Within this limitation we discuss now the absorption of a
photon with q ~ 0 incident on a crystal with high symmetry in an analogous way, as
we discussed the inelastic scattering of a neutron in chapter IV.C. We assume, that the
photon is in a circularly polarized state o% i.e., it carries an angular momentum 7% in
the direction of momentum. When the photon is absorbed in the crystal by creating
an optical phonon, an exciton, a plasmon, or an optical magnon, the crystal as a whole
carries the angular momentum j, = & in analogy to Eq. (29) for the momentum. The
rotational energy E,., of the crystals as a whole, however,
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By = o = DT (19)
tends to zero for a macroscopic crystal because of the large moment of inertia ©. Simul-
taneously, the angular momentum of the absorbed photon appears as the quasi-, pseudo
or crystal angular momentum of the created quasiparticle as for the quasimomentum
in Egs.(29), (30).
To elucidate this concept and assuming that the reader has some basic experience
with group theory in solids [16], we give the following example. In a crystal with
point group 7y i.e., with zincblende type crystal structure, the transitions from the
crystal ground state with symmetry I'; are dipole allowed only to excited states with
symmetry I's in one—photon absorption processes. Simultaneously one finds in the
above mentioned compatibility tables, that a state in vacuum with j, = 1 is compatible
with the irreducible representation I's.
In this sense we may say that a quasiparticle in a crystal carries energy, quasimomentum
and even quasi angular momentum. The validity of the latter concept is, however, more
restricted than that of quasimomentum. For example, there are 2s+ 1 different internal
states of a particle with spin s which have the same energy ¢(p). Phonon, magnon
etc. dispersion curves, however, split with increasing quasimomentum, in particular
along low—symmetry directions, see Fig. 7a. Therefore, quasiangular momentum is not
an internal degree of freedom of a quasiparticle so that it has to be used with more
precautions than the concept of quasimomentum.



