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Abstract

Online Generation of Safely Executable Robot
Trajectories Using Reinforcement Learning

This thesis addresses the problem of generating safely executable robot trajectories using
model-free reinforcement learning (RL). In model-free RL, the performance of a robot is
improved over time by utilizing the principle of trial and error. While recent advances
in artificial intelligence have made this approach a compelling choice for developing au-
tonomous, self-learning robots, ensuring safety throughout the learning process is still a
subject of ongoing research. By presenting novel techniques for generating safely exe-
cutable robot trajectories in real time, this thesis introduces three key contributions to the
field of safe reinforcement learning, which are outlined below.

Using model-free RL, the generation of robot trajectories is typically formalized
based on the mathematical framework of a Markov decision process. The goal of the
learning process is to find a policy that maps states to actions so that rewards are max-
imized. The first contribution of this thesis addresses the question how actions can be
mapped to robot trajectories that strictly adhere to position, velocity, acceleration, and jerk
constraints specified for each robot joint. The introduction of an upper and a lower tra-
jectory concept shows that each possible action can be mapped to a constraint-satisfying
intermediate trajectory. The proposed mapping technique enables the learning of fast and
smooth movements without overloading the robot joints and therefore serves as the foun-
dation for the following two contributions.

In order to incorporate further safety constraints into the learning process, the second
contribution of this work introduces the concept of background simulations. These simu-
lations are conducted to identify risky actions, which are then replaced using a so-called
backup policy. To avoid safety violations for robots with a stable base, a backup pol-
icy based on braking trajectories is proposed. Using this backup policy, it is shown that
self-collisions and collisions with static obstacles can be strictly prevented.

To efficiently detect risky actions in stochastic environments, the third contribution
introduces data-based risk estimators. In a first step, model-free RL is used to learn a
backup policy that actively avoids safety violations. Subsequently, the backup policy is
employed to generate data for a risk estimator trained via supervised learning. The risk
estimation is utilized to avoid collisions in diverse settings with moving obstacles. It
is shown that the proposed technique effectively reduces collisions while causing little
computational overhead.

The presented contributions are extensively evaluated using simulated industrial
robots and humanoid robots. By successfully performing experiments with a real in-
dustrial robot, it is shown that safely executable trajectories can be generated in real
time. The thesis concludes with a discussion on future research directions to advance
the development of safe autonomous robots.
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Zusammenfassung

Online Generierung von sicher ausführbaren
Robotertrajektorien mittels bestärkendem Lernen

Diese Arbeit behandelt das Problem der Generierung von sicher ausführbaren Roboter-
trajektorien unter Verwendung von bestärkendem Lernen (Reinforcement Learning, RL).
Bei modellfreiem bestärkendem Lernen wird das Prinzip von Versuch und Irrtum genutzt,
um die Leistungsfähigkeit eines Roboters sukzessive zu steigern. Während jüngste Fort-
schritte in der künstlichen Intelligenz diese Methode zu einer vielversprechenden Wahl für
die Entwicklung autonomer, selbstlernender Roboter machen, ist die Aufrechterhaltung
der Sicherheit während des Lernprozesses noch Gegenstand laufender Forschung. Durch
die Vorstellung neuartiger Techniken zur Generierung von sicher ausführbaren Roboter-
trajektorien in Echtzeit führt diese Arbeit drei wesentliche Beiträge in den Forschungs-
bereich des sicheren bestärkenden Lernens ein, die im Folgenden erläutert werden.

Bei der Verwendung von modellfreiem bestärkendem Lernen wird die Generierung
von Robotertrajektorien in der Regel basierend auf einem Markov-Entscheidungsprozess
formalisiert. Während des Lernprozesses besteht das Ziel darin, eine sogenannte Policy zu
finden, die Zustände so auf Aktionen abbildet, dass Belohnungen maximiert werden. Der
erste Beitrag dieser Arbeit adressiert die Frage, wie Aktionen auf Trajektorien abgebil-
det werden können, sodass Positions-, Geschwindigkeits-, Beschleunigungs- und Ruck-
grenzwerte für jedes Robotergelenk strikt eingehalten werden. Durch die Einführung des
Konzeptes einer oberen und einer unteren Trajektorie wird gezeigt, dass jede mögliche
Aktion einer Trajektorie zugeordnet werden kann, welche die festgelegten Grenzwerte
einhält. Die vorgeschlagene Zuordnung ermöglicht das Erlernen schneller und flüssiger
Bewegungen ohne die Robotergelenke zu überlasten und dient deshalb als Grundlage für
die folgenden zwei Beiträge.

Um weitere Sicherheitsanforderungen während des Lernprozesses zu berück-
sichtigen, führt der zweite Beitrag dieser Arbeit das Konzept von Hintergrundsimulationen
ein. Diese Simulationen werden durchgeführt, um riskante Aktionen zu identifizieren
und anschließend mittels einer sogenannte Backup-Policy zu ersetzen. Für Roboter mit
festem Stand wird zur Vermeidung von Sicherheitsverletzungen eine Backup-Policy
basierend auf Bremstrajektorien vorgeschlagen. Es wird gezeigt, dass Eigenkollisionen
und Kollisionen mit unbeweglichen Hindernissen durch Verwendung dieser Backup-
Policy vollständig vermieden werden können.

Zur effizienten Erkennung riskanter Aktionen in stochastischen Umgebungen führt
der dritte Beitrag datenbasierte Risikoschätzer ein. In einem ersten Schritt wird be-
stärkendes Lernen verwendet, um eine Backup-Policy zu erlernen, die Sicherheits-
verletzungen aktiv vermeidet. Anschließend wird die Backup-Policy eingesetzt, um Daten
für einen Risikoschätzer zu generieren, der durch überwachtes Lernen trainiert wird. Die
Risikoschätzung wird verwendet, um Kollisionen in Umgebungen mit sich bewegenden
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Hindernissen zu vermeiden. Es wird gezeigt, dass die vorgeschlagene Technik Kollisionen
effektiv reduziert und nur wenig Rechenleistung benötigt.

Die vorgestellten Beiträge werden unter Nutzung von simulierten Industrierobotern
und humanoiden Robotern umfassend evaluiert. Durch die erfolgreiche Durchführung von
Experimenten mit einem echten Industrieroboter wird gezeigt, dass sicher ausführbare
Trajektorien in Echtzeit generiert werden können. Die Arbeit endet mit einer Diskussion
über mögliche Forschungsrichtungen zur Weiterentwicklung sicherer autonomer Roboter.
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1. Introduction

With their exceptional speed and precision, industrial robots have become an indispens-
able part of automation processes over the past 50 years. At present, the operational stock
stands at approximately 3.9 million units, with more than 550 000 robots newly installed
in 2022 [118]. Today, industrial robots are primarily employed in clearly defined environ-
ments where well-functioning motion sequences can be specified in advance. Emerging
trends in automation, however, introduce new challenges for the field of robotics. In
the future, robots will be increasingly used to produce customized goods, to collaborate
with humans and to assist with everyday household tasks. As the operating environments
become more versatile and less structured, programming motion sequences in advance be-
comes increasingly complex. This also holds true for identifying a suitable mathematical
model of the environment needed to utilize techniques from model-based control theory.
A promising approach for generating adaptive robot movements without precise knowl-
edge of the operating environment is model-free reinforcement learning, a method from
the field of machine learning.

When using model-free reinforcement learning, the operating environment is ex-
plored based on the principle of trial and error. For that purpose, randomly selected
actions are mapped to robot movements. Subsequently, a reward is assigned to each
action based on its effectiveness in fulfilling a desired robot task. During a training phase,
a learning algorithm seeks to identify actions that maximize the rewards received over
time. This way, it is possible to generate optimized robot movements without requiring a
model of the environment or demonstrations from a human teacher.

Since around 2015, the combination of reinforcement learning with neural networks
– sometimes referred to as deep reinforcement learning (DRL) – has received increasing
research interest in the context of artificial intelligence (AI). Neural networks are a class
of function approximators that are loosely inspired by the structure of the human brain.
While the concept of artificial neural networks has been around for years, several recent
advances have led to a sudden surge in popularity:

• The availability of computing power has increased significantly, in particular
through cloud computing but also due to the development of hardware accelera-
tors such as graphics processing units (GPUs) and tensor processing units (TPUs).
Higher computing power speeds up the training process of neural networks and
facilitates real-time applications.

• Special software frameworks for machine learning have been developed. These
frameworks support a technique called automatic differentiation, which simplifies
the implementation of gradient descent methods typically used to optimize the train-
able parameters of neural networks.

• Several high-profile publications have attracted substantial media attention, thereby
increasing the awareness of neural networks and artificial intelligence as a whole.

1
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Figure 1.1.: Publications containing the term reinforcement learning in the title, in the
abstract or in the keywords as found by the scientific search engine Scopus.

Figure 1.1 shows how the number of scientific publications on reinforcement learn-
ing has increased over the last few years. While the emergence of deep reinforcement
learning opens up new opportunities for robot motion generation, it also presents new
research questions. One important issue when controlling the motions of a robot with a
neural network is the problem of motion safety. In order to learn well-performing motions
with model-free reinforcement learning, a robot has to be able to explore its environment.
During this process, neither the robot nor its surroundings must be damaged. This is
particularly crucial at the beginning of a training process, where the network parameters
are typically initialized at random. By providing methods to ensure motion safety during
and after the training phase, this thesis contributes to the long-term goal of making robot
movements as efficient and adaptive as those of their biological counterparts.

1.1. Problem description

This thesis addresses the problem of online trajectory generation using model-free
reinforcement learning (RL), with a focus on incorporating safety constraints. The fol-
lowing section introduces the basic principle of online trajectory generation and offers
an overview of potential factors that may lead to safety violations. Subsequently, safety
constraints that are relevant within the scope of this work are formally defined.

1.1.1. Online trajectory generation using model-free
reinforcement learning

In the past, model-free RL has been successfully applied to a wide range of sequential
decision problems. A crucial factor for this achievement is the utilization of a common
mathematical framework called Markov decision process (MDP). By formalizing deci-
sion problems as MDPs, it is possible to use the same learning algorithms across various
problem domains. In the following, the framework of MDPs is introduced. Afterwards, it

2
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State st

Robot state

Environment
state

Task state

State st+1

Robot state

Environment
state

Task state

st Motion generation
from t to t+ 1

at

Reward calculation

Optimization of
network parameters θ

based on RL

Figure 1.2.: The basic principle of online trajectory generation via reinforcement
learning (RL) shown for a ball-on-plate task. In this example, the mapping
from states s to actions a is performed by a fully connected neural network.

is shown how this framework can be applied to the specific problem of online trajectory
generation. The mathematical descriptions in this section are based on the standard
textbook “Reinforcement Learning: An Introduction” by Richard S. Sutton and Andrew
G. Barto [160]. The notation used in this thesis aims to align with recent RL publications.

A system modeled as a Markov decision process is defined by a tuple (S,A, P, R, γ):

• S is the state space specifying the set of feasible system states. MDPs are memory-
less, meaning that a state st ∈ S fully describes the state of the system at time
step t. Previous states st−1, st−2, . . . have no influence on the further evolution of
the system. This characteristic is called Markov property.

• A is the action space defining the set of actions. At each time step t, an action
at ∈ A is selected.

• P : S × S × A → [0, 1] is a function specifying the state-transition probabilities
with P (s′ | s, a) = Pr {st+1 = s′ | st = s, at = a}. When using model-free RL, the
state-transition probabilities are typically unknown.

• R: S × A → R is the reward function. The reward function R(s, a) provides a
scalar value, called reward, indicating how well the selection of action a in state s
performs with respect to the desired goal of the decision process.

• γ ∈ [0, 1] is a discount factor to trade-off future rewards against immediate rewards.

When using model-free RL in the context of MDPs, the objective is to find a mapping
from states to actions that maximizes the sum of discounted rewards over time Gt:

Gt =
∞∑
k=0

γk ·R(st+k, at+k) (1.1)

In the context of RL, the mapping is called policy and the sum defined by (1.1) is called
return. A policy π : A×S → [0, 1] can be stochastic with π(a|s) being the probability of
selecting action a in state s:

π(a|s) = Pr {at = a | st = s} (1.2)

3
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Figure 1.3.: The computation of actions with an actor network illustrated for a two-
dimensional continuous action space.

Based on the example of a ball-on-plate task, Figure 1.2 illustrates how the framework
of MDPs can be applied to generate robot trajectories in real time. The goal of the robot
is to quickly follow a reference path while keeping a ball balanced on a plate. For online
trajectory generation with model-free RL, each state s ∈ S typically contains information
on the robot, the environment and the desired task. In this example, the robot is described
by the kinematic state of its joints, while the environment is characterized by the current
position and velocity of the ball on the plate. The task, on the other hand, is defined by
future waypoints along the reference path.

At each time step t, the state st is mapped to an action at using a neural network with
trainable parameters θ. While the decision process is discrete in time, robot motions are
time-continuous. Therefore, the action at has to be mapped to a continuous motion from
time step t to time step t + 1. While not strictly necessary, the time difference between
t and t + 1 is typically constant. After executing the generated motion, the state st+1

is reached and the procedure can be repeated. During the training phase, each action is
rewarded based on its effectiveness in achieving the desired learning task. An algorithm
from the realm of model-free RL can then be used to adjust the trainable parameters of
the neural network so that well-performing actions are generated.

The goal of this thesis is to find a mapping from actions to motions that allows the
robot to utilize its kinematic potential while ensuring that neither the robot nor its sur-
roundings are damaged during the motion execution. The mapping should be applicable
to a variety of tasks and should not overly restrict the speed or the workspace of the robot.
In theory, the action space A of an MDP can be either discrete or continuous. To allow
for a wide range of potential robot movements, a continuous action space is used in this
work.

In order to gain a deeper understanding of how safety violations may arise during
the training process of a neural network, Figure 1.3 illustrates the computation of actions
when using an actor network to parameterize the policy π. While this thesis makes use
of fully connected feedforward networks, the presented concepts can also be applied to
other network architectures or policy representations. In the specific example shown in
Figure 1.3, the actor network parameterizes a policy with a two-dimensional continuous
action space using Gaussian distributions. Given the state st as input, the network outputs

4
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0

max

Training time

Exploration

Exploitation

(a) Final policy is deterministic.

0

max

Training time

Exploration

Exploitation

(b) Final policy is stochastic.

Figure 1.4.: Typical courses of exploration and exploitation during the training phase of
an actor network when using model-free RL.

a mean µ and a variance σ2 for each dimension of the action space. These parameters
specify Gaussian distributions from which the action at is sampled. The exploration of
the environment is controlled by the variances of the Gaussian distributions.

At the beginning of a training phase, the network parameters θ are typically initialized
at random. Consequently, random actions are generated. Without special safety precau-
tions, random actions are likely to cause safety violations. As shown in Figure 1.4, the
exploration of the environment decreases during the training phase while the exploitation
of the knowledge already acquired increases. By defining a suitable reward function, the
probability of safety violations can be reduced during the course of training. However,
effectively avoiding undesired behaviors by adjusting the reward function might require a
careful tuning process to avoid negative effects on other objectives of the desired task.

Once the training phase is finished, the network parameters θ are no longer adjusted.
As shown in Figure 1.4, the final policy can be either deterministic or stochastic. In case
of the actor network shown in Figure 1.3, a deterministic policy can be enforced by set-
ting the variance σ2 of each action dimension to zero. Consequently, a state st is always
mapped to the same action at. While many robotic tasks benefit from deterministic poli-
cies, there are also cases where a stochastic policy is preferred. For instance, a humanoid
robot might appear more human and less robotic if it moves in a slightly stochastic way.
Although stochastic policies are more likely to generate unsafe actions, safety violations
can also occur when following a deterministic policy. During the training phase, the RL
algorithm aims to find network parameters θ that maximize the average task performance.
This optimization procedure, however, does not guarantee a good performance in every
single state of the system.

The probability of safety violations might also increase when deploying a policy in
an environment that differs from its training environment. A common example for such
a domain change is a so-called sim-to-real transfer, visualized in Figure 1.5. Generating
training data for model-free RL is often easier and faster when using a physics simulator.
However, due to modeling errors, the real world differs from the simulation environment.
This effect is known as sim-to-real gap. When taking protective measures to prevent
safety violations in the real world, a further aspect that must be taken into consideration
is the real-time capability of the required calculations.

5
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Sim-to-real transfer

Challenges:

• Robot safety

• Real-time capability

• Sim-to-real gap

Figure 1.5.: A domain change from a physics simulator to the real world, known as
sim-to-real transfer, might increase the probability of safety violations.

In summary, ensuring motion safety requires protective measures during and after the
training phase. The mapping from actions to motions must be applicable to every potential
action a ∈ A as random actions are selected at the beginning of the training phase. When
collecting training data in the real world or when conducting a sim-to-real transfer, all
calculations need to be real-time capable.

1.1.2. Incorporation of safety constraints

This part of the problem description specifies the safety constraints that are relevant within
the scope of this thesis and introduces the framework of constrained Markov decision pro-
cesses (CMDPs) [4]. In addition, different levels of constraint satisfaction are introduced.

Common robotic manipulators are composed of multiple individual parts, known as
links, which are connected in series via revolute or prismatic joints. Revolute joints allow
a robot to rotate one link against another along a common axis. The angle of rotation φ
is the only degree of freedom (DOF) of a revolute joint. In this thesis, the following
kinematic constraints are considered for revolute joints:

φ

Revolute
joint

pmin ≤ φ ≤ pmax (1.3)
vmin ≤ φ̇ ≤ vmax (1.4)
amin ≤ φ̈ ≤ amax (1.5)
jmin ≤ ...

φ ≤ jmax, (1.6)

where p, v, a, and j stand for position, velocity, acceleration, and jerk, respectively.

Note that the symbols of the kinematic limits are rendered upright to distinguish accel-
erations a from actions a. Compliance with the kinematic limits is important to avoid
excessive stress to the robot joints. The maximum values for each joint are typically spec-
ified by the robot manufacturers. Some industrial robots are equipped with a continuous
revolute joint at the end of their kinematic chain to enhance the flexibility of an attached
tool. For continuous joints, the position limits specified in equation (1.3) do not apply.
In the literature, jerk constraints are not always taken into account. Considering jerk
constraints, however, can help to reduce vibrations, increase the lifespan of mechanical
components and improve the tracking accuracy of trajectory controllers [46, 87, 108]. The
kinematic constraints (1.3) - (1.6) can be applied analogously to prismatic joints, which

6
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enable a translational movement between two robot links. One example is the prismatic
joint used to adjust the shoulder height of the humanoid robot ARMAR-6 [12].

Typical robot joints are not only subject to kinematic constraints, but also to dynamic
constraints. For revolute joints, the torque τ is limited as follows:

τmin ≤ τ ≤ τmax (1.7)

The force of a prismatic joint is constrained analogously. For the sake of simplicity, the
term torque is used for both revolute joints and prismatic joints in this thesis.

Apart from joint constraints, collisions are an important cause for safety violations.
In this work, three different types of collisions are considered:

• Self-collisions refer to collisions between a moving part of a robot and another
part of the robot, which can be either moving or static. If multiple robots are con-
trolled by the same instance, collisions between the robots can also be considered
as self-collisions.

• Collisions with static obstacles are collisions between a moving part of a robot and
an immovable obstacle.

• Collisions with moving obstacles describe a collision between a robot and a mov-
ing obstacle. If two robots are controlled independently, each robot can regard the
other robot as a moving obstacle. Similarly, humans can be considered as moving
obstacles.

In the following, dself , dstatic, and dmoving denote the closest distance to a self-collision, to
a collision with a static obstacle, and to a collision with a moving obstacle, respectively.
Collisions do not occur if the following conditions are fulfilled at all times:

dself > 0 (1.8)
dstatic > 0 (1.9)
dmoving > 0 (1.10)

In practice, it can be reasonable to enforce certain safety distances:

dself > dsafetyself (1.11)
dstatic > dsafetystatic (1.12)
dmoving > dsafetymoving

(1.13)

This way, it is possible to compensate for errors that might be caused by inaccurate geo-
metric models or by a time-discrete computation of the distances dself , dstatic, and dmoving.

Using the framework of constrained Markov decision processes (CMDPs) [4], safety
constraints can be formally incorporated into the learning process. In the literature, a dis-
tinction is made between cumulative constraints and instantaneous constraints [99, 190].
Cumulative constraints enforce the sum of a constraint cost received over time to be
smaller than a specified threshold. In contrast, instantaneous constraints must always
be satisfied. The safety constraints considered in this work are instantaneous constraints.
Moreover, it is important to emphasize that time-continuous motions must adhere to the
safety constraints at all times, not just at the discrete time steps of the underlying MDP.
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Figure 1.6.: An overview of the main contributions presented in this thesis.

In the literature on CMDPs, another distinction is made with respect to the level of
constraint satisfaction [25]. Hard constraints guarantee strict constraint satisfaction. A
probabilistic constraint is met with a certain probability ∈ [0, 1]. Soft constraints, on
the other hand, encourage constraint satisfaction without providing any guarantees. In
the context of motion safety, there is typically a strong preference for hard constraints.
However, providing strict safety guarantees requires certain assumptions about the future
evolution of the environment. This work aims to identify conditions under which motion
safety can be guaranteed. In environments where these conditions do not apply, compli-
ance with the safety constraints should be encouraged.

1.2. Contributions

This thesis proposes methods to enhance motion safety when learning robot trajectories
using model-free RL. As can be seen in Figure 1.6, the main contributions of this work are
divided into three parts, referred to as contribution A, contribution B, and contribution C.
An exemplary robot scenario for each contribution is shown in Figure 1.7.

• Contribution A describes a mapping from actions to motions which ensures that
the resulting trajectory setpoints satisfy the kinematic joint constraints given by
the equations (1.3) - (1.6). Using the action mapping, a robot can be safely oper-
ated close to its kinematic limits. In order to additionally account for collisions,
contribution A can be combined with contribution B or contribution C.
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Contribution A Contribution B Contribution C

A single robot with
a reference path

Multi-robot
scenarios

A robot sharing its
workspace with a human

Figure 1.7.: The figure shows exemplary environments in which the methods presented
in this thesis can be used to prevent safety violations.

• Contribution B introduces a method to ensure motion safety by simulating the exe-
cution of braking trajectories. Under certain conditions, this method is able to com-
pletely prevent self-collisions and collisions with static obstacles. As shown in Fig-
ure 1.7, multi-robot scenarios are a possible case of application for this contribution.

• Contribution C makes use of learned backup behaviors to additionally consider
collisions with moving obstacles. First, a backup policy is trained to actively avoid
safety violations. Subsequently, a data-based risk estimator is employed to quickly
assess the risk associated with a specific motion. Using this method, compliance
with the safety constraints is encouraged but not strictly guaranteed.

In the following, each of the contributions is described in more detail.

1.2.1. Action mapping considering kinematic joint constraints

In order to generate robot trajectories based on the framework of MDPs, actions a ∈ A
need to be mapped to feasible robot motions. One contribution of this thesis is an
action mapping which ensures that the kinematic joint limits defined by the equations
(1.3) - (1.6) are satisfied. While the method is comprehensively described in chapter 3, a
brief summary is given below. An action at is used to define a robot trajectory from time
step t to time step t+ 1. At each time step t and for every joint, a continuous range of ac-
celeration setpoints [a t+1min

, a t+1max ] is computed. Knowing this range, a valid trajectory
from t to t + 1 can be generated by linearly connecting the current joint acceleration at
with any acceleration at+1 ∈ [a t+1min

, a t+1max ]. Based on the action at, the desired accel-
eration setpoint at+1 ∈ [a t+1min

, a t+1max ] is specified. The proposed action mapping not
only ensures that the kinematic constraints are fulfilled within the time interval from t to
t+1, but also that at least one feasible trajectory exists for each future point in time. This
concept is sometimes paraphrased as reasoning over an infinite time horizon [40]. The
effectiveness of the technique is evaluated by learning policies for various robot tasks.
For instance, reference trajectories are adjusted so that a ball is balanced on a plate. By
conducting a sim-to-real transfer, it is shown that the method can be used to generate
well-performing trajectories for real industrial robots. In order to consider further safety
constraints, the action mapping can be combined with one of the contributions outlined in
the following.
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1.2.2. Safety assessment using simulated braking trajectories

Motion safety can be ensured if at least one feasible way to continue a robot trajectory
is known at all times. Provided that there are no moving obstacles in the environment
and that the base of a robot is stable, collisions can no longer occur if all robot joints are
brought to a standstill. With these considerations in mind, this thesis presents a method
to prevent safety violations during and after the training of a policy by ensuring that a
robot can be safely stopped at all times. A comprehensive explanation of the technique is
provided in chapter 4. In short, a trajectory from t to t+1 is computed at time step t using
an action generated by a neural network. Before executing the corresponding movement,
a subsequent braking trajectory is computed. The resulting trajectory from t to the time
at which the robot reaches a standstill is checked for safety violations using a physics
simulator. If no safety violation is detected, the movement resulting from the selected
action is carried out. Otherwise, a braking trajectory is executed to bridge the time from
t to t + 1. As the braking trajectory has already been checked for safety violations at
an earlier time step, it can be executed safely. In this thesis, the method is used to avoid
collisions and violations of torque limits. As the action mapping from contribution A is
utilized, the kinematic constraints given by the equations (1.3) - (1.6) are also taken into
account. By learning a reaching task, the approach is evaluated for environments with up
to three industrial robots and for a humanoid robot with a stable base. The computing
power required for the background simulations depends on the duration of the braking
trajectories. Since the time needed to stop a robot is usually short, the computational
effort remains moderate. As demonstrated by a successful sim-to-real transfer with an
industrial robot, the required background simulations can be performed in real time. If
moving obstacles are present, the method cannot be applied since collisions may occur
even if the robot is stopped. However, as outlined below, this limitation can be addressed
by utilizing learned backup behaviors instead of braking trajectories.

1.2.3. Risk estimation based on learned backup behaviors

The basic idea of this contribution is related to the safety assessment based on simulated
braking trajectories described above. However, instead of relying on braking trajecto-
ries, optimized backup trajectories are used. The backup trajectories are computed by
a second RL policy trained to generate movements that do not lead to safety violations.
This way, it is possible to consider additional safety constraints. Specifically, the tech-
nique is employed to avoid collisions in environments with moving obstacles. Details on
the implementation are given in chapter 5. Compared to braking trajectories, the backup
trajectories used to avoid moving obstacles are significantly longer. As a result, more
computational power is required to conduct background simulations in a physics simu-
lator. In addition, moving obstacles may behave stochastically. For that reason, a single
background simulation is no longer sufficient to correctly assess the risk of a particular
action. In order to reduce the computational effort, a neural network is employed as a
data-based risk estimator. Based on the proposed technique, safety violations can be ef-
fectively reduced right from the start of a training process. However, due to the prediction
error of the risk estimator and the stochastic behavior of the environment, strict constraint
satisfaction can no longer be guaranteed. In this thesis, the technique is evaluated for a
reaching task and for a basketball task. By performing a successful sim-to-real transfer, it
is shown that the required calculations can be carried out in real time.
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Figure 1.8.: The structure of this thesis.

1.3. Structure of the thesis

In the following, the structure of this thesis is outlined by briefly summarizing the content
of each subsequent chapter. A graphical overview is provided in Figure 1.8.

Chapter 2 provides an in-depth analysis of the current state of the art and outlines pre-
vious studies related to the topic of this thesis. First, the chapter discusses various ap-
proaches for generating robot trajectories in real time. Subsequently, the focus is placed
on model-free reinforcement learning, which serves as the foundation for this thesis. The
second part of the chapter categorizes and compares techniques related to the field of safe
reinforcement learning. In the analysis, particular attention is given to methods suitable
for avoiding safety violations during the entire training process of a policy.

Chapter 3 delves into the problem of learning robot trajectories under consideration of
kinematic joint constraints. Specifically, a mapping technique is presented which ensures
that all possible actions of a policy are translated into constraint-satisfying trajectories.
By utilizing the presented action mapping, fast and dynamic robot movements can be
learned without overloading the robot joints. Therefore, the action mapping is used for all
subsequent learning experiments in this thesis.

Chapter 4 introduces the concept of performing background simulations to maintain
safety during the training process of a task policy. The purpose of the background simu-
lations is to identify potentially unsafe actions, which are adjusted using a backup policy.
In order to avoid collisions and torque limit violations in environments without moving
obstacles, a backup policy based on braking trajectories is proposed. Subsequently, the
concept is extended to environments with moving obstacles. For that purpose, a backup
policy trained to actively avoid collisions is employed.
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Chapter 5 introduces data-based risk estimators as a measure to reduce the computa-
tional effort associated with background simulations. First, the backup policies from the
preceding chapter are employed to produce training data. Subsequently, neural networks
are trained to detect risky actions using supervised learning. Benefiting from the low re-
source requirements of the neural networks, it is shown that safely executable trajectories
can be generated in real time.

Chapter 6 discusses the contributions of the thesis, highlighting possibilities for improve-
ment, potential application areas, and remaining challenges.

Chapter 7 concludes the thesis by emphasizing and summarizing the most important
results of the work.
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This chapter provides an overview of the state of the art by outlining various approaches
and concepts that are related to the topic of this thesis. The first part of this chapter focuses
on the aspect of generating robot trajectories during motion execution. The second part
addresses the specific problem of ensuring safety when using model-free reinforcement
learning.

2.1. Online generation of robot trajectories

Robot trajectories can either be computed offline or online. When calculating trajectories
offline, the entire movement of a robot is known before execution. In offline scenarios,
the calculation time for a trajectory can exceed the duration of the movement. In addition,
the trajectory can be checked for safety violations in advance. An example for offline
trajectory optimization based on reinforcement learning is [81]. This thesis focuses on
the problem of generating robot trajectories in real time. Compared to offline techniques,
online trajectory generation makes it possible to consider sensory feedback and to adjust
the objective of the robot during motion execution. For example, if a robot balances a
ball, it is possible to react to the current position of the ball. Similarly, when the goal of
a robot is to follow a reference path, the reference path can be adjusted during motion
execution. As the resulting movements are not fully known in advance, avoiding safety
violations is challenging. In order to execute motions on a real robot, another aspect that
must be taken into account is the real-time capability of the required calculations.

In the following, different techniques to compute robot trajectories during motion
execution are outlined. First, the computation of time-optimal trajectories to a kinematic
target state is discussed. Subsequently, methods from the fields of model-based control,
learning from demonstration, and reinforcement learning are presented.

2.1.1. Time-optimal trajectories to a kinematic target state

A common problem in robotics is to compute a time-optimal trajectory from an initial
kinematic state to a target state considering velocity, acceleration, and jerk constraints as
defined by (1.4) - (1.6). For this specific problem, trajectories can be efficiently computed
in real time [102, 55, 24, 87]. Two exemplary trajectories for a single robot joint are
shown in Figure 2.1. In the figure, the kinematic states are denoted as tuples (p, v, a),
where p, v, and a stand for position, velocity, and acceleration, respectively.

To generate time-optimal trajectories, existing software libraries can be used. For ex-
ample, the Reflexxes motion library [86] can be used to compute trajectories to a target
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(a) Target state (pT, vT, aT) (b) Target state (pT, vT, aT − ϵ)

Figure 2.1.: Two trajectories starting from the same initial kinematic state (pI, vI, aI)
computed using Ruckig [18]. Adjusting the target acceleration aT by a small
value ϵ can have a strong influence on the generated trajectory.

state specified by a target position and a target velocity. The library also provides differ-
ent techniques to synchronize trajectories for multiple robot joints. A more recent library
called Ruckig [18] additionally supports target accelerations as part of the target state.
While the libraries simplify the calculation of trajectories to a target state, the problem of
finding suitable target states for a desired task is left to the user. For point-to-point move-
ments and for braking trajectories, the specification of a target state is straightforward
as the target velocity and the target acceleration can be set to zero. Potential collisions,
however, are not taken into account by the libraries. For one-dimensional paths, it is pos-
sible to compute intermediate target states that lead to a fast traversal of the path [79]. A
potential approach to find suitable target states for more complex tasks is reinforcement
learning. However, when learning target states, three variables need to be specified per
robot joint. Moreover, small variations of the target state can lead to significantly differ-
ent trajectories. This effect is demonstrated in Figure 2.1 by subtracting a small value
ϵ > 0 from the target acceleration aT. Similar to the aforementioned motion libraries,
the approach presented in this thesis ensures that the resulting trajectories do not violate
kinematic joint limits. However, only one variable per robot joint is required to specify
the next time interval of a trajectory.

2.1.2. Model-based control

Robot movements are typically carried out using a two-stage approach. First, setpoints
for a lower-level controller are computed considering the objectives of a desired robot
task. Subsequently, the torque generated by each motor of the robot is adjusted so that
the desired setpoints are tracked. Techniques from model-based control can be used for
both purposes. In the first part of this section, common lower-level control strategies
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are introduced. The second part focuses on a technique called optimal control, which
can be used to generate robot trajectories that are optimal with respect to a predefined
cost function.

2.1.2.1. Control strategies for lower-level motion control

In the field of robotics, several lower-level control strategies for robotic manipulators are
well-established. The control concepts outlined below are described in the textbooks [101]
and [151], to which the reader is referred for further details. From a mathematical point
of view, motion control relies on the dynamic model of robotic manipulators:

τ = M(φ) φ̈+ C(φ, φ̇) φ̇+ τg(φ) + τext (2.1)

In this equation, M(φ) is a positive-definite mass matrix, C(φ, φ̇) φ̇ is used to model cen-
trifugal and Coriolis forces, τg(φ) represents the impact of gravity and τext models the
influence of external forces. The vector τ stands for the torque produced by the motors
of the robot, while the vector φ represents the joint positions. As can be seen from equa-
tion (2.1), the joint positions φ are influenced by the motor torques τ . Consequently, it is
possible to control the motions of a robot by specifying torque setpoints τd for a torque
controller. Note that the subscript d is used to distinguish setpoints from actual values.
Many robots utilize electric motors to produce torque. In this case, a torque setpoint cor-
responds to a desired motor current. The motor current can be controlled by adjusting the
voltage applied to the motor, which is generated by a power electronics unit.

In the context of end-to-end learning, learning techniques have been successfully em-
ployed to generate torque setpoints for a desired robot task. End-to-end learning aims at
combining perception and control by learning a direct mapping from high-dimensional
input signals to low-level control outputs. Successful end-to-end learning from pixels to
torques has been demonstrated using model-based RL [177, 92] and model-free RL [97].
However, learning torque setpoints can have a negative effect on the task performance
when transferring a policy trained in simulation to a real robot. Although the dynamics
of robotic manipulators are well-understood, accurately simulating the effects of motor
torques is difficult. For example, the mass matrix M is often approximated since exact
inertia data is not accessible. In addition, common physics simulators use simplifications,
e.g., when modeling friction, which introduce further discrepancies.

The problems mentioned above can be mitigated by making use of a joint trajectory
controller. Instead of learning torques, trajectory setpoints (pd, vd, ad) = (φd, φ̇d, φ̈d) are
generated. Based on these setpoints, a model-based trajectory controller computes torque
setpoints τd that reduce the tracking error with respect to the desired trajectory. A straight-
forward approach for this task is the use of a proportional–integral–derivative controller
(PID controller) [151]:

τd = KP (φd − φ) + KI

∫
(φd − φ) dt+KD (φ̇d − φ̇) (2.2)

KP, KI and KD are positive-definite gain matrices that can be tuned to adjust the behavior
of the controller. While PID controllers are easy to implement, a better tracking perfor-
mance can by achieved by using a computed-torque-like controller [126, 136, 151]. In
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the following equation of the controller, the circumflexˆ indicates that the corresponding
parameters are estimated rather than precisely known:

τd = M̂(φ)

(
φ̈d +KP (φd − φ) + KI

∫
(φd − φ) dt+KD (φ̇d − φ̇)

)
+ Ĉ(φ, φ̇) φ̇+ τ̂g(φ) (2.3)

In addition to learning trajectory setpoints in joint space, it is also possible to specify
robot motions in Cartesian space [90, 72]. For example, the framework of operational
space control (OSC) [100, 75] can be used to control a robot with respect to the Cartesian
position and orientation of its end-effector. While some robotic tasks can be described
more intuitively in Cartesian space, learning trajectories in joint space provides the benefit
that neither kinematic redundancies nor singularities need to be explicitly addressed.

2.1.2.2. Trajectory generation based on optimal control

Given a model of a dynamic system, the goal of optimal control is to find a trajectory
that is optimal with respect to a predefined cost function J . Historically, major scientific
contributions to the field of optimal control have been made by Richard Bellmann [15]
and Lev Pontryagin [149]. In the following, the problem of optimal control is described
mathematically. The notation is adopted from a survey paper by Mayne et al. [110]. In
optimal control, a state xt ∈ X defines the current state of a dynamic system, while a
control input ut ∈ U can be used to influence the future development of the system. The
impact of the control variable on the state is described by a model f . For the time-discrete
case, this relation can be expressed as follows:

xt+1 = f(xt, ut) (2.4)

A trajectory is a sequence of states {xt, xt+1, . . . , xN} resulting from a control sequence
{ut, ut+1, . . . , uN−1}. Given an initial state xt, the cost function J can be used to compute
a cost value for each control sequence {ut, ut+1, . . . , uN−1}. The goal of the optimal
control problem is to find a control sequence that minimizes the resulting cost.

A special case of optimal control, where the system dynamics are linear and the cost
function has a quadratic form, is called linear-quadratic optimal control [172]. In this
case, an optimal control law can be derived analytically based on Riccati equations [70].
The resulting controller is called linear–quadratic regulator (LQR). For linear-quadratic
problems, it is possible to compute trajectories that are optimal with respect to an infi-
nite time horizon. In the case of more general dynamics and cost functions, iterative ap-
proaches can be employed to find approximate solutions for finite time horizons [94, 170].

Since the system dynamics are known, optimal trajectories can be computed in an
open loop without using feedback. In practice, however, the system behavior may devi-
ate from the model due to modeling errors and external disturbances. The control loop
can be closed by measuring the current state of the system and computing a consecutive
optimal trajectory with a finite time horizon at each discrete time step. This approach
is known as model predictive control (MPC) [110]. Using MPC, it is possible to com-
pute robot movements during motion execution. Typical algorithms to approximate op-
timal trajectories for non-linear dynamics include iterative LQR (iLQR) [94], iterative
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Figure 2.2.: Model-based approaches and model-free approaches have distinct strengths
and weaknesses. Combined approaches attempt to narrow the gap between
both concepts.

linear–quadratic–Gaussian control (iLQG) [170] and differential dynamic programming
(DDP) [109]. It is also possible to utilize general-purpose solvers for non-linear optimiza-
tion problems such as sequential quadratic programming (SQP) [182, 48] or interior point
methods [41, 175]. In this case, it is straightforward to additionally consider equality and
inequality constraints. However, general-purpose solvers tend to be less computationally
efficient, which is unfavorable since MPC must be performed in real time. When using
DDP, extensions are available to ensure that the control input u stays within predefined
limits [165, 107]. Alternatively, lower-level controllers can be used to encourage con-
straint satisfaction [73]. One approach is to utilize cascades of quadratic programs (QPs),
a special class of optimization problems for which efficient solvers are available [33, 59].
Since this approach does not ensure the existence of a solution, different priorities are
assigned to the individual constraints. In [59], a high priority is given to torque con-
straints and kinematic joint limits, while lower priorities are assigned to objectives like
motion tracking or balancing. If no solution can be found for the complete control prob-
lem, constraints with a low priority are disregarded. A similar approach is taken by the
stack-of-tasks framework [105], which has been successfully used for various applica-
tions, including collision avoidance with a humanoid robot [158].

When comparing optimal control with the problem formulation of model-free RL pre-
sented in section 1.1.1, several similarities can be identified. While the notation differs,
both approaches utilize the concept of states. Similarly, the control input u in optimal
control corresponds to actions a in model-free RL. In addition, both methods aim to find
a control policy that is optimal with respect to a cost function or a reward function. How-
ever, as shown in Figure 2.2, there are also fundamental differences between model-based
and model-free approaches. Most importantly, model-free approaches do not require to
specify a model f . In addition, the reward function R(s, a) in model-free RL does not
need to be differentiable with respect to the state s or action a. Consequently, model-free
approaches offer a high degree of flexibility with regard to the target scenario. Model-
based approaches, on the other hand, are less flexible but more transparent in terms of the
decision-making process. In particular, it is possible to formally verify safety properties,
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e.g., based on Hamilton-Jacobi reachability analysis [14] or control barrier functions [6].
Combined approaches attempt to address the shortcomings of purely model-based or
purely model-free approaches. One line of research focuses on increasing the flexibil-
ity of model-based approaches by incorporating techniques from machine learning [62].
If the system dynamics are not fully known in advance, a model consisting of a known
and an unknown part can be used to realize MPC. The unknown part can be represented
by a Gaussian process that is updated based on previously collected data [120, 61]. It is
also possible to learn the system dynamics using neural networks [34, 133]. When uti-
lizing MPC, the computational effort depends on the prediction horizon of the trajectory
computed at each time step [191]. By learning a value function that estimates a final cost,
it is possible to increase the prediction horizon of MPC while keeping the computational
effort limited [191, 64]. Another line of research aims to enhance the safety of model-free
approaches by incorporating model knowledge. A detailed review of previous studies in
the field of safe reinforcement learning is provided in section 2.2.

2.1.3. Learning from demonstration

Learning from demonstration (LfD) is a machine learning technique that can be used to
learn robot trajectories based on demonstrations from a human expert. Suitable demon-
strations can be recorded using a motion capture system or a teleoperation system. Al-
ternatively, it is possible to move the links of a robot by hand, a technique known as
kinesthetic teaching [58]. When using demonstrations, it is not necessary to specify a
model of the system dynamics or a task-specific optimization function.

In the literature, different mathematical representations have been employed to recon-
struct robot trajectories from human demonstrations. A via-point representation is used
in [112] to learn a tennis serve and in [176] to regenerate handwritten characters. Based on
hidden Markov models (HMMs), gestures are reproduced in [26], while dual-arm manip-
ulation tasks for humanoid robots are addressed in [10]. Dynamical movement primitives
(DMPs) [65, 66] are non-linear attractor systems that can be used to learn control policies
for discrete and periodic movements. In [65], DMPs are employed to learn a tennis swing
and a periodic drumming task based on human demonstrations. The spatial and temporal
invariance of DMPs makes it possible to adjust the goal position of the tennis swing or
the frequency of the drumming movement. Based on a reaching task and a ball throwing
task, the generalization abilities of DMPs are further investigated in [173]. Obstacles can
be avoided by adding an additional perturbation term to the mathematical formulation of
DMPs [123, 124], e.g., based on artificial potential fields [74]. In [124], skills like grasp-
ing, placing, and releasing are learned using a slightly modified DMP formulation. The
skills can be parameterized with respect to their start position, end position, and duration.
By composing multiple skills sequentially, more complex tasks can be performed. Further
motion representations include probabilistic movement primitives (ProMPs) [121, 122] to
model trajectory distributions based on stochastic movements and via-points movement
primitives (VMPs) [193, 192] to explicitly consider intermediate waypoints. By combin-
ing neural networks with movement primitives, it is possible to utilize the representational
power of neural networks while preserving the theoretical properties of movement primi-
tives. Given an image of a digit as input, Gams et al. [42] train a neural network to output
a DMP for writing the digit with a robot. In [192], a mixture density network [20] is used
to parameterize VMPs for a ball throwing task shown in Figure 2.3. Instead of utilizing
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Figure 2.3.: Based on human demonstrations, a ball throwing task with a humanoid robot
is learned in [192]. A mixture density network is used to parameterize suit-
able movement primitives. The network can encode multiple ways of com-
pleting the task, which are referred to as modes. Two exemplary modes are
shown in the figure, which is taken from [192].

movement primitives, it is also possible to train a policy that directly maps states to ac-
tions [188, 39, 38]. This approach is known as behavioral cloning. Appropriate actions
can be recorded using a teleoperation system [39, 38] or virtual reality devices [188].

Compared to model-free RL, learning from demonstration offers the advantage that
no reward function needs to be specified. Depending on the desired task, however, provid-
ing suitable demonstrations can be challenging. When recording human demonstrations
with a motion capturing system, a retargeting process is required to map the limbs of a
human to the links of a robot. Due to differences in the kinematic structure, a movement
that works well for a human is not necessarily well suited for a robot. In the context of be-
havioral cloning, policies trained based on expert demonstrations tend to be poor at recov-
ering from errors [139, 140]. Once the policy makes a mistake, the robot might encounter
an area of the state space that was not part of the training data. As a result, errors tend to
compound rather than being corrected by the policy. The aforementioned problems can be
avoided by making use of model-free RL. In this case, human demonstrations can be used
to find a suitable reward function via inverse reinforcement learning [9]. Alternatively,
the training process of model-free RL can be accelerated, e.g., by priming the policy π or
a state-value function V based on data collected from a human expert [145, 60].

2.1.4. Reinforcement learning

Techniques from the field of reinforcement learning (RL) can be divided into two cat-
egories: Model-based RL and model-free RL. In the first part of this section, methods
related to model-based RL are briefly outlined. The second part takes a detailed look at
model-free RL, which serves as the basis for the methods proposed in this thesis.
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2.1.4.1. Model-based reinforcement learning

The term model-based RL refers to methods that utilize data from the environment to
learn a model of the system dynamics. A comprehensive survey on model-based RL is
provided by Moerland et al. [115]. An exemplary model-based algorithm for learning
robot movements is called guided policy search (GPS) [91, 92]. The algorithm assumes
that the system dynamics are locally linear. Based on previously collected trajectories,
a model of the dynamics is fitted in an iterative process. Using the model, trajectories
are generated by applying methods from optimal control. In a subsequent step, a neural
network is trained to reproduce these trajectories. Compared to directly using optimal
control, the neural network introduces the ability to generalize to new situations. In addi-
tion, the network can be trained to reproduce the trajectories while having limited access
to sensory feedback. According to Moerland et al. [115], methods that fit a model first are
typically more data-efficient than model-free techniques but tend to achieve a lower final
performance.

The term model-based RL is sometimes also used to refer to methods that utilize
model knowledge to learn a policy or value function. For example, AlphaZero [155],
a technique to learn board games like Go or chess, is considered as a model-based RL
algorithm. While the rules of these games are known, reinforcement learning is used to
guide a Monte Carlo tree search (MCTS). In the context of safe reinforcement learning,
model knowledge can be used to increase the level of safety during the learning process.
Further details on this line of research are provided in section 2.2.

2.1.4.2. Model-free reinforcement learning

The basic idea of model-free RL is to learn a policy by trial and error without learning a
model first. To this end, the learning problem is typically formalized as a Markov decision
process (S,A, P, R, γ), a mathematical framework introduced in section 1.1.1. A policy π
with π(a|s) = Pr {at = a | st = s} can either be learned directly or derived from a value
function. Based on a textbook by Sutton and Barto [160], both concepts are introduced
below. In the context of model-free RL, the state-value function V (s) and the action-value
function Q(s, a) are important expressions. The state-value function Vπ(s) describes the
expected return G when starting in state s and following a policy π:

Vπ(s) = Eπ [Gt | st = s] = Eπ

[
∞∑
k=0

γk ·R(st+k, at+k)

∣∣∣∣ st = s

]
(2.5)

The action-value function Qπ(s, a) describes the expected return G when starting in
state s, selecting action a and following policy π afterwards:

Qπ(s, a) = Eπ [Gt | st = s, at = a] = Eπ

[
∞∑
k=0

γk ·R(st+k, at+k)

∣∣∣∣ st = s, at = a

]
(2.6)

It is possible to express Qπ(s, a) based on Vπ(s):

Qπ(s, a) = E [R(st, at) + γ · Vπ(st+1) | st = s, at = a] (2.7)
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Similarly, Vπ(s) can be derived from Qπ(s, a):

Vπ(s) =
∑
a∈A

π(a|s) ·Qπ(s, a) (2.8)

An optimal policy π∗ leads to the highest possible expected return for all s ∈ S . When
following an optimal policy, the resulting optimal state-value function is denoted as V∗(s).
Correspondingly, the optimal action-value function is denoted as Q∗(s, a). While model-
free RL algorithms attempt to find an optimal policy, strict optimally is rarely achieved
under real conditions [160]. In practice, finding a well-performing policy that approx-
imates π∗ is usually regarded as sufficient. There are various factors that affect which
RL algorithm is suitable for a particular application. An important aspect to consider is
whether the action space A is discrete or continuous. When learning Atari games [113],
the number of possible actions is limited so that a discrete action space can be used. In
contrast, the number of feasible robot movements is typically unlimited, making a con-
tinuous action space a natural choice. Nevertheless, it is also possible to discretize the
range of feasible actions. For instance, in-hand manipulation with a robotic hand can be
learned using discrete actions [8]. In the context of RL algorithms, another distinction
is made between on-policy methods and off-policy methods. On-policy methods use data
retrieved under the current policy for policy updates. Off-policy methods, on the other
hand, can reuse previously collected data stored in a replay buffer. While the performance
of on-policy algorithms tends to be more stable, off-policy methods are typically more
sample-efficient [52]. The techniques presented in this thesis can be used in conjunction
with any RL algorithm that supports continuous state spaces and continuous action spaces.

Off-policy algorithms Off-policy algorithms typically derive a policy by approxi-
mating the optimal action-value function Q∗(s, a). This idea dates back to an algorithm
called Q-learning introduced by Watkins [179] in 1989. For the specific case of the opti-
mal action-value function Q∗(s, a), equation (2.7) can be rewritten as:

Q∗(s, a) = E [R(st, at) + γ · V∗(st+1) | st = s, at = a] (2.9)

According to Bellman [15], an optimal policy should select an optimal action in each
state. Consequently, the optimal state-value function V∗(s) can be expressed as follows:

V∗(s) = max
a∈A

Q∗(s, a) (2.10)

Inserting equation (2.10) into (2.9) leads to the so-called Bellman equation for Q∗(s, a):

Q∗(s, a) = E
[
R(st, at) + γ · max

at+1∈A
Q∗(st+1, at+1)

∣∣∣∣ st = s, at = a

]
(2.11)

The Bellman equation can be used to approximate Q∗(s, a) in an iterative way [179, 178]:

Qi(st, at) = (1− α) ·Qi−1(st, at) + α ·
[
R(st, at) + γ · max

at+1∈A
Qi−1(st+1, at+1)

]
,

(2.12)

where α is called learning rate and i indicates the current iteration. As one of the break-
throughs in deep reinforcement learning (DRL), Mnih et al. [113, 114] proposed an algo-
rithm called deep Q-network (DQN) that utilizes neural networks to approximate the op-
timal action-value function Q∗(s, a). Based on the Bellman equation (2.11), it is possible
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Figure 2.4.: The off-policy algorithm DQN can be applied to learning problems with a
discrete action space such as A = {A1, A2, A3, A4}. The algorithm utilizes
an ϵ-greedy strategy to derive a policy based on the output of a neural network
trained to approximate the optimal action-value function Q∗(s, a).

to define a loss function Lθ that is differentiable with respect to the trainable parameters θ
of a neural network Qθ [114]:

Lθ = E

[(
R(st, at) + γ · max

at+1∈A
QT (st+1, at+1)−Qθ(st, at)

)2
]

(2.13)

In this equation, QT represents a second neural network, called target network, which
is used to improve the stability of DQN. A loss function like (2.13) is also known as
mean-squared Bellman error (MSBE). The expected value E is approximated by ran-
domly sampling data from a replay buffer, which stores previously collected experiences
(st, at, R(st, at), st+1). Using gradient descent, the network parameters θ of Qθ are up-
dated in an iterative manner so that the loss function (2.13) is minimized. The parameters
of the target network are not updated during the gradient descent but copied from Qθ

at regular intervals. DQN is an algorithm for discrete action spaces. As shown in Fig-
ure 2.4, the neural network Qθ receives a state st as input and outputs an approximated
action-value for each discrete action. A policy is derived from the action-values using
an ϵ-greedy strategy. More precisely, a random action is selected with a probability of
ϵ ∈ [0, 1], while the action with the highest action-value is chosen otherwise. As a re-
sult, the value selected for ϵ controls the amount of exploration. For continuous action
spaces, the network architecture from Figure 2.4 cannot be used as the number of actions
is unlimited. Instead, a neural network Qθ can be trained to output an approximate value
for Q∗(s, a) given a state s and an action a as input. In this case, however, finding the
action with the highest action-value is no longer straightforward. The algorithm deep de-
terministic policy gradient (DDPG) [153, 97] addresses this issue by introducing an actor
network, which maps a state s to a desired action a. The actor network is trained to output
actions that maximize the action-values Q(s, a) provided by the network Qθ. While the
mapping learned by the actor network is deterministic, the environment is explored by
adding noise to the generated actions. Approaches that learn an actor policy and a value
function approximation are called actor-critic methods [85]. In contrast to DDPG, the
algorithm soft actor-critic (SAC) [52, 53] directly learns a stochastic actor policy. The
exploration is controlled based on an objective function that not only considers the ex-
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pected sum of future rewards but also the entropy H of the policy, which is a measure for
its stochasticity.

On-policy algorithms In 1992, Williams [181] proposed an on-policy algorithm
called REINFORCE that directly optimizes a policy without learning a value function
first. The core idea of the algorithm is to estimate a policy gradient using data retrieved
under the current policy. When representing the policy π by a neural network, the pol-
icy gradient provides an update direction for the network parameters θ that increases the
expected return of the policy. In the literature, different ways to estimate the policy gra-
dient g have been proposed [181, 85, 161]. According to Schulman et al. [147], there is
usually a trade-off between the bias and the variance of policy gradient estimators. The
higher the variance, the more data is required to estimate the policy gradient. Bias, on the
other hand, leads to incorrect gradient estimates even if a large amount of data is provided.
In order to reduce the variance of policy gradient estimators, modern on-policy algorithms
typically approximate the advantage function Aπ(s, a) [161, 147]:

Aπ(s, a) = Qπ(s, a)− Vπ(s) (2.14)

The advantage function Aπ(s, a) indicates whether taking action a in state s performs
better or worse than following policy π. To estimate the advantage function, a neural
network is usually trained to approximate the state-value function Vπ(s). Given the re-
sulting approximation V̂ (s), the following relation can be used to estimate the advantage
of an action at [147]:

Â(st, at) = R(st, at) + γ · V̂ (st+1)− V̂ (st) (2.15)

Based on Â(st, at), it is possible to estimate the policy gradient as follows [148]:

ĝ = E
[
∇θ log πθ(at|st)Â(st, at)

]
, (2.16)

where ∇θ indicates the computation of a gradient with respect to θ. The expected value E
can be approximated using data sampled under the current policy πθ, which is parameter-
ized by an actor network with network weights θ. Modern RL algorithms like trust region
policy optimization (TRPO) [146] and proximal policy optimization (PPO) [148] do not
directly make use of equation (2.16) but introduce a surrogate objective function Lθ:

Lθ = E
[

πθ(at|st)
πθold(at|st)

Â(st, at)

]
(2.17)

In equation (2.17), πθold(at|st) represents the policy before updating the network parame-
ters θ. To estimate the policy gradient g, the surrogate objective Lθ is differentiated with
respect to θ. In practice, the gradient computation is typically carried out by a machine
learning framework like TensorFlow [1] or PyTorch [125] using automatic differentiation.
To ensure a stable and reliable learning process, each update of the network parameters
should only change the policy to a limited extent [146, 148]. The difference between
two probability distributions can be quantified based on their Kullback–Leibler diver-
gence (KL divergence) [88]. In order to avoid large policy updates, TRPO maximizes
the surrogate objective Lθ subject to a constraint on the approximated KL divergence
between πθ and πθold [146]. Contrary to that, PPO utilizes an unconstrained surrogate
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Figure 2.5.: Several hyperparameters influence the learning performance of RL algo-
rithms like PPO. The figure shows the average reward per decision step dur-
ing the training of a reaching task with an industrial robot when selecting
different values for the batch size (a) and the entropy bonus (b).

objective. However, large updates are discouraged by clipping the fraction πθ(at|st)
πθold

(at|st) in
equation (2.17) or by adding an adaptive penalty term based on the KL divergence [148].

In this thesis, the on-policy algorithm PPO is used because it offers a good com-
promise between data efficiency, stability, and computational complexity. As shown in
Figure 1.3, the policy is represented by an actor network. For every dimension of a con-
tinuous action space, the actor network outputs the parameters µ and σ2 of a Gaussian
distribution N (µ, σ2). The desired action is determined by sampling a value from each
distribution. During the training process, the actor network learns to control the amount of
exploration by outputting suitable variances σ2. Nevertheless, the learning performance
can sometimes be improved by encouraging a greater degree of exploration. This can be
achieved by adding a bonus term based on the entropy H of the policy to the surrogate
objective Lθ.

The performance of RL algorithms like PPO does not only depend on the selected
task and the collected training data but also on additional hyperparameters that specify
the details of the optimization procedure. While it is possible to automatically tune the
hyperparameters [16, 187], the computing power required for this process is often pro-
hibitively high. For that reason, the hyperparameters are usually selected by a human
expert based on practical experience. Figure 2.5 shows the resulting learning curves for
a reaching task when adjusting two exemplary hyperparameters. On the left side, the in-
fluence of the batch size on the learning performance is illustrated. The batch size is a
hyperparameter controlling the amount of training data collected for each policy update.
Selecting a larger batch size usually increases the final learning performance. However,
more training data is required until the learning performance converges. The right side of
the figure visualizes the impact of an entropy bonus added to the surrogate objective Lθ.
In this example, the additional exploration encouraged by a small entropy bonus helps
to improve the learning performance. A large bonus, on the other hand, has a negative
impact on the performance as the optimizer focuses on increasing the entropy rather than
the expected return of the policy.
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2.1. Online generation of robot trajectories

Policy representations A policy π specifies the strategy of an RL agent by deter-
mining the action a that should be taken in state s. For problems with a discrete state
space S, the policy can be represented by a simple table [160]. In case of continuous
state spaces, however, the number of feasible states is infinite and the policy is typically
represented by a function approximator with trainable parameters θ. When learning robot
movements, it is possible to derive a policy based on movement primitives trained via
reinforcement learning [130]. In recent years, however, neural networks have proven to
be particular powerful and versatile policy representations for motion generation. How
the neural network is used to derive a policy depends on the selected RL algorithm. In
case of DQN [114], a policy is derived based on an ϵ-greedy strategy using a neural
network trained to approximate the optimal action-value function Q∗(s, a). When using
DDPG [97], an actor network is trained to map a state to a specific action in a determin-
istic way. The actor network used for PPO [148] outputs the parameters of a probability
distribution from which the desired action is sampled. For the experiments conducted in
this thesis, fully connected feedforward networks are used. As can be seen in Figure 2.4,
the neurons of a fully connected network are arranged in several layers. The first layer,
highlighted in blue, is referred to as input layer, while the last layer, highlighted in red,
is known as output layer. Intermediate layers are called hidden layers. The term fully
connected network indicates that each neuron is connected to every neuron of the follow-
ing layer. The output signal of a neuron is determined by its input signals, the trainable
network parameters θ and a predefined non-linear activation function. Further details on
the mathematical foundations of neural networks can be found in a textbook by Good-
fellow et al. [50]. Depending on the size and the structure of the state space S , different
network architectures are suitable for representing the policy. When using images as in-
put data [114, 97, 135], it is common to utilize convolutional neural networks (CNNs)
rather than fully connected networks. Another important aspect to consider is whether
the Markov property is fulfilled. The Markov property implies that the behavior of the
environment does not depend on previous states s ∈ S [160]. To describe systems that
do not strictly satisfy the Markov property, the mathematical framework of partially ob-
servable Markov decision processes (POMDPs) [13, 116] can be utilized. Contrary to an
ordinary MDP, the state of a POMDP is not directly accessible to the agent. While the
agent receives an observation at each decision step, the optimal policy might depend on
previous observations. In the context of deep reinforcement learning, different strategies
are employed to cope with partial observability. One approach is to utilize a recurrent
neural network (RNN) as policy representation [143, 8, 152]. In contrast to feedforward
networks, RNNs operate with an internal memory, for example based on gated recurrent
units (GRUs) [29] or a long short-term memory (LSTM) [63]. The memory can be used to
integrate knowledge about previous observations into the output signal. As an alternative,
it is also possible to employ a memoryless feedforward network. In this case, partial ob-
servability can be taken into account by using an input signal that contains a fixed number
of previous observations [53, 72, 95].

Action representations for motion generation When learning robot trajectories,
it is important to specify how an action is mapped to a movement. If a continuous ac-
tion space is used, it is common to work with normalized actions. More precisely, each
dimension of an action usually has a value range from −1 to 1. To ensure that the out-
put signals of an actor network do not exceed this range, a squashing function like tanh
can be used. Alternatively, the gradients applied during a policy update can be adjusted
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Figure 2.6.: Two ways to map actions a to trajectory setpoints shown for a single joint.

if an output signal would otherwise fall outside the valid range [56]. The normalized
actions are typically used to calculate setpoints for a lower-level motion controller such
as those introduced in section 2.1.2.1. One approach is to directly specify torque set-
points without relying on an additional trajectory controller [97, 127]. During two deci-
sion steps, the requested torque is typically kept constant. In theory, directly controlling
motor torques offers a high flexibility with respect to the desired learning task. As an
additional advantage, the motion control does not depend on the implementation details
of a trajectory controller. However, torque setpoints are susceptible to environmental
disturbances that may be caused by external forces or a sim-to-real transfer. By com-
puting setpoints for a trajectory controller, the robustness against disturbances can be
increased. For example, it is possible to specify desired Cartesian positions and orienta-
tions of the end-effector [69, 90, 72, 119]. However, singular configurations, in which
a desired Cartesian movement cannot be executed, may occur [151]. Problems resulting
from singularities can be circumvented by learning motions in joint space [51, 67]. One
way is to compute joint position setpoints φd for a PID controller that are kept constant
during two decision steps [127]. However, as can be seen in Figure 2.6, the resulting
velocity setpoints φ̇d are not bounded. Consequently, the actual values cannot closely
follow the setpoints and the executed movement strongly depends on the parameters of
the PID controller. To obtain smoother movements, the position setpoints can be passed
through a low-pass filter [129, 95]. However, when using filters, the responsiveness of
the robot is reduced and the resulting setpoints may depend on previous actions. As
shown in Figure 2.6, the selected action can also be used to define constant velocity set-
points φ̇d. The corresponding position setpoints φd are calculated by integration. In this
case, the position setpoints φd are continuous, but the acceleration setpoints φ̈d are still
unbounded. By selecting a constant jerk setpoint ...

φ d between decision steps, it is possible
to additionally enforce continuous velocities φ̇d and continuous accelerations φ̈d. Based
on this idea, chapter 3 introduces an action representation that ensures compliance with
the kinematic joint limits (1.3) - (1.6).
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Data acquisition Training data for reinforcement learning can either be collected in
a simulation environment or obtained using real robots. Data collection with real robots
offers the advantage that the training environment typically corresponds to the actual op-
erating environment. Contrary to this, generating data in simulation usually requires a
sim-to-real transfer after training. However, collecting data in the real world is accompa-
nied by a number of challenges. A common issue is the time required to gather sufficient
training data. As an example, four month were needed to collect around 800 hours of
training data for a vision-based grasping task [69]. Using multiple robots to speed up the
training is possible, but involves high investment costs. Another issue is the initializa-
tion of the training environment. If a human is required to reset the environment after
each trial, the robots cannot be left unattended during the training phase. For some tasks,
it is possible to design the environment in such a way that little human intervention is
needed [51, 93, 69]. Another approach is to learn how to automatically reset the envi-
ronment during the training phase [35]. However, for tasks such as welding or grinding,
where objects are permanently modified, efficient real-world data acquisition is still an
open research problem. Lastly, exploring the environment with real robots raises safety is-
sues, especially at the beginning of the training phase where an RL agent typically behaves
randomly. The problems mentioned above can be mitigated by collecting data in a sim-
ulation environment. Popular physics simulators for reinforcement learning in robotics
include PyBullet [30], MuJoCo [171], and Isaac Gym [103]. While generating sufficient
data is usually a computational intensive task, the time required for a training process can
be significantly reduced using parallel processing and cloud computing. In addition, no
human intervention is required during the data collection and safety violations do not lead
to physical damage. However, when transferring networks trained in simulation to the
real world, the limited accuracy of the physics simulation must be taken into account.

Sim-to-real transfer As collecting training data in the real world is challenging, neu-
ral networks are often trained based on data generated by a physics simulator. However, it
is usually difficult to accurately reproduce the operating environment of a robot. Modeling
errors can be caused by incomplete knowledge of the environment, but also by mathemat-
ical approximations used to reduce the computational effort of the physics simulation.
As a consequence, controlling a real robot with a network that was trained in simulation
can have a negative impact on the task performance. In addition, a domain change might
increase the probability of safety violations. To mitigate the negative effects of a sim-to-
real transfer, different strategies have been proposed in the literature. One line of research
aims to improve the accuracy of the simulation, for instance by performing a system iden-
tification [72, 183] or by additionally modeling the latency of motor controllers [164]. As
an alternative, measures to increase the robustness of the policy can be implemented. For
example, disturbing forces can be applied to the robot during the training phase [134, 164].
The basic idea of dynamics randomization is to select random values for parameters
that are not exactly known during the training process [128, 27]. While dynamics
randomization is effective in increasing robustness, it can also lead to overly conservative
policies that do not achieve a good task performance [164, 184]. When using dynamics
randomization, it can be advantageous to represent the policy by a recurrent neural net-
work (RNN) as the internal memory can help to adjust the policy to the current operating
environment [8, 152]. To increase the robustness of neural networks that process images
as input data, the visual appearance of the environment can be randomized [169, 67, 8].
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Finally, it is also possible to improve the task performance after a sim-to-real transfer by
fine-tuning the policy using a small amount of real-world data [142, 68].

Limitations Although model-free reinforcement learning has proven to be a versatile
and powerful technique, there are still certain caveats that impact its practical applicabil-
ity. Usually, the data efficiency of model-free RL algorithms is relatively low. As a result,
collecting a sufficient amount of training data can be both time-consuming and costly. In
addition, the training results are sensitive to a broad range of hyperparameters. A sys-
tematic tuning of the hyperparameters is particularly difficult when using on-policy algo-
rithms since new training data must be recorded for each training run. Another issue is the
definition of a suitable reward function for a specific application. In practice, it can be dif-
ficult to define rewards that encourage the desired behavior without introducing loopholes
that can be exploited during the optimization process. Moreover, a task may involve sev-
eral competing objectives at the same time. For instance, a robot that is trained to follow a
reference path should be rewarded for moving quickly and for remaining close to the refer-
ence path. However, if the robot moves faster it becomes more difficult to stay close to the
reference path. Consequently, both objectives must be weighed against each other, which
usually requires a manual adjustment of weighting factors in the reward function. While
the aforementioned limitations apply to model-free RL in general, additional restrictions
arise in the context of learning robot trajectories. Most importantly, existing approaches
typically do not utilize the full kinematic potential of industrial robots. While learning
slow robot motions is an effective strategy to avoid severe safety incidents, robots in an
industrial environment are expected to operate in a highly time-efficient way. Common
action representations, however, are not well suited for producing fast movements as they
do not explicitly consider the kinematic capabilities of the robot joints. As a consequence,
the resulting controller setpoints may not be tracked accurately and the robot joints may
be exposed to excessive stress. Apart from joint limit violations, it is also important to
avoid collisions during and after the training phase. The latter is particularly challenging
when moving obstacles are involved, for instance in the context of human–robot collabo-
ration (HRC). An overview of existing methods for safe reinforcement learning and their
corresponding limitations can be found in section 2.2.

2.1.5. Summary

There are several approaches for generating robot trajectories in real time, each with its
own strengths and weaknesses. Time-optimal trajectories to a kinematic target state can be
computed using existing motion libraries. However, apart from simple cases like point-to-
point movements, finding suitable target states for a desired task is typically non-trivial.
In addition, the generated trajectories are not necessarily collision-free. If a differen-
tiable model of the system dynamics and a corresponding cost function are known, model
predictive control can be used to calculate optimized trajectories. While model-based ap-
proaches offer a high degree of transparency and interpretability, they lack the flexibility
of model-free learning techniques. In addition, the computing power required to achieve
real-time capability can be relatively high, especially if a large prediction horizon is se-
lected. Based on human demonstrations, it is possible to generate trajectories without re-
quiring a system model or a task-specific objective function. However, recording suitable
demonstrations can be challenging. In addition, compounding errors can prevent a policy
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trained on expert demonstrations from recovering after an incorrect decision. Model-free
reinforcement learning is a flexible machine learning technique that seeks to find an opti-
mized policy through trial and error. The environment is explored during a training phase,
in which the performance of each action is assessed by a scalar reward. While model-free
RL has been successfully applied to a wide range of tasks, ensuring a safe exploration
of the environment is still a challenging problem. When learning fast robot trajectories,
the exploration process can easily lead to joint limit violations or collisions. As a result,
special protective measures are required to utilize the flexibility of model-free RL without
risking damage to the robot and its surroundings.

2.2. Safe reinforcement learning

When using model-free RL, knowledge is acquired based on the principle of trial and
error. For practical applications, the exploration of the environment is often subject to
safety constraints. The specific research area of safe reinforcement learning investigates
methods to reduce the likelihood of safety violations. A survey paper on this topic is pro-
vided by Brunke et al. [25]. Techniques for enhancing safety can be roughly divided into
two categories: Practitioners tend to address safety issues in a task-specific way, typically
based on a careful design of the environment, the action space, and the reward function.
Contrary to this, theoretical approaches examine the problem from a more mathemati-
cal perspective, often based on the framework of constrained Markov decision processes
(CMDPs) [4]. Both approaches are explained in more detail below.

2.2.1. Practical approaches

Since safety issues are a common problem in reinforcement learning, practitioners have
developed a number of measures to address this area of concern. The level of safety can
be enhanced by lowering the risk of safety violations or by minimizing their effects. In
practice, safety considerations are often integrated into the design of the learning task and
the environment. An overview of different strategies is given below.

Design of the environment A crucial aspect in terms of safety is the environment of
the robot. The better the environment is known in advance, the easier it is to avoid safety
violations. In practice, the workspace of the robot is often restricted to a well-defined
area without obstacles. When learning movements with bipedal robots, it is common to
attach the robot to a support frame that prevents the robot from falling over if it loses
its balance [95, 32]. Another widely used approach is to carry out the training process
in a simulation environment, where safety violations do not cause damage. In this case,
however, special care must be taken to avoid safety problems after a sim-to-real transfer.
Depending on the design of the environment, it may also be possible to pre-train a policy
based on human demonstrations [145], thereby avoiding the random exploration at the
beginning of the training phase.

Design of the action space A careful design of the action space can also contribute
to increasing safety in reinforcement learning. Specifying controller setpoints in Carte-
sian space, for example, makes it relatively easy to assess and restrict the operating range
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of the robot. In some cases, it is possible to learn setpoints for a lower-level controller
that already offers safety features [72]. The mapping from actions to movements can
also be used to influence the smoothness and the maximum velocity of the resulting robot
motions. Smooth robot motions are important to adhere to kinematic joint constraints.
Slow movements, on the other hand, simplify safety checks and reduce the potential
impact of collisions.

Design of the reward function During the training phase, the RL algorithm at-
tempts to maximize the expected sum of future rewards. As a consequence, safety vi-
olations can be discouraged by assigning a low reward to actions that lead to undesired
behaviors. Similarly, it is possible to terminate an episode if a safety violation occurs so
that no further rewards can be received. While both of these strategies are effective in
reducing the likelihood of safety violations, they do not provide strict safety guarantees
and have no effect at the beginning of the training phase.

Task-specific safety heuristics It is also possible to implement task-specific heuris-
tics in order to increase the safety of the learning process. For example, Gu et al. [51] de-
fine a bounding sphere that should not be left by the end-effector of the robot. Under nor-
mal conditions, actions are mapped to joint velocities. However, if the end-effector would
leave the bounding sphere, the commanded action is adjusted so that the end-effector stays
within the sphere. While task-specific heuristics can be effective, they typically require
additional implementation effort.

2.2.2. Theoretical approaches

The following section introduces methods that address the problem of safe reinforcement
learning from a theoretical perspective. This is often done based on the mathematical
framework of CMDPs [4]. Compared to the definition of normal MDPs provided in sec-
tion 1.1.1, CMDPs additionally introduce a set of cost functions C. Similarly to the reward
function, a cost function Ci ∈ C with Ci: S×A×S → R assigns a cost to each state tran-
sition. A survey paper on policy optimization using CMDPs is provided by Liu et al. [99].
Following the terminology of this survey, cost functions can be used to specify cumula-
tive constraints or instantaneous constraints. A common class of cumulative constraints
enforces an upper bound ci on the expected sum of costs received over time:

Eπ

[
∞∑
k=0

γk · Ci(st+k, at+k, st+k+1)

∣∣∣∣ st = s, at = a

]
≤ ci (2.18)

An example for such a constraint is the energy consumption of a mobile robot, which must
not exceed the capacity of its battery [99]. Instantaneous constraints, on the other hand,
are also called state-wise constraints, as they must be fulfilled at each state transition:

Ci(st, at, st+1) ≤ ci (2.19)

A survey on the particular topic of state-wise constraints is provided by Zhao et al. [190].
While the safety constraints considered in this thesis can be regarded as instantaneous,
it is non-trivial to assign an appropriate cost to each state transition. Whether an action
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leads to a safety violation does not only depend on the current state, but also on the policy
followed afterwards. Moreover, the occurrence of safety violations can be probabilistic if
the environment behaves stochastically. As a result, the cost of a state transition can be
interpreted as the risk of causing a safety violation at a later point in time.

Figure 2.7 provides an overview of different theoretical approaches to address the
problem of safe reinforcement learning. The classification is loosely based on a taxon-
omy introduced by García and Fernández [44]. Existing methods typically adjust either
the optimization objective or the selected actions to reduce the probability of constraint
violations. Further details on both directions are given below.

2.2.2.1. Adjusting the optimization objective

The standard optimization objective of model-free RL is to maximize the expected sum of
discounted rewards received over time. Consequently, practitioners assign low rewards to
undesired actions or terminate an episode if a safety violation occurs. In the context of on-
policy algorithms, the optimization objective can be adjusted to avoid large policy updates
or to encourage a greater amount of exploration. Similarly, it is possible to discourage
unsafe behaviors by adjusting the optimization objective of the RL algorithm. In the
following, different ways to modify the optimization objective are outlined. A common
disadvantage of these methods is that they are not effective in preventing safety violations
at the beginning of the training phase.

Learning a pessimistic policy Since common RL algorithms aim to maximize the
expected return, they implicitly search for a policy that is optimized with respect to the
average behavior of a stochastic environment. However, in order to reduce the likelihood
of safety violations, it can be beneficial to look at future developments from a pessimistic
perspective. As an example, consider a robot that should move to a certain position. It
is assumed that there is a fast way that occasionally leads to collisions and a slow way
that is always collision-free. On average, selecting the fast way leads to a higher return.
However, a pessimistic policy might choose the slow way in order to avoid a low return
in the rare event of a collision. To account for such rare but fatal events, Heger [57]
proposed Q̂-learning, a modified version of Q-learning [179] that optimizes a policy with
respect to the worst-case return. Similarly, Gaskett [45] introduced an algorithm called
β-pessimistic Q-learning, which uses an additional parameter β to control the level of
pessimism. While pessimism can help reduce safety violations, it can also lead to a poor
task performance [45, 44].

Incorporating a risk metric To encourage the learning of a safe policy, it is also
possible to integrate a risk metric into the objective function of an RL algorithm. However,
finding a suitable risk metric can be challenging. What is regarded as risk depends on the
desired learning task and the respective safety constraints. In the financial sector, it is
common to use the variance of the return as a metric to assess the risk of an investment
strategy [106, 150]. For Markov decision processes, the resulting problem of finding a
trade-off between the mean and the variance of the return is well studied [156, 104].
In the specific context of reinforcement learning, Tamar et al. [162] proposed a policy
gradient algorithm controlling the variance of the return by adding a penalty term to the
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Figure 2.7.: An overview of existing methods to address the problem of safe reinforce-
ment learning. The classification is inspired by García and Fernández [44].
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objective function. For the safety constraints considered in this thesis, however, it is more
reasonable to use a risk metric based on the likelihood of safety violations. Geibel and
Wysotzki [47] define the risk as a function Q̄π(s, a), indicating the probability of ending
in an error state when selecting action a in state s and following the current policy π
afterwards. They also propose a discounted risk, where less weight is given to error states
occurring in the distant future. In order to learn a risk-averse policy, the optimization
objective of Q-learning is adjusted to consider both the action-value function Qπ(s, a) and
the risk function Q̄π(s, a). A similar risk metric is employed by Srinivasan et al. [157].
As a first step, a policy π and its corresponding risk function Q̄π(s, a) are learned during
a pre-training phase. Subsequently, the risk function is incorporated into the optimization
objective of the RL algorithm SAC [52]. In this way, the probability of safety violations
can be reduced when learning more complex tasks during a fine-tuning phase.

Constrained optimization While normal RL algorithms use unconstrained opti-
mization objectives, it is also possible to utilize methods from the field of constrained op-
timization to incorporate safety constraints. One example is the RL algorithm constrained
policy optimization (CPO) [2], which addresses cumulative constraints as described by
equation (2.18). Based on a trust region approach and several approximations, CPO pro-
vides an upper bound on the expected constraint cost and the worst-case performance of
a policy update. A drawback of CPO is the use of second-order derivatives, which can be
difficult to compute [98]. The algorithm projection-based constrained policy optimization
(PCPO) [185] is closely related to CPO. However, an additional projection step is intro-
duced, which improves the recovery from constraint-violating policy updates and con-
tributes to a faster convergence of the training process. Interior-point policy optimization
(IPO) [98] encourages constraint satisfaction by adding penalties based on logarithmic
barrier functions to the unconstrained optimization objective of PPO [148]. Similarly, it
is possible to transform a constrained optimization problem into an unconstrained prob-
lem using Lagrangian relaxation [21, 166, 159]. A performance comparison for several
constrained RL algorithms is provided by Ray et al. [137].

2.2.2.2. Adjusting the selected actions

Methods that adjust risky actions offer the advantage that safety violations can be pre-
vented right from the start of a training process. Under certain assumptions, it is even
possible to provide specific safety guarantees. Adapting risky actions typically involves
two sub-problems. The first step is to identify an action as potentially risky. In a second
step, a less risky alternative must be found. In order to assess the risk of an action, a
certain amount of knowledge about the environment is required. This knowledge can be
incorporated by defining a task-specific safety heuristic, by providing a dynamics model,
or by performing background simulations in a physics simulator. As an alternative, it is
also possible to identify risky actions based on data collected in the environment. When
using such a learning-based approach, however, special care must be taken to ensure that
the robot is not damaged while collecting the required data. A less risky alternative ac-
tion can be found by solving an optimization problem, by utilizing methods from model-
based control, or by providing a backup policy. An important aspect when determining
and adjusting risky actions is the time horizon taken into consideration. As stated by
Fraichard [40], a robotic system should reason over an infinite time horizon or up to the
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time needed to reach a safe goal state in order to ensure motion safety. In practice, how-
ever, this condition can be difficult to fulfill, especially if the environment does not behave
deterministically. As a consequence, safety violations can often not be entirely prevented.
In the following, three common approaches to adjust risky actions are described in more
detail. An overview is also given in Table 2.1.

Constrained quadratic optimization The basic idea of this approach is to find the
closest action at to the original action aT that satisfies certain state-wise constraints [31]:

argmin
at

1

2
∥at − aT∥2

s.t. Ci(st, at, st+1) ≤ ci ∀Ci ∈ C (2.20)

As shown in equation (2.20), this is typically achieved using a constrained optimization
problem with a quadratic objective function. If the constraints Ci are linear and solely
depend on st and at, the optimization problem can be efficiently addressed by solving
a quadratic program (QP). In order to satisfy these requirements, Dalal et al. [31] use
a linear approximation of the constraints Ci. The approximation is based on a neural
network trained using data collected prior to the actual training phase. As the resulting
quadratic optimization problem can be treated as a special layer of a neural network [7],
this safety mechanism is also called safety layer. Pham et al. [132] introduced a safety
layer to avoid collisions with a robot arm. The definition of the constraints Ci is based on a
collision avoidance method proposed by Faverjon and Tournassoud [36]. More precisely,
the method enforces a minimum distance ds between two potentially moving points by
constraining the Cartesian velocity ḋ between the points:

ḋ ≥ −ξ
d− ds
di − ds

= ḋmin (2.21)

In equation (2.21), d is the current distance between the points and ξ is a positive coeffi-
cient that controls the convergence speed. The inequality constraint is only active if the
distance d is smaller than an influence distance di. Based on the Jacobi matrix, a linear
connection between the Cartesian velocity of a robot point and the joint velocities can be
established. If the relation between the selected action and the resulting joint velocities
is linear, the optimization problem (2.20) can be efficiently solved using a QP. In theory,
the distance d in equation (2.21) should be defined with respect to the closest points of
two objects. In practice, however, complex geometric shapes are often approximated by
bounding spheres, as the closest points of non-strictly convex objects can move discon-
tinuously [71]. Figure 2.8 shows how the method is used to prevent a collision between a
blue obstacle and a robot link approximated by a green sphere. One important requirement
is that the minimum Cartesian velocity ḋmin enforced by (2.21) must be reachable without
exceeding the kinematic abilities of the robot joints. If multiple obstacles are observed,
all inequality constraints must be satisfied at the same time. As long as a solution to the
optimization problem exists, common safety layer approaches will find a valid action.
However, safety layers typically do not ensure that at least one valid action exists at each
subsequent decision step. As a consequence, the resulting QPs might have no solution and
safety violations can continue to appear. To address this problem, Zhao et al. [189] pro-
posed an implicit safe set algorithm (ISSA) that avoids collisions between mobile robots
in a two-dimensional plane. The basic idea is to introduce a constraint which ensures
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ḋ
[ m s

] D
is
ta
n
ce

d
[m

]

ds

Figure 2.8.: Based on a collision avoidance method proposed by Faverjon and Tournas-
soud [36], it is possible to define inequality constraints for a safety layer that
enforce a minimum distance ds between two points [132]. In this example,
the method is used to avoid a collision between the blue and the green sphere.

that the set of feasible actions in state st+1 is non-empty. More precisely, an energy func-
tion ϕ(s) is used to determine whether a feasible action exists in state st+1. While the
approach offers strict safety guarantees, there are two caveats: First, the definition of the
energy function ϕ(s) is task-specific and based on several assumptions. Second, the re-
sulting optimization problem cannot be handled by a simple QP solver as it depends on
ϕ(st+1). Consequently, the problem is solved using a custom line search algorithm, which
requires access to a dynamics model or a simulator to determine st+1 based on st and at.

Utilizing the system dynamics When adjusting an action at, it is usually not suf-
ficient to focus on potential safety violations during the state transition from st to st+1.
Instead, the subsequent state transitions must also be taken into account. In the field of
model-based control, there are several methods to make sure that a dynamic system al-
ways stays within a safe subset of the state space. These methods can also be applied in
the context of model-free RL, provided that a suitable model f(s, a) is known:

st+1 = f(st, at) (2.22)

While this requirement limits the inherent flexibility of model-free RL, there can still be
advantages compared to using a purely model-based approach. For example, the reward
function of an RL agent can be designed in a flexible way, as it does not need to be dif-
ferentiable with respect to the selected action. One approach to enforce safety in model-
based control are control barrier functions (CBFs) [180, 5, 6]. In order to avoid safety
violations during the learning process of a model-free RL agent, Cheng et al. [28] utilize
a controller based on CBFs. More specifically, the method is used to keep an inverted
pendulum upright without leaving a certain angular range and to optimize the fuel effi-
ciency of a car while avoiding collisions. The system dynamics are partially known and
assumed to be linear with respect to the selected action. System uncertainties are learned
from data using a Gaussian process (GP). In theory, the approach can provide strict safety
guarantees. In practice, however, safety violations may occur with a probability of δ
due to uncertainties in the system dynamics. As safety is guaranteed with a probability of
(1−δ), the constraint satisfaction is considered as probabilistic. A similar approach to en-
sure safety is proposed by Berkenkamp et al. [17]. The method assumes knowledge about
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an initial policy that is safe within a certain area of the state space. By utilizing a suitable
Lyapunov function, additional data is collected to reduce system uncertainties modeled
by a GP. The improved model can then be used to expand the safe area of the state space.
Using this approach, an RL policy is trained to balance an inverted pendulum without
letting the pendulum fall down. Another line of research uses reachability analysis (RA)
to enable safe reinforcement learning [49, 3, 37]. The basic idea is to determine a safe set
of the state space and a corresponding safety controller based on a two-player differential
game. In the interior of the safe set, an RL agent can execute arbitrary actions without
causing safety violations. At the boundary, the safety controller prevents the system from
leaving the safe area. In the differential game setup, the safety controller tries to keep the
system in a safe state, while its opponent tries to cause constraint violations. If a suitable
dynamics model is known, the differential game can be addressed using Hamilton–Jacobi
methods [14]. Fisac et al. [37] utilize this approach to avoid collisions with a quadrotor.
System uncertainties are modeled by a GP. Under certain assumptions, the method can
guarantee probabilistic constraint satisfaction. However, to reduce the computational ef-
fort during real-time execution, a local approximation of the original problem is proposed.
Using this approximation, constraint satisfaction is still encouraged, but no longer guaran-
teed. Safety in reinforcement learning can also be enforced by utilizing techniques from
model predictive control (MPC). Koller et al. [84] use a safety controller based on MPC
to keep an inverted pendulum upright and to balance a pole attached to a cart. Similarly,
Wabersich and Zeilinger [174] utilize an MPC-based safety filter to swing up an inverted
pendulum and to avoid ground contact with a quadrotor. In summary, methods that com-
bine model-free RL with a dynamics model are effective in avoiding safety violations and
can guarantee probabilistic constraint satisfaction under certain assumptions. However,
the requirement to specify a suitable model limits the potential range of applications. In
practice, model-based approaches are often applied to inverted pendulums or quadrotors.

Risk estimation and backup policy The basic idea of this research direction is to
replace risky actions using a backup policy. More precisely, an RL agent following a task
policy πT might suggest to take action aTt in state st. However, action aTt is only executed,
if the estimated risk Q̄(st, a

T
t ) does not exceed a predefined threshold q̄

Th
. Otherwise, a

backup policy πB is used to generate an alternative action aBt :

at =

{
aTt if Q̄(st, a

T
t ) ≤ q̄

Th

aBt otherwise
(2.23)

In the context of this work, the risk of an action refers to the occurrence of safety viola-
tions. However, whether a safety violation occurs, typically does not only depend on the
current state st and the desired action aTt but also on the policy followed afterwards. One
approach is to estimate the risk Q̄πB

(st, a
T
t ), where the subscript indicates that the backup

policy πB is followed after entering st+1. As an alternative, it is also possible to assume
that the current policy π, which results from the interaction between πT and πB, is used
after executing aTt . In this case, the backup policy can be derived based on the resulting
risk function Q̄π(s, a). Hans et al. [54] estimate the risk of a state transition by estimating
the minimum reward occurring when executing action aTt and subsequently following the
backup policy πB. For this estimation, a least squares approximation based on previously
collected data is used. Two potential options for specifying a backup policy are examined.
The first option is to utilize an existing controller that is safe but not optimal in terms of
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the resulting task performance. Alternatively, the backup policy is learned using data pro-
vided by a teacher. The approach is evaluated by optimizing the power output of a gas
turbine without causing undesired effects. Garcia and Fernández [43] use backup poli-
cies based on predefined controllers to learn tasks like car parking, pole balancing, and
helicopter hovering. However, a different definition of risk is used. More precisely, the
algorithm constructs a set of states that are known to be safe. The backup policy is used
if the minimum Euclidean distance between the current state and a state in the safe set is
larger than a predefined threshold. Yang et al. [186] use model-free RL to learn a backup
policy πB that keeps a quadruped robot balanced. Whether an action from the backup pol-
icy is executed depends on task-specific criteria that are designed using knowledge about
the system dynamics. Eysenbach et al. [35] simultaneously learn a forward policy and a
reset policy using model-free RL. While the forward policy is trained to maximize the
task performance, the reset policy attempts to return the environment to its initial state.
When collecting real-world data, the reset policy can be used to avoid manual resets of the
environment. As entering a non-reversible state can be interpreted as a safety violation,
the reset policy can be seen as a special kind of backup policy. Bharadhwaj et al. [19] use
a conservative risk function Q̄C(s, a), which tends to overestimate the actual risk of an ac-
tion. If a desired action aTt does not satisfy the condition Q̄C(st, a

T
t ) < q̄

Th
, further actions

are sampled from πT until the condition is met. Thus, the backup policy can be considered
as derived from the risk function. However, the proposed strategy does not guarantee that
a suitable action will be found. Moreover, the probability of an incorrect risk classification
increases with the number of sampling attempts. In practice, the sampling is repeated a
certain number of times and the action with the lowest risk is selected, even if the thresh-
old value q̄

Th
is exceeded. Thananjeyan et al. [167] estimate the risk function Q̄π(s, a)

when following the current policy π. Using this risk function, a backup policy is derived.
The training procedure of the backup policy is similar to the off-policy algorithm DDPG,
which derives an actor policy based on the action-value function Qπ(s, a). As the current
policy π depends on πT , the risk function Q̄π(s, a) and the backup policy need to be up-
dated during the training of πT . In contrast, methods utilizing a fixed backup policy πB

can be used to learn different tasks without having to update the risk function Q̄πB
(s, a).

2.2.3. Summary

In order to find optimized actions, RL agents need to explore their environment au-
tonomously. During this process, the occurrence of safety violations is a widespread prob-
lem. In the context of safe reinforcement learning, various methods have been developed
to ensure safety during and after the training phase. Existing approaches differ in terms
of their implementation effort, range of application, and level of constraint satisfaction.
Practitioners tend to address safety issues in a task-specific manner, often without a pre-
cise mathematical analysis of the problem. If possible, the environment is designed so that
safety violations rarely occur or do not cause major damage. Alternatively, penalty terms
are added to the reward function so that the RL agent learns to avoid unsafe actions during
the course of training. Theoretical approaches, on the other hand, address safety prob-
lems from a more mathematical perspective, often based on the framework of CMDPs.
Typically, safety violations are avoided by modifying either the optimization objective
or the selected actions. The optimization objective of an RL algorithm can be adjusted
by incorporating a risk metric or by utilizing techniques from constrained optimization.
However, these techniques usually show limited effectiveness in the early stages of the
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training phase. Alternatively, it is possible to modify risky actions, for instance based on
constrained quadratic optimization. While constrained optimization problems can be ef-
ficiently solved using quadratic programs, avoiding conflicting constraints is challenging.
To ensure the existence of at least one feasible action, one line of research attempts to
keep the system within a safe subset of the state space. If a model of the system dynamics
is known, this can be achieved using techniques like Hamilton–Jacobi reachability analy-
sis or model predictive control. However, the need to provide a suitable model limits the
potential scope of model-free RL. Based on a risk metric and a backup policy, a similar
intention can be pursued without having to specify a model of the system dynamics. The
risk metric and the backup policy can be learned from data or specified based on model
knowledge. This approach can also be used to avoid collisions when learning robot tra-
jectories in joint space. However, existing methods focus on different applications and do
not explicitly consider the kinematic capabilities of robotic manipulators.
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Table 2.1.: Different methods to adjust risky actions and their specific characteristics.

Reference Constraint Predefined Learned Demonstrated
satisfaction component component applications

Constrained quadratic
optimization:
• Dalal et al. [31] encouraged Constraints Linear mapping Avoiding certain

depending from st and at areas with a ball
on st+1 to st+1 and a spaceship

• Pham et al. [132] encouraged Constraints Avoiding
to avoid - collisions with an

collisions industrial robot

• Zhao et al. [189] strict Energy Avoiding
function - collisions with
ϕ(s) mobile robots

Utilizing the system
dynamics:
• Cheng et al. [28] probabilistic CBF-based Model Inverted pendulum

safety uncertainties and avoiding
controller using a GP collisions with a car

• Fisac et al. [37] probabilistic RA-based Model Avoiding
safety uncertainties ground collisions

controller using a GP with a quadrotor

• Koller et al. [84] probabilistic MPC-based Model Inverted pendulum
safety uncertainties and cart-pole

controller using a GP balancing

Risk estimation and
backup policy:
• Hans et al. [54] encouraged Backup policy Risk Power

using an existing function optimization of
controller Q̄πB

(s, a) a gas turbine

• Yang et al. [186] encouraged Criteria for Backup policy Locomotion
using the using with a quadruped

backup policy model-free RL robot

• Bharadhwaj encouraged Strategy to Conservative Navigation,
et al. [19] sample actions risk function manipulation, and

based on Q̄C(s, a) Q̄C(s, a) locomotion tasks

• Thananjeyan encouraged - Risk function Navigation
et al. [167] Q̄π(s, a) and and manipulation

backup policy tasks
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3. Learning trajectories subject to
kinematic joint constraints

When learning robot movements, the generated trajectory setpoints need to satisfy kine-
matic joint constraints specified by the robot manufacturer. Not adhering to the constraints
can lead to inaccurate tracking of the desired trajectory setpoints or to overloading of the
robot joints. In this chapter, an action mapping for model-free reinforcement learning is
presented, which ensures that the position, velocity, acceleration, and jerk limits of each
robot joint are always respected. First, the problem of considering kinematic joint con-
straints is formalized and its relation to existing work is discussed. Next, the proposed
action mapping is presented and its underlying mathematical principles are explained. Fi-
nally, the method is evaluated by learning three different robot tasks using model-free RL.
The learning objective of the first task is to generate a movement that maximizes the av-
erage absolute velocity of each robot joint without exceeding kinematic limits. In this
context, the proposed action mapping is compared to adding penalty terms to the reward
function, a method commonly applied by practitioners to avoid undesired learning out-
comes. The second task is to quickly follow a reference path without violating joint
limits. Apart from staying close to the reference path, additional learning objectives can
be considered. For instance, an industrial robot can learn to balance a ball on a plate while
following the reference path. The third evaluation task deals with a similar ball-on-plate
scenario. However, a reference trajectory is used, providing information on the path and
the temporal behavior of the desired movement. For both reference paths and reference
trajectories, the evaluation includes balancing experiments with a real industrial robot.
The content of this chapter is based on three previously published publications. More pre-
cisely, the action mapping to consider kinematic joint constraints was introduced in [76].
The usage of the action mapping to track reference paths was proposed in [78]. Finally,
the approach to adjust reference trajectories was initially described in [82].

3.1. Problem description

In order to learn robot trajectories using model-free RL, a Markov decision process
(S,A, P, R, γ) is defined to model the decision-making process. As explained in sec-
tion 1.1.1, an RL agent selects an action at ∈ A at each decision step t. For the specific
problem of online trajectory generation, an action at specifies a desired robot motion from
the current decision step t to the following decision step t+1. The time between decision
steps is typically constant. In section 2.1.2.1, different control strategies for lower-level
motion control are introduced. This work assumes that a joint trajectory controller is used
and that the corresponding trajectory setpoints φd, φ̇d, and φ̈d are generated based on the
actions of an RL agent. As explained in section 1.1.2, common robot joints are subject to
kinematic constraints as specified by (1.3) - (1.6). In this chapter, the generated trajectory
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3. Learning trajectories subject to kinematic joint constraints

setpoints are assumed to be accurately tracked by the joint trajectory controller. Conse-
quently, the kinematic constraints (1.3) - (1.6) can be regarded as satisfied if the setpoints
comply with the following constraints at all times:

pmin ≤ φd ≤ pmax (3.1)
vmin ≤ φ̇d ≤ vmax (3.2)
amin ≤ φ̈d ≤ amax (3.3)
jmin ≤ ...

φ d ≤ jmax (3.4)

This chapter addresses the problem of mapping actions from an RL agent to trajectory
setpoints so that the kinematic constraints (3.1) - (3.4) are always respected. The max-
imum and minimum values are usually specified by the robot manufacturer. However,
depending on the desired learning task, lower values can be selected, e.g., to additionally
restrict the workspace or the velocity of the robot. An accurate tracking of the setpoints
is only possible if the generated trajectory is collision-free. In addition, the robot joints
must be able to produce the torque requested by the trajectory controller. To make sure
that these assumptions are met, a method to avoid collisions and torque limit violations is
introduced in chapter 4.

3.2. Relation to previous studies

As explained in section 2.1.4.2 and shown in Figure 2.6, previous studies typically specify
a position setpoint φd or a velocity setpoint φ̇d based on the action chosen by an RL agent.
Between decision steps, the selected setpoint is kept constant. In modern model-free RL,
actions are typically generated based on the output signals of a neural network. When
using a continuous action space, a squashing function like tanh can be used to ensure that
an action does not exceed a certain value range. Consequently, it is straightforward to
ensure that the position constraint (3.1) is met when mapping actions to constant position
setpoints. However, this mapping leads to a violation of the velocity constraint (3.2), as
the position setpoints are discontinuous. When specifying constant velocity setpoints, the
velocity limit is easy to meet. However, since the velocity setpoints are discontinuous, the
resulting acceleration setpoints are unbounded. In addition, care must be taken to ensure
that the resulting position setpoints, which can be computed by integration, stay within
the position limits. To address the problem of discontinuities, an action can be mapped to
a constant jerk setpoint ...

φ d. The unbounded derivative of the jerk usually does not pose a
practical problem. However, the key research question that arises is how to map an action
to a jerk setpoint without violating the position, velocity, and acceleration limits.

Previous studies have examined compliance with kinematic joint constraints in the
context of generating time-optimal trajectories. As outlined in section 2.1.1, motion li-
braries like Reflexxes [86] can be used to compute a time-optimal trajectory to a kinematic
target state while satisfying the constraints (3.1) - (3.4). However, directly specifying a
kinematic target state (φdT , φ̇dT

, φ̈dT
) based on an action of an RL agent is not straight-

forward for three reasons: First, the required time to reach the desired target state varies,
while previous studies in RL typically assume a constant time between decision steps.
Second, φdT , φ̇dT

, and φ̈dT
can be selected independently. In previous studies, however,

an action usually consists of a single scalar value per robot joint. Third, as shown in
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3.3. An action mapping considering kinematic constraints
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(a) Upper and lower trajectory shown until standstill. (b) Detailed view for t to t+ 1
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Figure 3.1.: With the proposed action mapping, an action at ∈ [−1, 1] determines a tra-
jectory from t to t+1, which lies in between a lower and an upper trajectory.

Figure 2.1, small deviations in the target state can have a strong influence on the gener-
ated trajectory. However, reinforcement learning is usually easier if a small deviation in
the selected action leads to a small deviation in the generated trajectory. In this work,
concepts from the time-optimal generation of robot trajectories are used to address the
above-mentioned research problem of mapping an action to a constraint-satisfying tra-
jectory. As usual in previous studies, the time between decision steps is assumed to be
constant and the movement between two decision steps is specified by a single scalar per
robot joint.

3.3. An action mapping considering kinematic
constraints

In this work, an action mapping is proposed ensuring that the resulting trajectories do not
violate the kinematic constraints (3.1) - (3.4). Each action consists of one scalar ∈ [−1, 1]
per robot joint. This value range is common when using neural networks and can be en-
forced using the squashing function tanh. In Figure 3.1, the basic principle of the action
mapping is visualized for a one-dimensional trajectory. For the specific problem con-
sidered in this work, the position p, velocity v, acceleration a, and jerk j correspond
to the setpoints φd, φ̇d, φ̈d, and ...

φ d of a robot joint. In the one-dimensional case, an
action consists of a single scalar. However, the proposed principle can be applied to
robotic systems with any number of joints by using a multi-dimensional action vector.
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3. Learning trajectories subject to kinematic joint constraints

The basic idea is to make use of a lower trajectory and an upper trajectory, which depend
on the current kinematic state (pt, vt, at). The trajectories need to comply with the kine-
matic constraints (3.1) - (3.4) over an infinite time horizon. As shown in Figure 3.1, this
condition can be considered fulfilled if both trajectories end in a stationary state with-
out violating a constraint. At time step t, an action at determines the resulting trajectory
for the following time interval from t to t + 1. When selecting at = −1, the resulting
trajectory follows the lower trajectory. Similarly, an action at = 1 results in the upper tra-
jectory being followed. All intermediate action values lead to a trajectory lying between
the lower and the upper trajectory. More precisely, the selected action determines the
relative distance to the lower and upper trajectory at each point in time. As illustrated in
Figure 3.1 and derived in section A of the appendix, the selected relative distance applies
equally to the position, velocity, acceleration, and jerk setpoints. However, for reasons of
presentation, the following explanations focus on the resulting acceleration setpoints. In
particular, the desired acceleration setpoint at+1, which results from action at, is computed
as follows:

at+1 = at+1min
+

1 + at
2

· (at+1max − at+1min
) , (3.5)

where at+1min
and at+1max are the accelerations of the lower and the upper trajectory at

time step t + 1. In the specific example shown in Figure 3.1, an action at = 0.5 is
selected. The factor 1+at

2
= 0.75 in equation (3.5) indicates that the distance of the

resulting trajectory to the lower trajectory is set to 75% of the distance between the lower
and the upper trajectory. In this work, the jerk of the upper and the lower trajectory is
constant between decision steps. As a result, the jerk of the trajectory resulting from
action at is also constant and the acceleration at at time step t can be linearly connected to
the computed acceleration at+1 at time step t+ 1. Knowing the course of the acceleration
setpoints, the corresponding position, velocity, and jerk setpoints can be calculated by
integration or differentiation. A trajectory that always lies between two other trajectories
will not go beyond the maximum value or the minimum value of these two trajectories.
Consequently, the resulting trajectory complies with the kinematic conditions (3.1) - (3.4)
if the upper and lower trajectory do so.

Once time step t+ 1 is reached, the upper and lower trajectory are recomputed based
on the kinematic state (pt+1, vt+1, at+1). To determine the next time interval of the result-
ing trajectory, the procedure described above is repeated using action at+1. The proposed
action mapping requires that a valid upper and lower trajectory is known at each decision
step. In the borderline case, however, both trajectories can coincide, so that there is only
one option to continue the trajectory, which is chosen independently of the selected action.
As shown in Figure A.1 in the appendix, keeping the same relative distance to the initial
upper and lower trajectory as during the time interval from t to t + 1 will also produce a
valid trajectory for the subsequent time intervals. For that reason, there is at least one fea-
sible way to continue the movement at t+1 if an upper and lower trajectory is known for
time step t. Figure 3.2 shows two exemplary trajectories resulting from choosing a = 1.0
or a random action a ∈ [−1, 1] at each decision step. When selecting a = 1.0, the upper
trajectory is followed. Consequently, the resulting trajectory in Figure 3.2a, corresponds
to the upper trajectory shown in Figure 3.1. At time step t + 10, the upper and lower
trajectory coincide, as otherwise either pmax or amin would be exceeded. When training a
policy using model-free RL, actions at the beginning of the training process are typically
selected at random. Figure 3.2b, shows an exemplary trajectory resulting from random
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(a) Selecting a = 1.0 at each decision step. (b) Selecting a random action at each decision step.
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Figure 3.2.: Trajectories when selecting a = 1.0 and random actions a ∈ [−1, 1] at each
decision step. In both cases, the resulting trajectories come close to the kine-
matic limits, but do not exceed them. The upper and lower trajectories are
recomputed at each decision step. For reasons of clarity, they are only shown
for accelerations and only for the first subsequent time interval.

actions. It can be seen that the generated random trajectory comes close to the kinematic
limits. However, as expected, the limits are not exceeded.

3.4. Determining an upper and a lower trajectory

The presented action mapping is based on an upper and lower trajectory, which must both
satisfy the desired kinematic constraints. However, this requirement does not yet fully
specify how these trajectories should be selected. As can be seen in Figure 3.1b, the
range of feasible kinematic setpoints at t + 1 depends on the lower and upper trajectory
computed at time step t. For example, the resulting acceleration at+1 will be within the
range [at+1min

, at+1max], where at+1min
and at+1max are the accelerations of the lower and

the upper trajectory at time step t + 1. To ensure that the action mapping can generate
a wide range of trajectories, the range [at+1min

, at+1max] should be as large as possible.
For this reason, the method presented below aims to find the smallest possible value for
at+1min

and the highest possible value for at+1max . The implementation used in this the-
sis ensures that the jerk between decision steps is always constant. Consequently, the
course of the lower and upper trajectory is fully specified for the time interval from t to
t + 1 when knowing at+1min

and at+1max . Since both trajectories are recomputed at each
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3. Learning trajectories subject to kinematic joint constraints
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(a) Selected acceleration profile for
vt ≥ vmax − 1
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t+1 t+N t+N+1
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(b) Selected acceleration profile for
vt < vmax − 1

2 · at ·∆t

Figure 3.3.: Based on the illustrated acceleration profiles, an equation to compute
at+1max, v can be derived. Which acceleration profile to select depends on
the velocity vt and the acceleration at at the current time step t. The figure is
adapted from [82].

decision step, it is not necessary to compute their further course for subsequent time in-
tervals. As a result, the problem of finding a suitable upper and lower trajectory at time
step t reduces to finding at+1min

and at+1max . In the following, the computation of at+1max

is explained. However, the same principle can be used to compute at+1min
. With the pro-

posed action mapping, the acceleration at+1max should be the highest possible acceleration
at time step t+ 1. Assuming that at+1max is selected, there must be a way to continue the
trajectory at t+ 1 without violating the specified jerk, acceleration, velocity, and position
limits. To determine at+1max , a maximum acceleration at+1max, j

, at+1max, a , at+1max, v , and
at+1max, p is computed for each of the individual constraints. The smallest of these values
is assigned to at+1max:

at+1max = min(at+1max, j
, at+1max, a , at+1max, v , at+1max, p) (3.6)

Determining at+1max, j
and at+1max, a is straightforward:

at+1max, j
= at + jmax ·∆t (3.7)

at+1max, a = amax, (3.8)

where ∆t is the time between t and t + 1. The procedure for calculating at+1max, v and
at+1max, p is more complicated, as a case analysis must be conducted. For the following
calculations, the variable t indicates a continuous time. The continuous course of accel-
erations is denoted as a(t). Without loss of generality, the initial time step t is assigned
to t = 0. Consequently, the initial acceleration at, velocity vt, and position pt can also
be referred to as a0, v0, and p0. As shown in Figure 3.3, two different cases need to be
distinguished to determine at+1max, v . In the first case, the velocity limit vmax is reached
between t and t + 1, in the second case it is reached after t + 1. To ensure that the max-
imum velocity vmax is not exceeded, the acceleration must be zero at the moment vmax is
reached. This condition can be expressed by the following two equations:

v0 +

∫ tvmax

0

a(t) dt = vmax (3.9)

a(tvmax) = 0, (3.10)

where tvmax is the continuous time at which vmax is reached. Based on the acceleration
profiles shown in Figure 3.3, the equation system (3.9) - (3.10) can be solved for at+1max, v .
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3.4. Determining an upper and a lower trajectory
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(a) As indicated by the area hatched in blue,
the velocity at time step t+N+1 is smaller
than vmax when using this profile.
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(b) By selecting a slightly smaller value for
at+1max, v , oscillations can be avoided as
vmax is reached at a discrete time step.

Figure 3.4.: To avoid oscillations after reaching vmax, the acceleration profile shown in (a)
is slightly adjusted so that vmax is reached at a discrete time step. The figure
is adapted from [82].

In this work, the Python library SymPy [111] for symbolic mathematics is used to derive
the following formulas:

at+1max, v =


at ·
(
1− 1

2
· at·∆t
vmax−vt

)
if vt ≥ vmax − 1

2
· at ·∆t

jmin·∆t
2

·
(
1−

√
1 + 8·(vt−vmax)+4·at·∆t

jmin·∆t2

)
otherwise

(3.11)
While the presented formulas lead to a valid solution for at+1max, v , the resulting upper
trajectory might start to oscillate when being close to vmax. To prevent these oscillations,
the acceleration profile shown in Figure 3.3b is slightly adjusted so that tvmax coincides
with a discrete time step. The resulting profile can be seen in Figure 3.4b. As with the
initial profile, an analytical formula to calculate at+1max, v can be derived using SymPy.

In order to additionally consider position limits, at+1max, p is computed. The basic
principle is similar to the calculation of at+1max, v . Assuming that at+1 is set to at+1max, p ,
there must still be a way to avoid violating the position limit pmax. Given that at+1max, p

should be the highest feasible acceleration, pmax should be reached but not exceeded.
Consequently, the velocity at tpmax , the time at which pmax is reached, must be zero:

p0 + v0 · tpmax +

tpmax∫
0

t∫
0

a(t) dt dt = pmax (3.12)

v0 +

∫ tpmax

0

a(t) dt = 0 (3.13)

Compared to computing at+1max, v , a larger number of different cases must be distin-
guished. In Figure 3.5, the stepwise computation of at+1max, p is illustrated for one ex-
emplary kinematic state (pt, vt, at). In a first step, the acceleration profile shown in
Figure 3.5a is used to determine the continuous time t amin

, at which the minimum ac-
celeration amin is reached. To ensure that the resulting acceleration at t + 1 is as high
as possible, the minimum jerk jmin is applied between t + 1 and t amin

As of t amin
, the

acceleration is held at amin. Since the jerk between time steps is required to be constant,
this profile cannot be used to compute at+1max, p . However, as shown in Figure 3.5b, a
profile can be derived, in which t amin

coincides with the next discrete time step. While
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(a) Acceleration profile to compute
a time-continuous value for t amin

.
(b) Acceleration profile to compute tpmax

using a time-discrete value for t amin
.

(c) Acceleration profile to compute t amin

using a time-discrete value for tpmax .
(d) Acceleration profile to compute at+1max, p

using a time-discrete value for t amin .

Figure 3.5.: The stepwise computation of at+1max, p shown for one exemplary kinematic
state (pt, vt, at). While the acceleration profile shown in (b) would already
lead to a valid solution for at+1max, p , the steps (c) and (d) are performed to
ensure that pmax is reached at a discrete time step, which reduces oscillations.
The figure is adapted from [76].

this profile could already be used to compute at+1max, p , oscillations can be reduced if pmax

is reached at a discrete time step. Therefore, tpmax is shifted to the next discrete time step.
The intermediate step shown in Figure 3.5c is performed to derive the time-discrete accel-
eration profile shown in Figure 3.5d. Finally, this profile is used to compute the desired
acceleration at+1max, p , which is marked by a red cross.

Once at+1max, j
, at+1max, a , at+1max, v , and at+1max, p are determined, at+1max can be calcu-

lated using equation (3.6). If the maximum acceleration at+1max is selected, the resulting
trajectory follows the upper trajectory. As shown in Figure 3.1, the upper trajectory fi-
nally reaches the maximum position pmax at a velocity of zero. While the jerk between
decision steps is kept constant, the upper trajectory resembles a time-optimal trajectory
to the target state (pT = pmax, vT = 0, aT = 0), which establishes a relation between
the proposed action mapping and the time-optimal trajectories introduced in section 2.1.1.
The calculation of at+1min

is carried out analogously to at+1max . After computing at+1min, j
,

at+1min, a
, at+1min, v

, and at+1min, p
, the largest of these values is assigned to at+1min

:

at+1min
= max(at+1min, j

, at+1min, a
, at+1min, v

, at+1min, p
) (3.14)

Knowing the current kinematic state (pt, vt, at), the range [at+1min
, at+1max], and the se-

lected action at, the resulting trajectory from t to t+ 1 is fully specified. Hence, the next
step is to evaluate the proposed action mapping in the context of model-free RL.
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Figure 3.6.: In the velocity maximization task, a robot is trained to maximize the average
absolute velocity of each robot joint. The figure shows the resulting periodic
movements for one exemplary joint. As can be seen in (a), an optimal trajec-
tory oscillates between the position limits. When using the proposed action
mapping, the resulting trajectory shown in (b) is very similar to the optimal
baseline. In contrast, soft or hard penalties discourage the robot from oper-
ating close to the kinematic limits, which reduces the task performance.

3.5. Evaluation of the proposed action mapping

In the following section, the proposed action mapping is evaluated by learning three robot
tasks using model-free RL. As a first step, it is analyzed whether the action mapping
can be used to learn trajectories that fully utilize the kinematic capabilities of the robot
joints without exceeding them. For that purpose, a 7-DOF KUKA iiwa robot is trained to
generate movements that maximize the average absolute joint velocity over time. While in
this task, each joint can be considered as independent, the next two tasks require temporal
coordination between the robot joints. More specifically, the proposed action mapping is
used to learn how to track reference paths and to adjust reference trajectories. In addition
to evaluating the learning performance achieved in simulation, a sim-to-real transfer is
conducted for these two tasks. This involves evaluating whether the required calculations
can be carried out in real time and whether the generated trajectories can be executed on
a real robot.

3.5.1. Velocity maximization

The goal of the velocity maximization task is to learn trajectories for a 7-DOF indus-
trial robot that maximize the average absolute joint velocity over time without vio-
lating the kinematic constraints (3.1) - (3.4). In order to learn the task via model-
free RL, a Markov decision process (S,A, P, R, γ) is defined. A state st ∈ S con-
tains the current position, velocity, and acceleration setpoint (φdt , φ̇dt , φ̈dt) of each
robot joint. The setpoints are normalized with respect to the specified kinematic limits.
Consequently, the resulting state for a robot with seven joints is a vector of 21 di-
mensions, each of them ∈ [-1,1]. An action at ∈ A consists of one scalar ∈ [-1,1]
per robot joint. As explained earlier in this chapter, the scalar is used to determine
an acceleration setpoint φ̈dt+1

:= at+1 according to equation (3.5). For this purpose,
the range of feasible setpoints [at+1min

, at+1max] is computed as explained in section 3.4.
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3. Learning trajectories subject to kinematic joint constraints

Table 3.1.: Quantitative evaluation of the velocity maximization task, comparing the pro-
posed action mapping with an optimal baseline and the use of penalties. The
specified velocities and positions refer to normalized absolute values. For each
method, 1000 trajectories with a duration of 5 seconds are computed. The vi-
olation rate indicates the proportion of trajectories that violate the position or
velocity constraints. Adapted from [76].

Method Mean |velocity| Max |velocity| Max |position| Violation rate

Optimal baseline 0.92 1.00 1.00 0.0%

Proposed mapping 0.91 1.00 1.00 0.0%

Soft penalties 0.51 0.90 1.25 8.0%

f D
=
24
0
H
z

Hard penalties 0.71 1.56 1.43 52.7%

Optimal baseline 0.92 1.00 1.00 0.0%

Proposed mapping 0.88 1.00 1.00 0.0%

Soft penalties 0.44 1.14 0.93 1.2%

f D
=
20

H
z

Hard penalties 0.58 1.69 1.14 41.5%

With φ̇dt+1,i
being the resulting velocity setpoint of the i-th joint at time step t+1, the re-

ward function is specified as follows:

R(st, at) =
1

7

7∑
i=1

∣∣∣φ̇dt+1, i

∣∣∣ (3.15)

For each experiment, a decision frequency fD is specified, which determines the time
between decision steps ∆t:

∆t =
1

fD
(3.16)

As visualized in Figure 1.3, actions are generated by a fully connected neural network.
The training of the neural network is performed in a simulation environment using a
reference implementation of the algorithm PPO [148] provided by the Python library
RLlib [96]. To simplify the interaction with RLlib, the implementation of the desired
learning task is based on a common interface called Gym [23], which was originally intro-
duced by OpenAI. In order to generate training data in parallel, the Ray framework [117]
for distributed computing is used.

Figure 3.6 shows exemplary trajectories for the velocity maximization task using a de-
cision frequency of 240Hz. As visualized in (a), an optimal trajectory oscillates between
the minimum and maximum position. The trajectory shown in (b) is generated by a neu-
ral network trained with the proposed action mapping. It can be seen that the trajectory
closely resembles the optimal baseline. For the purpose of comparison, additional neu-
ral networks are trained without the proposed action mapping. To this end, the range of
feasible setpoints for at+1 is set to [amin, amax] rather than [at+1min

, at+1max]. In order to
avoid exceeding the position and velocity limits, the reward function is adjusted. When
using hard penalties, the reward is set to zero if any of the joints violates a position or
velocity limit. With soft penalties, the reward is gradually reduced if a joint velocity or
position exceeds 50% of the corresponding maximum value. As shown in (c) and (d), the
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Figure 3.7.: The tracking of a reference path with an industrial robot shown for one ex-
emplary time step t. The figure illustrates the components of each state,
the trajectory generation and the relevant metrics for the reward calculation
when tracking a reference path shown in green with the additional objective
of balancing a ball on a plate. The figure is adapted from [78].

resulting movements are still similar to the optimal baseline. However, since the trajec-
tories keep a certain distance from the kinematic limits, the resulting task performance is
lower. Table 3.1 shows a quantitative analysis of the results obtained for fD = 240Hz
and fD = 20Hz. In both cases, the performance achieved with the proposed action map-
ping is close to the optimal baseline. Moreover, the position and velocity limits are not
violated. When using penalties, the resulting task performance is lower and the kinematic
constraints are not strictly respected.

In summary, the trajectories generated with the proposed action mapping complied
with the kinematic constraints and led to an average absolute joint velocity close to the
optimal baseline. Contrary to that, the use of penalties did not strictly prevent violations
of the kinematic limits and had a negative impact on the resulting task performance.

3.5.2. Tracking of reference paths

In this section, the proposed action mapping is used to track reference paths defined in
joint space. For this purpose, the problem of quickly following a reference path is for-
mulated as an optimization problem with two objectives: On the one hand, the progress
along the path should be maximized, on the other hand, the deviation to the reference
path should be minimized. As an additional constraint, the generated trajectories must
satisfy the kinematic limits of the robot joints. When using the proposed action mapping,
compliance with the kinematic limits is already ensured. For that reason, the resulting
learning problem can be considered as unconstrained. However, in contrast to the veloc-
ity maximization task, a temporal coordination between the robot joints is required in this
scenario. Thus, the RL agent must learn to coordinate all joints collectively. In the litera-
ture, the problem of finding a time-optimal trajectory to traverse a reference path is known
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part of the reference path.
Adapted from [78].

(a
)A

ct
io

n

(b
)T

ar
ge

tp
oi

nt

Figure 3.9.: Exemplary reference paths for
an industrial robot sampled
from the specified datasets.
Adapted from [79].

as time-optimal path parameterization (TOPP). In contrast to TOPP, the trajectories pro-
duced with the presented approach are neither time-optimal nor do they perfectly match
the specified reference paths. However, since the trajectory generation is performed in
real time, sensory feedback can be taken into account to address additional optimization
objectives. In addition, the reference path can be adjusted during motion execution. Using
a physics simulator, the presented method is evaluated for a 7-DOF industrial robot and
for the humanoid robots ARMAR-4 [11] and ARMAR-6 [12]. For the industrial robot
and for the bipedal robot ARMAR-4, experiments with additional optimization objectives
are conducted. More specifically, the industrial robot is trained to additionally balance a
ball on a plate and the bipedal robot is trained to avoid falling over. An overview of the
trajectory generation for the ball balancing task with an industrial robot is presented in
Figure 3.7. The desired reference path is shown in green. Note that while the reference
path is defined in joint space, the figures in this section illustrate the reference path in
Cartesian space to simplify the visualization.

State space To formalize the learning problem, a Markov decision process
(S,A, P, R, γ) is defined. As for the velocity maximization task, a state st ∈ S con-
tains the kinematic state of each robot joint (φdt , φ̇dt , φ̈dt). In addition, information on
the upcoming part of the reference path is provided. More specifically, a reference path
is represented by a cubic spline specified by a set of waypoints defined in joint space.
Figure 3.8 visualizes how the reference path is described in the state. While the upcoming
part of the reference path is shown in light blue, other parts are shown in green. The red
cross serves as an indicator of the current progress along the reference path. To specify the
upcoming part of the reference path, a state includes the waypoint preceding the red cross
and N−1 subsequent waypoints. In addition, the path lengths lCurrent and lNext are part of
the state. To evaluate the proposed method, reference paths with different path character-
istics are used. One path of the dataset used for ball balancing is visualized in Figure 3.7.
Figure 3.9 shows paths from two additional datasets labeled as action dataset and target
point dataset. The paths of the action dataset are generated by selecting random actions
using the proposed action mapping. In contrast, the paths from the target point dataset
result from movements between randomly selected target points in Cartesian space. If ad-
ditional task objectives are taken into account, the state contains further sensor data. For
the ball balancing task, the state includes the current position and the initial position of
the ball relative to the plate. When keeping ARMAR-4 in balance, the state additionally
incorporates the position and the orientation of the robot’s pelvis.

Action space Since the proposed action mapping is used, an action at ∈ A is com-
posed of one scalar ∈ [-1,1] per controlled robot joint. In the experiments with the indus-
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Figure 3.10.: The reward of the path tracking task is a weighted sum of the reward compo-
nents RLength and RDeviation. When considering additional objectives such
as ball balancing, further components like RBall are added. The figure is
adapted from [78].

trial robot KUKA iiwa, all seven joints are actuated. With ARMAR-6, both arms and the
torso are controlled, resulting in a total of 17 actuated joints. For ARMAR-4, two different
configurations are evaluated. Without the additional objective to balance the robot, only
the upper body is controlled, leading to 18 actuated joints. With the balancing objective,
the upper body and the legs are actuated, resulting in a total of 30 controlled joints.

Reward function The reward function R is a weighted sum of a path length reward
RLength and a path deviation reward RDeviation:

R = α ·RLength + β ·RDeviation, (3.17)

where α and β are weighing factors. In order to consider additional task objectives like
ball balancing, further reward components like RBall can be added to the reward function:

R = α ·RLength + β ·RDeviation + γ ·RBall (3.18)

As shown in Figure 3.10, the computation of RLength, RDeviation, and RBall is based on
quadratic functions. The path length reward RLength at time step t depends on lPath, the
length of the path resulting from executing action at. In the reward calculation box in Fig-
ure 3.7, the reference path is shown in green and the path resulting from action at is shown
in red. As indicated, lPath is the length of the red path. Since the reference path should be
traversed quickly, the path length reward is higher if lPath increases. However, this only
applies as long as lPath is smaller than lNext, the length of the reference path included in
the state. At the end of a reference path, lNext is zero and the decreasing reward encour-
ages the robot to come to a stop. How sharply the reward decreases depends on lEnd, a
predefined parameter that remains constant during the training process. The path devi-
ation reward RDeviation ensures that the generated path stays close to the reference path.
As shown in Figure 3.10b, RDeviation depends on δPath, the average Euclidean distance
between waypoints sampled along the generated path and waypoints sampled along the
reference path. The higher δPath, the lower the path deviation reward. If δPath exceeds a
threshold δzero, the path deviation reward remains at zero. The ball balancing reward RBall

at time step t depends on dBall, the distance between the ball position at t+1 and the initial
ball position on the plate. As long as dBall is smaller than a threshold done, the reward is
one. If dBall exceeds dzero, the reward is zero. Between done and dzero, the reward gradually
decreases. For the balancing task with ARMAR-4, two additional reward components are
defined: The first component encourages the robot to keep an upright posture. To this
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3. Learning trajectories subject to kinematic joint constraints

Table 3.2.: Performance metrics of neural networks trained to track reference paths with-
out additional objectives. The evaluation is based on 1200 reference paths
per experiment using a separate test version of the datasets used for training.
Adapted from [78].

Experiment Trajectory Joint position deviation [rad] Cart. position deviation [cm]
duration [s] mean max final mean max final

KUKA iiwa
• Action dataset 4.28 0.11 0.19 0.09 3.3 7.5 2.7

• Target point dataset 4.99 0.12 0.21 0.12 3.7 8.1 3.8

• Ball balancing dataset 2.44 0.04 0.08 0.03 1.4 3.0 1.4

ARMAR-6
• Action dataset 4.98 0.14 0.20 0.16 5.5 13.6 6.2

ARMAR-4 (fixed base)
• Action dataset 5.09 0.14 0.20 0.14 3.3 7.8 3.5

• Target point dataset 5.48 0.14 0.21 0.15 3.6 8.8 3.8

end, the angle between the pelvis of the robot and the vertical z-axis is determined. Small
angles are rewarded as they indicate an upright posture. If the legs are used to stabilize
the robot, a second component is added, rewarding the robot for keeping a small distance
to its initial position with respect to the ground.

Termination During training, each episode ends after a predefined period of time.
However, an episode is terminated earlier if the path deviation δPath exceeds a thresh-
old value, if the ball falls off the plate, or if the bipedal robot ARMAR-4 falls to the
ground. Since early termination leads to a lower sum of rewards, the learning algorithm
tries to avoid the occurrence of these undesirable events.

Path tracking without additional objectives Table 3.2 shows various perfor-
mance metrics for neural networks trained to track reference paths without additional task
objectives. The experiments were carried out in the physics simulator PyBullet [30] using
a decision frequency fD of 10Hz. As indicated in Table 3.2, different datasets were used
for the training of the neural networks. To prevent overfitting, the reference paths used
for the evaluation were taken from a separate test version of the corresponding datasets.
When tracking reference paths, a low trajectory duration and a low average joint posi-
tion deviation are desired. For a better assessment of the results, Table 3.2 additionally
shows the corresponding position deviation in Cartesian space. For the industrial robot
KUKA iiwa, the reference point used for the conversion from joint space to Cartesian
space was the center of the last link. For the humanoid robots, the conversion was con-
ducted with respect to the tip of each hand. When training the KUKA iiwa robot using
the ball balancing dataset, N = 5 waypoints were included in the state. For all other
datasets, N was set to 9. The average Cartesian deviation between the generated paths
and the reference paths from the ball balancing dataset was 1.4 cm. Using the action
dataset and the target point dataset shown in Figure 3.9, an average Cartesian deviation
between 3 cm and 4 cm was obtained. In the experiments with ARMAR-4, only the upper
body was controlled and the base of the robot was fixed to prevent it from falling over.
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Table 3.3.: Performance metrics of the TOPP algorithm TOPP-RA [131]. Adapted
from [78].

Experiment Trajectory Relative trajectory Joint position deviation [rad]
duration [s] duration [%] max

KUKA iiwa
• Action dataset 3.36 78.5 < 0.001

• Target point dataset 3.79 76.0 < 0.001

• Ball balancing dataset 1.91 78.3 < 0.001

ARMAR-4 (fixed base)
• Action dataset 3.31 65.0 < 0.001

• Target point dataset 3.68 67.2 < 0.001

Table 3.4.: Training results for the task objective of maintaining balance with ARMAR-4
while tracking paths from the target point dataset. Adapted from [78].

Experiment Trajectory Balancing Cart. position deviation [cm]
duration [s] error [%] mean max

ARMAR-4 with fixed legs
• Without balancing objective 5.28 26.1 3.6 8.8

• With balancing objective 5.63 5.3 4.1 9.6

ARMAR-4 with controlled legs
• With balancing objective 5.59 0.8 4.2 9.8

The action dataset and the target point dataset for ARMAR-4 were generated accord-
ing to the same scheme as used for the industrial robot KUKA iiwa. Similarly to the
KUKA iiwa, an average Cartesian deviation between 3 cm and 4 cm was achieved.

Comparison with TOPP-RA For benchmarking purposes, the performance metrics
of the TOPP algorithm TOPP-RA [131] are provided in Table 3.3. The second column
shows the relative duration of the trajectories generated with TOPP-RA compared to those
produced by the neural networks. It can be seen that TOPP-RA achieves a faster traversal
of the reference paths. In addition, the tracking of the reference paths is very accurate.
However, in contrast to the proposed action mapping, TOPP-RA does not consider jerk
constraints. Moreover, TOPP-RA is an offline method, which means that the reference
path must be fully known in advance and that sensory feedback cannot be considered to
achieve additional task objectives.

Path tracking with a bipedal robot An example of an additional task objective
is balancing a bipedal robot. Table 3.4 shows the impact of the additional balancing
objective when training neural networks for ARMAR-4. In the first two experiments,
the joints of the legs are fixed. As indicated by the balancing error, the robot falls over
in 26.1% of all episodes when training a network without the balancing objective. When
an upright posture is rewarded, the balancing error reduces to 5.3%. On the other hand,
the average trajectory duration increases slightly. In a third experiment, the neural network
can additionally control the legs to stabilize the robot. As a result, the balancing error
decreases to 0.8%. Figure 3.11 illustrates the effect of the additional balancing objective
for one exemplary episode.
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Figure 3.11.: When tracking reference paths with the bipedal robot ARMAR-4, an addi-
tional balancing objective can be included in the reward function to prevent
the robot from falling over. The figure is adapted from [78].

Table 3.5.: Training results for balancing a ball on a plate with the industrial robot
KUKA iiwa using paths from the ball balancing dataset. Adapted from [78].

Experiment Trajectory Balancing Cart. position deviation [cm]
duration [s] error [%] mean max

KUKA iiwa
• Without balancing objective 2.24 100.0 1.4 3.0

• With balancing objective 2.99 0.3 2.3 4.9

Path tracking while balancing a ball As visualized in Figure 3.7, another addi-
tional task objective is to balance a ball on a plate attached to an industrial robot. Table 3.5
shows the training results obtained with and without including the balancing reward RBall

in the reward function. Without the additional balancing reward, the ball falls off the plate
in every episode used for the evaluation. When including the balancing reward in the
reward function, the balancing only fails in 0.3% of all episodes. In return, around 30%
more time is required to traverse the reference paths and the tracking accuracy decreases.

Sim-to-real transfer To demonstrate that trajectories can be generated in real time,
a real KUKA iiwa robot is used to perform a sim-to-real transfer for the ball balanc-
ing task. Figure 3.12 shows the resulting balancing performance when tracking a ref-
erence path with and without the additional balancing objective. The position of the
ball is detected by a resistive touchpad placed on top of a red plate. To prevent the
ball from falling to the ground, the plate is surrounded by a blue frame. When us-
ing a neural network trained without the balancing objective, the ball quickly touches
the frame. In contrast, a network trained with the additional balancing objective man-
ages to keep the ball close to its initial position on the plate. Figure 3.13 shows
how the data processing for a decision step t + 1 is executed when generating trajec-
tories in real time. Ideally, all calculations would be performed at time step t + 1.

56



3.5. Evaluation of the proposed action mapping

0.0 s 1.3 s 2.6 s 3.9 s t

(a) Without
balancing
objective

(b) With
balancing
objective

Figure 3.12.: A sim-to-real transfer for the path tracking task using a real KUKA iiwa
robot and a resistive touchpad to detect the position of the ball on the red
plate. Without the additional objective to balance the ball (a), the reference
path is traversed faster but the ball quickly leaves its initial position on the
plate. If the objective of balancing the ball is considered in the reward
function (b), the ball does not touch the blue frame of the plate. The figure
is adapted from [78].
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Figure 3.13.: The temporal order of the data processing required for decision step t + 1
when generating trajectories in real time. To achieve real-time capability,
∆tCalc must always be shorter than the time between t and t+1. The figure
is adapted from [76].

However, as computing power is limited, the data processing must be carried out in the
time between t and t + 1. This also means that sensor data for st+1 must be read out
slightly before t + 1. To ensure that the trajectory can be continued at t + 1, the time of
the data processing ∆tCalc must not exceed the time between decision steps ∆t. The com-
putational effort can be reduced by selecting a lower decision frequency fD. However, a
lower decision frequency also leads to a less granular control of the generated trajectory.

Table 3.6.: Analysis of the computational effort to simulate path tracking experiments
with different robots. Using an Intel i7-8700K as central processing unit
(CPU), 1200 episodes are simulated per experiment. For each episode, the
proportion between the computation time and the resulting trajectory duration
is calculated. The highest proportion of all episodes is specified in the table.
Adapted from [78].

KUKA iiwa ARMAR-6 ARMAR-4 with controlled legs

Computation time
Trajectory duration 7.50% 10.59% 34.97%
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(b) Adjusted trajectory without sensor feedback
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Figure 3.14.: In this example, a reference trajectory is adjusted to balance a ball on a
plate. As shown in (a), the ball falls off the plate when executing the ref-
erence trajectory. If the reference trajectory is adjusted without access to
the current ball position (b), the ball stays on the plate but starts to move
towards the edge. In contrast, a neural network having access to the ball po-
sition (c) manages to keep the ball close to its initial position on the plate.
The figure is adapted from [82].

Computational effort Based on the selected decision frequency of 10Hz, an analysis
of the computational effort is provided in Table 3.6. To this end, various path tracking
experiments are simulated and the proportion between the computation time and the du-
ration of the generated trajectories is calculated. As a result, the time required for the
simulations is considerably shorter than the duration of the simulated trajectories.

In conclusion, the proposed action mapping was successfully used to track refer-
ence paths. Suitable actions were generated based on neural networks trained via model-
free RL. The selected reward function encouraged a fast and precise traversal of the ref-
erence paths. In addition to these objectives, experiments with further balancing require-
ments were conducted. In particular, a bipedal robot was trained to avoid falling over
and an industrial robot was trained to balance a ball on a plate. A successful sim-to-real
transfer of the ball balancing task showed that trajectories can be generated in real time.

3.5.3. Adjusting reference trajectories

In a next step, the proposed action mapping is evaluated in the context of reference trajec-
tories. Compared to reference paths, reference trajectories additionally specify the desired
timing of a movement. When provided with a reference trajectory, the learning goal is to
generate a slightly adjusted trajectory that satisfies additional task constraints. For the
following evaluation, the additional objective is to balance a ball on a plate. Figure 3.14
visualizes the execution of a reference trajectory and two adjusted trajectories. When ex-
ecuting the reference trajectory (a), the ball falls off the plate. The adjusted trajectory
shown in (b) is generated by a neural network that receives no feedback about the move-
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Figure 3.15.: The procedure to generate reference trajectories for the ball balancing task.
The figure is adapted from [82].

ments of the ball. In this case, the ball does not fall to the ground but moves towards the
edge of the plate. The network used to produce the trajectory shown in (c) has access to
the current ball position. Due to this sensor feedback, the ball can be kept close to its ini-
tial position on the plate. This example demonstrates the importance of sensor feedback,
which can only be incorporated when computing trajectories during motion execution.

Generation of reference trajectories The procedure to generate reference trajec-
tories for the ball-on-plate task is illustrated in Figure 3.15. First, three random Cartesian
waypoints are selected from predefined areas around the robot base. Next, a spline in-
terpolation is performed to calculate a smooth Cartesian path connecting the waypoints.
While the path indicates the desired Cartesian positions of the plate, the orientations are
selected so that the top side of the plate is aligned horizontally. Using an inverse kine-
matics solver provided by PyBullet [30], the Cartesian positions and orientations are con-
verted to joint space. Next, a time parameterization is computed using a TOPP algorithm
proposed by Kunz and Stilman [89]. To ensure a certain degree of flexibility when ad-
justing the resulting reference trajectory, the velocity and acceleration limits for the time
parameterization are set below the maximum values of the robot. Finally, position val-
ues φref are sampled from the reference trajectory at uniform time intervals ∆t. The time
interval ∆t corresponds to the duration between the decision steps when adjusting the
reference trajectory. Thus, a reference position φreft can be provided for every time step t.
The computed reference positions are either assigned to a training dataset, which is used
for the training of neural networks, or to a test dataset, which is used for evaluation.

Markov decision process The Markov decision process (S,A, P, R, γ) that is
used to adjust reference trajectories is similar to the one defined for tracking ref-
erence paths. A state st ∈ S contains the kinematic state of each robot joint
(φdt , φ̇dt , φ̈dt), the current ball position, and the initial ball position with respect to
the plate. To provide information on the reference trajectory, st additionally includes
φreft+1 , the reference position at t + 1. Using the proposed action mapping, an ac-
tion at ∈ A consists of one scalar ∈ [-1,1] per robot joint. Since the 7-DOF
robot KUKA iiwa is used for the experiments, each action is a seven-dimensional
vector. The reward function R is based on two main components RBall and RRef .
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Table 3.7.: Training results when adjusting reference trajectories to balance a ball on a
plate. If the ball deviates more than 6 cm from its initial position, the execu-
tion of a trajectory is aborted. The first column indicates the proportion of
trajectories without such a balancing error. In the second column, the part
of a trajectory traversed before a balancing error is specified. The third col-
umn shows the average distance between the ball and its initial position on
the plate. In simulation, the evaluation is based on 10 000 trajectories from
the test dataset. For the experiment with a real robot, 50 trajectories with
5 different initial ball positions were carried out. Adapted from [82].

Experiment Trajectories without Trajectory part Average distance to
balancing error [%] before error [%] initial ball position [cm]

Simulated KUKA iiwa
• Reference trajectories 0.3 22.1 −
• Without sensor feedback

- during evaluation 34.3 73.0 2.4

- during training and evaluation 61.7 91.7 1.6

• With sensor feedback 98.6 99.7 1.2

Real KUKA iiwa
• With sensor feedback 82.0 96.1 1.7

While RBall encourages the robot to balance the ball, RRef makes sure that the position
setpoint φdt+1 resulting from action at is close to the reference position φreft+1 . The defi-
nition of RBall is the same as that used for the path tracking task shown in Figure 3.10 (c).
For the reference reward RRef , the deviation ∆φt+1 between φreft+1 and φdt+1 is computed
as follows:

∆φt+1 = φreft+1 − φdt+1 (3.19)

Next, the highest deviation of all joints is determined and denoted as ∆φt+1,max:

∆φt+1,max = max
i∈{1,...,7}

|∆φt+1, i| (3.20)

The function for determining RRef has the same form as the function for RBall, depicted
in Figure 3.10 (c). However, the distances dBall, done, and dzero are substituted by the
deviations ∆φt+1,max, ∆φone, and ∆φzero, respectively. During training, an episode is
terminated if dBall exceeds dzero or if ∆φt+1,max exceeds ∆φzero.

Evaluation of the balancing performance Table 3.7 shows a quantitative anal-
ysis of the balancing performance for various scenarios. For all experiments, a deci-
sion frequency fD of 20Hz was used. The distances done and dzero were set to 2 cm
and 6 cm, while the deviations ∆φone and ∆φzero were chosen to be 2◦ and 8◦. The
first experiments were conducted in a simulation environment using 10 000 reference
trajectories from the test dataset. When executing the reference trajectories without
adjustments, the balancing of the ball failed in 99.7% of all cases. On average, the
ball distance dBall exceeded dzero after executing the first 22% of a reference trajectory.
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Figure 3.16.: The position of Joint 1 during the first two seconds of an exemplary tra-
jectory executed in simulation and with a real KUKA iiwa robot. In both
cases, the same neural network is used to generate the trajectory. It can be
seen that the position setpoints φd lie close to the reference positions φref .
In addition, the time delay between the setpoints φd and the actual values φ
is similar for the simulated robot and the real robot. Around t = 1.0 s, the
deviation between the reference trajectory and the generated trajectory is
slightly higher when using the real robot. This discrepancy can be attributed
to differences in the movement of the simulated ball and the real ball. The
figure is adapted from [82].

In contrast, a neural network trained to adjust the reference trajectories was able to balance
the ball in 98.6% of all cases if the current ball position was provided as sensor feedback.
Two additional experiments were conducted to evaluate the impact of having access to the
current ball position. In the first experiment, the network used to generate the adjusted
trajectories was trained with access to the ball position. However, during evaluation, the
ball position was not updated. As a result, the rate of successful trajectories dropped from
98.6% to 34.3%. Thus, it can be concluded that the current ball position is an impor-
tant input signal for the neural network. The second experiment was conducted using
a network that was trained without access to sensor feedback. In this case, the rate of
successful trajectories increased to 61.7%, but still remained far below the rate achieved
when using sensor feedback. To analyze the impact of a sim-to-real transfer, a network
trained in simulation was used to control a real KUKA iiwa robot. Using the same experi-
mental setup as shown in Figure 3.12, a total of 50 trajectories were executed. The current
ball position was detected by a resistive touchpad placed on top of the plate. For the quan-
titative analysis, five different initial ball positions were selected. More precisely, the ball
was placed either in the center of the plate or at one of the four yellow spots shown in
Figure 3.18. Under these testing conditions, the ball was successfully balanced in 82.0%
of all cases. Therefore, it can be concluded that a network trained in simulation can also
be used to control a real robot. However, compared to the results achieved in simulation,
the sim-to-real transfer led to a certain decrease in performance.
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Figure 3.17.: The average absolute position deviation between a reference trajectory and
the corresponding adjusted trajectory evaluated based on 50 episodes. All
experiments were conducted using the same neural network. During train-
ing, the network had access to the current ball position. The figure is
adapted from [82].

Comparison between simulated and real trajectories To further analyze the
differences between the simulation and the real robot, Figure 3.16 shows the first two sec-
onds of an adjusted trajectory for one exemplary joint. It can be seen that the time delay
between the position setpoints φd and the actual values φ is similar for the simulation and
the real robot. While in both scenarios, the position setpoints φd closely align with the
reference positions φref , a slightly higher deviation can be observed when using the real
robot. A quantitative analysis of the deviation between the position setpoints φd and the
reference positions φref is shown in Figure 3.17. During the training phase, the reference
reward RRef starts to decrease if the position deviation ∆φt+1,max exceeds ∆φone = 2◦.
As a result, the average position deviation in simulation remains below 2◦ for all joints.
However, when using a real robot, the deviation increases for most of the joints. This ob-
servation can be attributed to slight differences in the movement of the real ball compared
to the simulated ball.

Robustness of the balancing policy The real-world experiments analyzed so far
were carried out using a glass marble depicted in Figure 3.12. To investigate the robust-
ness of the balancing policy, further real-world experiments were conducted. As shown in
Figure 3.18, a neural network with access to the current ball position was able to balance
different balls varying in terms of their size, mass, and material. During the training phase
of the neural network, the learning of a robust policy was encouraged by selecting several
parameters of the simulated ball in a randomized manner.
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(a) Reference
trajectory

(b) Adjusted
trajectory

Figure 3.18.: The position of three different balls one second after starting the execution
of a reference trajectory (a) and the corresponding adjusted trajectory (b).
Although the balls vary in terms of their size, mass, and material, a neural
network having access to the current ball position is able to keep all balls
close to their initial position at the center of the plate.

In summary, the evaluation showed that neural networks can be effectively trained
to adjust reference trajectories. A quantitative analysis conducted for a ball-on-plate task
demonstrated the importance of sensory feedback during motion execution. By perform-
ing experiments with a real KUKA robot, the impact of a sim-to-real transfer was in-
vestigated. It was shown that a neural network trained in simulation could also be used
to balance a ball with a real robot, albeit with a slight decrease in performance. Addi-
tional real-world experiments highlighted the robustness of the balancing policy across
variations in the size, mass, and material of the ball selected for evaluation.

3.6. Summary

This chapter introduced a method for learning robot trajectories under consideration of
kinematic joint constraints. More specifically, the actions of a reinforcement learning
agent were translated into trajectories that adhered to predefined position, velocity, ac-
celeration, and jerk limits. To this end, an upper and a lower trajectory were introduced.
Both trajectories were assumed to comply with the kinematic constraints. As a result, an
action of an RL agent could be used to specify an intermediate trajectory that also ad-
hered to the kinematic constraints. The jerk between decision steps was assumed to be
constant. Therefore, the problem of finding an upper and a lower trajectory was simpli-
fied to determining a range of feasible accelerations for the upcoming discrete time step.
By employing concepts related to the generation of time-optimal trajectories, analytical
equations to compute the desired range of accelerations could be derived.

The action mapping presented was evaluated based on three different robot tasks
learned using model-free RL. First, an industrial robot was trained to generate movements
that maximize the average joint velocity over time. As desired, the generated trajecto-
ries fully utilized the kinematic capabilities of the robot joints without exceeding them.
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3. Learning trajectories subject to kinematic joint constraints

The evaluation also highlighted the advantages of the proposed method over penalties,
which had a negative impact on the learning performance and did not strictly prevent
violations of the kinematic limits.

Subsequently, the evaluation was extended to tasks requiring a temporal coordination
between the robot joints. In particular, the proposed method was successfully employed to
track reference paths with an industrial robot and two humanoid robots. As the trajectories
were generated online, it was possible to consider additional objectives that required ac-
cess to sensory feedback. For example, a bipedal robot could be trained to track reference
paths without falling over. In this case, a total of 30 robot joints were controlled simul-
taneously, demonstrating that the proposed method can be applied to complex robotic
systems. Similarly, an industrial robot was trained to additionally balance a ball on a
plate. For this task, a neural network trained in simulation was successfully transferred to
a real KUKA robot, showing that trajectories can be generated in real time.

In addition to tracking reference paths, the action mapping was also used to adjust
reference trajectories. The evaluation for a ball balancing task further emphasized the
importance of sensory feedback. To investigate the impact of a sim-to-real transfer, a
quantitative analysis was conducted. While the simulation led to a success rate of 98.6%,
the real robot managed to balance the ball in 82.0% of all cases. As a result, the impact
of the sim-to-real transfer on the task performance was limited.
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4. Avoiding safety violations based
on background simulations

The previous chapter introduced an approach for learning robot trajectories subject to
kinematic joint constraints. In this chapter, the approach is extended by integrating fur-
ther safety constraints into the learning process. While the main focus is on collision
avoidance, the presented concept can also be applied to other safety constraints, such as
torque limits. As in the previous chapter, the learning of robot trajectories is based on
a Markov decision process (MDP). Actions for the MDP are generated by a neural net-
work. The action mapping presented in section 3.3 is used to ensure compliance with the
kinematic joint constraints. In order to consider further safety constraints, a background
simulation and a backup policy are introduced. While the background simulation is per-
formed to check if an action from the neural network can be safely executed, the backup
policy provides an alternative action if the safety check fails.

In general, the backup policy can either be specified manually or learned from data.
First, a scenario is analyzed in which the backup policy is predefined. More precisely, the
backup policy involves calculating a braking trajectory that leads all robot joints to a com-
plete stop. This particular scenario was initially described in [77]. Based on experiments
with a humanoid robot and up to three industrial robots, it is shown that collisions can be
completely avoided if the robots are firmly connected to the ground and surrounded by
stationary obstacles only.

Next, the more general case of learning a backup policy is examined. In particular,
an industrial robot is trained to actively avoid moving obstacles via model-free RL. The
method was initially presented in [83] and is evaluated using three different environments,
including a human-robot scenario, in which the human moves stochastically. As a result,
the proposed method effectively reduces the occurrence of collisions. While the computa-
tional effort of background simulations is relatively high, a significantly faster data-based
extension is introduced in chapter 5.

4.1. Problem description

Based on the framework of an MDP (S,A, P, R, γ), robot trajectories are learned using
model-free RL. As in chapter 3, all trajectories must comply with the kinematic joint
constraints given by the equations (3.1) - (3.4). During and after the training process of
a task policy πT , additional safety constraints should be taken into account by utilizing a
backup policy πB. The backup policy πB should be deterministic and task-independent.
In particular, it should not depend on the current task policy πT .

At each decision step t, the task policy is invoked to determine an action aTt . However,
action aTt is only executed if it passes a safety check. The safety check is based on a
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4. Avoiding safety violations based on background simulations

background simulation conducted in a physics simulator. If the safety check fails, the
backup policy is used to provide an alternative action aBt :

at =

{
aTt if aTt passes a safety check
aBt otherwise

(4.1)

Executing aBt instead of aTt does not lead to safety violations provided that certain
conditions are met. Further details on the conditions are given in section 4.4. The backup
policy πB can be specified manually or learned from data. Section 4.5 introduces the
concept of utilizing braking trajectories as a backup policy. Braking trajectories are par-
ticularly suited for environments without moving obstacles and for robots that cannot lose
their balance. As a safety constraint, self-collisions and collisions with static obstacles
should be avoided. For this purpose, the minimum distance between two robot links dself
and the minimum distance between a robot link and a static obstacle dstatic must exceed
predefined safety distances:

dself > dsafetyself (4.2)
dstatic > dsafetystatic (4.3)

In addition, the torque τ of each robot joint can be limited:

τmin ≤ τ ≤ τmax (4.4)

Section 4.6 introduces the more general case of learning a backup policy via model-
free RL. In the presented example, the backup policy is trained to avoid self-collisions,
collisions with static obstacles, and collisions with moving obstacles. To this end, the
minimum distance between a robot link and a moving obstacle is denoted as dmoving and
the desired safety distance is denoted as dsafetymoving

. Building on these definitions, the
following additional safety constraint is specified:

dmoving > dsafetymoving
(4.5)

A discussion on incorporating further safety constraints can be found in chapter 6.

4.2. Relation to previous studies

As outlined in section 2.2.2.2, the general concept of using backup policies to prevent
safety violations has been employed in various application domains. For instance, Hans
et al. [54] used a backup policy to avoid undesirable side effects when learning to control a
gas turbine. Similarly, Garcia and Fernández [43] employed backup policies to learn tasks
like pole balancing and car parking. In the field of robotics, Yang et al. [186] utilized a
backup policy to stabilize a quadruped robot, while Thananjeyan et al. [167] made use of
backup policies to avoid safety violations when learning two-dimensional navigation and
manipulation tasks.

The presented approach differs from previous studies in three key aspects:

• First, backup policies are used to learn safely executable trajectories for industrial
robots and humanoid robots in joint space. Especially in multi-robot scenarios, this
involves controlling a large number of joints simultaneously.
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As illustrated in (b),
action aTt does not pass
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(a) In order to avoid safety violations, an action aBt from a backup policy πB is executed
if an action aTt from a task policy πT does not pass a safety check.

(b) The safety check is based on a background simulation conducted in a physics simu-
lator. In this example, the safety check fails as the ball collides with the robot.

Figure 4.1.: The concept of avoiding safety violations based on a backup policy and a
background simulation shown for one exemplary time step t. In this setting,
the robot must avoid a collision with a red ball that is thrown in its direction.
The figure is adapted from [83].

• Second, the proposed approach ensures that the kinematic constraints of the robot
joints are respected, regardless of whether the task policy or the backup policy is
executed. For this reason, it is possible to learn fast robot movements without ex-
ceeding the kinematic limits of the robot joints.

• Third, a background simulation is performed to determine whether the task policy
or the backup policy is executed. As a result, conditions can be derived under which
safety violations can be entirely prevented.

In this chapter, it is shown that braking trajectories can be used to learn collision-free tra-
jectories in environments without moving obstacles. This particular result was inspired by
general safety criteria for robot motions outlined in [40] and the idea of utilizing braking
trajectories as a fallback strategy proposed in [141].

4.3. Basic principle

Using model-free RL, trajectories for a robot task are learned based on the framework of
an MDP (S,A, P, R, γ). Specifically, a task policy πT is trained to generate actions that
maximize the expected sum of future rewards. The task policy is represented by a neural
network. At the beginning of a training process, the neural network typically generates
random actions. In order to avoid potential safety violations when following the task
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Figure 4.2.: In this example, the safety check for action aTt at time step t fails as a collision
is detected during the background simulation. However, the action aBt from
the backup policy can be safely executed as it was checked for collisions
during the background simulation conducted at time step t− 1. The figure is
adapted from [83].

policy, a backup policy πB and the concept of background simulations are introduced.
Figure 4.1 illustrates the basic principle of the approach for one exemplary time step t.
Based on the current state st, the task policy πT generates an action aTt . As shown in
Figure 4.1 (a), action aTt is only executed if it passes a safety check based on a background
simulation. Otherwise, it is replaced by an action aBt from the backup policy πB. The
implementation of the background simulation is visualized in Figure 4.1 (b). Starting
from state st, the execution of action aTt is simulated. Subsequently, up to N further time
steps are simulated using actions generated by the backup policy. If no safety violation is
detected, the safety check is considered as passed. In this particular example, the robot
collides with the red ball during the background simulation. Thus, the safety check is
considered failed and the backup action aBt is executed.

In cases like this, it is assumed that the backup action can be executed safely. This
assumption is based on the idea that the backup action has already been checked for safety
violations during a background simulation conducted at an earlier time step. Figure 4.2
illustrates this idea for the previously discussed example. In this example, a collision is
detected during the background simulation at time step t, so that the backup action aBt is
executed. However, the figure additionally shows that the execution of aBt was already
simulated at time step t−1. Since no safety violation was detected during this background
simulation, executing aBt is considered safe. In the following section, conditions are de-
rived under which the assumption that the backup action can be safely executed holds true.

4.4. Safety conditions

The presented strategy for avoiding safety violations is based on two main assumptions:

• First, potentially unsafe actions of the task policy are detected. Specifically, an
action of the task policy is considered unsafe if a subsequent execution of the backup
policy leads to a safety violation.

• Second, if an action of the task policy is considered unsafe, an alternative action
from the backup policy can be executed safely.
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(a) The background simulation assumes a different temporal development of the environment.

(b) The time horizon of the background simulation is too short.

(c) The initial state of the environment is not safe.

Figure 4.3.: Failure causes when using background simulations to avoid safety violations.
The figure is adapted from [83].
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4. Avoiding safety violations based on background simulations

In this section, conditions are derived under which the above assumptions can be met. The
conditions are divided into three categories, which are described in detail below. For each
of these categories, Figure 4.3 shows how non-compliance can result in a safety violation.

Predictability of the environment As an important prerequisite, the background
simulation must accurately reflect the actual temporal development of the environment.
This requirement encompasses two main aspects:

• First, the physics simulation must be accurate. This involves accurate models of the
robot and the environment as well as a proper consideration of all relevant physical
effects. In practice, the requirement can be relaxed by introducing safety margins.
For example, the background simulation may already indicate a collision if the dis-
tance between two objects falls below a predefined safety distance. In this way,
inaccuracies in the physics simulation can be tolerated to a certain extent.

• Second, future developments must be predictable. In particular, all parts of the
environment that are relevant for adhering to the safety constraints must exhibit
deterministic behavior.

Figure 4.3 shows an environment in which a robot is supposed to avoid collisions with a
ball thrown in its direction. Every time the ball misses the robot, a new ball is thrown from
a random direction. Since the direction of the new ball is not known in advance, the future
development of the environment cannot be exactly predicted. If a random ball direction
is selected during the background simulation, an action of the task policy might be incor-
rectly classified as safe, which might result in a collision. This particular failure cause is
illustrated in Figure 4.3 (a). One approach to deal with the non-deterministic nature of
the environment is to conduct a large number of background simulations assuming dif-
ferent ball directions. This enables a probabilistic assessment of the risk associated with
a particular action of the task policy. However, as the computational effort required for
the background simulations is high, a more efficient data-based approach for stochastic
environments is presented in chapter 5.

Time horizon of the background simulation A background simulation conducted
at time step t involves the transition from t to t + 1, followed by N additional state
transitions where the backup policy is used to determine actions. The time horizon of
the background simulation is defined as the time span N · ∆t, where ∆t is the time
interval between two subsequent states. For the sake of simplicity, the constant time
interval ∆t can be omitted when referring to the time horizon. On the one hand, the time
horizon should be long enough to detect potential safety violations. On the other hand,
the computational effort of the background simulation increases with the selected time
horizon.

Fraichard [40] introduced general safety criteria that must be met to ensure motion
safety. Specifically, the time horizon under consideration should either be infinite or at
least encompass the duration needed to reach a safe goal state. While infinite time hori-
zons cannot be realized when using a physics simulator, the backup policy can guide the
robot to a safe goal state under certain conditions. Assuming that no further safety viola-
tions can occur once the robot is at a standstill, section 4.5 introduces the use of braking
trajectories as a backup policy. In this particular case, the time horizon corresponds to the
time required to bring the robot to a complete stop.
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Depending on the environment, however, safety violations might occur even if the
robot joints do not move. One example is the environment shown in Figure 4.3, where
balls are thrown in the direction of the robot. If the backup policy does not lead to a safe
goal state, a constant time horizon N can be selected. Assuming that no safety violation
is detected during a background simulation, it is considered safe to use the backup policy
for the following N decision steps. When using the backup policy more than N times
in a row, safety violations might occur as the time horizon of the background simulation
is exceeded. Therefore, a background simulation without any safety violation must take
place at least every N+1 time steps. This corresponds to the condition that an action from
the task network must be selected at least every N+1 time steps. Figure 4.3 (b) illustrates
a scenario in which the time horizon is set to N = 2. Due to the short time horizon,
potential collisions might be detected too late to avoid them. In the specific example, a
collision occurs after using the backup policy more than two times in a row.

Initialization of the environment As an additional condition, the environment must
be initialized in a safe state. A state is considered safe if no safety violation is detected
during an initial background simulation. In contrast to the regular background simulation,
the initial background simulation only covers the execution of the backup policy for the
selected time horizon. Figure 4.3 (c) shows an example, in which a collision occurs as
the environment is initialized in an unsafe state. This type of failure can be prevented
by initializing the environment in a state where an initial background simulation does not
detect any safety violation.

4.5. Using braking trajectories as a backup policy

In this section, the backup policy πB is supposed to provide actions that slow down the
robot joints and finally bring the robot to a complete stop. The use of braking trajectories
is motivated by the idea that a standstill of the robot can be regarded as a safe goal state
under certain conditions. In this thesis, a stationary state of the robot joints is assumed to
be safe if there are no moving obstacles in the environment and if a stable base prevents
the robot from falling over.

With these assumptions in place, the safety conditions outlined in section 4.4 are re-
visited. As one of the requirements, the robot must be initialized in a safe state. Since
a robot is usually started from standstill, it is considered safe to select any initial robot
position that does not immediately lead to a safety violation. Specifying the time horizon
of the background simulation is also straightforward, as it corresponds to the time re-
quired to slow down all robot joints. Another important aspect is the predictability of the
environment. In the scenario under consideration, the calculation of braking trajectories
solely depends on the kinematic state of the robot joints. As a result, it is relatively easy to
determine the robot trajectory to be performed during the background simulation. In ad-
dition, the detection of potential safety violations is simplified by the absence of moving
obstacles.

This thesis investigates the use of braking trajectories to prevent self-collisions and
collisions with stationary obstacles. In addition, torque limits can be taken into account.
Figure 4.4 shows a scenario in which self-collisions need to be avoided when performing
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Figure 4.4.: Two exemplary time steps with the humanoid robot ARMAR-6 when using
braking trajectories to avoid self-collisions. At time step t, action aTt is ex-
ecuted because no collision is detected during a background simulation. In
contrast, a collision is detected at time step t+1. The resulting braking trajec-
tory leads to the state marked by a light blue frame, which is regarded as safe.
The figure is adapted from [77].

movements with the humanoid robot ARMAR-6. As visualized, the task policy is repre-
sented by a neural network that is trained via reinforcement learning. At time step t, no
collision is detected during a background simulation. Consequently, an action provided
by the task policy is executed. In contrast, the hands of the robot collide during the back-
ground simulation conducted at time step t+1. Therefore, the backup policy is used to
slow down the robot joints. Using the backup policy is considered safe, as the resulting
braking trajectory was checked for collisions during the background simulation at time
step t. In the following, it is explained how the braking trajectories are computed and
how the safety checks are conducted. Subsequently, the proposed approach is evaluated
by learning a variety of reaching tasks with multiple robots.

4.5.1. Computation of braking trajectories

At each time step t, the backup policy πB can be invoked to generate an action aBt that
slows down the robot joints. The resulting braking trajectory must bring the robot to a full
stop after a number of time steps and must not violate the kinematic limits of the robot
joints. In theory, these conditions can be met by different braking trajectories. However,
since the computational effort of the background simulation depends on the duration of the
braking process, a time-optimized braking trajectory is preferred. To this end, additional
acceleration and jerk limits for the braking process are introduced:

amin, brake ≤ φ̈d ≤ amax, brake (4.6)
jmin, brake ≤ ...

φ d ≤ jmax, brake (4.7)

These limits must be less than or equal to the kinematic constraints defined in equation
(3.3) and (3.4). The desired braking trajectories should reach the kinematic target state
(vT = 0, aT = 0) at a discrete time step. To this end, a suitable braking acceleration
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at+1brake is calculated at each time step t. In section 3.4, the computation of at+1max, v was
explained. When setting at+1 to at+1max, v , the velocity limit vmax is eventually reached
at an acceleration of zero. Assuming that the initial velocity vt is negative, the braking
acceleration at+1brake can be computed in a similar manner. Specifically, the velocity limit
vmax is set to zero, while the considered acceleration and jerk limits are taken from equa-
tion (4.6) and (4.7). If the initial velocity is positive, at+1brake is computed analogously
by assuming the velocity limit vmin to be zero. To ensure that the resulting braking tra-
jectory does not violate the position or velocity limits defined in equation (3.1) and (3.2),
at+1brake is clipped if it exceeds the range of valid accelerations [at+1min

, at+1max]. Based
on at+1brake , the backup action aBt can be calculated as follows:

aBt = 2 · at+1brake − at+1min

at+1max − at+1min

− 1 (4.8)

Knowing aBt , a braking trajectory from t to t + 1 can be computed. By repeating the
procedure described above, the braking trajectory is extended until all robot joints are
brought to a complete stop.

4.5.2. Detection of safety violations

To detect potential safety violations, a background simulation is conducted. In this thesis,
the background simulation is performed by the physics simulator PyBullet [30]. The sim-
ulation is carried out in discrete time steps using a predefined frequency fS . Typically, the
simulation frequency fS is significantly higher than the decision frequency of the Markov
decision process fD. After each simulation step, the physics simulator provides access to
a wide range of data that can be used to check whether safety constraints are violated. For
example, the torque applied to each robot joint can be read out. If one of the torque values
exceeds the permitted operating range, the background simulation is aborted and a torque
limit violation is reported. Similarly, it is possible to detect whether a collision occurred
during the last simulation step. In addition, PyBullet offers a function to determine the
minimum distance between two objects. This way, it is possible to report a safety vio-
lation if the minimum distance between certain objects is smaller than a specified safety
distance. To this end, relevant object pairs are defined in advance. More precisely, a link-
link pair is defined to avoid collisions between two robot links. Similarly, an obstacle-link
pair is specified to ensure a minimum distance between an obstacle and a robot link.
To reduce the computational effort, the frequency of the distance calculations fC can be
set lower than the simulation frequency fS . In addition, the minimum distances can be
checked with respect to the position setpoints rather than the actual values. While both
measures lead to a certain degree of inaccuracy, collisions are still avoided if the safety
distance is specified appropriately.

4.5.3. Evaluation

The use of braking trajectories as a backup policy is evaluated by learning reaching tasks
in four different environments. This includes an environment with the humanoid robot
ARMAR-6 depicted in Figure 4.4 and three environments with the industrial robot KUKA
iiwa shown in Figure 4.5. Further characteristics for each environment are listed in Ta-
ble 4.1. The environment with a single industrial robot shown in Figure 4.5 (a) is used to
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(a) One industrial robot (b) Two industrial robots (c) Three industrial robots

Figure 4.5.: Three environments with the industrial robot KUKA iiwa used to evaluate
the avoidance of safety violations by simulating braking trajectories.

Table 4.1.: Properties of the environments used for evaluation. Adapted from [77].

Environment DOF Obstacles Obstacle-link pairs Link-link pairs

• One industrial robot 7 6 36 0
• Two industrial robots 14 1 12 72
• Three industrial robots 21 1 18 216
• Humanoid ARMAR-6 17 1 2 151

evaluate the impact of static obstacles. Specifically, the robot has to avoid collisions with
a table, a monitor, and four virtual walls that serve as workspace barriers. In the environ-
ments with two and three industrial robots shown in Figure 4.5 (b) and (c), the focus is on
avoiding collisions between the robots. The only static obstacle that needs to be consid-
ered is the table. Since the robots are controlled as a single unit, collisions between the
robots can be treated as self-collisions. Similarly, self-collisions are the primary focus of
the environment featuring the humanoid robot ARMAR-6, shown in Figure 4.4. In addi-
tion, potential collisions between the robot hands and the floor are taken into account. For
each environment, the number of obstacle-link pairs and link-link pairs defined to avoid
collisions is given in Table 4.1. In order to save computing time, only object pairs that can
collide are taken into consideration.

Task description As part of the evaluation, several reaching tasks are learned using
model-free RL. Specifically, the robots are trained to reach as many randomly positioned
target points as possible within a certain period of time. In the environments with in-
dustrial robots, the target points must be touched by the last robot link highlighted in
Figure 4.5. When using ARMAR-6, the tips of the robot hands fulfill this purpose. The
evaluation includes the following three options to assign target points to the robot arms:

• Single target point: At any point in time, there is a single target point. Each of the
robot arms can be used to reach the target point.

• Alternating target points: At any point in time, there is a single target point that is
assigned to one specific robot arm. The assignment of the target points to the robot
arms follows a fixed order.

• Simultaneous target points: At any point in time, there is one target point per
robot arm. Each of the target points is assigned to one specific robot arm.
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Table 4.2.: Performance metrics of random agents when avoiding collisions by perform-
ing background simulations. The safety distances dsafetyself and dsafetystatic were
set to 1.0 cm. To obtain the results, 900 episodes with a duration of 8 seconds
were simulated. Adapted from [77].

Environment Target points per second Closest distance Action adjustment rate

One industrial robot
• single target point 0.008 0.93 cm 12.9%

Two industrial robots
• alternating target points 0.005 0.93 cm 8.1%

• simultaneous target points 0.011 0.91 cm 8.1%

Three industrial robots
• alternating target points 0.005 0.91 cm 18.6%

• simultaneous target points 0.013 0.82 cm 18.4%

ARMAR-6
• single target point 0.008 0.60 cm 5.6%

• alternating target points 0.003 0.46 cm 5.5%

• simultaneous target points 0.006 0.79 cm 5.4%

State space In order to learn the reaching tasks via model-free RL, a Markov decision
process (S,A, P, R, γ) is defined. A state st ∈ S includes the current kinematic state of
each robot joint (φdt , φ̇dt , φ̈dt). In addition, information about the target points is pro-
vided. Specifically, the state contains the Cartesian position of each target point, as well
as the positional deviation between the target points and the robot arms to which the target
points are assigned. In environments without moving obstacles, the state does not include
additional information about the obstacles. Instead, the presence of static obstacles is
learned through interaction with the environment.

Action space Analogous to the other evaluation tasks described so far, trajectories
are generated using the action mapping presented in chapter 3. Consequently, an action
at ∈ A consists of one scalar ∈ [-1,1] per robot joint. The number of controlled robot
joints per environment is specified in Table 4.1.

Reward function The reward function R is a sum of target point rewards RTk
com-

puted for each active target point k, with K being the total number of active target points:

R =
K∑
k=1

RTk
(4.9)

At each time step t, the target point rewards RTk
are computed as follows:

RTk
=

dkt − dkt+1

dkinit
, (4.10)

where dkt and dkt+1 are the distances between a target point k and its associated robot arm
at time step t and t+1, respectively. If a target point is assigned to multiple robot arms, the
distances are calculated with respect to the robot arm that is the closest to the target point.
The distance dkinit refers to the initial distance at the time the target point was selected.
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Table 4.3.: Performance metrics of agents trained to reach target points using RL. Col-
lisions were avoided by performing background simulations. The safety dis-
tances dsafetyself and dsafetystatic were set to 1.0 cm. To obtain the results, 900
episodes with a duration of 8 seconds were simulated. Adapted from [77].

Environment Target points per second Closest Action
All arms Arm 1 Arm 2 Arm 3 distance adjustment rate

One industrial robot
• single target point 1.11 1.11 – – 0.88 cm 1.6%

Two industrial robots
• alternating target points 1.05 0.52 0.53 – 0.65 cm 2.3%

• simultaneous target points 1.31 0.26 1.05 – 0.62 cm 3.1%

Three industrial robots
• alternating target points 0.63 0.21 0.21 0.21 0.71 cm 5.1%

• simultaneous target points 0.72 0.56 0.03 0.13 0.72 cm 17.2%

ARMAR-6
• single target point 1.63 0.79 0.84 – 0.95 cm 1.7%

• alternating target points 1.55 0.78 0.77 – 0.62 cm 1.7%

• simultaneous target points 2.20 0.98 1.22 – 0.21 cm 7.0%

Initialization When initializing the environment, the robot is placed at a random
collision-free position. The initial velocity and acceleration of the robot joints is
set to zero. To specify the position of a target point, a random collision-free robot po-
sition is determined. Subsequently, the target point is positioned in a way that the robot
at the randomly selected position would touch it. This procedure ensures that the target
point is located within the operating range of the robot. Once a target point is reached, a
new one is selected.

Collision avoidance Table 4.2 shows the performance of random agents when using
braking trajectories to avoid collisions. For the experiments, a decision frequency fD of
10Hz is selected. The safety distances dsafetyself and dsafetystatic are set to 1.0 cm. During
the background simulation, collisions are checked at a rate of 100Hz. Whether a target
point is reached and whether a collision occurs is determined based on the generated
trajectory setpoints. Table 4.2 shows that random agents hardly ever reach a target point.
The closest distance to a collision, however, is always greater than zero. Consequently,
self-collisions and collisions with static obstacles are completely prevented. It can also
be seen that the closest distances are slightly smaller than the specified safety distances.
This is due to the fact that the closest distances are determined with respect to the actual
positions rather than the position setpoints. Moreover, the closest distance is computed at
a frequency of 240Hz, while the collision checks during the background simulation are
conducted at a rate of 100Hz. The action adjustment rate in the third column indicates
the percentage of actions that are replaced by actions from the backup policy. The rate
depends on the environment and the current task policy and can be regarded as an indicator
of the degree of difficulty in complying with the safety constraints. Since the actions of
the backup policy do not directly contribute to the completion of the desired task, a low
action adjustment rate is preferred to limit the potential impact on the task performance.
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Table 4.4.: Ablation studies conducted to investigate the impact of collision avoidance
based on simulated braking trajectories. The results were obtained by simu-
lating 900 episodes, each with a duration of 8 seconds. Adapted from [77].

Configuration Target points Episodes with collisions Action adjustment rate

ARMAR-6 with
simultaneous target points
• Random agent without

considering collisions
0.01 s−1 75.0% –

• Trained and evaluated
without considering
collisions, using actual values

2.32 s−1 64.8% –

• Trained without consider-
ing collisions, evaluated
considering collisions,
using actual values

1.86 s−1 0.0% 23.0%

• Trained and evaluated
considering collisions,
using actual values

2.01 s−1 0.0% 9.1%

• Trained and evaluated
considering collisions,
using setpoints

2.20 s−1 0.0% 7.0%

Table 4.3 indicates the performance of agents trained for the specified reaching tasks.
Compared to the random agents shown in Table 4.2, the number of target points reached
per second increased substantially in all experiments. As for the random agents, the clos-
est distance to a collision was always greater than zero, showing that no collision occurred
during the evaluation. To investigate the impact of the backup policy on the task perfor-
mance, several ablation studies were conducted. In a first experiment with the humanoid
robot ARMAR-6, a random agent was employed without using a backup policy to ac-
count for collisions. As a result, collisions occurred in most episodes. Next, an agent was
trained without using a backup policy. Contrary to the experiments shown in Table 4.3,
the rewards were computed using the actual robot positions rather than the position set-
points. This was done to discourage the learning of trajectories that simply pass through
the obstacles. While the agent learned to reach the target points, collisions occurred in
around 65% of all episodes. The occurrence of collisions could be avoided by using a
backup policy based on braking trajectories during evaluation. However, in this case, the
task performance reduced from 2.32 target points per second to 1.86 target points per sec-
ond and the proportion of adjusted actions was relatively high. When using the backup
policy during training and evaluation, the action adjustment rate was considerable lower
and a better task performance could be achieved. Nevertheless, the adjustment of actions
led to a slight decrease in performance compared to the agent trained without using a
backup policy. However, since the generated trajectory setpoints are collision-free, it is
possible to compute the reward based on the trajectory setpoints rather than the actual
values. In this case, the decrease in performance could be reduced as the delay caused by
the trajectory controller was avoided.

Compliance with torque limits While the previous part of the evaluation focused on
collision avoidance, Table 4.5 shows the results of experiments in which braking trajecto-
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Table 4.5.: Experiments conducted to evaluate the compliance with torque limits when
using a backup policy based on braking trajectories. The results were obtained
by simulating 900 episodes with a duration of 8 seconds. Adapted from [77].

Configuration Target points Episodes with
per second collisions torque violations

One industrial robot, maximum
torque reduced by 40%

• Trained and evaluated
considering collisions only 1.11 0.0% 52.3%

• Trained considering collisions,
evaluated considering
collisions and torque limits

1.03 0.0% 0.0%

Two industrial robots, alternating target
points, maximum torque reduced by 40%

• Trained and evaluated
considering collisions only 1.05 0.0% 84.3%

• Trained considering collisions,
evaluated considering
collisions and torque limits

0.77 0.0% 0.0%

Table 4.6.: Analysis of the computational effort when using a backup policy based on
braking trajectories. The table shows the highest occurring ratio between the
computation time and the trajectory duration when simulating 100 episodes
with a duration of 8 seconds using an Intel i9-9900K CPU. Adapted from [77].

Configuration One industrial robot ARMAR-6 with a single target point

• Considering neither
collisions nor torque limits 7.1% 8.1%

• Considering collisions only 12.0% 30.4%

• Considering torque limits only 16.4% 32.9%

• Considering collisions
and torque limits 19.9% 52.9%

ries are used to avoid torque limit violations. To increase the number of potential torque
limit violations, the maximum torque of the industrial robots was reduced by 40% com-
pared to the limits specified by the robot manufacturer. Under these conditions, torque
limit violations occurred in 52% of all episodes when using a single robot and in 84%
of all episodes when using two robots. In both cases, no more torque limit violations
occurred when detecting potential violations during a background simulation.

Computational effort The computational effort of the presented method is analyzed
in Table 4.6. To this end, 100 episodes were simulated using different configurations.
The table specifies the highest occurring ratio between the computation time and the tra-
jectory duration for each configuration. In all experiments, the computation time was
significantly shorter than the duration of the generated trajectories. When using a sin-
gle industrial robot, the ratio is around 7% if no background simulations are carried out.
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(a) If the monitor is positioned as during
training, the target point is reached.

(b) When rotating the monitor, a braking
trajectory is executed to avoid a collision.
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(c) The trajectories from (a) and (b) shown for one exemplary joint. In (b), a braking trajectory is
executed because a collision is detected during a background simulation of the red trajectory.

Figure 4.6.: A sim-to-real transfer is conducted to demonstrate that trajectories can be
generated in real time and to show that safety violations can be avoided even
if obstacles are modified after the training phase. Adapted from [77].

Using background simulations to avoid collisions results in a ratio of 12%, while a ratio of
16% is obtained when avoiding torque limit violations. If both collisions and torque lim-
its are taken into account, the ratio is around 20%. For the humanoid robot ARMAR-6,
the ratio ranges from 8% if no safety restrictions are considered to 53% when consid-
ering both collisions and torque limits. The computational effort for the safety checks
largely depends on the time horizon taken into account during the background simula-
tions. Since braking trajectories quickly lead to a safe goal state, a short time horizon can
be selected. As a result, a backup policy based on braking trajectories is well suited for
real-time applications.

Sim-to-real transfer For the environment with a single industrial robot, the real-
time capability is demonstrated by performing a sim-to-real transfer. With the presented
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(a) Space (b) Ball (c) Human

Figure 4.7.: Environments with moving obstacles in which a learned backup policy is
used to avoid collisions. The figure is adapted from [83].

method, background simulations are conducted during and after the training phase. Pro-
vided that the simulation environment is updated, obstacles can be modified after training
without causing safety violations. This feature is demonstrated by an experiment visu-
alized in Figure 4.6. During training, the monitor in front of the robot is positioned as
shown in Figure 4.6 (a). In this configuration, the target point, which is represented by
a green sphere, can be reached. When rotating the monitor as shown in Figure 4.6 (b),
the selected target point can no longer be reached. Since the task policy is unaware of the
modified obstacle, the robot still tries to reach the target point. However, as can be seen in
Figure 4.6 (c), a braking trajectory is executed so that a collision with the rotated monitor
is prevented.

In summary, a backup policy based on braking trajectories was successfully used to
prevent collisions and torque limit violations. Specifically, the evaluation of the presented
method was conducted by learning various reaching tasks with an industrial robot and
a humanoid robot using model-free RL. As a prerequisite, the environments were free
of moving obstacles so that a standstill of the robots could be regarded as a safe goal
state. Under this assumption, the safety conditions for background simulations outlined
in section 4.4 could be satisfied. In order to analyze the impact of the backup policy on the
task performance, several ablation studies were conducted. As a result, the use of actions
from the backup policy led to a certain decrease in performance. However, when using
the backup policy not only during evaluation but also during the training phase, the impact
on the task performance was limited. An analysis of the computational effort showed that
the presented method is well suited for real-time applications. For an environment with a
KUKA iiwa robot, the real-time capability was demonstrated by performing a sim-to-real
transfer.

4.6. Learning a backup policy via model-free RL

In the previous section, a backup policy based on braking trajectories was examined.
As a prerequisite, it was assumed that safety violations cannot occur if all robot joints
are at a standstill. While this assumption is reasonable for many environments, there
are also scenarios in which safety violations can occur even if the robot joints are fully
stopped. This section focuses on the particular example of environments with moving
obstacles. It is assumed that the movements of the obstacles are not influenced by the
presence of the robot. In order to avoid a collision, the robot might need to perform an
evasive movement in certain situations. One way to achieve this behavior is to use a
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backup policy that actively avoids collisions with moving obstacles. As will be shown
in the following part of this section, it is possible to learn such a backup policy using
model-free RL. In the context of this work, the use of model-free RL offers the advantage
that the action mapping proposed in chapter 3 can be used for both the task policy and
the backup policy. Therefore, compliance with the kinematic joint limits is ensured no
matter which policy is executed. As an additional advantage, model-free RL can be used
to learn policies in stochastic environments, which is important if obstacles can move in
a non-deterministic way.

Figure 4.7 shows three environments with moving obstacles, which are used as examples
for the study presented below:

• Space: In the space environment, the robot is orbited by a miniature model of the
International Space Station (ISS) and a model of an asteroid. The orbits and orbital
periods of both obstacles are constant so that their future position can be accurately
predicted. Thus, the space environment serves as an example of a deterministic
environment.

• Ball: The ball environment was already introduced to explain the basic principle of
the presented method. Specifically, a ball is thrown towards the robot from a random
direction. Since the ball is affected by gravity, it follows a parabolic trajectory.
Once the ball misses the robot, a new ball is thrown. The initial position of the ball
is chosen at random, making the environment stochastic. To determine the release
angle, a random robot position is selected. The angle is then adjusted so that the
ball would hit the robot if it were located at the randomly selected position. This
procedure ensures that bringing the robot to a standstill is not a viable safety strategy
in the ball environment.

• Human: The human environment serves as an example to examine how humans
and robots can operate in close proximity. To this end, a geometric model of a
human is positioned next to the table on which the robot is mounted. For reasons
of simplification, only the arms of the human are moved. Specifically, the human
is controlled by a neural network trained to reach target points using the method
introduced in section 4.5. Since the target points are selected at random, the human
moves in a stochastic manner.

The remaining part of this section is structured as follows: First, the training of the backup
policy is explained. Subsequently, the learning performance is evaluated based on the
three environments introduced above. Finally, the backup policies are used to avoid colli-
sions when executing a task policy. More precisely, the occurrence of safety violations is
evaluated for the particular case of using a random agent as task policy.

4.6.1. Training of the backup policy

In the following, the problem of learning a backup policy is formalized as a Markov
decision process (S,A, P, R, γ). Subsequently, it is explained how the environment is
initialized during the training phase. The initialization of the robot is particularly impor-
tant, as the backup policy is supposed to generate well-performing evasive movements
across a wide range of motion states.
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(a) Self-collision reward (b) Static obstacle reward (c) Moving obstacle reward

Figure 4.8.: The reward components used for the training of the backup policy. The figure
is adapted from [83].

State space The backup policy is designed to be task-independent and trained prior
to a specific task policy. Consequently, the state of the backup policy does not contain
any task-specific information, e.g., the position of a target point when learning a reaching
task. Instead, a state st ∈ S of the backup policy is composed of two parts: The kinematic
state of each robot joint (φdt , φ̇dt , φ̈dt) and an environment-specific part used to indicate
the current state of the moving obstacles. Further details on the environment-specific part
are given below:

• Space: The environment-specific part indicates the position of the asteroid and the
space station along their orbital path.

• Ball: The environment-specific part indicates the current position and velocity of
the ball.

• Human: The human in the human environment is controlled by a neural network
trained to reach target points. To this end, the joints of the human are modeled
similar to the joints of the humanoid robot ARMAR-6 in section 4.5. The state of
the neural network controlling the human includes the kinematic state of its joints
(φH

dt
, φ̇H

dt , φ̈
H
dt) and the position of the current target point. For the training of the

backup policy, the environment-specific part contains (φH
dt

, φ̇H
dt , φ̈

H
dt) only.

Action space Using the action mapping proposed in chapter 3, an action at ∈ A
consists of one scalar ∈ [-1,1] per robot joint being controlled.

Reward function The backup policy is trained to avoid self-collisions, collisions with
static obstacles, and collisions with moving obstacles. At time step t, an action at specifies
a trajectory from t to t + 1. To assess the impact of an action at on the occurrence of
collisions, the resulting robot position at t+1 is used to determine the minimum distance
to a self-collision dself , to a collisions with a static obstacle dstatic, and to a collision
with a moving obstacle dmoving. Based on these distances, the reward components Rself ,
Rstatic, and Rmoving are computed as shown in Figure 4.8. The calculation of the reward
components differs only with regard to the predefined threshold values doneself , donestatic , and
donemoving . In addition to these components, a termination bonus RB is introduced. The
bonus is granted if an episode terminates without a collision occurring. Considering all
four components, the reward is calculated as follows:

R = α ·Rself + β ·Rstatic + γ ·Rmoving +RB, (4.11)

with α, β, and γ being weighting factors.
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Table 4.7.: Performance metrics of backup policies trained to avoid collisions. Adapted
from [83].

Environment A: Training settings B: Evaluation settings
Episodes without a collision Time until collision

Random agent Trained agent Random agent Trained agent

• Space 38% 91% 2.6 s > 40 000 s

• Ball 48% 91% 3.3 s 85.4 s

• Human 51% 94% 3.4 s > 40 000 s

Termination An episode is either terminated after a certain number of decision steps
or earlier if a collision is detected. The selected number of decision steps should be
large enough to allow the robot to dodge the obstacles in the environment. Due to the
termination bonus, early termination is discouraged as part of the learning process.

Initialization To learn well-functioning backup motions for a wide range of kinematic
states, the environment is initialized in a random state. Specifically, the robot is not only
initialized at a random position, but also at a random velocity and acceleration. As a
first step, random joint positions are chosen until a collision-free robot position is found.
Next, a random velocity and acceleration is selected for each robot joint. However,
not every random kinematic state is feasible with respect to the kinematic joint limits
(3.1) - (3.4). For that reason, the method presented in chapter 3 is used to compute a
range of feasible accelerations [at+1min

, at+1max] for the selected random kinematic state
(pt, vt, at). If the computed range is empty, the kinematic state is regarded as invalid.
In this case, new velocities and accelerations are randomly chosen until a valid initial
kinematic state is found.

4.6.2. Evaluation

The evaluation presented below is composed of two parts: First, the performance of poli-
cies trained to avoid collisions is analyzed. Second, the occurrence of collisions is evalu-
ated for a random agent when employing the previously trained policies as backup poli-
cies. In both cases, the evaluation is conducted based on the environments with moving
obstacles shown in Figure 4.7.

Training performance of the backup policy As described in section 4.6.1, the
backup policy is trained to produce well-performing evasive movements for a wide range
of environmental states. During the training, the robot is initialized in random kinematic
states. For the experiments presented below, the decision frequency fD is set to 10Hz.
An episode is terminated after 20 decision steps or sooner if a collision is detected. Based
on these settings, the left part of Table 4.7 shows the proportion of episodes that are
completed without collisions. The data clearly indicates that a trained agent causes sig-
nificantly fewer collisions than a random agent. While collisions may still occur when
using the trained policy, it is important to note that the robot can be initialized in kine-
matic states where collision avoidance is not possible. The right part of Table 4.7 shows
the average time to a collision when the robot is initialized in states where executing the
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Table 4.8.: The average time to a collision for a random agent when using the previously
trained backup policy and a background simulation with a time horizon of N .
Adapted from [83].

Environment N = 0 N = 1 N = 5 N = 20 N = 30

0.0 s 0.1 s 0.5 s 2.0 s 3.0 s

Space
• Deterministic 2.7 s 6.8 s 170.4 s >2000 s >2000 s

Ball
• Stochastic 3.6 s 10.4 s 64.1 s 160.3 s 116.3 s

• Deterministic 3.8 s 10.9 s 68.7 s 164.7 s 181.6 s

Human
• Stochastic 3.7 s 11.1 s 62.9 s 72.3 s 64.5 s

• Deterministic 3.7 s 11.3 s 700.6 s >2000 s >2000 s

trained policy does not result in a collision within the first two seconds. In the space
environment and in the human environment, the policy can navigate the robot to an area
without obstacles during this time. Therefore, collisions are extremely rare. In the ball
environment, the robot can be hit by a ball anywhere in the working area. As a result, a
collision occurs on average after 85.4 s compared to 3.3 s when using a random agent.

Collision avoidance for random agents In a next step, the performance of the
backup policies is evaluated for the case that the task policy is represented by a ran-
dom agent. This case reflects the situation typically encountered at the beginning of a
training process. Table 4.8 shows the average time to a collision depending on the se-
lected time horizon of the background simulation. The initial states of all experiments
are selected in a way that the backup policy can be safely executed during the first three
seconds of each episode. As a consequence, collisions caused by an unsafe initializa-
tion do not occur. In the space environment, obstacles move in a deterministic manner.
Contrary to that, the ball environment and the human environment behave stochastically.
In these environments, the background simulation is carried out for one potential fu-
ture development of the environment, which, however, does not necessarily reflect the
actual development of the environment. For reasons of comparison, additional experi-
ments are conducted based on the assumption that the obstacles move in a predictable
way. When selecting a time horizon of N = 0, the background simulation only covers
the period from the current time step t to the next time step t + 1, as resulting from
action aTt of the task policy. In all environments, a collision occurs on average within
less than four seconds when selecting this time horizon. It can be concluded that colli-
sions are detected too late to perform an evasive movement when considering the next
time interval only. As shown in Table 4.8, the average time to a collision increases sig-
nificantly if the time horizon of the background simulation is extended. This applies in
particular if the obstacles in the environment move deterministically. When selecting a
time horizon of N = 20, the average time to a collision in the space environment in-
creased by a factor of more than 500. In stochastic environments, however, collisions
do not necessarily decrease if the time horizon is extended, as the background simula-
tion deviates more and more from the actual temporal development of the environment.
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Table 4.9.: The proportion of collisions that do not involve moving obstacles when
using a random agent and background simulations with a time horizon of N .
Adapted from [83].

Environment N = 0 N = 1 N = 5 N = 20 N = 30

0.0 s 0.1 s 0.5 s 2.0 s 3.0 s

Space
• Deterministic 57% 32% 0% 0% 0%

Ball
• Stochastic 78% 43% 6% 4% 9%

• Deterministic 82% 43% 0% 0% 0%

Human
• Stochastic 76% 53% 13% 13% 11%

• Deterministic 74% 67% 0% 0% 0%

Nevertheless, the time to a collision increased by a factor of around 20 in the stochastic
human environment and by a factor of around 40 in the stochastic ball environment when
selecting a time horizon of N = 20 compared to a time horizon of N = 0.

Analyzing the causes of collisions For the experimental settings described above,
Table 4.9 shows the relation between the time horizon of the background simulation and
the proportion of collisions that do not involve moving obstacles. When selecting a time
horizon of N = 0, most of the collisions do not involve moving obstacles. Instead,
self-collisions and collisions with the table on which the robot is mounted are prevalent.
However, as the time horizon increases, moving obstacles become the primary cause of
collisions. With regard to the deterministic environments, self-collisions and collisions
with the table are almost negligible if a time horizon of N = 5 is chosen. In the stochastic
environments, however, these types of collisions still occur even if a longer time horizon
is selected, as the background simulation does not necessarily reflect the actual temporal
development of the environment.

Computational effort The computational effort required to perform the background
simulations is analyzed in Table 4.10. Specifically, the table shows the average ratio
between the computation time and the duration of the robot trajectory generated within
that time for various time horizons N . This ratio is an important indicator, as it affects
whether trajectories can be generated in real time. Moreover, the computational effort
involved in generating the robot trajectories influences the time required to train a task
policy. Using an Intel i9-9900K as CPU, the ratio exceeded 100% for a time horizon
greater than or equal to N = 5, meaning that trajectories cannot be generated in real
time. With respect to collision avoidance, the best results for stochastic environments were
obtained for a time horizon of N = 20. Using this time horizon, the ratio exceeded 200%
for the ball environment and 400% for the human environment. The high computational
effort involved in performing background simulation motivates the use of faster data-
based risk estimators, as elaborated in chapter 5.
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Table 4.10.: The average ratio between the computation time and the duration of
the generated trajectory when using background simulations with a
time horizon of N and an Intel i9-9900K as CPU. Adapted from [83].

Environment N = 0 N = 1 N = 5 N = 20 N = 30

0.0 s 0.1 s 0.5 s 2.0 s 3.0 s

• Space 38% 48% 119% 235% 303%

• Ball 27% 42% 119% 239% 290%

• Human 57% 89% 205% 474% 673%

In summary, the use of a backup policy trained via model-free RL proved to be effec-
tive in avoiding collisions with moving obstacles. When selecting random actions aT, the
time to a collision could be increased by a factor of 20 in the human environment, 40 in
the ball environment, and more than 500 in the space environment. However, compared
to self-collisions and collisions with static obstacles, the background simulations had to
cover a larger time horizon in order to effectively detect collisions with moving obsta-
cles. As the resulting computational effort for the background simulations was found to
be high, faster data-based risk estimators are introduced in the following chapter.

4.7. Summary

This chapter presented the concept of using background simulations to avoid safety
violations when learning robot trajectories via reinforcement learning. In addition to the
normal task policy, a backup policy was introduced. The background simulations were
conducted to determine whether actions of the task policy can be carried out safely. If
a safety violation was detected during a background simulation, the action from the task
policy was replaced by an action from the backup policy. Using the action mapping pro-
posed in chapter 3, it was ensured that the resulting trajectories adhered to kinematic
joint constraints. For the presented strategy, safety conditions were established under
which safety violations can be entirely prevented. In particular, it was shown that the
environment must be predictable, the time horizon of the background simulation must be
sufficiently long, and the initial state of the environment must be chosen appropriately.

To avoid safety violations in environments without moving obstacles, a backup policy
based on braking trajectories was proposed. As a prerequisite, it was assumed that no fur-
ther safety violations can occur if all robot joints are fully stopped. For this particular
case, it was shown that the established safety conditions can be satisfied. The method was
evaluated by successfully learning reaching tasks without causing self-collisions, colli-
sions with static obstacles, and torque limit violations. As the duration of the braking
trajectories was relatively short, the computational effort for the background simulations
was moderate. Consequently, it was possible to generate trajectories in real time, which
was demonstrated by performing a sim-to-real transfer with a KUKA iiwa robot.

86



4.7. Summary

By using a backup policy trained to actively avoid collisions, the presented concept
could be extended to environments with moving obstacles. Similar to the task policy, the
backup policy was trained using model-free RL, however, without having access to task-
specific information. The evaluation was carried out for three different environments,
with two of them behaving stochastically. Using a random agent as task policy, the
occurrence of collisions could be significantly reduced in all environments. Compared
to self-collisions and collisions with static obstacles, the time horizon of the background
simulations had to be increased to account for moving obstacles. However, in stochas-
tic environments, the validity of the background simulations was found to decrease when
longer time horizons were taken into account. In addition, the computational effort for the
background simulations was found to be high. Both of these findings motivate the use of
data-based risk estimators, which are introduced in the following chapter.
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5. Using data-based risk estimators
to speed-up risk assessments

This chapter examines the use of data-based estimators to assess the risk of safety viola-
tions when learning robot trajectories. In the previous chapter, it was shown that safety
violations can be effectively detected by simulating the execution of a backup policy in a
physics simulator. Based on results initially published in [83], this chapter analyzes how
data from previous executions of the backup policy can be utilized for this purpose. Com-
pared to performing a background simulation in a physics simulator, the use of data-based
risk estimators offers several advantages:

• First, the computing power required to generate trajectories in real time is signifi-
cantly lower.

• Second, stochastic environments can be addressed in a straightforward manner.

• Third, data-based risk estimators can also be used in scenarios where no physics
simulator is available.

As a drawback, a sufficient amount of data must be available to train the estimator. In
addition, risky actions can be falsely classified as harmless, as the risk estimation is not
always correct. The following study examines the effectiveness of risk estimators for
collision avoidance in environments with moving obstacles. Specifically, four different
options to estimate the risk of collisions are analyzed and compared. In all cases, the risk
estimation is based on neural networks trained via supervised learning.

The evaluation is conducted using three different environments with moving obstacles
introduced in the previous chapter. First, the occurrence of collisions is analyzed for a
random agent. Subsequently, the risk estimators are employed during the training of a
reaching task and a basketball task. For the reaching task, the performance is compared
with an alternative safety strategy using quadratic programs (QPs). Finally, a sim-to-real
transfer with a KUKA robot is conducted, showing that the presented approach is fast
enough to enable real-time execution.

5.1. Problem description

The problem of learning robot trajectories is formalized as a Markov decision process
(S,A, P, R, γ). Specifically, a task policy πT is trained to maximize the expected sum of
future rewards using model-free RL. As an additional constraint, the occurrence of safety
violations should be avoided during and after the training process of the task policy. For
that purpose, an action aTt generated by the task policy at state st should only be executed
if the estimated risk Q̄πB

(st, a
T
t ) does not exceed a predefined threshold value q̄

Th
. In
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the scenario under consideration, Q̄πB
(st, a

T
t ) indicates the likelihood of a safety viola-

tion when executing action aTt , assuming that the following N actions are generated by a
backup policy πB. The backup policy is trained to avoid the occurrence of safety viola-
tions using model-free RL. During the training process of the task policy πT , the backup
policy πB is not updated. Assuming that Q̄πB

(st, a
T
t ) exceeds the risk threshold q̄

Th
, an

action aBt from the backup policy πB is executed:

at =

{
aTt if Q̄πB

(st, a
T
t ) ≤ q̄

Th

aBt otherwise
(5.1)

The problem examined in this study is the approximation of the risk function Q̄πB
(s, a)

based on data from previous executions of the backup policy. Specifically, neural net-
works are used to estimate the risk of collisions in environments with moving obstacles.
The accuracy of the risk estimation influences both the compliance with safety constraints
and the task performance. If risky actions are falsely classified as harmless, safety viola-
tions are likely to occur. Falsely classifying harmless actions as risky, on the other hand,
can reduce the task performance as the backup policy does not contribute to the fulfillment
of the desired task.

5.2. Relation to previous studies

The basic idea of avoiding safety violations by utilizing a backup policy and a risk func-
tion has been examined in the context of different application scenarios. An overview of
previous research is provided in section 2.2.2.2. Most notably, the presented approach
differs from related studies in three main aspects:

• Risk estimation: The decision whether to use the task policy or the backup policy
is made based on a risk function Q̄πB

(s, a), which is approximated using neural net-
works. Compared to using task-specific criteria [186], a data-based approach offers
greater flexibility with regard to the desired application scenario. The subscript πB

in Q̄πB
(s, a) indicates that the risk of an action a is estimated under the assumption

that the following actions are generated by the backup policy. As an alternative, it
is also possible to estimate a risk function Q̄π(s, a), where π is the policy resulting
from the interaction between the task policy and the backup policy [167]. However,
in this case, the risk function depends on the task policy and needs to be updated if
the task policy is adjusted.

• Backup policy: In this study, the backup policy πB is trained in advance to the task
policy using model-free RL. In comparison to backup policies relying on model-
based controllers [54, 43], no explicit model of the system dynamics is required. As
an additional advantage, the action space and the decision frequency of the backup
policy can be easily aligned with the task policy. Compared to deriving the backup
policy from a risk function Q̄π(s, a) [167], the backup policy in the presented ap-
proach does not depend on the task policy. As a result, it can be utilized to learn
different task policies.

• Application scenario: The presented approach is applied for learning collision-
free goal-directed robot trajectories in environments with moving obstacles. As the
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action mapping from chapter 3 is utilized, fast trajectories can be generated without
violating kinematic joint constraints. In contrast to previous work, various methods
to approximate the risk function Q̄πB

(s, a) are analyzed and compared. Moreover,
the applicability to stochastic environments is systematically investigated.

5.3. Data-based risk estimators

In this chapter, data-based risk estimators are employed to decide whether to use the task
policy πT or the backup policy πB. Specifically, a risk function Q̄πB

(s, a) is approximated
using neural networks. This section outlines the generation of training data for the risk
estimation and the training of the neural networks based on supervised learning.

5.3.1. Generation of training data

The training dataset for the risk estimation is generated using a physics simulator. In
theory, it is also possible to gather training data through real-world experiments. However,
as safety violations are inevitable when collecting training data, the experiments must be
carried out in a specially protected environment.

Each data point of the training dataset consist of a tuple (st, at, st+1, q̄). In order
to generate a data point, the environment is initialized in a random state st, using the
same initialization procedure as described in section 4.6.1. Next, an action at is randomly
chosen and executed. Starting from state st+1, the backup policy πB is used to generate
actions for the following N time steps. Hence, a total of N + 1 actions are executed for
each data point. If a collision is detected during the execution of these N + 1 actions, the
risk signal q̄ is set to 1, otherwise to 0.

To generate the training dataset, the procedure described above is repeated for a large
number of states st and actions at. Typically, a risk signal of 1 occurs less frequently than
a risk signal of 0. To compensate for this imbalance, data points with a risk signal of 1 are
selected more frequently during the training process.

5.3.2. Training via supervised learning

Using the data points (st, at, st+1, q̄) from the training dataset, fully connected neural
network are trained for a binary classification task. Specifically, two different ways to
estimate the risk of a collision ˆ̄q are analyzed and compared. In case of a so-called action-
based risk network, the risk ˆ̄q is predicted using the state st and the action at as input
signals. Contrary to that, a state-based risk network uses the state st+1 as input signal
for the prediction. In both cases, the risk signals q̄ from the dataset serve as ground truth
values and the training is performed using a cross-entropy loss function.

For the binary classification, two different types of errors can be distinguished:

• False positives: The risk is classified as 1, but the risk signal in the dataset is 0.

• False negatives: The risk is classified as 0, but the risk signal in the dataset is 1.
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When using a risk estimator to train a task policy, false positives reduce the task perfor-
mance, while false negatives increase the probability of safety violations. The ratio of
false positives and false negatives depends on the selected risk threshold q̄

Th
. During the

training of the risk estimator, the ratio can be additionally influenced by using a weighted
loss function. In the scenario under consideration, false negatives are generally considered
more harmful, as safety violations need to be avoided. For that reason, a higher weight is
assigned to data points with a risk signal q̄ of 1.0

When utilizing data-based risk estimators, accounting for stochastic environments
is straightforward. While the initial risk signals q̄ may vary depending on the further
development of the environment, the predicted risk ˆ̄q indicates the probability of a safety
violation.

5.4. Risk-aware action generation

The risk-aware action generation presented in this chapter is based on a task policy πT ,
which is represented by a task network, and a backup policy πB, which is represented by a
backup network. Both policies rely on the mathematical framework of a Markov decision
process (S,A, P, R, γ) and are employed in environments with moving obstacles. The
training of the backup policy is carried out as described in section 4.6.1. In order to
avoid collisions during the training of the task policy, the backup policy is utilized if the
estimated risk ˆ̄q exceeds a risk threshold q̄

Th
. Figure 5.1 provides an overview of the steps

involved in this procedure.

The first step is to generate an action aTt with the task network. As shown in Fig-
ure 5.1, the state of the task policy is composed of three parts stKi

, stMo
, and stTa , where

stKi
indicates the kinematic state of the robot joints, stMo

describes the state of the moving
obstacles, and stTa provides additional task-specific information. The action aTt is com-
posed of two parts aTtKi

and aTtTa . While the kinematic part aTtKi
is used to control the robot

joints, an optional task-specific part aTtTa can be used to encode additional control signals.
In contrast to the task policy, the backup policy does not make use of the task-specific
components stTa and aTtTa .

The second step is to estimate a risk value ˆ̄q using the action-based risk network or the
state-based risk network described in the previous section. Specifically, four different
methods are analyzed in this study:

• (A) Action-based risk estimation: The risk estimation is performed by the action-
based risk network. As shown in Figure 5.1, the input signal of the risk network is
composed of stKi

, stMo
, and aTtKi

. The task-specific components stTa and aTtTa are not
used for the risk estimation. From a conceptual perspective, the use of both state
and action components is consistent with the desired risk function Q̄πB

(s, a).

For the remaining three methods, the state-based risk network is used. The state-based
risk network is trained using the state components st+1Ki

and st+1Mo
. Compared to the

action-based risk network, the dimensionality of the learning problem is reduced as the
input signal does not contain the action component aTtKi

. However, st+1Ki
and st+1Mo

are
not directly accessible, which requires further approximations.
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Step 1: Action generation with the task network.

stKi

stMo

stTa


Task network

(
aTtKi

aTtTa

)

Step 2: Estimation of risk value ˆ̄q.

A: Action-based risk estimation.

stKi

stMo

aTtKi


risk network

Action-based

ˆ̄q

B1: State-based risk estimation
using the current state

State-based

risk network

(
stKi

stMo

)
ˆ̄q

B2: State-based risk estimation using the next state

stKi
st+1Ki

Computation

using aTtKi

stMo s̃t+1Mo

B2a: Kinematic forecasting B2b: Full forecasting

Estimation

State-based

risk network

(
st+1Ki

s̃t+1Mo

)
ˆ̄q

State-based

risk network

(
st+1Ki

stMo

)
ˆ̄q

Step 3: Risk-dependent action adjustment.

ˆ̄q ≤ q̄
Th

yes

at =

(
aTtKi

aTtTa

)

no

Backup network

(
stKi

stMo

)
aBtKi

at =

(
aBtKi

aTtTa

)

Figure 5.1.: The steps involved in the risk-aware generation of actions based on a task
network, a backup network and a risk network. Specifically, the figure vi-
sualizes four different methods (A, B1, B2a, B2b) to estimate a risk value ˆ̄q
using either an action-based risk network or a state-based risk network. The
figure is adapted from [83].
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(a) Action adjustment rate: 0% (b) Action adjustment rate: 14%

(c) Action adjustment rate: 35% (d) Action adjustment rate: 68%

Figure 5.2.: The impact of the action adjustment rate on the exploration, illustrated for
the space environment. Using an action-based risk network and a random
agent as task policy, the green path visualizes the position of the last robot
link when executing a trajectory with a duration of 1000 seconds.

The three state-based methods described below differ with respect to the representations
used for st+1Ki

and st+1Mo
:

• (B1) State-based risk estimation using the current state: The risk estimation is
performed based on the state components stKi

and stMo
. The impact of the action

component aTtKi
is ignored.

• (B2a) State-based risk estimation with kinematic forecasting: The action com-
ponent aTtKi

is used to compute st+1Ki
, the next kinematic state of the robot joints.

The risk estimation is conducted based on st+1Ki
and stMo

.

• (B2b) State-based risk estimation with full forecasting: As with (B2a), the kine-
matic state st+1Ki

is computed based on aTtKi
. In addition, the next state of the

moving obstacles s̃t+1Mo
is estimated. Subsequently, st+1Ki

and s̃t+1Mo
are used for

the risk estimation.

As a final step, the action component aTtKi
is replaced by aBtKi

if the estimated risk ˆ̄q exceeds
a risk threshold q̄

Th
:

atKi
=

{
aTtKi

if ˆ̄q ≤ q̄
Th

aBtKi
otherwise

(5.2)

In this scenario, aBtKi
denotes the action of the backup policy computed using stKi

and stMo
.

The task-specific action component aTtTa is not influenced by the estimated risk value ˆ̄q.
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] A: Action-based B1: Current state B2a: Kinematic forecasting B2b: Full forecasting Performed training runs

A: State-action B1: Current state B2a: Kinematic forecasting B2b: Full forecasting Performed training runs
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A: State-action B1: Current state B2a: Kinematic forecasting B2b: Full forecasting Performed training runs

A: State-action B1: Current state B2a: Kinematic forecasting B2b: Full forecasting Performed training runs

(a) Space (b) Ball

(c) Human

Figure 5.3.: The average time to a collision as a function of the action adjustment rate
when using a random agent as task policy shown for different methods to
estimate the risk value ˆ̄q. The figure is adapted from [83].

5.5. Evaluation

The evaluation of the data-based risk estimation is carried out for the space, ball, and
human environment introduced in the previous chapter. In a first step, the backup policies
from section 4.6 are used to generate training data for the risk estimation. Subsequently,
the data is used to train an action-based risk network and a state-based risk network for
each environment. The following evaluation examines various aspects related to the risk
estimation using risk networks. This includes the impact of the selected risk threshold q̄

Th
,

the occurrence of collisions for random and trained agents, and the computational effort
associated with the risk estimation. In addition, a comparison with a QP-based method is
carried out and a sim-to-real transfer with a KUKA robot is conducted.

Impact of the selected risk threshold The risk threshold q̄
Th

affects the proportion
of actions from the task policy that are adjusted using the backup policy. In the following,
this proportion is denoted as action adjustment rate. When selecting a risk threshold of
1.0, all actions from the task policy are considered safe, resulting in an action adjustment
rate of 0%. With a risk threshold of 0.0, all actions are adjusted so that the action adjust-
ment rate is 100%. When choosing a risk threshold between 0.0 and 1.0, the resulting
action adjustment rate additionally depends on the current task policy.
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5. Using data-based risk estimators to speed-up risk assessments

Table 5.1.: Results obtained when training a task policy for a reaching task using either
the action-based risk estimation (A) or the state-based risk estimation with full
forecasting (B2b). Adapted from [83].

Random agent Trained agent

Initial adjustment rate Target points Target points Adjustment Time until
per second per second rate collision

Space
• Adjustment rate 14.0% 0.004 / 0.004 1.01 / 0.94 9.1% / 8.8% 423 s / 887 s
• Adjustment rate 16.5% 0.003 / 0.002 0.93 / 0.90 10.0% / 8.8% 428 s / 1647 s

Ball
• Adjustment rate 15.0% 0.004 / 0.004 0.70 / 0.71 18.2% / 17.7% 68.5 s / 68.7 s
• Adjustment rate 30.0% 0.003 / 0.003 0.52 / 0.51 29.4% / 31.1% 89.3 s / 83.0 s

Human
• Adjustment rate 6.5% 0.004 / 0.003 0.79 / 0.70 10.0% / 12.7% 96 s / 114 s
• Adjustment rate 7.5% 0.003 / 0.003 0.49 / 0.63 16.3% / 16.8% 191 s / 139 s

Figure 5.2 illustrates how the action adjustment rate affects the exploration of the
space environment when utilizing a random agent as task policy. To this end, trajectories
with a duration of 1000 seconds are generated using four different risk thresholds. The
green lines in Figure 5.2 visualize the areas of the environment that are explored when
executing the trajectories. As can be seen in (a), the environment is explored evenly if
no actions are adjusted. However, an even exploration also leads to collisions with the
table. If 14% of the actions are adjusted (b), the green path no longer intersects with the
table, but the environment is still explored relatively evenly. With an action adjustment
rate of 35% (c), the lower right corner is no longer reached. If 68% of the actions are
adjusted (d), the area being explored is even more restricted.

In order to avoid collisions without excessively restricting the task policy, the risk
threshold must be selected carefully. For the specific example, the operating point shown
in (b) represents a reasonable compromise between avoiding collisions and exploring the
environment.

Collision avoidance for random agents In a next step, the collision avoidance is
analyzed quantitatively. For that purpose, experiments with different risk thresholds q̄

Th

are performed using a random agent as task policy. Figure 5.3 shows the resulting rela-
tion between the action adjustment rate and the average time to a collision for the space,
ball, and human environment. The evaluation is conducted for each of the risk estimation
methods described in section 5.4. For the space environment and the human environment,
the data points of the individual experiments are fitted with an exponential function. In
case of the ball environment, the average time to a collision approaches a limit value
and the resulting curves resemble a logistic function. This outcome is consistent with
the results obtained by exclusively using the backup policy shown in Table 4.7 B. The
risk estimation method full forecasting (B2b) requires an estimation of s̃t+1Mo

, the next
state of the moving obstacles. In contrast, the other three methods do not require any
additional information about the moving obstacles. For the evaluation, it is assumed that
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Figure 5.4.: The percentage of collision-free episodes with a duration of eight seconds
when learning a reaching task in the space environment using the action-
based risk estimation (A) compared to using no risk estimation. The figure
is adapted from [83].

s̃t+1Mo
can be accurately forecasted. Under this assumption, the highest time to a collision

is obtained using full forecasting (B2b). In the space environment and the ball environ-
ment, the action-based risk estimation (A) leads to the second best results. For the human
environment, the second best results are obtained by kinematic forecasting (B2a). The
results also show that the state-based risk estimation using the current state (B1) performs
significantly worse than the other methods.

Collision avoidance for trained agents Next, the collision avoidance is analyzed
when learning a task policy using model-free RL. Table 5.1 shows the training results
for a reaching task performed by the industrial robot KUKA iiwa using the action-based
risk estimation (A) and the state-based risk estimation with full forecasting (B2b). The
experiments are conducted using a fixed risk threshold q̄

Th
, chosen to establish a specific

action adjustment rate at the beginning of the training process. In Figure 5.3, the selected
operating points for the training runs are indicated by an orange cross. The action adjust-
ment rate does not only depend on the selected risk threshold, but also on the current task
policy. Consequently, the rate can vary during the training process. For the training runs
shown in Table 5.1, the following tendency can be identified: When selecting a higher
initial action adjustment rate, the average time to a collision increases while the number
of target points reached per second decreases. This result is plausible as the backup policy
is trained to avoid collisions but does not contribute to the fulfillment of the reaching task.
When comparing the action-based risk estimation (A) with the state-based risk estima-
tion (B2b), similar outcomes are observed in the ball and the human environments. In the
space environment, however, fewer collisions were recorded when using the state-based
risk estimation (B2b).

By using the presented data-based risk estimators, the occurrence of collisions can
be reduced significantly throughout the entire training process. This effect is illustrated
in Figure 5.4. Specifically, the figure shows the percentage of collision-free episodes
when learning a reaching task in the space environment. During the training phase, an
episode is terminated after eight seconds or earlier if a collision occurs. When training a
task network without action adjustments, the proportion of collision-free episodes slowly
increases over the course of training. Conversely, when employing the action-based risk
estimation (A), almost all episodes are collision-free right from the start of the training.
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Figure 5.5.: A visualization of the basketball task, in which the robot is trained to place
balls in moving basketball hoops.

Table 5.2.: Results obtained when training a task policy for a basketball task using the
action-based risk estimation (A). Adapted from [83].

Random agent Trained agent

Environment Baskets scored Time until Baskets scored Time until
per second collision per second collision

• Space 0.007 831.5 s 1.84 > 20 000 s

• Ball 0.010 78.4 s 1.38 86.2 s

• Human 0.008 1258.1 s 1.19 > 20 000 s

In addition to the reaching task, the presented method is used to learn a task policy
for a basketball task illustrated in Figure 5.5. During the training phase, the robot is
rewarded for placing a basketball in a basketball hoop. The basketball hoop is moving
around the robot on a horizontal circular path, with the radius and the height of the path
being randomly selected. Once a ball is placed inside the hoop, a new one is generated
at a different location. The angular velocity of each basketball hoop is constant but se-
lected at random. As part of the task-specific state component stTa , the current position
and the angular velocity of the basketball hoop are provided. The task-specific action
component aTtTa is used to determine the velocity at which a ball should leave a tube
connected to the last link of the robot. In contrast to the reaching task, the orientation
of the end effector plays an important role in the successful execution of the basketball
task. Table 5.2 shows training results for the basketball task obtained using the action-
based risk estimation (A). During the course of training, the number of baskets scored
per second increases significantly in all environments. While the occurrence of collisions
is reduced for both random and trained agents, the average time to a collision is higher
for the trained agents. In the space and in the human environment, collisions hardly ever
occur when employing the trained agent.
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Table 5.3.: Comparison of the action-based risk estimation (A) with a QP-based method
for a reaching task in a simplified version of the space environment. Adapted
from [83].

Method Random agent Trained agent

Action Time until Target points Time until
adjustment rate collision per second collision

• Action-based (A) 7.1% 855.2 s 0.82 4325.2 s

• QP-based 12.3% 35.6 s 0.70 2216.6 s

Table 5.4.: The average ratio between the computation time and the duration of the
generated trajectory for different data-based risk estimation methods. The
analysis was carried out using an Intel i9-9900K as CPU. Adapted from [83].

Environment Action-based State-based

A B1 B2a B2b

• Space 8.7% 8.6% 8.6% 8.8%

• Ball 10.7% 10.5% 11.1% 10.9%

• Human 18.5% 17.6% 18.2% 18.6%

Comparison with a QP-based method The presented action-based risk estima-
tion (A) is compared to an alternative method for collision avoidance introduced by Pham
et al. [132]. Using the alternative method, unsafe actions are adjusted by solving a math-
ematical optimization problem formulated as a quadratic program (QP). Further details
on the method are provided in section 2.2.2.2. From a conceptual perspective, an im-
portant difference between the presented concept and the QP-based method is the time
horizon taken into consideration when adjusting actions. The optimization problem in the
QP-based method focuses on determining a safe action for the current decision step with-
out ensuring recursive feasibility at the subsequent decision steps. As a result, conflicting
constraints may arise at a later point in time, preventing the optimizer from finding a safely
executable action. In contrast, the presented action generation with a risk network and a
backup policy aims to ensure the existence of a safely executable action at the subsequent
decision steps. To reduce the occurrence of conflicting constraints, the comparison is car-
ried out using a simplified version of the space environment. In particular, self-collisions
and collisions with the table on which the robot is mounted are not taken into considera-
tion. For the QP-based method, the end effector of the robot and the moving obstacles are
approximated by spheres.

Table 5.3 shows the results of the comparison conducted for a reaching task. Espe-
cially in the case of the random agent, the average time to a collision was significantly
higher when the action-based risk estimation was used. In addition, a slightly better task
performance was observed with the action-based risk estimation.

Computational effort The computational effort to generate trajectories with the pre-
sented risk estimation methods is analyzed in Table 5.4. In all experiments, the average
ratio between the computation time and the duration of the generated trajectory was less
than 20%. The moderate computing power requirements of the data-based risk estimators
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0.0 s 1.0 s 2.0 s 3.0 s t

(a) Sim

(b) Real

Figure 5.6.: A sim-to-real transfer is conducted for a reaching task in the space environ-
ment. At t = 1.0 s, the backup policy is executed to prevent a collision with
the space station.

are a significant advantage compared to conducting background simulations. In particular,
the use of risk networks reduces the time required to train a task policy in a simulator and
facilitates the generation of trajectories in real time. The latter is an important prerequisite
for a successful sim-to-real transfer.

Sim-to-real transfer Using a real KUKA iiwa robot, a successful sim-to-real transfer
is conducted for a reaching task in the space environment. To avoid collisions, the action-
based risk estimation (A) is utilized. For practical reasons, the moving obstacles are not
physically implemented in the real-world setup. Instead, a simulation is conducted to
validate that the generated trajectories are collision-free. Figure 5.6 shows an exemplary
scenario, in which the task policy tries to move the robot towards a target point illustrated
in green. At t = 1.0 s, the direct path to the target point is obstructed by a space station
that orbits around the robot. For this reason, the backup policy is used, which leads the
robot away from the orbit of the space station. At t = 2.0 s, the path to the target point is
no longer blocked. As a consequence, the execution of the task policy is resumed so that
the target point is reached at t = 3.0 s.

5.6. Summary

This chapter introduced the use of data-based risk estimators for learning collision-free
robot trajectories in environments with moving obstacles. To formalize the learning prob-
lem, a Markov decision process was defined. The actions for the Markov decision process
were generated using either a task policy or a backup policy. While both policies were
trained using model-free RL, their optimization objectives varied. Specifically, the backup
policy was trained to produce evasive movements. The objective of the task policy was de-
termined by the respective learning task being pursued. To decide whether to use the task
policy or the backup policy, data from prior executions of the backup policy were utilized.
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Specifically, the study investigated the use of neural networks to estimate the risk as-
sociated with an action. Compared to conducting background simulations in a physics
simulator, data-based risk estimators provided the benefit of requiring significantly less
computational power. In addition, stochastic environments could be addressed straight-
forwardly. However, the classification of an action as either risky or harmless could also
be incorrect. Specifically, risky actions classified as harmless could lead to collisions,
while harmless actions classified as risky could reduce the learning performance of the
task policy. The ratio between these two error types could be influenced by adjusting a
so-called risk threshold used for the classification.

The performance of the data-based risk estimators was evaluated in three different
environments with moving obstacles. First, it was shown how the selected risk threshold
influences the occurrence of collisions when using a random agent as task policy. Sub-
sequently, data-based risk estimators were successfully employed to learn task policies
for a reaching task and a basketball task. In contrast to training a task policy without
action adjustments, the presented method managed to reduce collisions throughout the
entire training process. Compared to a QP-based method, the use of a data-based risk
estimator proved to be more effective in preventing collisions. An analysis of the compu-
tational effort confirmed that the risk estimation based on neural networks requires only
a moderate amount of computing power. By performing a sim-to-real transfer with a
KUKA robot, it was shown that trajectories can be generated in real time.
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6. Discussion

This chapter delves deeper into the safety techniques presented, emphasizing three im-
portant aspects for discussion. First, suggestions for improvement are put forward, for
example, to reduce the impact on the learning process when adjusting risky actions. Next,
possible applications of the proposed safety techniques are examined. Finally, the focus
is placed on key challenges in model-free reinforcement learning and potential strategies
to overcome them.

6.1. Opportunities for enhancement

Reducing the impact of action adjustments The safety techniques presented in
chapter 4 and chapter 5 make use of a backup policy to adjust risky actions from a task
policy. While this approach is effective in avoiding safety violations, it can also reduce the
final learning performance, as the actions from the backup policy do not contribute to the
fulfillment of the desired task. Therefore, it is desirable to keep the rate of adjusted actions
low. In the following, potential strategies to reduce the impact of the backup policy are
discussed:

• Repeated safety checks: Assuming that an action from the task policy is consid-
ered risky, this strategy attempts to find a new action that is close to the original
action and passes the safety check. The new action can, for instance, be generated
by sampling another action from the task policy or by adding noise to the original
one. Ideally, the new action passes the safety check and contributes to the fulfill-
ment of the task. If the safety check fails again, the procedure can be repeated or an
action from the backup policy can be executed. However, when using data-based
risk estimators, repeated safety checks can increase the probability of classifica-
tion errors. If background simulations are conducted, the computational effort is a
limiting factor.

• Penalties: Another strategy to discourage action adjustments is to reduce the reward
if the backup policy is used. However, when adding penalties to the reward function,
care must be taken to avoid learning an overly risk-averse task policy.

• Improved backup policy: Action adjustments can also be reduced by increasing
the effectiveness of the backup policy in producing safe backup trajectories. When
using a backup policy trained via model-free RL, the performance can be improved
by tuning the hyperparameters involved in the training process. The backup policy
based on braking trajectories presented in section 4.5 could potentially be enhanced
by performing an evasive movement before slowing down the robot joints. Similar
as explained in section 4.6, the evasive movement could be generated by a policy
trained using model-free RL. However, when performing safety checks based on
background simulations, the computational effort increases if an additional evasive
movement has to be taken into account.
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Safety guarantees in environments with moving obstacles In this thesis,
backup policies trained via model-free RL are utilized to maintain safety in environments
with moving obstacles. While the presented safety techniques are effective in reducing
collisions, they do not provide strict safety guarantees if moving obstacles are present.
Under certain conditions, however, it is possible to enhance the methods so that collisions
can be completely avoided. In particular, the movement of the obstacles must follow a
deterministic pattern and there must be areas in the environment that are free of moving
obstacles. In this case, the trajectories generated by the backup policy can be extended by
a braking trajectory. When performing background simulations to detect unsafe actions,
the safety check is only considered to be passed if the backup trajectories end in an area
without moving obstacles. This way, it is possible to ensure that no further collisions can
occur, so that the safety conditions introduced in section 4.4 can be satisfied.

Incorporation of further safety constraints While the primary objective of the
backup policies used in this thesis is collision avoidance, it is also possible to incorporate
further safety constraints. To this end, the safety checks carried out to identify unsafe
actions must take additional safety-relevant properties into account. When using a backup
policy based on braking trajectories, a prerequisite is that no further safety violations can
occur once the robot is stopped. An example of such a constraint would be a limit on the
Cartesian velocity of a robot link. Balancing constraints, on the other hand, typically do
not satisfy this condition. For instance, a bipedal robot can still fall over even if all robot
joints are stopped. One approach to account for balancing constraints is to utilize a backup
policy that actively attempts to keep the robot in balance. Similar as in section 4.6, such
a backup policy could be trained using model-free RL. When conducting background
simulations, the time horizon of the simulations should be selected sufficiently long to
bring the robot into a stable position. As explained in chapter 5, the computing power
needed for real-time execution can be reduced by employing a data-based risk estimator.

Inclusion of additional sensor data The learning experiments in this thesis are
based on the framework of a Markov decision process. Specifically, a state s ∈ S serves
as the input signal for a policy π. In this work, the state of the robot is described by the
kinematic setpoints of the individual robot joints (φd, φ̇d, φ̈d). It is assumed that the actual
values closely follow the setpoints. If this assumption does not hold true, the actual values
(φ, φ̇, φ̈) can be added to the state. Furthermore, it might be advantageous to additionally
incorporate feedback from torque sensors, especially for tasks involving contact. While
sensor data can be easily provided in a simulation environment, care must be taken to
avoid widening the sim-to-real gap. In particular, it is important to consider that real sen-
sor data may exhibit a time delay caused by filtering mechanisms and the process of data
transmission. Another possible enhancement is the use of visual feedback to describe the
state of the environment. Compared to environment-specific state descriptors, visual feed-
back offers the advantage of being more versatile, making it particularly interesting for
policies that need to operate in varying environments. On the other hand, the inclusion of
visual feedback may lead to a higher demand for training data and may require additional
precautions to avoid performance setbacks when conducting a sim-to-real transfer.
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Figure 6.1.: The application areas of industrial robots installed in 2022 according to the
World Robotics Report of the IFR Statistical Department [118].

6.2. Potential applications

Industrial robots Figure 6.1 shows common application areas of industrial robots as
reported in [118]. With a share of almost 50%, handling operations are the most important
application in industrial robotics. According to the classification scheme used in [118],
handling operations describe assistant processes for tasks such as palletizing, placing,
measuring, inspecting, or testing goods. In these scenarios, the robot is primarily used to
transport objects from one location to another. Apart from collision avoidance, the speed
of operation is a crucial factor in industrial environments. As the safety techniques pro-
posed in this thesis can be used to learn fast, collision-free trajectories, industrial handling
operations represent a promising field of application. The use of data-based optimization
techniques might also be beneficial for dispensing processes like powder coating or spray
painting [80, 163, 168]. In view of the increasing importance of collaborative robots,
the collision-free interaction between humans and robots is another interesting field for
future applications.

Humanoid robots In this thesis, the action mapping introduced in chapter 3 is suc-
cessfully employed for learning experiments with the humanoid robots ARMAR-4 [11]
and ARMAR-6 [12]. The safety techniques outlined in chapter 4 and chapter 5 are
primarily intended for robots with a stable base like ARMAR-6. From an application per-
spective, the techniques can be used to facilitate the learning of tasks requiring collision-
free coordination of the robot arms. A possible extension option for bipedal robots is
the use of a backup policy that actively attempts to keep the robot in balance. Since hu-
manoid robots are expected to operate in diverse and unstructured environments, future
applications will likely benefit from visual feedback.

Biologically inspired robots Biologically inspired robots often use actuation mech-
anisms that differ from traditional robots. The methods presented in this thesis are mainly
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(a) Modeling based on revolute joints. (b) Modeling based on muscles and tendons.

Figure 6.2.: Two different ways to simulate the motion of a human arm in the physics
simulator MuJoCo [171] using an upper limb model presented in [144].

intended for conventional prismatic and revolute robot joints. However, alternative actua-
tion mechanisms may be considered indirectly. Figure 6.2 shows a model of a human arm
visualized in the physics simulator MuJoCo [171]. While the actual actuation is based on
muscles and tendons, the motion capabilities of the arm can also be approximated using
revolute joints and an additional controller that translates joint movements into suitable
muscle activities. Based on such an indirect control mechanism, the techniques presented
in this thesis may also be applied to enhance the safety of biologically inspired robots.

6.3. Key challenges in model-free reinforcement
learning

Although model-free RL has proven to be effective in various scenarios, there are still
open research problems that require further attention. Two important aspects are the def-
inition of a suitable reward function and the amount of data required for the training
process. In addition, current policies are often limited to a specific task and environment.
Figure 6.3 shows how the safety techniques presented in this thesis could be integrated
into a future system to train a policy that can be used for different tasks and environments.

Definition of the reward function When employing model-free RL, one difficulty
is to specify the reward function for a desired learning task. Providing suitable rewards
is particularly challenging if several task objectives need to be balanced against each
other. In practice, the reward function is often defined by a human expert, which reduces
the autonomy of the learning process. The field of inverse reinforcement learning [9]
aims to infer the reward function based on demonstrations provided by a teacher. Look-
ing ahead, one potential approach for learning a policy capable of performing different
tasks could involve utilizing a data-based reward estimator trained on a large dataset
of human demonstrations. Figure 6.3 shows how such a reward estimator could be in-
tegrated into a future system that uses either demonstrations or a textual description
to specify the desired learning task.
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Figure 6.3.: A potential future architecture to train a generalist policy using the contribu-
tions presented in this thesis. In this architecture, a state s ∈ S additionally
includes visual feedback of the environment and a specification of the de-
sired task, e.g., based on a textual description. Rewards are assigned by a
data-based estimator trained using a large amount of task demonstrations.

Amount of training data required Another challenge when utilizing model-free RL
is the amount of data required for training a policy. In practice, the training process
is often carried out in a simulator so that the data generation can be scaled up through
parallelization. However, even when using a simulator, the tuning of hyperparameters is
often restricted by limited computing resources. Another challenge when utilizing simu-
lated data is the sim-to-real gap arising from inaccuracies in the physics simulation. The
sim-to-real gap can be narrowed by improving the accuracy of the physics simulation or
by employing domain randomization techniques. Alternatively, a policy trained in simu-
lation can be fine-tuned by collecting additional data with real robots.

Learning a generalist policy Today, model-free RL is often used to train a policy
for a single task in a specific environment. In the future, however, robots are expected
to perform a variety of tasks in different environments. Recent studies on generalist
robotic agents include approaches like Gato [138], RT-2 [194], and RoboCat [22].
Figure 6.3 shows a potential way to incorporate the safety techniques presented in this
thesis into a larger system so that different tasks and environments can be addressed.
While learning a policy for diverse scenarios further increases the amount of training data
required, this approach holds promise in enabling future robots that are both versatile
and safe in operation.
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This thesis investigated the problem of generating safely executable robot trajectories
using model-free reinforcement learning (RL). Recent advances in artificial intelligence
have rendered model-free RL a highly promising tool for the development of autonomous,
self-learning robots that do not rely on predefined environmental models. However, when
learning robot trajectories in unknown environments, a major difficulty is to ensure that
neither the robot nor its surroundings are damaged.

In model-free RL, learning problems are typically formalized using the mathematical
framework of a Markov decision process (MDP). The objective of the learning process is
to find a policy, which maps states to actions so that a sum of rewards is maximized. In
order to find the policy, a training phase is conducted, in which the environment is ex-
plored based on the principle of trial and error. When utilizing model-free RL to generate
robot trajectories in real time, three safety-related challenges emerge:

• First, it is usually not possible to predetermine future robot movements as they
depend on unknown future states.

• Second, since random actions are selected at the beginning of the training phase,
potential safety measures must be able to deal with arbitrary actions.

• Third, the computational effort of potential safety measures must be limited in order
to allow real-time execution.

In this thesis, the challenges mentioned above were addressed by developing, implement-
ing, and evaluating methods to effectively avoid safety violations during and after the
training phase of a policy. While particular emphasis was placed on considering kine-
matic joint constraints and preventing collisions, the methods were designed to cover a
broad spectrum of safety constraints.

In a first step, a comprehensive literature survey on the topic of safe reinforcement
learning was conducted. Existing techniques were categorized into practical approaches
and theoretical approaches. The methods belonging to the former category aimed at ad-
dressing safety issues from a practical perspective, typically without a thorough mathe-
matical analysis of the problem. As a drawback, the resulting safety measures were often
task-specific or required additional engineering effort. The theoretical approaches, on
the other hand, were further divided into two sub-categories. In particular, a distinction
was made between those approaches that adjust the optimization objective of the learning
problem and those approaches that adjust actions that may pose a safety risk. Approaches
that modified the optimization objective had the disadvantage of limited effectiveness at
the beginning of the training phase. Conversely, approaches involving the adjustment of
unsafe actions did not face this restriction. However, existing techniques were either tai-
lored to specific applications, required a model of the system dynamics, or did not provide
strict safety guarantees.
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An important research problem that was not sufficiently covered by existing methods
was the learning of robot trajectories subject to kinematic joint constraints. Especially
when generating fast robot movements, compliance with kinematic constraints is essential
to prevent damage to the robot joints. Therefore, the first research question covered in this
thesis was how actions can be translated into robot trajectories that adhere to position,
velocity, acceleration, and jerk limits specified for each robot joint. The basic idea was to
design an action mapping ensuring that every possible action leads to a valid trajectory.
To this end, the concept of an upper and a lower trajectory was introduced. Both of these
trajectories were required to satisfy the kinematic constraints over an infinite time horizon.
Based on this prerequisite, it was shown that every possible action can be mapped to an
intermediate trajectory that also complies with the kinematic constraints. As a result,
neither the above-mentioned uncertainty about future states nor the random selection of
actions at the beginning of a training phase posed a safety problem. For this reason, the
action mapping served as the basis for all learning experiments carried out in this thesis.

In order to consider further safety constraints, the concept of background simulations
was established in a follow-up study. To this end, a backup policy was introduced as a
complement to the normal task policy. The purpose of the backup policy was to replace
unsafe actions generated by the task policy. To determine whether an action from the
task policy was considered safe, a background simulation was carried out in a physics
simulator. In order to ensure that the backup policy could always be executed safely,
certain safety conditions had to be fulfilled. Most importantly, the time horizon of the
background simulations had to be sufficiently long and the environment had to be pre-
dictable. For environments without moving obstacles, a backup policy based on braking
trajectories was proposed. Using this backup policy, collisions and torque limit violations
could be effectively prevented when learning movements for robots with a stable base.
Next, the concept was extended to environments with moving obstacles. For this pur-
pose, a backup policy was trained to actively avoid collisions using model-free RL. In this
context, two additional challenges were identified: First, the computational effort for the
background simulations increased significantly when moving obstacles were taken into
account. Second, the predictability of the environment was limited when obstacles moved
in a non-deterministic way. Both of these challenges could be addressed by introducing
data-based risk estimators.

The key idea of the data-based risk estimators was to predict the outcome of a
computationally intensive background simulation by leveraging previously collected data.
To this end, neural networks were trained using supervised learning. Due to the low re-
source demands of the neural networks, the computational effort for real-time trajectory
generation could be significantly reduced. In addition, it became possible to estimate the
risk of safety violations in environments with stochastic behavior. The effectiveness of
the data-based risk estimators was evaluated by avoiding collisions in environments with
moving obstacles. More specifically, the evaluation included a human-robot interaction
scenario, in which the robot had to anticipate the movements of a human and a ball envi-
ronment, in which the robot had to keep moving to avoid collisions. The results showed
that the use of a backup policy and a risk estimator was effective in reducing collisions
throughout the entire training process of a task policy. In addition, the evaluation revealed
a trade-off between exploring the environment and avoiding collisions, which could be
controlled by adjusting a threshold used for the risk classification of actions.
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In summary, the research carried out in this thesis led to three key contributions to the
field of safe reinforcement learning:

• Action mapping considering kinematic joint constraints:

This contribution outlined a method for translating actions from a Markov decision
process into robot trajectories that strictly adhere to kinematic joint constraints.
Specifically, constraints on the position, velocity, acceleration, and jerk of each
robot joint were considered. Using the proposed action mapping, policies were
successfully trained to track reference paths and to adjust reference trajectories for
a ball-on-plate task. In addition, the action mapping served as the basis for the
trajectory generation presented in the following two contributions.

• Safety assessment using simulated braking trajectories:

In this contribution, a backup policy based on braking trajectories was introduced.
The backup policy served as a safety measure for robots with a stable base in
environments without moving obstacles. By conducting background simulations
in a physics simulator, collisions and torque limit violations could be strictly pre-
vented. The evaluation was carried out by successfully learning reaching tasks with
up to three industrial robots and a humanoid robot.

• Risk estimation based on learned backup behaviors:

As part of this contribution, backup policies were trained to actively avoid safety
violations. Subsequently, the backup policies were used to generate training data for
a risk estimator. Compared to using braking trajectories as a backup policy, learned
backup behaviors offered the advantage of being more flexible with regard to the
safety constraints being considered. In this work, the proposed risk estimation was
evaluated for collision avoidance in environments with moving obstacles. As part
of the evaluation, policies for a reaching task and a basketball task were success-
fully trained. Using data-based risk estimators, compliance with the specified safety
constraints was encouraged but not strictly guaranteed.

Each of the contributions underwent a thorough and systematic evaluation process. To
demonstrate that safely executable trajectories can be generated in real time, policies
trained in simulation were successfully transferred to a real industrial robot.

The discussion of this work highlighted opportunities for improvement, potential
application areas, and directions for future research. Finally, it was outlined how the
techniques presented in this thesis can contribute to the development of autonomous
robots that are both flexible and safe in operation.
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Appendix

A. Safety properties of the proposed action
mapping

In chapter 3, an action mapping is introduced to generate trajectories that satisfy the kine-
matic constraints given by the equations (3.1) - (3.4). Based on an action at at time step t,
the action mapping produces a trajectory from time step t to time step t + 1. In order
to ensure that the kinematic constraints are always satisfied, the action mapping needs to
fulfill the following two safety properties:

• The generated trajectory from t to t+ 1 must satisfy the kinematic constraints.

• There must be at least one feasible way to continue the trajectory at time step t+1.

In the following, it is shown that these properties can be fulfilled when providing an
upper and a lower trajectory, which both fulfill the kinematic constraints (3.1) - (3.4).
Contrary to t, the variable t indicates a continuous time. The course of the jerk of a
one-dimensional lower and upper trajectory is denoted by jL(t) and jH(t), respectively.
Likewise, the course of acceleration is labeled aL(t) and aH(t). The initial acceleration
at t = 0 is labeled a0. With the proposed action mapping, an intermediate trajectory is
computed that lies between the lower and upper trajectory. The jerk and acceleration of
the intermediate trajectory are referred to as jM(t) and aM(t), respectively. Each action a
is composed of a scalar ∈ [−1, 1] per robot joint. In the following, the scalar for the one-
dimensional case is labeled m with m ∈ [−1, 1]. The jerk of the intermediate trajectory
is computed as follows:

jM(t) = jL(t) +
1 +m

2
· (jH(t)− jL(t)) (7.1)

With m ∈ [−1, 1], the following relation is satisfied:

0 ≤ 1 +m

2
≤ 1 (7.2)

As a prerequisite, jL(t) and jH(t) comply with the jerk constraint (3.4):

jmin ≤ jL(t) ≤ jmax (7.3)
jmin ≤ jH(t) ≤ jmax (7.4)

Assuming jH(t) ≥ jL(t), it follows from (7.1) to (7.4) that:

jmin ≤ jL(t) ≤ jM(t) ≤ jH(t) ≤ jmax (7.5)

Similarly, the following relation applies for jL(t) ≥ jH(t):

jmin ≤ jH(t) ≤ jM(t) ≤ jL(t) ≤ jmax (7.6)
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As a result, the jerk of the intermediate trajectory satisfies the jerk constraints in any case:

jmin ≤ jM(t) ≤ jmax (7.7)

The acceleration aM(t) of the intermediate trajectory can be computed by integrating the
intermediate jerk jM(t):

aM(t) = a0 +

∫ t

0

jM(t) dt (7.8)

The acceleration of the lower and upper trajectory can be calculated analogously:

aL(t) = a0 +

∫ t

0

jL(t) dt (7.9)

aH(t) = a0 +

∫ t

0

jH(t) dt (7.10)

Using (7.1), (7.9) and (7.10), equation (7.8) can be rewritten as follows:

aM(t) = a0 +

∫ t

0

jM(t) dt

= a0 +

∫ t

0

(
jL(t) +

1 +m

2
· (jH(t)− jL(t))

)
dt

= a0 +

∫ t

0

jL(t) dt +
1 +m

2
·
(∫ t

0

jH(t) dt−
∫ t

0

jL(t) dt

)
= aL(t) +

1 +m

2
· (aH(t)− aL(t)) (7.11)

For the intermediate velocity vM(t) and the intermediate position pM(t), the same
reasoningreason can be applied to show that:

vM(t) = vL(t) +
1 +m

2
· (vH(t)− vL(t)) (7.12)

pM(t) = pL(t) +
1 +m

2
· (pH(t)− pL(t)) (7.13)

It can be seen that the equations (7.11), (7.12), and (7.13) correspond to the calculation
of the intermediate jerk in (7.1). Consequently, the same reasoning used to derive that
jM(t) complies with the jerk constraints (7.7) can also be used to show that aM(t), vM(t),
and pM(t) satisfy the following kinematic constraints:

amin ≤ aM(t) ≤ amax (7.14)
vmin ≤ vM(t) ≤ vmax (7.15)
pmin ≤ pM(t) ≤ pmax (7.16)

According to (7.7) and (7.14) - (7.16), the desired kinematic constraints are fulfilled when
generating an intermediate trajectory from the discrete time step t to t + 1. At time step
t+ 1, a new upper and lower trajectory are computed. However, as shown in Figure A.1,
the trajectory could also be continued by keeping the same relative distance to the initial
upper and lower trajectory as during the time interval from t to t + 1. For this reason,
the second safety property, which states that there must be at least one feasible way to
continue the trajectory at time step t+ 1, is also satisfied.
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Figure A.1.: The figure shows the resulting trajectory when selecting an action at = 0.5 at
time step t and keeping the specified relative distance to the initial upper and
lower trajectory for all subsequent time intervals. Under normal conditions,
a new upper and lower trajectory are computed at t+ 1. The blue trajectory
shows that there is at least one valid way to continue the trajectory at t + 1.
Assuming that no valid upper and lower trajectory is found at t+1, the blue
trajectory could serve as a fallback for both of them.
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