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Kurzfassung

Mobilitdtssysteme der Zukunft werden aufgrund der zunehmenden Verstddterung mit immer
zahlreicheren Herausforderungen konfrontiert werden, die Verkehrssysteme an ihre Grenzen brin-
gen konnen. Infolgedessen besteht die Gefahr, dass Staus und Unfille im Verkehr in Zukunft
zunehmen. Assistierte und automatisierte Fahrsysteme haben das Potenzial, die Mobilitdt und
die Effizienz zu steigern, die Umweltfreundlichkeit zu erhohen und die Sicherheit zu verbessern.
Die Einfiihrung solcher Systeme fiihrt jedoch zu einem htheren Mafl an Komplexitit und Ver-
netzung der Funktionen im Fahrzeug. Vor allem die Gewihrleistung der Sicherheit wird zu
einem entscheidenden Faktor fiir die erfolgreiche Integration und Akzeptanz dieser Systeme in
der Gesellschaft.

Um die Sicherheitsanforderungen zu erfiillen, die erforderlichen Fihigkeiten fiir verschiedene
Anwendungsfille nachzuweisen und Risiken zu minimieren, sind griindliche Tests auf ver-
schiedenen Ebenen unabdingbar. Wihrend gegenwirtig Testfahrten unter realen Bedingungen
durchgefiihrt werden, um das sichere Verhalten von Fahrzeugen mit Fahrassistenzsystemen zu
validieren, werden ab einem hoheren Automatisierungsgrad abstandsbasierte Testansitze (Test-
fahrten) zunehmend unpraktikabel. In diesem Kontext gewinnt der szenario-basierte Testansatz an
Bedeutung, da er effizient das Verhalten der Fahrzeuge in vielfiltigen Situationen untersuchen und
bewerten kann. Die Identifizierung und Zusammenstellung geeigneter und relevanter Szenarien

fiir das Testen ist dabei von entscheidender Bedeutung.

Die vorliegende Arbeit untersucht zwei logische Szenarien mittels Szenarienexploration und
analysiert die Ergebnisse. Dabei werden zunichst die Einflussfaktoren untersucht, die die Qual-
itdt und Kritikalitdt eines Szenarios bestimmen. Es wird eine Kritikalitdtsmetrik eingefiihrt, um
Szenen entsprechend ihrer Kritikalitit zu bewerten. Bayes Optimierung wird verwendet, um
logische Szenarien effektiv nach kritischen Bereichen zu durchsuchen, ohne eine gitter-basierte
Simulation durchfiihren zu miissen. Die Ergebnisse konnen daraufhin aufgrund der Ahnlichkeit
verschiedener Metriken geclustert und inhaltlich zu einer reduzierten Anzahl von proto- und
archetypischen Szenarien zusammengefasst werden. Schliellich kann das wihrend der Explo-
rationsphase trainierte Vorhersagemodell genutzt werden, um Aussagen iiber die Konfidenz und
Sicherheit der Ergebnisse beziiglich der Kritikalitét zu treffen. Diese Methodik zielt darauf ab, das
Verstindnis fiir Vorgédnge in logische Szenarien durch Exploration und Auswertung zu verbessern
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und Szenarienkataloge fiir umfassende Test erstellen zu konnen. Weiterhin stellt die Auswertung
der Ergebnisse eines logischen Szenarios einen wichtigen Schritt fiir die Coverageaussage eines
solchen Szenarios dar.

ii



Abstract

The future of mobility systems will face many challenges as urbanization and the number of
registered vehicles increase, potentially pushing transportation systems to their limits. Assisted
and automated driving systems have the potential to provide greater mobility for all, driving more
efficiently, environmentally friendly, and safely. However, the introduction of such systems leads
to increased complexity and interconnectivity of vehicle functions. Safety is a critical factor for
the successful integration and acceptance of these systems in society. Thorough testing of vehicles
at different stages of development is essential to meet requirements, demonstrate the necessary
capabilities for different use cases, and minimize risks. Currently, test drives under real-world
conditions are used to validate the safe behavior of vehicles with driver assistance systems.
However, at higher levels of automation (e.g. SAE Level 4 and Level 5), the distance-based
testing approach becomes less feasible due to the excessive number of test kilometers required to
ensure safety. Scenario-based testing is gaining recognition as an efficient way to investigate and
evaluate vehicle behavior in different situations. It is necessary to identify and group suitable and
relevant scenarios for testing. Scenarios can be obtained in a variety of ways: from real data, for
example, or created by experts. However, especially with data-driven approaches, there is a risk
that many scenarios are very similar and show little difference, especially if they are assigned to
the same logical scenario. This thesis investigates the results of scenario exploration of a logical
scenario in the context of scenario-based testing.

This thesis examines two logical scenarios using scenario exploration and analyzes the results.
To achieve this, the first step is to clarify what defines quality and criticality in logical or concrete
scenarios. Then, a criticality metric is introduced that allows a comprehensive evaluation of
scenes, inspired by the traffic quality assessment used for highways. Bayesian optimization is
used to effectively search the example scenarios for critical areas without having to run a grid-
based simulation. The results can then be clustered based on the similarity of different metrics
and summarized into a reduced number of proto- and archetypal scenarios. Finally, the predictive
model trained during the exploration phase can be used to make statements about the confidence
and certainty of the results with respect to criticality. This methodology aims to improve the
understanding of processes in logical scenarios through exploration and evaluation, and to be
able to create scenario catalogs for comprehensive testing. In addition, evaluating the results of a
logical scenario is an important step in determining the coverage of such a scenario.

il
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1 Introduction

Assisted and automated driving is one of today’s key technologies for a future transport and
mobility transition. The advantages and disadvantages of these technologies are intensely debated.
They promise mobility for everyone and a reduction in accidents, particularly those caused by
human error. However, there is potential for new types of accidents, such as individuals attempting
to exploit or bypass safety boundaries. In 2019, Tesla announced plans to launch one million
robot-taxis by 2020 [111]. However, they have since revised this statement multiple times.
The roboticist Rodney Brooks [127] predicted a more conservative outcome, estimating that in
2022, there would be limited taxi services with dedicated pick-up and drop-off points and severe
environmental restrictions. In contrast, there might even be a ban on parking and human-driven
cars in downtown areas of major US cities in 2045 [127]. With that in mind, autonomous driving
has the potential to significantly alter urban life and the cityscape in the long term. However, it is
important to address the issue of fulfilling all necessary safety requirements for autonomous cars
to drive among other traffic participants. It is crucial to ensure that safety requirements are met
before autonomous cars are on the road.

1.1  Motivation

In general, is essential to ensure and validate the safe behavior of vehicles equipped with Advanced
Driver-Assistance Systems (ADAS) or Automated Driving System (ADS) before their release. To
achieve reliability, the automated driving system and the vehicle must undergo thorough testing,
verification, and validation at every step of the development process. In current research, scenario
generation (cf. Section 2.3) is used to collect different scenario sets and to create scenario catalogs
for this purpose. One example is scenario exploration [34], where scenario parameters are varied
to find critical situations. However, the results of the exploration are typically not assessed for
their usefulness in the test set. Frequently, generated scenarios are related or identical and do not
provide any additional value for testing. Additionally, the required kilometers for test drives are
no longer feasible [148]. Therefore, scenario-based verification and validation play a crucial role
in the future as they constitute an integral part to assure requirements are met, the system has the
necessary capabilities in all intended use cases, and unreasonable risk is avoided [157, p. 6ff.].
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1.1.1 Legal Aspects of Assisted and Automated Driving
Systems

On 6 July 2019, EU Regulation No. 2019/2144 [41] came into effect and is now mandatory to
be followed in all EU member states. This regulation amends the previously passed Regulation
2018/858 [40], which was released a year earlier. Regulation 2019/2144 affects the type-approval
of automated driving systems, their additional components, and systems related to the general
safety of vehicles, as well as the protection of vehicle occupants and vulnerable road users.
Therefore, automated driving systems must undergo testing and certification before being sold or
used on public roads.

A key objective of this regulation is to decrease the number of fatalities and injuries through the
obligatory introduction of vehicle safety systems. The regulation requires the introduction of sev-
eral new technologies and safety measures on a mandatory basis, according to a defined schedule.
The detailed technical requirements for each safety measure are currently being developed at the
EU and UNECE levels, or are already implemented in some cases. For instance, it states that
newly released motor vehicles shall be equipped with intelligent speed assistance, advanced driver
distraction warnings, or event data recording. Furthermore, this regulation references technical
specifications from implementing acts that automated vehicles and fully automated vehicles must
comply with. However, this part of the regulation is currently under work and needs further
research and refinement.

In August 2022, a new implementation regulation [42] regarding EU Regulation No. 2019/2144
was introduced. This regulation lists a set of methods in Annex 3 for the overall compliance
assessment of an automated driving system. Part 1 of this annex specifies that a minimum set
of traffic scenarios should be used in case these scenarios are relevant to the automated driving
system’s operational design domain (ODD). The regulation also defines parameters and thresholds
for the Time-To-Collision (TTC), which is used as a safety performance metric. It determines the
threshold for collision avoidance with pedestrians and cyclists and defines rule sets for different
driving environments, such as urban and rural traffic or motorway entry.

The ISO/PAS 21448 "Road vehicles - Safety of the intended functionality" (SOTIF) [141] provides
a standardized safety assessment framework. It recommends evaluating the driving system and its
components for unknown hazardous scenarios during the late testing phase, located in the upper
right arm of the V-model. Another norm, the ISO 26262 "Road vehicles - Functional Safety" [79],
is a functional safety standard for electrical and electronic systems installed in mass-produced
road vehicles. However, there is currently no legal obligation to apply these two norms.
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1.1.2 Amount of Necessary Testing

First, it is necessary to determine the level of automation of the vehicle or driving system
to determine the required testing. The SAE Standard J3016 (2021) [129] outlines six levels of
automation. Wood et al. [157] state that each layer of a driving system requires specific verification
and validation:

LO No Driving Automation: Human driver is responsible for the entire driving task.

L1 Driver Assistance: Lateral or longitudinal driving support is provided to a human driver,
who remains responsible for the primary driving task. Typical example functions for L1
include lane-keeping assistance (LKA) or active cruise control (ACC).

L2 Partial Driving Automation: A combination of lateral and longitudinal driving support,
where the human driver either completes a driving task or supervises the driving system.
An example is Tesla’s Autopilot.

L3 Conditional Driving Automation: Defined tasks can be achieved by an automated driving
system (ADS) without human support. However, a human driver is always available to
intervene or take over. Examples for L3 are the traffic jam pilot (TJP) or highway pilot
(HWP) [157].

L4 High Driving Automation: The ADS can perform predefined driving tasks without human
support or fallback. It can reach a minimal risk condition if the driver is not available.
Examples for L4 are the urban pilot (UP) for fleet operations in urban areas or the car park
pilot (CPP) [157].

L5 Full Driving Automation: The ADS performs the entire driving task without the need for
human supervision.

This work focuses on level 4 and 5 autonomous driving systems in urban scenarios. These
scenarios present a wide range of possibilities due to the presence of different types of traffic
participants, such as pedestrians, bicycles, and objects like baby strollers, as well as a variety of
street layouts that may vary from town to town and between countries and continents.

Currently, real-world test drives are used in the distance-based test approach to ensure the safe
behavior of assisted driving systems [148]. However, this approach is not feasible anymore at a
higher degree of automation. For example, for L4 or L5 functions, almost 8 billion kilometers are
necessary to make a statistically significant comparison to show that the failure rate of an automated
vehicle is lower than the human driver failure rate. Additionally, any changes or variations in the
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Figure 1.1: Safety Pyramid: representation of the severity of all interactions between two traffic participants [77].

automated driving system necessitate repeating all testing [80, 148]. Furthermore, reproducing
test results generated from real-world test drives is both difficult and expensive.

An intuitive idea of why so many kilometers are needed is given by Hydén [77]. He developed
the Swedish Traffic Conflicts Technique, a method for observing traffic conflicts. This technique
classifies interactions between road users into different events, depicted in the safety pyramid (also
known as the conflict pyramid) shown in Figure 1.1. It is important to note that this information
is based on objective observations and classifications of traffic interactions. The sizes of the
different pyramid layers do not accurately represent the relationships between the number of
different conflict types. However, they clearly show that the more severe an encounter type is, the
less frequently it occurs. The aforementioned vast number of kilometers is required to cover all
possible encounters statistically.

1.1.3 Challenges and Scenario Coverage During Testing

Scenario-based testing offers an alternative or supplementary method to random test cases that
arise during real-world test drives. This approach involves systematically deriving and testing
new and relevant scenarios at different stages of development and testing [119, 102]. The
objective is to set up a collection of critical or relevant scenarios, depending on the test object, its
objectives, and its requirements. These scenarios should be abstract during the concept phase and
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become more detailed and concrete throughout the development and testing process. As shown in
Section 1.1.1 and Section 1.1.2, scenario-based testing is now mandatory for new ADS and ADAS
and the necessity for getting test scenarios is growing with each driving function. However, the
question arises of where these test scenarios come from. Scenarios must be created or collected
meticulously, but only some scenarios might provide new insights. Additionally, a large set of
scenarios does not necessarily represent a valid basis for testing, as the set size alone does not
indicate quality. Promising methods for finding new and relevant scenarios or building scenario
databases include scenario extraction, generation, or expert-based creation. Scenario coverage
metrics and criticality metrics are crucial for selecting or generating desired scenario types for
these methods. These metrics must be identified for each considered use case during the scenario
acquisition process and depend on the System Under Test (SUT).

This work focuses on scenario exploration as one of several methods for scenario acquisition.
Scenario exploration identifies critical scenario parameters within a defined parameter space.
However, current research has not yet evaluated the similarity of the scenarios found within
this space. Scenario exploration can result in critical and non-critical scenario parameter sets.
Nonetheless, these sets are only useful for the testing process if they provide new insights and
do not lead to the same scenario multiple times. For instance, if the ego vehicle approaches an
intersection from a distance and a pedestrian is waiting before crossing the street, it is equivalent
to the ego vehicle starting near the intersection and the pedestrian not waiting to cross. The
objective of this thesis is to identify not only critical, relevant, or interesting scenarios but also to
make assumptions about the found scenarios and their usefulness.

This leads to three main challenges:

(1) All relevant scenarios and, thus, all potentially important situations for a driving function
from its Operational Design Domain (ODD) have to be derived and addressed.

(2) The coverage of the scenario space must identify all critical situations regarding the system
under test for sufficient test case generation.

(3) The chosen quality or criticality metric must be appropriate to address the question at hand.
In this thesis: Does the metric adequately measure the criticality of traffic scenes?

Throughout this thesis, these challenges will be addressed and refined. To this end, a list of
research questions (Section 1.2) is formulated to identify the issues that need to be addressed.
From these questions, a list of requirements (Section 4.2) for a more formal goal definition is
derived.
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1.2 Research Questions and Objectives

The first set of research questions focuses on scenario evaluation. This is a crucial step in
determining the quality and informational value of a scenario and, therefore, must be established
before scenarios can be explored or generated.

RQ1.1: What is the definition of scenario quality or criticality, and how does quality or
criticality differ and resemble known criticality metrics?

RQ1.2: Are different levels of abstraction of criticality required during the development
and testing process?

RQ1.3: What metrics are appropriate for providing a comprehensive assessment of the
criticality of a scene or scenario?

RQI1.1 and RQI1.2 are addressed in Section 4.3 and RQ1.3 in Section 4.8. Both parts serve
as supporting aspects for the following research questions and definition of the field where the
research of this thesis is done. A second part of this work focuses on scenario exploration, which
leads to the following set of research questions:

RQ2.1: What algorithms can be found and used for a fast scenario exploration to find
critical parameter sets for logical scenarios?

RQ2.2: What influence does the criticality metric have on the results of the scenario explo-
ration and evaluation?

RQ2.3: How can further analysis help to reduce and summarize the set of found concrete
scenarios?

Quality Taxonomy

[Simula[ion Quality} [ SuT Quality ] [ Scenario Quality ]

[Trafﬁc Density Potential ]—{ Scenario Evaluation H Exploration H Probability Analysis

[ Macro Jﬂeta J [ Meﬁ[ Micro ] Cliws{Erig

Reduction

Traffic Densit D Exploration & D Quality
Potential Evaluation Taxonomy

Figure 1.2: Areas of interest of this work.

The research questions and areas of interest presented in this thesis are divided into three main
categories (see Figure 1.2):

1. Scenario quality and criticality (purple)
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2. Scenario exploration and result evaluation (green)
3. Criticality metric for urban traffic scenes

In Figure 1.2, all categories with related sub-categories are shown with their relationships among
each other. The gradients are used for the main categories and include all the shades of the
subcategories. All three areas are addressed in this work.

1.3 Structure of this Work

Chapter 1
Introduction and Motivation
Chapter 3 Background
Chapter 2 Technical .and
””” State of Science e Mathematical ettty
Background
cherou State of the Art
Novel Contribution
Chapter 4
A Novel Concept for Analyzing Logical Scenarios Theory
Assumptions Exploration Clustering
(Section 4.1) (Section 4.4) (Section 4.5)
T T
Ideas and Requirements Probability Analysis Reduction
(Section 4.2) (Section 4.7) (Section 4.6)
Taxonomy: Scenario Quality Traffic Density Potential

(Section 4.3) (Section 4.8)

Chapter 5

Scenario Exploration and Analysis Experiments Application
Experimental Setup Scenarios Exploration Result Evaluation
(Section 5.1) (Section 5.2) (Section 5.3.1) (Sections 5.3.2 and 5.3.3)
Chapter 6
Conclusion and Future Work

Figure 1.3: Structure of this work.

The structure of this work is shown in Figure 1.3. It shows the same areas of interest located
within the chapters of this work and uses the same color coding as Figure 1.2 for the different
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steps and topics. After an introduction, the requirements and research questions leading to this
work are given.

Chapter 2 gives a brief insight into relevant current research. It provides a concise overview
of current research on scenario-based testing and its development process. It begins with an
introduction to the topic and a brief explanation of important terms used in scenario-based
testing. This includes definitions of established terms, scenario abstraction levels, scenario
description layers and languages, simulation environments, and criticality analysis. After that,
criticality metrics and existing metric systematics are summarized. It distinguishes between
constellation-based and environmental criticality metrics and gives examples for all categories.

The final section of this chapter provides a brief overview of current methods for scenario
acquisition, which can be used to expand scenario sets for development and testing. The chapter
classifies acquisition methods into six categories and provides examples of representative methods
for each category. It also demonstrates how these methods can be combined.

Chapter 3 provides the technical background relevant to this work. It covers several scenario
description languages, simulation environments, and resolution levels of traffic simulation. The
second part of this chapter introduces the mathematical background used for scenario exploration
and analysis.

The core of this work starts in Chapter 4, where the concept of this work is presented. Section 4.1
outlines the assumptions for the subsequent experiments, including those related to the ego vehicle
and scenario exploration conditions. Following this, the conceptual idea and requirements are
presented.

Section 4.3 presents a new taxonomy for quality and criticality metrics in various stages of the
simulation process. This taxonomy bridges the gap between the importance of a driving function
and the assessment of scenarios. Prior to this work, scenario quality was seldom considered. The
objective of scenario quality is to enhance the understanding of quality in the development and
testing process and to provide clear separation and insight into where further testing is required.
Furthermore, it helps to understand quality in the development and testing process and to have
a clear separation and insight into where further testing is needed. In particular, a focus is set
on scenario metrics, as many commonly used metrics, e.g., time-to-collision, can only evaluate
small parts of a scenario or scene and tend to neglect several aspects of a scenario, e.g., actors
with unpredictable movement like children or animals. Sections 4.4 to 4.7 show the concept
of scenario exploration, the optimization algorithm, and its utilization. This is followed by an
illustration of scenario clustering using similarity and dimensionality reduction. An archetypal
analysis for scenario set reduction is proposed, and the uncertainty calculation of the results is
discussed. To address the issue of evaluating the criticality of scenarios involving more than two
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cars, including the ego vehicle, a new metric based on the traffic quality proposed by Hallerbach
et al. [70] is presented in Section 2.2.5. This metric can assess an entire scene surrounding the
ego vehicle and applies to urban traffic. On this basis, a novel method is employed to calculate
a comprehensive score for all submetrics without requiring the learning of weights for each new
scenario or map. Chapter 5 introduces the experimental setup. Section 5.1 presents the scenario
exploration experiment setup, which serves as the structure between the simulation environment
and optimization algorithm. This setup uses optimization algorithms to find critical concrete
scenarios within a logical scenario without simulating all possible parameter combinations. In
Section 5.2, the layouts of the two experimental logical scenarios are shown. The first scenario
includes two intersection situations with different structural setups divided into scenarios 1A and
1B. Scenario 1 contains various trajectory parameterizations, whereas scenario 2 parameterizes
synchronization points. The simulation environment differs between both scenarios, allowing
different ego and actor behaviors. Finally, Section 5.3 discusses the clustering, set reduction, and
probability results. Chapter 6, concludes this work addressing the given research questions and
gives an outlook on future work.
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2.1 Scenario-based Testing

Quality assurance is a crucial aspect of the development process. Simulation and scenario-based
testing are effective methods for ensuring quality and should be considered from the beginning.
This work proposes scenario exploration and result evaluation as a step in scenario-based testing
during the phase where scenarios are collected or generated. However, scenario-based testing must
still be integrated into the current development process for automotive systems. The V-model,
as shown in Figure 2.2, represents a well-established development process [130] that includes
scenario abstraction levels (Section 2.1.3) at various stages [30]. The left part of the V describes
the top-down design process that follows the concept phase in contrast to the right part, which
describes a bottom-up verification and validation process. During this process, scenarios are
derived at the beginning and get substantiated in later stages. Simulation can be used at any stage
of function development, before building and testing vehicle prototypes. According to Figure 2.2,
model- and software-in-the-loop tests can be used to verify and validate initial ideas, design, and
concepts of the ADS. In this phase of testing, every part is described by a simulation model,
including sensors and vehicle parts. Later on, simulation models can be replaced by hardware or
even a test vehicle, leading to hardware- and vehicle-in-the-loop tests [148].

2.1.1 X-in-the-Loop Methods

As illustrated in Figure 2.2, the V-model process comprises several in-the-loop steps, also refereed
to as X-in-the-loop (XiL). These methods are coupled with the development process, starting
with a more abstract procedure called model-in-the-loop (MiL). As more software and hardware
components become available during the development process, the abstraction is replaced by
concrete models in software-in-the-loop (SiL), hardware-in-the-loop (HiL), and vehicle-in-the-
loop (ViL) [156, 130].

The model-in-the-loop method allowes for the evaluation of requirement analysis and software
design. It involves designing a software model of the desired behavior or algorithm based on its
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functional goals and testing it interactively in a simulation environment that provides all necessary
components. Integrating it into a virtual prototype provides insight into specific requirement
specifications and test guidelines. A simulation environment coupled with a driving simulator
enables the evaluation of new ADS functions to reduce risk compared to a function that goes
through all steps of the V-model before evaluation [156].

The following step in the simulation process is the software-in-the-loop simulation. This allows
for testing of modules for serial development within the architecture of the final system. The test
environment must provide the interfaces and runtime environment of the test object. Standardized
architectures, such as AUTOSAR, can simplify this process by only requiring modeling of the
lowest layers interfaces in the layer model. This approach enables the seamless integration of the
function under development into the final system virtually. It can be evaluated by humans as a
virtual prototype [156, 130].

In the next step, the hardware-in-the-loop method transfers the models stepwise to hardware
components. After this system integration step, the iteration cycles become longer, and the
focus shifts to validation with a greater emphasis on automated rather than interactive testing.
The first HiL-Tests verify the components according to the specifications. Once these tests are
complete and all components are verified, integration begins, and the modules are verified for
their interaction. At the end of this phase, the systems hardware components are finalized and
optimized in accordance with their specifications. [156, 130].

The final method is vehicle-in-the-loop, which enables real vehicle testing in a virtual environment.
One potential use case involves feeding sensor data from a simulation environment through the
vehicles environmental sensor interfaces. Another option is to stimulate the sensors with artificial
data, such as ultrasonic sensors. Both methods allow for reproducible test cases for validation
purposes [156]. The methods of this thesis primarily fall under the categories of MiL and SiL.
testing.

2.1.2 EU Regulations for Scenario-based Testing

As stated in Section 1.1.1, the EU Regulation 2019/2144 [41] and its implementation regulation
[42] were recently introduced. They describe scenario-based testing as an essential testing
approach during the development and the type approval process.

Figure 2.1 shows the recommended process outlined in EU implementation regulation 2022/1426
for deriving relevant scenarios from the ODD of an ADS. It describes a scenario-specific approach
based on simulations, test track maneuvers, and real road driving tests.

12
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Figure 2.1: The principles to be followed to derive scenarios relevant for the ODD of the ADS [42]. The purple frame
indicates where the scenario exploration results (the core of this work) is located.

In general, there are two approaches to the generation or retrieval of traffic scenarios: the
knowledge-based approach and the data-based approach. The knowledge-based method involves
experts to define critical and hazardous situations and to generate scenarios (see Section 2.3.5
and Section 2.3.2). The data-based approach, on the other hand, uses existing data and evaluation
methods to find and classify relevant scenarios for testing. Such methods are scenario extraction
(Section 2.3.4), scenario exploration (Section 2.3.3), or scenario generation (Section 2.3.1). In
all cases, the scenarios must be derived from the ADSs ODD.

In the regulation, scenarios are classified into three types: nominal (1), critical (2), and failure
(3). The numbers correspond with the numbered circles in Figure 2.1. In the following text, the
expressions in brackets mark the according names in Figure 2.1. The regulation [42] distinguishes
between the derivation of all three types of scenarios. At the beginning, the nominal scenarios can
be derived from the ODD Analysis of the automated driving system or the fully automated vehicle.
The goal is to collect all possible interactions between the ego vehicle and objects within the ODD.
Table 2.1 shows a list of possible interactions with other vehicles. This helps to determine how
the ODD affects the behavior competency of the ADS (Driving Scenario Analysis).

Following this, an analysis of the object and event detection and response (OEDR) is conducted,
which results in a set of behavioral competencies for the driving system and a corresponding set
of scenarios. The goal is to map all potential events to an appropriate response from the ADS.

13
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Table 2.1: Example object and events/interactions relation from [42]. According to an ADS’ ODD, the object on the left
side can participate in the events listed on the right.

Objects - Vehicles Events/Interactions

Cars, Light Trucks, Heavy Trucks, | Lead vehicle decelerating (frontal)

Buses, Motorcycles Lead vehicle stopped (frontal)

Lead vehicle accelerating (frontal)
Changing lanes (frontal/side)

Cutting in (adjacent)

Turning (frontal)

Encroaching opposing vehicle (frontal/side)
Encroaching adjacent vehicle (frontal/side)
Entering roadway (frontal/side)

Cutting out (frontal)

The regulation [42] provides a list of examples, such as Leading vehicle stopped, to which the
ADS responds with Decelerate, stop. This list of events and responses is dependent on the objects
and events identified in the previous step (ODD Analysis). In addition, the real world is analyzed
with respect to the ADS. This analysis leads to Assumptions that must be evaluated for their
Probability of occurrence in order to obtain a set of defined Core Nominal Scenarios. These core
nominal scenarios must be included in the general set of Nominal Scenarios.

Critical scenarios may be edge cases of nominal scenarios or standardized methods for evalu-
ating operational inefficiencies. Edge cases can be derived from real-world analysis or a safety
assessment conducted by experts. This assessment should include critical scenarios where the
ADS must respond with emergency reactions to environmental conditions. These cases may be
supported by an enhanced combination of scenario descriptors from different ODD parts, e.g.,
infrastructure, dynamic and static objects, or environmental conditions.

The last category, the Failure Scenarios (ADS internal failures), include failure situations to assess
the driving systems response. During the development phase, the manufacturer must prepare
strategies for addressing each identified failure (Identify Failure Modes + Response Analysis).
These scenarios can be utilized in both simulation and physical testing.

Furthermore, the regulation defines criticality metrics, e.g., TTC, including its use cases, formulas,
and thresholds. Regarding the safety concept, it requires a reasonable scenario coverage of selected
test scenarios that represent the ODD.

The purple frame around the boxes with nominal and critical scenarios in Figure 2.1 highlights
the part of the diagram where scenario exploration results and the core of this work are located.

14
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2.1.3 Foundations of Scenario-Based Testing
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Figure 2.2: V-Model showing different X-in-the-loop phases [130, 83] combined with derivation of scenarios at different
development stages [30]

The ISO/PAS 21449 [141] and SAE J3016 [129] standards provide standardized definitions for
terms related to automated vehicles as well as the verification and validation context. This
section briefly introduces the most important terms used throughout this work to ensure a shared
understanding and avoid ambiguity. The definitions of the following terms are narrowed down
from their standardized form to fit the scope of this work.

Definitions of Important Terms
e Action [141]: Atomic behavior that is executed by any actor in a scene. Also, a definition
of what an actor is supposed to do during a specified scene in a scenario.

* Actor: Based on the previous definition, an actor is a person or vehicle that serves as a

dynamic object in a scenario. Other possible terms include traffic participant, vehicle, or
pedestrian.

* Automated Driving System (ADS) [129]: Software that is can perform a driving task within
a given scenario.
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Intended functionality [141]: The specified behavior that a system should exhibit, particu-
larly prior to executing a scenario.

Operational Design Domain (ODD) [129]: The Operational Design Domain specifies the
conditions under which an ADS is intended to function. The ODD defines where, e.g.,
environmental or geographical characteristics and when, e.g., time-of-day restrictions.

Scenario [141]: A chronological sequence of individual scenes and their transitions.

Scene [141]: Snapshot of all dynamic objects, actors, and their observable states, as well
as the scenery, such as weather and lane network.

Test Case [141]: A set of conditions that determine whether an ADS is functioning as
intended.

Validation [85]: Evaluation whether the model or software is valid for its intended func-
tionality, specifically for building the correct simulation model.

Verification [85]: Evaluation of the accuracy of transforming a problem formulation into a
model or software, i.e., building it right.

Another set of definitions that are not defined by standards or other documents, but play an

important role in understanding this work are:

16

e Parameter range: Parameter values bounded by the lowest and highest possible number,

e.g., a parameter p can be defined as follows p € [0, 1], where p takes a value between 0
and 1.

Parameter set: A set of n concrete values for all n parameter ranges of a scenario. The
size of the set depends on the scenario description and holds a concrete value for each
previously defined parameter range. In the previous 1-dimensional example of p € [0, 1],
an example of a parameter set is (p = 0.5).

Parameter space: n-dimensional space, defined by all n parameter ranges used within one
scenario. Each point within the parameter space depicts a parameter set.

Simulation model: All parts of a simulation that represent a modeled version of real-world
objects, such as sensor models and road users. These objects are often simplified to varying
degrees compared to their real-life counterparts.



2.1 Scenario-based Testing

V2X messages,

—>
’Q

S

N

J

J

O
D

L6 - Digital Information
etc.

aYa

Illumination,

L5 - Environmental Conditions .
weather, wind, etc.

p

v
A
l\- A

] : Vehicles,
L4 - Dynamic Objects .
pedestrians, etc.

°> Layer 4

. . Temp. markings,
M L3 - Temporary Modification of L1 and L2 temp i mlefc
& Layer 3/ [ e Siens, efe.
q e s
X Buildings,
L2 - Roadside Structures vardrails. et
Layer 2/ {_ ¢ o
v r 'd N\

Map, road, infra-

aYa
AN
J\

\

J

Layers of Information
Interaction between layers

\
-

L1 - Road Network & Traffic Guidance Ob;.

structure, etc.

Figure 2.3: PEGASUS 6-Layer model with examples for information defined on each layer [132]
Scenario Description Layers

The scenarios and their description languages simulated during the exploration are typically
designed in different layers. Scenario descriptions can be divided into information layers with
equally grouped information. The PEGASUS method [119] includes a 5-layer model, which
was further developed in the VVM project [147]. Scholtes et al. [132] suggest extending the
5-layer model by Bagschik et al. [25] to a 6-layer model. Figure 2.3 displays all six layers with
examples of information belonging to each layer in the right column. The layers interact with
each other and define a complete scenario. Typically, maps describe Layer 1 (L1) and Layer 2
(L2), including related formats such as ASAM OpenDRIVE and OpenCGR [21], which provide
information about the unchanging infrastructure and road surface. Layer 3 (L3) through Layer
5 (LS5) are described by scenario description languages, such as OpenSCENARIO [21]. They
describe all participating actors (L4), their maneuvers (L4), additional traffic-relevant objects (L3
and L4), temporary changes of L1 and L2 (L3), and environmental settings (L5). However, there is
currently no established description standard for Layer 6 (L6), which defines digital infrastructure.
The primary focus of this work is at Layer 4 since mainly scenario objects and their parameters
are changed and explored.

Scenario Abstraction Levels

This work explores scenario parameter spaces to find critical or interesting scenario parameter
sets. According to Menzel et al. [102] and the PEGASUS method [119], a scenario parameter
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space and a parameter set from within this space are different levels of scenario abstraction. Thus,
scenarios can be categorized into different levels of abstraction (functional, logical, and concrete
scenarios). This categorization depends on the stage of development and testing. During the
development and testing process, the scenarios become increasingly refined.

The most abstract level of scenario representation is called functional and describes scenarios using
natural, non-structured language terminology. The main goal of this level is to create scenarios
that are easily understandable for experts. The next abstraction level is logical scenarios, which
refine the representation of functional scenarios with the help of parameters. These parameters
may include ranges for road width, vehicle positions and velocity, or time and weather conditions.
They can be described as either parameter ranges or probability distributions. The last and most
detailed level consists of concrete scenarios that depict operating scenarios with concrete values
for each parameter in the parameter space. One logical scenario can result in multiple concrete
scenarios, depending on the number of variables, their range, and step size.

In VVM, the three abstraction levels were refined: Neurohr et al. [109] propose a fourth level, the
abstract level, which is located between the functional level and the logical level. The abstract
scenario is a formal, machine-readable, and declarative description of a traffic scenario that
focuses on complex causal relations. It links the scenario description closer to an ontology and a
related ODD from which the scenario was derived. An abstract scenario description can be written
in description languages like TSC [44] or OpenSCENARIO [21], which are further explained in
Section 3.1.1.

Figure 2.4 illustrates the four levels of abstraction at an example: The functional scenario describes
the setting and actions of all participants. The abstract scenario is represented by an executable
scenario file, e.g., OpenSCENARIO. In the logical scenario, all relevant parameters are assigned
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parameter ranges: lane width, ego speed, and bike speed. In the last level, the concrete scenario,
all parameters are assigned concrete values.

2.1.4 Scenario-based Testing Concepts

As stated by Wood et al.[157, p. 83f.], scenario-based testing is a suitable method to supplement
the statistical approach of real-world driving, thus reducing the necessary mileage. This method
includes the techniques and strategies listed below during the test process to gain information and
make statements about the quality of a SUT:

Scenario acquisition: Scenarios have to be generated, extracted, or designed by experts.
Section 2.3 provides an overview of various methods for acquiring scenarios, their charac-
teristics, and their interconnections. A focus is put on scenario exploration since it is part
of this work.

Scenario classes: Scenarios can be categorized into equivalence classes to determine the
necessary amount and conditions of interesting test cases. Expert knowledge, automatic
traffic data extraction, and accident databases can be utilized and included in the desired
test strategy. This approach considers known safety features, e.g., exposure, severity, and
controllability (ISO 26262) (see Section 1.1.1), and can be used to assess test coverage and
control influencing factors. Additionally, scenarios equivalence classes may also be used
in simulation and real-world test driving.

Surrogate metrics: Surrogate or criticality metrics can be used to evaluate the behavior of an
ADS or human driver in different scenarios. In general, metrics can vary in the amount
of scenic knowledge they consider. Simple metrics might only consider the position,
orientation, and speed of two traffic participants (e.g., TTC [73]) to make a statement about
the danger in a particular situation. In contrast, more complex metrics analyze the current
situation in greater depth (see Section 2.2). Surrogate metrics are also known as criticality
metrics [2] or key performance indicators (KPIs)

System decomposition: The ADAS or ADS can be decomposed into various (sub-)systems,
which enable individual testing of all components, e.g., individual tests and test strategies
for sensors, motion control, drive planning, and localization.

Test variation: Scenario-based testing allows to combine different platforms and design tech-
niques, e.g., variable variation or stochastic variation, to increase test coverage in the SiL
environment.
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According to Steimle et al. [138], a test case in scenario-based test approaches comprises a scenario
and at least one evaluation criterion. Ulbrich et al. [146] define the temporal development of an
initial scene and its participating static and dynamic actors, similar to a storyline described by a
domain model specification [24]. Therefore, scenario-based testing refers to the practice of using
predefined scenarios to execute test cases [51, 144].

2.2 Quality and Criticality Metrics

Criticality metrics play an essential part in finding critical parameter sets for testing and evaluate
the performance of a SUT. Various names are used for the quality and criticality metrics that
quantify a current situation or scenario regarding the ego vehicles safety for verification and
validation purposes or traffic observations to make road and traffic infrastructure safer. The
terms traffic conflict technique (TCT) or surrogate safety measure (SSM) describe metrics to
analyze safety from observable and potentially dangerous traffic events that occur more often
than crashes. Figure 1.1 illustrates a pyramid of traffic conflict severity, ranging from potential
conflicts to severe injuries or fatalities. Hydén [77] assumes that conflicts precede collisions.
The TCT or SSM metrics are referred to as (traffic) conflict indicators, surrogate indicators, or
criticality metrics [97, 2], although criticality only encompasses a portion of all relevant metrics
in the field of automated driving. In some contexts, e.g., the PEGASUS project [119], the term
key performance indicator (KPI) is used interchangeably with criticality metric. This chapter
does not provide a list or review of available criticality metrics. Instead, the aim is to demonstrate
different ways in which these metrics have been categorized or classified. There are numerous
reviews and collections of criticality metrics available that define and explain standard metrics,
e.g., time-to-collision (TTC) [2, 108, 100].

2.2.1 Proximal Surrogate Indicators

Mahmud et al. [97] propose various categories of proximal surrogate indicators: temporal-based
metrics, distance-based metrics, deceleration-based metrics, and other metrics. Most popular
criticality metrics are based on temporal or spatial proximity, assuming that the distance between
two traffic participants decreases while the probability of a collision increases. These metrics
are inexpensive to calculate since velocity and positional data can be recorded by simulated and
real-world systems. Metrics of this type typically indicate a conflict if the resulting value is below
a predetermined threshold.

* Temporal proximal indicators example:
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— Time-To-Collision (TTC) measures the time until a collision between two road users
if they continue on their current path and speed.

— Headway describes the elapsed time between the leading vehicle and the following
vehicle passing a given point in space.

— Post-Encroachment Time (PET) is the time difference between the departure of one
traffic participant from an area of interest and the arrival of another traffic participant
at the same area.

¢ Distance-based metric example:

— Proportion of stopping distance (PSD) determines the ratio between the remaining
distance to a potential point of collision and the minimum acceptable stopping dis-
tance.

* Deceleration-based metric example:

— Deceleration rate to avoid a crash (DRAC) measures the difference in speed between
a following vehicle and its lead vehicle, divided by their closing time.

There are additional metrics, such as jerk or standard deviation of the lateral position, that cannot
be classified into the three previously mentioned groups. However, these are less commonly
known than the aforementioned examples. A potential limitation of using metrics such as TTC is
that they may only be applicable in certain scenarios. For instance, although TTC can be helpful
in assessing rear-end collisions, it may not offer usable information for scenarios where traffic
participants have intersecting trajectories at an intersection.

2.2.2 Motion-Prediction-based Indicators

Another classification was suggested by Lefévre et al. [92], where each metric is classified
regarding the underlying motion model. The authors distinguish between three different motion
models with increasing abstraction levels: physics-based models, maneuver-based models, and
interaction-aware models. Figure 2.5 shows all three motion models, their variables, typical
challenges, and potential applications.

Motion prediction utilizes dynamic and kinematic models for physics-based models, where control
inputs (e.g., acceleration) are combined with vehicle properties (e.g., size) and external conditions
(e.g., road friction) to get information about future vehicle states (e.g., position or speed). Dynamic
and kinematic models are called evolution models and are used for trajectory prediction. Trajectory
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Figure 2.5: Motion modeling overview [92]. All three model types use different information abstraction to describe the
motion model.

prediction methods differ in the way they handle uncertainties. These methods include single
trajectory simulation, Gaussian noise simulation, or Monte Carlo simulation. An example of
single trajectory simulation is TTC, which usually employs a constant velocity motion model. A
limitation of physics-based motion models is their inability to predict motion in the long term
since they typically cannot anticipate changes in a vehicles motion, e.g., slow down to turn right
or avoid a crash.

Maneuver-based motion models are based on the assumption that the motion of a vehicle is based
on the road network and consists of a series of maneuvers that are independent of other traffic
participants. The objective is to recognize the intended maneuvers as fast as possible to have a
better and more reliable knowledge of the trajectory in the long term. However, this approach
has a downside in that it assumes independent vehicles, which may not always be the case. In
situations with high traffic density, traffic participants regularly react to each other, which can
lead to erroneous interpretations.

The final category comprises interaction-aware motion models. This approach addresses the
problematic assumption of maneuver-based motion models that traffic participants do not interact
with each other. It combines a better long-term prediction than physics-based models with better
reliability than maneuver-based models. However, interaction-aware motion models often require
computation of all possible trajectories, making them too expensive for real-time assessment.
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2.2.3 Constellation-based Criticality Metrics

Many criticality metrics are based on certain car or actor constellations, such as car-following
situations or intersections. These metrics are only applicable in these situations and may produce
unusable results when applied elsewhere. This section primarily describes the metrics used in
the experiments conducted in this work.

Criticality Metrics for Car-following Situations

The best-known metric for car-following situations is Time-To-Collision (TTC). TTC was devel-
oped by Hayward [73] in 1972 to measure the danger of a traffic situation. It describes the time a
following vehicle in a rear-end situation needs to collide with the rear of the leading vehicle. In
case the leading vehicle is faster than the following vehicle, TTC approaches infinity. TTC can
be calculated by the following equation [74]:

T7C = ~20 22 2.1)

where A; and A, are the leading and following vehicles, d describes the distance or headway
between both, and v,.; is the current relative velocity between both vehicles. Since TTC was
developed in 1972, many derivatives, alternatives, and related metrics have been developed. A
short list and summary of the most common and recognized variations can be found in Westhofen
etal. [2].

Criticality Metrics for Intersections

Post-encroachment time (PET), gap time (GT), and encroachment time (ET) were developed by
Allen, Brian, L. et al. [16] in 1978. They videotaped collisions and defined certain situations: 77,
where the first (ego) vehicle enters the intersection area or point, 75, where the first vehicle leaves
this area again, T3, is the actual points in time where the second vehicle enters the intersection.
T340t 1S complemented by 75,,¢, Which is the anticipated time when the second vehicle arrives
at the intersection. T3, varies from 73,,,; insofar that a braking or acceleration maneuver can
influence T3,.; and might not be known beforehand. It can be concluded that metrics based on the
actual time 75,.; can only be calculated after passing the intersection. In contrast, the anticipated
time T5,,+ can be used and adjusted during the crossing of the intersection.
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Encroachment time is calculated by
ET =T, — T, 2.2)

and defines the time a vehicle is occupying the intersecting area and with that being in danger of
a possible collision.

The equation for PET is:
PET = T3qc¢ — 13, (2.3)

and measures the elapsed time between two traffic participants crossing a given point, while GT
predicts the elapsed time for each time step and therefore approximates PET:

GT = T34t — 1. 2.4

2.2.4 Criticality Metrics Independent of Constellations
Worst-Time-To-Collision

Worst Time-To-Collision (WTTC) was developed by Wachenfeld et al. [149] and describes
a constellation-independent metric that extends TTC. It can be used for every situation be-
tween two traffic participants, e.g., following, overtaking, oncoming, and intersection. The
over-approximating driver motion model considers every possible trajectory for both actors and
anticipates the worst possible situation as the outcome. The worst possible situation, in this case,
is the fastest possible collision. Calculations are performed using a system of five equations.

Distance

Euclidean distance is a common metric used for criticality [15]. Distance is a simple and cost-
effective metric, requiring only position and orientation in space. However, it has limitations.
For example, two cars driving parallel to each other on different lanes may have a small distance
between them, but would not be considered critical by a human observer. While distance can
serve as a starting point for assessing criticality, it should not be the sole determining factor. It
may be beneficial to combine distance with other criticality metrics or impose penalties for traffic
participants passing each other on neighboring lanes, as these are common traffic situations that
occur regularly [15]. In car-following scenarios, the distance between vehicles is also referred to
as headway.
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2.2.5 Environmental Criticality Metrics

Often used metrics like TTC [73] or PET [16] only need speed and position as input variables,
and thus, are cheap to calculate. They are computed concerning two traffic participants: the ego
vehicle and its current adversary. These metrics are based on a pairwise criticality evaluation and
only consider two traffic participants from a possibly much larger list. Critical situations involving
more than two parties might not be adequately recognized. Therefore, metrics were developed to
consider more aspects for criticality evaluation, e.g., traffic density or the underlying map.

Traffic Quality

Hallerbach et al. [70] propose a method for evaluating the criticality of the traffic on a highway
section: the focus is not solely on the ego vehicle and one other traffic participant, but on a
combination of different domains of interest, including larger road sections, traffic around the ego
vehicle, and the ego vehicle itself. However, this approach is only suitable for highway traffic. The
weights used in the proposed formula are dependent on the situation and the road segment and
require analysis and optimization for new scenarios. The calculation of traffic quality is divided
into four parts with coefficients of varying weights, which sum up to a total criticality score. A
circle around the ego vehicle designates the area of a highway section which is considered for the
metric calculation.

The first part, the macroscopic metric, calculates the traffic density calculated from the traffic flow
rate and the average travel velocity. Additionally, the microscopic metric considers the velocity
deviation and the average velocity on a highway section around the ego vehicle. The third part
of the traffic density term, the nanoscopic metric, focuses on close-range interactions within a
smaller radius around the ego vehicle. Its calculation is based on velocity deviation and mean
value within it. The last part is the individual metric and considers the ego vehicles mean velocity
and standard deviation of the acceleration. Finally, a supervised training algorithm determines
optimal weights as coefficients for all four terms.

Safety Force Field and Reachable Sets

Other metrics, such as Safety Force Field (SFF) [113, 114] and reachable sets [18], compare the
current situation with a given time horizon and the area that is most likely occupied by the ego
vehicle and other traffic participants. The idea behind the safety force field is to avoid collisions
by not contributing to an unsafe environment since an ego vehicle cannot guarantee a safe journey
when other actors share the roads [113]. Figure 2.6a illustrates a one-dimensional example of
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(a) One-dimensional example of occupied (b) The safety force field is available for (c) Stochastic reachable sets for ego vehicle
space over time as proposed by [113]. all actor types. However, each actor and another car which can be used to
The occupied space is dependent on type has its own behavior and safety compute the crash probability in a sec-
the breaking schedule of a vehicle. procedure in case a collision has to ond step [18]. The planned trajectory of
The dark green space indicates the be avoided. The conflicts between the the ego vehicle serves as the reference
required deceleration, while the yellow claimed sets of the shown actors are line for further computation of possible
space indicates the maximum possible depicted in red [113]. road occupancy.

deceleration. Together, these spaces are
referred to as the claimed set.

Figure 2.6: Examples for safety force field and reachable sets.

the space required for a car to decelerate and avoid hitting a static obstacle. The combination of
the space occupied by the minimum required deceleration and maximum possible deceleration
is known as the claimed set. It is represented by the green and yellow area over time in said
one-dimensional space. All actors must apply their safety procedure in case their claimed sets
intersect, where the conflict between two actors claiming the same time-space is called safety
force field. This approach can also be applied in a 2-dimensional space, taking into account
longitudinal and lateral movement. This method is applicable to any actor, as demonstrated in
Figure 2.6b. Strategies such as the safety potential for safe behavior can be applied based on the
concept of claimed sets and safety force fields. The safety potential is based on the idea that
areas with high overlapping of claimed sets also have a high potential, and the goal for all actors
is to minimize the potential of the area they are located in. All actors are required to adjust their
trajectories accordingly to create a safe environment.

Althoff et al. [18] propose a related idea with reachable sets and stochastic road occupancy, which
is shown in Figure 2.6c. The reachable sets describe road occupancy similar to SFF, taking into
account deviation from the reference trajectory and map layout. Again, this approach is based on
a probability distribution that determines the most likely location of a road user. The resulting
crash probability can then be used to adjust the planned trajectories.
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Responsibility Sensitive Safety: Dangerous Situations

The Responsibility Sensitive Safety framework offers a set of mathematical formulas and logical
rules based on how humans characterize safe driving behavior to guarantee safety during an
automated vehicles drive [137]. RSS is based on five rules:

* Do not hit someone from behind (longitudinal distance).
* Do not cut in recklessly (lateral distance).
* Right of way is given, not taken.

* Be cautious in areas with limited visibility.

If the vehicle can avoid a crash without causing another one, it must.

To consider these rules, Responsibility Sensitive Safety distinguishes between functional safety,
which refers to hardware failure or software bugs, and nominal safety, which considers the behavior
and decision-making of an automated driving system based on the assumption that software and
hardware are working error-free. The indicator of a dangerous situation is a combination of the
safe longitudinal and lateral distances with their thresholds, depending on the current situation and
utilized prediction models, e.g., intersection, highway, or country road. According to Koopman
et al. [87], a significant problem with this approach is that Responsibility Sensitive Safety does not
consider certain edge cases, e.g., perception uncertainties or slopes. To avoid confusion with the
term residual sum of squares later, the abbreviation RSS is not used for Responsibility Sensitive
Safety.

2.3 Scenario Acquisition

Finding new scenarios is one of the first steps in defining test cases to assess the safety of an
automated driving system.The following chapter presents recent research approaches, commonly
referred to as scenario generation. While most of these methods return scenarios for testing,
the underlying concepts and types of scenarios produced can vary from approach to approach.
For example, one generation method may involve creating new trajectories [15], while another
generates scenarios with new sequences of scenario building blocks and actor behavior [67].
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This work uses the term scenario acquisition as a more general expression for obtaining new
1

scenarios.
Scenario
Application
Scenario Scenario Scenario Scenario Human
Generation Alteration Exploration Extraction Experts
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Figure 2.7: This context diagram illustrates the six main categories of scenario acquisition methods and their major
results. Solid arrows indicate the primary output scenario type, while dashed arrows indicate less common
output types.

Different concepts, methods, and algorithms are proposed in the literature. In order to get
a structured overview of the field, the following taxonomy was used to categorize different
acquisition methods. This taxonomy highlights major conceptual differences between individual
approaches and groups them accordingly. Scenario acquisition can be grouped into six major
categories and is shown in Figure 2.7 as a schematic overview. The initial step involves defining
what needs to be tested (Scenario Application) since the goal is to help perform a targeted search
and to define sensible criticality metrics. Various methods for discovering new scenarios are
available from this point (white boxes). The primary output scenario type is indicated by the solid
arrows connecting the categories and scenario types. Dashed arrows indicate rare but possible
outputs. The absence of an arrow does not exclude a scenario type as a format. However, recent
literature has yet to identify such cases. Scenario acquisition methods fall into six categories:

1 Scenario Generation: New scenarios or sub-sequences of existing scenarios are (automat-
ically) generated for fulfilling a given set of criteria. The primary characteristic of this

' Parts of this chapter have been published in [10]. Additional and more detailed information can be found in Appendix

Al
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category is the creation of new scenarios with novel content that do not necessarily belong
to the same logical scenario.

2 Scenario Alteration: In this process, a parameter value is modified to explore other related
scenarios. The initial scenario does not necessarily begin with a predefined parameter
range, but with an initial value that is adjusted during the search.

3 Scenario Exploration: The parameter ranges or distributions of a given logical scenario are
explored while fulfilling a given set of criteria, e.g., explored by optimization algorithms.
The new parameter values are determined by a step size within the defined range or drawn
from a given distribution.

4 Scenario Extraction: Recorded data is analyzed to identify specific features that meet the
desired criteria, using machine learning algorithms or rule-based methods.

5 Experts: Human experts define a scenario. This can be done by drawing the scenario
sequence as images, as well as modeling concrete scenarios directly in a simulation software.

6 Scenario Aggregation: Concrete scenarios discovered by any acquisition method can be
grouped into logical or related scenarios. These are scenarios that share features and
content, making them suitable for clustering or grouping.

The identified scenarios can be used not only for testing purposes but also for other applications,
such as training automated driving functions with reinforcement learning [15].

2.3.1 Scenario Generation

The first concept, scenario generation, involves creating new scenarios, e.g., Goss et al. [67] use
atomic scenario building blocks, such as Accelerate or Keep Velocity, to build a sequence and thus
a new scenario. It is important to note that the term scenario generation is not used in the usual
way, which typically refers to the creation of new scenarios even if they only have minor changes,
such as a different velocity of one actor. This category summarizes methods that can identify
specific scenarios from various logical scenarios, as well as methods that are not dependent
on a single base scenario, which is neither concrete nor logical. Scenario generation involves
modifying the scene sequence, actor behavior and number, or actor tasks within a scenario. This
means that more than just parameters are changed when a new scenario is generated. Other than
scenario alteration and exploration, scenario generation can identify logical scenarios or concrete
scenarios that do not belong to the same logical scenario.
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Furthermore, scenario generation can be divided into two main sub-categories. The first sub-
category generates scenarios from scratch, where changes on all six scenario layers are possible.
The second category, data-driven scenario generation, works with existing actor behaviors and
road networks gathered from real-world data. These methods mainly consider modifications on
layer 2 and above. Scenario generation from scratch can start by creating a road network (layer
1) and adding objects in the following layers, most commonly layer 4. These two sub-categories
are not displayed in Figure 2.7 because they do not differ in terms of generated or used scenario

types.

Generating scenarios from scratch usually starts with a set of scenario building blocks defined
by the framework or task at hand. These blocks are combined and changed with a generation
algorithm to generate new (concrete) scenarios. Additionally to layer 4, it often utilizes map or
road generation to add changes on layer 1 [93, 125, 118], which is a major difference to most other
scenario acquisition types. Other approaches are keyword-based [103] or ontology-based [25].

The utilization of real-world data for scenario generation typically involves starting with a base
of scenario blocks from recorded concrete or logical scenarios. After processing, existing objects
can be modified, new trajectories can be assigned, or additional static and dynamic obstacles can
be added. Data-driven approaches for scenario generation primarily focus on layer 4 and employ
various generative algorithms.>

2.3.2 Scenario Alteration

Scenario alteration involves modifying a concrete scenario by changing specific values until
achieving a desired outcome. This results in a set of new concrete scenarios derived from the
initial concrete scenario. Most alteration methods are algorithm- or optimization-based, and the
algorithm used plays a vital role in determining which scenarios are found. Scenario alteration
begins with a modified concrete scenario. It should be noted that the scenarios resulting from
scenario alteration may not necessarily fall within a single logical scenario, unlike those resulting
from scenario exploration [152]. Both categories are grouped in Figure 2.7.

Scenario alteration refers to methods that modify one or more concrete starting scenarios by
changing parameters and scenario parts across different scenario description layers. The most
common changes occur on layer 4, which contains dynamic objects. These variations mainly
involve altering the trajectories of different types of actors, such as pedestrians or adversary
vehicles.?

2
3

More detailed examples for both scenario generation categories can be found in Appendix A.1.1.
More detailed examples can be found in Appendix A.1.2.
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2.3.3 Scenario Exploration

Scenario exploration is a sub-category of scenario acquisition that can be challenging to dif-
ferentiate from scenario alteration without the use of clear nomenclature, such as logical and
concrete scenarios. In the case of scenario exploration, the goal is to explore a predefined range
of parameters or distributions that define the behavior within a scenario. It starts with a logical
scenario and optimizes the values of various parameters within defined ranges and distributions
towards a specific goal. This process usually aims to find the most critical scenarios within the
defined parameter ranges. Scenario exploration results in a set of concrete scenarios derived from
the initial logical scenario. Although both methods typically produce concrete scenarios, they
differ in their starting point and level of abstraction. The method classifies as scenario exploration
category only if the parameters are constrained within this predefined range. If not, the method
is categorized as scenario alteration. Typically, most exploration approaches are optimization-
based and employ optimization algorithms. The primary objective in this category is to discover
concrete scenarios that meet specific criteria, such as scenario criticality metrics [2].4

The simplest way of scenario exploration is to choose a uniform distribution for all given parameter
ranges of a logical scenario. However, Mori et al. [106] showed in their experiments that a discrete
set of predefined parameters within a given range can yield problems. They observed that for a
common deep neural network perception algorithm, outliers and fluctuations can be overlooked by
the grid sampling, resulting in error rates depending on the grid size. As expected, this error rate
grows with a higher grid step size but does not decrease after a certain small step size threshold.
They hypothesize, that these outliers and fluctuations might be overlooked during scenario-based
testing. They conclude, distribution-based sampling or optimization over parameter ranges might
solve this problem.

Furthermore, simulating scenarios may not always be necessary during exploration: Scenario
evaluation using surrogate models is an alternative to data-driven scenario derivation and eval-
uating scenarios after simulation execution [29]. Instead of possible expensive physics-based
simulations, Ben Abdessalem et al. [29] proposed a surrogate model for each fitness function,
i.e., the minimal distance between ego and pedestrian, the minimal distance between pedestrian
and a warning area of the ego vehicles sensor, and minimum time-to-collision, to predict the
criticality metric results without running the actual simulations. The example scenario for this
algorithm was the same as used by Abdessalem et al. [14], a pedestrian crossing the street in front
of an approaching ego vehicle. These surrogate models can be developed and trained using a
combination of multi-objective search and neural networks and are then used to train and evaluate
different evolutionary algorithms.

4 Detailed examples can be found in Appendix A.1.3.
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Furthermore, optimization-based methods cannot guarantee to identify the best possible sce-
nario, such as the most critical, within a parameter space. In the PEGASUS and SET Level
project, Hungar [76] delineates an analytical approach how this deficiency might be overcome by
the combination of Lipschitz-based extrapolations and systematic, semantics guided search for
extrapolation boundaries.

2.3.4 Scenario Extraction

In scenario extraction, scenarios are extracted from recorded driving datasets or other available
data, resulting in concrete scenarios as shown in Figure 2.7. Scenario extraction can be further
classified into methods that extract scenarios from naturalistic driving data and methods that
derive scenarios from crash data.’

One approach for scenario extraction is the use of rule-based methods, which utilize predefined
rules to extract features from naturalistic driving datasets, e.g., the INTERACTION dataset [161]
or the inD dataset [31]. Examples of these features can be maneuvers, as demonstrated by Braun
et al. [32], who used recorded data to find concrete scenarios for re-simulation. In addition,
experts have the ability to manually modify the scenarios to better suit the specific task at hand.

Catalogues of accident data provide another source for scenario extraction. Unlike naturalistic
driving data, accident databases contain only preselected critical scenarios. For example, Cao
et al. [36] extracted typical pre-crash scenarios between two-wheelers and passenger vehicles
from a catalogue of 216 accident scenarios.

2.3.5 Human Experts

Human experts can create scenarios at all four levels of abstraction (see Section 2.1.3), including
functional scenarios that are more human-readable and less oriented towards machine interpreta-
tion [102]. The abstract level involves scenarios that can be interpreted by simulation software.
On this level, scenarios often define constraints and dependencies rather than concrete values.
Examples of abstract-level graphical description languages include Traffic Sequence Charts (TSC)
[44] depicted in Figure 3.2, which is similar to a theater / movie storyboard. The CARLA simu-
lator provides a scenario description in the form of behavior trees [49], with a graphical interface
that is not part of the main project. Most simulation software vendors offer different scenario
modeling interfaces, such as dSpace [50], CarMaker [78], and VDT [107]. Some of these use a

5 More detailed examples for both categories can be found in AppendixA.1.4.
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version of the new standard OpenSCENARIO [21], which is described in Section 3.1.1. However,
modeling in these simulators often occurs with the help of a graphical interface, which places the
scenarios on a more abstract level than the underlying description languages.

2.3.6 Scenario Aggregation

Scenario aggregation can be used to group similar concrete scenarios into one logical scenario and
is often a second step after a set of concrete scenarios has been acquired. King et al. [84] showed
that concrete scenarios in urban environments can be extracted from datasets and aggregated into
logical scenarios based on maneuver recognition. In the first step of scenario extraction, the
actors are categorized based on their role within a scene, i.e., whether they interact with the ego
vehicle or pass by. This leads to three different types of interaction: merging, diverging, and
crossing. After this, maneuver recognition is used to classify and extract maneuvers from the
dataset. Before the extracted concrete scenarios can be aggregated into logical scenarios, they
have to be identified. Itis possible that a single driving scene contains more than one scenario, and
all of them are extracted and identified. In case the maneuver sequences are identical, they should
be categorized as derived from the same logical scenario. The resulting logical scenarios consist
of a maneuver sequence, the assigned concrete scenarios, and parameter ranges and distributions.

Other aggregations are proposed by Langner et al. [91] (extraction of concrete scenarios from
real-world driving data before being clustered into sets of logical scenarios) and by Weber et al.
[155] (feature-based clustering). A table with all mentioned scenario acquisition methods and
their main features and sub-categories can be found in Appendix A.1.5.

2.3.7 Combination of Methods

Several approaches involve a combination of methods, such as aggregating concrete scenarios
after the initial extraction step [155, 84, 91]. Another combination is scenario extraction and
alteration [33, 163] as depicted in Figure 2.8. Figure 2.8 provides an overview of possible
combinations of automated methods and how they can be used to expand the set of existing
scenarios. Scenario extraction from datasets or other recordings of traffic situations can result in
new concrete scenarios. Scenario alteration can produce new but related scenarios based on an
initial scenario. The resulting concrete scenarios can then be aggregated into logical scenarios.
Scenario exploration can also be used to identify interesting or critical areas within a scenario
space.
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Figure 2.8: Context diagram of the input and output relationships of the proposed categories, their relations, and multi-
plicities.
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3.1 Technical Background for Simulation-based
Techniques

This work focuses mainly on the software-in-the-loop part of the V-Model (Figure 2.2). Therefore,
simulation-related concepts are vital for scenario-based testing during this step. In particular, there
are several simulation environments and scenario description languages that provide different
features and functionalities.

3.1.1 Scenario Description Methods and Languages

(D,
« i—a ®

Figure 3.1: Simple scenario representation: the blue car turns right and the bicycle crosses the bottom arm of the
intersection

Scenarios can be described with different description languages or methods, motivated by specific
use cases. Graphical description and formalized scenario description languages are the two
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main approaches in describing scenarios. One crucial trade-off is between intuitive usage of a
human-readable description and a well-defined machine-readable and executable language that
simulation tools can understand. A common way of describing a scenario for or between humans
is an image, as shown in Figure 3.1, or a sequence of pictures depicting all actors’ starting
points and movements throughout the scenario timeline [128, 149, 160]. A picture can provide
a general idea of what is intended, but it may lack essential details such as the order of actions,
synchronization points, or conditional behavior. As a further downside, pictures are usually not
machine-readable.

Q7

&R

Figure 3.2: Traffic Sequence Charts: Two possible outcomes for a scenario with a right turning car (blue) and a crossing
bicycle (red).
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A progression of simple images and an example for a graphical scenario description language are
Traffic Sequence Charts (TSC) [44], shown in Figure 3.2. In TSC, a scenario consists of several
snapshots with information about each important event ordered as a sequence. This method
solves the missing information problem and defines a powerful graphical notation in describing
a scenario with an underlying first-order logic. However, it defines the scenario outcome, which
might not have been known before executing the simulation of a scenario.

A sequence of images leads to a storyboard as it is used in movies or comics and shows an
analogy to movie- or theater-related description of scenarios. Based on the definition of scene
by Ulbrich et al. [146], a scene consists of a subset of information as described by the 6-layer
model (Section 2.1.3). It comprises dynamic objects, a description of the scenery, and all actors.
A situation is derived from a scene by information selection based on given goals and values. It
describes all circumstances that have to be considered for behavior planning. A situation consists
of all relevant parts of a scene regarding the driving function under consideration. Additionally,
it gets extended by the systems goals, e.g., the mission of a driving function, and values, as
traffic rules, are included to evaluate the outcome of a scenario and the actions and events of
the actors involved. To complete this approach, a scenario consists of at least one scene and a
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derived situation with goals, values, and actions. A related approach is introduced by Bach et al.
[24]. There, a scenario consists of a sequence of different acts, where subsequent acts differ
in precisely one actor’s maneuver to guarantee a consistent story-line. Therefore, certain events
trigger a behavior change and initiate a transition between acts. Each act contains a maneuver
description or action plan for all actors.

Other approaches define textual or formalized ways of describing a scenario. A tool-independent
scenario description standard currently under development is ASAM OpenSCENARIO. Since
2023, ASAM e.V. distinguishes between OpenSCENARIO XML [56] and OpenSCENARIO DSL
[57]. In May 2022, OpenSCENARIO XML version 1.2.0 was released. The OpenSCENARIO
DSL was derived from the OpenSCENARIO 2.0 standard, published in 2022. Both standards
serve different purposes in the simulation toolchain. OpenSCENARIO XML defines logical
and concrete scenarios, while OpenSCENARIO DSL operates at a higher abstraction level and
includes KPIs, checks, and coverage metrics. OpenSCENARIO works together with ASAM
OpenDRIVE and OpenCGR, which complement each other to describe all aspects of a traffic
scenario: from the road topology to all participating vehicles and their maneuvers. All of those
OpenX standards, except OpenSCENARIO DSL, utilize an XML-notation and aim to machine-
readability, as well as being understandable by human experts. OpenSCENARIO XML only
supports concrete scenarios but allows parametrization to load different parameter sets to realize
logical scenarios.

condition: ego reached goal

€go maneuver: right turn

condition: ego reached intersection

A
Fa
\

bike: accelerate | | condition: bike reached

! goal

bike: keep speed

Figure 3.3: Behavior tree scenario representation: same scenario as shown in Figure 3.1 and Figure 3.2 but represented
as behavior tree

Another type of scenario description is a behavior tree [39, 99], an established way of expressing
and structuring artificial intelligence in video games. The open-source simulator Carla uses
behavior trees as a modeling language for scenarios [49]. Figure 3.3 shows the previous scenario
represented as a behavior tree notation [39, 99]: An ego vehicle takes a right turn at an intersection
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and continues until it reaches a defined goal position. At the same time, a bike accelerates once
the vehicle reaches the intersection. Once the bike reaches a given speed, it maintains its velocity
until it reaches its goal position. The scenario is completed once both actors have finished their
maneuvers.

The SET Level project developed a holistic open-source scenario engine (YASE) with concrete
scenarios, implicit traffic, scenery behavior, and test criteria evaluation [26]. YASE'’s scenario
description is also based on behavior trees and has an architecture similar to that of programming
language compilers. It provides a middle end that, on one side, can be filled with different scenario
formats and, on the other side, can be connected to different simulators, e.g., OpenPASS [117] or
Esmini [54].

Most scenario description languages cover abstraction layers 4 and 5 since they describe the order
of dynamic objects and the behavior of traffic participants. Additionally, environmental features,
such as lighting or weather conditions, can be described; e.g., OpenSCENARIO offers its own
environmental keywords and tags. Layers 1 to 3 are rarely described within scenario description
languages and are usually represented in map formats, e.g., OpenDRIVE.

3.1.2 Simulation Environments

The automotive domain has brought forth a vast number of simulation software tools which are
changing and increasing constantly. Table 3.1 gives a brief overview of eight commercial and
open source tools with a selection of their supported standards and relevant functionalities for
this work. However, it is not a complete list. Most traffic simulation tools can represent scenario
description layers 1 and 2 using map formats, while layers 4 and 5 are typically handled through
scenario description formats. In the case of most simulators like Carla, layer 3 is integrated into
the infrastructure or the scenario description and does not exist independently. On the other hand,
layer 6, which was introduced at a later stage, is not considered part of the Carla environment.

Commercial tools for automotive simulation are available from Vires VITD [107], dSPACE [50],
and IPG [78]. All three simulation tools provide modules for map and scenario creation, sensor
and dynamic models, and different types of X-in-the-Loop testing, to name some examples.
Another tool that was already mentioned is Carla, an open-source simulator with a growing
community and based on the game engine Unreal [49]. It offers several additional modules,
e.g., a scenario tool that includes its own scenario format with behavior trees and support for
OpenSCENARIO, a graphical tool for creating scenarios, a ROS-bridge, and SUMO support.
SUMO is an open-source simulation package for modeling microscopic traffic simulation and
was developed by the German Aerospace Center [96]. It specializes in big scale traffic simulation
and can, for instance, be utilized for evaluating traffic light cycles, evaluation of emissions (noise,
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pollutants), traffic forecast, and many others. Other tools worth mentioning are openPASS [117], a
simulation tool mainly developed by the Eclipse Foundation and BMW and was further developed
during the SET Level project, PTV Vissim [120] for microscopic traffic simulation, or esmini
[54], an OpenSCENARIO player. Other tools are NVIDIA Drive [116] which is still in its beta
phase, or AirSim from Microsoft [104] which was developed for drone simulation but can also
be utilized for road vehicle simulation.

On October 19, 2023, Google Waymo released Waymax [66], a large-scale traffic simulator for
simulating scenarios with the Waymo Open Motion Dataset. It enables the evaluation of traffic
agents and offers several metrics, e.g., log divergence and collision detection. Waymax also
offers dynamic simulation models and supports two modes for simulating uncontrolled objects in
scenes and aims to be used as a training tool for reinforcement learning with adaptable interfaces.
Waymo’s tool is not mentioned in Table 3.1 since it does not support the listed features.
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Table 3.1: Overview of simulation environments and their features. Abbreviations: exp.: experimental, part.: partial, y:
yes, n: no, u: unknown

Feature Simulation Environment
Tool CarMaker SSEI;A}?ia Carla VID
[78] p [37, 98] [107]
[50]
Developer IPG GmbH dSPACE GmbH  Open Source Vires
OpenSCENARIO 9-5%/1% exp. exp. part. y
Behavior Tree n n y n
OpenDRIVE y y y y
OpenCRG y y y y
SUMO y y y y
GUI Map Creator y y n y
Scenario Creator y y exp. y
Camera y y y y
LiDAR y y y y
Sensor Model RADAR y y y y
Ultrasonic y y n y
Feature Simulation Environment
Tool openPASS Vissim NVIDIA Drive AirSim
[117] [120] [116, 98] [104, 98]
Developer Open Source PTV AG NVIDIA Open Src
OpenSCENARIO S:E'X/ Ix y ° o °
Behavior Tree n n y n
OpenDRIVE y y y n
OpenCRG n u n u
SUMO u exp. n n
Map Creator n n u u
GUI Scenario Creator u y u part.
Camera u n y y
LiDAR u n y y
Sensor Model RADAR u n y 0
Ultrasonic u n n n

3.1.3 Established Resolution Levels of Traffic Simulation

In general, traffic simulation can be divided into different stages of information resolution:
nanoscopic, microscopic, mesoscopic, and macroscopic [110, 131, 52]. Figure 3.4 shows a
summary of these resolution levels. In macroscopic traffic simulation, the traffic is modeled as
fluid. This type of simulation can evaluate traffic flows or congestion in high traffic situations. The
following resolution level is mesoscopic traffic simulation. Here, every participant is modeled as
a discrete particle whose position lacks personality, such as mass or size. This lacking personal
information is added at the microscopic level. At this level of resolution, each participant has
its own modeled behavior with an individual state and variables, such as mass, speed, and
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acceleration. Additionally, individual maneuvers relevant for specific scenarios are modeled. The
highest resolution in traffic simulation is nanoscopic (sometimes called sub-microscopic) and
views each vehicle as a composition of different sub-units that need to be coupled to achieve a
higher level of detail. Scenario-based testing often occurs in micro- and nanoscopic simulation,
since the main goal is to evaluate (sub-)units and their individual behavior in given scenarios.

Simulation of traffic flow, e.g., on
Macroscopic highways. Traffic is seen as a fluid.
Simulation

Traffic is modeled as discrete particles
(in contrast to fluid) without mass and

Mesoscopic !
Simulation POl
::ffj::\//:jf:: Traffic is modeled as the behavior and

e interactions of each simulated entity

Microscopic individually with specific state, vari-

St ables such as position, speed and ac-

celeration.
N;r\l\déé/(;/l)/ic Each vehicle is divided into several
(also called sub-units to achieve a higher level of

Submicroscopic) detail.
—_Simulation -

Figure 3.4: Simulation resolution levels: 4 established levels of resolution in traffic simulation [110, 131]

3.2 Mathematical Background

This section describes the main mathematical approaches underlying the concept (see Chapter 4)
and experiments (see Chapter 5) in this work.

3.2.1 Gaussian Processes

In this work, Bayesian optimization with Gaussian processs (GPs) is employed as an optimization
approach for identifying the most critical concrete scenario with respect to the utilized criticality
metrics. Prior to the execution of any simulations of concrete scenarios, there is no information
available regarding the criticality within the parameter space of a logical scenario. By simulating
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concrete scenarios, a set of observations can be collected. These observations D representing the
simulated concrete scenarios, can be written as

Dy = {(x1,41), (X2,¥2), (X, ¥i) }, 3.1

where x describes the input vector and y the output. The goal is to find a surrogate model that
approximates an objective function f with the given set of observations [122]:

y=f(x)+e, (3.2)

where € is the noise. This is not present if the simulation of a concrete scenarios is deterministic.
Equation (3.2) can be described as a standard linear regression model

fx) =x"w, (3.3)

where w is the vector of weights of the linear model. Finally, the conditional distribution of y
given x can then be written as:

pyX, w) = [ [ p(yilxi, w)
1=0

(y; — xT'w)? (3.4)

7

11 rgl erp(=——a—)
=0 7T0n n
= N(XTw,o21),

where X is a D x n matrix of the input observations with dimension D. Nevertheless, in
specific contexts, linear models may prove inadequate, necessitating the use of feature mapping
to effectively address non-linear dependencies. For this, the inputs can be projected into a
high-dimensional feature space RV of dimensionality N with

o :RP - RN (3.5)

After the mapping, the parameter vector is now of length N. With that, the linear model in
Equation (3.3) can be adjusted:
f(x) = ®(x)Tw. (3.6)

As a linear combination of n kernel functions it is written as [122]:

)+ aik(xi,x.), 3.7)

i=1

42



3.2 Mathematical Background

where o = (K + 021)~'y. The optimal solution in this case can be represented as a linear
combination of the training data points (representer theorem). The representer theorem enables
the "kernel trick" [151]. Instead of projecting into a high-dimensional space, it computes the scalar
product directly in the original space, capturing the relationships between data points without the
need for transformation. This scalar product is defined as k(x,x) or covariance function. In
this work, the Radial Basis Function (RBF) kernel from Equation (3.10) is used. From that, the
predictive equations of the mean f, and the variance V/[f.] are as follows [122]:

f.=KI(K+o.D) "y, (3.8)

V[f] = k(x4, %) — kT (K + 021) " 'k,, (3.9)

with the kernel function K;; = k(x;,x;) where K = K(X,X) and K = K (X, X,), both the
n X n matrix of the covariances of all pairs of training points or for K, the pairs of training and
test points.
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Figure 3.5: One-dimensional example of a Gaussian process with a 95% confidence interval and sampled by Bayesian
optimization.

Figure 3.5 illustrates an example of a GP in a one-dimensional parameter space for Traffic Density
Potential (TDP). The blue plot (scenario criticality) represents the mean of all functions that fit
the observations (black x’s). The light blue area around the mean indicates the confidence interval
according to the model. New points x, are predicted along the mean with the variance of the
model.

A typical kernel for Gaussian processes is the RBF kernel [68]. It describes that the correlation
of the outputs decreases with a growing distance between two points, where 6 defines the length
scale at which this happens. As stated by Schulz et al. [133], the RBF kernel used by the
Gaussian process inherently makes assumptions about the underlying objective function, such
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as smoothness. Moreover, the Gaussian process makes two assumptions about the noise in the
used dataset [101]. This work employs kernel methods for Gaussian process (GP) and Principal
Component Analysis (PCA) (cf. Section 3.2.3). Hofmann et al. [75] describe kernels as a
non-linear approach used in machine learning when linear methods are insufficient to detect
dependencies for prediction and classification of properties. In this work, the RBF kernel is used
as defined by Schulz et al. [133]:

1
. AN _ 2
RBF : k(x,x) = exp ( 2 [|x — x| ) (3.10)

Usually, it assumes that the correlation between two data points (e.g., criticality of two distinct
concrete scenarios) decreases with the distance in the parameter space between these points. In
conclusion, the closer the two points are, the more likely they are expected to behave in the
same manner (e.g., have similar criticality results). This assumption is called stationarity and
can be tuned by the hyperparameter length-scale A and signal variance 0]20. This work utilizes
the RBF kernel in the optimization step and later in the preprocessing step for clustering. For
the optimization, different kernels, such as RBF and polynomial, are proposed by Mika et al.
[105]. However, due to limited data availability and a lack of comprehensive knowledge about
the scenario space (cf. 4.5.1.3), only the Gaussian radial basis function RBF kernel can be used
and is, thus, explained further. In general, Gaussian RBF kernels are a popular choice since they
only have one parameter (kernel width ) for hyperparameter tuning and are flexible enough to
capture non-linear relationships between data points. It allows for the use of linear methods on
the kernel.

3.2.2 Bayesian Optimization

The GP methodology generates a surrogate model for the criticality within a logical scenario
parameter space. At this point, a strategy for selecting a new potential candidate for simulation is
required. Bayesian optimization (BO) is a strategy for optimizing black-box functions [68], aiming
to find the optimal set of input parameters that minimize or maximize a given objective function
f(x). It is commonly employed for hyperparameter tuning in machine learning algorithms [61]
and iteratively minimizes or maximises an objective function f. Concerning scenario exploration,
the objective function describes the relationship between input parameters (concrete scenario) and
the criticality of a scenario. Each point x; in the input space corresponds to scenario parameter set
defining the ¢-th concrete scenario. Observations y; describe the associated outcome of simulating
a concrete scenario, i.e., criticality values. The GP can be used as a surrogate model for result
prediction and further analysis of the scenario space (Section 4.7). The need for a surrogate model
excludes algorithms like evolutionary learning, which can find a reduced parameter set but cannot
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make predictions for non-simulated sets within the parameter space. Due to its fast computation
and an exhaustive number of existing implementations, Bayes optimization was used for the rest
of this work. Note that Bayes optimization only works for parameter spaces with up to 15-20
parameters [68]. In case this number is exceeded, other methods have to be explored.

Expected Improvement (EI) Probability for Improvement (PI)
2.0 030 2.0 1.0
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Figure 3.6: One-dimensional example acquisitions functions EL, PI, and LCB. The green curve represents the acquisition
function for each point in the space of the target function (blue). The orange curve represents the predicted
curve of the Gaussian process. The black x symbols describe the already chosen and simulated concrete
scenarios. All three acquisition functions (green) were applied to the same underlying logical scenario.

Acquisition functions are used to evaluate the beliefs about the objective function regarding the
input space, based on the predicted mean p;(x) and uncertainty o;(x) and chooses the most
promising parameter set [68]. It guides the selection of the next set of parameters or concrete
scenarios to be evaluated based on a trade-off between exploration (sampling in unexplored
regions) and exploitation (sampling in promising regions).

The sampling takes place iteratively, where parameters are selected sequentially based on the
current state of the surrogate model and the acquisition function. Uncertainty estimation is

45



3 Technical and Mathematical Background

typically in the form of confidence intervals or posterior distributions, guiding exploration by
balancing exploitation and exploration trade-offs.

Typical acquisition functions are [68]:

e Probability of Improvement (PI): PI chooses the point (concrete scenario) where im-
provement of the objective function (criticality) is most likely [68].

* Expected Improvement (EI): EI is the most commonly used acquisition function [61]
and assumes noiseless observations. It computes the expected value for a point (concrete
scenario) by considering the best value to optimize its choice. This approach works similar
to PI but additionally considers the magnitude of improvement.

e Lower Confidence Bound (LCB): It is designed to find a balance between exploration and
exploitation. This is done by a given learning rate that controls the trade-off between both
goals, e.g., a high learning rate favors exploration [150].

Figure 3.6 shows the three acquisition functions for the same one-dimensional parameter space
of a logical scenario. The orange curves represent the Gaussian process after ten sampling steps
with BO. The blue curves describe the target or objective function or criticality with observed
(x) concrete scenarios regarding the scenario parameter set (ego s-coordinate). The green curves
depict the three different acquisition functions.

Bayes Optimization Examples

Figure 3.5 provides an example for a one-dimensional Bayes optimization with GP problem of
a logical scenario with one parameter. The x-axis describes the criticality value (traffic density
potential) where higher values mean more critical concrete scenarios. The y-axis displays the
parameter space, or since it is one-dimensional, also the parameter range egos — coordinate €
[—1,2.0]. The example shows 13 data points (x), an estimated scenario criticality for the complete
parameter space (dark blue line), and a confidence interval for the parameter space (light blue
surface). Typically, in simulating concrete scenarios, the experiment involves executing more
scenarios in regions where high criticality is expected. However, regions of uncertainty, such as
the rightmost part of the graph shown in Figure 3.5 with a diverging confidence interval, are more
likely to be selected for the next simulation step, depending on the acquisition function.

Figure 3.7 gives a 2-dimensional example for Bayes optimization. In this example, input variables
1 and 2 stand for two scenario parameters as parameter ranges. Both parameter ranges are
defined as p1,p2 € [0,5]. Examples of input parameters are positional data or vehicle velocity.
Figure 3.7 (a) displays the predicted mean for the parameter space, with the yellow end of the
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Figure 3.7: 2-dimensional example of Bayes optimization with uncertainty.

color bar indicating high criticality and the blue end indicating low criticality. The parameter
space contains both critical and low-critical areas. Therefore, the parameter space exhibits areas
where critical scenarios can be found, as well as low-critical areas. Figure 3.7 (b) shows the
standard deviation, representing the uncertainty within the parameter space. In Figure 3.7 (b),
one can observe that areas near a simulated point have a higher certainty than areas further away.

Comparison to Other Methods

The naive approach to scenario exploration is to employ a uniform distribution for all given
parameter ranges in a logical scenario, implemented through techniques such as grid search with
a predefined step size where the space is uniformly sampled and simulated. However, Mori et al.
[106] conducted experiments that revealed potential issues with using a discrete set of predefined
parameters within a given range. The authors note that when using a perception algorithm, outliers
and fluctuations may be missed by grid sampling, leading to error rates that depend on the grid
size. The error rate increases with larger grid step sizes, but does not decrease after a certain
small step size threshold. The authors suggest that the main issue is the potential for outliers and
fluctuations to be overlooked during scenario-based testing. Another problem of grid search is,
that it is computationally intensive and becomes exponentially more complex as the number of
parameters increases. To address this issue, optimization algorithms and approaches are proposed
as alternatives.

One alternative approach for discovering critical scenarios involves utilizing Evolutionary Algo-
rithms (EAs). EAs are inspired by biological principles of fitness and use the same principle
for optimization [35, 14]. The exploration within the parameter space occurs through random
searches across multiple experiment runs. An EA starts with a randomized initial population of
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individuals, each representing a concrete scenario. Each individual is assessed for its fitness, i.e.,
the concrete scenario is simulated and evaluated regarding its criticality.

If the goal is to find more critical scenarios, a part of all individuals, e.g., half of them, is dis-
carded and replaced with a new set of individuals after evaluating the whole generation. These
new individuals can either be randomly generated or produced using the remaining individuals as
a parent generation. This generational approach incorporates three fundamental components: a
selection mechanism, a mutation mechanism, and a fitness function. The selection mechanism
determines the parents selected for producing offspring in the subsequent generation. It signifi-
cantly impacts the convergence rate, steering the exploration towards potentially better solutions.
However, maintaining population diversity is crucial to prevent the dominance of a single highly fit
solution, thereby avoiding premature convergence. The mutation mechanism introduces minor
random variations to individuals, fostering the creation of new solutions while preserving genetic
diversity. Mutation plays a pivotal role in exploring the search space and discovering potentially
optimal solutions, typically applied with a low probability to prevent exhaustive random search-
ing. The fitness function which is central to the EA process, evaluates the quality or fitness of
a candidate solution in terms of criticality with respect to the problem at hand. This function
determines an individual’s survival chance for the next generation or elimination if the individual

is unfit for progression. !

A second alternative is reinforcement learning [27]. In this approach, a reinforcement learning
algorithm explores the parameter space of a logical scenario to find concrete scenarios. Again,
the concrete scenarios are generated and executed in a simulation environment. The results are
evaluated using criticality metrics, which can be used as a reward function for generating new
test cases. The higher the criticality, the higher the reward given to the model. Like for EAs, this
iterative cycle employs the evaluation outcomes as a feedback loop to guide the generation of new
scenarios. By leveraging these criticality-driven rewards, the reinforcement learning algorithm
iterates through the parameter space, concentrating on scenarios that exhibit increased levels of
criticality.

Compared to the methods mentioned above, Bayesian optimization (BO) with Gaussian processs
(GPs) (see Section 3.2.2) is the algorithm of choice in this work since it provides information about
the confidence of the criticality at the areas around simulated data points (concrete scenarios).
This information can later be used to make statements about the quality of the simulation results.
However, this information is based on assumptions made in the model design step, such as the
choice of a Gaussian RBF kernel. An analysis of the resulting surrogate model obtained from the
GP of the optimization algorithm can then be performed in subsequent steps.

" Parts of this chapter have already been published in [11]. Additionally, a Master’s thesis was supervised [166].

48



3.2 Mathematical Background

1.0
0.5
0.0
0.0
2 -0.5 2
E 5
£ -1.04 =
— —
] ©)
-1.5 | -2.0
-2.0 -
—Scenario Criticality -3.0 — Scenario Criticality
-2.5 % Grid Search Samples »x Optimizer Samples

40 05 00 05 10 15 20 10 05 00 05 10 15 20
Scenario Parameter Scenario Parameter

Figure 3.8: Comparison of grid search (a) and optimization (b) on a one-dimensional parameter space.
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Figure 3.9: Example of a 2-dimensional parameter space after Bayes optimization took place.

Figure 3.8 provides a visual comparison between grid search and BO with GP in a one-dimensional
scenario space. The left-hand side illustrates the grid search approach, where parameter sampling
is performed with a fixed step size resulting in 50 samples. In contrast, the right-hand side
demonstrates the BO method, where all 10 samples are chosen by the optimization algorithm,
with the light blue region indicating the uncertainty or confidence interval associated with that
specific part of the parameter space. This uncertainty reflects the level of confidence in the given
scenario results, considering the limited number of samples and the inherent variability in the
scenario exploration process. Moreover, Figure 3.9 shows a 2-dimensional parameter space after
a successful BO with GP was used. The criticality depicted is WTTC and shows clear critical
(low values, yellow) and non-critical (high-values, purple) areas. Results shown in Figure 3.9
are further explained and evaluated in Section 5.3.1. Uncertainty information is the reason why
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BO and GP were chosen for this work. EAs and reinforcement learning usually do not provide
information about unknown regions.

3.2.3 Kernel Principal Component Analysis

Principal Component Analysis (PCA) is a method for reducing data dimensionality while retaining
most of the data variation in the dataset. It identifies the principal components, which are the
directions in which the variation of the data is highest [126]. Kernel PCA is a feature extraction
approach that is a useful preprocessing step for classification and clustering tasks. It projects the
original data into a higher-dimensional feature space so that a linear PCA can be applied [105].
Therefore, this technique can achieve a dimensionality reduction for a non-linear feature space.

Principal Component Analysis

Linear PCA diagonalizes the covariance matrix with a set of M centered observations xi, k =
1., M,x e RV, SV =0

1M
C=—> xx;". (3.11)
M =
For this, the eigenvalue equation has to be solved:
Av =Cv (3.12)

where A > 0 and v € R \ {0}. From Equation (3.11) and Equation (3.12)

M
1
Cv = i Z(xjv)ij. (3.13)
j=1
can be derived and Equation (3.12) can be seen equivalent to
Axg - v) = (xg-Cv)forallk=1,.., M. (3.14)

The resulting eigenvectors represent the principal components after this projection.

Kernel PCA is based on linear PCA and utilizes the following projection of observations into the
feature space:
®:RY 5 F (3.15)
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Instead of the observations from the feature space the mapping above is used in Equation (3.11).
Now, the covariance matrix C' in a feature space F' can be defined as follows under assumption
that centered data is used [134] :

M
1
C= MZ@(XJ-)@(XJ) (3.16)
j=1
Kernel PCA Example
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Figure 3.10: (a) Plot of 2-dimensional artificial test data for an easier understanding; (b) Projection of test data after a
PCA; (c) Projection of test data in 3-dimensional kernel space.

Figure 3.10 depicts an artificial test dataset (a) with two classes located in circles that cannot be
separated by a standard PCA. In Figure 3.10 (b), this dataset is projected onto two principal
components using a standard PCA (b) and onto a 3-dimensional space using kernel PCA Fig-
ure 3.10 (c). Notably, Figure 3.10 (c) exhibits a possible spatial separation compared to the data
in Figure 3.10 (b) since after PCA the artificial dataset is not linearly separable. It is important to
note that PCA only enables projection into the dimensions of the original feature space, whereas
kernel PCA supports an infinitely high feature space.

In scenario exploration, each feature in Figure 3.10 (a) stands for a parameter range, and both
features span the parameter space. Therefore, in this case, there is no continuous criticality value.
However, the criticality classification can be "collision" (yellow) and "no collision" (blue). The
kernel PCA is then used as a preprocessing step to make clustering easier than in the original
parameter space. The projection in Figure 3.10 (b) does not provide any additional value in
contrast to Figure 3.10 (c), where the data can be divided into a third dimension after projecting
onto a 3-dimensional space.
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In Section 4.5.1.3, a kernel PCA with RBF kernel is used for the projection into a higher dimen-
sional space. However, the spacial distance between the data points (concrete scenarios) cannot
be used. Therefore, ||x —x’|| is replaced by the DTW distance matrix D (see Section 4.5.1.3) with
behavior-based (see Section 4.5.1.2) or criticality-based (see Section 4.5.1.1) distance leading to

k(D) = exp (—Q;QDQ) = exp (—7D2) (3.17)

3.2.4 Dynamic Time Warping

Dynamic Time Warping example between two curves
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Figure 3.11: Example of dynamic time warping between two one-dimensional trajectories.

According to Senin [136], Dynamic Time Warping (DTW) is a measure to compare time-series
that assesses the distance between two trajectories with related shapes but different phases, taken
from equidistant points in time. Similarity via distance metrics is described by small values,
which increase with more differences and cannot be less than zero. In the following equation, d
denotes the distance measured in a feature space ® (e.g., x- and y-coordinates of the trajectory),
and both trajectories X,Y € ® [136]:

d:dxd 3R>0 (3.18)
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DTW aims to minimize the distance as a cost function. It starts with calculating a pairwise
distance matrix between all points of both time-series, called the local cost matrix. The goal of
the algorithm is to find the alignment path through the lowest possible points (valleys) on this cost
matrix. This path is called warping path or warping function and assigns each point z; € X to a
point y; € Y, and therefore results in a sequence of tuples of points [136]:

p = (p1,p2,...,pr) Withp; = (n;,m;) € [1: N] x [1: M]forl € [1: L] 3.19)

An example is shown in Figure 3.11, where each point in both time-series is assigned to at least
one point in the other. These points have to fulfill a list of criteria [136]:

e The start and end points must be the first and last points in each time series.

e The pairing has to be monotonous: n; < ne < ... <nrandm; < my < ... <my. In
Figure 3.11, this criterion is fulfilled since there are no crossing orange lines.

* The path is not allowed to make jumps (leave out points in between). Therefore, the step
size between two points is defined as follows: p;11 — p; € {(1,1),(1,0),(0,1)}.

This work utilizes Dynamic Time Warping (DTW) [136] as a distance measure for vehicle
trajectories and the criticality curves obtained from simulating a concrete scenario. Furthermore,
the coordinates of a two-dimensional trajectory can be extended by the speed as an additional
dimension of the ego vehicle when braking and accelerating need to be considered. DTW is
chosen due to its ability to handle temporal distortions, variation in the duration and the speed
of trajectories. In many simulated scenarios, the trajectory of the ego vehicle remains mostly the
same. However, it must react and brake at various times during the simulation in response to
different adversary behaviors. Thus, DTW can quantify the difference in ego behavior in concrete

scenarios.

3.2.5 Clustering

Density Based Spatial Clustering of Applications with Noise (DBSCAN) [55] was chosen for
clustering scenarios as an unsupervised clustering method that does not require prior knowledge
of the number of clusters. An advantage of DBSCAN is that it can find clusters of any shape,
and unlike k-means, it does not assume clusters to be convexly shaped. It only has two input
hyperparameter that require tuning: the minimum number of points of a cluster and the size of
the neighborhood of this cluster.
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According to Ester et al. [55], the algorithm starts with an arbitrary point p and searches for
density-reachable points from this starting point based on the hyperparameters, the minimum
number of points (MinPts) and neighborhood size (Eps). In case p is a core point, a cluster
can be discovered. On the other hand, if p is a border point, no density-reachable points can be
located, and the algorithm moves on to the next point. A point is direct density-reachable if

P € Nips(q) (3.20)

|Neps(q)| > MinPts (3.21)

where Ngps(q) describes the neighborhood of point ¢. Following this definition, a point p is
density-reachable from a point ¢ with respect to Eps and MinPts if there is a chain of points
P1---Pn> P1 = ¢, Dn = p such that p;; is directly density-reachable from p;.

(a) Kernel Space (b) Scenario Space
=z 6
“ z
C’h [
% a 4 o0
O 2 oo ‘(
5 2 o %
= 3 %
£ L2 .“..
o % '.\”*'
0 .‘J-M
40 60 80

Ego s-Coordinate [m]

Figure 3.12: (a) Example for behavior-based clustering with DBSCAN in the kernel space. The axes are the three most
influential principal components; (b) Cluster assignments from the kernel space taken back to the original
scenario space.

Figure 3.12 shows a 2-dimensional parameter space, first projected into a 3-dimensional space

(a), where DBSCAN was used to find two major clusters. (b) depicts the same cluster assignment

in the original space. In both (a) and (b), each point represents a parameter set defining a concrete

scenario (cf. Section 4.5.3 and Section 5.3.2).

Alternatives

The clustering algorithm used must determine the appropriate number of clusters. One possible
alternative is hierarchical clustering [159]. This unsupervised technique is based on the distance
between data points and builds a binary merge tree. Agglomerative hierarchical clustering begins
with all data points as leaves and merges the closest points pairwise. In the next step, points
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that already have the closest neighbors are merged with the previous pair until a given distance
threshold is reached. Divisive hierarchical clustering begins at the root, which includes all data
points, and divides them into two sets. Each point must be assigned to only one cluster, making

2N—1

it computationally expensive ( — 1 possible combinations for NV data points) [159].

Ordering points to identify the clustering structure (OPTICS) is an alternative algorithm using a
density-based approach [19]. However, unlike DBSCAN, it can handle clusters of varying density
and consider points assigned to a denser cluster. Like DBSCAN, it uses the parameter €, which
describes the maximum distance allowed for a cluster assignment. First, the core-distance of
point p is calculated for each point. In a 2-dimensional space, it is like drawing a circle of radius r
around a point. r defines the minimum distance necessary to hold the minimum number of points
for a cluster within a circle. When this is fulfilled, r is stored as the core-distance. The second
distance that has to be computed is the reachability-distance. It defines the distance between two
points while ensuring they are within a defined neighborhood density. The reachability-distance
of p is the maximum value of the core-distance of p and the distance between p and another point
o. When both distances are computed, a reachability graph with cluster assignments regarding
the reachability-distance is made.

DBSCAN was chosen since it can handle clusters of non-convex shapes and has a comparatively
low complexity of (O(nlogn)) [159]. It does not need an a priori number of clusters, and
compared to OPTICS it tends to have a shorter run time [135]. Additionally, OPTICS can mark
peripheral points as noise instead of belonging to a cluster. Therefore, DBSCAN produced better
results in the following experiments.

3.2.6 Archetype Analysis

Archetypes are uniquely distinguishable data points or extreme examples within a cluster repre-
senting distinct patterns or characteristics. Figure 3.13 shows two examples of such extremes:
color (a) and emotions on female faces (b). Therefore, archetypes can be visualized as the corners
or outer points of a cluster. In theory, the proximity of a data point to the center of the cluster
indicates its degree of similarity to the archetypes. Data points that are closer to the center are a
combination or mixture of archetypal patterns, while those closer to a single archetype resemble
it more. The archetypes can be found at the vertices of the outer boundary of a cluster or hull.
Figure 3.13 shows two examples for archetypes: Figure 3.13 (a) depicts the CMYK color space
with magenta, cyan, and yellow as the archetypes. The black individual in the middle represents
a prototype for this cluster, as it combines all three archetypes to the same degree. The red and
blue dots are other illustrations of mixed individuals. Figure 3.13 (b) shows an example from
Keller et al. [82] of emotions in Japanese female faces with three archetypes: happiness, anger,
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hJ 5 Archetype 3:

=4 Archetype 2:

ANGER
(a) Three archetypes of the CMYK color space. The three
corners represent the archetypes of this space and the other
points represent individuals with varying degrees of feature
manifestation. The black individual in the middle represents (b) Three archetypes for emotions in female faces as established
a prototype (average). by Keller et al. [82] from the JAFFE dataset.

Figure 3.13

and surprise that were analyzed with the help of a neural network. The faces in the middle
usually have a more neutral expression. In the case of a logical scenario, it is assumed that these
archetypes are scenarios with the highest variability in a nactor’s behavior. Unfortunately, the
archetype analysis can only be done for convex clusters.

Principal Convex Hull

The analysis is done via a principal hull analysis [43], which estimates the principal convex hull of
a dataset. In this case, archetypes are not actual individuals from the exploration step, but rather
mixtures of the individuals present in the dataset around the assumed archetype. The selection
of archetypes involves minimizing the squared error to achieve an optimal representation of each
individual as a mixture of these archetypes. An alternating minimizing algorithm is used to
compute the archetypes for addressing a nonlinear least squares problem.

In general, the archetypes are a variant of principal components. As described by Cutler and
Breiman [43], for a given feature space 1, ..., z, (e.g., scenario parameters), the archetypes
21, ..., Zp shall be found, where

k
=Y Brjx; (3.22)
=1
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with 8; > 0, Zj Brj = 1,k = 1,...,p. Additionally, 21, ..., 2, minimize the residual sum of
squares (RSS):

n P
RSS = min{aik} Z H.%‘Z — ZaikzkHQ (323)
i=1 k=1

where each z; is approximated by a mixture of & i, = 1 with o, > 0. This leads to

n P k
RSS =minga,y Y |lwi = i Y Brja;l (3.24)
i=1 k=1 j=1

Cutler and Breiman [43] propose that finding the ’s and 3’s can be solved by general-purpose
constrained nonlinear least squares algorithm. However, it is only applicable for smaller problems,
and therefore, they offer an alternating constrained least squares algorithm. This algorithm aims to
find the set of archetypes (z-mixtures) and their coefficients (a’s) for a given dataset. It alternates
between optimizing the coefficients for a fixed set of archetypes and optimizing the archetypes
for the current set of coefficients through convex least squares problems, ultimately producing the
archetypes that best represent the dataset.

Figure 3.14 shows the comparison of a convex hull (a) and principal convex hull (set of archetypes)
for the same data. The red dots in (b) depict the archetypes and are not necessarily part of the
original samples (simulated concrete scenarios). Other than the convex hull, the number of
possible archetypes depends on the dimensionality and size of the feature space. In a logical
scenario, these archetypes are usually parameter sets of concrete scenarios that have not been
simulated before. The convex hull itself is not suitable for finding the archetypes.
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(a) Convex Hull (b) Principal Hull Analysis

Figure 3.14: (a) Convex hull and (b) principal convex hull with archetypes (consisting of three points) for the same
dataset.
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Logical Scenarios

‘ Exploration ]—)[ Clustering ]—)[ Reduction ]—)[ Analysis ]

Figure 4.1: Four main steps in the chain of the proposed analysis of logical scenarios.

In the context of this work, scenario exploration (see Section 2.3.3) is extensively investigated,
introducing and evaluating a method for scenario exploration (see Sections 4.4 to 4.7). A four-
step approach to analyzing logical scenarios is presented in Figure 4.1 and developed further in
subsequent chapters. The approach aims to identify significant scenarios, particularly critical
ones, and is elaborated upon throughout the chapter. During the exploration step, exemplary
scenarios are simulated and evaluated to explore the parameter space. Areas of interest within
the scenario parameter space, such as critical situations and collisions, are identified based on
their criticality results. Subsequent clustering groups these areas based on similar behavior of
the ego vehicle or critical region clustering. These areas are then represented with prototype and
archetype scenarios, capturing cluster characteristics. Finally, an analytical step assesses result
uncertainty and evaluates confidence in the optimization model.

4.1 Assumptions

A set of assumptions has to be defined for the concepts, experiments, and the used models
explained later in this work before the concept is presented. These assumptions serve as the foun-
dation for constructing the concept and determining which simulation tools to use. Additionally,
they are important when making decisions about tools, software, or methods.
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4.1.1 Logical Scenario Space

A logical scenario (see Section 2.1.3) is an pre-defined scenario that specifies actors, behaviors,
or maneuvers. However, some parameters within this scenario are not set and are instead given
as parameter ranges or distributions from which concrete scenarios are drawn. A set of concrete
parameters then defines a concrete scenario. The parameter space, which is the logical scenario
space spanned by the parameter ranges, is referred to as the scenario space or parameter space
throughout this work. Figure 3.9 illustrates an example of a logical scenario defined by a parameter
space with two parameter ranges. Each point in this plot represents a parameter combination and,
therefore, one concrete scenario. In Figure 3.9, the color represents the criticality measured
during simulation for the parameter set.

4.1.2 Automated Driving System

The automated driving system or ego vehicle is assumed to act reasonably, i.e., it tries to avoid
dangerous situations, follows traffic rules, and its software components are developed with the best
knowledge of the developers and designers. As assumed for the Responsibility Sensitive Safety
metric (Section 2.2.5), functional and nominal safety is assumed for the ego vehicle. Functional
safety refers to hardware failure or software bugs. The experiments in this work take solely part in
SiL environments. Therefore, it is assumed that software bugs are avoided to the best knowledge
of the developer. Nominal safety considers the behavior and decision-making of an automated
driving system based on the assumption that software and hardware are working error-free.

Additionally, the ego’s behavior is deterministic since it should not make different decisions when
the same concrete scenario is executed more than once. The driver function used in the following
experiments are further explained in Section 5.1.1.

4.2 Idea and Requirements

The objective of this work is to provide a clear and concise analysis of a logical scenario, including
its exploration (Section 4.4), clustering (Section 4.5), and a summary of typical and edge cases
(Section 4.6). Additionally, a statement regarding the uncertainty and credibility of the results
will be included (Section 4.7).

The important parts of this work are illustrated in Figure 4.2, which is an elaborated version of
Figure 1.2. While the previous version provided a simplified overview of all fields, Figure 4.2
contextualizes and further details these areas in relation to this thesis. The gradients are used for
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Figure 4.2: Concept of scenario acquisition of this work.

the main categories and include all the shades of the subcategories. The white boxes (1) highlight
important areas of recent work relevant to this thesis. First, in a pre-step the logical scenario and
criticality metrics for the exploration must be defined (1). The scenario can be found through
the different scenario acquisition methods (Figure 2.7), e.g., generated by experts or derived from
recorded data. Next, a list of criticality metrics must be compiled to assess scenario quality (purple
box). Only scenario quality is mentioned here, as other types of quality are not relevant for this
work. The metrics depend on the scenario and must be suitable for the test or research question,
e.g., in a car-following scenario, the metrics must adequately assess the criticality of the situation,
such as TTC. This work proposes a novel metric suitable for situations involving more than two
actors (2) that can be applied in urban environments. Once the appropriate metrics have been
selected, the exploration can be started (3), and a simulation environment with an exploration tool
is required. An optimization algorithm must be selected apart from the exploration tool setup.
Once the exploration is finished and all results are generated, an analysis of the results can be done
(4). This analysis includes scenario clustering and reduction to determine the scenario outcome
throughout the parameter space of the logical scenario and an edge case identification. From that,
the first requirement for this research can be derived:

REQ.1: The used criticality metrics shall be capable of identifying critical situations re-
gardless of the actor constellation. Metrics that are only suitable for car following scenarios
are unsuitable for scenarios with more than two actors.

In this context, actors refer to traffic participants, e.g., the ego vehicle, pedestrians, or other
vehicles. The actor constellation describes the spacial relation between these actors, e.g., car-
following situation or intersecting trajectories. The quality of an autonomous driving function or
the criticality of a scenario has to be quantified to make a statement about safety of a function.
The most fitting metrics for the used case have to be chosen for each use case [2], and the as-
sessment of simulated data varies depending on the stage of testing and development. Generally,
metrics can be classified into different levels of abstraction and usage during the process. This
classification also determines which metrics are suitable for identifying new scenarios through
scenario exploration or generation.
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After the question what metrics shall be used is established, a second requirement arises:
REQ.2: The scenario exploration tool shall find all critical scenarios within the scenario
space using metrics that meet REQ.1

The starting point for scenario exploration is a logical scenario with a set of parameter ranges.
Selected values from within these ranges are used to get concrete scenarios. The number of
possible concrete scenarios depends on the selection process of values, e.g., a fixed step size of
the parameter range or a distribution from which values are drawn and the number of variables
within a logical scenario. Since the number of scenarios grows exponentially with each introduced
variable or parameter range, the number of concrete scenarios associated with one logical scenario
might be too high to execute all available scenarios. Furthermore, not all scenarios provide new
insights about an ADS. To reduce simulation time, a guided process can be used to identify
critical concrete scenarios.

The next part states what shall be done with the exploration results:

REQ.3: The logical scenario shall be modeled by a reduced set of representative concrete
scenarios.

The resulting set of scenarios can be analyzed regarding several aspects. Firstly, different similarity
and clustering approaches can be used to make assumptions and statements about the behavior of
the ego vehicle and the criticality within the examined logical scenario. Another outcome is the
reduction of the resulting set to a smaller subset that does not contain redundant scenarios, which
do not provide further insight into the behavior of the ego vehicle and the scenario.

Further, the credibility of the results has to be assessed:

REQ.4: The logical scenario space must be analyzed regarding its credibility and uncer-
tainties.

Reducing simulation effort and the number of scenarios can be beneficial. However, it is crucial
to investigate the credibility and uncertainties of the achieved results. It is important to note
that making such statements is only possible for some optimization algorithms, which should
be considered when selecting an algorithm to use. Additionally, even if it is possible to make
statements about this information, it may not be sufficient for evaluating coverage. Furthermore, it
is necessary to collect and organize all assumptions related to the model, simulation environment,
and algorithm used.
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4.3 Taxonomy for Quality in Simulation and
Scenario-based Testing

Evaluating a scenario (logical or concrete) is essential to the exploration phase, as described in
Section 4.4. Therefore, it has to be established what parts of a simulation and scenario must be
evaluated, in particular, so that no information gets ignored. This section aims to fill the gap
between scenario quality and criticality in the already existing concepts of simulation and System
Under Test (SUT) quality. It describes quality from the point of view of a scenario and locates it
among existing concepts by drafting a taxonomy.

Before, during, or after a simulation, various aspects need to be evaluated to ensure the reliability
of the simulation. These aspects include the quality of all parts of the simulation: the simulation
models employed, such as sensor models or vehicle dynamics models, as well as their coupling
mechanisms and the simulation environment itself. These models should meet a predetermined
level of quality to ensure their intended purpose is achieved. Once this level of quality is met,
the Automated Driving System (ADS) can be tested in a simulation to determine its intended
functionality. Typically, the performance of the SUT, the driving function, and its behavioral
safety are assessed. In the scope of this work, the SUT is a software model of the driving function
(Section 5.1.1). For instance, the adherence of the system to traffic rules and functional safety is
evaluated [154]. !

4.3.1 Quality-related Terms and their Interactions

Figure 4.3 shows a UML diagram that visualizes the relationships between different quality
aspects within a simulation. In scenario-based testing, a Simulation contains one or more
Scenarios (Section 2.1.3), and a SUT. The simulation, scenario, and SUT must meet specific
quality requirements and testing standards. However, different types of quality must be ensured
at different stages. First, the Simulation Environment Quality must be evaluated before it can
be used. Additionally, the Scenario Quality must be guaranteed. The scenario must be sensible
regarding the testing of the SUT, i.e., the Structural Scenario Quality must be evaluated
concerning the credibility of the scenario. The structural scenario quality describes the required
level of realism for testing purposes. This quality is difficult to measure automatically, and there
is limited prior research available. The degree of credibility can also vary depending on what
needs to be tested. For some test cases, it might be acceptable if actors have no collision detection
and pass through each other. After that, the Functional Scenario Quality must be ensured. It

1" Parts of this chapter have already been published in [1].
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Figure 4.3: UML diagram visualizing the proposed terms for quality and their relations, providing an overview of general
terms.

might not matter to the behavior of a SUT if the environmental light is the primary focus in a

scenario when a radar sensor is tested. Different levels of resolution are available for each type

of quality (Section 4.3.4).

SUT Scenario
Quality Quality
I SUT Behavior Comfort N .
Criticality Quality Quality Safety Quality

Figure 4.4: UML diagram displaying examples for specific quality types and aspects.
Figure 4.3 shows different aspects (however, not a complete list) of SUT and Scenario Qualities.
Both mainly differ in the point of view regarding what category they fall into, e.g., if criticality
metrics are used to assess the criticality within a scenario, then it is of type Scenario Quality if
they are used to evaluate a SUT’s performance it is called SUT Quality.

This work focuses on scenario quality since the exploration explicitly evaluates the outcome and
events in a concrete scenario. Therefore, simulation environment quality and SUT quality are
mentioned here. Detailed information and examples can be found in Appendix B.1.
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4.3.2 Taxonomy Overview

To facilitate consistent understanding and naming, as well as to establish a clear delineation of
different simulation aspects, a taxonomy is proposed. The proposed taxonomy (Figure 4.5) en-
compasses three domains of interest for ensuring quality during the simulation process: simulation
environment quality, system under test (SUT) quality, and scenario quality.

Each domain can be examined at various levels of resolution, similar to the approach used
in traffic simulation, which includes nanoscopic, microscopic, and macroscopic levels. The
suggested combinations of domains of interest and resolution levels are presented in Figure 4.5 in
a tabular format.

Overall, the proposed taxonomy provides a comprehensive framework for evaluating simulation
quality that is flexible enough to accommodate a wide range of simulation aspects and can be
applied to different levels of detail.

Simulation Envi- SUT Scenario
ronment Quality Quality Quality
(Sec. B.1.1) (Sec. B.1.2) (Sec. 4.3.3)
N N [ N A
: (@ @ @
2 Atomic simu- Single time Scenario seg-
§ lation model step, e.g., scene ment, €.g, scene
— U J U J U J
() N N N
Q
£ |@ ®
% Coupling Time interval, e.g., Single (con-
~§ mechanisms act or scenario crete) scenario

— U J O AN J
Figure 4.5: Quality matrix with three quality categories and resolution levels: simulation environment quality, system
under test (SUT) quality, scenario quality
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4.3.3 Domains of Interest

The taxonomy consists of three domains of interest from the simulation field, but it can be
extended to include other domains if necessary.

Simulation Environment and System Under Test Quality

Simulation environment quality, the quality of the used simulation tools, pertains to the assess-
ment and assurance of the fidelity of simulation models, their interconnections, and the overall
infrastructure of the simulation framework. The simulation tools used in this work (Section 5.1.1)
are one example. The quality of a SUT (Section 5.1.1) encompasses evaluating its observable
behavior and performance concerning intended functionality based on predefined requirements.
Various types of quality, such as safety and performance in critical scenarios, can conflict with
each other due to trade-offs in specific metrics. Regarding the scope of this work, an more in-depth
explanation can be found in Appendix B.1.

Scenario Quality

The concept of scenario quality aims to provide an unbiased assessment of a scenario, i.e., how
good a scenario is. This means that the evaluation is based solely on the ego vehicle, its motion
model, and a single traffic participant. However, urban traffic scenarios typically involve more
than two road users, and some metrics may not fully assess the criticality of certain situations.
To address this issue, additional objective metrics are required. For instance, the metric for traffic
quality can be divided into domains of interest of varying sizes [70]. Each domain covers a range
from the ego vehicle to a large road section with multiple other road users.

Scenarios, or their components, can be evaluated for their quality during the development and
testing of a system, e.g., to assess the criticality of a situation with respect to the system under
test. To establish scenario-based testing as a testing standard, scenarios must represent realistic
situations and traffic participants, which overlaps with simulation model quality.

Scenario evaluation encompasses spatial or temporal scenario segments, a complete concrete
scenario, or a set of scenarios that correspond to logical or functional scenarios. The field of
scenario quality is closely related to system under test quality [149, 86], but differs in terms of
the perspective from which a simulation is evaluated. In particular, the goal is to assess either the
system under test performance (SUT quality) or the scenario quality or criticality itself, in order
to identify appropriate scenarios for testing.
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The evaluation of scenario quality is based on the ego vehicle, its motion model, and a single
traffic participant, using an objective point of view. However, urban traffic scenarios typically
involve more than two road users, and some metrics may not fully evaluate the criticality of certain
situations. Standard criticality metrics, e.g., TTC, PET, or distance, can only consider one other
road user. However, urban traffic typically involves more than two road users, and many metrics
may not fully evaluate the criticality of these situations. To resolve this issue, it is necessary
to employ more objective metrics. For example, the traffic quality metric can be divided into
differently sized domains of interest [70] (see Section 2.2.5), each covering a range from the ego
vehicle itself to an extensive road section with multiple other road users.

4.3.4 Levels of Resolution

The levels of resolution describe the granularity at which a domain of interest is investigated.
The level with the highest resolution and, in most cases, the atomic level with the smallest units
possible is the nanoscopic level. The nanoscopic level includes the observation of single time
steps or sub-sequences of scenarios, such as atomic modules or units, or spatial sub-sections from
a scene, such as only one or two traffic participants from a map with more than the observed
objects.

Microscopic resolution is the next level and describes coupled entities from the nanoscopic level
or their coupling mechanism. For instance, this can include the coupling between simulation
model units or designated time intervals, such as a concrete scenario.

The final level is the macroscopic level, which provides a more holistic view. This level encom-
passes the quality of coupled systems, the quality of the system under test over a set of tests or
scenarios, and the quality or criticality of a set of scenarios.

The mentioned domains of interest and levels of resolution lead to the following list. The numbers
correspond to the numbers of the table entries in Figure 4.5:

1: Nanoscopic simulation (environment) quality: quality of single atomic simulation models,
e.g., pedestrian model or subunits of opponent vehicles,

2: Microscopic simulation (environment) quality: quality of coupling, e.g., synchronization,
message format, or actor availability,

3: Macroscopic simulation (environment) quality: quality of coupled system, e.g., opponent
vehicle or simulation environment module.
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4: Nanoscopic SUT quality: quality of system under test for one time step, e.g., headway or
gap time,

5: Microscopic SUT quality: quality of system under test for a time interval, e.g., post-
encroachment time or encroachment time,

6: Macroscopic SUT quality: quality of system under test for a set of time intervals, e.g.,
overall collision probability for a functional scenario or ODD.

7: Nanoscopic scenario quality: quality of scenario segment, e.g., time-to-collision (time
step), headway (time step), or traffic density (time step or time interval),

8: Microscopic scenario quality: quality of single scenario, e.g., min(time-to-collision) or
min(headway),

9: Macroscopic scenario quality: quality of set of scenarios, e.g., variable coverage within
this set.

4.3.5 Interaction Between Different Types of Quality

Simulation Environment Quality System Under Test Quality
Quality of model coupling @ Quality of SUT Quality of SUT Quality of SUT
performance in performance in performance in set
Quality of pedestrian model @ single time step: @ time interval: @ of time intervals:
. .  Headway « PET ¢ Overall Collision
Quality of opponent vehicle @ * Gap Time *ET Probability
Quality of model coupling @ @ Scenario Quality
Quality of sensor model @ Quality of scenario Quality of single Quality of set of
segment: scenario: scenarios:
Quality of dynamic model (1) « TTC : ;
o ity o min(TTC)  Variable

® Traffic Density * min(Headway) Coverage

Figure 4.6: Basic dependencies of quality interaction described by Section 4.3.2 with examples. Abbreviated metrics are
post-encroachment time (PET), encroachment time (ET), Time-To-Collision (TTC).

On a closer look, the different levels of resolution and the different domains of interest interact
with each other or serve as a base for each other, e.g., simulation environment quality should
be assured before SUT quality or scenario quality. The basic structure of quality interaction
is illustrated in Figure 4.6. The simulation environment quality, which includes different parts
and areas of the simulation environment, has to be ensured before the system under test quality
and scenario quality since both need a working simulation environment to be measured. Several
metrics can be used in more than one category, e.g., time-to-collision can measure a SUT’s
performance. Nevertheless, also to determine the criticality of a scenario regarding the chosen
ego vehicle.
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In addition, nanoscopic metrics can be evaluated using functions such as min or max at the
microscopic level. Using these functions makes the microscopic level dependent on the na-
noscopic metrics, unless metrics are computed on the microscopic scale, as is the case with
post-encroachment time or encroachment time.

4.3.6 Scenario Quality in the Scope of This Work

This work assesses the quality of a scenario based on its criticality. There are two types of scenario
quality: nanoscopic resolution, which involves calculating metrics such as distance or WTTC,
and microscopic scenario quality, which includes criticality metrics such as PET or summarizing
nanoscopic metrics to derive microscopic metrics like the minimum encountered distance in
a specific scenario. These microscopic quality measures are then aggregated to demonstrate
the macroscopic quality of logical scenarios, as illustrated in Figure 5.9 and Figure 5.8. This
work assumes that all scenarios meet the previously defined criteria for structural and functional
scenario quality unless explicitly stated otherwise.

4.4 Scenario Exploration
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Figure 4.7: Scenario exploration step: search for critical parameters within parameter ranges and reduction of costs.

Scenario exploration involves searching for a set of concrete scenarios within a logical scenario
by exploring a predefined range of parameters or distributions that define the scenario and actor
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behavior within each executed scenario. The set of all possible parameter combinations within
a logical scenario is referred to as the scenario space. Scenario exploration (Section 2.3.3) is a
category of scenario acquisition (see Figure 2.7 and Figure 2.8). Figure 2.8 shows the transition
from logical scenario to concrete scenario, where one logical scenario leads to n concrete scenarios
found during the exploration. The following concept aims to include a result evaluation that has
not been previously considered in Section 2.3. The key steps involved in scenario exploration, as
illustrated in Figure 4.7, are as follows:

(1) Exploration of all parameter ranges and distributions within the scenario space to identify
relevant and distinct areas.

(2) Identification of critical areas within the parameter space of the logical scenario to ensure
that no critical scenarios are overlooked.

(3) Reduction of simulation cost by optimizing the set of scenarios that need to be simulated
with the help of optimization algorithms.

Choose start
parameter set (1)
Scenario
simulation (2)
Evaluation (3)

. Termina-
tion criterion
fulﬁéled?

no
Optimize
parameters (4)
Choose new
parameters (5)

Figure 4.8: Activity diagram of the scenario exploration workflow.

The optimization process is an iterative technique, as shown in the activity diagram in Figure 4.8,
which corresponds to item (1) of the list of characteristics provided. Initially, a starting parameter
set is chosen (1), and a concrete scenario is simulated (2). The results are then evaluated using
criticality metrics (3), and an optimization algorithm (4) selects a new parameter set (5) to be
simulated again (2). This procedure is repeated until a termination criterion is met (6). Steps
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3-6 are performed by the optimization algorithm. Other possible approaches are evolutionary
algorithms as described by Schiitt et al. [11].

Item two in the list above presents a goal for scenario exploration: to search for critical areas in
the parameter space. It is necessary to find both critical and non-critical scenarios to represent
the logical scenario from the perspective of the ego vehicle. Criticality is always measured for
the ego vehicle and can be distributed differently for other driving functions (see Section 5.1.1)
or revisions. Item three is closely related to item two. Some exploration methods require
fewer scenario simulations than others, such as grid search versus optimization, which will be
explained later in this section. Therefore, the objective is to minimize the exploration cost.
Throughout this work, Bayesian optimization is used since it also maintains a surrogate model
for further investigations. However, similar experiments have also been made with EAs as part
of a supervised Master’s thesis [166] and a resulting conference paper [11].

4.5 Concrete Scenario Clustering
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Figure 4.9: Scenario clustering step: measure scenario similarity and find clustering.

Scenario clustering is a technique that identifies and categorizes concrete scenarios within a logical
scenario based on content. It summarizes similar sequences of scenes, trajectories, or concrete
scenarios into one scenario description that represents a range of parameters [108]. The process
of clustering involves two main steps, as shown in Figure 4.9:
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(1) Measuring the similarity between scenarios, either behavior-based (see Section 4.5.1.2) or
criticality-based (see Section 4.5.1.1).

(2) Grouping concrete scenarios based on their content and sequence of actions.

The primary objective of scenario clustering is to organize a given collection of scenarios based
on their content and the specific objectives guiding the clustering process. Notably, the outcomes
of simulated scenarios, including criticality and trajectories, depend on the tested ego vehicle or
SUT, ADS, or ADAS. According to Greenhill et al. [68] and Nidhra and Dondeti [112], the role
of the ego vehicle in the optimization process can be viewed as a black box. This is because the
optimization process only considers the output, which is the vehicle’s performance in a specific
scenario, without taking into account any internal mechanisms.

Similar to other optimization algorithms, BO must find a balance between exploration and ex-
ploitation when selecting parameters [45]. As it can be seen in the experiments (Chapter 5 and
Figure 3.8), BO adopts a narrow sampling approach by focusing on concrete scenarios in proxim-
ity to critical areas or areas characterized by high levels of parameter uncertainty. Consequently,
these algorithms often find parameter sets (concrete scenarios) that result in minor variations in
scenario outcomes. Therefore, clustering based on the distance between concrete scenarios in the
parameter space is not recommended.

4.5.1 Computation of Scenario Distance
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Figure 4.10: (a) Example for criticality-based clustering; (b) Example for behavior-based clustering.
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Scenario clustering is based on comparing concrete scenarios with each other. However, the
concrete scenarios chosen by the optimization algorithm within the parameter space of a logical
scenario do not follow a defined distribution. Additionally, as discussed in the previous paragraph,
they concentrate on critical areas. Clustering can be performed based on various features, e.g.,
sequences of scenes, trajectories, or the course of scenario criticality throughout the simulation.
It has to be established which method is the best to compare concrete scenarios from one logical
scenario. Additionally, there are multiple methods available for comparing scenarios and assessing
their similarity [3]. In the scope of this work, DTW is used to compare different time series (see
Section 3.2.4). The measured scenario distances are then used to create a distance matrix (see
Section 4.5.1.3).

Figure 4.10 illustrates the comparison of two clustering approaches: criticality-based (a) and
behavior-based (b). It is the same parameter space as already shown in Figure 3.9, but colored
regarding the cluster assignments. Figure 4.10 (a) shows a cluster comprising exclusively critical
scenarios enclosed by a larger cluster encompassing less critical scenarios. Additionally, the
yellow cluster contains non-critical scenarios. The blue and green dots in Figure 4.10 (b) are
the color assignment of two scenario clusters, with their boundaries converging at the region of
highest criticality. This convergence is due to a discernible shift in ego behavior, such as the ego
vehicle passing an intersection before or after another actor.

4.5.1.1 Criticality-based Similarity

The initial approach is criticality-based clustering. This involves clustering scenarios based on
their level of criticality, which allows for the grouping of high-risk and low-risk scenarios. DTW
is used to compare different time series of criticality curves (see Section 3.2.4) and finally to
cluster similar scenarios into one group. Most criticality metrics can be computed for each
simulation step (nanoscopic), e.g., distance or WTTC, resulting in a distinct criticality curve or
trajectory. Additionally, these stepwise calculated metrics can be summed up to microscopic
criticality values, e.g., min(distance) or min(WTTC'). These microscopic criticality values
are shown in Figure 3.9 for an exemplary 2-dimensional parameter space. It can be observed that
some metrics have a higher gradient (e.g., WTTC) when approaching critical areas than others
(distance) (further explained in Section 5.3.1). However, in most cases, they all identify critical
regions in the same areas of the scenario space.

For instance, Figure 4.10 (a) displays three clusters of scenarios: critical scenarios within less
critical scenarios that surround this cluster. Additionally, the yellow cluster contains non-critical
scenarios. In this example, the clustering was based on the criticality metric WTTC. This example
is discussed further in the experiments in Section 5.3.2.
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4.5.1.2 Behavior-based Similarity

A method for determining scenario similarity is to analyze vehicle trajectories extracted from
various types of data, e.g., recorded naturalistic driving data sets [91, 3]. This trajectory-based
approach also is also applicable to recorded simulation data after the exploration phase. The
underlying concept of this approach is that significant differences in concrete scenarios are
unlikely to exist as long as the trajectory of the ego vehicle remains constant. For instance, if the
ego vehicle does not need to apply brakes in response to another car, the exact distance of that car
(e.g., 40 or 50 meters away) becomes irrelevant. Similarly, if the ego vehicle has to brake for an
actor, it does not matter if it is always the same actor as long as the braking occurs at the same
place in time and space during the concrete scenario. Figure 4.10 (b) depicts a two-dimensional
scenario parameter space featuring two distinct clusters. The borders of the clusters converge in
an area linked to critical scenario outcomes. In the given example, the ego vehicle and another
actor cross the same intersection. Notably, the purple cluster comprises scenarios where the other
actor passes the intersection before the ego vehicle, while the yellow cluster comprises scenarios
where the ego vehicle passes first. The scenarios bordering each cluster are highly critical.

4.5.1.3 Distance Matrix

Exploration algorithms must determine the distance between concrete scenarios. However, a chal-
lenge faced by optimization algorithms when exploring logical scenarios is the spatial distribution
of these scenarios in the parameter space. It does not provide any meaningful insights into the
scenario outcome since the optimization algorithm determines the selection of parameter com-
binations, which draws from parameter ranges regarding its exploration and exploitation model.
Therefore, it is necessary to establish scenario similarity using measures other than the Euclidean
distance in the parameter space. Braun et al. [3] describe various methods for computing scenario
similarity. One of these approaches, DTW [28], was utilized in the following step for computing a
distance matrix D since the simulated scenarios in this work provide recorded data (e.g., position
or criticality) over a temporal course (cf. Section 3.2.4). DTW can handle temporal distortions,
variation in the duration, and the speed of trajectories. The trajectory of the ego vehicle adjusts
at different times during the simulation due to varying adversary actor behavior. These reactions
result in different outcomes and, therefore, less similar scenarios. Other possible distance matri-
ces can be computed using microscopic criticality metrics, such as PET, WTTC, Traffic Quality,
or the distance between actors (see Section 5.1.2).

A distance matrix contains the pairwise distances between all simulated scenarios (see Sec-
tion 3.2.4). Pairwise distance, in this case, refers to the DTW between two ego trajectories or
the course of criticality of two concrete scenarios. The matrix in Figure 4.11 shows the distance
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Figure 4.11: Distance matrix colored regarding the concrete scenarios’ distances. The diagonal compares each scenario
with itself, resulting in a distance of 0.0. The unit of the distance depends on what was compared, e.g.,
meters or seconds.

between two scenarios, with dark blue indicating similar scenarios and red indicating different
scenarios. This matrix was taken from the same experiments (see Section 5.3.2) as the clustering
depicted in Figure 4.10 (b), which is based on the behavior-based distance matrix in Figure 4.11.
The axes display scenario identifiers, with each number representing a parameter combination.
The diagonal displays the smallest distances, as it compares each scenario to itself. The distance
between two trajectories is measured using DTW for behavior-based comparisons or the course
of criticality in criticality-based approaches.

4.5.2 Dimensionality Reduction with Kernel PCA

The distance matrix is used for clustering the scenarios. Between the computation of the matrix
and the clustering, there is one step in between before the clustering can take place: dimensionality
reduction (also called projection into a low-dimensional space) by the utilizing a kernel PCA with
a replaced distance matrix in the RBF kernel (see Section 3.2.3). In order to do so, the distance
matrix is used to compute a Gaussian RBF kernel for a kernelPCA. Nonetheless, in the case
of concrete scenarios within a logical scenario, the dimensions of the original feature space
are unknown. However, the distance matrix discussed in Section 4.5.1.3 provides sufficient
information to compute a kernel PCA.
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4.5.3 Clustering

The next step is to cluster the specific scenarios in order to group them based on their content.
Notably, the projection of scenarios into the kernel space, as demonstrated in Figure 3.10 (c) in
Section 3.2.3, can enhance the distinguishability of clusters. Utilizing kernel-based techniques can
help make clusters more distinguishable from each other. This allows for clearer differentiation
between scenarios. The clustering process reveals the inherent behavioral and criticality structure
and patterns within the scenario data, which helps to uncover the number of distinct clusters that
depict the underlying scenario variations of a single logical scenario.
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Figure 4.12: (a) Example for behavior-based clustering with DBSCAN in the kernel space. The axes are the three most
influential principal components; (b) Cluster assignments from the kernel space taken back to the original
scenario space.

The proposed approaches for projection and clustering can be combined and used for concrete
scenarios. Figure 4.12 (a) shows an example of a behavior-based kernel space clustered into two
distinct clusters with DBSCAN (see Section 3.2.5) In this example, both clusters have a C-shaped
pattern in the kernel space and are orthogonal to one another. DBSCAN was used since the
number of clusters is unknown. The axes depict the three most influential principal components
after the projection into the kernel space. This cluster assignment can be transferred to the original
scenario parameter space (Figure 4.12 (b)).

In Figure 4.12 (b), the highest criticality is found in the area where the two clusters intersect,
as shown in Figure 4.10. The scenario itself and the resulting outcomes are further explained
in Section 5.2.1. The purple cluster encompasses situations in which a pedestrian crosses an
intersection before the ego vehicle. The yellow cluster, on the other hand, contains scenarios
where the ego vehicle crosses first. Additionally, the simulation results can depend on interactions
between different parameters. For instance, the starting position of the ego vehicle can range from
close to the pedestrian to further away, and the pedestrian may have different waiting times before
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moving. In this case, achieving the same scenarios is possible with different parameter sets. For
example, a close starting point with no waiting time or a far starting point with a long waiting

time.

4.6 Reduction by Archetypal Analysis
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Figure 4.13: Scenario exploration step:
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Figure 4.14: Principal convex hull for both clusters.
The third step involves scenario set reduction, as listed in Figure 4.13:

reduction of scenario set.

D Cluster 0
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e The reduction of all simulated concrete scenarios from one logical scenario to a reduced
set of arche- and prototypes representing the logical scenario.

The preceding exploration and clustering steps result in different scenario sets, some of which may
contain redundancies. The goal of this step is the reduction of such redundancies and repeating
concrete scenarios. Prototypes and archetypes can be extracted from each cluster and used as a
representative set for the logical scenario to further reduce the dataset.

In this context, archetypes are extreme examples or corner cases within a cluster representing
distinct patterns or characteristics. The similarity to an archetype is determined by measuring the
distance between a data point and the archetype itself. When a data point shows similar distances
to more than one archetype, it indicates a mixture. The data point’s characteristics change towards
an archetype the closer it gets. To identify these archetypes in convex clusters, a principal hull
analysis can be used (see Section 3.2.6). This analysis represents the archetypal corner cases of
the cluster, and the archetypes can be found as the vertices of this hull. Figure 4.14 displays the
principal convex hull of each cluster’s eight data points. In addition, a prototype can be selected.
Prototypes are the most average concrete scenarios within a cluster. They can be defined by mean
or median parameter sets or by existing scenarios that are closest to them.

It is important to acknowledge that the proposed exploration and clustering approach produces
different outcomes for behavior-based and criticality-based clustering. The selected distance type
plays a crucial role in the clustering results, and as a result, scenario sets are reduced. Behavior-
based clustering identifies cluster borders and corresponding archetypes in regions of the scenario
space where criticality is high in case cluster borders meet. Conversely, criticality-based clustering
identifies borders around critical or non-critical clusters. Furthermore, Figure 4.10 demonstrates
that clustering may lead to clusters nested within other clusters depending on the dimensionality
and specified parameters. If a cluster does not occupy a convex space in the scenario parameter
space, the proposed algorithms cannot analyze or reduce it.

4.7 Probability Analysis of the Results

The final phase involves an analysis of the surrogate model resulting from the exploration with
Gaussian processes in step 1 (see Section 4.4). This phase encompasses two distinct steps:

(1) The surrogate model allows for predicting criticality across the entire logical scenario space.
By leveraging this model, predictions about criticality metrics can be generated for every
point in space. Each prediction is subject to some noise depending on the certainty at that
specific point.
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Figure 4.15: Analysis step: prediction of criticality and analysis of uncertainty

(2) The prediction enables the analysis of uncertainty and confidence within the scenario space
by evaluating the variance among predictions made for each spatial point. The certainty of
a model affects the noise in the predictions for each point in space. The variance between
different predictions at the same point can be used to determine the confidence level of a
model.

As outlined by Lim et al. [94], the Gaussian process regression used in Bayesian optimization
serves as a surrogate model that represents the objective function through Bayesian inference.
This allows for additional statements and insights into the underlying characteristics and validity
of the objective function model. After the training phase, the Gaussian process can predict values
for any point within the input space. The model can forecast the criticality metric it was trained
on, such as traffic quality, for different parameter configurations within the logical scenario.

Due to the statistical nature of the anticipated criticality values, there may be variability for a
given input set. By utilizing these predicted values, it is possible to compute both the mean and
standard deviation, which facilitates the extraction of subsequent insights:

» Complete prediction over the input space.
* Quantification of uncertainty associated with each point in the parameter space.

* Determination of a confidence interval, as illustrated in Figure 3.8 (b) or Figure 4.16.

Figure 3.8(b) provides an example of a confidence interval within a one-dimensional space.
However, in most logical scenarios where optimization is necessary, the parameter space has
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Figure 4.16: Example of a 3-dimensional plot that illustrates the confidence interval of the metric gap time at each
point. The purple color corresponds to a narrow interval, indicating high confidence, while the yellow color
represents a wider interval, indicating lower confidence.

more than one variable. For a single parameter, it is possible to simulate a grid of concrete
scenarios instead of using an optimization approach. Therefore, when dealing with a 2- or 3-
dimensional space, alternative techniques are required to visualize the confidence interval. An
option is to employ color coding for points in space, as exemplified in Figure 4.16. The confidence
interval of the gap time is presented, with the smallest width being around 0.11 s and the largest
around 0.185s. Upon closer examination of the scenario criticality results, it is evident that
the area with higher criticality and more samples during exploration corresponds to the smaller
confidence interval (refer to Section 5.3.1 for the results presented in a 2-dimensional space). In
this context, the color indicates the extent of the confidence interval. Shades of yellow represent
lower confidence, while shades of purple represent higher confidence.

4.8 Traffic Density Potential

Most metrics are only suitable to measure the criticality between two traffic participants, e.g.,
TTC or PET (cf. section 2.2.5). However, in certain situations, such as automated scenario
exploration or generation, it may be unclear which traffic participants these metrics should be
applied to. One possible solution is to measure the chosen metric between the ego vehicle and
every other traffic participant in a scene and to use the worst measured value by utilizing min or
max. To overcome this problem, a new scene metric is proposed in this work that can evaluate
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a complete traffic scene. This new metric is used throughout this work and compared to other
metrics.

Hallerbach et al. [70] proposed a metric called traffic quality that is measured within a given
scene, which addresses this problem for highway scenarios (Section 2.2.5). The proposed Traffic
Density Potential (TDP), described in detail further down, is based on the traffic quality approach
but incorporates some changes to make it suitable for urban scenarios. In contrast to [70], the
final score does not need trained weights for each of the four sub-metrics. Furthermore, the final
score increases as the traffic situation around the ego vehicle becomes denser. The names of
the sub-metrics of the traffic quality as proposed by Hallerbach et al. [70] were partly changed
for a more consistent naming scheme and to avoid confusion with the quality taxonomy from
Section 2.2. Both the TDP and the taxonomy share the names of macro- and microscopic sub-
metrics (TDP) and macro- and microscopic levels of resolution (taxonomy) but are not related
to each other in terms of content. The TDP has four sub-metrics, while the taxonomy has three
levels of resolution. In fact, in terms of the quality taxonomy, the TDP is a nanoscopic scenario
quality metric. Additionally, TDP avoids information from previous time frames as much as
possible to simplify computation. 2.

Figure 4.17: Schematic overview of the different areas of interest of the Traffic Density Potential (TDP) on an exemplary
traffic scene, starting with macroscopic resolution at the bottom and metascopic at the top. The gray vehicle,
denoted as A, is the ego vehicle. The black ellipse symbolizes the area relevant for the sub-metric. Black
cars are considered for a sub-metric, whereas light gray cars are outside the area of consideration.

2 Parts of this chapter have already been published in [8] and [12]
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The TDP consists of four sub-metrics like the original traffic quality formula and is schematically
depicted in Figure 4.17: macroscopic (£2) (complete scene), metascopic (1), mesoscopic (O),
and microscopic (u) (only ego vehicle). All four parts evaluate different aspects within the given
scene and are used to get a final score.

4.8.1 Macroscopic Density Potential

The macroscopic TDP sub-metric calculates the coefficient of variation of the velocities of all
vehicles in a scene. A higher macroscopic value indicates more unsteady movement among all
traffic participants. Uniform traffic is considered uncritical, regardless of the average velocity of
all participants. The macroscopic TDP component for a complete scene is calculated as

Osc

TDPg = 4.1

Vsc

where o 5. describes the standard deviation of the velocities and 7. the mean velocity of all vehicles
V; within one scene at time ¢. The macroscopic value is the same for all traffic participants within
one scene. Congestion situations, such as merging lanes or traffic lights, where most cars are
stationary and only a few are in motion, as well as roundabouts with vehicles waiting to enter and
a high number of parked cars within a map, are typical scenarios with high macroscopic values.
The macroscopic sub-metric does not take into account spatial traffic density. For example, a
map with few vehicles traveling at different velocities may still have high macroscopic values.

4.8.2 Metascopic Density Potential

The metascopic TDP sub-metric is the ratio between all vehicles on the scene and the ones within
the estimated braking distance of an ego vehicle A:

V(A
TDP,,(A) = thil)

4.2)

where |V;| represents the set of all vehicles found on the scene at time . V,*"(A) C V; where
V' (A) denotes all vehicles which are within the breaking distance of A at the time ¢. The
metascopic value always ranges from 0 and 1 and increases with the velocity of the ego vehicle
until the braking distance encompasses the entire scene. High metascopic values are typical in
situations involving rapid movements across a map or when leaving a scene with high acceleration.
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4.8.3 Mesoscopic Density Potential

The mesoscopic TDP sub-metric is computed in a similar way to the macroscopic TDP sub-
metric. However, it only takes into account the coefficient of variation within the braking distance
of an ego vehicle.

TDPy(A) = 77 4.3)

Vpr

where oy, describes the standard deviation of the velocities and 73, the mean velocity of all
vehicles within the braking distance of the ego vehicle V*"(A). Typical situations with high
mesoscopic values occur when the ego vehicle passes or approaches a group of slower-moving
vehicles.

4.8.4 Microscopic Density Potential

The microscopic TDP formula is the only sub-metric that uses data from previous time frames.
It only considers the ego velocity and acceleration development over the last few seconds. It
consists of two ratios combined:

aa 4 vaA_

TDP,,(A) = 2ol el 5 vl (4.4)

where a4 describes the mean acceleration and 74 the mean velocity of the ego vehicle over a
certain time in the past. Values a,.y and v,y are reference values, e.g., Vpey = 50%’” and
Qref = 1.5%2 for urban traffic. Both reference values can be adjusted based on the evaluated
scenes. For instance, traffic-calmed zones may require different adjustments. Situations with
high microscopic scores typically involve fast-moving vehicles or situations where the ego vehicle
accelerates or brakes.

4.8.5 Final Score

The last step is calculating the final score from the four different sub-metrics. A spacial-related
approach instead of finding weights for each term was used [70]. Therefore, the /5-Norm of all
four sub-metrics is used:

TDP,, = \/ TDP$ + TDP} + TDP; + TDP}, (4.5)
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However, TDP,, is very sensitive and in several cases marks uncritical situations as critical. In
order to avoid this problem, a penalty term p,, is introduced:

TDP, = p,TDP., (4.6)

where p, can be replaced by a penalty or reward depending on the metric’s goal. In this work,
three possible penalty terms with different focus aspects are proposed. All three terms are based
on the distance between the ego vehicle and the nearest vehicle within a scene and punish empty
space around an ego vehicle:

1.5
P1 = 1 4.7
dmin
p2 =€ 50 4.8)
dnin —1.0
p3 =€~ 100 4.9

where d,,;, is the distance to the closest vehicle, respectively. The proposed criticality threshold
for TDP,, is 1.5 and for three combinations with the penalty term 1.0, where critical scenes
achieve a value above the threshold.

p1 prioritizes distance, which means that a vehicle in close proximity to the ego has a greater
impact on criticality, potentially neglecting the overall traffic quality of the scene. However, two
vehicles that are close together or moving slowly may be considered less critical than when the
ego vehicle is further away but moving quickly towards a potential collision. To address this, po
and p3 are introduced, with p3 being less sensitive to the ego passing by stationary vehicles.

A in-depth evaluation can be found in the Appendix B.2.
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5 Scenario Exploration and Analysis
Experiments

5.1 Scenario Exploration Setup
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Figure 5.1: Class diagram of the simulation tool setup.

Figure 5.1 illustrates the class diagram of the simulation framework and portrays the underlying
class relationships. The implementation of the complete tool setup is programmed in Python 3.9.
It consists of three main components: the simulator (Section 5.1.1), the optimizer (Section 4.4),
and the metrics module (Section 5.1.2). During startup, the ScenarioExplorer creates three
objects: the simulator, metric, and optimizer objects. There is a corresponding interface for each
object:

e Simulator: The simulator provides an interface for using various simulation tools for the
exploration experiments. This includes different simulation tools such as Carla or IPG

85



5 Scenario Exploration and Analysis Experiments

CarMaker, as explained in Section 5.1.1. The driving functions used for the scenario
exploration experiments are part of the simulation environment.

e Optimizer: The optimizer interface enables the use of various optimization algorithms
to explore the logical scenario space. This work mainly uses Bayes Optimization with
Gaussian Processes (see Section 3.2.2), but other methods are possible, e.g., evolutionary
algorithms. Section 4.4 explains the optimization process in-depth in Figure 4.8.

e Metric: The metric interface allows the integration of different criticality metrics (see
Section 5.1.2) that are used for the optimization. The goal is to find the most critical
concrete scenarios within the logical scenario.

After initialization, the simulator and metric objects are passed to the optimizer. The boxes Car-
laEnvironment and CarMakerEnvironment represent the entire Carla or CarMaker simulator
software without providing further details, since both are treated as black boxes and the interface
that is part of this software only communicates with them. The BehaviorAgent and HADFunc-
tion represent the driving functions of each tool (Section 5.1.1). Seven different metrics were
used for all experiments (Section 5.1.2). Each component serves as an interface to replace parts
without losing interaction possibilities. They interact with each other through the ScenarioEx-
plorer. In general, the ScenarioExplorer starts a simulation, the optimizer selects the next best
concrete scenario, and the metric determines the criticality or fitness of a concrete scenario.

The EvolutionaryOptimizer was implemented in a supervised Master’s thesis [166] and a resulting
conference paper Schiitt et al. [11]. The thesis uses EA to derive new concrete scenarios from two
logical scenarios. Unlike the experiments in the current thesis, the master thesis uses the Carla
scenario description based on behavior trees. A parent generation of concrete scenarios is used
to generate a child generation. Each individual in a generation is simulated and evaluated for its
fitness. The fitness is defined by the criticality of a scenario, the higher the criticality, the fitter
an individual is. The metrics used were WTTC, distance, and traffic density potential. In EAs,
scenario variations are derived using two methods based on genetic evolution. The first method of
scenario modification is mutation and the second is cross-over. In mutation, scenario parameters
are changed, e.g. the speed of a vehicle. The second step is cross-over. Here, subtrees of behavior
trees are swapped with each other, thus changing the behavior (sub)sequences of actors. The
creation of a new child generation is repeated until termination criteria are met, e.g. all scenarios
are below a defined criticality threshold. In the thesis, experiments with different generation sizes
are conducted for both example scenarios and the results are evaluated in terms of the number of
generations needed to complete the search.
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5.1.1 Simulation Tool Setup
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Figure 5.2: Modular structure of the IPG CarMaker simulation environment.

The simulation tool is included in the experiments via the Simulator interface shown in Figure 5.1.
The first simulation setup, IPG CarMaker 8.0.2 [78] with the extension from the SET Level
project', served as a foundation for the exploration and is shown in Figure 5.2. CarMaker
operates as an open integration and testing platform. It orchestrates a centralized control unit for
running a closed-loop simulation. The system encompassing system includes both proprietary and
external models tailored to specific scenarios and constraints. The proprietary models constitute
the comprehensive simulation environment, encompassing road infrastructure, environmental
factors, and traffic models. The road, environment, and traffic simulation utilized proprietary
models. In contrast, six external models were integrated as Functional Mock-up Units (FMUs)
via an extended version of the Open Simulation Interface (OSI) [22]. These external models
encompassed three sensor models (camera, lidar [95], and radar), an autonomous driving function,
a motion control model, and a vehicle dynamics model, all of which were developed in the SET
Level project. As previously mentioned, the Highly Automated Driving (HAD) functions are
included into the simulation environment and further explained later in this section.

1 https://setlevel.de/
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Figure 5.3: Modular structure of the Carla simulation environment.

The CarMaker setup described earlier was customized for the SET Level project’s specific scenario
and cannot be used for other scenarios without modifications to the proprietary tool chain.
Therefore, to conduct additional experiments, another simulation tool was required. The second
set of experiments used the Carla simulator [49] version 0.9.13 with the scenario runner. The
scenario runner was modified to allow the ego vehicle to start simultaneously with a specific
scenario. Only Carla’s internal vehicle dynamics and motion control models and communication
were used for the experiments, and instead of sensor models, object lists were utilized which
makes the simulation environment setup simpler than the CarMaker setup and is depicted in
Figure 5.3.

Another notable difference pertains to the physics simulation.

CarMaker does not use a physics engine, which means that objects can pass through each other
without collision simulation. On the other hand, Carla is implemented in the game engine Unreal
4 and uses its physics engine to simulate crashes. As a result, in scenarios simulated in Carla,
all simulations stop after a crash is recorded. In contrast, in CarMaker, actors successfully reach
their designated destination points after each simulation run, and collisions are identified solely
by criticality metrics.

All scenarios used in the experiments were detailed either in CarMaker’s format or, in the case of
Carla, in the OpenSCENARIO format [21]. A new scenario file is generated for each simulation
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loop in both cases before the simulator executes this concrete scenario. Section 5.1.1 shows a
comparison of both used tools with and ideal (non existing) environment.

Table 5.1: Comparison of both environments with an ideal environment in this section mentioned categories. (y)es for
environment provides given functionality or (n)o if not.

(SI;rlll\lgIaker Carla Setup Ideal Simulation
OSI interface
for sensor models y n y
OSI interface
for driving y n y
function
OSI interface
for vehicle y n y
dynamics
OSI interface
for motion y n y
control
Behavior
simulation n y y
Physics Engine n y y
OpenSCENARIO n y y
OpenDRIVE n y y

Throughout the work, Bayesian optimization and Gaussian processes were used. It is acknowl-
edged that other optimization algorithms may also be suitable. However, unlike other optimization
algorithms, Bayesian optimization with Gaussian processes uses models that can provide data for
the probability analysis step described in Section 4.7. It is important to note that the primary
focus of this work was not solely on the optimization algorithm and process itself. The optimiza-
tion experiments were performed using the open-source project Common Bayesian Optimization
Library (COMBO) [145]. COMBO utilizes Bayesian optimization with automatic hyperparam-
eter tuning, Thompson sampling to select the next best candidate, and random feature maps to
enhance performance. The decision to use COMBO was mainly influenced by its automatic
hyperparameter tuning capabilities.

Driving Functions The simulator setup includes the driving functions since the architecture
for each simulation environment may vary, as illustrated Section 5.1.1.
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Figure 5.4: Modular structure of the driving function used with CarMaker [7].

The computation of the ego vehicle’s trajectory in CarMaker experiments is done by a lightweight
and highly automated driving function, as shown in Figure 5.4. It was adjusted and integrated
via OSI [22] during the SET Level project. This function revolves around a modified, curvature-
aware version of the Intelligent Driver Model (IDM), which was previously employed in [162]
and initially introduced in [143]. This function is implemented using the Robot Operating
System (ROS) framework [121] to foster a modular and flexible system architecture.

In experiments run with Carla, the Carla behavior agent’ was used. The agent available in three
modes: cautious, normal, and aggressive. It can navigate to a destination point by following
waypoints defined by the localization class within the abstract agent class. The agents’ different
behaviors result (among others) from reaction time for braking or maximum speed.

It has to be noticed that the driving function connected via OSI to CarMaker is not deterministic.
Therefore, simulations conducted with identical parameter sets may result in slight discrepancies,
such as 0.01 m, in the resulting criticality metric (cf. Appendix B.1).

5.1.2 Metrics

All the following metrics were implemented by using the metric interface mentioned in Figure 5.1
and used for the experiments. Criticality is measured using specific metrics to assess the potential
for critical situations in a given scenario. The objective of the scenario exploration is to identify
critical scenarios involving the ego vehicle and other traffic participants. Therefore, the optimiza-
tion focus is on the criticality between the ego vehicle and other traffic participants. Most metrics
can only evaluate the criticality between two traffic participants, namely the ego and a second

2 https://carla.readthedocs.io/en/0.9.13/adv_agents/
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actor within a scenario. Several criticality metrics® were utilized as the objective function to be
optimized by the Bayesian optimization:

* Distance: Euclidean distance between the center of mass of two vehicles or, alternatively,
the distance between the two closest points of the bounding boxes of both vehicles.

* Trajectory Distance: Distance between two traffic participants along their trajectories and
road network.

¢ Worst-time-to-collision (WTTC): Metric based on time-to-collision (TTC) [73], but with-
out the TTC’s limitation to car-following scenarios [149]. WTTC tends to classify less
critical situations as critical in order not to overlook true critical situations.

* Gap time (GT): The predicted distance in time between the two traffic participants crossing
an intersection point [16].

e Post-encroachment time (PET): The actual distance in time between the two traffic par-
ticipants crossing an intersection point [16]. Unlike GT, PET can only be calculated after
both vehicles crossed the intersection.

e Traffic Density Potential (TDP): The overall assessment of the traffic within the scene
where the ego vehicle is situated. This metric is further explained in Section 4.8.

* Distance of ground truth and sensor data: The measured distance between adversary
actor positions and their ground truth position recorded by the simulation environment,
calculated with DTW [28].

All metrics listed above, except for TDP and the distance between ground truth and sensor data,
indicate criticality by finding the smallest value optimization within logical scenarios. In contrast,
maximizing TDP is necessary to achieve the same goal. It is important to interpret each metric
in its individual result space, and single values should not be compared with values from other
metrics.

5.2 Experimental Scenario Setups

This section introduces two intersection scenarios used in the experiments conducted in this work.
The first scenario, 1A, was derived from the SET Level project and involves four traffic participants.

3 Parts of this chapter are published in [8] and the implementation of all used criticality metrics can be found here:

https://github.com/fzi-forschungszentrum-informatik/scene-fingerprint
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Scenario 1B replicates 1A but with different starting and ending positions, and an ego vehicle
turning left instead of right. Scenario 2 was specifically created to explore alternative methods
of parameterizing logical scenarios, with a focus on the parameters that define synchronization
points. Scenarios 1A and 1B are designed for CarMaker, while scenario 2 is tailored for Carla.

The scenario setups have distinct characteristics, particularly in their parameters and physics sim-
ulation. Scenarios 1A and 1B demonstrate a transparent and human-understandable relationship
between the parameters and the behaviors and actions of the actors involved. This transparency
is due to the incorporation of attributes such as speed and position, which are comprehensible by
humans. It is important to note that in the CarMaker experiments, all actors, with the exception
of the ego vehicle, follow predetermined trajectories and do not react to the presence of other
actors, nor do they support collision detection. As a result, no physics simulation is done.

In contrast, the second scenario used in Carla experiments introduces the possibility of hidden
parameters that are affected by the ego vehicle’s behavior and interactions among actors. Com-
plexity arises due to synchronization points and diverse actor behaviors. Unlike scenarios 1A and
1B, in these experiments, each actor can respond to the behavior of others, potentially triggering
unforeseen chains of reactions among actors.

5.2.1 Scenario 1A and 1B (CarMaker)

The intersection scenario for CarMaker comes in two different versions: Version 1A and 1B.
Scenario 1A features a right-turning ego vehicle, while Version 1B features a left-turning ego
vehicle. Both scenarios have the same actors. In scenario 1A, the ego vehicle makes a right turn,
crossing the trajectories of the pedestrian and the truck, but not crossing the trajectory of the
other car. However, in both scenarios, all actors have different start and target positions. These
two scenarios prompt different behaviors from the ego vehicle, as it responds dynamically to the
presence of other actors obstructing its intended route. Unlike the other actors, who strictly follow
predefined trajectories, the ego vehicle is the only participant in both scenarios with autonomous
decision-making capabilities guided by its behavioral model. Figure 5.5 shows a traffic sequence
chart of scenario 1A with all four alternative orders where participants may pass the intersection.

* First Alternative: The simulations reveal a first type of collision, which may be unrealistic
in some cases. This occurs when the pedestrian model is unaware of the ego vehicle and
only follows the trajectory of the ego vehicle. In this scenario, even though the ego vehicle
is waiting for the pedestrian, the pedestrian either crashes into the ego vehicle (unrealistic)
or passes very close in front of it (realistic). Most criticality metrics identify this situation
as highly critical.
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e Second Alternative: The second collision involves the ego vehicle colliding with the
pedestrian as the pedestrian crosses the street. The pedestrian begins to walk while the
object detection system of the ego vehicle fails to identify the pedestrian as a potential
hazard. By the time the system recognizes the danger, it is too late and the ego vehicle is
unable to brake in time.

e Third Alternative: The ego passes the intersection before the pedestrian.

e Fourth Alternative: The ego passes the intersection after the pedestrian.

Scenario 1B was designed with changes in the actors’ start and end positions and maneuvers, as
is shown in Figure 5.6. The ego vehicle executes a left turn, resulting in an intersection between
the ego trajectory and the trajectories of all three opposing traffic participants. This scenario does
not involve an imminent collision, but rather presents near-collision situations.

During simulation, three potential outcomes emerge:

* First Alternative: The intersection ahead of the ego vehicle was obstructed by the other
car C, which prevented the ego driver from seeing the pedestrian. This created a highly
critical situation that required abrupt braking to avoid a collision.

* Second Alternative: The ego vehicle passes before the other car. However, the pedestrian
is faster in crossing the street, and the ego can brake without problems since no other actor
interrupts the view.

» Third Alternative: The ego vehicle passes before the pedestrian begins crossing the street.

In all scenarios, the ego vehicle may encounter situations where it must wait for the truck to
pass through the intersection, which also hides the pedestrian from the view of the ego vehicle.
However, the obstruction is not significant enough to result in a collision.

The following ranges were chosen as parameter ranges for scenarios 1A and 1B, for which the
optimal critical parameter sets have to be found during the scenario exploration:

* Pedestrian delay: The pedestrian waits for a given time ¢p,,,,, in s before crossing the
road, where tp,,,, < {0.0,...,7.0}.

* Ego position: The ego vehicle starts at a given s-coordinate sp
€ {27.99,...77.99}.

in m along the road,

start

where sg

start

e Car speed: The maximum speed v that the other car is allowed to achieve in m/s,

€ {12.5,...,30.0}.

max

where v¢

max
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No parameters varying the truck’s behavior or trajectory were used. In a grid for this scenario
parameter space with 50 samples for the pedestrian delay, 250 samples for the ego position, and
50 samples for car speed, the grid holds 625.000 scenarios. If each scenario takes approximately
30 s for simulation execution in CarMaker and calculation of criticality metrics, the execution of
all 625.000 scenarios takes more than 217 days of non-stop simulation on a single machine (Intel
Core 15 8350U with 1.7GHz, 8GB DDR4). Furthermore, it is important to note that simulation
time increases exponentially as scenarios are given additional parameters and parameter ranges.
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Figure 5.5: Scenario 1 A: Traffic Sequence Charts with all four alternative outcomes: (1) pedestrian runs into ego vehicle,
(2) ego vehicle drives into pedestrian, (3) pedestrian passes after all ego vehicle (and all others) crossed the
intersection, (4) pedestrian crosses the intersection before ego vehicle. C: car, E: ego vehicle, P: pedestrian,

T: truck, vEg4o = 0.0: ego velocity is zero.
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Figure 5.6: Scenario 1 B: Traffic Sequence Charts with all three alternative outcomes: (1) pedestrian and car C cross
the intersection before ego vehicle, (2) pedestrian crosses the intersection before ego vehicle and C is behind

€go, (3) ego passes before pedestrian and C. C: car, E: ego vehicle, P: pedestrian, T: truck, vg4, = 0.0: ego

velocity is zero.
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5.2.2 Scenario 2 (Carla)
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Figure 5.7: Second experimental scenario: ego turns right with sync points with four different outcomes: (1) ego crashes
into car, (2) ego follows behind car, (3) car crashes into ego, (4) car follows behind ego. C: car, E: ego vehicle.

The second scenario involves a T-intersection where the ego vehicle (E) turns right, while a second
car (C) proceeds straight across the intersection. Both vehicles have synchronization parameters,
and the second car aims to reach its synchronization point at the same time as the ego vehicle.

The outcomes of scenario 2 are depicted in the traffic sequence chart shown in Figure 5.7. It can
manifest in four different alternatives:

* First Alternative: Ego vehicle collides with C, which already has passed or is in the middle
of the intersection.

e Second Alternative: Ego turns right after C already passed the intersection.

e Third Alternative: Ego turns right and C collides with E by driving into the ego vehicle’s
rear. Most of these scenario outcomes happen in a constellation similar to car-following
scenarios and, therefore, are not suitable for all types of criticality metrics.

97



5 Scenario Exploration and Analysis Experiments

L]

Fourth Alternative: Ego turns right before C crosses the intersection.

* Target world position: The synchronization point for the other car. The x-coordinate
range in m is defined as s, . € {27.0,...68.0}.

¢ Car delay: The other car has to wait for a given time ¢¢,,,,, in s before accelerating, where
tCheray € 10.05,...,2.0}.

* Init distance: The ego vehicle has to travel for a certain distance dc¢;,,, € {0.05,...,8.0}

init

in m before C’s routing is initialized.

The two behavior models utilized for E and C introduce hidden parameters that are not part of the
scenario parameterization but influence the scenario outcome. For example, the ego vehicle brakes
for C because C is too close for the ego vehicle to continue driving. However, this proximity also
causes C to brake, resulting in both vehicles slowly approaching the intersection. These outcomes
depend on scenario and behavior parameters that are not included in the parameterization and can
influence each other. For instance, such parameters may include the minimum distance allowed
between two actors or the maximum speed at which an actor is permitted to drive. In addition,
some behaviors may only occur in specific scenarios when certain parameters are present, such as
reactions to other actors. These dependencies and influences are considered hidden parameters
and are not present in scenarios 1A and 1B, where other actors do not affect trajectory followers.
At this intersection, according to traffic rules, the ego vehicle coming from the right has the right
of way over C. However, it is important to note that both driver models are not aware of all traffic
rules, including the rule to give way. All simulations for scenario 2 were conducted using the
Carla Simulator. The simulation of the grid search with 3374 simulated scenarios took 39.87
hours on a machine with an Intel Core 19-9900k with 3.6GHz, 32GB DDR4, and an 8GB RTX
2080S graphic card.

5.3 Experiments

Three sets of experiments were conducted. The first set of experiments only used scenarios 1A
and 1B, and scenario exploration was conducted under different circumstances. In the second set,
cluster analysis was performed for scenarios 1A and 2. In the third set, probability and uncertainty
were computed for all three scenarios:

* Experiment 1

— l-dimensional parameter space exploration of scenario 1A and 1B
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— 3-dimensional parameter space exploration of scenario 1A and 1B, which can be
reduced to a 2-dimensional space

— Forcing influence of negligible parameter
* Experiment 2

— Clustering and archetype analysis of scenario 1A
— Exploration and clustering of scenario 2

— Comparison of exploration and clustering results to grid search
» Experiment 3

— Probabilistic evaluation of scenario 2

— Probabilistic evaluation of scenarios 1A and 1B

5.3.1 Experiment 1

Experiment 1 aims to explore and optimize the criticality of scenarios 1A and 1B from Sec-
tion 5.2.1. The focus is on the situation between the ego vehicle and the pedestrian, who is
the most vulnerable road user in these contexts. The simulations were performed using the
tool described in Section 5.1.1, which utilizes CarMaker and the driving function integrated via
OSI. The optimization was done using Bayesian optimization and Gaussian processes in the
optimization process (Section 4.4). All metrics were taken on a nanoscopic scenario quality level
(every simulation step) and reduced to a maximum or minimum value depending on the metric
(microscopic scenario quality) (Section 4.3.2). However, the optimization was only done for
Euclidean distance, trajectory distance, PET, WTTC, and gap time (Section 5.1.2).

All parameters were varied and optimized according to the parameter ranges (Section 5.2.1).
The exploration of scenarios 1A and 1B involved approximately 100 executions in total for the
1-dimensional experiment. For the 3-dimensional experiment, there were 373 executions of
concrete scenarios within the logical scenario in total for 1A and 449 for 1B. These numbers
represent the sum of all concrete scenario executions of all optimization runs. One optimization
run was started for each metric (Euclidean distance, trajectory distance, PET, WTTC, gap time).
The termination criterion was set to 105 scenario executions or when the internal model of the
scenario space could no longer increase its precision with further runs. All explorations took 105
steps, except for trajectory distance, which stopped early. If the same parameter sets were selected
for different metrics, a second simulation run was not conducted.
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Figure 5.8: Bayes optimization results of both scenarios on a one-dimensional parameter space. The metrics used for
optimization are Euclidean and trajectory distance, gap time (GT), post-encroachment-time (PET), and worst-
time-to-collision (WTTC). Each dot corresponds to the worst measured criticality of a concrete scenario.

Scenario 1: 1-dimensional Exploration and Optimization

In the initial sub-experiments, exploration occurred in a one-dimensional parameter space, with
the sole variable optimized across all simulations being pedestrian delay ¢p,,,, . The other
two parameters were set to constant values: the ego vehicle s-coordinate of the start position
was set to sg = 67.0m in scenario 1B. Additionally,
en = 15.0m/s was applied in both scenarios. Figure 5.8 (a) and (b)
present the results for scenarios 1A and 1B, respectively Each dot represents the most severe
criticality measured for each metric during the simulation of a concrete scenario with the given

= 60.0m in scenario 1A and sg

start

a constant value of v

start

pedestrian delay. All metrics are shown on a scale in seconds or meters. It is important to note that
critical situations between the ego vehicle and other traffic participants, besides pedestrians, may
arise in certain scenarios. However, the analysis has omitted these specific scenarios due to the
metric selection. One-on-one metrics are typically used to estimate the criticality of scenarios.
Furthermore, it is not possible to directly compare the results of different metrics. For example,
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in the 3-dimensional experiments, a scenario marked with a yellow dot in Figure 5.9 (b) may
not have the same level of criticality as a yellow scenario data point in Figure 5.9 (c). Critical
scenarios were identified in scenario 1A with pedestrian delays near 0.0s. These can be seen in
the bottom right corner of Figure 5.8 (a), where all criticality values are around 0.0. The criticality
in Figure 5.8 (a) reaches its maximum from a delay of 0.0s to 1.5s. The threshold is indicated
by a dashed line in Figure 5.8 (a). In Figure 5.8 (b) there is no such observable threshold and,
therefore, not line indicating it. However, beyond a delay of approximately 1.5s, no changes in
criticality were observed for all metrics except PET. The PET values increased beyond this point,
indicating that the scenarios were no longer critical. Notably, Allen, Brian, L. et al. [16] set the
threshold for critical scenarios at PET < 1.5s. In scenario 1B, the criticality metrics remained
constant despite changes in pedestrian delays. Therefore, the outcome of scenario 1B was not
affected by pedestrian delays, considering the chosen values for the other two parameters.

Scenario 1: 3-dimensional Exploration and Optimization

In the second sub-experiment, a parameter space exploration was conducted in a 3-dimensional
scenario. The experiments were carried out in two runs, one with scenario 1A and the other with
scenario 1B The results for the experiments are shown in Figure 5.9, where (a) shows results
for the Euclidean distance, (b) trajectory distance, (c) post-encroachment time, (d) worst-time-to-
collision, (e) gap time, (f) distance between ground truth and sensor data measured with dynamic
time warping (DTW), and (g) inverse universal TDP. The color scale on the right is inverted for
(f) and (g) since high values indicate high criticality for both metrics. It is important to note that
all values presented indicate criticality, with lower values indicating higher criticality.

In scenarios 1A and 1B, the car speed has little to no visible influence on the simulation results
regarding the criticality of the pedestrian’s situation. Therefore, a three-dimensional plot can be
reduced to the two dimensions of pedestrian delay and ego s-coordinate. However, this does not
imply that there is no influence at all, and outliers or deviations in the plot that are not congruent
with other values in their neighborhood might be influenced by the car’s speed. One possible
explanation for the lack of influence is that in scenario 1A, the trajectories of the ego vehicle and
the car do not intersect, and the ego vehicle does not need to react to the car. Additionally, the
other car starts close to the intersection in both scenarios, which may not have given it enough
time to accelerate until it reaches the intersection and consistently passes the ego vehicle at the
same speed.

The recordings of all experiments allow a replay that humans can view. These replays were used
for further analysis of what happened in different areas. In general, scenario 1A has four different
outcomes regarding the criticality of the pedestrian’s situation, which also can be seen in the
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traffic sequence charts in Figure 5.5: the ego vehicle reaches the intersection where it stops for the
pedestrian crossing the street. This result can be observed in scenarios at the bottom left corner
in Figure 5.9 (a)-(f), where the criticality decreases for most metrics.

In the second result, the ego vehicle passes the intersection before the pedestrian or the truck.
These scenarios are primarily located at the top and right halves of Figure 5.9 (a)-(f). The other
scenarios involve the ego vehicle arriving at the intersection just after the truck, with the pedestrian
out of sight. In these situations, the ego vehicle stops too late, resulting in contact with or hitting
the pedestrian. These critical scenarios are located in the diagonal area near the bottom left corner
of Figure 5.9 (a)-(f). This diagonal reaches from ¢p,,,, between 3 and 4 and sg =27.99 to
between 52 and 62.

start

start

LPyetay = 0.0 and sg

The criticality in Figure 5.9 (g) differs from the rest since it describes the TDP as explained in
Section 4.8. This metric considers not only pedestrians but also other traffic participants, such
as trucks and cars. Therefore, critical situations between the ego vehicle and the truck are also
included, leading to different criticality patterns in the parameter space. The truck has a more
significant influence on criticality than the pedestrian: Previously found critical situations between
pedestrians and ego vehicles often occur when the ego vehicle is stationary or nearly stationary
while the pedestrian passes by. Using distance as a metric still identifies highly critical situations,
even when the distance is almost 0 m. The truck is constantly moving at 40.0 m/s, which leads
to a faster rise of the TDP than the pedestrian’s behavior. The middle part of Figure 5.9 (g)
shows critical scenarios where the ego vehicle starts with the distance of 60.0 m or more to the
intersection. The starting distance refers to the point at which the ego must react to the truck’s
entry into the intersection or when all actors are crossing the intersection in close proximity. In
cases where the ego vehicle starts closer to the intersection with a smaller s-coordinate, it crosses
the intersection before the truck and other participants.
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Figure 5.9: Bayes optimization results of scenario 1A. Each dot corresponds to one concrete scenario. The values of the
metrics are the most critical value measured with the regarding metric. The metrics used for optimization are
Euclidean (a) and trajectory (b) distance, post-encroachment time (PET) (c¢), worst-time-to-collision (WTTC)
(d), gap time (e), distance (DTW) between ground truth and sensor data (f), and inverse universal TDP (g).
Yellow indicating critical and dark blue or purple indicating non-critical scenarios. The color scale is inverse
for (f) and (g) since high values here indicate high criticality. For the other values low values indicate high
criticality.
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Figure 5.10: Screenshot from IPG CarMaker 8.0.2 showing a less critical scenario (left) and critical scenario where the
ego vehicle almost hits the pedestrian (right).

The replays of scenario 1B demonstrate that the ego vehicle responds to the pedestrian, the
truck, and the other car. The results of scenario 1B are presented in the traffic sequence chart
in Figure 5.6. The different outcomes are localized in the parameter space as follows: The less
critical area in the bottom left corner, which can be observed in Figure 5.11 (b) and (d), results
from a parameter set where the ego vehicle intersects the pedestrian’s path after they cross the
road.

To enhance comprehension of the simulation, Figure 5.10 displays two screenshots of the scenario.
Both show the pedestrian passing in front of the ego vehicle. However, in image (1), the ego
vehicle can brake comfortably for the pedestrian, whereas in image (2), it has to brake strongly to
avoid a crash. These situations are variations of the first alternative in Scenario 1B, as shown in
Figure 5.6.

When looking at the plots in Figure 5.11 and the corresponding replays, several observations can
be made: In Figure 5.11, the ego vehicle passes the intersection before the pedestrian on the right
side of each plot where the s-coordinate has its highest values. This is followed by a critical line
around an s-coordinate of 70 m with near-collisions. These near-collision scenarios, which are
detected in plots (a), (b), (d), and (e) in Figure 5.11, result from a change in the order in which
all actors cross the intersection. When the s-coordinate is small enough (around 65m - 70 m),
Car C is not following the ego vehicle anymore but driving right in front of it. Thus, the ego
vehicle is unable to detect the pedestrian and can only apply short-term braking. Car C crosses
the intersection before the ego vehicle with sufficient distance in the middle and left part of the
ego s-coordinate, while the ego vehicle waits for the pedestrian to pass.

The slightly more critical cluster in (a) and (c), at delay 2s and s-coordinate around 30 m results
from interference with the truck, which hinders the ego vehicle from turning left and arrives at
the same time as the pedestrian for whom the ego has to wait. Interestingly, (f) shows that in
this cluster, the DTW is smaller than in the surrounding concrete scenarios, which means that
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the deviation between the sensor data and the ground truth is smaller, too. This deviation can be
explained by the pedestrian not walking while the truck obstructs the ego’s view.

Figure 5.11 (g) shows this scenario’s TDP. In contrast to scenario 1A, scenario 1B shares more
similarities with the patterns in (a)-(f), although some parts are inverse to other criticalities. This
divergence arises from the fact that in 1B, the ego must react to all three traffic participants,
resulting in more interconnection between their behaviors. Furthermore, the TDP reacts to dense
traffic, particularly with varying velocities, and tends to increase when actors are in close proximity
to each other. In general, TDP indicates critical situations on the left in the plot of Figure 5.11
(g) when the ego has to react to the truck and on the right when the other car is driving right
behind it. The pedestrian’s influence in this scenario is low since it moves slower and does
not act unexpectedly. Finally, it must be mentioned that pedestrians have a low impact on TDP
and that TDP was developed with data that does not contain pedestrians (see Section 4.8 and
Appendix B.2). One way to increase the impact on pedestrians is to also increase their weight
in the calculation. The color scale on the right of Figure 5.11 (f) and Figure 5.11 (g) is inverted
compared to the others since, for both metrics, high values indicate high criticality. For all others,
the lower the value, the higher the criticality.

105



5 Scenario Exploration and Analysis Experiments

Figure 5.11:
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Bayesian optimization results for scenario 1B. ach dot represents a concrete scenario, and the corresponding
metric values are shown.The metrics used for optimization include Euclidean (a) and trajectory (b) distance,
post-encroachment time (PET) (c), worst-time-to-collision (WTTC) (d), gap time (e), distance (DTW)
between ground truth and sensor data (f), and TDP (g). The color scale used in this context employs yellow
to indicate critical scenarios and dark blue or purple to indicate non-critical scenarios. The color scale is
inverted for (f) and (g) as high values in these cases indicate high criticality.
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Scenario 1B: Forcing Influence of Negligible Parameter

Scenario 1B - new Parameter

Car y-Coordinate [m]

(9}
Post-Encroachment-Time [s]

Figure 5.12: Exemplary Bayesian optimization results of scenario 1B on a three-dimensional parameter space for the
metric post-encroachment-time with a replacement.

In the third setup, the pedestrian delay tp,,,,, was replaced by a new variable yc,,,,, to see if the
car speed has more influence on the scenario outcome:

¢ Car position: The y-coordinate yc,,, in m fulfils yco_,,,, € {15.0,...,50.0}. 50 samples
with a step size of 0.7 m were taken.

All three variables were varied and optimized, and the five previously mentioned metrics were
used. The results of scenario 1A indicate that neither the car’s speed nor its y position have an
impact on the outcome. The outcome is not surprising, as there is no intersection between the
trajectory of the ego vehicle and the car. The results indicate that the outcome is solely dependent
on the s-coordinate. As Figure 5.12 shows, the ego s-coordinate remains the most influential
factor. However, in certain areas of the parameter space, car speed and y-coordinate also impact

scenario criticality.
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Conclusion of Experiment 1

The comparison of the results of both scenarios leads to the following conclusions:

(1) Scenario 1A exhibits a higher variance in criticality for distance, WTTC, and DTW than
scenario 1B. Trajectory distance, PET, and gap time are equally scaled in both scenarios.
This is because 1A contains more critical situations, including collisions. However, the
TDP reaches higher criticality in 1B due to the presence of more intersection trajectories
and all actors coming closer together than in 1A.

(2) The speed of Car C has no significant impact on scenario 1A and minimal impact on 1B.
In scenario 1A, Car C does not even intersect the ego vehicle’s trajectory.

(3) Some metrics are more sensitive, e.g., trajectory distance and gap time. Both find more
highly critical concrete scenarios than the other metrics.

(4) The metrics have varying gradients, which is evident in scenario 1A where PET has a less
steep gradient compared to trajectory distance or gap time.

(5) All used one-on-one metrics lead to similar patterns in criticality, e.g., bottom left corner
in scenario 1A or scenarios with a small ego vehicle s-coordinate in scenario 1B.

(6) An universal metric like TDP can show different patterns resulting from other critical
situations being overlooked by other metrics since no restrictions regarding the considered
traffic participants have to be made. However, pedestrians in particular have less influence
than vehicles due to their lower maximum speed.

5.3.2 Experiment 2

The first part of experiment 2 focuses on the clustering and archetype analysis of scenario 1A.
These techniques are based on the exploration of scenario 1A (Section 5.3.1). The second part
consists of a clustering of scenario 2 (Section 5.2.2). An exploration of scenario 2 was done
equally to the explorations of experiment 1 as a pre-step for the clustering. The simulations of the
exploration were executed using Carla. The optimization was done using Bayesian optimization
and Gaussian processes in the optimization process (Section 4.4). Four of the metrics mentioned
in Section 5.1.2 were taken on a nanoscopic scenario quality level (every simulation step) and
reduced to a maximum or minimum value depending on the metric (microscopic scenario quality)
(Section 4.3.2). These metrics are Euclidean distance, trajectory distance, WTTC, and TDP. The
other metrics were omitted since some collisions in this scenario take place in a car-following
scenario where these three metrics were not usable due to the vehicle constellation.
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Scenario 1A: Clustering and Archetype Analysis
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Figure 5.13: (a)-(c) Projections into different 3D kernel spaces. (d)-(f) Clustering from kernel spaces visualized in
scenario parameter spaces.

The available data resulting from the exploration step can be used for clustering. The following
steps were done with the results of scenario 1A. First, the parameter space data must be projected
into the kernel space (Section 4.5.2). The projection is necessary for two reasons: (1) the
concrete scenarios were selected by the optimization algorithm and, thus, selected with a high
density around critical areas but no relation to what was happening, and (2) the distribution of
scenarios in the parameter space is not related to any clusters regarding the sequence of situations
as depicted in the traffic sequence charts. The distance matrix for describing the similarity
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Principal Hull Analysis
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Figure 5.14: Principal Hull Analysis (PHA) to identify archetypal scenarios.
between single concrete scenarios has to be computed (see Section 4.5.1.3). There are two
different possible approaches: behavior-based distance (Section 4.5.1.2) and criticality-based
distance (Section 4.5.1.1). DBSCAN was used to cluster within the kernel space as explained in
Section 4.5.3. Finally, an archetype analysis was done as depicted in Section 4.6.

Figure 5.13 (a)-(c) display the projected concrete scenarios in the kernel space, respectively. After
the projection, the clustering was done in the new space. Each image indicates the clusters in
the kernel’s space by different colors. Additionally, Figure 5.13 (d)-(f) illustrate the same cluster
assignments in the original parameter space reduced to two dimensions for better visualization of
the scenarios, given the negligible influence of p1_speed.

As mentioned before for scenario 1A, the critical diagonal reaches from ¢p,,,,, between 3 and 4
vtare = 27.99t0 P, ,,, =0.0and sg
scenarios depict situations where the car either collides with or closely approaches the pedestrian.

and sg between 52 and 62. Near this critical diagonal,

start
Finally, above the diagonal are scenarios where the pedestrian crosses the intersection after the
ego vehicle. Among these three categories, scenarios lying further away from the diagonal are
generally considered less significant as they involve minimal interaction between the ego vehicle
and pedestrian, thereby suggesting a potential for reducing the number of concrete scenarios.

Figure 5.13 (a) depicts the results of the scenarios clustered regarding the ego vehicle’s trajectory
(behavior-based) in the kernel space after performing a kernel PCA (y = 100.0). At the same
time, (d) shows the cluster assignments in the original space. Interestingly, the cluster borders
converge at the area with the highest criticality. Pairs (b) and (e) represent the kernel space
where the trajectory distance (criticality-based) was utilized as a distance metric for computing
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the kernel matrix. In contrast, (c) and (f) represent the kernel space using WTTC (criticality-
based) as the distance metric. Clustering with behavior-based distance identifies two distinct
clusters: high-criticality (yellow) scenarios and low-criticality (purple) clusters. On the other
hand, criticality-based distance like WTTC can differentiate between high criticality (green),
medium criticality (blue), and low criticality (yellow). A comparison of Figure 5.13 (e) and
(f) and Figure 5.9 (b) and (d) demonstrates that the clustering closely aligns with the measured
criticality gradient throughout the simulation. Figure 5.14 shows an additional principal hull
analysis (red and blue vertices and edges) that encompasses both scenario clusters in the scenario
parameter space. The resulting archetypes of the hull analysis are a suitable foundation for a
reduced scenario set, which can be supplemented with prototypical scenarios from the center of
each cluster. For the implementation of the experiments, the python library py_pcha [23] was
used. This reduced set is represented by all archetype scenarios (corner cases) combined with
the prototypes (average) of each cluster. For scenario 1, where eight scenarios for each cluster is
one of the smallest working principal hulls in this 3-dimensional parameter space, this leads to
18 scenarios as a reduced set representing logical scenario 1.

Scenario 2: Exploration and Clustering

Scenario 2 was explored through 315 concrete scenario executions, with the termination criterion
being set at 105 scenario executions or when the internal model of the scenario space could no
longer increase its precision with further runs. In this experiment, all three metrics stopped the
exploration after 105 executions. Both actors are equipped with bounding boxes and collision
detection for physics simulation, which may prevent them from reaching their final destination.
In simulations 1A and 1B, collision detection is not included, allowing the simulation to continue
after a collision. In contrast to scenarios 1A and 1B, all three parameters influenced the scenario
outcomes, as depicted in Figure 5.15. Scenario 2 demonstrated three distinct outcomes as shown
in Figure 5.7:

(1) Vehicle C crosses the intersection before the ego vehicle, corresponding to scenarios clas-
sified as less critical by the applied criticality metrics with parameters time and distance
close to zero.

(2) Collisions between the two vehicles.

(3) The ego vehicle passing before vehicle C, represented by scenarios in the top right region
of the parameter space with high time and distance values.

In Figure 5.15, all plots (a)-(f) of scenario 2 show a critical region marked as the cluster in the
middle. Unlike Figure 5.5 and Figure 5.6, Figure 5.15 does not show the criticality gradient and,
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Figure 5.15: (d)-(f) Concrete scenarios on the original scenario space, colored by their assigned clusters. (a)-(c) Projec-
tions into the 3D kernel spaces, depending on the chosen distance matrix, and colored by cluster assignment.

therefore, the color is not connected to the criticality value, e.g., yellow does not indicate high
criticality and stands for a clusters assignment. This region is critical as it includes scenarios
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where accidents are caused by both the ego vehicle and vehicle C. It is important to note that
critical scenarios near the point where vehicle C crosses involve the ego vehicle colliding with
vehicle C, which then leads to accidents caused by vehicle C. Unlike scenarios 1A and 1B, which
employ DTW to measure distances between ego trajectories, the clustering process distinguishes
accidents as a separate cluster due to the simulation terminating upon a crash. As a result, typical
clusters emerge from the clustering results:

(1) Non-crash situations represented by clusters 1 and 3 (3 only existing in Figure 5.15 (b)).
WTTC distinguishes between who is crossing the intersection first.

(2) Accidents at the intersection denoted by cluster 1.

(3) A few outliers marked as purple.

In Figure 5.15 (b), the accident-free scenarios are projected and divided into two separate clusters,
unlike (a) and (c).

The critical region, identified as blue cluster in the parameter space in (d) and yellow in (e) and
(f), encompasses scenarios where accidents occur. Specifically, scenarios in the vicinity of the
region where vehicle C crosses first involve the ego vehicle colliding with vehicle C, leading
to subsequent accidents caused by vehicle C. The clustering process utilizing DTW distances
between ego trajectories effectively distinguishes accidents as a separate cluster, differentiating
them from non-crash scenarios. This is in contrast to the clustering outcome observed in Scenario
1A. In summary, the clustering analysis produces two primary clusters: (1) non-crash situations
and (2) accidents at the intersection.

Further insights can be gained from the kernel space. In Figure 5.15, all critical scenarios are
closely situated together. Moreover, clusters 1 and 2 exhibit the most distinct boundaries in
the kernel space where TDP was employed. This observation is attributed to TDP exhibiting a
steep gradient in areas where critical and non-critical clusters intersect, thereby enabling clear
demarcation between the clusters.

A principal hull analysis was not conducted on the clusters of Scenario 2 due to the non-convex
nature of the identified critical clusters. These results allow future research to develop methods
and reduce the scenario set for non-convex cluster shapes.

Comparison of Exploration and Clustering Results to Grid Search

One advantage of the chosen Bayes optimization is that it provides information about the con-
fidence of the criticality at the areas around simulated data points, unlike other optimization
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Figure 5.16: Grid of scenario 2 colored regarding the criticality of different metrics: trajectory distance, WTTC, and
TDP.

algorithms such as genetic algorithms. However, even though this information is given, it is based
on assumptions made in the model design, e.g., choosing a Gaussian RBF kernel. Another possi-
ble approach is to use a grid for parameter combinations. Grid search is a systematic method used
to identify critical areas within the parameter space by simulating all parameter combinations
through brute force. Typically, a set step size is used for each parameter. This approach results in
exponentially growing calculation and simulation time when additional parameters are introduced
into the scenario space. Mori et al. [106] suggests that critical scenarios within a grid may be
overlooked. Additionally, in a scenario space defined by three parameter ranges, with 15 steps
per parameter, the simulation effort already includes 3375 scenarios (39.5h of simulation time),
more than ten times the optimization needed for scenario 2.
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Figure 5.16 displays all 3375 simulated scenarios color-coded based on their criticality, measured
using a different metric for each plot, as demonstrated in scenarios 1A and 1B in Figure 5.9 and
Figure 5.10. The number of simulations greatly impacts the evaluation of clustering Calculating
the distance matrix for one of the criticality metrics takes about 3 hours for approximately 300
concrete scenarios. However, the computation time grows exponentially, taking almost 16 days
for 3375 scenarios The lengthy calculation time makes clustering analysis unfeasible for grid
search with a narrow grid size, and expanding the grid size could potentially overlook critical
scenarios.

Conclusion of Experiment 2

The comparison of the results from scenario clustering and archetype analysis of 1A, and clustering
of 2, leads to the following conclusions:

(1) The absence of collision detection in 1A results in a behavior-based clustering that allows
the algorithm to divide the scenario space into two different orders: one in which the ego
vehicle crosses the intersection before the pedestrian, and another in which the pedestrian
crosses first. In scenario 2, where the simulation stops after a collision, the results show a
distinct cluster for collision situations.

(2) Archetype analysis can only be performed on convex clusters using principal hull analysis.
Therefore, it cannot be performed for scenario 2. It is only determined after clustering
whether archetype analysis can be performed for a given scenario or not.

(3) The criticality metrics and behavior-based clustering produced matching results for scenario
2. However, WTTC was able to further divide the non-critical cluster based on their
outcomes.

(4) In scenario 2, where there are only two actors, TDP finds the same critical area as other
metrics since there are no situations other metrics potentially overlook.

5.3.3 Experiment 3

This experiment utilizes the likelihood models resulting from Bayes optimization with Gaussian
processes, as described in Section 4.7. The surrogate model resulting from the Gaussian regression
can predict the outcome of a given concrete scenario (parameter set within the parameter space).
These results may vary based on the model’s standard deviation for this point in space. This
information enables the evaluation of the mean and standard deviation for each model and the

115



5 Scenario Exploration and Analysis Experiments

entire parameter space of a logical scenario. In scenario 2, the predicted values are compared to
the grid search results mentioned earlier.

Scenario 2: Probabilistic Evaluation

The concluding experiment evaluates the assessment of the objective function model using the
approach explained in Section 4.7. The model is used to predict the criticality of all metrics,
including trajectory distance, WTTC, and TDP. The surrogate model, which is the optimized
objective function, anticipates the criticality results within the logical scenario spaces derived from
simulations, as shown in Figure 5.16. It is important to recognize that comparing simulations to
a grid may not always be possible due to the high dimensionality of the scenario parameter space
and the time required to run a single simulation.

For scenario 2, a comparative analysis of the predicted results is possible based on the grid
simulations executed in the preceding section. Figure 5.17 ((a), (c), and (e) present the prediction
outcomes in a grid format, which can be compared with the computed grids shown in Figure 5.16.
The results of all three trained models exhibit parallel patterns with the simulated data. However,
the TDP patterns exhibit the most significant deviation. This is because the original data is less
smooth than the prediction. It should be noted that the predicted results’ scales differ from the
simulated grid results in Section 5.3.2, as shown in Table 5.2. The evaluation shows that the
predicted trajectory distance is more critical than the empirical concrete scenarios. In contrast,
WTTC and TDP render predictions with less divergence from the simulated data. Noteworthy,
Figure 5.17 (b), (d), and (f) delineate the computed standard deviation corresponding to each
predicted mean presented in (a), (c), and (e). The trajectory distance exhibits a maximum deviation
of approximately 0.15cm, WTTC of 0.024 s, and 0.25 for TDP. Furthermore, critical regions
for trajectory distance and WTTC are identified with higher confidence in certain segments of
the parameter space compared to non-critical domains. This is due to the optimization algorithm
typically selecting more concrete scenarios in these areas.

Table 5.2: Scenario 2: Comparison of simulated and predicted criticality values.

Metric Simulated Range Predicted Range
Traj. Distance 0.0mto 15.0m 0.0mto 8.0m
WTTC 00sto1.4s 0.0sto 1.75s
TDP 0.0t0 6.5 0.0 t0 6.2

Table 5.3 presents a comprehensive overview of the most and least optimal confidence interval
widths collected from all three models. These interval widths have been calculated using a
confidence level of 95%. The entries within the table denote that the predicted mean for each
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Figure 5.17: Scenario 2: (a), (c), (d): predicted mean as grids for trajectory distance, WTTC, and TDP. (b), (d), (f):
standard deviation for all three metrics.

117



5 Scenario Exploration and Analysis Experiments

Table 5.3: Scenario 2: Best and worst confidence interval widths.

Metric Width Best Width Worst
Traj. Distance 0.37m 0.62m
WTTC 0.06s 0.09s

TDP 0.59 0.98

corresponding parameter set resides within the 95% confidence interval across all predictions.
To illustrate, the best entry for the Worst Time-to-Collision (WTTC) predicts deviations of no
more than 0.03 seconds in 95% of cases for parameter points within the interval width. A
plot with the confidence interval can be found in Appendix C, as the confidence intervals are
related to the standard deviation and the plots show similar patterns. Increasing the number of
simulations can enhance the level of certainty, particularly when areas in the parameter space were
neglected during the optimization. However, there is always a trade-off between result quality
and calculation time.

Table 5.4: Confidence Level 99%

Below (%) Within Interval (%) Above (%)

Distance 35.83 45.02 19.15
WTTC 18.35 67.87 13.78
TDP 30.56 44 .87 24.57

Table 5.5: Confidence Level 95%

Below (%) Within Interval (%) Above (%)

Distance 37.55 42.85 20.60
WTTC 25.55 56.46 27.99
TDP 32.25 36.75 31.00

Table 5.6: Critical Values (Confidence Level 95%)

Below (%) Within Interval (%) Above (%)

Distance < 5.0  50.73 41.68 7.60
WTTC < 0.7 32.02 55.19 12.79
TDP > 1.0 4.17 51.06 44 .87

In the final part of this experiment, the predicted values were compared to those derived from
the simulated grid and evaluated in terms of their accuracy. Table 5.4 and table 5.5 present the
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Table 5.7: Non-Critical Values (Confidence Level 95%)

Below (%) Within Interval (%) Above (%)

Distance > 5.0  14.77 8.96 76.27
WTTC > 0.7 24.14 13.79 62.07
TDP < 1.0 71.717 26.97 1.26

confidence intervals for three distinct criticality metrics at confidence levels of 99% and 95%,
respectively.

As illustrated in these tables, approximately half of the predictions fall within the confidence
intervals. This outcome could be attributed to the limited number of simulations, as only around
120 simulations were performed per metric. The scarcity of simulations is particularly noticeable
in non-critical regions, where the optimizer tends to sample fewer points. Consequently, even
when deviations remain within the non-critical region, the quality of predictions is suboptimal.

To address this issue, the criticality prediction was analyzed separately for critical and non-critical
regions, as shown in table 5.6 and table 5.7. In critical areas, the results are comparable to those
reported in the earlier tables. However, in non-critical areas, the surrogate models exhibit a
tendency to predict less critical values than those observed in the simulations. Overall, these
results indicate, that more simulations might be needed to get a better surrogate model.

Scenario 1: Probabilistic Evaluation

In scenarios 1A and 1B, it is important to acknowledge the non-deterministic nature of the driving
function. It should be recognized that simulations conducted with identical parameter sets may
result in slight discrepancies, such as 0.01 m, in the resulting criticality metric. When examining
the probabilistic results, it is important to keep in mind this fact as it affects the predictions,
standard deviations, and accumulates with the uncertainties from the predicted data.

A comparative analysis of the grid-based exploration for scenarios 1A and 1B was omitted due
to the long simulation times (approximately 160 days). Furthermore, in contrast to the preceding
two-dimensional depictions of scenarios 1A and 1B, the subsequent visualizations adopt a three-
dimensional perspective, as depicted in Figure 5.18, Figure 5.19, Figure 5.20, and Figure 5.21.
Except for WTTC, which differs from the simulated scenario criticality, the remaining metrics
in However, it is important to note that, except for the gap time metric in scenario 1A and
the gap time, PET, and trajectory distance metrics in scenario 1B, the predictive outcomes do
not exhibit consistent patterns when compared to the outcomes of the exploratory analysis.
Moreover, as illustrated in Table 5.8, metrics demonstrating inadequate predictive performance
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are characterized by relatively uniform standard deviations and confidence interval widths across
the entire parameter space. Upon closer examination of the standard deviations, it is evident
that, with the exception of Euclidean distance and PET in scenario 1A, the standard deviation
remains within narrow limits: < 0.0952 s for gap time, < 0.0852 m for trajectory distance, and
< 0.0252's for WTTC. For PET, the standard deviation is not completely uniform (non-yellow
data points) like Euclidean distance. Further simulations may increase accuracy. In scenario 1B,
Euclidean distance and PET simulation results are equally uniform, and further simulations are
not expected to yield better results. Typically, the better-performing metric models have a low
standard deviation or at least a decreasing standard deviation in critical regions compared to the
non-critical zones within the scenario parameter space. This trend signifies a concentration of the
optimization process on scenarios characterized by heightened criticality. Appendix C contains
an additional plot with the confidence interval.

Table 5.8: Scenario 1A and 1B: Best and worst confidence interval widths and standard deviations.

Width Best Width Worst Width Best  Width Worst

Metric Scenario 1A Scenario 1A Scenario 1B Scenario 1B

Eucl. Distance 1.07m 1.07m 0.34m 0.34m

Gap Time 0.23s 0.37s 0.45s 0.75s

PET 1.58s 1.74s 1.07s 1.07s

Traj. Distance 0.21m 0.34m 0.35m 0.59m

WTTC 0.06s 0.10s 0.06s 0.10s

Metri Std Best Std Worst Std Best Std Worst
etric Scenario 1A Scenario 1A Scenario 1B Scenario 1B

Eucl. Distance 0.27 m 0.27m 0.08m 0.08 m

Gap Time 0.06s 0.09s 0.11s 0.19s

PET 0.45s 0.45s 0.27s 0.27s

Traj. Distance 0.05m 0.08 m 0.09m 0.15m

WTTC 0.02s 0.03s 0.02s 0.03s

Conclusion of Experiment 3

The results of experiment 3 lead to the following conclusions:

 Surrogate models can predict outcomes across the entire parameter space of the scenario.

e The predictions can be utilized to compute the predicted mean for each point, along with
its standard deviation, uncertainty, and confidence interval.
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Figure 5.18: Scenario 1A: predicted mean as grids for Euclidean distance, gap time, post-encroachment time, trajectory
distance, and WTTC.

* The optimization algorithm BO tends to select more concrete scenarios around critical
areas. As a result, the standard simulated values show the same critical areas. However, as
Table 5.2 and Table 5.3 show, the maximum values can deviate.

However, it is debatable whether all critical scenarios were found since the optimization only
handles probabilities. Despite the probability indicating otherwise, statistically, critical regions
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Scenario 1A - Standard Deviation
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Figure 5.19: Scenario 1A: standard deviation as grids for Euclidean distance, gap time, post-encroachment time, trajectory
distance, and WTTC.

may still be overlooked. This issue, however, is a result of the optimization algorithm and not
the criticality metric, and it affects all used metrics. It should be noted that the critical situations
found are only critical with respect to the metric used. A human expert may identify other critical
situations.
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Scenario 1B - Predicted Mean
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Figure 5.20: Scenario 1B: predicted mean as grids for Euclidean distance, gap time, post-encroachment time, trajectory
distance, and WTTC.

5.4 Categorization within the Quality Taxonomy

In addition to scenario exploration, this work focuses on different quality categories. As es-
tablished in Section 4.3, the assessment of scenario quality can be classified into three distinct
levels of resolution. Moreover, criticality metrics can be interpreted as measures of quality across
different domains, such as the evaluation of the System Under Test (SUT), the sensor model, or
the quality of scenarios themselves. These metrics indicate the extent to which specific regions
within a parameter range require testing, given the employed driving function.
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Scenario 1B - Standard Deviation
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Figure 5.21: Scenario 1B: standard deviation as grids for Euclidean distance, gap time, post-encroachment time, trajectory
distance, and WTTC.

This work uses conventional criticality metrics, such as WTTC and trajectory distance, to evaluate
a single time step during a simulation, thereby characterizing the nanoscopic quality of scenarios.
Additionally, a comprehensive metric, i.e., TDP, is introduced to address the challenge of deter-
mining which aspects of a scenario require evaluation. This is important because most metrics
focus primarily on the ego vehicle and a single additional actor. In multi-actor scenarios, such as
scenarios 1A and 1B, critical scenarios may be overlooked or metrics may need to be computed
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for every possible combination of ego and other actors. Depending on the simulation’s goal, it
may even be necessary to perform multiple optimizations depending on the observed actor. By
using the TDP metric, the evaluation includes the ego vehicle’s perspective of a scene regardless
of the number and position of other actors. This provides a precise measure of scenario quality.
Therefore, TDP allows the user to obtain a more comprehensive scenario quality metric.

Subsequently, the assessment of microscopic quality is conducted in a secondary phase by aggre-
gating the nanoscopic outcomes mentioned earlier. This process involves summarizing the results,
such as identifying the maximum or minimum measured value obtained during the simulation of
a concrete scenario or using microscopic metrics like PET. Most previous plots use microscopic
scenario metrics to indicate the criticality of a specific scenario within the parameter space. This
evaluation includes elements such as optimal and suboptimal standard deviations, as detailed in
Section 5.3.3 3.2, and the determination of confidence intervals for a given logical scenario. See
Figure 5.16 for an example. These macroscopic properties allow conclusions to be drawn about
the adequacy of simulations and the need for further investigation.

5.5 Advantages of Traffic Density Potential

The main goal of TDP is to overcome the problem that most metrics (e.g., PET, TTC, gap time)
are measured between two distinct actors, e.g., ego vehicle and one further actor (see Section 4.8
and appendix B.2). However, the approach of only observing two actors can introduce several
problems:

e If a scenario involves more than two actors, it must be determined whether the metric
should be calculated between each pair of actors or at least between the ego and every other
actor. Additionally, it must be determined how the different measured values are weighted
and whether critical values carry more weight than non-critical values.

e Critical situations may be overlooked if only two actors are observed among a group of
actors.

¢ In datasets like the INTERACTION dataset Zhan et al. [161], where there is no defined
ego vehicle and metrics are calculated for each actor pair, it is possible to overlook critical
situations if only two actors are observed among a group of actors. To avoid this, it is
important to consider all actors in the dataset. Additionally, it is important to note that
the cost of calculating this metric grows exponentially. The calculation time can increase
depending on the metric and its calculation method.
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TDP can overcome these issues: The calculation is performed for the entire scene, regardless
of the number of other vehicles present. This comprehensive approach eliminates the need to
determine which actors should be included or how individual measurements should be combined
into a final score. As a result, critical situations between the ego vehicle and other actors are less
likely to be overlooked. In large datasets, the cost only grows linearly as long as no other metrics,
such as distance, are used for the penalty in the final score (see Section 4.8.5).

If one of the actors close to the ego vehicle is a pedestrian, it is important to note that they
cannot raise the criticality value as high as other cars due to their comparatively low velocity.
In this situation, the criticality should be measured from the point of view of the pedestrian.
Alternatively, pedestrians can be given a higher weight than other cars. However, the dataset used
in Appendix B.2 did not offer pedestrian data; therefore, it was impossible to determine such a
weight.
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6.1 Summary

This work focuses on exploring and evaluating scenarios and the derived findings. The initial
chapters provide as a foundational backdrop, with Section 2.1 establishing scenario-based testing
as the basis for the following work. It acquaints readers with metric standards and techniques
for acquiring scenarios in Section 2.2 and Section 2.3. The conceptual framework, as explained
in Sections 4.4 and 4.7, presents a structured approach that includes the sequential stages of
Exploration, Clustering, Reduction, and Analysis. Section 4.3 serves as an insertion to in-
troduce a quality taxonomy for further used metrics and a comprehensive metric called Traffic
Density Potential (TDP) to assess the quality of a scene from the point of view of an ego vehicle
in Section 4.8. The mentioned concept is then further explained and evaluated with concrete
experiments in two different logical scenarios in Chapter 5.

6.2 Research Questions and Requirements

Section 1.1.3 introduced three challenges, which were then refined into research questions in
Section 1.2. Further, in Section 4.2 four requirements were formulated regarding the research
questions.

The first set of research questions addresses scenario evaluation:

RQ1.1: What is the definition of scenario quality or criticality, and how do they differ and
resemble known criticality metrics?

RQ1.2: Are different levels of abstraction of criticality needed during the development and
testing process?

RQ1.3: What metrics are appropriate for providing a comprehensive assessment of the
criticality of a scene or scenario?

The first two derived requirement belongs to this block of research questions:
REQ.1: The used criticality metrics shall be capable of identifying critical situations regardless

127



6 Conclusion

of the actor constellation. Metrics that are only suitable for car following scenarios are unsuitable
for scenarios with more than two actors.

REQ.2: The scenario exploration tool shall find all critical scenarios within the scenario space
using metrics that meet REQ.1

The classification system introduced in Chapter 4.3 systematically defines scenario qualities across
different levels of simulation resolution. It emphasizes the importance of scenario evaluation
throughout the development and testing phases, offering insights into the System Under Test
(SUT) quality and delineating the appropriate focus of evaluation, e.g., the SUT or where in the
scenario parameter space more simulations are needed (RQ1.1). In this context, the different
abstraction levels for different types of quality help to differentiate on what level a criticality or
quality statement is made, e.g., a complete logical scenario cannot be evaluated by the criticality
metrics measured at one single time step or from one concrete scenario. Clarifying the level
of abstraction, resolution, and domain of interest at which a statement is made, significantly
contributes to the comprehension of the examined functionalities (RQ1.2). In addition to the
taxonomy, a comprehensive metric, namely TDP, is proposed.

The use of the novel TDP metric as a scenario quality metric enhances the evaluation approach
by providing an ego-scene-centric perspective that exceeds traditional 2-actors-centric metrics.
A vehicle within a group of other actors will exhibit lower quality, indicating a more dangerous
situation, than a vehicle outside this group or in an unoccupied part of the map. As exhibited
in Figure 5.8(g) when compared to (a)-(f), scenes with more than one additional actor to the ego
vehicle can have other criticality patterns. This is due to the fact that a traditional criticality
metric can only assess the criticality between the ego and a second actor. Therefore, relying solely
on conventional metrics may result in overlooking critical situations involving other actors in
scenarios 1A and B, where critical situations between the ego vehicle and the truck or the second
car may go unnoticed. However, when only two actors are involved, as shown in Figure 5.15,
TDP can identify the same patterns as metrics that focus solely on the two actors.

Based on the results, it can be concluded that the TDP meets REQ.1. Furthermore, experiments
conducted in scenario 1 (see Section 5.3.1) demonstrate that the TDP can identify critical areas
beyond the metrics that are limited to two actors and constellations such as car following or
intersections (Section 5.5). In addition, the TDP can identify the same critical situations as
conventional metrics in one-on-one situations, as shown by experiments conducted in scenario 2,
thereby fulfilling REQ.2.

The second set of research questions focuses on the exploration of a logical scenario and its result
evaluation:
RQ2.1 Which algorithms can be found and used for a fast scenario exploration to find
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critical parameter sets for logical scenarios?

RQ2.2 Which influence does the criticality metric have on the results of the scenario explo-
ration and evaluation?

RQ2.3 How can further analysis help reduce and summarize the set of found concrete

scenarios?

Following these research questions two further requirements were found:

REQ.3: The logical scenario shall be represented by a reduced set of representative concrete
scenarios.

REQ.4: The logical scenario space shall be analyzed regarding its credibility and uncertainties.

Any optimization algorithm can be used for scenario exploration, such as BO [7] or evolutionary
learning [9]. This work demonstrates that the chosen BO approach, employing GP, effectively
serves as a tool for rapid scenario exploration. The surrogate models generated not only facilitate
efficient optimization but also enable the analysis of uncertainty, allowing for the formulation of
empirical statements regarding confidence intervals and standard deviations (RQ2.1).

As shown in experiments in Section 5.3.1 and Section 5.3.2, the main results using alternative crit-
icality metrics do not differ substantially when identifying critical regions in a scenario parameter
space. However, the surrogate models generated from these metrics show different performances
in prediction and probability evaluation, depending on the scenario parameterization and number
of simulated scenarios (RQ2.2). Furthermore, the data obtained during the optimization process
can be used to cluster and further reduce the identified set of scenarios. The use of principal hull
analysis highlights the potential for scenario reduction, which contributes to the synthesis of a
representative set of critical scenarios (RQ2.3).

The scenario clustering and the reduction to a representative set of concrete scenarios were shown
in the experiment in Section 5.3.1 and Section 5.3.2. To enable behavior- and criticality-based
clustering, projection into the kernel space via kernel PCA was utilized. DBSCAN was employed
as a clustering approach since it does not require knowledge of the number of clusters. In scenario
1A, the reduction is feasible, and REQ.3 is satisfied because it resulted in a substantial reduction
in specific scenarios. However, it is important to note that the reduction is only possible for
logical scenarios with convex clusters. This indicates that REQ.3 is only partially satisfied, and
additional reduction techniques for concave clusters must be identified.

The credibility analysis is possible thanks to the surrogate models resulting from the selected
optimization algorithm. The surrogate model can predict criticality for the entire range of scenario
parameters. Therefore, it can be used to make empirical statements about the confidence interval
and standard deviation. Therefore, BO with GP satisfies REQ.4, unlike other methods such as
EA.

129



6 Conclusion

6.2.1 Place Among Current Approaches of Scenario-based
Testing

In Section 2.1.2, the process of scenario derivation according to EU Regulation 2019/2144 was
shown. This work is located in the scenario derivation part. It is assumed that logical scenarios
are primarily used in knowledge-based approaches, such as ODD or safety analysis. However, it
is also possible to analyze and derive natural driving data sets in the real world, as demonstrated
by [91, 84]. For further steps, there are two possible options:

¢ the reduced scenario set can be used for nominal and critical scenario tests, or

e the exploration and evaluation can serve as a type of test itself among other testing ap-
proaches.

Additionally, the outlined method can be used during the design phase to identify potential
issues and opportunities related to the intended functionality of the system or function being
considered. This proactive approach allows for early identification of challenges and opportunities
in development, facilitating informed decision-making and effective mitigation strategies. Early
identification not only facilitates well-informed decisions but also enables the implementation
of effective mitigation strategies, thereby enhancing the overall development process and final
outcomes.

6.2.2 Limitations

The utilization of BO with GP introduces certain limitations in anticipating the capabilities of the
surrogate model. While this approach offers the advantage of predictive modeling and uncertainty
estimation, it is essential to recognize that the underlying training data inherently constrains the
surrogate model’s predictions. Consequently, the surrogate model’s ability to anticipate outcomes
depends on the representativeness and diversity of the training data. One limitation arises from
the potential bias introduced by the training data distribution. If the training data predominantly
encompasses specific regions of the parameter space, such as critical areas, the surrogate model
may struggle to extrapolate predictions beyond those regions accurately. This limitation can lead
to overconfidence or inaccuracies when predicting outcomes in unexplored areas.

Additionally, the GP surrogate model relies on the assumption of smoothness in the modeled
underlying function. Consequently, when confronted with functions exhibiting non-smooth be-
havior or sharp discontinuities, the surrogate model might struggle to capture and predict these
abrupt changes accurately. This can be observed in the experiments with scenario 2 and TDP.
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Figure 5.16 shows a high gradient between critical and non-critical areas, whereas the prediction
in Figure 5.17 has much smoother transitions between both regions. As mentioned, the principal
hull analysis has the limitation, that it is only possible for convex clusters. As stated before, other
approaches need to be found. Other possible limitations that could not be observed during the
experiments are that the projection into the kernel space and, thus, the clustering might only work
for some possible logical scenarios. This should be kept in mind when further experiments are
done. One issue with BO libraries is their limitation in handling high dimensions. During testing,
all libraries struggled to handle more than three dimensions, primarily due to memory constraints.
However, this is a limitation of the implementation and not of the method itself.

6.3 Outlook

Many methodologies employed in this study offer opportunities for substitution with alternative
algorithms and techniques. For example, scenario exploration (cf. Section 3.2.2) can be accom-
plished through several different approaches. Neural networks, reinforcement learning, linear
regression, or other optimization methods can be utilized instead of BO. For concrete scenarios,
the DTW (cf. Section 3.2.4) similarity measure could be substituted with alternative metrics,
such as the Hausdorff distance or the Frechet distance proposed by Braun et al. [3]. Further-
more, other clustering approaches (cf. Section 3.2.5), such as OPTICS or hierarchical clustering
(Chapter 3), could replace the DBSCAN clustering algorithm, as the objectives and circumstances
of scenario exploration and clustering may differ from those in this work. Further experiments
and scenario exploration with more than three parameter ranges can be performed. To support
this, a possible approach is to replace the simulation with surrogate models, as demonstrated by
Abdessalem et al. [14, 29] in their work on maximizing the criticality between an ego vehicle and
a pedestrian crossing the street for reinforcement learning. This technique can also be applied to
identify concrete scenarios and reduce time-consuming simulations, e.g., dimensionality higher
than three.

The presented work on scenario result evaluation opens avenues for future research that is closely
related to the coverage analysis of logical scenarios. Among other things, scenario coverage
addresses the question of whether concrete scenarios are suitable for representing logical scenarios,
which is a crucial component of scenario exploration. OpenSCENARIO DSL [21] and Foretellix
[60] proposed to measure scenario coverage by the grid search approach [106] and defines concrete
scenarios stepwise for a given parameter range. Hauer et al. [72] proposed an alternative approach
that compares the problem of Have all scenario types been tested? with the Coupon Collector’s
Problem (CCP), a model from probability theory and related to the urn problem. There are
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given sets of coupons, baseball cards, or similar items, and a collector has to draw each type or
individual with a constant probability. From this, the question

(a) Ifthere are IV cards, how many cards are needed to draw (with replacement) to have at least
one of each?

(b) What is the probability of having a complete collection if .S cards were drawn?

There are two variations of the classical CCP: (1) the probability differs for some types (e.g.,
McDonald’s Monopoly); (2) the number of types or individual is not known a priori (a butterfly
collector comes to an unknown island and does not know who many butterfly types there are).
Unfortunately, there is no analytical solution for (b) [72], and Monte Carlo methods must be used.
For (2), there are several approaches: computing confidence intervals for the unknown number of
coupons [59, 48]. The clustering of concrete scenarios within the logical scenario could be used
to determine the different scenarios and the surrogate model to define the certainty of the results.
The use of clustering in scenario space raises the question of whether it can be used to make
assumptions about criticality. Archetypes and prototypes may then be used to represent clusters
and aid in coverage. For instance, a cluster of non-critical concrete scenarios may be represented
by only a few scenarios, as per ISO/PAS 21488, since they are all known to be non-hazardous.
Another important step is to make statistical statements about the certainty of the scenario results
and the coverage that still needs to be explored. Another question is how many iterations of
optimization are necessary to achieve reliable results and a high degree of certainty.

In conclusion, the use of scenario exploration techniques in scenario space not only evaluates
criticality but also provides potential pathways for efficient representation through archetypes
and prototypes. This dissertation contributes to the advancement of scenario-based testing by
developing and applying systematic scenario exploration, clustering, reduction, and analysis.
Moving forward, it is essential to conduct statistical analyses to quantify the certainty of scenario
outcomes and to determine the extent of coverage. The evaluation of scenario quality and the
methodologies employed in scenario exploration enhance the understanding and optimization of
critical scenarios, thereby contributing to the broader landscape of software testing and validation.
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A.1 Scenario Acquisition

A.1.1 Scenario Generation - Examples

Paranjape et al. [118] have presented a novel approach for generating maps and agents (vehicles
and pedestrians) in real-time, which is organized into layer one and layer four, respectively.
The agents are controlled using behavior trees, and the modular behavior concept enables the
generation of a broader range of scenarios for testing throughout the simulation. The procedural
nature of this approach allows for a more flexible and customizable scenario generation and allows
the generation of a broader range of scenarios for testing throughout the simulation.

A.1.1.1 Data-driven Scenario Generation - Examples

Goss et al. [67] propose a modular scenario framework that utilizes simple logical scenarios
extracted from accident data, which are stored as atomic blocks/scenarios. These atomic blocks
can be recombined in the second step to obtain new, more complex scenarios that differ from the
existing concrete scenarios.

A.1.2 Scenario Alteration - Examples

Abeysirigoonawardena et al. [15] trained an automated driving function by reinforcement learning
to avoid hitting pedestrians. In this work, they used Bayes Optimization and Euclidean distance
to generate training situations where pedestrians’ trajectories led them in front of the ego vehicle
to get new training scenarios. They enhanced their distance evaluation by a term to punish
parallel movement to avoid situations with a small Euclidean distance where the ego vehicle and
the pedestrian have parallel trajectories. In this work, the term scenario is used for pedestrians’
trajectories and not in the way scenario was previously defined in Section 2.1.3. Additionally,
the state of the driving function changes throughout experiments since the driving function’s
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performance increases. In this work no classical scenarios for testing were generated, and the
experiments and training of the driving function, the simulator CARLA was used.

Nonnengart et al. [115] suggested a formal method-based approach. Instead of algorithm-based,
it is an information-based alteration method where the information about a scenario is considered.
In their framework CriSGen, they used a composition of formalized abstract models for scenario
description and maneuvers for virtual training of an ADS. The example scenario contains an
ego vehicle approaching a pedestrian crossing the street. To get critical scenarios, they utilized
uncritical and formally abstracted scenarios via reasoning on their non-linear arithmetic constraint
formulas to alter the maneuvers towards a more dangerous situation for the pedestrian. They claim,
their approach is complete and guarantee this approach does not overlook critical scenarios.

A.1.3 Scenario Exploration - Examples

In the PEGASUS project, Bussler et al. [34] used an evolutionary algorithm to find relevant
parameter sets for the verification and validation of automated driving systems. They utilized a
parameterized logical scenario of an ego vehicle performing a left turn, crossing the trajectory
of a pedestrian and another vehicle at an intersection in Hamburg. The evolutionary algorithm
explored an abstract parameter space and selected, mutated, and recombined individuals (i.e.,
concrete scenarios) from a starting pool to obtain a new generation of individuals. Fitness
functions based on Euclidean distance and time-to-collision were used to evaluate the scenarios
suggested by the learning framework, and these functions were referred to as criticality metrics
because they quantitatively assessed the quality of the system under test (SUT), i.e., the ego vehicle.
A higher fitness score indicated a higher criticality of the individual (scenario) with respect to the
criticality metrics. The paper did not provide further information about the simulation framework
or scenario description language used.

Baumann et al. [27] proposed a related approach, where a reinforcement learning algorithm
explored the parameter space of a logical scenario to find concrete scenarios. Their example
scenario involved an ego vehicle attempting to overtake a leading vehicle in oncoming traffic.
After analyzing the factors influencing the driving system of the ego vehicle, test scenarios were
generated and executed in a simulation, and the simulation results were evaluated using criticality
metrics that included headway, time-to-collision, and required longitudinal acceleration (a;).
The evaluation was used as a reward function for generating new test cases, where the higher the
criticality, the higher the reward given to the generation. The e-greedy algorithm was used to
prevent local maxima by randomly selecting parameter sets with low probability and parameter
sets with the highest expected reward with high probability. The critical scenarios were stored as
a set of critical test cases, and the simulator used in the experiments was CarMaker.
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Abdessalem et al. [14] proposed an evolutionary scenario exploration method where classification
decision trees were used to guide the search for new test scenarios. Their training scenario involved
a pedestrian crossing the street in front of an approaching ego vehicle. Two criticality metrics
were used: the first metric combined the Euclidean distance between the ego vehicle and the
pedestrian with the field of view of the ego vehicle, and the second metric calculated the speed
of the ego vehicle at the time of collision and returned —1 if no collision occurred. The guidance
algorithm accelerated the search for critical scenarios using an evolutionary algorithm to 78% of
a baseline evolutionary algorithm.

A.1.4 Scenario Extraction Naturalistic Driving Data -
Examples

A.1.4.1 Extraction from Naturalistic Driving Data

Zofka et al. [163] used recorded sensor data with certain traffic participant maneuvers, such
as lane changes, to create new traffic participant trajectories for more critical scenarios. The
scenarios are derived and parameterized from traffic scenarios out of recorded sensor data. In the
next step, the actors’ trajectories can be modified to get more critical scenarios for testing, which
makes it a combination of scenario extraction and alteration. The scenarios found can then be
simulated by simulation tools, such as IPG CarMaker.

Furthermore, concrete scenarios in urban environments can be extracted from datasets and ag-
gregated to logical scenarios based on maneuver recognition [84]. In the first step, the actors are
categorized regarding their role within a scene, i.e., they interact with the ego vehicle or pass by.
This leads to three different types of interaction: merging, diverging, and crossing. After this,
a maneuver recognition is used to classify and extract maneuvers from the dataset. Before the
extracted concrete scenarios can be aggregated to logical scenarios, they have to be identified. It is
possible that a single driving scene contains more than one scenario, and all of them are extracted
and identified. If maneuver sequences are the same, they are categorized as derived from the same
logical scenario. The resulting logical scenario sets consist of a maneuver sequence, the assigned
concrete scenarios, and parameter ranges and distributions. Another related approach is proposed
by Langner et al. [91], where concrete scenarios were extracted from real-world-driving data and
then, in a second step, clustered into sets of logical scenarios.

Most of the scenario extraction methods available in the literature are designed to tackle highway
use cases. However, to address the scarcity of scenario datasets in urban intersections, Weber et al.
[155] proposed an unsupervised machine learning pipeline that can extract concrete scenarios and
cluster them into logical scenarios from an urban intersection. The proposed pipeline consists
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of three main steps. In the first step, the naturalistic dataset is filtered to reduce the noise, and a
post-encroachment time threshold is applied when the actors are close enough to each other in
a spatial sense to ensure a small temporal distance for all possible trajectory combinations. In
the second step, a principal component analysis is conducted to reduce the feature set for further
processing. In the third and final step, a grid-based model of the ego environment is used for
feature extraction, and the clustering is performed. The proposed method results in a set of logical
scenarios that can be used for further testing and development of autonomous driving systems.

A.1.4.2 Scenario Extraction from Crash Data - Examples

CSG, a toolkit proposed by Xinxin et al. [158], extracts scenarios from real traffic accident videos
for re-simulation using simulation software such as Carla and OpenDRIVE. They use Deep
Neural Networks for scenario extraction and evaluate each scenario based on a weighted sum of
safety indicators, such as deceleration rate to avoid collisions, TTC, and time-integrated TTC. In
re-simulation, where a system under test is used instead of the original ego trajectory, other actors
can adjust their velocity and trajectory to make a scenario more critical.

Gambi et al. [63] present an unusual approach using naturalistic language processing and related
ontologies to automatically extract scenarios from police reports for simulation. Their method
assumes that real accidents and crashes contain the most critical scenarios.

Esenturk et al. [53] propose an approach for crash report analysis, where they analyze the pre-
crash conditions and their relation to accident severity. They use this information to model a
modified logistic regression model to extract useful data, which is then used to generate high-risk
scenarios using the same logistic regression model.

A.1.5 Table with all Mentioned Examples of Scenario
Acquisition
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Table A.1: Overview of mentioned scenario acquisition methods.

Category Sub-category Examples Main Features
Generation From Scratch [93], [125], [118] ¢ More than parameter‘ values are changed
* New concrete scenarios from different
Data-driven [67], [58], [65] , [139], [140] logical scenarios

Algorithm-based  [15], [152], [81], [64], [17], [88]

Concrete starting point

Alteration .

Information-based [115] * No min or max values necessary

e Typically changes in trajectory or velocity

Exploration Optimization-based [34], [14], [47], [27], [142] . Range.as s}arting point

Analytical [76] * Optimization problem
Extraction Naturalistic data [67], [32], [84], [71], [163], [155], [91], [90] e« Based on naturalistic data

Crash data [158], [63], [36] * Scenario is subsection of data
Expert [44], [6], [49], [50], [78], [117], [107], [21] * Human designed scenario
Aggregation [84], [155], [91] ¢ Summary of concrete scenarios to form

one logical

Combinations [671, [32], [84], [163], [155], [91], [33] « Combination of categories to get end result
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B Scenario Quality and Criticality

B.1 Taxonomy for Quality in Simulation

B.1.1 Simulation Environment

Simulation environment quality refers to the quality a simulation environment and its components
and modules have or are presumed to have. The simulation models, their couplings, or the
complete simulation infrastructure are the elements from which the qualities are quantified.
Before a simulation model or environment can be used, it must be ensured that it approximates
its real-world equivalent or functionality sufficiently in all relevant aspects.

B.1.2 System Under Test Quality

The quality of a system under test evaluates the observable behavior and performance of a
system under test with respect to the desired or intended functionality according to predefined
requirements. Figure 4.4 shows a selection of different types of SUT quality. One possible subclass
is safety quality, which evaluates how safely a system under test can handle a specified situation.
Safety can be functional safety according to ISO 26262 [79], where it is defined as “absence
of unreasonable risk due to hazards caused by malfunctioning behavior of Electrical/Electronic
systems”.

Another approach is to assess system under test behavior in critical scenarios, where critical
situations are derived from a prior criticality analysis [109]. A common example is a near-collision
situation evaluated with metrics like the time-to-collision (TTC) metric [73]. Additionally, in the
early stages of the development process, where proof of concepts and ideas are tested, an automated
driving system’s behavioral performance might play a more significant role for developers than
safety. It is important to note that different quality metrics can contradict each other: improving
comfortable braking might also lead more likely to crashes in near-collision situations.
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B.1.3 Examples for Quality Types

ey (2)

A
A
@

Figure B.1: Two example scenarios: (1): Ego vehicle (E) and adversary (C) crossing the intersection; (2):Ego vehicle (E)
takes a right turn, while pedestrian (P) crosses the intersection

The following examples take place at an urban intersection without traffic lights or signs and are
depicted in Figure B.1. In the first scenario (1), both the ego vehicle (E) and the adversary car
(C) attempt to cross the intersection without taking a turn. A synchronization point is placed in
the middle of the intersection to ensure that both vehicles arrive at the same time. In the second
scenario (2), the ego vehicle turns right and intersects the path of a pedestrian crossing the road.
Some of the following quality examples relate to the events that occur during the scenario, such
as the criticality between the ego vehicle and the pedestrian, while others evaluate only a specific
part of the scenario, such as a simulation model, in terms of quality. Certain parameters were
modified across different scenarios, including the maximum velocity v, of the ego vehicle, the
time it takes for the pedestrian to cross the road t.yss, and the minimum distance dg,; between
the ego vehicle and pedestrian that triggers the pedestrian’s movement.

B.1.3.1 Simulation Environment Quality

The reliability of three different simulation setup outputs was tested as an example of simulation
quality. The execution results from ten executions of the same scenario repeated with one of the
simulation setups were compared to make a statement about the macroscopic simulation quality.
These comparisons were based on an exemplary requirement regarding the used simulation setup:
RQ1: If a concrete scenario is executed twice or more within the same simulation environment,
the deviation of traffic participants’ trajectories measured with dynamic time warping (DTW)
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Table B.1: Simulation environment quality in literature

Level Description Publication

Nanoscopic  simulation model V&V methods survey [123]

steering system evaluation [62]
scenario-based model evaluation [89]
Microscopic  accuracy, effort, efficiency [69]

Macroscopic  simulation model V&V methods survey [123]
ISO 26262 Standard: tool qualification [79]

shall not deviate further than 10.0 m for a trajectory with 2500 data points. Since Carla 0.9.11
does not support deterministic simulation results, a small deviation can result in a difference
of 10.0m or more. The threshold 10.0m was chosen to allow these minor deviations without
allowing new trajectories for the ego vehicle.
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Figure B.2: a), b), ¢) on the left show examples of nanoscopic simulation environment quality, and the right side depicts
an example of microscopic scenario quality by using euclidean distance and worst-time-to-collision (WTTC).

Two simulation environments were used: Carla 0.9.11 and CarMaker 8.0.2 from IPG combined
with two driving functions, F1 and F2, respectively. F1 is an external driving function connected
via the open simulation interface (OSI) [20] to both simulation environments, and F2 is the
BasicAgent from Carla’s PythonAPI [49]. The same intersection scenario, i.e., scenario (1), was
executed ten times for each setup, resulting in thirty scenario executions, where the first execution
was used as a reference point for the following results.

The trajectories of the ego vehicle and an adversary vehicle were compared with the reference
scenario’s trajectories via DTW, a metric used to calculate the distance between two time series
[124] as defined in RQ1. Ideally, the distance should be 0.0 m or close to 0.0 m for nearly identical
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simulation results, indicating deterministic results. We used a threshold of 10.0 m, indicated by
the red lines on the left-hand side of Figure B.2 a) and b). In c), no threshold is shown since
all values lie beyond this threshold. If a simulation consists of 2000 steps, the average trajectory
deviation per step should be smaller than 0.005 m.

Among the actors involved in the simulated intersection scenarios, the adversary vehicle from
CarMaker is the only one with completely deterministic behavior. This is demonstrated in
Figure B.2 c), where the CarMaker software’s trajectory follower produces consistent results. The
largest DTW distances are observed for F1 in Figure B.2 b), particularly in scenario 3 where the
ego vehicle deviated significantly from the reference trajectory, resulting in a trajectory deviation
of over 5000 for the ego vehicle and over 9000 for the adversary vehicle. Both values are not
shown in Figure B.2 b) since the scale would make it even more difficult to read other results.
In this scenario, the ego vehicle came off the course and drove a circle at the intersection, which
results in a very different trajectory than the reference trajectory. Additionally, it influences the
opponent’s behavior, e.g., an adversary vehicle might need to wait longer until it can pass the
intersection if it is occupied by the ego vehicle. This scenario highlights the need for high-
quality microscopic simulation, since such deviations can affect the behavior of other actors in
the simulation. The high DTW distances could be caused by coupling methods of low quality,
resulting in low microscopic simulation quality, or a non-deterministic physics model, which is
inappropriate when a deterministic model is needed and also states low nanoscopic quality.

Figure B.2 a) shows a DTW value around 1.0 for each F2 trajectory, which is reasonable given
that Carla 0.9.11 uses the non-deterministic physics model from its Unreal engine. This suggests
that although there may be minor differences between the trajectories, the overall results are close
to each other. However, the adversary vehicle, which responds to the ego vehicle, shows higher
DTW values, indicating greater deviations in trajectory. In contrast, Figure B.2 ¢) demonstrates
that CarMaker’s adversary vehicle is capable of producing deterministic behavior. Although F1
still produces non-deterministic results, all values are below the threshold of 10.0 m.

Based on these observations, further experiments are needed to evaluate the microscopic simula-
tion environment quality, particularly with regard to the coupling of the driving function, which
could be affected by issues with the PID controller or the message interface (OSI). Additionally,
the quality of the system under test (i.e., driving function F1) needs to be evaluated across all
three levels of resolution. Table B.1 lists some examples for the simulation environment quality
evaluation.
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Table B.2: System under test quality in literature

Level Description Publication
Nanoscopic ~ Time-to-collision [73], [46]
Gap Time [16]
Microscopic  PET, ET [16]
min. Time-to-collision [46]
Macroscopic  collision probability [46]

B.1.3.2 System Under Test Quality

The system under test quality example measures the nanoscopic and microscopic quality of the
scenario intersection (2) described above. For exemplary purposes, a simple requirement is being
formulated.

RQ2: The ego vehicle shall not cause an accident or hit pedestrians.

For each time step during simulation, the nanoscopic metrics braking distance and braking time
were calculated for the ego vehicle and distance and gap time (see Section 2.2.3) for the criticality
between the pedestrian and the ego vehicle. All four are shown in Figure B.3 and measured for
the intersection scenario (2) with vp,x = 32km/h, teoss = 5, and dgae = 16 m. Gap time
describes the predicted distance in time between vehicle and pedestrian passing the intersection
of their trajectories.

The fact that it is going towards 0's means there is a near-collision situation or even a collision.
Gap time cannot be measured anymore when one actor passes the intersection of both trajectories.
Therefore, the green gap time graph stops after about 29.2 s when the application period of gap
time has passed. The gaps in the graphs of braking time and distance show the system under
test either stood still or tried to accelerate (where braking time and distance approach infinity)
in between braking phases since the application period condition for both metrics is a negative
acceleration. Additionally, threshold values can be defined for the considered quality metrics, e.g.,
Gap Time > 2s. In Figure B.3 a), the gap time and distance approach a value of 0.0 s and 0.0 m,
respectively. Both metrics indicate that the ego vehicle gets dangerously close to the pedestrian.
The ego vehicle is already standing at the time of the shortest distance since both metrics reach
their minimum at different times. The ego vehicle fulfilled its goals in terms of not hitting the
pedestrian. An example of performance quality is to evaluate comfortable braking behavior.

In the second step, the microscopic quality was evaluated for each executed scenario to compare
the criticality throughout a set of scenarios. Figure B.3 b) and c) show the metric results of
post-encroachment time and encroachment time (see Section 2.2.3), respectively. Each value
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Figure B.3: a) Example for nanoscopic metrics. b) + ¢) Examples for microscopic metrics.

in the figures corresponds to a specific scenario derived from the logical scenario in the urban
intersection example. According to Allen, Brian, L. et al. [16], post-encroachment time is the
actual time gap between two traffic participants passing the intersection point or area of their
trajectories. Encroachment time describes the time an actor occupies the intersection point or
area and is exposed to a possible accident. For the evaluation of the microscopic quality, PET
and ET (see Section 2.2.3) were used. As shown in Figure B.3 b), encroachment time increases
slightly with the time the pedestrian needs to cross the street (fcr055), but, as expected, the ego
vehicle’s starting distance and speed have no impact as they are not related to the pedestrian’s
movement. The metric results can be evaluated with the example threshold values PET > 1.5s
[16] and ET > 2.0s. In Figure B.3 b) it is shown that the ego vehicle falls below the given
threshold in several scenarios, which indicates critical scenarios. Table B.2 lists some examples
for the system under test quality evaluation.

B.1.3.3 Scenario Quality

Scenario quality metrics can provide evidence about a scenario’s criticality or relevance for a test
series. The difference between the system under test quality and scenario quality is the focus of
the evaluation. Metrics related to the system under test pertain to its performance, while scenario
quality focuses on various properties of a scenario, such as weather conditions, light, criticality,
actor behavior, and other aspects relevant to testing the system. However, system under test quality
can also be part of a scenario, and quality criteria for scenarios can be a composition of different
quality metrics or the same metrics taken from different traffic participants and evaluated together.
The experiments in Section B.1.3.2 also determine the scenario quality from various points of
view. The scenario quality, in particular the scenario criticality, can be used as a way measure to
decide which scenarios might be interesting for further use or do not give any new insights.
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Table B.3: Scenario quality in literature

Level Description Publication
Nanoscopic  TTC [86]
TDP [70]
WTTC [149]
Microscopic  scenario uniqueness [90]

[131] (min. distance),

search-based techniques g (i ey

Macroscopic  coverage [72]

Section 4.4 uses scenario metrics on a nanoscopic and microscopic level to generate a set of
scenarios. A macroscopic example is scenario and scenario parameter coverage, which is essential
in overall test coverage. Scenario coverage can be viewed on different levels, e.g., a set of concrete
scenarios sufficiently represent a logical scenario, or the scenario set or database sufficiently
represents all situations within an operational design domain. Reducing mileage is one of the
goals of scenario-based testing, so it is crucial to make a statement about the coverage. Table B.3
shows a short list with examples of scenario quality from literature.

B.2 Traffic Density Potential Evaluation

The best way to evaluate a new metric would be to compare it with a labeled (urban) traffic
dataset where the ground truth of all participants is available regarding their current position,
movement, and criticality situation. However, this approach comes with a set of problems. There
is no available urban traffic dataset with labels regarding the objective criticality of single vehicle
positions or scenes. Additionally, large datasets such as the INTERACTION dataset [161] only
contain a handful of near-collision and collision situations.

The second problem is that apart from collisions and near-collision situations, it is hard to
define an objective and universal set of rules for critical traffic situations. The desired criticality
often depends on the question at hand or special features within recorded data, e.g., road maps,
country-dependent traffic rules, or the driver. Therefore, the evaluation task is defined as follows:

Task: Critical scenes that can be used for resimulation within the INTERACTION dataset shall
be found.
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This task is used to derive the following rules regarding the labeling of critical scenes:

(1) A collision or near-collision occurred.

(i1) Situations have a high crash potential, i.e., minor alterations in velocity or trajectory can
lead to collisions in resimulation (e.g., moving cars pass by with a distance of less than 0.5
meters).

The first part of this evaluation in Appendix B.2.1 compares the results of the TDP to a human
expert labeled sub-set of the INTERACTION dataset. The labeled dataset consists of 29.569
scenes, of which 4.263 (14.42%) are labeled critical. The results of the TDP are then compared
to other established criticality metrics.

B.2.1 Data-Centered Evaluation

Table B.4: Comparison of results for selected metrics, showing best entries in bold and worst underlined. Abbreviations
are explained in Appendix B.2.1.

Dist ET GT PET PTTC TTC WTTC TQp: TQp» TQps TQ.,

TP 1162 3700 745 2374 975 605 4029 3083 2149 3530 3041
TN 22364 6212 21592 16261 22366 23626 7373 16627 21475 13130 13494
FP 2942 19094 3714 9045 2940 1680 17933 8679 3831 12176 11812
FN 3101 563 3518 1889 3288 3658 234 1180 2114 733 1222
ACC 0.796 0.335 0.755 0.630 0.789 0.819 0.386 0.667 0.799 0.563 0.559
MR 0.204 0.665 0.245 0.370 0.211 0.181 0.614 0.333 0.201 0.437 0.441
TPR 0.273 0.868 0.175 0.557 0.229 0.142 0.945 0.723 0.504 0.828 0.713
FPR 0.116 0.755 0.147 0.357 0.116 0.066 0.709 0.343 0.151 0.481 0.467
TNR 0.884 0.245 0.853 0.643 0.884 0.934 0.291 0.657 0.849 0.519 0.533
FNR 0.727 0.132 0.825 0.443 0.771 0.858 0.055 0.277 0.496 0.172 0.287
PRE 0.283 0.162 0.167 0.208 0.249 0.265 0.183 0.262 0.359 0.225 0.205
CoK 0.159 0.040 0.027 0.117 0.116 0.094 0.086 0.220 0.302 0.164 0.121
F1S 0.278 0.273 0.171 0.303 0.238 0.185 0.307 0.385 0.419 0.354 0.318
MCC 0.579 0.547 0.514 0.572 0.558 0.550 0.595 0.636 0.654 0.622 0.587

The performance of TDP is compared to that of other established metrics, such as TTC and
potential time-to-collision (PTTC) [2] a TTC deviate, Euclidean distance and WTTC, or PET,
GT, and ET (see Section 2.2.3 for all mentioned metrics). For each of these metrics, established
thresholds were used, resulting in a binary classification of critical and non-critical situations:
1.5s for time-based metrics (except WTTC, where 0.47s was used), and 1.0m for Euclidean
distance.
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Table B.4 presents the results for various performance measures, including true positives (TP), true
negatives (TN), false negatives (FN), false positives (FP), accuracy (ACC), miss-classification rate
(MR), true positive rate (TPR), false positive rate (FPR), true negative rate (TNR), false negative
rate (FNR), precision (PRE), Cohen’s kappa (CoK), F}-score (F1S), and Matthews correlation
coefficient (MCC). The best performance in each category is indicated by bold entries, while the
worst are underlined. However, it should be noted that only 14.42% of the imbalanced dataset is
labeled as critical. Therefore, some bold values may not necessarily indicate good performance
of the criticality metric. For instance, WTTC simply classifies most parts of the data as critical.

TTC is another well-performing metric (five bold entries in Table B.4), but its results are due to the
opposite problem: most of the data is classified as uncritical, and with more than 85% being truly
uncritical, some performance measures (e.g., accuracy and misclassification rate) indicate good
performance. Therefore, precision, Cohen’s kappa, F-score, and Matthews correlation coefficient
were considered, where values grow with a better performance. In all four performance metrics,
the TDP metric has four bold entries in Table B.4 and is one of the best-performing metrics since,
unlike TTC and WTTC, it has no underlined values showing the worst-performing entry for this
metric.

Cohen’s kappa is a statistical measure that assesses the level of agreement between two raters or
classifiers, such as the ground truth and the criticality metric being evaluated in this case [153].
Its value ranges from —1 to 1, where O indicates that both raters agree by chance, and negative
or positive values indicate less or more than chance agreement, respectively. Cohen’s kappa
is calculated by dividing the observed relative agreement (p, or accuracy) by the hypothetical
probability of agreement by chance with data labels randomly assigned (p.), as follows: [153]:

Po — Pe
1_pe

(B.1)

According to Wang et al. [153], a value of 0.359, which is the best performance among all the
metrics evaluated, is categorized as fair agreement. However, the TDP metric offers an acceptable
trade-off between correctly classifying true critical scenarios as critical without including too many
uncritical ones in the set of critical scenarios.

Another evaluation metric is the £ -score [38], which is a value between 0 and 1 that indicates
the quality of a binary classification result. It is calculated using the following formula [38]:

2 2TP

— F =
1 YT OTPYFP Y+ FN’

B.2
recall=1 + precision— (B.2)

where TP represents true positives, F'P false positives, and F'N false negatives. However, the
F-score has limitations in dealing with class imbalance.
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To address this problem, Chicco and Jurman [38] proposed the Matthews correlation coefficient
(MCC), which is calculated using the following formula:

(ab— cd)

MCC = :
Via+c)a+d)(b+c)(b+d)

(B.3)

where a = TP are the true positives, b = T'N true negatives, ¢ = F'P false positives, and
d = FN false negatives. The normalized version of MCC ranges from 0 to 1, with 0 indicating
the worst performance, 1 indicating the best, and 0.5 indicating a random assignment of classes.
It should be noted that the Matthews correlation coefficient may decrease when only one class is
recognized, as is the case with TTC or WTTC.

The main reason for the found false positive hits, especially for TDP with ps, lies in situations
where vehicles drive towards each other or next to each other with proximity at high velocity even
though they are not in the same lane. The false negatives result from the problem that sometimes
the metric is less sensitive to criticality than the labeled data, i.e., the metric recognizes a situation
as critical a few timestamps later and categorizes them as uncritical earlier than the labeled data.
This problem in sensitivity arises from the trade-off between too many false positives vs. false
negatives, and it depends on the task at hand if the threshold has to be higher to get fewer false
positives or lower to get fewer false negatives. Another way of changing the outcome is to use
different penalty terms, where p; emphasizes the criticality close to the vehicle and neglects
things that happen further away, p3 which takes in more of its surrounding vehicles, and ps as a
trade-off in between both options.

It has to be kept in mind, that each metric has its special situations to recognize, and it depends
on the question regarding what criticality is measured and which one shall be used. The primary
benefit of the TDP is its versatility, as it is not limited to specific vehicle constellations, like TTC
(car-following) or PET (intersection). Hence, it can be applied to recorded data or simulations
without requiring prior knowledge of the scenes or scenarios.

B.2.2 Typical Detected Situations and Examples

B.2.2.1 Typical Critical Situations

Upon examining the traffic in the INTERACTION dataset, typical situations have been detected
where TDP indicates criticality. In general, stationary objects are considered less critical than

moving objects since they are assumed to have less influence on the outcome of a situation than
moving objects. Often, these situations exhibit high-tension, characterized by dense traffic with
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Figure B.4: Typical scenes classified as critical. The faster the ego vehicle (white) or the higher the difference in velocity
among all traffic participants, the higher the criticality.

varying velocities of different traffic participants, as shown in Figure B.4. These high-tension

situations typically include:

(i) The ego vehicle passing by or driving around one or more stationary or slow-moving objects:

— Other vehicles waiting to take a left or right turn (see Figure B.4 (a)).

— The ego vehicle approaching the end of already waiting vehicles (see Figure B.4 (b))

or accelerating at the start of a traffic jam (see Figure B.4 (¢)).

— The ego vehicle moving around parked or slow cars (see Figure B.4 (d)).

(i1) Vehicles moving towards or next to each other in the same lane (see Figure B.4 (e)) or

oncoming directions (see Figure B.4 (f)). This scenario also includes cases where both
vehicles are on different lanes. Since no map data is used due to the simplified calculation,
it is impossible to distinguish if both vehicles are in the same lane.
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Criticality over time in scenario #2
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Figure B.5: (a) shows a snapshot of a near-collision situation (scenario #1). (b) shows a snapshot of a collision with
two intersection trajectories (scenario #2). (c) and (d) show the progression of criticality metrics (distance,
WTTC, TDP) over time, respectively.

B.2.2.2 Near-collision Example

In the near-collision scenario depicted inFigure B.5 (a), two vehicles (129, 139) are stationary
at an intersection. While vehicle 135 attempts to cross the intersection between both mentioned
vehicles, vehicle 142 passes 129 and 139 in an oncoming lane. All of this occurs in less than three
seconds, and 142 cannot see 135 early on. Both vehicles barely avoid a collision. Figure B.5 (c)
presents the measured distance and WTTC between 135 and 142, respectively. The minimum
distance between the two is approximately 2.75m, which, in slow urban traffic, does not indicate
a critical situation. However, their WTTC drops to 0.22s, representing a critical situation. The
TDP value for vehicle 135 begins to increase steeply when it passes through the gap between 129
and 139 and remains slightly above 1.0 throughout the maneuver. The TDP value for 142 stays
around 1.2, with a slight dip when vehicle 135 comes to a halt and accelerates again.
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B.2.2.3 Collision Example

The second example, illustrated in Figure B.5 (b), is taken from the same dataset and involves
vehicle 81 coming from the left side of an intersection and turning right onto the bottom arm,
while vehicle 167 from the left bottom arm intends to turn right as well. In this case, vehicle 81
collides with vehicle 164, and both vehicles pull over to the side of the road, which is a common
post-collision behavior. Figure B.5 (d) shows the distance curves between vehicle 81 and 167,
which decrease to Om and result in a WTTC value of Os at timestamp 121.1. The negative WTTC
value indicates that after the crash, both vehicles came to a stop, and the system of equations
used to calculate the WTTC cannot be solved. The TDP of vehicle 81 remains constantly high
throughout the critical maneuver and collision, whereas the value of vehicle 167 remains below
1.0 as it is still stationary and, therefore, has a lower impact on the outcome of the situation.
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C State of the Art

C.1 Confidence Interval Plots

The following plots depict the width of the confidence intervals for scenario 1 A and B and
scenario 2. The color indicates the width, with yellow implying a wider width and blue or purple
a smaller width for a scenario parameter set.
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Scenario 1A - Confidence Interval Width
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Figure C.1: Confidence intervals as grid for scenario parameter space of scenario 1 A.
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C.1 Confidence Interval Plots
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