
Digital Object Identifier

Vectorized Highly Parallel Density-based
Clustering for Applications with Noise
JOSEPH ARNOLD XAVIER1,2, JUAN PEDRO GUTIÉRREZ HERMOSILLO MURIEDAS3,
STEPAN NASSYR1, ROCCO SEDONA1 (Member, IEEE), MARKUS GÖTZ3 (Member, IEEE),
ACHIM STREIT3, MORRIS RIEDEL2 (Member, IEEE), GABRIELE CAVALLARO1,2 (Senior
Member, IEEE)
1Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52428 Jülich, Germany (e-mail: j.arnold@juelich.de, s.nassyr@fz-juelich.de,
g.cavallaro@fz-juelich.de, r.sedona@fz-juelich.de)
2School of Engineering and Natural Sciences, University of Iceland, 107 Reykjavik, Iceland (e-mail: morris@hi.is)
3Scientific Computing Center (SCC), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany (e-mail: juan.muriedas@kit.edu,
markus.goetz@kit.edu, achim.streit@kit.edu)

Corresponding author: Joseph Arnold Xavier (e-mail: j.arnold@fz-juelich.de).

This work was performed in the EUPEX (European Pilot for Exascale) project, which received funding from the European
High-Performance Computing Joint Undertaking (EuroHPC JU) under grant agreement No 101033975. This work received
complementary funding from the German Federal Ministry of Education and Research (No. 16HPC066K) and by the EUROCC2 project,
funded by the EuroHPC JU and EU/EEA states under grant agreement No 101101903. Part of the experiments were performed on the
HoreKa supercomputer, funded by the Ministry of Science, Research, and the Arts Baden-Württemberg and the Federal Ministry of
Education and Research.

ABSTRACT Clustering in data mining involves grouping similar objects into categories based on their
characteristics. As the volume of data continues to grow and advancements in high-performance computing
evolve, a critical need has emerged for algorithms that can efficiently process these computations and
exploit the various levels of parallelism offered by modern supercomputing systems. Exploiting Single
Instruction Multiple Data (SIMD) instructions enhances parallelism at the instruction level and minimizes
data movement within the memory hierarchy. To fully harness a processor’s SIMD capabilities and achieve
optimal performance, adapting algorithms for better compatibility with vector operations is necessary. In
this paper, we introduce a vectorized implementation of the Density-based Clustering for Applications with
Noise (DBSCAN) algorithm suitable for the execution on both shared and distributed memory systems.
By leveraging SIMD, we enhance the performance of distance computations. Our proposed Vectorized
HPDBSCAN (VHPDBSCAN) demonstrates a performance improvement of up to two times over the
state-of-the-art parallel version, Highly Parallel DBSCAN (HPDBSCAN), on the ARM-based A64FX
processor on two different datasets with varying dimensions. We have parallelized computations which are
essential for the efficient workload distribution. This has significantly enhanced the performance on higher
dimensional datasets. Additionally, we evaluate VHPDBSCAN’s energy consumption on the A64FX and
Intel Xeon processors. The results show that in both processors, due to the reduced runtime, the total energy
consumption of the application is reduced by 50% on the A64FX Central Processing Unit (CPU) and by
approximately 19% on the Intel Xeon 8368 CPU compared to HPDBSCAN.

INDEX TERMS High-performance computing, Density-based clustering, Vectorization, VHPDBSCAN.

I. INTRODUCTION

CLUSTERING algorithms are capable of discovering
patterns in a dataset by maximizing a similarity mea-

sure between items within a group and minimizing it between
different clusters. In the age of Big Data, manual labeling has
become prohibitively expensive, making scalable and parallel
cluster analysis highly sought after in multiple fields, e.g.,
satellite image segmentation [7], point cloud analysis [28],

or customer data analysis [33].

Modern computing systems are capable of parallelizing
software at multiple levels. At the lowest level, CPUs use
instruction pipelining and super-scalarity (or instruction par-
allelism) to process multiple low-level instructions at a time
in a single processing unit. SIMD instructions offer data
parallelism by having the execution of the same instruction
or operation on multiple units of data, consuming fewer clock

1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

cycles. In order to cater to the ever-increasing demand for
vector processing capability by HPC workloads, most mod-
ern CPUs support SIMD instruction sets that can operate on
extra-wide registers. For example, Intel currently provides up
to 512-bit SIMD computations through their AVX (Advanced
Vector Extensions) instructions. ARM introduced a vector
length agnostic SIMD architecture model called Scalable
Vector Extension (SVE) [29] to support up to 2048-bit vec-
tors. SIMD instructions can be used to operate on different
data types, ranging from integers to floating points of various
precision. In order to exploit the SIMD capabilities of the
processor, it is important that algorithms allow computations
on multiple units of data simultaneously. In this paper, we
present a vectorized implementation of HPDBSCAN called
VHPDBSCAN that efficiently uses the SIMD instructions
to accelerate distance computations, which form the most
compute intensive part of the DBSCAN algorithm. Our key
contributions in this work are:

• We introduce an optimized, vectorized algorithm re-
ferred to as VHPDBSCAN, which efficiently leverages
SIMD instructions to accelerate the computationally in-
tensive distance calculations required by the DBSCAN
algorithm. We also parallelize the computation of neigh-
bouring cells of a given cell in the grid, which is particu-
larly useful in the analysis of high dimensional datasets.

• Implementations of this algorithm on an ARM based
CPU – A64FX – providing SVE [29] intrinsics as well
as for x86-based Intel CPU – Intel Xeon 8368 – offering
AVX-512 SIMD operations.

• An evaluation of the performance and energy consump-
tion at the core and node level in comparison with
HPDBSCAN.

II. BACKGROUND
A. DENSITY-BASED CLUSTERING FOR APPLICATIONS
WITH NOISE
One of the most popular clustering algorithms used today is
DBSCAN [15]. The algorithm groups points that lie close
to each other into clusters and identifies points that are not a
part of any dense group as noise. DBSCAN is parameterized
by two values: the maximum distance ϵ between two points
for them to be considered as neighbours, and the minimum
number of neighbouring points min_points that a point
needs to have for it to be considered part of a dense region.
DBSCAN recursively expands clusters by identifying dense
regions. A point p is marked as a core point if it has at least
min_points number of points within ϵ distance from it. A
point q is said to be directly reachable from point p if q is
within ϵ distance from p and p is a core point. A point q is
density reachable from p if there is a path (p1, ..., pn) with p1
= p and pn = q, where each point pi+1 is directly reachable
from pi. Note that in this case all points in (p1, ..., pn) are
core points, with the possible exception of q, as it may not
have min_points neighbours. In such a case q is marked
as a border point. Figure 1 illustrates DBSCAN clustering
with min_points = 3. The core points are marked in black,

while the border point and the noise point are marked in grey
and white respectively. Note that each core point contains at
least three points including itself within ϵ distance. Also, the
border point in the figure is connected to just one core point.
Also in the bottom circle, the lowermost point is a border
point. The general procedure of the queue-based variant of
DBSCAN is described in Algorithm 1.

Core

Borderϵ
Noise

FIGURE 1: DBSCAN clustering with min_points = 3

Algorithm 1: DBSCAN
Data: Dataset X , ϵ, min_points
Result: clusters, noise_points
for p in X do

clusterp = new cluster();
if !visited(p) then

compute = new queue();
compute.insert(p);
while length(compute) ̸= 0 do

i = compute.front();
compute.pop();
N = getNeighbours(i,X, ϵ);
if length(N) ≥ min_points then

for c in N do
if !visited(c) then

compute.push(c);
clusterp.add(c);
visited(c) = true;

end
end

else
markNoise(i);

end
end

end
end

In Algorithm 1, the getNeighbours function computes the
distances between point i and every point in X and returns
a list of points from X that lie within ϵ distance from point
i. The time complexity of the algorithm mainly lies in the
number of distance computations necessary to determine if
two points are neighbours. The original DBSCAN paper [15]
shows that the time complexity of the algorithm can be
reduced from O(n2) to O(n log(n)) using R-trees.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

B. HIGHLY PARALLEL DENSITY-BASED CLUSTERING
FOR APPLICATIONS WITH NOISE

HPDBSCAN [18] introduces both shared memory paral-
lelism and multi-core parallelism to the original DBSCAN
algorithm. The implementation uses Message Passing Inter-
face (MPI), together with Open Multi-Processing (OpenMP),
to distribute the expensive distance computation of DBSCAN
on multi-node and multi-core systems, making it ideal
for a High Performance Computing (HPC) environment.
HPDBSCAN uses an indexing structure to simplify the
search of neighbouring points, but instead of using R-
trees [5], it uses a grid-based indexing approach [19]. The
stages of HPDBSCAN can be broadly divided into four major
stages. In the first step, the entire dataset is split into equally
sized chunks, based on the number of MPI ranks. Hence each
MPI rank loads only a part of the original dataset. The d-
dimensional bounding box containing the data is evenly split
into d-dimensional cells with a side length of ϵ. Each of
the d-dimensional data points is assigned to a unique spatial
cell corresponding to their location within the data space.
The data points are then sorted so that points close to each
other are placed together in memory. A hash map is used to
quickly map from a cell index to the initial location of its
data points in memory and the number of points assigned
to the cell. To balance the computational load for each
worker, a cost heuristic calculates the number of comparisons
between each point in a cell and its neighbouring cells. The
number of neighbouring cells for a given cell in the grid
can be up to 3d where d is the number of dimensions of
the dataset. Based on the computed cost, the subspaces are
divided among the workers. This is particularly important in
highly skewed datasets. Additionally, to ensure each worker
has access to the relevant neighbouring cells, halo or ghost
cells are replicated in workers with a shared border in the
hypergrid to avoid remote memory accesses. The next step is
the local computation of clusters carried out by each parallel
worker, which we refer to as local DBSCAN, as it closely
follows the original implementation of DBSCAN. Here, each
worker iterates over the points within the cells that have
been assigned to it. The number of neighbours is determined
for each point based on the distance ϵ, to determine if it is
equal or greater than min_points. It is also checked if it is
part of the neighbourhood of a core point and is accordingly
assigned a cluster label. At the end of this stage, every point
has been assigned a cluster label (or determined to be noise)
by the worker. This stage is the most compute-intensive
stage of the clustering process, making it an ideal target for
vectorization. We discuss this stage in detail in Section II-B.
The final stage is the rule-based merging of clusters. Here,
HPDBSCAN makes use of the labels of the halo cells to
merge clusters that were computed by more than one parallel
worker. The points in the halo cells will have conflicting
labels between the different workers, and cluster labels of
these points are used to merge parts of the same cluster that
lay across multiple grid spaces. The resulting cluster labels

are broadcast so that each node will directly map the local
cluster label to a global one.

Local DBSCAN
As explained earlier, the most compute-intensive stage of
HPDBSCAN is the computation of local clusters by each
worker. Measurements of execution times have shown that
the local DBSCAN function alone accounts for up to 80%
to 90% of the total execution time. The rest of the time is
spent computing the keys for each point, sorting the cells,
and distributing the dataset to each worker. Algorithm 2
outlines the steps. Local DBSCAN function returns the lo-
cal cluster labels computed for each point in the subspace.
The cluster labels of the halo cells are used to determine
the global cluster labels later in the merging stage. Each
worker is equipped with a list of direct mappings from
its locally computed subcluster label to a global label. A
C++ std::unordered_map data structure called Rules
is used to the mapping from a temporary cluster label to a
global cluster label. The getCellIndex function returns the

Algorithm 2: Local DBSCAN
Data: Dataset X , ϵ, min_points
Result: Rules
rules = Rules();
for p in X do

index = getCellIndex(p);
potential_Nb = getNeighbours(index);
if length(potential_Nb) ≥ min_points then

label, neighbours =
regionQuery(potential_Nb,min_points, ϵ);

if length(neighbours) ≥ min_points then
markAsCorePoint(p);
for q in neighbours do

if isCorePoint(q) then
markAsSame(rules, label[q], label);

end
end

end
else if !visited(p) then

markAsNoise(p);
end

end

index value of the current point in the sorted dataset and
the getNeighbours function returns a list of points from the
neighbouring cells of the current point p including those
from the same cell as p. While potential_Nb contains the list
of points from neighbouring cells, the regionQuery function
computes the distance from each point with all the points in
potential_Nb and identifies all the points within ϵ distance
from point p. It also returns a temporary cluster label for each
point. Later, the cluster labels of the core points are updated

3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

such that they share the same label. The iteration over all the
points in the allocated subspace and the determination of the
local cluster labels is done in parallel using shared memory
parallelization by using OpenMP parallel for pragma in the
outermost loop of the Algorithm 2. The OpenMP threads are
scheduled dynamically with an emprically determined chunk
size of 40 [18]. As the iterations of local DBSCAN function
are parallelized using shared memory parallelism offered by
OpenMP, overlapping of the ϵ neighbourhood from different
threads can happen, leading to a data race condition. To avoid
this, a simple atomic min operation is used to set the cluster
label and the core property at once. Also, it is important
to note that the distance computation between a particular
point and its neighbours is not done in parallel and is done
iteratively. The algorithm of regionQuery is given below.

Algorithm 3: regionQuery
Data: Point p, Points potential_Nb, ϵ, minPoints
Result: label, neighboursp
label = INT_MAX;
for q in potential_Nb do

if euclideanDistance(p, q) ≤ ϵ then
add(neighboursp, q);
if isCorePoint(q) then

label = min(label, getLabel(q));
end

Even though the number of distance computations is re-
duced by the usage of the grid-based indexing structure,
and multiple cells and points can be processed at the same
time thanks to parallelization due to MPI and OpenMP, the
runtime of HPDBSCAN is still largely determined by the
distance computation between points across neighbouring
grid cells. A possible solution to improve the performance of
the individual workers computing the distance computation is
to use the vectorization features available in modern CPUs.
In the context of DBSCAN, SIMD instructions can be used
to simultaneously compute the distance between a particular
point and multiple points, and to determine which of these
points is within the distance ϵ. This would result in each
thread fully leveraging the SIMD capabilities of the processor
and subsequently being allotted more points on each iteration
of the local DBSCAN. We explain vectorization of the local
DBSCAN algorithm in Section IV.

The rest of this work is divided in the following sections:
Section III surveys the related work. A detailed explanation
of our algorithm VHPDBSCAN and optimizations to the
process of assigning cluster labels is provided in Section IV.
A brief introduction to the SVE supported by ARM architec-
ture based processors, and some technical details necessary
to implement VHPDBSCAN on the A64FX processor are
provided in Section IV-B. The experimental evaluation of
VHPDBSCAN on three different datasets on the A64FX
processor where we study the scaling behavior of our im-
plementation is explained in Section V. In Section V-D, we

demonstrate the performance improvements and the subse-
quent reduction in the CPU core and memory energy con-
sumption using VHPDBSCAN over HPDBSCAN on two
different processors: the A64FX using the SVE instruction
set and the Intel Xeon Platinum 8368, which uses the AVX-
512 instruction set.

III. RELATED WORK
Given their importance, a number of efforts to parallelize
popular clustering algorithms have been attempted. Ali et
al. [4] suggest a parallel variant of the K-means algorithm
using multiple CPU cores of a single machine. Woodely et
al. [32] developed a parallel variant of the K-tree algorithm
that uses a tree-like data structure where clusters are rep-
resented as leaf nodes and the cluster representations are
stored in non-leaf nodes. Hasib et al. [3] demonstrated that
applying vectorization to the K-means algorithm yielded a
performance improvement of 4.5x and a decrease in energy
consumption by a factor of 8 on an Intel i7 Haswell machine.
The earliest work on parallelizing the DBSCAN algorithm
was Parallel DBSCAN (PDBSCAN) [34], and is based on
a distributed R*-tree implementation. Here, the indices are
built on a master node and the dataset is split and distributed
to slave nodes, where local clustering is performed. Later,
the local clusters are merged by re-clustering the border-
ing regions of the split. Coppola and Vanechi [13] present
a queue-based DBSCAN implementation where each core
point is processed one at a time, but the neighbours are
computed in parallel and placed in the queue. Januzaj et
al. [22] present a distributed algorithm for analysis of data
residing on different systems in local or wide area networks
(LANs/WANs). Here, density is computed on data located
at a local site and according to a quality criterion, they are
chosen to serve as local representatives to a server site. At
the server site, they are clustered with density-based clus-
tering algorithm. The determination of local representatives
is done in parallel. Brecheisen et al. [9] show how simpler
lower bounding distance functions can be used to efficiently
parallelize DBSCAN. Parallel disjoint set based DBSCAN
(PDSDBSCAN) [25] is a parallelized implementation of
DBSCAN that uses the disjoint-set data structure and a tree-
based bottom-up approach to construct the clusters. GridDB-
SCAN [24] uses a grid-based approach for spatial locality
information in order to reduce the number of neighbourhood
queries. The key drawback of the approaches stated above
are that the indices are replicated on each of the slave
workers and the pre-processing step has to be done entirely
on the main memory in the master node, thus making it non
scalable for large databases. µDBSCAN [27] proposes a scal-
able DBSCAN implementation without the computation of
neighbourhood queries by using micro clusters for clustering
extremely large datasets. The implementation is still slower
than HPDBSCAN by a factor of 2 according to the paper but
significantly faster than PDSDBSCAN and GridDBSCAN.
Wang et al. [31] present highly parallel algorithms for exact
computation of DBSCAN for 2D and higher dimensional

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

datasets and also approximate computation of clusters. Un-
like HPDBSCAN, the algorithm is not scalable at the node
level. [2] suggest a parallel implementation of Statistical
DBSCAN for execution on Spark based cluster on Google
Cloud Platform. [26] suggest a block-based distance matrix
computation on Intel Many core processors. However, we do
not compute a distance matrix as such, but instead compute
the distances between a point and its potential neighbours and
update the cluster labels of all the points accordingly.

IV. VHPDBSCAN
A. VECTORIZATION OF LOCAL DBSCAN
The heart of the local DBSCAN algorithm lies in the distance
computation between a point and its potential neighbours
and is clearly the most compute-intensive operation in the
clustering process. We now explain the strategy to vector-
ize the distance computation and label assignment in the
local DBSCAN function. The pseudo-code to compute the
Euclidean distance is given in Algorithm 4. Calculating the
square root in the final step is deliberately omitted as, for
comparison purposes, we can directly compare the squared
values of both distances.

Algorithm 4: calculateEuclideanDistance
Data: Point p, Point q, dimensions
Result: distance
distance = 0.0;
for d = 0 to dimensions do

distance = distance + (p[d]− q[d])2;
end

Vector registers

xp yp zp − − − − −
0 512

−
x1 y1 z1 − − − − −

0 512

=

xp − x1 yp − y1 zp − z1 − − − − −
0 512

Memory

xp
yp
zp
x1
y1
z1
x2

xn
yn
zn

0 64

FIGURE 2: Vectorized computation of Euclidean distance in
a three-dimensional dataset

A naïve approach to vectorize the distance computation
illustrated in Algorithm 4 is by loading p and q into vector
registers and applying SIMD subtraction and multiplication
on the registers as shown in figure 2. The key drawback of
this step is that the number of elements that can be loaded
per iteration is limited by the dimensions of the data point.
Note that the size of each vector register in Figure 2 is
eight but only three values have been loaded into the register
resulting in under-utilization of the vector registers. The

datasets that we experimented with had dimensions that were
mostly within five. Note that a SIMD register of width 512
bits can hold up to 16 double precision floating point values
or 32 single precision floating point values. In the case of
five-dimensional vectors, it would lead to using 160 out of
the total 512 bits available in the vector register.

To exploit the larger width of the vector registers, we
need to exploit the possibility of loading multiple data points
onto the vector registers. We take advantage of the fact that
data points are sorted in the indexing phase and are laid
out consecutively in the memory. Points located close to
each other spatially are also placed together in the memory.
Hence, while we compute the neighbours of each point in
a subspace, most of the neighbours are likely to be loaded
on the cache memory already as the potential neighbours of
points within a subspace allotted to the processor are likely
to be the same. Our measurements of the cache hit rate using
the Performance Application Programming Interface (PAPI)
tool [10] while analyzing the Bremen point cloud dataset [6]
revealed an average hit rate of 98% for the L1 cache and
77% hit rate for the L2 cache, implying that only 0.46%
of the memory access was from the L3 cache or the RAM.
A detailed explanation of the Bremen point cloud dataset is
given in the section on experimental evaluation.

With the points and their coordinates placed consecutively
in the memory, the dimensions of the different points could
be efficiently loaded into the vector registers. Figure 3 illus-
trates the memory layout of a three-dimensional dataset and
how the vector registers can be used to efficiently vectorize
the Euclidean distance computation.

Vector registers

xp xp xp xp xp xp xp xp

0 V _Px 512

yp yp yp yp yp yp yp yp

0 V _Py 512

zp zp zp zp zp zp zp zp

0 V _Pz 512

x1 x2 x3 x4 x5 x6 x7 x8

0 V _X 512

y1 y2 y3 y4 y5 y6 y7 y8

0 V _Y 512

z1 z2 z3 z4 z5 z6 z7 z8

0 V _Z 512

Memory

xp
yp
zp
x1
y1
z1
x2

xn
yn
zn

0 64

FIGURE 3: Memory layout of a three-dimensional dataset

In Figure 3, registers V _X , V _Y and V _Z are vector
registers that store the x, y and z values of the j data points in
each iteration. Note that j depends on the number of elements
that can fit in the vector register. The x, y and z coordinates
of point p, from which the distances to its neighbours must
be computed, are broadcasted into vector registers V _Px,
V _Py and V _Pz respectively. To compute the Euclidean

5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

distance, we need to execute the following equation in the
distance computation loop using SIMD instructions.

Vdist =(V _X − V _Px)
2
+ (V _Y − V _Py)

2
+

(V _Z − V _Pz)
2

(1)

Now that we have the distances stored in the V dist register,
we need to check if it is less than or equal to ϵ, and for
those points that conform to the distance criteria we need
to check if they are core points. Finally, the lowest cluster
label of all the conforming core points is returned as the
cluster’s label. Cluster labels are signed 64-bit integers, and
core points are identified by storing their cluster labels as
negative. HPDBSCAN stores the points that lay within ϵ
distance in a C++ std::vector potential_Nb which is
dynamically expanded inside the for loop in Algorithm 3 us-
ing the std::vector::push_back() function. Reallo-
cation of memory inside a tight loop will significantly hamper
performance. Instead, VHPDBSCAN allocates memory for
the vector before the loop begins by specifying the size of
the vector to be n where n is the total number of potential
neighbours and hence reserving the maximum memory pos-
sible. We fill the vector with an arbitrary constant INT_MAX
and use a counter to keep track of the total number of
points that are within ϵ distance. After the execution of the
loop, only those indices of potential_Nb that do not contain
INT_MAX will indicate core points. This approach will lead
to a higher memory usage but will speed up the execution
time as we can completely avoid reallocating memory in
each iteration besides making the code SIMD friendly. The
conditions to check if the Euclidean distance is less than
or equal to ϵ and if a point is a core point can be easily
vectorized using vector compare instructions.

The optimized and vectorized regionQuery algorithm is
illustrated below.

In Algorithm 5, gatherV alues() is a vector operation
that fetches values from the array using the indices pro-
vided by the first argument,which is again a vector register,
and loads the fetched values in another vector register. The
loadOne(x) function simply fills the entire vector register
with the value passed to it, and loadArray(), reads the
consecutive values given by an array address and writes
them onto a vector register. All variables that are vectors
are denoted using a subscript v. The min() function re-
turns the minimum value in the vector register passed to it.
HPDBSCAN uses std::minmax() to retrieve the min-
imum label and assign it to all the points that belong to a
neighbourhood. Since we know that the regionQuery() func-
tion already returns the smallest cluster label, we can do away
with the use of std::minmax() function in VHPDBSCAN and
directly update the rules with the new cluster label. In the
subsequent sections, before we explain the implementation
details of our vectorized algorithm using ARM’s SVE intrin-
sics and x86 based AVX-512 intrinsics, we briefly introduce
the features of SVE and the implementation of the same in

Algorithm 5: regionQuery
Data: Point p, Dataset data, Indexes potential_Nb,

ϵ2, minPoints, Clusters cluster_labels,
Dataset dimension Dim, Elements per Vector k

Result: label, neighbours_p
for i = 0; i ≤ length(potential_Nb); i = i+ k do

predicatev = number_of_active_elements();
indicesv = loadArray(predicatev ,
potential_Nb[i]);
scaled_indicesv = indicesv * Dim;
distancev = loadOne(predicatev , 0.0);
for d = 0; d ≤ Dim do

pointv = loadArray(predicatev ,
data[p ∗Dim+ d]);

scaled_indicesv = scaled_indicesv + d;
other_pointv = gatherValues(predicatev ,
scaled_indicesv , data);

squarev = (other_pointv − pointv)
2;

distancev = distancev + squarev;
end
maskv = vectorCompare(predicatev ,
distancev ≤ ϵ2);
nearby_pointsv = gatherValues(maskv ,
indicesv , cluster_labels);
labels_less_than_zerov = nearby_pointsv ≤
0;
label = min(labels_less_than_zerov);
neighboursp.add(maskv, indicesv);

end

the A64FX CPU and the implementation of AVX-512 in Intel
Xeon 8368 (Icelake) CPU.

B. VECTORIZATION ON THE A64FX PROCESSOR
With an ever-increasing demand for vector processing capa-
bility by HPC workloads, ARM introduced a vector-length
agnostic SIMD architecture model called the SVE [29].

The SVE architecture provides 32 new scalable vector
registers whose width is implementation-dependent. These
registers are extensions of the 32 and 128-bit advanced SIMD
registers (V0-V31). There are also 16 scalable predicate
registers and a set of control registers that give each privilege
level the ability to virtualize the width of the vector registers.
The A64FX is the world’s first processor to implement SVE
for supercomputers [29]. It can perform single-precision
and half-precision floating-point calculations, as well as 8-
bit and 16-bit calculations with 512-bit wide SIMD. It has
48 calculation cores and two or four assistant cores and is
claimed to have a theoretical peak performance of 3.3792
teraflops [1] in double-precision floating point calculations.
The execution unit of the A64FX micro-architecture consists
of two fixed-point functional units, two functional units for
address computation, and simple fixed-point arithmetic. It
has two floating point units for SVE instructions and a sep-
arate predicate unit for executing predicate arithmetic. Both

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

the floating point units support a SIMD length of 512 bits
and can execute a fused multiply and add (FMA) operation
every cycle. Hence, each core can operate on 32 double-
precision floating points or 64 single-precision elements per
cycle. Also, the floating point units support half-precision
and bfloat16 formats. The L1 cache processes load/store
instructions and has a 64kib instruction cache and a 64kib
data cache that is capable of executing two simultaneous 64
byte load instructions or a single 64 byte store instruction.
Before attempting to vectorize the function, we checked if
the compiler can vectorize at least the distance computation
loop inside the regionQuery function. The pseudo-code to
compute the Euclidean distance computation between point
and other_point of dimension d is displayed in Algorithm 4.

We checked with GCC 12 and ARM CLANG compilers on
the A64FX partition of the IRENE High-Performance Clus-
ter. The source code was compiled using the -mpcu=a64fx
flag with the -O3 optimization flag. On studying the gen-
erated assembly using the objdump tool, we found that
both the compilers failed to vectorize the loop using SIMD
instructions. With the help of SVE intrinsics, the straightfor-
ward way to vectorize the loop would use predicates to check
if the loop count is less than the number of dimensions and
load the SVE register with the maximum number of elements
that is possible for an iteration and compute the distance. The
C++ code of the squared Euclidean distance between two
points of single precision floating point whose coordinates
are stored in C++ std::vector is given below.

1]
2 /*a and b are of std::vector<float> datatypes

*/
3 for (uint32_t i = 0; i < dimensions; i +=

svcntw())
4 {
5 svbool_t pg = svwhilelt_b32(i, n);
6 svfloat32_t va = svld1(pg, &a[i]);
7 svfloat32_t vb = svld1(pg, &b[i]);
8 svfloat32_t diff = svsub_f32_z(pg, va, vb);
9 svfloat32_t square = svmul_f32_z(

10 pg, diff, diff
11);
12 sum += svaddv_f32(pg, square);
13 }

Listing 1: Euclidean distance computation vectorization
using SVE intrinsics.

C. VECTORIZATION ON AVX-512
AVX stands for Advanced Vector Extensions. AVX-512 is
an expansion of the AVX and AVX-2 instruction sets, de-
signed by Intel, that can be found in both x86 and ARM
architectures. It expands the previous register length of 256
to 512 bits. We compiled the vectorized code using AVX-512
intrinsics using the Intel ICC Compiler 2021.5.0.

Once we confirmed that the compiler was using the right
instruction set for both architectures, we proceeded to vec-
torize HPDBSCAN using the algorithm described in the
previous section. The complete C++ implementation of the
VHPDBSCAN function using SVE and AVX-512 intrinsics

for a single precision multidimensional floating point dataset
can be found in our open GitHub repository1.

D. OPTIMIZATION FOR THE CLUSTERING OF HIGH
DIMENSIONAL DATASETS
We noticed that in the case of clustering of high dimensional
datasets such as datasets with dimensions greater than 15,
a significant percentage of time is spent in the distribution
of points among the different MPI ranks. Table 1 shows the
percentage of time spent in various stages of HPDBSCAN
for the different datasets used in our evaluation, along with
their dimensions. We give detailed explanations of the used
datasets in section V-B. Local DBSCAN clearly is the most
compute intense stage in the analysis of all datasets, ac-
counting for nearly almost all the runtime, in the analysis
of the Bremen point cloud and the Household power con-
sumption datasets. However, in the analysis of the Bridge
image dataset, around 33% of the runtime is spent in the
computation of scores. This was expected as the number of
dimensions in the Bridge image dataset being the highest
at 16 among all the datasets used in our analysis and the
subsequent exponential time and space complexity of the
computation of scores based on the number of dimensions
as mentioned in section II-B. Parallelizing the computation
of scores for all the cells in order to make use of the available
CPU cores will have a significant impact on the performance.
We use shared memory parallelism, using OpenMP so that
each thread computes the score for the cells assigned to it.
While HPDBSCAN directly iterated through a hash map that
consisted of pairs of cell number and the number of points
inside the cell, to compute the neighbours for each cell,
VHPDBSCAN copies the key values to a std::vector in order
to parallelize the iteration. In order to compute the neighbour-
ing cells, only the cell number is required. Parallelization of
iteration through a vector using OpenMP is straightforward
and faster. The overhead involved in copying of the key
values from the hash map to a std::vector is insignificant
compared to the gains in parallelizing the computation of
scores.

V. EXPERIMENTAL EVALUATION
In this section, we will describe the methodology
and findings of the experiments conducted to evaluate
VHPDBSCAN. The main focus of the investigation is to
show the performance improvements over HPDBSCAN.
The performance evaluation of the optimizations on various
datasets with respect to computation time, energy [12], and
the parallel programming metric speedup were evaluated in
detail. Speedup is defined as the ratio between the time taken
for running software on one processor t1 and the time taken
for running software on n processors tn.

speedup = t1/tn (2)

1https://github.com/JosephArnold/vhpdbscan/tree/
HPDBSCAN-OPTIMIZATION

7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Dataset Bremen Household Bridge
Dimensions 3 7 16

Time [%] Time [s] Time [%] Time [s] Time [%] Time [s]

Computing dimensions 1.00e-2 1.700 1.00e-3 1.700e-2 1.360e-5 5.700e-4
Computing cells 1.300e-2 2.270e1 1.8e-2 3.180 7.700e-5 3.200e-3
Sorting points 1.850e-1 3.240e1 3.100e-2 5.480 5.450e-5 2.300e-3
Computing scores 1.000e-1 1.750e1 5.600e-1 9.900e1 3.314e1 1.398e3
Distributing points 5.300e-2 9.280e1 2.900e-4 5.100e-2 1.350e-6 5.600e-5
Local DBSCAN 9.860e1 1.727e4 9.935e1 1.756e4 6.680e1 2.818e3
Merging halos 1.480e-5 2.590e-3 3.290e-6 5.810e-4 3.660e-6 1.540e-4
Appyling rules 3.330e-4 5.810e-2 1.400e-3 2.000e-1 3.270e-6 1.380e-4
Recovering order 2.800e-1 5.044e1 1.800e-2 3.180 4.330e-5 1.820e-3

TABLE 1: Percentage of time spent in each of the stages of HPDBSCAN and the absolute time

We evaluated the performance of the vectorized code on
a A64FX cluster of the Irene supercomputer provided by
TGCC (Très Grand Centre de Calcul du CEA), a high-
performance computing infrastructure aiming at hosting
state-of-the-art supercomputers in France. The supercom-
puter offers three kinds of nodes: regular computing, large
memory, and GPU. The ARM A64FX cluster used for regular
computation consists of a total 80 nodes with 48 cores
each. Each CPU operates at a frequency of 1.8GHz and
is equipped with 32GB HBM2 memory with a bandwidth
of 1TB per second. The 48 cores of each processor are
provided by four Non Uniform Memory Access (NUMA)
nodes with each NUMA node having 12 compute cores.
Based on Fujitsu PRIMEHPC FX700 technology, the 80
single-socket DDR-less compute nodes are connected via
Mellanox InfiniBand and are integrated into GENCI’s Joliot-
Curie supercomputer. The hardware was allocated to us for
the EUPEX (European Exascale Computing) project as a
software development vehicle (SDV) to optimize scientific
and machine learning applications to exploit exascale ma-
chines.

A. SOFTWARE SETUP
The operating system running on IRENE is Red Hat En-
terprise Linux version 8.8. All applications in the test have
been compiled with GCC 12.2.0 using the optimization
level Ofast and architecture flag mcpu=a64fx. The MPI
distribution on IRENE is Open MPI version 4.0.5. For the
compilation of HPDBSCAN and VHPDBSCAN, an HDF5
development library including headers and C++ bindings is
required. For HDF5, We used the preinstalled version 1.12.0.

B. DATASETS
For the evaluation of the VHPDBSCAN, we have chosen
real-world datasets of dimensions three, seven and sixteen to
observe how the vectorization is affected on by the number
of dimensions. We briefly describe the datasets used for our
evaluation below.

1) Point cloud of Bremen’s old town
This data was collected and made available by Dorit Bor-
rmann and Andreas Nüchter from the Institute of Computer
Science at the Jacobs University, Bremen, Germany [6]. It is

a 3D-point cloud of the old town of Bremen. A point cloud
is a set of points and its representative coordinate system that
often models the surface of objects. The dataset was used to
benchmark the original implementation of HPDBSCAN and
was obtained in HDF5 format from B2SHARE. DBSCAN
can be applied here to clean the dataset from noise or outliers
and find distinct objects, represented as clusters, in the point
cloud like houses, roads, or people. The whole point cloud
contains roughly 81 million data points.

2) Household dataset

A dataset containing 4 years of metering of electric power
consumption of a household using a one-minute sampling
rate: minute-averaged kilowatt, volt, and ampere measure-
ments for the household as a whole and sub-metering (e.g.,
electric water heater and air-conditioner) in watt-hours. The
dataset has been donated by Hebrail and Berard from Elec-
tricité de France R&D to the UCI Machine Learning Repos-
itory [20]. Originally, this dataset was 9-dimensional, but
after removing time and date timestamps, we obtained a 7-
dimensional dataset. The zipped text file contains 2,075,259
lines of semicolon-separated values, but some sample lines
contain missing values: we removed all lines containing a “?”
as a value, resulting in 2,049,280 data points. The dimensions
are in different units, hence we normalized them using min
max normalization using the pandas2 library in Python.

3) Image dataset

In order to evaluate the behavior of VHPDBSCAN on a
higher dimensional dataset, we choose a image dataset which
is an image of a bridge where the size of the image is 256*256
divided into 4*4 pixel blocks [16]. We refer to the dataset as
Bridge in the plots. Hence each of the 4096 pixel blocks
is represented by 16 dimensions. Like mentioned earlier,
the exponential time and space complexity involved in the
computation of neighbourhood cells, we limit the number of
dimensions to 16. For example, evaluating with a dataset of
dimension of 32 with single precision floats, the number of
operations will be a staggering 1.8e15 consuming a memory
space of 7PB.

2https://pandas.pydata.org/

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

C. SPEEDUP EVALUATION OF VHPDBSCAN
We benchmark the VHPDBSCAN application’s speedup us-
ing all the three datasets mentioned above on the A64FX.
Our principal methodological approach is thereby as follows.
Each benchmark is run five times, measuring the applica-
tion’s wall time at the beginning and end of the main()
function of the process with the MPI rank 0 and the OpenMP
thread number 0. We first study the scalability of the ap-
plications’s shared memory parallelization using OpenMP
on a single node by increasing the number of cores from
1 up to 48 as a single A64FX node contains 48 cores. We
increase the number of cores after each set of five runs with
the base measurement on exactly one core of the node. For
each set of five runs benchmark, we report the mean runtime.
The speedup coefficient is calculated compared to the single-
core run based on the mean values of the measurements for
each processor count configuration. In order to ensure the
maximum utilization of each OpenMP thread, we increased
the OpenMP dynamic chunk size further from the original
value of 40 up to 2048 where we saw the highest performance
improvements. Also, a low chunk value would result in
higher atomic min operations on the same memory location.
Beyond 2048, we saw that the performance improvements
due to shared memory parallelism began to stagnate. Also,
further increase could result in an uneven division of work-
load. We also assessed the performance by only increasing
the chunk size and keeping the original implementation intact
on the A64FX CPU. The runtime only decreased by roughly
20% proving that floating point pipelines were not utilized
to the maximum despite more work to the OpenMP threads.
Having fixed the OpenMP chunk size, we now explain each
of our scaling experiments in detail.

Node 0 Node 1
MPI Rank 0 MPI Rank 1

T0 T1 T2 T3

T4 T5 T6 T7

T44 T45 T46 T47

T0 T1 T2 T3

T4 T5 T6 T7

T44 T45 T46 T47

FIGURE 4: Hybrid parallelization using both MPI and
OpenMP on two A64FX nodes each with 48 cores. Threads
T0-T47 are each pinned to a core. Each MPI rank runs on a
seperate A64FX node.

We first study the scalability of VHPDBSCAN on a single
A64FX node by keeping the number of MPI ranks as one
and increasing the number of OpenMP threads where each
thread is assigned to a core. Figure 5 shows the runtimes of
VHPDBSCAN and HPDBSCAN against the the number of
cores. We can see that there is a reduction in the runtime
by about 52% and 63% on the Bremen point cloud and

Household consumption datasets respectively. In the case of
the Bridge image dataset, improvements due to the paral-
lelization of the local DBSCAN HPDBSCAN are seen only
upto 8 cores after which the due to lack of parallelization of
the computation of scores which is the main computational
bottleneck results in no further drop in the runtime with the
increase in the number of cores. However a clear reduction
in the runtime is observed in the case of VHPDBSCAN
thanks to the parallelization of the computation of scores.
Also another important observation to make is that there is no
significant improvement due to vectorization as the runtime
of VHPDBSCAN is nearly the same as HPDBSCAN for a
single core run in the case of the image dataset. Interestingly,
the performance of the naive approach to the vectorization of
the distance computation as mentioned in Algorithm 4 was
similar to that of our approach. Compared to the Bremen
and the Household power consumption datasets where the
dimensions were three and seven respectively, the number
of unused lanes in the SVE register in the case of the naive
approach is much lesser (16 in the case of single precision
floats). Ideally if the number of dimensions of the dataset
was a multiple of the vector length, the naive approach
may be even better than our approach as there will be no
unused lanes in the SVE . Also, in our approach there is
an additional overhead due to the broadcasting of the di-
mensions of point p whose neighbours are being computed
(n/sizeof(vectorregister)) ∗ dimensions times where n
is the number of points in the neighbouring cells of point
p and the vector gather instruction, that must be executed
for the same number of times to load the coordinates of the
point from different memory locations. Note that the ARM
microarchitecture manual3 mentions that the number µ ops
needed for a gather instruction is 11 whereas in the case
of a SVE load instruction, it is only 5. However, this could
not be experimentally verified due to the exponential time
complexity involved in the computation of scores for higher
dimensional datasets as mentioned in Section II-B. Figure 8
illustrates the scaling behavior on a single node. We observe
that in the case of the Bremen point cloud dataset, both
HPDBSCAN and VHPDBSCAN scale well up to about 8
cores, after which there is a gradual drop in the scalability.
The speedup of the VHPDBSCAN version remains slightly
higher than that of HPDBSCAN till up to 32 cores indicating
higher utilization of the processors’ vector registers. Also,
for efficient usage of the SIMD capability of the processor,
the number of points that can be loaded into the vector
registers must be sufficiently large to offset the vectorization
overhead. A key scalability limiting factor is that with an
increase in the number of threads, there is a growing number
of atomicMin() clashes. On the Household power con-
sumption dataset, the scalability of both the VHPDBSCAN
and the HPDBSCAN is much better. Note that the distance
computations involved is highly dependent on the input pa-

3https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_
Microarchitecture_Manual_en_1.3.pdf

9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

rameters and the spatial distribution of a dataset which can
subsequently influence the scaling behavior as well. Also,
the Household dataset has higher dimensions than that of the
Bremen point cloud dataset and would require more vector
registers and SIMD instructions. With the increase in the
number of cores, there is a better usage of floating point
pipelines of all the cores involved. In the case of the Bridge
image dataset, the scalability of VHPDBSCAN almost close
to the ideal scalability up to 18 cores due to the parallelization
of the computation of scores. Note that the computation of
local DBSCAN is no longer the computational bottleneck
and the increase in the number of cores has no impact on the
performance which is clearly reflected in the poor scalability
on the analysis of image dataset in HPDBSCAN.

In order to study the scalability of VHPDBSCAN and
HPDBSCAN using MPI parallelization alone, we use one
MPI process per core while keeping the number of OpenMP
threads to one. Figure 6 and Figure 9 illustrate the runtime
and the scaling behavior of VHPDBSCAN and HPDBSCAN
using only MPI parallelization respectively. Figure 6 shows
a 52% reduction in the execution time in the analysis of both
the Bremen point cloud and the Household power consump-
tion datasets. However, in both the datasets, VHPDBSCAN
shows lower scalability than HPDBSCAN. With the increase
in the number of MPI ranks, the points assigned for clustering
to a single core decreases. With a large number of MPI ranks
assigned to VHPDBSCAN, in the MPI only parallelization,
the number of points assigned to a core decreases as a result
of which the performance benefits due to vectorization is
offset by the MPI synchronization overhead and also the vec-
torization overhead. However, in the case of HPDBSCAN,
the time spent in the local DBSCAN computation continues
to be more significant than the MPI synchronization overhead
resulting in better scalability. This observation is in line with
Amdahl’s law. In the benchmark, we use a constant problem
size, disallowing infinite speedup performance gains. In the
case of the Bridge image dataset, similar to our observation in
the previous experiment, there is no significant improvement
in the performance due to the vectorization of the local
DBSCAN. Also, due to the lack of OpenMP parallelization
of the computation of scores, the runtime should have been
similar to of HPDBSCAN where the computation of scores is
not parallelized anyways. However, we do observe a notice-
able reduction in the runtime in VHPDBSCAN which can
be attributed to the reduction in the runtime in the merging
of the halo cells. MPI’s MPI_alltoallv API is used to
exchange the indices of the halo cells among all the MPI
processes. In the case of VHPDBSCAN, the indices are
stored as 32-bit signed integers unlike in HPDBSCAN where
they are stored as 64-bit signed integers. This results in lower
memory bandwidth in MPI communication. Note that the
SVE intrinsics require single precision floats to be accessed
using 32-bit integers and double precision floats accessed
using 64-bit indices. As the image dataset was represented
using 32-bit floats, the indices also had to be 32-bit integers
accordingly.

1 2 4 8 16 32 48
OpenMP Threads

102

103

104

R
un

tim
e

[s
]

Dataset
Bridge
Bremen
Household

Optimization
Vectorized
Not vectorized

FIGURE 5: Runtime against the number of cores on a single
A64FX node analyzing the Bremen, Household and Bridge
pixel datasets.

Finally, we study the scaling behavior of VHPDBSCAN
and HPDBSCAN by enabling both MPI parallelization and
OpenMP parallelization. Figure 4 illustrates the set up for
hybrid parallelization on two A64FX nodes, each running
a MPI rank. We achieve this by assigning each MPI rank
to a A64FX node and parallelizing the computation locally
on each node by assigning each OpenMP thread to a core.
The number of OpenMP threads per MPI rank is 48 as each
A64FX node has only 48 cores. Figure 7 shows a 51% and
a 49% reduction in the runtimes for the Household power
consumption dataset and the Bremen point cloud dataset
respectively, similar to what we observed in the case of
OpenMP only and MPI only parallelization experiments.
The scalability of VHPDBSCAN trends lower than that of
HPDBSCAN on both the datasets with the gap widening
further in the case of Bremen point cloud dataset as shown in
Figure 10. With a higher number of workers being assigned to
exploit both OpenMP and MPI parallelism and the problem
size remaining constant, the effect of Amdahl’s law becomes
more pronounced. The deviation from the ideal scaling be-
haviour is the highest in the case of hybrid (both OpenMP
and MPI parallelism. A similar observation can be seen using
the Bridge image dataset and the only difference is that all
the performance improvements using VHPDBSCAN come
from the parallelization of the computation of scores. The
lack of scalability in HPDBSCAN is simply due to the fact
that there is no OpenMP parallelization in the computation
of scores which is the most compute intensive function in
the case of the image dataset. The lack of scalability in
the case of VHPDBSCAN can be attributed to the effect of
Amdahl’s law as the problem size is very small compared
to that of the Bremen point cloud and the Household power
consumption datasets as our main objective in the analysis of
the Bridge image dataset was to evaluate the behavior of our
application on a dataset of a dimension that is almost equal
to the number of vector registers. Note that the runtime in the
case of VHPDBSCAN is around 10 times less than that of
HPDBSCAN.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

1 2 4 8 16 32 64 128 256 512
MPI Ranks

102

103

104

R
un

tim
e

[s
]

Dataset
Bremen
Household
Bridge

Optimization
Vectorized
Not vectorized

FIGURE 6: Runtime against the number of cores on a single
A64FX node analyzing the Bremen, Household and Bridge
pixel datasets.

1 2 4 8 16 32 48
Nodes

102

103

104

R
un

tim
e

[s
]

Dataset
Bridge
Bremen
Household

Optimization
Vectorized
Not vectorized

FIGURE 7: Runtime against the number of nodes, each node
utilizing all the 48 cores in the analysis of the Bremen and
Household datasets.

1 2 4 8 16 32 48
OpenMP Threads

1

2

4

8

16

32
48

Sp
ee

du
p

Dataset
Bridge
Bremen
Household

Optimization
Vectorized
Not vectorized

FIGURE 8: Strong scaling number of cores on a single
A64FX node analyzing the Bremen and Household datasets.

1 2 4 8 16 32 64 128 256 512
#MPI Ranks

1
2
4
8

16
32
64

128
256
512

Sp
ee

du
p

Dataset
Bremen
Household
Bridge

Optimization
Vectorized
Not vectorized

FIGURE 9: Strong scaling using MPI only parallelization
analyzing the Bremen and Household datasets.

1 2 4 8 16 32 48
#Nodes

1

2

4

8

16

32
48

Sp
ee

du
p

Dataset
Bridge
Bremen
Household

Optimization
Vectorized
Not vectorized

FIGURE 10: Strong scaling using both OpenMP and
MPI parallelization analyzing the Bremen and Household
datasets.

D. ENERGY CONSUMPTION

Reporting and improving the energy efficiency of hardware
and software has seen increased interest in recent years in the
HPC community. The interest grew even more since large
language models became popular, after many publications
reported the estimated carbon emissions of training and using
such models in HPC systems and cloud data centers [30].
Since then, efforts to quantify the energy cost of HPC appli-
cations have increased, leading to the development of energy
monitoring tools targeted at the HPC environment [17]. We
report the CPU energy consumption of HPDBSCAN and
VHPDBSCAN to observe how the energy scaling behavior
changes with the number of parallel threads on a processor.
We report energy and not CO2, as we believe energy provides
a more comparable value across hardware and applications,
and does not have any temporal and geographical dependen-
cies like CO2 [14].

We measured the energy consumption of two CPUs
while running HPDBSCAN and VHPDBSCAN: first on the
A64FX as mentioned in the previous experiments, and sec-
ondly on the Intel Xeon Platinum 8368 [21]. We made use
of the HoreKa Blue super-computer at the Super Computing
Centre in Karlsruhe. Each of the 610 nodes in HoreKa Blue

11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

contains two Intel Xeon Platinum 8368 processors, a 960GB
SSD, and is interconnected with an InfiniBand HDR fabric.
Out of the 610 nodes, 32 nodes are high memory nodes
with 512GB of main memory, and 8 nodes are extra large
memory nodes 4096GB.Intel Xeon Platinum includes the
AVX512 extension, a set of ultrawide 512 registers capable of
vectorizing operations of a variety of data formats. AVX512
has been shown to improve performance in different types of
applications [8], [11]. We translated the SVE implementation
to AVX512 to compare the performance and the energy
consumption between VHPDBSCAN and HPDBSCAN al-
gorithm. The total energy consumption of the CPU was col-
lected using the perf tool4. perf is a Linux tool that allows
users to collect per process and system-wide performance
counters while an application is running. On the A64FX,
we used the EA_CORE, EA_L2, and EA_MEMORY perfor-
mance monitoring unit (PMU) events to measure energy, as
reported by Fujitsu5. These registers track the energy used by
the individual cores, the L2 cache shared by a Core Memory
Group (CMG), and the High Bandwidth Memory of each
CMG in the CPU. Since the perf tool collects the PMU
events for each core whereas EA_L2 and EA_MEMORY
account for a CMG consisting of 12 cores, we only monitored
the EA_L2 and EA_MEMORY values for each core in a
CMG. The energy data on the Intel Xeon Platinum 8368 was
collected using the power/energy-pkg/ event, which
reports a mostly complete picture of "Core" and "Uncore"
components of the CPU, based on the Intel RAPL interface
[23].

102

103

104

R
un

tim
e

[s
]

Arch
Intel
A64FX

Optimization
Vectorized
Not vectorized

1 4 8 12 16 20 24 28 32 38
OpenMP Threads

105

106

C
PU

E
ne

rg
y

[J
]

FIGURE 11: Runtime and energy comparison between the
vectorized and non vectorized version of HPDBSCAN run-
ning on the A64FX and the Intel Xeon processors.

4https://perf.wiki.kernel.org/
5https://github.com/fujitsu/A64FX/blob/master/doc/A64FX_PMU_

Events_v1.3.pdf

An initial observation from Figure 11 reveals that energy
follows the same trend as the runtime, with a decrease in the
total consumed energy by the CPUs as the clustering runtime
decreases. Secondly, it can be seen that, while there is a
clear performance improvement between VHPDBSCAN and
HPDBSCAN running on the Intel processor, it has a lesser
impact than can be seen on the A64FX. By looking at the
assembly code of the HPDBSCAN with the Intel compiler,
we found that it was making use of vectorized registers of
lower length (AVX, AVX2), so the potential gains by using
the longer vector registers are lower.

Thirdly, one interesting difference between the two ar-
chitectures is the changes in power draw as the number of
OpenMP threads increases. On the Intel Xeon processors, the
power draw goes from 105 Watts when running HPDBSCAN
on a single core, to 235 Watts when using all 38 cores, not
too far from reaching the advertised Thermal Design Power
of 270 Watts6. On the other hand, based on the energy data
gathered from the A64FX, the total power draw goes from
100 Watts to 104 Watts (≈ 86 Watts due to the compute
cores, and the rest due to the shared L2 Cache and HBM),
with no major increase due to the higher core utilization.

VI. CONCLUSION
In this paper, we proposed a new algorithm for the vector-
ization of the DBSCAN algorithm by taking advantage of
the memory layout of the points to fill the SIMD registers.
We also showed how parallelization of the computation of
scores for each cell in the grid is critical for speedup in the
analysis of higher dimensional datasets. While the existing
HPDBSCAN implementation was already scalable at both
the shared memory and the distributed memory levels, we
demonstrated that our proposed VHPDBSCAN could further
exploit the vector instructions of modern processors to gain
significant performance improvements. We showed perfor-
mance improvements due to vectorization on two different
datasets on the A64FX processor and demonstrated that
VHPDBSCAN outperformed the HPDBSCAN code by a
factor of two. Apart from performance improvements, we
also analysed the energy gains due to our optimizations on
both architectures. We investigated the energy consumption
of VHPDBSCAN compared to HPDBSCAN, where we ob-
served a reduction in the total energy used by the processor
proportional to the reduction in runtime, 50% on the A64FX
processor, and 19% on the Intel Xeon processor. In the future,
we plan to extend VHPDBSCAN to support other data types
supported by modern CPUs, such as half-precision floating
point and float data types. This would result in lower memory
bandwidth for applications that do not demand the accuracy
of current 32 or 64-bit floating point formats. Additionally,
we plan to offload the computationally intensive task of dis-
tance calculation to various hardware accelerators, including
GPUs.

6https://ark.intel.com/content/www/us/en/ark/products/212455/
intel-xeon-platinum-8368-processor-57m-cache-2-40-ghz.html

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

REFERENCES
[1] FUJITSU Processor A64FX — fujitsu.com. https://www.fujitsu.com/

global/products/computing/servers/supercomputer/a64fx/#anc-03. [Ac-
cessed 07-03-2024].

[2] Parallel implementation of statistical dbscan algorithm for spark-based
clustering on google cloud platform. International Journal of Intelligent
Engineering and Systems, 2023.

[3] Natvig Lasse Al Hasib Abdullah, Cebrian Juan M. A vectorized k-means
algorithm for compressed datasets: design and experimental analysis. The
Journal of Supercomputing, 74:2705– 2728, 2018.

[4] Hadian Ali and Saeed Shahrivari. High performance parallel k-means
clustering for disk-resident datasets on multi-core cpus. The Journal of
Supercomputing, 69(2):845–863, 2014.

[5] Jon Louis Bentley and Jerome H. Friedman. Data structures for range
searching. ACM Comput. Surv., 11(4):397–409, dec 1979.

[6] C. Bodenstein. HPDBSCAN benchmark test files.
[7] Surekha Borra, Rohit Thanki, and Nilanjan Dey. Satellite Image Cluster-

ing, pages 31–52. Springer Singapore, Singapore, 2019.
[8] Berenger Bramas. A novel hybrid quicksort algorithm vectorized using

AVX-512 on intel skylake. International Journal of Advanced Computer
Science and Applications, 8(10), 2017.

[9] Stefan Brecheisen, Hans-Peter Kriegel, and Martin Pfeifle. Parallel
density-based clustering of complex objects. In Wee-Keong Ng, Masaru
Kitsuregawa, Jianzhong Li, and Kuiyu Chang, editors, Advances in
Knowledge Discovery and Data Mining, pages 179–188, Berlin, Heidel-
berg, 2006. Springer Berlin Heidelberg.

[10] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable
programming interface for performance evaluation on modern processors.
Int. J. High Perform. Comput. Appl., 14(3):189–204, aug 2000.

[11] Juan M. Cebrian, Lasse Natvig, and Magnus Jahre. Scalability analysis of
AVX-512 extensions. The Journal of Supercomputing, 76(3):2082–2097,
2020.

[12] Debus Charlotte, Piraud Marie, and Götz Markus Streit Achim,
Theis Fabian. Reporting electricity consumption is essential for sustain-
able ai. Nature Machine Intelligence, 5(11):1176–1178, 2023.

[13] Massimo Coppola and Marco Vanneschi. High-performance data mining
with skeleton-based structured parallel programming. Parallel Computing,
28(5):793–813, 2002.

[14] Charlotte Debus, Marie Piraud, Achim Streit, Fabian Theis, and Markus
Götz. Reporting electricity consumption is essential for sustainable
AI. Nature Machine Intelligence, 5(11):1176–1178, 2023. Number: 11
Publisher: Nature Publishing Group.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI
Press, 1996.

[16] P. Fränti, M. Rezaei, and Q. Zhao. Centroid index: cluster level similarity
measure. Pattern Recognition, 47(9):3034–3045, 2014.

[17] Juan Pedro Gutiérrez Hermosillo Muriedas, Katharina Flügel, Charlotte
Debus, Holger Obermaier, Achim Streit, and Markus Götz. perun:
Benchmarking energy consumption of high-performance computing ap-
plications. In José Cano, Marios D. Dikaiakos, George A. Papadopoulos,
Miquel Pericàs, and Rizos Sakellariou, editors, Euro-Par 2023: Parallel
Processing, Lecture Notes in Computer Science, pages 17–31. Springer
Nature Switzerland, 2023.

[18] Markus Götz, Christian Bodenstein, and Morris Riedel. HPDBSCAN:
highly parallel DBSCAN. In Proceedings of the Workshop on Machine
Learning in High-Performance Computing Environments, MLHPC ’15,
pages 1–10. Association for Computing Machinery, 2015.

[19] Jiawei Han, Micheline Kamber, and Jian Pei. 11 - advanced cluster
analysis. In Jiawei Han, Micheline Kamber, and Jian Pei, editors, Data
Mining (Third Edition), The Morgan Kaufmann Series in Data Manage-
ment Systems, pages 497–541. Morgan Kaufmann, Boston, third edition
edition, 2012.

[20] Georges Hebrail and Alice Berard. Individual household electric power
consumption. Published: UCI Machine Learning Repository.

[21] Intel. Intel® xeon® platinum 8368 processor (57m cache, 2.40 GHz)
product specifications.

[22] Eshref Januzaj, Hans-Peter Kriegel, and Martin Pfeifle. Scalable density-
based distributed clustering, 2014.

[23] Kashif Khan, Mikael Hirki, Tapio Niemi, Jukka Nurminen, and
Zhonghong Ou. RAPL in action: Experiences in using RAPL for power

measurements. ACM Transactions on Modeling and Performance Evalua-
tion of Computing Systems (TOMPECS), 3, 2018.

[24] Sonal Kumari, Poonam Goyal, Ankit Sood, Dhruv Kumar, Sundar Bal-
asubramaniam, and Navneet Goyal. Exact, fast and scalable parallel
dbscan for commodity platforms. In Proceedings of the 18th International
Conference on Distributed Computing and Networking, ICDCN ’17, New
York, NY, USA, 2017. Association for Computing Machinery.

[25] Md. Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao,
Fredrik Manne, and Alok Choudhary. A new scalable parallel dbscan al-
gorithm using the disjoint-set data structure. In SC ’12: Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, pages 1–11, 2012.

[26] Timofey Rechkalov and Mikhail Zymbler. A study of euclidean distance
matrix computation on intel many-core processors. In Leonid Sokolinsky
and Mikhail Zymbler, editors, Parallel Computational Technologies, pages
200–215, Cham, 2018. Springer International Publishing.

[27] Aditya Sarma, Poonam Goyal, Sonal Kumari, Anand Wani, Jagat Sesh
Challa, Saiyedul Islam, and Navneet Goyal. µdbscan: An exact scalable
dbscan algorithm for big data exploiting spatial locality. In 2019 IEEE
International Conference on Cluster Computing (CLUSTER), pages 1–11,
2019.

[28] Bao-Quan Shi, Jin Liang, and Qing Liu. Adaptive simplification of point
cloud using k-means clustering. Computer-Aided Design, 43(8):910–922,
2011.

[29] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, and Paul
Walker. The arm scalable vector extension. IEEE Micro, 37(2):26–39,
March 2017.

[30] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and pol-
icy considerations for deep learning in NLP. Number: arXiv:1906.02243.

[31] Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-efficient and practical
parallel dbscan. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’20, page 2555–2571, New
York, NY, USA, 2020. Association for Computing Machinery.

[32] Alan Woodley, Ling-Xiang Tang, Shlomo Geva, Richi Nayak, and Timo-
thy Chappell. Parallel k-tree: A multicore, multinode solution to extreme
clustering. Future Generation Computer Systems, 99:333–345, 2019.

[33] Roung-Shiunn Wu and Po-Hsuan Chou. Customer segmentation of
multiple category data in e-commerce using a soft-clustering approach.
Electronic Commerce Research and Applications, 10(3):331–341, 2011.

[34] Kriegel Hans-Peter Xu Xiaowei, Jäger Jochen. A fast parallel clustering
algorithm for large spatial databases. Data Mining and Knowledge
Discovery, 3:263–290, 1999.

JOSEPH ARNOLD XAVIER received his Bach-
elor degree in Computer Science and Engineer-
ing from Visvesvaraya Technological University
(VTU) and Masters in Computer Science and En-
gineering from the National Institute of Technol-
ogy Puducherry, India. His work focuses primarily
on optimization of applications in high Perfor-
mance computing systems. He is currently pursu-
ing his Ph.D degree in Computational Engineering
from the University of Iceland in conjunction with

the Juelich Supercomputing Centre, Germany.

13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

JUAN PEDRO GUTIÉRREZ HERMOSILLO
MURIEDAS received his B.Sc. in Electrical Engi-
neering and M.Sc. in Computer Science from the
Karlsruhe Institute of Technology. At the present
moment, he is pursuing a Ph.D. degree at the
Scientific Computing Centre in Karlsruhe, Ger-
many. His work focuses on data-distributed appli-
cations in high-performance computing systems,
with special interest in finding efficient paralleliza-
tion strategies, as well as monitoring and bench-

marking the energy consumption of large-scale applications.

STEPAN NASSYR recieved his B.Sc. and M.Sc.
in Physics at the University of Wuppertal (Bergis-
che Universität Wuppertal) and is currently pur-
suing a Ph.D. degree in Computer Science from
the University of Wuppertal in conjunction with
the Jülich Supercomputing Centre in Germany.
His work focuses on microarchitectural analysis
and co-design with a focus on ARM and RISCV
processors, employing cycle-level simulation and
design space exploration.

ROCCO SEDONA (Member, IEEE) received his
B.Sc. and M.Sc. degrees in Information Engi-
neering from the University of Trento in 2016
and 2019, respectively, and a Ph.D. degree in
Computational Engineering from the University
of Iceland in 2023. He is a member of the “AI
and ML for Remote Sensing” Simulation and Data
Lab at the JSC in Germany. His research inter-
ests primarily lie in the field of Deep Learning
and its application to Remote Sensing data. He

has extensively utilized optical satellite data acquired by Landsat (NASA)
and Sentinel (ESA) missions towards near real-time land cover classifica-
tion. Additionally, he specializes in Distributed Deep Learning on High-
Performance Computing systems, an area of study that he has been actively
engaged in since 2019.

MARKUS GÖTZ (Member, IEEE) received his
B.Sc. and M.Sc. degrees in IT-System Engineering
from the University of Potsdam, Germany, in 2010
and 2014 respectively, with intermediate stays the
Blekinge Tekniska Högskola, Sweden and CERN,
Switzerland. Since 2017 he holds a Ph.D. degree in
Computational Engineering from the University of
Iceland in conjunction with the Juelich Supercom-
puting Centre, Germany. Currently, he is a post-
doctoral researcher at the Scientific Computing

Centre, Karlsruhe Institute of Technology, Germany as the project manager
for the Helmholtz Analytics Framework and the head of the Helmholtz AI
consultants team. In line with his work, he focuses on applied artificial
intelligence and data analysis on high-performance cluster systems to work
on the grand challenges in the natural sciences. Markus Götz’s research
interests include machine learning, global optimization as well as parallel
algorithm engineering. He is a member of the IEEE.

ACHIM STREIT is one of the directors of the
Steinbuch Centre for Computing at the Karlsruhe
Institute of Technology (KIT). He is also a Profes-
sor for Distributed and Parallel High-performance
Computing Systems at KIT’s department of Infor-
matics. In 1999, he received a Diploma in Com-
puter Science from the University of Dortmund,
Germany and in 2003 a Ph.D. degree in the same
subject from the University of Paderborn, Ger-
many. Afterwards Achim Streit led the Federated

Systems and Data Division at the Juelich Supercomputing Centre, Germany.
He initiated and chaired several national and international research initiatives
within the Helmholtz association (e.g. Helmholtz Data Federation and
Helmholtz Information & Data Science Academy (HIDA)) on the national
level (e.g. NFDI4Ing and NFDI-MatWerk) and the European level (e.g.
EUDAT and EOSC). His research interests include high-performance and
data-intensive computing, Big Data and federated data management, data
analytics as well as job scheduling and resource management for parallel
and distributed computing.

MORRIS RIEDEL (Member, IEEE) received his
PhD from the Karlsruhe Institute of Technology
(KIT) and worked in data-intensive parallel and
distributed systems since 2004. He is currently a
Full Professor of High-Performance Computing
with an emphasis on Parallel and Scalable Ma-
chine Learning at the School of Natural Sciences
and Engineering of the University of Iceland.
Since 2004, Prof. Dr. - Ing. Morris Riedel held
various positions at the Juelich Supercomputing

Centre of Forschungszentrum Juelich in Germany. In addition, he is the Head
of the joint High Productivity Data Processing research group between the
Juelich Supercomputing Centre and the University of Iceland. Since 2020, he
is also the EuroHPC Joint Undertaking governing board member for Iceland.
His research interests include high-performance computing, remote sensing
applications, medicine and health applications, pattern recognition, image
processing, and data sciences, and he has authored extensively in those
fields. Prof. Dr. – Ing. Morris Riedel online YouTube and university lectures
include High-Performance Computing – Advanced Scientific Computing,
Cloud Computing and Big Data – Parallel and Scalable Machine and Deep
Learning, as well as Statistical Data Mining. In addition, he has performed
numerous hands-on training events in parallel and scalable machine and deep
learning techniques on cutting-edge HPC systems.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

GABRIELE CAVALLARO (Senior Member,
IEEE) received his B.Sc. and M.Sc. degrees in
Telecommunications Engineering from the Uni-
versity of Trento, Italy, in 2011 and 2013, respec-
tively, and a Ph.D. degree in Electrical and Com-
puter Engineering from the University of Iceland,
Iceland, in 2016. From 2016 to 2021 he has been
the deputy head of the “High Productivity Data
Processing” (HPDP) research group at the Jülich
Supercomputing Centre (JSC), Forschungszen-

trum Jülich, Germany. Since 2022, he is the Head of the “AI and ML
for Remote Sensing” Simulation and Data Lab at the JSC and an Adjunct
Associate Professor with the School of Natural Sciences and Engineering,
University of Iceland, Iceland. From 2020 to 2023, he held the position
of Chair for the High-Performance and Disruptive Computing in Remote
Sensing (HDCRS) Working Group under the IEEE GRSS Earth Science
Informatics Technical Committee (ESI TC). In 2023, he took on the role
of Co-chair for the ESI TC. Concurrently, he serves as Visiting Professor at
the Φ-lab within the European Space Agency (ESA), where he contributes
to the Quantum Computing for Earth Observation (QC4EO) initiative.
Additionally, he has been serving as an Associate Editor for the IEEE
Transactions on Image Processing (TIP) since October 2022. He was the
recipient of the IEEE GRSS Third Prize in the Student Paper Competition
of the IEEE International Geoscience and Remote Sensing Symposium
(IGARSS) 2015 (Milan - Italy). His research interests cover remote sensing
data processing with parallel machine learning algorithms that scale on
distributed computing systems and innovative computing technologies.

15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3507193

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

