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We present a high-resolution single crystal x-ray diffraction study of kagome superconductor CsV3Sb5, 
exploring its response to variations in pressure and temperature. We discover that at low temperatures, the 
structural modulations of the electronic superlattice, commonly associated with charge-density-wave order,
undergo a transformation around p ∼ 0.7 GPa from the familiar 2 × 2 pattern to a long-range-ordered 
modulation at wave vector q ¼ ð0; 3=8; 1=2Þ. Our observations align with inferred changes in the charge-
density-wave pattern from prior transport and nuclear-magnetic-resonance studies, providing new insights 
into these transitions. Interestingly, the pressure-induced variations in the electronic superlattice correlate 
with two peaks in the superconducting transition temperature as pressure changes, hinting that fluctuations 
within the electronic superlattice could be key to stabilizing superconductivity. However, our findings 
contrast with the minimal pressure dependency anticipated by ab initio calculations of the electronic 
structure. They also challenge prevailing scenarios based on a Peierls-like nesting mechanism involving 
Van Hove singularities.

Understanding the correlation between unconventional
superconductivity (SC) and spatial electronic modulations,
encompassing magnetic, nematic, or charge-density-wave
(CDW) orders, represents one of the key challenges in con-
temporary condensed matter research [1–3]. Consequently,
extensive endeavors are underway to unravel the underlying
physics in quantum materials like cuprates [4], nickelates
[5,6], iron or nickel pnictides [7–9], transition metal dichal-
cogenides [10], or heavy fermion compounds [11], where the
relation between SC and CDW phenomena can be examined
in different settings.
In this framework, a new and extremely intriguing class

of materials has recently been discovered: the layered
kagome compounds AV3Sb5 (A ¼ K, Cs, Rb) [12].
Characterized by an electronic structure featuring flat
bands, Van Hove singularities (VHSs), Dirac cones, and
nontrivial band topology, these materials offer a unique
platform for exploring novel electronic states of matter with
intertwined orders [3]. Particularly noteworthy is the
detection of an electronic superlattice below 94 K [12],
which is commonly associated with a CDW, and that is

succeeded by superconductivity below Tc ≃ 2.7 K in
CsV3Sb5—a revelation that has sparked considerable
excitement. This excitement has been further substantiated
by recent accounts of the absence of Kohn anomalies in the
phonon dispersion associated with the formation of the
CDW [13,14], chirality [15], time-reversal symmetry
breaking, or electronic nematicity [16] of the electronic
superlattice. Consequently, while we refer to the electronic
modulation in CsV3Sb5 as a CDW in the following, we
recognize that it is often rightly considered unconventional
and that the underlying electronic order may be substan-
tially more complex. As a matter of fact, numerous
important aspects of this CDW and of its relationship
with SC in CsV3Sb5 remain elusive and subject to intense
debate [16–20]. The origin of the CDW and the nature of
the interplay between electronic and lattice degrees of
freedom in these materials therefore requires further
elucidation [13,14,21,22].
To address such issues, pressure tuning has proven to be

a valuable tool in quantum materials research [23–25],
providing a reversible method to adjust the balance
between competing energy scales and enabling the inves-
tigation of complex phase diagrams in these materials
without introducing chemical disorder. This approach
is without doubt most relevant in the case of kagome
superconductors, since both SC and CDW transition
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temperatures have been reported to strongly depend on
hydrostatic pressure, displaying intriguing behavior already
for relatively modest pressures [17,26,27]. This is demon-
strated across a diverse array of measurements encompass-
ing electrical andmagnetotransport, magnetic susceptibility,
nuclear magnetic resonance (NMR) and nuclear quadrupole
resonance, x-ray diffraction (XRD), and muon spin reso-
nance [17,26–29], which have revealed that both the super-
conducting transition temperature (Tc) and the upper critical
field Hc2 as a function of pressure p exhibit a distinctive
double-dome feature below p < 2.0 GPa, characterized
by a first maximum (Tc ∼ 7 K, μ0Hc2 ∼ 3.5 T) at p1 ≃ 0.7
GPa, succeeded by a second maximum (Tc ∼ 8 K,
μ0Hc2 ∼ 4 T) at p2 ≃ 2 GPa [17,27,30,31]. The CDW
transition temperature appears monotonically suppressed
with pressure, but from a marked reduction of the
magnetoresistance [26] and the appearance of new NMR
lines above p1, changes in the electronic modulation
pattern have been indirectly inferred.
Nonetheless, a thorough examination of the pressure

dependence of CDW superstructures across various tem-
peratures—essential for clarifying the microscopic physics
at play—has yet to be undertaken. Here, we close this
gap by reporting a detailed pressure- and temperature-
dependent single crystal x-ray diffraction (XRD) study of
the crystal lattice and its superstructures in CsV3Sb5. We
report the gradual suppression of the familiar 2 × 2 CDW
modulation with pressure, alongside the appearance of a
new type of modulation with a completely different pattern
and periodicity above p1. The two orders coexist for a
while before the disappearance of the former. At 25 K, no
CDW survives above ∼1.7 GPa.
The clear change of the CDW pattern we report in the

investigated pressure range, however, contrasts with the
modest impact of pressure on the electronic structure as
computed—using the experimentally determined pressure-
dependent lattice parameters—by first-principles calcula-
tions. In particular, the Van Hove singularities below the
Fermi energy show minimal pressure dependence in the
investigated range. This discrepancy challenges weak
coupling scenarios that attribute the formation of electronic
superlattices in kagome metals AV3Sb5 (A ¼ K, Cs, Rb) to
a Peierls-like nesting of Van Hove singularities [32,33].
We investigated single crystals from two distinct batches,

referred to as batch D and batch K in the following,
synthesized and characterized, as described in the
Supplemental Material [34]. High-resolution XRD mea-
surements as a function of T and p were performed at the
ID15B beamline of the ESRF in Grenoble, France, using a
monochromatic x-ray beam with an energy of 30.17 keV,
focused down to 2 × 4 μm2 at the sample position. The
diffraction patterns were measured with an EIGER2 X 9M
CdTe flat panel detector. Diamond anvil cells with helium
as a pressure transmitting medium were used to apply
pressures of up to 27 GPa under close to hydrostatic

conditions. In each diamond anvil cell, one sample of batch
D and one of batchK were loaded into the sample space, so
that both samples were in exactly the same experimental
condition during our pressure- and temperature-dependent
XRD measurements. Further details are given in the
Supplemental Material [34].
At room temperature and ambient pressure, both samples

exhibit a hexagonal P6=mmm structure, in full agreement
with previously published results [43]. In the following,
reflections will be always indexed referring to this structure,
even though there are structural transitions as a function ofp
and T [34]. In agreement with previous reports [12], both
samples develop a 2 × 2 superstructure within the ab planes
when cooled below 94 K at ambient or small pressure. This
CDW transition is signaled by additional satellite reflec-
tions, as demonstrated in panels (a) and (c) of Fig. 1.
Interestingly, as can also be observed in these panels, the
structural modulation of the two set of samples differs along
the c direction. At 40 K and p ¼ 0.23 GPa, despite special
care taken to ensure they are precisely in the same exper-
imental condition and sharing the same pT history, sample
K exhibits a 2 × 2 × 4 modulation, whereas sample D
displays a 2 × 2 × 2 order. This observation supports earlier
conclusions that the orders along the c-axis is metastable
[44], while the 2 × 2 modulation within the 2D layers
containing the Vanadium Kagome nets is a defining feature
of the electronic ordering instability of CsV3Sb5
at ambient pressure [45]. In both cases, the superstructure
reflections are best indexed as single-Q modulations
of an orthorhombic Cmmm phase [34], of symmetry lower
than the original P6=mmm in agreement with findings
of Ref. [35].
The major experimental finding of our study is repre-

sented by the data in the right panels (b) and (d) of Fig. 1.
Irrespective of the periodicity of the modulation along the c
axis, an increase of the pressure p to 0.7 GPa at constant
T ¼ 40 K induces in both samples a transition into a new
phase (see also Supplemental Fig. 8 [34]) characterized by
the same commensuratemodulationvector q ¼ ð0; 3

8
; 1
2
Þ.We

will refer to this as the “3=8” phase in the following. This
observation aligns very well with recent findings from 51V
NMR [17] and 121=123Sb nuclear quadrupole resonance [27],
which reported in this specific pressure range the appearance
of new spectral features that are distinct from those of the
2 × 2modulation and have been interpreted as evidence of a
new type of CDWorder. Although these local probes cannot
directly determine the orderingwavevector, proposals for an
incommensurate structure [27] or a unidirectional order with
a period of 4 × a [17] have been suggested. While our XRD
data confirms a pressure-driven change in the electronic
order, we unambiguously reveal here that the p-induced
ordering is commensurate and different from the sug-
gested 4 × a.
With a further increase in p at constant T, the intensities

of the superlattice peaks of the 3=8 phase gradually



diminish and vanish above 1.7 GPa, again in good agree-
ment with the nuclear resonance data [17,27]. According to
our structural refinement, the 3=8 phase is accompanied
with a small monoclinic distortion [34].
To further elucidate the evolution of the CDWorder with

respect to p, we show in Fig. 2 the pressure dependence of
the XRD intensity along the high symmetry A-L line of the
hexagonal cell (starting from the reciprocal A point at (3, 0,
0.5)) as a function of p at constant T ¼ 25 K. With p
increasing toward 0.7 GPa, the satellite reflections of the
2 × 2 in-plane order are gradually suppressed. As can be
observed in Fig. 2, the intensity of this peak weakens
significantly around 0.7 GPa, but remains detectable up to
0.9 GPa. At the same time, the new 3=8 modulation
emerges around 0.7 GPa, i.e., the 2 × 2 and the 3=8 phases
coexist between 0.7 and 0.9 GPa. Beyond 0.9 GPa, the
2 × 2 disappears completely, and by further increasing p
also the scattering due to the 3=8 modulation is progres-
sively reduced until it falls below our detection limit at
1.7 GPa. The data shown in Fig. 2 further reveal that, within
the error of our experiment the positions of the satellite
peaks corresponding to the 2 × 2 and the 3=8 order do not
change with varying p and that, despite the strong
suppression of the intensity, the satellite reflections always
remain as sharp as the Bragg reflections and are essentially

resolution limited [34]. This is true both for in- and out-of-
plane directions.
The results of our XRD studies below 100 K and up to

2.5 GPa are summarized in the pT-phase diagram pre-
sented in Fig. 3, where the stability regions of the 2 × 2 and
the 3=8 orders are indicated by the green and blue areas,
respectively. Comparing the pressure dependence of the
electronic order to the pressure dependence of the super-
conducting Tc [46,47] reveals an interesting correlation:
The pressure p1 ≃ 0.7 GPa, where TcðpÞ shows its first
maximum, aligns perfectly to the critical pressure where the
2 × 2 order is suppressed and the 3=8 order appears.
Furthermore, the pressure p2 ≃ 2 GPa of the second
maximum of TcðpÞ coincides well with that at which
the 3=8 phase disappears.
The observation that each time an electronic order is

suppressed with increasing p, the superconducting tran-
sition temperature TcðpÞ exhibits a maximum is remark-
able. One obvious explanation to be considered is, of
course, the competition between CDW and SC. Direct
experimental evidence for this competition, for instance in
the form of a suppression of the CDW in the super-
conducting state, is still lacking. Nevertheless, the obser-
vation of a peak in TcðpÞ near the critical point of a
distinct electronically ordered phase (here, the 2 × 2 or the
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FIG. 1. Temperature and pressure dependence of the superlattice modulation observed for sample K (top) and D (bottom). hl and hk
cuts through XRD intensity distributions in the reciprocal space are shown. At 40 K and p ¼ 0.23 GPa, the two samples both display a
2 × 2 modulation along ab but a different superstructure along c. Increasing the pressure at 40 K above 0.7 GPa, here shown for
1.14 GPa, induces a new 3=8-CDWorder, which is the same for both samples. The green dashed lines in panel (a) indicate the 2 × 2 × 4
peaks, in panel (b) the 2 × 2 × 2 peaks, and for (c) and (d) the 3=8 peaks.



3=8 phase) suggests that the corresponding fluctuations
may contribute to supporting superconductivity. This
conjecture certainly warrants careful examination in future
investigations.
It is important to note that the consistently resolution-

limited satellite reflections (cf. Fig. 2) do not necessarily
imply the absence of fluctuations. The resolution-limited
width of these reflections simply indicates that the coherent
contribution to a given satellite reflection originates from a
volume of about at least 104 unit cells [34]. However, it
remains indeterminate whether this volume constitutes a
single contiguous entity or a series of smaller, distinct
volumes maintaining a fixed phase relation (see Ref. [48]).
In essence, despite the sharpness of the satellite peaks,
regions experiencing fluctuations may still exist. These
fluctuations would manifest as an exceedingly weak diffuse
scattering signal beyond the detection capabilities of the
current experimental setup.
The comparison of the present p-dependent XRD results

to those of a recent doping dependent study [49] is also very
interesting. In the doping dependent study, it was observed
that replacing Sb with Sn destabilizes the 2 × 2 superlattice
aswell, leading to the emergence of a new superlattice at low
temperatures with a modulation wave vector similar to that
of the 3=8 phase observed here. However, there are notable
distinctions between the doping and p-induced orders. The
doping-induced phase exhibits short and highly anisotropic
correlation lengths within the ab layers that have been
interpreted as signs of electronic nematicity. In contrast, the
resolution-limited superlattice modulations observed in

pristine CsV3Sb5, including the pressure-induced 3=8
phase, did not reveal any detectable in-plane anisotropy.
In principle, Sn substitution and p do not represent

equivalent modifications of CsV3Sb5. On a qualitative
level, however, they both affect the ratio of out-of-plane
and in-plane lattice parameters c=a, which has been found
to play a critical role for controlling the electronic proper-
ties [19,22]. Because of the anisotropic layered structure of
CsV3Sb5, hydrostatic pressure has indeed a pronounced
effect on the c=a ratio, which can be determined precisely
by our measurements. We find that a pressure as modest
as 1 GPa is sufficient to reduce c=a by about 3%
(cf. Supplemental Fig. 4 [34]).
In good agreement with density-functional theory (DFT)

calculations [22], our structural refinement reveals that the
distance between apical Sb and the kagome layers is barely
affected by p ¼ 1 GPa, in stark contrast to the inter-unit-
cell distance between apical Sb sites, which decreases by
about 5%. These structural changes primarily affect the Sb
5pz states, as clearly demonstrated in the DFT band
structures shown in Supplemental Fig. 11 [34], which
are based on our structural data. As can be observed in this
figure, the bottom of the Γ-centered electron pocket and the
top of the holelike band at the A point move significantly
closer to the Fermi level with increasing p. However, the
VHSs at the M point, which are below the Fermi level,
remain essentially unaffected. This behavior is in very good
agreement with previous theoretical studies [22,50,51],
where similar trends have been reported.
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FIG. 3. Electronic phase diagram of CsV3Sb5 in the low-
pressure and low-temperature region. The orthorhombic 2 × 2 ×
2 and 2 × 2 × 4 phases, summarized as 2 × 2, exist in the green
region below ≈0.7 GPa. The new monoclinic phase with the 3=8
order is indicated in blue. Both phases coexist in a narrow
pressure range as indicated by the striped area. The slope at low
pressure (dTCDW=dp ∼ −75 K=GPa) follows that determined
from thermodynamic measurements [19]. The red dashed line
sketches the evolution of the superconducting Tc as a function of
pressure (after Ref. [17]). Inset: hexagonal vs orthorhombic
lattice in the kagome plane.

FIG. 2. Pressure dependence of the CDW order in CsV3Sb5.
The contour plot shows the XRD intensity along the A-L
reciprocal direction of the hexagonal cell [obtained from the
averaging of the intensity measured at 25 K along the six
reciprocal A-L directions from the (3, 0, 0.5) A point]. The
intensity at the (3.5, 0, 0.5) point (L point of the hexagonal cell)
below 0.7 GPa signals the 2 × 2 × 2 order, which transforms into
the 3=8 modulation with increasing pressure revealed by the
intensity at q ¼ 3=8 and q ¼ 5=8 above 0.7 GPa.



The drastic pressure dependence of the electronic super-
lattice reported here therefore implies that the nesting of
VHSs cannot be the primary stabilization mechanism in
CsV3Sb5. If this were the case, the 2 × 2 order would be
expected to remain entirely stable below 1GPa, at odds with
our experimental observation. This conclusion is further
supported by a detailed analysis of the Lindhard function
from DFT, which shows that the electronic system alone
does not favor a specific ordering wave vector [52]. Even
though the new 3=8 phase has not been predicted by any
first-principles calculations to the best of our knowledge, it
would be essential to check within DFT whether it could
become more stable than a 2 × 2 CDW under pressure.
Strong coupling scenarios involving strongly momentum-
dependent electron-phonon coupling [52–54] or lattice
anharmonicity effects [55] have been considered as a driving
force behind the stabilization of specific charge order
instabilities in these materials. Along these lines, further
advanced first-principles calculations of the temperature and
pressure dependence of the phonon spectrum and of the
electron-phonon coupling might be required to clarify the
mechanism behind the dramatic pressure-induced change of
modulation reported here.
In conclusion, the present study yields two major

findings, namely, the correlation between the critical
pressures of the electronic modulations and superconduc-
tivity in CsV3Sb5 and a transition from the 2 × 2 to a long-
range charge ordered 3=8 phase at pressures below 1 GPa.
Furthermore, our findings reveal pressure-induced struc-
tural modulations that appear to coincide with the trend in
the superconductivity manifested in other experiments.
These observations strongly substantiate the notion that
critical fluctuations and complex electron-lattice inter-
actions, extending well beyond conventional scenarios
and models, might play a prominent role in shaping the
phase diagram of AV3Sb5.
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