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Abstract

This thesis addresses the critical challenge of generalizability in deep learning based human
action recognition models, focusing on both skeleton-based and video-based approaches. Gener-
alizable human action recognition is essential for numerous applications, including surveillance,
healthcare, sports analytics, and human-computer interaction. Ensuring these systems can accu-
rately recognize actions across diverse and varying environments enhances their reliability and ef-
fectiveness, making them valuable tools in real-world scenarios. Through the proposal of a series
of new methods and benchmarks, this thesis explored the generalizable challenges in human action
recognition field in various perspectives. For skeleton-based action recognition, novel technique,
Trans4SOAR, leveraging transformer architectures for multi-modal feature fusion and incorporat-
ing prototypical learning, and OPSTL, a two-stage imputation method, is designed separately for
one-shot recognition and self-supervised learning under occlusions. The CrossMax approach is
proposed to tackle open-set recognition, improving the model’s ability to identify unseen actions
for skeleton-based human action recognition using cross-modal logits calibration. For video-based
action recognition, the RelaMiX method demonstrates data effective few-shot domain adaptation
by incorporating temporal relational attentional dropout and cross-domain information alignment.
Additionally, a cross-modal fall detection method is developed to achieve effective RGB to depth
unsupervised domain adaptation, enhancing safety applications in real-world scenarios. Compre-
hensive benchmarks are constructed to evaluate these methods, highlighting their superior perfor-
mance and potential for practical applications compared with numerous existing techniques in the
related field. This thesis lays a strong foundation for future advancements in exploring generalizable
human action recognition.
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Zusammenfassung

Diese Dissertation befasst sich mit der kritischen Herausforderung der Generalisierbarkeit in
Deep-Learning-basierten Modellen zur Erkennung menschlicher Aktionen, wobei sowohl skelet-
tbasierte als auch videobasierte Ansätze im Fokus stehen. Generalisierbare Erkennungmenschlicher
Aktionen ist für zahlreiche Anwendungen, einschließlich Überwachung, Gesundheitswesen, Sport-
analyse und Mensch-Computer-Interaktion, von entscheidender Bedeutung. Die Gewährleistung,
dass diese Systeme Aktionen in unterschiedlichen und variierenden Umgebungen genau erken-
nen können, erhöht ihre Zuverlässigkeit und Effektivität und macht sie zu wertvollen Werkzeugen
in realen Szenarien. Durch die Vorschläge einer Reihe neuer Methoden und Benchmarks unter-
sucht diese Dissertation die Herausforderungen der Generalisierbarkeit im Bereich der Erkennung
menschlicher Aktionen aus verschiedenen Perspektiven. Für die skelettbasierte Aktionserkennung
wurde die neuartige Technik Trans4SOAR entwickelt, die Transformer-Architekturen zur multi-
modalen Merkmalsfusion nutzt und prototypisches Lernen integriert. Darüber hinaus wurde OP-
STL, eine zweistufige Imputationsmethode, speziell für One-Shot-Erkennung und selbstüberwachtes
Lernen unter Okklusionen entworfen. Der CrossMax-Ansatz wird vorgeschlagen, um das Open-
Set-Erkennen zu bewältigen und die Fähigkeit des Modells zu verbessern, unbekannte Aktionen
für die skelettbasierte menschliche Aktionserkennung durch cross-modale Logits-Kalibrierung zu
identifizieren. Für die videobasierte Aktionserkennung demonstriert die RelaMiX-Methode eine
datenwirksame Few-Shot-Domänenanpassung durch die Einbeziehung von temporalen relationalen
Aufmerksamkeits-Dropouts und domänenübergreifender Informationsausrichtung. Zusätzlichwurde
eine crossmodale Sturzerkennungsmethode entwickelt, um eine effektive, unbeaufsichtigte Domä-
nenanpassung vonRGB zuTiefenbildern zu erreichen, was Sicherheitsanwendungen in realen Szenar-
ien verbessert. Umfassende Benchmarks wurden erstellt, um diese Methoden zu evaluieren und
ihre überlegene Leistung und ihr Potenzial für praktische Anwendungen im Vergleich zu zahlre-
ichen bestehenden Techniken in diesem Bereich hervorzuheben. Diese Dissertation legt eine starke
Grundlage für zukünftige Fortschritte in der Erforschung der generalisierbaren Erkennung men-
schlicher Aktionen.
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1 | Introduction

1.1 Motivation

Human action recognition is pivotal in numerous applications, including surveillance, health-
care, and sports analytics [174]. In the real world scenario, deep learning-based human action recog-
nition can be used in security systems to automatically detect and alert authorities about strange be-
haviors, enhancing public safety in real-time scenario [91]. Additionally, it can be applied in health-
care to assist elderly patients, identifying and responding to falls or other critical events [140]. With
the rapid development of deep learning in computer vision field, more andmore powerful deep learn-
ing architectures are developed, which can achieve promising accuracy for the conventional action
recognition task [19, 123, 153, 209]. However, these models mostly show limited performance when
facing generalizable challenges. Generalizability is a crucial attribute for ensuring adaptable per-
formance across diverse and varying distribution shifts of the data. The lack of generalizability can
result in large performance decay of recognition. Additionally, it can have a negative societal impact
through providing confident false predictions. The challenges of generalizability has been tackled
in computer vision field by defining specific generalizable tasks, e.g., one-shot recognition [13], and
open-set recognition [127], where different tasks focus on different distribution changes of the data.
Some of those are overlooked in the human action recognition field.

In this thesis, we would like to explore those uncharted challenges in the human action recogni-
tion field to find out the limitations of the existing works and propose corresponding solutions. Dif-
ferent action recognition approaches face distinct challenges in achieving generalizability. Existing
researches in human action recognition can be categorized into two primary clusters: skeleton-based
approaches and video-based approaches.

Skeleton-based approaches use Graph Convolutional neural networks (GCNs) to extract fea-
tures from 3D body key points [102, 121, 224]. These methods are highly efficient because the data
is sparse and GCNs are lightweight, potentially achieving a tenfold reduction in parameters com-
pared to other methods. However, skeleton data is easily disrupted by real-world disturbances, such
as occlusions, leading to geometric and temporal discontinuities that can impair recognition per-
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formance and discriminative embedding learning. These disruptions are particularly problematic
in challenging tasks requiring high generalizability, such as one-shot learning scenario [134, 135]
and self-learning scenario [232]. In order to implement those approaches in the real-world, the
deep learning skeleton-based human action recognition model should be robust and generalizable
to some specific perturbations, where occlusion is the most common disturbance from the environ-
ment. How to tackle occlusions on such generalizable tasks remains unexplored in the community.

Apart from the disturbance from the environment, deep learning models also face with gener-
alizable challenge brought by the confidence of the model. Due to the sparsity of the skeleton data,
most existing GCN approaches suffer from overfitting issues when using 3D human body poses as
input, making the rejection of unseen categories during inference difficult to address [55]. Open-set
recognition formalizes this generalizable challenges in the perspective of the calibration of themodel
confidence by requiring the model to give high confidence scores for categories seen during training
and low confidence scores for categories outside the training phase [127]. This capability to reject
unseen categories is critical in real-life scenarios to prevent offensive false recognition that could
lead to incorrect decisions, which is particularly useful for robots to provide appropriate human as-
sistance according to the action recognition results. However, there is also no existing work focus
on the open-set recognition challenge in terms of the skeleton-based human action recognition task.

Video-based approaches utilize 3D convolutions and transformers to extract features from RGB
temporal data [19, 123]. These methods offer different advantages, such as being less sensitive to
occlusions and providing richer contextual information from the environment, which make video-
based human action recognition models face with less overfitting issues. The most essential gener-
alizable challenge for video-based human action recognition approaches lies in making the model
to be adaptive to various environments and view point settings. Researchers have proposed do-
main adaptation challenges by transferring models trained on one specific domain to other variant
domains [28, 198]. Most of the existing works for video-based domain adaptation focus on unsu-
pervised domain adaptation using a large-scale unlabelled training set from the target domain and
achieving unsupervised domain adaptation within the same modality [63, 84]. We first raise up
the question about if few labelled target domain samples can tackle the video-based domain adap-
tation challenge, named as few-shot domain adaptation, as demonstrated in other fields. however
there are very few works focusing on few-shot domain adaptation for video-based human action
recognition. The task comparison between few-shot domain adaptation and unsupervised domain
adaptation in terms of video-based human action recognition has not been clearly introduced by
the community in the past. In this thesis, an analysis of the trade-off effects is conducted for video-
based domain adaptation in human action recognition between two scenarios for the target domain:
less data with annotations (few-shot domain adaptation) and a large amount of data without an-
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notations (unsupervised domain adaptation) when only RGB modality is used. Alongside with the
domain adaptation within the samemodality, cross-modal domain adaptation is another challenging
research direction for video-based domain adaptation in the human action recognition field due to
the large discrepancy between different modalities, especially for specific downstream tasks like fall
detection, where different users may prefer to use different sensor modalities when considering the
privacy supporting issue.

This thesis focuses on overcoming the aforementioned generalizable challenges for both skeleton-
based and video-based human action recognition. For each specific challenge, a new benchmark is
constructed by considering various of related approaches and datasets, and a new specific method
is proposed. By addressing these issues, this thesis aims to develop more generalizable and adapt-
able human action recognition methods that performs reliably across diverse conditions, maintains
robustness to variations, and adapts to unseen changes, enhancing its applicability and longevity in
real-world applications. The detailed contributions will be introduced in Section 1.2 and the orga-
nization of this thesis will be introduced in Section 1.3.

1.2 Contributions

This thesis addresses five key challenges in human action recognition field, focusing on enhanc-
ing the generalizability of the existing deep learning approaches for human action recognition from
diverse perspectives.

Firstly, we tackle skeleton-based human action recognition under realistic occlusions by insert-
ing 3D IKEA furnitures into the corresponding 3D coordinate system, contrasting with commonly
used random temporal and spatial occlusions. This new proposed occlusion preserves geometric
continuity, providing a more realistic and reasonable disturbance scenario for skeleton-based hu-
man action recognition methods. We find that existing self-supervised and one-shot skeleton-based
methods significantly decline in performance when exposed to both random and realistic occlusions,
with the performance of those models on the latter occlusion is much worse.

To address one-shot human action recognition under occlusions, we introduce Trans4SOAR ,
which uses a transformer architecture for multi-modal feature fusion at the patch embedding level,
incorporating human body joints, bones, and velocities from 3D motion data. This method includes
a prototype-based latent space consistency loss, enhancing the robustness of learned embeddings
and demonstrating superior performance on all benchmarks.

For self-supervised skeleton-based action recognition under occlusions, we propose OPSTL. This
method uses three-stream contrastive learning with adaptive spatial masking for data augmenta-
tion and a two-stage imputation approach. The imputation process involves KMeans clustering for
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grouping similar samples and KNN for imputing missing coordinates, ensuring efficiency and accu-
racy. OPSTL proves effective across different camera settings, datasets, and occlusion scenarios.

Secondly, we explore the open-set challenges for the deep learning models in terms of skeleton-
based human action recognition and construct the first large-scale benchmark. Existing open set
recognition methods, designed specifically for RGB images, perform poorly on sparse skeleton data.
We propose CrossMax, which combines cross-modal mean-max discrepancy training across joints,
bones, and velocities with a channel-normalized distance-based logits calibration approach. This
method significantly improves performance across different datasets and evaluation settings, ad-
dressing the open-set skeleton-based recognition challenge effectively.

The third part of this thesis focuses on domain adaptation challenges for video-based human
action recognition, i.e., particularly few-shot domain adaptation and cross-modality fall detection.
We rebenchmark existing approaches on more diverse domains and propose RelaMiX, which en-
hances model generalizability through temporal relational dropout and snippet-wise attentional fu-
sion. This method enriches target domain features using feature statistics from source and target
domains and aligns representations with cross-domain information alignment loss, showing promis-
ing performance.

For cross-modal adaptation in terms of fall detection, we contribute a new method that uses
domain-agnostic adversarial learning and cross-batch triplet margin loss to learn discriminative em-
beddings. An intermediate domain module is used to bridge latent spaces from different modalities.
The proposed method shows promising performances across various datasets and backbones.

The benchmarks introduced in this thesis highlight the limitations of existing related approaches
in dealing with data distribution shifts and underscore the importance of achieving generalizable hu-
man action recognition. Each proposed model addresses specific challenges, contributing to more
reliable deep learning systems with substantial application value in the field of human action recog-
nition.

1.3 Organization of this Thesis

In this section, the organization of this thesis for the remaining content will be illustrated. In
Chapter 2, the background of this thesis is introduced, where the feature learning backbones and
the generalizable challenges for each specific kind of the action recognition are presented respec-
tively. In Chapter 3, one-shot and self-supervised skeleton based human action recognition under
occlusions are benchmarked separately in Section 3.1 and Section 3.2, where one specific new deep
learning solution is proposed for each of these two generalizable challenges. Then, in Chapter 4,
open-set challenge for skeleton-based human action recognition is introduced. Furthermore, in
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Chapter 5, few-shot domain adaptation challenge with the RelaMiX method is illustrated in Sec-
tion 5.1 and the cross-modality fall detection method is presented in Section 5.2 for video-based
human action recognition. Finally, the conclusions and remarks are discussed in Chapter 6.
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2 | Related Work

In this section, the related existing researches of the deep learning-based human action recog-
nition backbones and the generalizable tasks will be introduced. Human action recognition meth-
ods can be divided into two clusters based on the input modality, i.e., skeleton-based methods and
video-based methods. Skeleton-based methods mainly use Graph Convolutional neural Network
(GCN) [209] and graph transformer network [224]. The coordinates of human body keypoint are
commonly used as input. On the other hand, video-based approaches predominantly rely on 3D
convolutional layers [19] or vision transformer layers [123], and use RGB video as input.

Due to the differences between the two leveraged modalities, each kind of human action recog-
nition approach faces unique generalization challenges. Skeleton-based methods, for instance, en-
counter challenges related to diverse occlusions in one-shot learning and self-supervised learning
scenarios. This is because the reliance on keypoint coordinates can be problematic when body parts
are obscured or not visible, making it difficult to accurately recognize actions. Moreover, these meth-
ods need robust strategies to generalize across various subjects and movements with limited labeled
data.

Conversely, video-based human action recognition methods face essential domain adaptation
challenges. Since these methods rely on RGB video input, they must effectively handle variations
in lighting, background, and camera perspectives to maintain high performance across different
domains. Achieving generalizable video-based action recognition in diverse environments and con-
ditions is thereby crucial. In the following, the feature extraction backbones and the generalizable
challenges are separately introduced for these two modalities, respectively.

2.1 Skeleton-Based Action Recognition and Challenges

2.1.1 Feature Learning Architectures

Skeleton-based human action recognition is important for real world human action recogni-
tion applications requiring high reliability and efficiency. Early research focused on Convolutional
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Neural Networks (CNN)-based methods [176, 188, 193], known for hierarchical feature learning. Re-
current Neural Networks (RNN)-based methods [54, 169, 222] were also studied for their ability to
model temporal dynamics within sequences, effectively capturing temporal dependencies for action
recognition tasks.

To leverage more skeletal geometric information regarding the relationship between different
human body joints, Graph Convolution Network (GCN)-based methods [33, 149, 209, 214] emerged,
focusing on topology modeling. These methods capture spatial relationships and dependencies be-
tween body joints by modeling the human skeleton as a graph, where nodes represent joints and
edges represent bones. These approaches allow for efficient action recognition. ST-GCN [209] ini-
tially used a fixed graph convolution approach tomodel dynamic spatial-temporal relationships with
a predefined skeleton topology. Liu et al. [121] proposed large-kernel attention within a GCN to im-
prove the action reasoning. Peng et al. [150] used Neural Architecture Search (NAS) to design a GCN
exploring spatial-temporal correlations with multiple dynamic graph modules and multi-hop con-
nections. Dynamic GCN [214] introduced adaptive graph topologies, enhancing modeling flexibility
and accuracy. Chen et al. [34] proposed a multi-scale spatial-temporal GCN. CTR-GCN [33] refined
graph topology at a channel-wise level, improving the capture of spatial-temporal relationships.

Recently, the focus has shifted to graph transformer-based methods [2, 101, 224],since trans-
former approach is valued for capturing long-range dependencies which show advantages in tem-
poral reasoning. Transformers excel in handling large-scale data and modeling complex relation-
ships across sequences, making them ideal for action recognition tasks with intricate and extended
actions [142]. Next, the generalizable challenges in the skeleton-based human action recognition
field will be illustrated.

2.1.2 Occlusion Challenges

Occlusions in skeleton data severely impair human action recognition models by causing miss-
ing or corrupted joint information, leading to misinterpretations or failures in recognizing actions.
Spatial occlusions obscure specific body parts, complicating the accurate identification and track-
ing of key points necessary for action recognition [165]. Temporal occlusions interrupt movement
sequences, which is crucial for understanding action progression. Addressing both spatial and tem-
poral occlusions is critical for developing robust and generalizable action recognition systems that
perform well in real-world, dynamic environments.

Most skeleton extraction methods, such as AlphaPose [60, 203], output zeros for occluded joints.
To tackle occluded action recognition, some researchers simulate occlusion by randomly setting dif-
ferent body regions to zeros per frame (mimicking spatial occlusion) or by setting randomly selected
frames to zero (mimicking temporal occlusion) [4, 50, 68, 103, 172, 173]. Additionally, self occlusion
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caused by body movement is considered in [119].
Shi et al. [165] propose an occlusion-aware multi-stream fusion graph convolutional neural net-

work to address occlusions using different streams. However, most existing occlusions are randomly
generated and do not preserve the geometric continuity of obstacles. This thesis introduces a new
approach by inserting 3D Ikea furniture models into the coordinate system to generate more realis-
tic occlusions. This realistic occlusion is verified to be more complicated when the skeleton-based
human action recognition models are facing with diverse generalizable challenges.

2.1.3 One-Shot Recognition Challenge

One-shot recognition, a subfield of data-scarce representation learning, aims at recognizing un-
seen categories with only one reference sample as guidance. This setting is valuable to real world
applications in case we want the model to quickly adapt to previous unseen categories by minimal
effort. In contrast to one-shot image classification, where meta-learning approaches [11, 77, 79, 187,
205, 233] dominate by re-initializing a new task set every epoch according to the learning-to-learn
paradigm, Deep Metric Learning (DML) based approaches [134, 135, 234] have been effectively uti-
lized for Skeleton-based One-shot Action Recognition (SOAR). These DML methods aim to achieve
highly discriminative representations and minimize the distance between inter- and intra-category
samples in the latent space, as benchmarked by the NTU-120 dataset [115] with predefined reference
frames. One-shot action recognition has been extensively studied in several downstream tasks, such
as semantic segmentation [220] and video classification [15, 76, 144, 195]. However, research specif-
ically focused on SOAR is much sparser and primarily benchmarked on the NTU-120 dataset [115,
117, 118, 134, 157]. Existingworks alleviate the challenge of the SOAR task through learning discrim-
inative embeddings. Memmesheimer et al. [134, 135] propose to use image-wise encoding method
on the skeleton sequence in order to enable the utilization of the powerful CNN for feature extrac-
tion. Their framework is optimized with deep metric learning using a combination of cross-entropy
and triplet margin losses, ensuring generalizable and accurate recognition performance. Spatial-
temporal adaptive metric learning network is proposed by Li et al. [109] to serve as a good solution
for SOAR. Multi-scale spatial temporal skeleton matching is proposed by Yang et al. [212], which
usesmore reliable and accurate cross-scale matching to achievemore accurate SOAR. Zhu et al. [231]
propose adaptive local-component-aware graph convolutional network which can be utilized as ef-
fective feature learning backbone for SOAR. In this thesis, we for the first time explore the SOAR
task under diverse occlusion challenges.
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2.1.4 Self-Supervised Learning Challenges

Self-Supervised Learning (SSL) is a deep learning task where models are asked to learn dis-
criminative embeddings without labeled supervision, which leverages intrinsic data structures for
supervision instead of relying on labels. SSL is especially beneficial when labeled data is limited or
costly in the real world applications, thereby requires discriminative and generative feature learning
without labeled supervision. In skeleton-based action recognition, SSL utilizes unlabeled skeleton
sequences to developmeaningful action representations learning, reducing dependency on extensive
labeled datasets [83, 120, 138]. Most of the researchers use contrastive learning on SSL of skeleton-
based human action recognition approaches to enable discriminative motion embeddings learning.
MS2L [112] introduces a multi-task SSL framework involving motion predictions and jigsaw puz-
zles. SkeletonCLR [106] utilizes momentum updates in contrastive learning on individual streams.
CrosSCLR [106] employs a cross-view knowledge mining strategy for knowledge sharing between
different streams. AimCLR [71] explores multiple data augmentation methods for contrastive learn-
ing. PSTL [229] uses a spatiotemporal masking strategy to learn generalized representations from
partial skeleton sequences, addressing the over-reliance on data augmentation. In this thesis, we
will explore SSL for skeleton-based human action recognition under occlusion disruptions. Occlu-
sions and missing data disrupt sequence continuity, complicating the SSL learning process as models
must infer missing information accurately. Designing effective pretext tasks that capture spatial and
temporal dynamics of human actions without labels is particularly challenging, as they must ensure
models learn relevant features without being misled by disruptions. Ensuring learned represen-
tations generalize well to various actions and subjects is another significant hurdle. SSL models
may overfit to specific training patterns, limiting their effectiveness in diverse real-world scenar-
ios [56]. Occlusions have possibility to further amplify this limitation due to the perturbation on the
sparse skeleton data. Innovative data augmentation approaches are necessary to simulate various
occlusions and movements duting training, enhancing model robustness and generalizability [72].
However, most of the existing SSL works on skeleton-based human action recognition task are veri-
fied to be less effective under the occlusion challenges. Developing robust and generalizable pretext
tasks and advanced model architectures capable of handling the intricacies of skeleton-based data
are essential for overcoming these challenges, which will be handled by this thesis.

2.1.5 Open-Set Recognition Challenge

open-set recognition is a generalizable challenge where the model is required to accurately iden-
tify instances from known classes while also detecting when an input belongs to an unknown class
not encountered during training [67, 179, 228]. This capability is essential for real-world applica-
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tions, as systems often face novel or unforeseen instances that are not from the part of the training
categories. Unlike close-set recognition, which operates under the assumption that all test data falls
within the known classes, open-set recognition demands that the model strikes a balance between
the precise classification of known categories and the effective identification of unknowns.

Addressing the challenges of open-set recognition involves developing models that can general-
ize well to new and unseen data. This requires sophisticated techniques for distinguishing between
familiar and unfamiliar inputs, often involving strategies such as thresholding on confidence scores,
incorporating novelty detection mechanisms, or leveraging generative models to estimate the like-
lihood of inputs [66]. By effectively tackling this task, models can significantly enhance their gener-
alizability and reliability, making them better suited for deployment in dynamic and unpredictable
environments where new patterns and classes continuously emerge. Open-set recognition is nearly
overlooked by the community for the task of skeleton-based action recognition, related works are
mostly conducted in other fields, e.g., image classification and video-based action recognition. We
examine the performances of several well-established open-set image classification and open-set
video-based action recognition approaches which can be adapted for Open-Set Skeleton-based Hu-
man Action Recognition (OS-SAR) by replacing backbone and input data using GCN methods and
skeleton sequence data. Shi et al. [166] propose an OS-SAR approach using a 3D neural network
on joints heat map as the backbone with deep evidential learning, which can be regarded as an
implementation of DEAR [10], while no comprehensive OS-SAR benchmark is contributed and the
datasets leveraged are not commonly used in skeleton-based action recognition. We implement
this approach by substituting the backbone into different GCNS in our benchmark since GCN is
the dominant backbone to handle skeleton data. In the field of open-set image classification, nu-
merous works have been presented [24, 25, 65, 74, 127, 143, 179, 217]. Hendrycks et al. [74] is
the first to use the highest SoftMax score as the open-set probability, paving the way for subse-
quent reconstruction-based approaches [21, 143, 179, 217]. Recently, prototype-based methods have
shown great promise [24, 25, 179]. For instance, reciprocal points distance serves as the open-set
probability in works by Chen et al. [24, 25], while PMAL [127] is one promising approach in the
field of open-set recognition which has superior performance. Cen et al. [21] propose a new task
for unified few-shot open-set recognition. For our benchmark baselines, we choose to use SoftMax,
RPL, ARPL, and PMAL. SoftMax serves as a lower bound for OS-SAR, whereas the other methods,
due to their success in open-set image classification, have significant potential to deliver superior
performance in OS-SAR.

In the early stages of open-set video classification, Shu et al. [168] introduce the Open Deep Net-
work (ODN) by incrementally adding novel classes to the recognition head to achieve awareness of
new classes. Following this, Krishnan et al. [94] and Subedar et al. [178] utilize Bayesian neural net-
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works to achieve reliable uncertainty estimation. DEAR [10] establishes a large-scale benchmark for
open-set video-based human action recognition and proposed an architecture that employs deep ev-
idential learning, achieving state-of-the-art performance. Humpty Dumpty [53], renamed Humpty
in our benchmark, uses clip-wise relational graphical reconstruction error as the open-set probabil-
ity. Additionally, Monte Carlo Dropout with Voting (MCD-V), proposed by Roitberg et al. [155], is
used for open-set video-based driver action recognition. Yang et al. [213] leverage micro-doppler
radar data for open-set recognition, but we do not adapt this model due to its specific architecture
tailored for that modality. In this thesis, we observe that the performances provided by the above-
mentioned methods are limited due to the sparsity of the skeleton data. We propose to use a novel
cross-modal logits calibration method which will be introduced in detail in the following chapters.

2.2 Video-Based Action Recognition and Challenges

2.2.1 Feature Learning Architectures

Supervised video-based human action recognition methods [19, 61, 147, 170, 186, 192, 202] have
achieved impressive results with deep learning algorithms in recent years. These video-based ap-
proaches can be broadly categorized into Convolutional Neural Network (CNN)-based and transformer-
based methods.

The Two-Stream Network [170] is an early and influential model that includes a spatial feature
aggregation stream and a temporal feature aggregation stream, capturing information from still
video frames and motion across frames, respectively. The final prediction is made by fusing these
two streams in late fusion manner. Regarding CNN-based methods, most approaches utilize 3D
CNNs combined with various temporal aggregation techniques. For example, Temporal Segment
Network (TSN) [192] samples a fixed number of video frames evenly across the video segments and
uses these sampled frames as input for a two-stream network. The C3D model [186] employs a
full 3D convolutional architecture for spatiotemporal feature extraction. The Inflated 3D ConvNet
(I3D) [19] utilizes an inflated Inception v1 model [181], incorporating 3D convolutional layers in
each stage. S3D [202] decomposes the lower 3D convolutional layers of I3D into separate spatial
and temporal convolution operations. The X3Dmodel [61] systematically expands a small 2D image
architecture into a spatiotemporal one by exploring multiple axes such as space, time, channels, and
depth, achieving an optimal trade-off between accuracy and complexity. Recently, there has been
a shift in backbone architecture design for video-based human action recognition, from CNNs to
Transformers. Transformer-based backbones [12, 58] have been increasingly employed.

Multiscale Vision Transformer (MViT) [58] combines convolutional layers and transformer lay-
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ers to extract both low-level and high-level features from video frames at multiple scales. TimeS-
former [12] explores action recognition with a convolution-free architecture, applying temporal and
spatial attention separately within each block of the network and aggregating this information to
make predictions. Leveraging the inherent spatiotemporal locality of videos, the Video Swin Trans-
former [123] approximates full spatiotemporal self-attention using local self-attention, outperform-
ing factorized models in terms of efficiency.

These advancements highlight the evolving landscape of video-based human action recognition,
where both CNN-based and transformer-based approaches continue to push the boundaries of per-
formance and efficiency in video-based action recognition. Next, the generalizable challenges in
video-based human action recognition field will be introduced.

2.2.2 Domain Adaptation Challenges

2.2.2.1 Few-Shot Domain Adaptation

Domain Adaptation (DA) [22, 28, 64, 107, 158, 201, 204] refers to the scenario where training and
test data originate from related but distinct domains. The objective of DA is to adapt a learner to a
target domain by jointly leveraging source domain and target domain samples under different label-
ing conditions. Unsupervised Domain Adaptation (UDA) addresses the inter-domain discrepancy
without the labels of target domain samples during training. Image-based tasks have extensively
employed UDA methods [87, 99, 107, 124, 125, 201]. For example, DAN [124] and JAN [125] align
themarginal distributions of source and target domains byminimizingMaximumMeanDiscrepancy
(MMD) and Joint Maximum Mean Discrepancy (JMMD), respectively. CAN [87] enhances feature
discrimination by leveraging both inter- and intra-class discrepancies.

In the context of video-based UDA, several methods utilize adversarial learning frameworks to
handle domain shifts [28, 41]. Beyond adversarial learning, Wei et al. [198] employ disentanglement
learning to separate content and context information to harvest a better adaptation. CoMix [158]
introduce target domain background information into source domain samples during training to
reduce domain shift. DANN [63] uses an adversarial learning framework within a 3D-CNN archi-
tecture to align source and target domains. TA3N [28] employs a multi-level adversarial framework
that attends to, aligns, and learns temporal dynamics across domains.

Recent research in Semi-Supervised Domain Adaptation (SSDA) [104, 159, 210, 216] relax the
strict UDA constraint by using a partially annotated target domain training set. Saito et al. [159]
propose a method using minimax entropy (MME) regularization to learn domain-invariant features.
Domain adaptation for few-shot learning [39, 221] tackle UDA where new classes appear in the
target domain test set.
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Yang et al. [210] decompose the SSDA task into intra-domain semi-supervised learning (SSL)
and inter-domain UDA tasks, utilizing co-training for complementary information learning. Qin et
al. [154] reduce decision boundary bias by aligning the conditional distribution between scattered
source features and clustered target features. Yoon et al. [216] propose a pair-based SSDA method
that adapts a model to the target domain using self-distillation to bridge domain discrepancies grad-
ually.

Few-Shot Domain Adaptation (FSDA) [81, 85, 139, 182, 204] provides only a few labeled samples
per class for the target domain training set. Unlike SSDA, FSDA-AR does not rely on a large-scale
unlabeled training set from the target domain. Research in FSDA for video-based Action Recogni-
tion (FSDA-AR) is limited, with only three works targeting this task [64, 108, 204]. PASTN [64]
uses an attentive adversarial network for learning domain-invariant features and fine-tunes the
model on a small number of labeled target samples after pre-training on a large labeled dataset.
FS-ADA [108] integrates category classifier and domain discriminator to extract domain-invariant
and category-discriminative features. Xu et al. [204] utilizes Timesformer [12] as the backbone and
employ prototype-based snippets contrastive learning for FSDA-AR.

However, the benchmark for PASTN [64] is not available, and the datasets used by Xu et al. [204]
do not encompass different levels of domain shift, nor do they unify the feature extraction back-
bone like I3D [19], which is widely used in UDA. Additionally, FS-ADA [108] is developed for radar
data. For a fair comparison, UDA approaches should be reformulated for the FSDA-AR task to adapt
against diverse domain shifts. Further research is needed for video-based FSDA-AR on diverse do-
main shifts, such as different views of egocentric videos and transitions from synthesized to real
videos.

To address this issue, we introduce a novel video-based FSDA-AR benchmark with diverse do-
main combinations under a unified feature extraction backbone. This benchmark is designed to
facilitate fair comparisons and further research in video-based FSDA-AR, promoting the develop-
ment of more generalizable and adaptable models in this field.

The RelaMiX approach proposed in this dissertation enhances video data generalization through
three components: a Temporal Relational Attention Network with Relation Dropout (TRAN-RD) for
better temporal embeddings, a Statistic Distribution-Based FeatureMixture (SDFM)method inspired
by [211] for diversified latent space targeting the domain, and Cross-Domain Information Alignment
(CDIA) loss using contrastive supervision with mixed domain negatives and prototype positives.
This method demonstrates strong performance in FSDA-AR across five datasets.
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2.2.2.2 Cross-Modal Adaptation for Fall Detection

Existing research on fall detection can be clustered into three major groups based on the sensors
employed. The first group focuses on wearable devices, which predominantly use accelerometers
to capture signals from various body parts such as the wrist, chest, and waist [1, 7, 16, 111, 206,
215]. For instance, Chen et al.[27] utilize a smartwatch worn on the wrist to monitor individuals’
movement status. Mehmood et al. [133] introduce a novel wearable sensor called SHIMMER, which
measures signals from the waist.

The second group of fall detection research leverages Wi-Fi signal networks [20, 23, 48, 78, 191,
197]. In their work, Wang et al.[197] propose WiFall, a system that detects falls by analyzing the
correlation between radio signal variations and human activities. Similarly, Hu et al.[78] develop
DeFall, a system comprising an offline template-generating stage and an online decision-making
stage, utilizing Wi-Fi features associated with human falls.

The third group involves vision-based approaches [6, 14, 57, 93, 183, 207, 226], which typically
use action recognition models as the feature extraction backbone for fall prediction. Several datasets
facilitate video-based fall detection, such as the UR Fall dataset [98], Kinetics dataset [89], NTU
dataset [114], and UP Fall dataset [131]. For example, Khraief et al. [90] introduce a multi-stream
deep convolutional neural network employing both RGB and depth modalities for fall detection.
Na et al. [128] use a combination of 3D-CNN and LSTM as the backbone to extract features from
RGB videos for fall detection. Chen et al. [32] propose an attention-guided bi-directional LSTM to
achieve fall detection in complex backgrounds. Asif et al. [6] address privacy concerns by using body
skeletons and semantic segmentation masks as input for fall detection, discarding the conventional
RGB data.

However, these existing works neglect the potential use case of cross-modal domain adaptation
in the fall detection task, which is a downstream task in the filed of human action recognition with
great application value. Cross-modal domain adaptation [29, 84] indicates that the source domain
and the target domain preserves two distinct modalities. The aim of the cross-modal domain adap-
tation is to achieve domain knowledge transfer by using labeled source domain training set and
unlabeled target domain training set. Cross-modality domain adaptation is crucial because it maxi-
mizes the utilization of available data, enhances privacy by transitioning from detailed RGB images
to less intrusive modalities like depth images, and improves model generalizability across different
sensor conditions. Since fall detection system is highly likely to be employed in smart home environ-
ment, achieving more privacy-supporting fall detection system is important. However, there is no
existingwork conducted for cross-modal adaptation in terms of fall detection, whichwill be explored
by this thesis. On the next several chapters, these generalizable challenges and their corresponding
solutions are demonstrated in details.
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3 | Towards Generalizable
Skeleton-Based Human Action
Recognition under Occlusions

We begin to introduce of the generalizable challenges under occlusions on the skeleton-based
human action recognition in this chapter. The capacity for generalizable skeleton-based human ac-
tion recognition is critically important, as it ensures models sustain their efficacy across a multitude
of environments, user demographics, and situational variances, thereby obviating the exhaustive re-
quirement for model retraining tailored to each distinct context. Such versatility is particularly vital
in real-world applications. However, occlusions significantly hinder the effectiveness of skeleton-
based human action recognition models by compromising the integrity and continuity of skeletal
data. This leads to several issues: a lack of critical movement information, disruptions in spatiotem-
poral correlations essential for identifying complex actions, and exacerbated data scarcity, especially
where labeled data is limited. Additionally, the unpredictable attribute of real-world occlusions com-
plicates the development of adaptable skeleton-based human action recognition models that can
handle diverse occlusion types and extents while maintaining generalizable recognition capabili-
ties. In this chapter, we will explore two particular tasks, namely, one-shot recognition (Section 3.1)
and self-supervised learning (Section 3.2) under occlusions, to investigate the intricacies of general-
izable skeleton-based human action recognition in the face of data perturbation challenges. Part of
the works are from the paper of our publication on IEEE Transactions of Multimedia [146] and our
paper [31] which is now under review of IROS.
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3.1 Delving Deep into One-Shot Skeleton-Based Action
Recognition with Diverse Occlusions

3.1.1 Introduction

In the field of action recognition utilizing skeletal data, significant strides have been made due
to the rapid advancements in deep learning technologies. Traditional methodologies in this field
have achieved promising performances across numerous benchmark datasets designed for body-
pose classification, such as NTU-120 [115] and Toyota Smart Home [47]. These datasets have been
meticulously curated to ensure unobstructed visibility of the body by strategically positioning cam-
eras, as documented in studies by Liu et al [115], Zhang et al [224], Chen et al [33], and Yan et
al [209]. Despite these achievements, the simplifying assumption of clear visibility of the skeleton
data becomes less tenable in real-world settings where occlusions frequently impair the quality of
input.

The interest in skeleton-based action recognition algorithms, particularly those analyzing 3D
body joint coordinates, has surged due to the enhanced accuracy of depth sensors and their capa-
bility to respect privacy concerns [8, 33, 36, 132, 152, 153, 171, 209, 224]. However, the challenge of
occlusions looms large in this context, as the sparse attribute of skeletal representations means that
missing even a minimal number of joints can severely disrupt the geometric and temporal coherence
of the data.

The task of learning from a limited subset of labeled examples, defined as one- or few-shot recog-
nition [15, 64, 76, 144, 151], remains a critical challenge in skeleton-based human action recognition.
This challenge is exacerbated in scenarioswith occlusions, where the limited variety of available data
for new categories places a premium on the quality of the few samples provided, complicating the
task of accurate recognition.

Our work sets forth to tackle the goal of classifying sequences of unseen 3D actions from a sin-
gle reference example, despite the presence of missing segments attributable to occlusions. Notably,
prior research on one-shot action recognition from skeletal data has not directly addressed the im-
pact of occlusions. To fill this gap, we introduce a novel benchmark that simulates occlusions by
manipulating skeletons within three established action recognition datasets, using a library of 3D
objects from PIX3D [180] to create REalistic occlusions (RE). These occlusions are applied to the
original datasets with a variety of geometric manipulations, including rotation and displacement,
aiming to more accurately reflect the complexities encountered in real-world scenarios as opposed
to the artificial removal of data points practiced in previous studies [172, 173]. Moreover, we intro-
duce an alternative occlusion method, termed RAndom occlusion (RA), which randomly alters body
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joints while preserving spatial and temporal dimensions to enrich the occlusion types involved in
this study.

To address these challenges, we propose a pioneering model, Trans4SOAR, grounded in trans-
former architecture. Prior efforts in Skeleton-based One-shot Action Recognition (SOAR) have
largely relied on CNNs in combination with metric or meta-learning techniques [134, 135, 234]. Al-
though transformers have been successfully integrated into conventional video-based action clas-
sification [5], their application in encoding body movement signals for SOAR, particularly under
conditions of data scarcity and occlusions, remains unexplored.

Our approach involves various methods, specifically Skeleton-DML [134] and SL-DML [135], in
the context of our newly formulated occlusion-centric benchmark. Furthermore, we explore the po-
tential of transformer networks for encoding skeleton signals as image-like representations through
our Trans4SOAR model, marking a novel application of visual transformers to the SOAR task aimed
at overcoming occlusion-related obstacles.

Additionally, we introduce two novel components within Trans4SOAR. The first is theMixed At-
tention Fusion Mechanism (MAFM), which integrates various types of data (velocities, bones, and
joints) at the patch embedding level while taking into account spatial and temporal proximities. The
second is the Latent Space Consistency (LSC) loss, which fosters model robustness against occlu-
sions by ensuring consistency in the model’s outputs from the normal branch and the prototype
augmented branch. These advancements underscore our commitment to refining the capabilities of
skeleton-based action recognition in the face of occlusions. This paper explicitly explores occlusions
for SOAR and makes the following contributions:

• We pioneer the study of occlusions in Skeleton-Based One-Shot Action Recognition, an
unexplored area in community. To address this challenge, we create a new benchmark tailored
for this task using three well-known action recognition datasets. This benchmark involves
two types of occlusions: random and realistically synthesized occlusions, with a focus on the
latter generated using the IKEA 3D furniture models. Our work provides a foundation for
understanding and addressing occlusions in SOAR, improving the generalizability of action
recognition technologies in practical settings.

• We introduce Trans4SOAR approach, a novel three-stream transformer-based architecture de-
signed to tackle data occlusions in skeleton-based one-shot action recognition. This model en-
hances resilience to occlusions through two key strategies. Firstly, it integrates diverse input
modalities (velocities, bones, joints) using a mixed attention fusion mechanism at the patch
embedding level, ensuring a comprehensive representation of action dynamics. Secondly, it
augments intermediate representations by iteratively estimating category-specific prototypes
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and applying latent space consistency loss. This stabilizes the learning process against occlu-
sions. These novelties position Trans4SOAR as a leading solution for skeleton-based one-shot
action recognition under diverse occlusions task.

• We conduct a evaluation of existing skeleton-based one-shot action recognition approaches
under diverse occlusions, comparing with our Trans4SOAR method. The evaluation covers
four distinct occlusion scenarios. Occlusions degrade performance metrics, highlighting an
area for future research. Despite this, Trans4SOAR consistently outperforms existing frame-
works across all datasets under occlusive conditions, establishing it as the superior model for
this task in environments with diverse occlusions.

• The experimental results of this study reveals that Trans4SOAR excels not only in occlusion
scenarios but also in conventional skeleton-based one-shot action recognition without occlu-
sions. It surpasses previous benchmarks by over 2.8% on the challenging NTU-120 dataset.
This highlights Trans4SOAR’s versatility and generalizability.

3.1.2 Problem Definition

Our study aims to explore the field of SOAR, a challenging yet crucial task that seeks to uti-
lize prior knowledge from data-abundant action classes to effectively categorize new, data-scarce
classes, especially in the presence of occlusions within the skeletal data [134]. This investigation
rigorously adheres to the one-shot evaluation protocol, as initially defined in the context of the
NTU-120 dataset [115], which necessitates the classification of actions based on a single reference
example provided for each category. To formally introduce this task, we define Cbase as the set of
|Cbase| data-rich categories, which are made available during the training phase. The dataset is de-
noted by Dbase = {(si, li)}U

i=1, where each label li belongs toCbase, andU represents the total number
of samples within Dbase. The core aim of this study is to accurately classify the |Cnovel| new action
classes encapsulated within the set Cnovel , each represented by a single reference instance within
the support set Dsupp = {si}O

i=1, with O denoting the count of samples in Dsupp. It is imperative to
note the exclusionary relationship Cbase ∩Cnovel = /0, thereby ensuring no overlap between previ-
ously encountered and new categories. The culminating challenge involves assigning the correct
category ln ∈Cnovel to each instance within the test set Dtest , which only consists samples from the
new categories in Cnovel .
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Figure 3.1: An overview of Signal-to-Noise Ratio (SNR) distribution of the realistic synthesized occlusion

datasets, where (a), (b) and (c) are for the NTU-120, the NTU-60 and the Toyota Smart Home datasets

respectively. The legend indicates the corresponding SNR range. The SNR is calculated using the division of

number of occluded skeleton joints per skeleton sequence and the number of joints per skeleton sequence

to denote the perturbation level.

3.1.3 Occlusion Types

3.1.3.1 Realistic Synthesized Occlusion

In the existing researches on skeleton-based action recognition, the occlusions, particularly in
scenarios not constrained by data scarcity, has predominantly been simulated through the combi-
nation of the random temporal or spatial disruptions. This approach is manifest in methodologies
that arbitrarily nullify a predetermined quantity of frames or joints, thereby simulating occlusions
by directly setting the occluded frames or joints to zero [173]. While this strategy allows for a high
degree of control over the occlusion parameters, it fails to adequately replicate the complex and
often unpredictable character of real-world occlusions, which are frequently caused by objects that
induce missing skeleton points with distinct geometric patterns.

To bridge this gap between the randomocclusionswithout any geometric constraint used in prior
research and the multifaceted nature of occlusions encountered in actual environments, our study
ventures into the creation of occluded variants of three publicly accessible datasets: NTU-120 [115],
NTU-60 [161], and Toyota Smart Home [47]. This endeavor is facilitated by the integration of 3D
furniture models from the IKEA furniture collection, as sourced from the PIX3D dataset [180], into
the world coordinate system associated with skeleton data. Consequently, the method for augment-
ing each dataset with realistic synthesized occlusions is tailored to accommodate these differences,
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a process that is expounded upon in subsequent sections of this study.
Furthermore, to quantitatively assess the statistics of these realistically synthesized occlusions

on each dataset, we provide the Signal Noise Ratio (SNR) for these datasets with the newl occlusion,
as shown in Figure 3.1.
3D realistic synthesized occlusion dataset generation. The NTU-120 [115] and NTU-60 [161]
datasets encompass diverse camera perspectives recorded at the same time, necessitating the no-
tice of cross-view consistency when integrating occlusions from furniture models into skeleton
sequences. A primary challenge in this regard is the absence of calibration data for the cameras
involved, which would ideally provide foundational insights for addressing cross-view discrepan-
cies.

Fortunately, our focus on skeleton data presents a unique advantage, as each skeleton frame
within these datasets offers comprehensive world coordinate information pertaining to body joints.
This information is important to deduce the relative positioning of cameras through the dataset’s
inherent structure. Specifically, a single sample of a skeleton sequence comprising T frames and
J joints furnishes us with a total of T · J coordinate points. With N such samples available, the
aggregate number of known world coordinates escalates to N×T ×J, which substantially surpasses
the rank of any projection matrix linking two distinct cameras. Consequently, the calibration matrix
Fi j, delineating the relationship between any two cameras i and j, can be represented as Eq. 3.1,

Fi j = (sT
i si)

−1sT
i s

′
j, (3.1)

where s represents the collective body joint coordinates, formatted in homogeneous coordinates,
captured simultaneously by the two cameras. This methodology enables the derivation of the pro-
jection matrix Fi j as an element of the set F, facilitating cross-view consistency.

A comprehensive algorithmic procedure for generating 3D occlusions is presented in Alg. 1. This
process initiates with the random selection of a 3D object model from the extensive IKEA furniture
dataset PIX3D [180], which comprises 395 models across 9 categories. The selected model is then
augmented using random rotations and translations, to simulate real world randomness.

To maintain cross-view consistency, samples recorded concurrently by different cameras are
augmented with the same furniture model, adjusted according to the calibration matrix set F. Subse-
quently, we determine which body joints are obscured by the occlusion for each camera perspective.
This involves projecting the skeleton joint s= [s1,s2,s3] and the furniture model points z′ along the
camera’s focal axis to obtain s⋆ and z⋆. A two-dimensional convex hull is then constructed from the
projected furniture points z⋆, and the position of skeleton joints within this hull is ascertained as
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Eq. 3.2,
IsInHull = IsTrue(A× (s⋆T )≤ Tile(−b,(1, len(s⋆))),0), (3.2)

where A is the convex hull’s boundary equation, b is the boundary’s offset, and s⋆ is the point under
evaluation. The binary indicator IsInHull discerns whether a point lies inside the hull, facilitating
the generation of a mask for each skeleton sample. The above equation checks if a point (s∗)T lies
inside a convex hull defined by the half-space inequalities A ·x ≤ b. It computes A ·(s∗)T , compares it
to the tiled−b, and verifies if all inequalities are satisfied using the IsTrue function. The convex hull
is built up based on the boundary key points derived from the furniture model to ensure the precise.
This method is widely used in computational geometry and optimization to validate whether a point
belongs to a convex set.

Occluded points identified through these binary indicators are then nullified, completing the
occlusion simulation process.
2D realistic synthesized occlusion dataset generation. In addressing the unique characteristics
of the Toyota Smart Home dataset [47], which is distinguished by its provision of 2D skeletal data
within the image plane, we adapt our occlusion generation pipeline to accommodate the specific
requirements of 2D data processing. Unlike the procedure for 3D realistic synthesized occlusions,
which involves manipulating the 3D furniture model through rotation and translation within the
world coordinate system, the adaptation for 2D skeleton data necessitates a different approach due
to the inherent planarity of the data.

For the Toyota Smart Home dataset, the process begins with the application of a randomly gener-
ated projection matrix. This matrix serves to map the 3D points from the camera coordinate system
onto the 2D image plane, effectively projecting the 3D furniture model onto the 2D skeletal data’s
domain. Following this transformation, we construct a convex hull based on the furniture model’s
projected points within the 2D image plane, mirroring the methodology applied in the generation
of 3D occlusions.

Subsequent to the establishment of the convex hull, an occlusion-awaremask is derived using the
ISInHull function. This mask delineates the regions of the image plane obscured by the projected
furniture model. With the mask in place, we then proceed to identify and modify the corresponding
2D skeleton joints falling within the occluded regions, setting these points to zero. Through this
adapted procedure, we ensure the realistic simulation of occlusions within the 2D skeletal data of the
Toyota Smart Home dataset, thereby facilitating a comprehensive examination of occlusion effects
across both 2D and 3D skeletal data contexts.
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Algorithm 1 The pipeline of the 3D realistic synthesized occlusion generation.
Input: F – the set of projectionmatrix for each camera pair; S – the set of skeleton data; Z – the collection
of 3D furniture models from PIX3D dataset; R and T – random rotation and translation augmentations;
SOcc – a empty set for occluded skeleton data; [a, b] – predefined occluded signal noise ratio range for
the acceptance, where a is the lower limitation and b is the upper limitation.

1: for all s ∈ S: do
2: Set Accept = False.
3: while Accept! = True do
4: Set Found = False.
5: Set NOcc = 0.
6: {NOcc is the occluded sample number for Sd+1.}
7: while Found! = True do
8: Search Sd collected simultaneously with s from different views.
9: Extract the calibration set Fd for Sd .
10: Randomly select z, where z ∈ Z.
11: Obtain augmented z, i.e., z′

, by z′
= R(T (z)).

12: Get Zd by applying fd ∈ Fd on z′
.

13: Define Zd+1 = Zd ∪{z′} and Sd+1 = Sd ∪{s}.
14: if Zd+1 has no intersection with Sd+1 for each corresponding element: then
15: Found = True
16: end if
17: end while
18: for (sd ,zd) ∈ zip(Sd+1,Zd+1) do
19: Horizontally project zd and sd along focus axis of camera d into 2D plane as z⋆d and s⋆d .
20: Build up 2D convex hull Φ of z⋆d .
21: Maskd = IsInHull(Φ,s⋆d).
22: Calculate SNRd = Sum(Maskd)/len(Maskd) for sd .
23: Occlude sd by sd [Maskd ] = zeros_like(sd [Maskd ]).
24: Append sd into SOcc

d
25: if SNRd in [a,b]. then
26: NOcc+= 1.
27: end if
28: end for
29: if NOcc < TOcc or NRep < TRep then
30: Set Accept = False and NRep+= 1.
31: else
32: Set Accept = True.
33: Del Sd from S and append the SOcc

d into SOcc.
34: end if
35: end while
36: end for
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3.1.3.2 Random Occlusion

In our exploration of occlusion variants within the framework of skeleton-based action recogni-
tion, we delve into the dynamics of random occlusion. This occlusion type combines random tempo-
ral and spatial occlusions, reflecting methodologies previously implemented in standard skeleton-
based action recognition research, devoid of data scarcity constraints [172, 173]. Random temporal
occlusions entail the arbitrary omission of a predetermined number of frames within each skeleton
sequence, thereby emulating instances of complete occlusion at specific intervals. Concurrently,
random spatial occlusions involve the selective nullification of a specified number of randomly se-
lected joints across every frame in the data stream, introducing a nuanced form of occlusion where
visibility of certain joints fluctuates unpredictably across the sequence.

This dual strategy of integrating random temporal with random spatial occlusions presents a
scenario that aligns more closely with real-world conditions, characterized by less predictable and
less controllable occlusions. For analytical purposes, we represent the skeleton data as s ∈ RT×J×B,
where T denotes the number of frames, J denotes the number of joints, and B denotes the body
dimensionality. This data is subsequently flattened into amatrix of dimensionsR(T×J)×B, facilitating
the random selection of data points γ · (T × J) to be occluded, with γ indicating the predetermined
SNR that guides this selection process.

While recognizing the mixed model of spatial and temporal occlusions as a more pragmatically
viable variant, our study also extends to examining the effects of isolated random spatial and tempo-
ral occlusions. This study enables us to establish comparison, thereby enhancing our understanding
of the relative complexities introduced by each occlusion type. Next, the proposed new deep learning
method to tackle SOAR under scenarios will be introduced.

3.1.4 Trans4SOAR

We introduce Trans4SOAR – a three-stream transformer-based model designed to overcome ad-
verse effects of occlusions (an overview is provided in Fig. 3.2). The proposed Trans4SOAR model
is a cutting-edge transformer-based framework specifically designed for Skeleton-based One-Shot
Action Recognition (SOAR), addressing the critical challenge of occlusions in skeleton sequences.
The architecture employs three distinct data streams—joints, bones, and velocities—each encoded
into image-like representations. These streams are processed through patch embedding layers and
fused via the Mixed Attention Fusion Mechanism (MAFM), which operates at the patch embed-
ding level to ensure effective integration of complementary information across modalities. MAFM
combines spatial-temporal dependencies using a novel Softmax Concentrated Aggregation (SCA)
approach, which aggregates query, key, and value features from different streams, enabling robust
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Figure 3.2: An overview of the proposed Trans4SOAR architecture, which is a Transformer for Skeleton-
basedOne-ShotActionRecognition. (a) indicates the transformer block leveraged in Trans4SOAR. This basic

transformer attention block is proposed by LeViT [69], which builds up the transformer block in the later stage

of our Trans4SOAR architecture through stacking. (b) is the overview of the Trans4SOAR training pipeline.

First, the skeleton signals are encoded in three kinds of format, i.e., joints, bones, and velocities. Image-

like representations are formulated through the concatenation along the temporal axis of the skeleton data,

which are further divided into several patches and fed into its corresponding patch embedding net. Then,

the Mixed Attention Fusion Mechanism (MAFM) fuses the embeddings from these three different streams

by using Mixed Fusion (MF) to achieve cross-stream aggregation on Key,Query, and Value together with the

proposed SoftmaxConcentrated Aggregation (SCA). The Latent Space Consistency (LSC) loss LLSC integrates

an prototype augmented auxiliary branch and adopts cosine similarity loss to encourage the embeddings

from the main branch E and the embeddings from the auxiliary branch E∗
to be more similar. Three losses,

i.e., triplet margin loss (LT PL), cross entropy loss (LCLS), and LSC loss (LLSC), are leveraged for discriminative

representation learning. EMB indicates embedding generation layers, which are built based on multi-layer

perceptrons (MLP). Head indicates a fully-connected (fc) layer based classification head. PE indicates the

patch embedding network. (c) shows the workflow of the Mixed Fusion (MF) and (d) shows the Mixed

Attention Fusion Mechanism (MAFM), where Proj indicates the fc-based projection layer, AVG indicates the

average operation and LN indicates layer normalization.

25



feature extraction even under occlusion-induced distortions.
A distinguishing feature of Trans4SOAR is the Latent Space Consistency (LSC) loss, which en-

hances robustness to occlusions by leveraging an auxiliary branch enriched with category-agnostic
prototypes. These prototypes act as anchors, encouraging consistency between embeddings from
the main and auxiliary branches, even when the input data is degraded by occlusions. The LSC loss
achieves this through a warm-up phase using self-augmentation and a subsequent prototype-based
augmentation phase, refining feature representations by aligning embeddings with prototype distri-
butions. This loss not only improves robustness but also facilitates better generalization to unseen
action categories, a core challenge in one-shot learning.

3.1.4.1 Illustration of the Base Components

Input encoding. In the formulation of our approach, we employ the skeleton representationmethod-
ology as delineated by SL-DML [135], which facilitates the transformation of sequential skeleton
data into image-like formats for processing. Let us denote a given sequential skeleton sample by
s ∈RT×J×C, where T represents the temporal dimension of the sample, J denotes the total count of
joints within the skeleton, and C denotes the dimensional characteristics of the joint coordinates.

To reformulate these skeleton sequences into the regular shape required by the vision trans-
formers, bilinear interpolation is applied to upsample the skeleton data from its original T × J ×C

format to a dimensionality of H ×W ×C, thereby aligning with the input specifications typical of
image processing models. This preprocessing ensures that our model can interpret skeletal data in a
manner akin to image inputs, leveraging the spatial-temporal nuances embedded within the skeletal
sequences.

Distinctively, Trans4SOAR is conceptualized as a triple stream architecture before the fusion of
the patch embeddings, which enriches its analysis by not solely focusing on joint information but
also incorporating the dynamics of bones b and velocities v. Here, the velocity vt = st −st−1 captures
the temporal change for each joint, reflecting the motion dynamics at every timestep t . Similarly, the
bone vectors bi, j = si − s j, for each pair (i, j) ∈ Ωbones, encode the structural relationship between
joints, embodying the skeletal geometry of the human body.

By mapping these derived modalities into image-wise encoding using bilinear interpolation, we
can effectively translate skeletal motion and structure into formats required by CNN and transformer
architectures. Consequently, this transformation yields three parallel streams of image-wise inputs:
joints, velocities, and bones, each conforming to the shape of H ×W ×C.
Patch embedding and transformer blocks. To take advantage of the strengths of CNNs and
transformers, we look to the LeViT [69] model. CNNs are great at preserving details, while trans-
formers excel at capturing long-range dependencies. LeViT combines these strengths by using a
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four-layer CNNs to create patch embeddings, followed by a series of transformer blocks. This ap-
proach blends the two architectures effectively. Building upon this powerful feature learning frame-
work, Trans4SOAR incorporates the core transformer blocks and patch embedding strategy as de-
lineated by LeViT [69]. Self-attention mechanism is the most essential design in transformer block.
Query Q, Key K, and Value V are calculated through dedicated projection layers ProjQ, ProjK , and
ProjV to formulate self attention procedure. The attentive output is subsequently derived using the
following Eq. 3.3,

Att = ProjTop(HardsWish(SoftMax(Q×KT )+Biasatt)×V), (3.3)

where each projection layer comprises a 1× 1 convolution followed by batch normalization, and
Biasatt signifies the attention bias. HardsWish is designed to optimize the balance between specificity
and generalization of the learned embeddings. It modifies the conventional SoftMax operation by
incorporating a hard constraint on the attention distribution, improving focus on critical regions of
the data. This approach ensures robust attentionweights, particularly beneficial in noisy or occluded
scenarios, by emphasizing reliable feature correlations while reducing the influence of irrelevant or
corrupted data, where its formula is

HardSwish(x) = x · ReLU(x+3)
6

. (3.4)

In the adaptation of this architecture within Trans4SOAR, we commence by segmenting the three
distinct streams of input, i.e., joints, velocities, and bones, into Npatch = (H/P)× (W/P) patches,
given a predefined patch size P.

Subsequent steps involve the construction of patch embedding layers via a series of CNNs, de-
noted as Mθ j , Mθv , and Mθb for each input stream. These networks are tasked with extracting
high-dimensional embeddings for each patch sequence, resulting in Epatch, j, Epatch,v, and Epatch,b

for joints, velocities, and bones, respectively. Discarding traditional positional embeddings, we in-
stead adopt the attention bias approach as depicted in Fig. 3.2(a), in accordance with the method
proposed by LeViT [69]. The relationship between the input sequences and their respective embed-
dings is formalized in the Eq. 3.5.

Epatch, j, Epatch,v, Epatch,b = Mθ j(s), Mθv(v), Mθb(b). (3.5)

The derived embeddings are subsequently directed into the MAFM within Trans4SOAR, which
achieves the fusion of the multi-modal patch embeddings.
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3.1.4.2 Multimodal Fusion at the Patch Embedding Level

Mixed Fusion (MF).Mixed fusion proposed by us is the most important component of the MAFM
structure, aimed at enhancing the multi-stream fusion of skeletal data at the patch embedding level.
This mechanism is particularly designed to facilitate the transfer of crucial information from the
auxiliary streams, i.e., velocities and bones, towards the primary stream of joints, to derive motion
cues from different perspectives to alleviate the negative effects brought by the occlusions from
the environment. Our approach adopts a novel strategy by utilizing a combination of the Key and
Value elements for the purpose of multi-stream fusion, a concept partially inspired by the work in
MixFormer [42], which applies a similar principle for template matching tasks.

However, the application of the Key-Value mixture within our MAFM is distinct and non-trivial,
tailored specifically for the unique challenges and objectives of SOAR. Contrary to the MixFormer’s
objective of accentuating similarity cues within the context of template matching, our MF strategy is
intricately designed to capture and exploit complementary cross-modality dependencies among the
skeletal data streams. This approach aims to foster a multi-stream information emergence, thereby
facilitating the learning of discriminative embeddings essential for generalizable action recognition
under occlusions.

To achieve this aim, we for the first time propose a three-stream patch-embedding fusion ar-
chitecture that seamlessly integrates MF and MAFM components. This architecture is strategically
developed to not only merge Key and Value elements from different streams but also to ensure that
such fusion accentuates the discriminative features necessary for recognizing actions from skeletal
data. By doing so, the MAFM architecture uniquely positions itself to address the demands of cross-
stream informative embedding fusion within the challenging SOAR task with occlusion disturbance,
marking a significant departure from existing methodologies for multi-modal fusion. In the follow-
ing, we introduce more details toward the proposed MF for multi-stream patch embedding fusion.
First, we encode the patch embeddings of the joints Epatch, j through two different linear projection
layers, i.e., Proj jv

Q and Projb j
Q , as depicted in Eq. 3.6:

Q jv, Qb j = Proj jv
Q (Epatch, j), Projb j

Q (Epatch, j). (3.6)

Then, for Keys and Values of the jv and b j branches, the input embeddings are aggregated together
through concatenation (Concat). After this procedure, for each single term, a projection layer is
leveraged for the encoding of the embedding. For example, Proj jv

V is the projection layer for Value
of the jv branch. As a result, Viv, K jv, Vb j, and Kb j can be obtained after the encoding:

Viv = Proj jv
V (Concat(Epatch, j, Epatch,v)), (3.7)
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K jv = Proj jv
K (Concat(Epatch, j, Epatch,v)), (3.8)

Vb j = Projb j
V (Concat(Epatch, j, Epatch,b)), (3.9)

Kb j = Projb j
K (Concat(Epatch, j, Epatch,b)). (3.10)

After the aforementioned procedures, we have harvested Query, Key, and Value for the these two
branches. Then these two branches need to be aggregated. We introduce SoftMax Concentrated Ag-
gregation (SCA), which is realized through the following equations to achieve aggregation between
V jv and Vb j, K jv and Kb j, and Q jv and Qb j:

V = (So f tMax(V jv)
T Vb j +So f tMax(Vb j)

T V jv)/2, (3.11)

K = (So f tMax(K jv)
T Kb j +So f tMax(Kb j)

T K jv)/2, (3.12)

Q = (So f tMax(Q jv)
T Qb j +So f tMax(Qb j)

T Q jv)/2. (3.13)

After the SCA operation, we obtain the aggregated Query Q, Key K, and Value V, which are fused
together by Att = So f tMax(QKT/

√
sk)V, where a scale factor sk is used to avoid the negative in-

fluence brought by the dot product on the variance and Att denotes the calculated attention value.
MF strategy enhances the feature learning by realizing a major modality agnostic attentional fusion,
where the joints modality is chosen as major modality since the other two modalities are derived
from joints modality. By fusing the information from the joints-velocity branch and the joints-bones
branch regarding the three components for the self attention calculation, more useful cues can be
better obtained.
Mixed Attention Fusion Mechanism (MAFM). The proposed MAFM, showcased in the bottom
right corner of Fig. 3.2, is a critical component of our Trans4SOAR architecture, designed for ad-
vanced aggregation of multimodal inputs. It incorporates Layer Normalization (LN), averaged skip
connections, and path dropout to enhance fusion efficacy and ensure model generalizability. The
process begins with obtaining the attended embedding Eatt , aimed at unifying the strengths of each
input stream, as shown in Eq. 3.14:

Eatt = MF(LN(Epatch, j), LN(Epatch,v), LN(Epatch, j)). (3.14)

As depicted in Fig. 3.2, the original patch embeddings Epatch, j, Epatch,v, and Epatch,b are firstly aver-
aged and then added with the path-dropped attended embedding Eatt to harvest Easn, an embedding
after averaging (AV G), as shown in Eq. 3.15:

Easn = AV G(Epatch, j,Epatch,v,Epatch,b)+DP(Eatt), (3.15)
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Algorithm 2 An overview of the training pipeline with LSC loss.
Input: S – a batch in Dtrain; labelsS denotes the label set for batch S; Sp and Sn – positive and negative
anchor; f 1→N−1

δ
and f 1→N−1

θ
– first N-1 transformer layers of main and auxiliary branches; f N

δ
and f N

θ
–

the N-th (last) transformer layer for main and auxiliary branches; EMB – embedding layer; Ne – maxi-
mum training epochs; Nt – epoch threshold for the stage changing; E and E∗ – embedding for main and
auxiliary branches; PMB – prototypes memory bank; WarmUpAug and PrototypeAug – warm-up stage
and prototype-based feature augmentation stage; Lp is initialized as empty list;

1: for all epoch ∈ Range(Ne) do
2: for all S ∈ Dtrain do
3: Lp = [].
4: if epoch > Nt then
5: for all l in labelS do Append(PMB[l]) → Lp

6: end for
7: E∗P = Concat(Lp).
8: end if
9: if BaseModel is not None then S := BaseModel(S)
10: end if
11: Epatch = PatchEmbeddingAndEncoding(S).
12: EN−1 = f 1→N−1

δ
(Epatch), E∗

N−1 = f 1→N−1
θ

(Epatch).
13: if epoch < Nt then E∗

aug =WarmU pAug(E∗
N−1)

14: else E∗
aug = PrototypeAug(E∗

N−1,E
∗
P)

15: end if
16: E= EMB( f N

δ
(EN−1)), E∗ = EMB( f N

θ
(E∗

aug)).
17: LT PL = TripletMarginLoss(E,En,Ep).
18: LLSC =ConsistencyLoss(E,E∗)→LSC loss.
19: LCLS =Classi f icationLoss(Head(E), labelS).
20: BackPropagation(WeightedSum(LT PL,LCLS,LLSC)).
21: end for
22: if epoch > Nt −1 then
23: CalculatePrototypes(Dtrain)→ Set(EN−1)→ PMB.
24: end if
25: end for

where DP indicates the path dropout operation. Then, the final fused embedding Emixed is harvested
through Eq. 3.16:

Emixed = DP(MLP(LN(Easn)))+Easn. (3.16)

Subsequently, the composite embedding generated by this process is then inputted into a series of
transformer blocks for further analysis.

3.1.4.3 Prototype-Based Latent Space Consistency Loss

In the pursuit of achieving discriminative and generalizable embedding learning in one-shot
action recognition, we introduce the concept of Latent Space Consistency (LSC) loss. This loss func-
tion is designed to ensure that the embeddings derived from the primary branch of the model are
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consistent with those obtained from an additional branch that utilizes prototype-based feature aug-
mentation, as delineated in Alg. 2. The core objective of implementing LSC loss lies in bolstering
the model’s generalizability, compelling it to maintain stable embeddings despite perturbations in-
troduced by feature-level augmentations. This approach is particularly effective in mitigating the
impact of occlusions, as validated by our experimental results. Our methodology extends the prin-
ciples of a recent feature augmentation strategy proposed in the realm of semi-supervised learn-
ing [97], further enhanced by the integration of a warm-up self-augmentation phase and architec-
tural modifications, which collectively contribute to notable improvements in model accuracy and
generalizability.
Estimation of the prototypes for different action categories. In our approach to feature-level
augmentations within the auxiliary branch, we are inspired by FeatMatch [97], an innovative semi-
supervised image classification technique that employs weighted combinations of category-specific
prototypes to refine intermediate features. For each category li ∈ Cbase belonging to the dataset’s
richly annotated action classes, we calculate the category’s prototype within the latent space. This
is achieved by determining the centroid of all embeddings for a given action class within the train-
ing set, specifically utilizing the embeddings obtained just prior to the final transformer block in
a sequence of N blocks. Distinct from the FeatMatch approach, which resorts to clustering in the
context of semi-supervised learning due to the lack of labels, our method leverages the centroids
of categories with label available during the training phase. These prototypes are dynamically up-
dated at the conclusion of each training epoch and are systematically stored in what we term the
Prototype Memory Bank (PMB), using a category-wise mean averaging process. Consequently, these
category prototypes serve a crucial role in facilitating feature augmentations, thereby enabling more
discriminative and generalizable embedding learning for SOAR performance improvement.
Prototype-based feature enhancement with self-augmentation warm-up technique. Using
prototype-based augmentationwithin the realm of one-shot learning necessitates additional concep-
tual modifications. To adapt prototype-based augmentation for one-shot learning, a new approach
is employed. Given that the prototypes E∗

P directly represent specific action categories from Cbase,
we initiate the process by applying SoftMax normalization across the prototype vector’s channel
dimension. Subsequently, this normalized vector is combined with the feature E∗

N−1, derived from
E∗

N−1 = f 1→N−1
θ

(Epatch), where Emixed denotes the mixed fused patch embedding and f i
θ
represents

the i-th transformer stage block in the auxiliary branch. This combination is then projected into an
embedding space as E∗

r,N−1 = g2
µ(SoftMax(E∗

P) ·E∗
N−1), with N indicating the total count of trans-

former stage blocks. Concurrently, E∗
N−1 undergoes a separate projection as E∗

l,N−1 = g1
µ(E∗

N−1),
and the attention weight W is calculated via W = SoftMax(E∗

l,N−1
TE∗

r,N−1), setting the stage for
aggregating information from E∗

P into E∗
N−1 as depicted in Eq. 3.17:
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E∗
agg,N−1 = g3

µ(Concat(WE∗
r,N−1,E

∗
l,N−1)), (3.17)

the final augmented embedding E∗
aug is then harvested by a residual connection with the original

embedding E∗
N−1 using E∗

aug=ReLU(E∗
N−1+E∗

agg,N−1), where g1
µ and g2

µ denote two fully-connected
(fc) layers without weight sharing, and g3

µ denotes a stack of two fc layers with ReLU in between.
In our methodology, given that the prototypes correspond directly to known action categories

from Cbase (unlike the unsupervised clustering required in self-supervised tasks), the utilization of
category centers during initial training epochs may lead to inaccuracies.

Tomitigate this, we incorporate awarm-up phase, prioritizing self-augmentation over prototype-
based augmentation until a certain degree of model convergence is achieved. Initially, the focus is
on self-augmentation, utilizing the embedding E∗

N−1 in place of the attended prototype representa-
tion. This phase is visually represented at the top of Fig. 3.3, contrasting with the prototype-based
augmentation depicted at the bottom. Subsequently, the approach transitions to prototype-based
augmentation, introducing zero prototypes for a predetermined period to facilitate decenteriza-
tion, followed by the implementation of class-agnostic prototype augmentation at the feature level.

Figure 3.3: An overview of the self-augmentation and

prototype-based augmentation mechanisms.

The augmented embeddings E∗ are derived
through E∗ = EMB( f N

θ
(E∗

aug)), where EMB de-
notes the embedding generation layers based
on a multi-layer perceptron. The main
branch’s final embedding E is computed as E=

EMB( f N
δ
(EN−1)), with EN−1 being the output

from the N−1 stages of transformer blocks, de-
noted as f 1→N−1

δ
(Epatch) for the main branch.

Upon obtaining the embeddings from the main
branch E and the auxiliary branch E∗, the LSC
loss is harvested as Eq. 3.18, where cos indicates
cosine similarity.

LLSC = 1− cos(E,E∗). (3.18)

3.1.4.4 Deep Metric Learning and Classification Losses

Triplet margin loss. In the protocol we used, a triplet margin loss is utilized to enhance the dis-
criminative ability of the learnt embeddings. This setting involves selecting a triplet of embeddings
for each instance: ai, pi, and ni, representing the anchor, a positive anchor sharing the same class
as the anchor, and a negative anchor from a different class, respectively. The objective of the triplet
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margin loss is designed to minimize the distance between the current anchor and the positive anchor
while simultaneously maximizing the distance between the current anchor and the negative anchor,
as shown in Eq. 3.19:

LT PL =
NB

∑
i=1

max{D(ai,ni)−D(ai,pi)+σ ,0}/NB, (3.19)

where the specified margin is represented by σ , which is intended to delineate the minimum
desired separation between the anchor-positive and anchor-negative pairs, while D(·) specifies the
pairwise distance metric. For calculating the pairwise distance between the current anchor a and
the negative anchor n, the formula D(a,n) = ∥a−n+ ε∥2 is utilized, where ε is maintained at a
small value of 1e−6 to ensure numerical stability, and NB is the batchsize.
Classification loss. To monitor the training procedure and ensure the discriminative ability of
embeddings in the latent space, a cross-entropy loss function is utilized. This function calculates
the difference between the model’s predicted classifications pi and the true labels yi for every i-th
sample in a given batch. The calculation of the cross-entropy loss is executed as Eq. 3.20,

LCLS = (
NB

∑
i=1

[−yilog(pi)+(1−yi)log(1−pi)])/NB (3.20)

3.1.5 Experiments

3.1.5.1 Dataset Introduction

Our research includes extensive experiments in the realm of SOAR across three challenging
datasets: NTU-60 [161], NTU-120 [115], and Toyota Smart Home [47]. Adhering to the established
SOAR protocol of NTU-120, we create the evaluation protoocls for both Toyota Smart Home and
NTU-60 to align with the objectives of our study, focusing on learning from data-scarce setting.
Furthermore, we pioneer the introduction of occluded SOAR benchmarks, extending these three
foundational datasets. Specifically, the benchmarks for NTU-120, NTU-60, and Toyota Smart Home
are structured to include 100/48/24 categories for data-rich training and 20/12/7 categories for
data-scarce testing, each with one reference sample per unseen category.

3.1.5.2 Implementation Details

In the training of Trans4SOAR, a preparatory warm-up phase is designated with a threshold
Nt = 20, followed by an additional span of 10 epochs dedicated to decenterization processes. Op-
timization of the model employs the AdamW algorithm [126], integrated with a Cosine Annealing
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Table 3.1: Experiments for SOAR without occlusion on NTU-120.

Encoder Accuracy F1 Precision Recall
Previously Published Approaches

AN† [118] 41.0 - - -
FC† [118] 42.1 - - -
AP† [118] 42.9 - - -
APSR [118] 45.3 - - -
TCN-OneShot [157] 46.3 - - -
SL-DML [135] 50.9 - - -
Skeleton-DML [134] 54.2 - - -
CNN-based Encoder Optimized by DML
SL-DML (AlexNet [95]) 40.33 39.14 42.42 40.35
SL-DML (SqueezeNet [82]) 42.55 40.52 41.88 42.51
SL-DML (ResNet18 [73]) 49.19 47.54 49.80 49.23
Transformer-based Encoder Optimized with DML (Ours)
SL-DML (CaiT [185]) 47.86 47.53 50.06 47.94
SL-DML (ViT [52]) 48.45 47.40 48.59 48.52
SL-DML (Twins [38]) 49.00 48.04 49.30 49.06
SL-DML (ResT [223]) 52.58 51.86 53.99 52.61
SL-DML (Swin [122]) 53.13 52.09 53.48 53.16
SL-DML (LeViT [69]) 53.19 52.22 53.85 53.29
Our Proposed and Extended Approaches (Ours)
SL-DML (LeViT) + LSC 55.94 54.29 55.80 56.04
Trans4SOAR (Small) 56.27 56.43 58.59 56.32
Trans4SOAR (Base) 57.05 55.90 57.26 57.12

Scheduler over a course of 50 epochs. The model’s operation utilizes a batch size of 32, facilitated
by the computational capabilities of an Nvidia A100 GPU and developed within the PyTorch 1.8.0
framework to achieve optimal performance. An initial learning rate set at 3.5e−5 supports the bal-
ancing of three distinct losses: Triplet Margin Loss (σ = 0.2), Cross Entropy Loss, and LSC loss,
with respective weights of 1.0, 0.4, and 0.1. The architecture of Trans4SOAR (Small) is character-
ized by a DKey of 1, Nhead values of [2,2,2], Hdep values of [2,4,4], andCdim values of [384,512,512],
cumulating to a total of 23M parameters. In contrast, the Trans4SOAR variant is configured with a
DKey of 32, Nhead values of [6,9,12], Hdep of [4,4,4], and Cdim values of [384,512,768], accounting
for a total of 43M parameters. Both models incorporate three principal transformer blocks, denoting
a sophisticated approach to feature processing.

To preclude potential data leakage stemming from the augmentation process to the occlusion
areas, occlusions are preemptively generated prior to the application of data augmentation tech-
niques. This approach is consistently applied across all the occlusion types leveraged in our work.
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Table 3.2: Experiments regarding REalistic synthesized occlusion (RE) and RAndomocclusion (RA) for SOAR.

Encoder (a) With RE (b) With RA
Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

SL-DML [135] 39.82 37.85 39.32 39.86 42.53 42.24 44.79 42.56
Skeleton-DML [134] 49.21 46.82 48.10 49.18 35.15 32.59 34.29 35.22
SL-DML (LeViT [69]) 44.22 42.29 44.20 44.31 35.00 33.24 41.45 35.10
SL-DML (Swin [122]) 47.19 45.64 46.78 47.29 42.16 39.93 39.67 40.20
SL-DML (LeViT) + LSC 48.28 46.03 47.58 48.31 38.04 35.93 37.87 38.11
Trans4SOAR (Small) 51.64 50.47 52.36 51.70 53.27 51.33 53.80 53.35
Trans4SOAR (Base) 52.35 48.79 52.87 52.43 53.17 52.89 54.50 53.21

Table 3.3: Experiments on the NTU-60 for SOAR considering different occlusion scenarios.

Encoder (a) Without Occlusion (b) With RE (c) With RA
Acc. F1 Prec. Rec. Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

Previously Published Approaches

SL-DML [135] 54.82 54.31 56.72 54.65 36.90 35.86 36.59 37.05 45.28 43.13 45.00 45.42
Skeleton-DML [134] 55.54 50.88 53.13 51.24 42.66 40.90 41.50 42.82 60.43 59.66 61.37 60.54

Transformer-based Encoder Optimized by DML (Ours)

SL-DML (Swin [122]) 56.99 56.24 58.67 56.99 51.71 50.60 52.54 51.82 64.65 63.74 66.57 64.77
SL-DML (LeViT [69]) 64.45 64.17 66.35 64.47 52.72 52.19 54.90 52.86 56.73 55.89 57.57 56.85

Our Extended and Evaluated Approached (Ours)

SL-DML (LeViT) + LSC 67.67 67.87 68.74 67.67 53.79 52.76 54.18 53.88 60.78 58.75 59.97 60.90
Trans4SOAR (Small) 69.74 70.52 72.45 69.82 56.84 55.84 58.27 56.98 67.90 67.32 68.94 68.01
Trans4SOAR (Base) 74.19 74.34 75.91 74.20 59.28 58.96 59.91 59.40 72.59 71.82 73.89 72.66

3.1.5.3 Analyses for SOAR Without Occlusion

Performance analyses of different components. In our investigation, delineated within Ta-
ble 3.1, we commence by empirically examining the enhancements attributed to the introduction of
LSC loss, which is implemented via prototype-based feature augmentation alongside an auxiliary
branch. We compare our approach with the baseline SL-DML [134], which employs a data prepro-
cessing methodology congruent with our proposed strategy.

Our methodology incorporates the SL-DML framework, subsequently integrating an auxiliary
branch and leveraging transformer-based multi-stream patch embedding level fusion architecture,
notably LeViT [69]. This auxiliary branch is dedicated to facilitating attention-driven augmentations
through feature-level prototypes. The LSC loss is calculated via the cosine similarity loss between
embeddings produced by the main and auxiliary branches. We first delve deeper into the bene-
fits brought by the leveraged transformer architecture. A new variant of SL-DML is introduced
by us, where the original CNN architecture is replaced by the LeViT architecture, denoted as SL-
DML (LeViT). We observe that, SL-DML (LeViT) outperforms its original CNN version, SL-DML
(ResNet18), which signifies the adaptation of the SL-DML pipeline through the substitution of a
conventional CNN with transformer architecture due to its promising long-term reasoning ability.
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Table 3.4: Experiments on the Toyota Smart Home for SOAR considering different occlusion scenarios.

Encoder (a) Without Occlusion (b) With RE (c) With RA
Acc. F1 Prec. Rec. Acc. F1 Prec. Rec. Acc. F1. Prec. Rec.

Previously Published Approaches

SL-DML [135] 58.98 27.15 27.64 35.00 38.93 25.16 32.93 28.48 53.79 26.28 27.24 29.67
Skeleton-DML [134] 47.31 18.45 18.58 23.80 47.67 24.86 27.93 27.35 48.91 21.60 25.00 21.75

Transformer-based Encoder Optimized by DML (Ours)

SL-DML (Swin [135]) 58.76 28.83 29.17 32.34 35.43 18.48 23.24 23.80 65.50 29.20 30.78 29.69
SL-DML (LeViT [69]) 62.22 31.98 37.56 35.16 38.48 22.58 27.66 24.62 61.96 26.42 28.52 29.20

Our Extended and Evaluated Approached (Ours)

SL-DML (LeViT) + LSC 64.46 31.91 34.07 33.58 41.82 24.34 29.02 26.67 63.77 27.72 29.09 29.90
Trans4SOAR (Small) 66.87 28.08 31.47 34.63 55.12 26.90 29.41 30.69 68.47 28.86 29.56 32.25
Trans4SOAR (Base) 70.22 33.96 37.81 35.33 60.15 25.50 33.12 31.86 68.91 29.27 34.15 31.45

Table 3.5: Ablation study of LSC and MAFM used in the Trans4SOAR on NTU-60 without occlusion.

With LSC Self-aug. wp De-centerization MAFM Accuracy F1 Precision Recall
64.45 64.17 66.35 64.47

✓ ✓ ✓ 67.67 67.87 68.74 67.67
✓ 71.55 71.85 73.45 71.63

✓ ✓ 72.69 72.80 74.27 72.73
✓ ✓ ✓ 73.09 73.39 74.54 73.14
✓ ✓ ✓ ✓ 74.19 74.34 75.91 74.20

Remarkably, the integration of LSC loss into the SOAR task, devoid of occlusion scenarios,
yielded substantial improvements in accuracy. Specifically, SL-DML (LeViT) + LSC Loss manifested
an enhancement in accuracy by 2.75% on NTU-120 (Table 3.1), 3.22% on NTU-60 (Table 3.3 (a)), and
2.24% on Toyota Smart Home (Table 3.4 (a)), in comparison to SL-DML (LeViT). This variant demon-
strated superior efficacy relative to both SL-DML [135] and Skeleton-DML [134] in the context of
SOAR tasks without occlusion.

The comparative analysis on the NTU-120 dataset [115] accentuates the superiority of our ap-
proach with the LSC loss, which eclipses the achievements of preceding methodologies—namely,
SL-DML [135] by more than 5% and Skeleton-DML [134] by 1.74% (Table 3.1).

Furthermore, our detailed ablation studies concerning the pivotal components of the LSC loss, as
presented in Table 3.5, underscore the significance of both the warm-up and de-centerization phases.
These stages collectively contribute to a performance uplift of 1.5% when compared with the LSC
loss absent of the warm-up stage.

Then, the combination of the LSC loss and the MAFM, mixing three streams of input at patch
embedding level, further contributes a remarkable performance gain regarding the SOAR with-
out occlusion compared with the existing state-of-the-art works [134]. On the NTU-120 [115],
Trans4SOAR (Base) surpasses Skeleton-DML [134] and SL-DML [135] by 2.85% and 6.15% for ac-
curacy while outperforming SL-DML (LeViT) + LSC by 1.11%, indicating an promising performance
enhancement which is resultant by the superior discriminative ability of the learned embedding by

36



Table 3.6: A comparison to other encoder architectures.

Methods Accuracy F1 Recall Precision
SL-DML (CTR-GCN[33]) 43.92 41.38 45.21 43.89
SL-DML (STTR[152]) 39.56 39.45 41.92 39.58
SL-DML (LeViT) + LSC 55.94 54.29 55.80 56.04
Trans4SOAR (Small) 56.27 56.43 58.59 56.32
Trans4SOAR (Base) 57.05 55.90 57.26 57.12

Table 3.7: Experiments without occlusion on NTU-120 under Gaussian noise disruption.

Gaussian Noise σ = 0.1,µ = 0 σ = 0.05,µ = 0
Encoder Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.
SL-DML [135] 21.42 11.83 8.50 21.71 21.76 12.23 8.70 21.86
SL-DML (LeViT) 22.31 12.32 8.79 22.40 21.97 12.82 9.69 22.07
SL-DML (LeViT) + LSC 52.54 51.16 51.61 52.65 51.91 50.08 51.67 52.01
Trans4SOAR 53.09 51.89 53.05 53.15 54.74 54.65 56.33 54.83

MAFM and LSC loss. We also conduct experiments to showcase the individual performance gain
brought by LSC and MAFM in Table 3.5. Furthermore, consistent improvements are achieved by
Trans4SOAR in the other two datasets, e.g., NTU-60 in Table 3.3 (a) and Toyota Smart Home [47] in
Table 3.4 (a) for the SOAR without occlusion. The NTU-60 [161] has less training categories than
the NTU-120 [115], thus, it is used to evaluate the generalizability of the leveraged models under
the SOAR challenge with less a prior knowledge. In Table 3.3 (a), our Trans4SOAR (Base) surpasses
SL-DML [135] and Skeleton-DML [134] by 19.37% and 18.65% for accuracy, indicating that strong
capability for harvesting discriminative and generalizable embeddings of our approach under the
scenario with less a priori knowledge. Furthermore, the Toyota Smart Home [47] contains 2D skele-
ton data in image coordinate format, delivering a valuable data format to explore the SOAR task. In
Table 3.4 (a), our Trans4SOAR (Base) shows the best performance over all the previous approaches
with large margin. Observing the other three metrics, i.e., F1-score, precision and recall, since the
first two datasets have balanced distributed samples for different categories, theses three terms do
not have large difference compared with the accuracy. However, since the action categories on the
Toyota Smart Home [47] is not equal distributed, these three terms are able to showcase whether
the true prediction is balanced distributed in the test set or not. Our Trans4SOAR surpasses all the
approaches in terms of all metrics on the investigated datasets. In order to ablate the effect of differ-
ent model scales, we construct Trans4SOAR (Small) with only 23M parameters which pursues both
light model structure and high accuracy, and achieves second best performance, showcasing that
the LSC loss and MAFM are helpful for learning discriminative features via different model variants.
We also conduct experiments in Table 3.6 to compare with graph convolutional approach [33] and
skeleton transformer approach [152], however the performance of these two encoder architectures
for the SOAR task even without occlusion is not satisfied compared with Trans4SOAR and SL-DML
(LeViT), since by using the image-wise encoding and the vision transformer architecture, more in-
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formative cues with finer granularity can be captured by the deep learning model, which is very
essential in data-scarce scenario, while GCN architectures work directly on sparse data and do not
preserve this capability.
Tolerance to noisy inputs. The integrity of skeleton data can be compromised by numerous fac-
tors, including sensor inaccuracies and occlusions. An observed disparity in performance between
Trans4SOAR and conventional DML methodologies, particularly noted on the Toyota Smart Home
dataset [47], which presents a more challenging environment than the comparatively controlled
NTU-60 and NTU-120 datasets, suggests a potential robustness of Trans4SOAR against imperfect
inputs. To substantiate this hypothesis, we subjected the model to inputs corrupted by varying
degrees of Gaussian noise, the results of which are shown in Table 3.7, illustrating Trans4SOAR’s
promising resilience and generalizability.

Contrary to the deteriorating accuracy observed in conventional DML-based frameworks, the
application of LSC loss within SL-DML (LeViT) exhibits notable robustness against degraded input
quality, thereby underscoring the efficacy of LSC loss in mitigating the negative effects of Gaussian
noise. Specifically, the performance of SL-DML (LeViT) with LSC loss decreases marginally from
55.94% in the presence of clean data to 51.91% when subjected to Gaussian noise with σ=0.05.
This degradation is significantly less severe compared to that of SL-DML (LeViT) without LSC loss,
which plummets from 53.19% to 21.97% under identical conditions. This phenomenon is attributed
to the sophisticated feature-level augmentations executedwithin the auxiliary branch during the for-
mulation of the LSC loss, which inherently enables the model to maintain performance consistency
despite variations in the embedding caused by noise.

Moreover, the Trans4SOAR (Base) model unequivocally outperforms all other baseline method-
ologies, achieving accuracies of 54.74% and 53.09% against Gaussian noisewithσ=0.05 andσ=0.1,
respectively. This resilience to noisy inputs is ascribed to the intricate augmentations learned at the
feature level through the auxiliary branch. This advantage of LSC loss on dealing with imperfect
data is expected to be helpful also on diverse occlusion scenarios. Next, we will conduct the analysis
for SOAR on diverse occlusions.

3.1.5.4 Analyses for REalistic Synthesized Occlusion (RE)

In our research, we embark on an exploratory journey to examine the generalizablity of var-
ious models under the conditions of realistic synthesized occlusion across three distinct datasets:
NTU-120 [115], NTU-60 [161], and Toyota Smart Home [47]. The results of these investigations are
systematically presented in Table 3.2 (a), Table 3.3 (b), and Table 3.4 (b), wherein the SNR spans from
0.05 to 0.2, with occlusion implemented on the reference and test sets.

Our initial observations reveal a universal decline in the performance metrics across all evalu-
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Table 3.8: Experiments with different realistic synthesized occlusion ratio on the NTU-60.

Model RE_Range Accuracy F1 Precision Recall
SL-DML [135]

0.05-0.2
36.90 35.86 36.59 37.05

Skeleton-DML [134] 35.15 32.59 34.29 35.22
SL-DML (LeViT [69]) 52.72 52.19 54.90 52.86
SL-DML (LeViT) + LSC 53.79 52.76 54.18 53.88
Trans4SOAR (Small) 56.84 55.84 58.27 56.98
Trans4SOAR (Base) 59.28 58.96 59.91 59.40
SL-DML [135]

0.05-0.35
39.26 38.71 39.59 39.43

Skeleton-DML [134] 38.52 38.74 39.23 38.64
SL-DML (LeViT [69]) 53.17 52.52 54.16 53.34
SL-DML (LeViT) + LSC 53.58 52.75 54.07 53.77
Trans4SOAR (Small) 61.69 61.60 64.01 61.81
Trans4SOAR (Base) 58.27 56.63 58.81 58.40
SL-DML [135]

0.05-0.5
34.89 32.63 31.85 35.07

Skeleton-DML [134] 42.83 42.33 42.46 42.93
SL-DML (LeViT [69]) 54.84 54.07 57.06 54.99
SL-DML (LeViT) + LSC 55.07 55.01 57.56 55.21
Trans4SOAR (Small) 59.59 59.21 59.49 59.70
Trans4SOAR (Base) 57.52 57.21 59.61 57.64

ated methods under the SOAR with RE benchmarks, as opposed to their performance in scenarios
devoid of occlusion. This delineates the elevated complexity and challenge posed by the RE task in
the realm of discriminative representation learning on the perspective of one-shot skeleton-based
human action recognition. Particularly, in Table 3.2 (a), the Trans4SOAR (Base) model shows highest
performances, manifesting accuracy of 52.35%, alongside F1-score, precision, and recall of 48.79%,
52.87%, and 52.43%, respectively. These outcomes underscore a balanced performance across the
diverse classes within the NTU-120 dataset [115], highlighting the efficacy of the Trans4SOAR (Base)
model in navigating the challenges inherent to the RE occlusion.

In our detailed examination, the Trans4SOAR (Small) variant emerges as a strong contender,
securing the second-highest performance across all metrics within the NTU-120with RE benchmark,
achieving an accuracy of 51.64%. It is noteworthy that the SL-DML (LeViT) configuration exhibits
diminished effectiveness across all datasets subjected to the SOAR with RE evaluation. Specifically,
within the NTU-120 [115] dataset under RE conditions, SL-DML (LeViT) records a lower accuracy of
44.22%, trailing behind Skeleton-DML [134], which attains an accuracy of 49.21%. Nonetheless, the
variant of SL-DML (LeViT) with LSC loss enhances the accuracy to 48.28%, suggesting that while
the LeViT architecture alone struggles with RE challenges, the incorporation of LSC loss mitigates
its limitations.

The utilization of MAFM within our Trans4SOAR (Base) formulation marks a significant ad-
vancement, exhibiting a superior accuracy of 52.35%. This finding underscores themodule’s efficacy
in counteracting the disturbances introduced by RE through the integration of triplet stream encod-
ing and the proposed mixed fusion mechanism. The results underscore the critical role of MAFM in
alleviating the negative effect brought by the disruptions caused by RE, achieved by amalgamating
three distinct skeleton encoding formats that inherently provide de-occlusion cues.

Further experiments conducted on the NTU-60 [161] and Toyota Smart Home [47] datasets fur-
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Table 3.9: Experiments under different random occlusion ratios on the NTU-60.

Model RA_ratio Accuracy F1 Precision Recall
SL-MDL [135]

0.1
45.28 43.13 45.00 45.42

Skeleton-DML [134] 60.43 59.66 61.37 60.54
SL-DML (LeViT [69]) 56.73 55.89 57.75 56.85
SL-DML (LeViT) + LSC 60.78 58.75 59.97 60.90
Trans4SOAR (Small) 69.74 70.52 72.45 69.82
Trans4SOAR (Base) 72.59 71.82 73.89 72.66
SL-DML [135]

0.3
46.39 42.82 46.69 46.54

Skeleton-DML [134] 58.93 56.07 58.45 59.05
SL-DML (LeViT [69]) 46.32 43.78 43.94 46.40
SL-DML (LeViT) + LSC 47.82 45.02 48.41 47.91
Trans4SOAR (Small) 66.57 66.26 67.94 66.65
Trans4SOAR (Base) 72.39 72.81 74.68 72.43
SL-DML [135]

0.5
43.44 38.46 41.30 43.57

Skeleton-DML [134] 44.69 41.89 45.74 44.79
SL-DML (LeViT [69]) 35.77 32.56 36.22 35.94
SL-DML (LeViT) + LSC 40.53 37.38 38.33 40.59
Trans4SOAR (Small) 52.92 50.78 55.13 53.02
Trans4SOAR (Base) 54.82 55.01 58.01 54.93

ther validate the superiority of Trans4SOAR (Base) over both Skeleton-DML [134] and SL-DML [135].
Notably, on the NTU-60 dataset, Trans4SOAR (Base) surpasses these models by 16.62% and 22.38%
in accuracy, respectively, and on the Toyota Smart Home dataset by 12.48% and 21.22%. More-
over, the Trans4SOAR (Small) variant also exhibits competitive performance metrics. Further ex-
periments exploring various SNR ratio ranges for SOAR with RE, as detailed in Table 3.8, reveal
Trans4SOAR’s consistent and promising performance, with accuracy exceeding 56% across both
Trans4SOAR (Base) and Trans4SOAR (Small) variants for SNR ranges of 0.05−0.2, 0.05−0.35, and
0.05−0.5 on the NTU-60 [161] dataset.

3.1.5.5 Analyses Regarding Random Occlusion (RA)

In this sub section, the effect brought by random occlusion on SOAR task and the corresponding
model performances of the baselines and our proposed approach will be introduced. This form of
occlusion, characterized by its unpredictability, presents a another challenge in the field of skeleton-
based action recognition, as detailed in the corresponding results sections across Table 3.2 (b), Ta-
ble 3.3 (c), and Table 3.4 (c), under a specified SNR of 0.1 and with the absence of occlusion in the
reference set.

Our best model, Trans4SOAR (Base), consistently outperforms existing methods by large mar-
gins. Notably, it surpasses SL-DML [135] and Skeleton-DML [134] by 10.64% and 18.02%, respec-
tively, on the NTU-120 dataset. The analysis uncovers that the performance under RA of Skeleton-
DML is inferior to that of SL-DML, with the results reversing under recognition with RE, indicating
a pervasive lack of resilience among existing frameworks to diverse occlusion scenarios. Contrast-
ingly, Trans4SOAR adeptly addresses this challenge, showcasing superior performance across vari-
ous occlusion types, with a particular emphasis on RE. This capability is pivotal for the advancement
of discriminative representation learning in occluded environments. Central to this achievement is
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the MAFM, which demonstrates exceptional efficacy in navigating occlusion challenges by process-
ing inputs through a tripartite stream of skeleton patch embeddings. This innovative approach posi-
tions MAFM as the preeminent fusion architecture for confronting the primary occlusions encoun-
tered, a comparison further elucidated in Table 3.11. The strategic encoding across three streams,
capturing both of the temporal and spatial discrepancies from multi-modal perspectives, facilitates
a nuanced understanding of the occluded regions from diverse vantage points to harvest a more
generalizable and adaptable human motion reasoning.

In addressing RA across both NTU-60 [161] and Toyota Smart Home [47], both Trans4SOAR
(Base) and (Small) variants demonstrate leading performance metrics, underscoring the robustness
and versatility of our models. Further explorations into the effects of varying SNR levels, i.e., 0.1,
0.2, and 0.3, under RA perturbation, as delineated in Table 3.9, reveal that Trans4SOAR (erroneously
referred to as Trans4DARC) consistently outperforms competing methodologies. Notably, at SNR
levels of 0.1 and 0.3, Trans4SOAR (Base) achieves accuracy of 72.59% and 72.39%, respectively,
significantly outpacing Skeleton-DML’s 60.43% and 58.93%. However, at an SNR of 0.5, the efficacy
of Trans4SOAR (Base) experiences a decline, registering an accuracy of 54.82%, yet it still manages
to maintain a commendable lead of 10.13% over the most outperforming baseline. These findings
not only highlight the generalizability of Trans4SOAR against occlusion but also underscore its
potential as a valuablemethod for future research in the domain of action recognition under occluded
conditions.

3.1.5.6 Analyses for Occlusion on Reference Samples

In our ablation study presented within Table 3.10, we conduct an exploration to discern the
effects of various occlusions on the reference set of the NTU-60 dataset [161]. The presence of oc-
clusion within this context is quantified by an indicator termed OCCVal, where ’T’ signifies the
inclusion of occlusion and ’F’ denotes its absence. To ensure a balanced comparison, a SNR of 0.1
is maintained for RA, while for RE, the SNR spans from 0.05 to 0.2, thus averaging a comparable
SNR across both conditions. Our analysis reveals notable fluctuations in performance metrics for
existing methodologies such as SL-DML [135] and Skeleton-DML [134], with observed absolute per-
formance variances in accuracy amounting to 3.46% and 11.13% for RA, and 2.61% and 1.63% for
RE, respectively. This variability underscores the differential impact of occlusions on the models’
performance, highlighting the critical need for models to exhibit minimal performance deviation
across varying occlusion states (OCCVal settings).

Contrastingly, Trans4SOAR demonstrates superior generalizable performance on diverse occlu-
sion settings, exhibiting an absolute performance fluctuation of merely 1.00% for RA and 0.80%
for RE. This stability, especially in the face of occlusion within the reference set, is indicative of
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Table 3.10: Experiments for reference w/ or w/o occlusions on NTU-60.

Model OCC OCCVal Accuracy F1 Precision Recall
SL-MDL [135]

RA T
48.74 46.46 47.45 48.88

Skeleton-DML [134] 49.30 48.57 49.62 49.45
SL-DML (LeViT [69]) 53.47 52.35 54.94 53.63
SL-DML (LeViT) + LSC 53.57 53.73 56.55 53.72
Trans4SOAR (Small) 72.16 72.42 73.67 72.23
Trans4SOAR (Base) 71.59 72.22 73.95 71.67
SL-DML [135]

RA F
45.28 43.13 45.00 45.42

Skeleton-DML [134] 60.43 59.66 61.37 60.54
SL-DML (LeViT [69]) 56.73 55.89 57.57 56.85
SL-DML (LeViT) + LSC 60.78 58.75 59.97 60.90
Trans4SOAR (Small) 67.90 67.32 68.94 68.01
Trans4SOAR (Base) 72.59 71.82 73.89 72.66
SL-DML [135]

RE T
36.90 35.86 36.59 37.05

Skeleton-DML [134] 42.66 40.90 41.50 42.82
SL-DML (LeViT [69]) 52.72 52.19 54.90 52.86
SL-DML (LeViT) + LSC 53.79 52.76 54.18 53.88
Trans4SOAR (Small) 56.84 55.84 58.27 56.98
Trans4SOAR (Base) 59.28 58.96 59.91 59.40
SL-DML [135]

RE F
39.51 39.64 40.82 39.64

Skeleton-DML [134] 44.29 43.10 44.26 44.46
SL-DML (LeViT [69]) 55.12 55.22 57.51 55.26
SL-DML (LeViT) + LSC 55.07 55.01 57.56 55.21
Trans4SOAR (Small) 54.37 52.97 55.08 54.38
Trans4SOAR (Base) 58.48 57.10 57.75 58.61

Trans4SOAR’s generalizability and its adeptness in managing occlusion-induced variability. Such a
trait is immensely valuable for practical applications, where consistency in performance despite the
presence of occlusions in the reference samples is essential.

Furthermore, the investigation highlights a discernible trend where both SL-DML and Skeleton-
DML manifest inferior performance under RE conditions compared to RA when OCCVal is set to
’F’. This observation indicates that RE scenarios pose a more formidable challenge than RA, thereby
necessitating advanced modeling techniques capable of navigating the complexities introduced by
occlusion with greater efficacy.

Through this ablation, it becomes evident that Trans4SOAR not only surpasses existing models
in terms of stability across different occlusion conditions but also sets a new state-of-the art for
conventional SOAR task. This insight into the varying impacts of occlusion types, coupled with the
demonstrated superiority of Trans4SOAR, underscores the importance of reasonable model design
in the face of environmental variabilities such as occlusions on generalizable challenges of deep
learning model.

3.1.5.7 Analyses for Ablation of Fusion Mechanisms

We further provide a series of comparative analyses against other existing fusion methods, as
detailed in Table 3.11, to illustrate the significance of our proposed fusion method. This ablation
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Table 3.11: Experiments for different fusion techniques on NTU-60 under different occlusion scenarios.

Fusion Method OCC Accuracy F1 Precision Recall
Single (Joints) RE 53.79 52.76 54.18 53.88
Single (Bones) RE 54.22 53.73 54.86 54.33
Single (Velocities) RE 56.93 56.10 57.97 57.03
Addition RE 56.37 54.48 55.68 56.51
Multiplication RE 53.35 51.91 53.69 53.50
Concatenation RE 58.61 57.21 57.63 58.73
Late Fusion RE 56.93 56.10 57.97 57.03
MAFM RE 59.28 58.96 59.91 59.40
Single (Joints) RA 60.78 58.75 59.97 60.90
Single (Bones) RA 55.15 53.56 56.63 54.16
Single (Velocities) RA 33.15 30.54 29.67 33.82
Addition RA 65.09 65.03 66.36 65.18
Multiplication RA 67.54 67.51 68.65 67.63
Concatenation RA 68.05 68.54 70.90 68.13
Late Fusion RA 71.16 71.58 73.16 71.22
MAFM RA 72.59 71.82 73.89 72.66
Single (Joints) N 67.67 67.87 68.74 67.67
Single (Bones) N 61.45 61.44 63.50 61.57
Single (Velocities) N 49.74 50.08 51.31 49.89
Addition N 67.05 66.88 68.09 67.12
Multiplication N 64.63 65.05 66.34 64.75
Concatenation N 67.75 67.79 69.56 67.86
Late Fusion N 57.15 56.52 57.57 57.26
MAFM N 74.19 74.34 75.91 74.20

study was conducted under specific conditions, including a SNR of 0.1 for RA and a SNR range from
0.05 to 0.2 for RE, to ensure a more generalizable assessment across varied occlusion scenarios.

Among the fusion strategies explored, late fusion emerges as a commonly adopted technique,
characterized by its operation at the decision level through the integration of outputs derived from
different modality branches. Notwithstanding its prevalence, a notable drawback of late fusion is its
substantial demand on model size, effectively tripling the model size to 113M parameters, in stark
contrast to alternative approaches maintained at a more economical model scale of approximately
40M parameters.

Prompted by the necessity for a more resource-efficient yet performance-optimized fusionmech-
anism, we advocate for a fusion strategy at the patch embedding level. This approach endeavors to
harmonize the dual objectives of model performance and size efficiency. The variants for patch em-
bedding level fusion encompass addition, multiplication, and concatenation operations, executed
immediately subsequent to the generation of patch embeddings for the tripartite modality streams.
In comparison, late fusion, albeit incorporating aggregation on the decision perspective, is encum-
bered by a significantly larger model size.

Our findings highlight MAFM’s superior performance relative to both the conventional patch-
embedding level fusion baselines and the more resource-intensive late fusion approach across vari-
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Table 3.12: Experiments for random temporal and spatial occlusion on NTU-60 dataset.

Model (a) Random temporal occlusion (b) Random spatial occlusion
Acc. F1. Prec. Rec. Acc. F1. Prec. Rec.

Experiments on NTU-120 with random temporal occlusion.

SL-DML [135] 38.15 34.87 38.51 38.11 38.15 35.26 36.76 38.13
Skeleton-DML [134] 27.20 24.43 26.75 27.12 27.93 25.91 28.24 27.93
Trans4SOAR (Small) 51.60 50.73 52.65 50.99 46.99 46.24 49.71 47.07
Trans4SOAR (Base) 54.11 52.93 53.85 54.21 49.43 49.08 51.35 49.48

Experiments on NTU-60 with random temporal occlusion.

SL-DML [135] 58.68 58.46 60.20 58.72 52.48 50.59 54.06 52.65
Skeleton-DML [134] 51.81 50.50 53.06 51.95 46.38 43.68 45.94 46.54
Trans4SOAR (Small) 71.45 71.32 72.94 71.51 68.94 69.61 71.84 69.01
Trans4SOAR (Base) 75.01 74.75 75.76 75.06 69.08 69.18 71.19 69.14

Experiments on Toyota Smart Home with random temporal occlusion.

SL-DML [135] 53.36 22.97 28.17 24.58 60.36 20.10 24.52 20.89
Skeleton-DML [134] 53.65 23.90 31.54 25.33 41.95 26.36 32.83 27.97
Trans4SOAR (Small) 63.66 29.90 31.76 34.06 66.76 31.76 33.14 35.66
Trans4SOAR (Base) 68.48 31.11 33.81 33.80 64.49 32.43 35.80 34.29

ous occlusions on the NTU-60 dataset [161], including scenarios with no occlusion (N), RE, and RA.
Remarkably, Trans4SOAR integratedwithMAFMnot only outperforms late fusion by 2.35%, 1.43%,
and 17.04% across RE, RA, and N conditions, respectively, but also achieves this with a significantly
reduced model size, thus enhancing both inference and training efficiencies.

Moreover, when comparedwith themost effective patch embedding level fusion technique among
the other fusion approaches, Trans4SOAR with MAFM demonstrates a noteworthy advantage, ex-
ceeding performance by 0.67%, 4.54%, and 6.44% for RE, RA, and N respectively. This compre-
hensive comparative analysis underscores the MAFM’s pivotal role in achieving a delicate balance
betweenmodel efficiency and performance, particularly in the challenging context of skeleton-based
one-shot action recognition under various occlusion scenarios.

3.1.5.8 Analyses for Random Temporal and Spatial Occlusions

In our ablation aimed at evaluating the efficacy of various models under other different occlusion
scenarios, we specifically adopted random temporal and spatial occlusions as outlined in existing
literature [35]. Recognizing the potential interest within the research community concerning the
impact of these occlusions, each characterized by their unique temporal and spatial dimensions,
we undertook a series of experiments across three distinct datasets. Utilizing the most effective
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GT: ReachInPocket, Skeleton-DML: ReachInPocket, Trans4SOAR: ReachInPocket

GT: WipeFace, Skeleton-DML: TearUpPaper, Trans4SOAR: DrinkingWater

GT: PointAtSth, Skeleton-DML: PointAtSth, Trans4SOAR: PointAtSth

GT: TakeOffGlasses, Skeleton-DML: TearUpPaper, Trans4SOAR: TakeOffGlasses

GT: UseAFan, Skeleton-DML: UseAFan, Trans4SOAR: UseAFan

GT: DrinkingWater, Skeleton-DML: UseAFan, Trans4SOAR: DrinkingWater

GT: TakeOffGlasses,Skeleton-DML: TakeOffGlasses,Trans4SOAR: TakeOffGlasses

GT: Throw, Skeleton-DML: PointAtSth, Trans4SOAR: Throw

GT: TearUpPaper, Skeleton-DML: DrinkingWater, Trans4SOAR: TearUpPaper

GT: TakeOffGlasses,Skeleton-DML: TakeOffGlasses,Trans4SOAR: TakeOffGlasses

GT: Falling, Skeleton-DML: Falling, Trans4SOAR: Falling

GT: TearUpPaper, Skeleton-DML: DrinkWater, Trans4SOAR: TearUpPaper

Figure 3.4: An overview of the qualitative experimental results on NTU-60.

methodologies identified in our study, these experiments are systematically cataloged in Table 3.12
(a) and Table 3.12 (b). Herein, we predefined the parameters of occlusion to include a specific number
of occluded frames and joints (set at 10 and 5) to facilitate a controlled evaluation environment.

Contrary to the complexities encountered in RE scenarios, the occlusions defined by explicit
frame and joint parameters exhibit a reduced level of occlusion reality. Nonetheless, it is crucial
to underscore the superior performance of our proposed Trans4SOAR models, both Base and Small
variants, which consistently outperformed existing models across all datasets under diverse occlu-
sion types. This noteworthy achievement not only demonstrates the generalizability and robustness
of Trans4SOAR against other specific random occlusion challenges but also validates its exceptional
efficiency, even when faced with occlusions meticulously delineated by predefined criteria such as
the number of occluded frames.

Such empirical evidence accentuates the significance of our model in advancing the field of
SOAR, particularly in navigating the intricate landscape of occlusion-induced challenges.

3.1.5.9 Analysis forQualitative and TSNE Experimental Results

In our study, we extend the analysis beyond quantitative metrics to include a qualitative exami-
nation of model performance under occlusion scenarios, specifically RE on the NTU-60 dataset [161].
This qualitative assessment, illustrated in Fig. 3.4, focuses on the efficacy of Trans4SOAR in compar-
ison to Skeleton-DML [134]. The occluded body joints are visually represented as red dots within the
figure, facilitating a direct comparison of model predictions in the presence of occlusions. Notably,
Trans4SOAR demonstrates superior performance, achieving accurate predictions in three out of four
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sample scenarios against Skeleton-DML’s two. A critical observation from this analysis is the impact
of occlusions on joints pivotal to specific actions, such as arm and hand joints for the action "Take
Off Glasses". While Skeleton-DML misinterprets such actions under occlusion, Trans4SOAR consis-
tently delivers true predictions, underscoring its high generalizablility. Nonetheless, the challenge of
distinguishing between actions with high visual similarity, such as "Wipe Face" and "Drinking Wa-
ter", persists as an area for further exploration, with Trans4SOAR occasionally misclassified actions
despite offering predictions closer to the true action than those of Skeleton-DML.

Additionally, a TSNE analysis, as depicted in Fig. 3.5, offers a comparative visualization of feature
embeddings between Skeleton-DML and Trans4SOAR (Base) under both RA and RE occlusions. This
analysis reveals that Trans4SOAR (Base) achieves more discriminative class boundaries in the latent
space, indicating a more effective discrimination of action classes despite occlusion. The comparison
also shows that Trans4SOAR (Base) maintains consistency in the distribution of embeddings across
different occlusion types, in contrast to the more variable embeddings produced by Skeleton-DML.
This stability is indicative of Trans4SOAR’s generalizability and adaptability in face of varying oc-
clusion scenarios, underscoring the model’s advanced capability in learning discriminative features.

3.1.5.10 Analyses for the Model Efficiency.

In our evaluation of the efficiency and performance of various models for the task of SOAR on
the non-occluded NTU-120 dataset, a comprehensive comparison was undertaken, the results of
which are encapsulated in Table 3.13. This analysis specifically targets the accuracy, the total count
of model parameters, and the computational expense measured in GFLOPS during the inference
phase. It is pertinent to note that for the initial quartet of models listed under the category of Previ-
ously Published Approaches, the specifics regarding the number of parameters and GFLOPS remain
undisclosed.

A discerning examination reveals that, while CNN-based and GCN-based methodologies tend
to exhibit smaller model size in terms of parameter count and GFLOPS, they generally fall short
of achieving satisfactory performance levels on the SOAR task. This observation underscores a
performance-parameter trade-off inherent to these approaches.

Conversely, the deployment of Visual Transformer-based architectures presents an intriguing
paradigm; their enhanced performance on the SOAR task is not invariably linked to an increased
model size. For instance, although SL-DML (CaiT) preserves the largest model size and SL-DML
(ResT) preserves the highest GFLOPS, neither deliver better performances when compared with SL-
DML (LeViT), which delivers an accuracy of 53.19%, alongside a parameter count of 38.9M and
30.4 GFLOPS. This elucidates the notion that superior performance is not solely predicated on the
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(a) (b) 

(c) (d) 

Figure 3.5: TSNE visualizations for (a) Skeleton-DML under RA, (b) Trans4SOAR (Base) under RA, (c)

Skeleton-DML under RE and (d) Trans4SOAR (Base) under RE on NTU-60 [161].

increment of the model’s scale.
Trans4SOAR takes two advantages together, balancing a competitive parameter count andGFLOPS

with superior SOARperfomance forw/ occlusion andw/o occlusion scenarios. Notably, Trans4SOAR
(Small) achieves an impressive 56.27% accuracy, underpinned by a modest architectural size con-
sisting of 23.1M parameters and 34.1 GFLOPS. Given the multi-modality nature of our model, a
moderate escalation in both parameters and computational load is anticipated.

Trans4SOAR (Base) achieves efficiency multi-modal fusion, evidencing a reduction of over 70M

in parameters relative to the late fusion methodology, while concurrently elevating SOAR perfor-
mance. This achievement illustrates the preeminence of Trans4SOAR within the multi-modality
fusion landscape, affirming its stature as a model that judiciously harmonizes computational effi-
ciency with superior action recognition capabilities.
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Table 3.13: The comparison in terms of accuracy, the number of parameters (#Params), and GFLOPs on

NTU-120 without occlusion.

Encoder Accuracy #Params GFLOPS
Previously Published Approaches

AN† [118] 41.0 - -
FC† [118] 42.1 - -
AP† [118] 42.9 - -
APSR [118] 45.3 - -
TCN-OneShot [157] 46.3 3.5M 8.5
SL-DML [135] 50.9 11.2M 23.8
Skeleton-DML [134] 54.2 11.2M 23.8
CNN-based Encoder Optimized by DML
SL-DML (AlexNet [95]) 40.33 57.1M 9.2
SL-DML (SqueezeNet [82]) 42.55 0.7M 9.7
SL-DML (ResNet18 [73]) 49.19 11.2M 23.8
GCN-based Encoder Optimized with DML (Ours)
SL-DML (CTR-GCN [33]) 43.92 1.6M 9.2
SL-DML (STTR [152]) 39.56 7.0M 37.4
Transformer-based Encoder Optimized with DML (Ours)
SL-DML (CaiT [185]) 47.86 120.8M 53.9
SL-DML (ViT [52]) 48.45 53.6M 27.1
SL-DML (Twins [38]) 49.00 25.2M 75.1
SL-DML (ResT [223]) 52.58 57.8M 61.3
SL-DML (Swin [122]) 53.13 87.3M 29.3
SL-DML (LeViT [69]) 53.19 38.9M 30.4
Our Proposed and Extended Approaches (Ours)
SL-DML (LeViT) + LSC 55.94 38.9M 30.4
Trans4SOAR (Small) 56.27 23.1M 34.1
Trans4SOAR (Base) 57.05 43.8M 47.9

3.1.6 Discussion

Our findings highlight the critical impact of occlusions on the accuracy and reliability of skeleton-
based one-shot action recognition tasks. We discovered that both random occlusions and the pro-
posed realistic synthesized occlusion, such as those caused by everyday objects, significantly impair
the performance of current skeleton-based one-shot action recognition models. The proposed re-
alistic synthesized occlusion is proved to be more challenging compared to random occlusion, as
it considers the geometric continuity of real-world objects, resulting in more complex and realistic
occlusion scenarios. We find that most of the existing skeleton-based one-shot action recognition
approaches are facing with more performance decay when suffering from the realistic synthesized
occlusion compared with the random occlusion. Occlusion is particularly detrimental to skeleton-
based one-shot action recognition because it leads to missing or corrupted joint information, which
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disrupts the geometric and temporal continuity essential for accurate action recognition. This dis-
ruption can cause models to misinterpret actions or fail to recognize, as skeleton-based one-shot
action recognition approaches rely heavily on the visibility and precise positioning of all key joints.

In response to the challenges posed by occlusions, we developed Trans4SOAR, a cutting-edge
transformer-based model by using cross-modal patch embedding level fusion and prototype con-
trastive learning. Trans4SOAR leverages three distinct data streams—joints, bones, and veloci-
ties—and integrates them using the newly proposed mixed attention fusion mechanism at the patch
embedding level. This mechanism enables the model to capture and fuse diverse types of skeleton
information effectively by considering the fusion from the auxiliary modals to the major modal on
the query, key, and values aspects, which enables a more communicative fusion manner. Addition-
ally, we introduced a latent space consistency loss, which utilizes category-specific prototypes to
enhance the generalizability of the model’s embeddings against data disturbance. This loss function
ensures that the model maintains consistency in its embeddings, even when features are disrupted
by occlusions.

Our experimental evaluations demonstrated the superior performance of Trans4SOAR across
multiple datasets, including NTU-120, NTU-60, and Toyota Smart Home. The results showed that
while occlusions adversely affect the accuracy of skeleton-based one-shot action recognitionmodels,
Trans4SOAR consistently outperforms existing state-of-the-art frameworks. It achieves higher accu-
racy and generalizability, particularly under diverse occlusion conditions. Furthermore, Trans4SOAR
also excels in standard SOAR tasks without occlusions, surpassing the best previously published
models by a notablemargin. For instance, on the challengingNTU-120 SOARbenchmark, Trans4SOAR
improved the accuracy by over 2.8% compared to the prior best model.

These findings affirm the effectiveness of Trans4SOAR in handling different occlusions, making
it a versatile solution for skeleton-based one-shot action recognition task under occlusions. The
integration of mixed attention fusion mechanism and latent space consistency loss in Trans4SOAR
provides a powerful strategy that not only mitigates the impact of occlusions but also enhances
overall skeleton-based one-shot action recognition performance, ensuring reliability in diverse and
dynamic environments.
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3.2 Self-Supervised Skeleton-Based Action Recognition in
Occluded Environments

3.2.1 Introduction

The research field of human action recognition plays an important role in the advancement of
robotics technology, underpinning significant applications across human-robot interaction, health-
care, industrial automation, security, and surveillance sectors [9, 46, 163, 175, 190]. This multifaceted
utility is predicated on the ability of robotic systems to interpret and respond to human actions in a
context-aware manner, thereby enabling collaborative human-robot partnerships, augmenting task-
specific assistance, and enhancing patient care through vigilant monitoring and support [157, 208].

The integration of human action recognition systems within robotic platforms facilitates the
autonomous detection of human intentions and goals, thereby optimizing the timing and relevance
of robot interventions in a manner that minimally intrudes upon human activities. Moreover, the
application of human action recognition in healthcare robots transcends mere assistance, extending
into the realm of patient condition monitoring and rehabilitation support, with the potential to
significantly contribute to improved recovery outcomes.

However, the pursuit of effective image- or video-based human action recognition is not with-
out its challenges, including the complexities of dynamic backgrounds, diversity in human physique,
variability in camera perspectives [162]. In contrast, skeleton-based human action recognition emerges
as a viable alternative, characterized by its resilience to changes in appearance and its operational
efficiency. Leveraging sparse 3D skeleton data, skeleton based human action recognition achieves
rapid inference and reduced memory demands, rendering it particularly suitable for deployment in
mobile robotics where computational resources are limited [17, 80, 225].

In recent years, we have witnessed significant strides in skeleton-based human action recogni-
tion field, propelled by technological leaps in depth sensing and pose estimation algorithms. The
evolution of these technologies has facilitated the acquisition of high-fidelity skeleton data, thereby
enhancing the accuracy and reliability of action recognition systems. Concurrently, the burgeoning
field of self-supervised learning within skeleton-based human action recognition has garnered in-
creasing interestwithin the robotics research community. This paradigm shift towards self-supervised
methodologies promises to mitigate the reliance on extensively annotated datasets, thereby stream-
lining the training process and accelerating the development of advanced human action recognition
systems [86, 120]. The confluence of these advancements underscores the potential of skeleton-
based human action recognition to redefine the landscape of robotic applications, offering a path-
way to more intuitive, label efficient, and context-aware robot-human interactions. In the field of
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Figure 3.6: Comparison of different imputation methods. In (a), we compare random imputations (in gray),

our imputation results (in blue), and ground-truth skeletons (in red). In (b) and (c), the linear evaluation

results of cross-subject (xsub) and cross-view (xview) settings are tested by using imputation methods across

three popular self-supervised action recognition methods (CrossCLR, AimCLR, and PSTL).

self-supervised skeleton-based action recognition, existing research predominantly focuses on data
procured from occlusion-free environments, meticulously curated under controlled conditions [71,
106, 112]. However, the practical application of robotics frequently encounters scenarios where oc-
clusions are prevalent, challenging the reliability of even the existing works on the skeleton-based
human action recognition. Acknowledging this challenge, our research posits that incorporating
occlusion-aware training and evaluation methodologies represents an essential yet underexplored
avenue within the discipline.

Addressing the occlusion challenge within the realm of self-supervised skeleton-based action
recognition necessitates a bifurcated approach: enhancing model resilience to occlusions through
architectural innovations and mitigating data incompleteness by refining the skeleton coordinates.
This dual perspective serves as the cornerstone of our pioneering investigation into self-supervised
action recognition in occlusion scenarios.
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We establish a new benchmark to build up the test bed of this task, to systematically assess the
impact of occlusions on the efficacy of existing self-supervised action recognition methodologies.
Preliminary evaluations on this benchmark reveal significant performance degradation across all
considered methods when subjected to occluded skeleton data. Motivated by these findings, our
contribution encompasses a hybrid solution that intertwines model and data-driven strategies to
address these identified challenges.

From a model-centric perspective, we introduce the Adaptive Spatial Masking (ASM) technique,
a novel data augmentation strategy devised by adapting to the distribution patterns of missing joints
within the dataset. This approach, inspired by the state-of-the-art PSTL methodology [229], endeav-
ors to optimize the utilization of available data for enhanced feature representation learning.

Simultaneously, we advocate for a data-driven solution aimed at ameliorating the effects of in-
complete data. This involves a strategic visualization illustrated in Fig. 3.6, where the conventional
method of employing direct K Nearest Neighbour (KNN) searches across the dataset for missing
data completion is deemed computationally prohibitive. To circumvent these limitations, our ap-
proach employs a two-pronged strategy: initially segmenting the dataset into distinct clusters via
KMeans [88] clustering based on features derived from self-supervised learning methods, followed
by a targeted KNN imputation within these clusters to efficiently reconstruct missing skeleton co-
ordinates.

This methodology not only streamlines the imputation process by obviating the need for exhaus-
tive KNN searches across the entire dataset but also significantly curtails computational demands,
enabling practical implementation.

The cumulative contributions of our work are encapsulated as follows:

1. The introduction of a new benchmark tailored for self-supervised skeleton-based action recog-
nition under occlusions, encompassing the NTU-60 and NTU-120 datasets, aimed at facilitat-
ing the assessment of robotic action recognition capabilities within occlusion-prone environ-
ments.

2. The development and implementation of a computationally efficient two-stage imputation
mechanism employing KMeans clustering and KNN imputation, designed to address the chal-
lenges posed by occluded skeleton data. This methodology demonstrates versatility and adapt-
ability across a spectrum of self-supervised action recognition frameworks.

3. The formulation of the Occluded Partial Spatio-Temporal Learning (OPSTL) framework, which
incorporates the Adaptive Spatial Masking (ASM) data augmentation to enhance the model’s
ability to leverage high-quality skeleton data in the presence of occlusions.
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4. The substantiation of our method’s efficacy through rigorous experimental validation on oc-
cluded versions of the NTU-60 and NTU-120 datasets, thereby showcasing the potential of our
approach in advancing the field of self-supervised skeleton-based action recognition amidst
occlusions.

This research endeavor not only pioneers the exploration of occlusion-aware self-supervised
skeleton-based action recognition but also lays the groundwork for future advancements in the field,
setting a precedent for subsequent studies to build upon.

3.2.2 Methodology

Our technique, denoted as Occluded Partial Spatio-Temporal Learning (OPSTL), draws inspi-
ration from PSTL [229] for its exceptional efficacy in managing occlusions compared to alternate
methodologies. We introduce an ASM on the top of the original Central Spatial Masking (CSM)
from PSTL to enhance occlusion handling during the initial phase of self-supervised training (first
stage). The process of dealing with occlusions involves data imputation prior to the commencement
of the second phase of self-supervised training. In this second stage, embedding clusters, which are
formed post the initial training stage alongside the application of KNN, are utilized as illustrated in
Fig. 3.7. The KMeans algorithm groups embeddings into finer clusters, followed by the execution of
data imputation through KNN search to identify samples analogous to those requiring completion.

It’s noteworthy that the data imputation strategy employed in the second stage is applicable
across various self-supervised skeleton-based action recognition methods. By filling in the missing
data, conducted experiments are poised to witness enhancements in performance across different
self-supervised skeleton-based human action recognitionmethods in comparison to scenarios where
no imputation is leveraged.

3.2.2.1 Pre-processing

A skeleton sequence, after undergoing preprocessing, is denoted as s ∈ RT×J×C, transformed
from the initial input I ∈RT×J×C×M . Here, T signifies the number of frames, J indicates the number
of joints,C represents the number of channels, andM denotes the number of persons in the sequence.
This preprocessing approach is akin to that utilized in CrosSCLR [106], where skeleton coordinates
are adjusted to be relative to the skeleton’s center joint. For an enhanced application of ASM, it is
crucial to establish a boolean matrix for missing joints (B ∈ BN×V ) for eachV joint per sample. This
matrix helps in accurately identifying joints with higher occlusion rates. All absent joint coordinates
are marked as “nan” to streamline the process of calculating Euclidean distances amidmissing values
during the data imputation phase.

53



B

……

ASM

I

MATM





f

f

f

g

g

g L1

L2

h

f
trainI

...

x

x̂

z

mẑ
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with the missing skeleton portions in the input I depicted in red.

3.2.2.2 Partial Spatio-Temporal Skeleton Representation Learning

Existing approaches [71, 106] concentrate on the generation of varied views of skeleton se-
quences for contrastive learning purposes, yet they frequently neglect the intricate local intercon-
nections among different skeleton joints and frames. These local interactions, however, are crucial
for practical applications, offering essential context for actions. To address this oversight, PSTL [229]
capitalizes on these local relationships through a distinctive strategy of spatiotemporal masking to
generate incomplete skeleton sequences. This method employs a triplet stream structure that in-
cludes an anchor stream alongside a spatial masking stream that incorporates CSM, and a temporal
masking stream equipped with Motion Attention Temporal Masking (MATM). As a result, PSTL
demonstrates proficiency in managing occlusions. Barlow Twins framework [219] leverages re-
dundancy reduction to learn effective representation without labels. By maximizing the similarity
between differently augmented views of the same skeleton sequence while minimizing the redun-
dancy between feature components, it achieves superior embedding learning. Adopting the Barlow
Twins framework, PSTL circumvents the limitations associated with contrastive learning, which de-
mands an extensive collection of negative samples, along with substantial batch sizes and memory
banks [71, 106]. This approach is adopted in our study as the self-training backbone.

3.2.2.3 Adaptive Spatial Masking

The self-supervised technique for recognizing skeleton-based actions, PSTL [229], utilizes CSM
to bolster the resilience of its joint representations. CSM works by encouraging the contrastive
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learning of embeddings from incomplete and complete skeleton data, thus benefiting the encoder in
understanding the linkage between masked and exposed joints. The selection of joints for masking
under CSM is guided by the centrality within the topology of the human skeleton graph, with joints
possessing a higher degree of centrality, indicative of a wealth of neighborhood information, being
more prone to masking. The probability of a joint being masked is represented as Eq. 3.21.

pi =
di

∑
n
j=1 d j

, (3.21)

where di signifies the degree of each joint vi.
This approach, however, does not account for actual occlusion scenarios. To improve upon this,

when specific joints are occludedmore frequently in the training dataset, selecting these for masking
could leverage high-quality data more effectively. Conversely, with higher rates of random occlu-
sion across samples, adopting a more stochastic masking approach could better mimic occlusion
distributions. In response, we introduce a dataset-driven ASM method, designed to dynamically al-
ternate between partial and random occlusion scenarios, incorporating CSM within its framework
for situations where no occlusions are present, thereby selecting joints for masking. The degree of
each joint is recalibrated based on a batch’s missing joint boolean matrix (B), with the occlusion
frequency for each joint vi, for i∈(1,2, ...,n), computed per batch. The Frequency Degree (FD) for
joint vi is calculated as Eq. 3.22.

FDi = ⌊ Fi −min(F)

max(F)−min(F)+ ε
×3+1⌋, (3.22)

where ε is a negligible constant set to 0.001. Observations indicate that most joints possess a cen-
trality degree around 2, withminimal variance in these degrees. Therefore, the distinction in efficacy
between random and centrality-based masking is marginal. To address this, the occlusion frequency
for each joint is normalized to a range akin to centrality degrees, specifically [1,3]. This normaliza-
tion accentuates the disparity in frequency degrees over the skeleton graph’s centrality degrees,
thereby skewing the preference towards masking joints with higher occlusion frequencies. Here, F

denotes the occlusion frequency of joints, calculated from B across the batch dimension Eq. 3.23:

Fi = ∑b Bb,i. (3.23)

3.2.2.4 Imputation

Drawing inspiration from the KNN imputation technique rooted in traditional machine learning,
our objective is to identify samples closely resembling those with missing values for the purpose
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of imputation. Given the high dimensionality and vast quantity of sample data, a direct neighbor
search within the entire sample space proves to be unfeasible. Consequently, we opt to forgo a
comprehensive search in favor of grouping the samples into clusters containing a reduced number
of skeleton samples. Through initial pre-training of the self-supervised skeleton-based human action
recognition approach in the first stage, KMeans effectively groups samples of identical action types
into different clusters.

Initially, features are extracted from the samples using the pre-trainedmodel from the first phase.
Pseudo-labels are then assigned to each embedding. Within a cluster holding a pseudo label i, KNN
is employed to pinpoint neighboring samples for the one requiring imputation, residing in the same
cluster. Given that these neighbor samples might also lack values, the conventional Euclidean dis-
tance is inapplicable. Instead, we propose a modified Euclidean distance tailored for missing values
[51, 145], expressed as Eq. 3.24

D(si j,sik) =
√

w×dignore(si j,sik), (3.24)

where w denotes a weight reflecting the ratio of total coordinates to the number of existing coordi-
nates, and dignore(si j,sik) represents the Euclidean distance between samples j and k within the i-th
cluster, disregarding any missing values in si j and sik.

This distancemetric facilitates the straightforward calculation of distances between sample pairs.
The nearest k samples snear

i j , with j ranging from 1 to k, are identified based on distance and the loca-
tion of missing data within the current cluster i for a sample smiss

i lacking data. Each chosen sample
snear

i j must possess a complete coordinate at positions corresponding to where the missing coordi-
nates cmiss

i = {c | c ∈ smiss
i } are found. The imputation equation for a missing skeleton coordinate in

a sample with missing data is as Eq. 3.25.

cmiss
i :=

∑
k
j=1 r j × cnear

i j

∑
k
j=1 r j

, (3.25)

where r j is the reciprocal of the modified Euclidean distance, referred to as dist , between the sample
with missing data smiss

i and one of the nearest k samples si j within the nearest cluster i, as Eq. 3.26.

r j =
1

D(si j,smiss
i )

. (3.26)

As depicted in Fig. 3.7, a notable distinction in the imputation process between the training and
test sets is the absence of re-clustering for the test set. Instead, the KMeans model trained on the
training set predicts pseudo-labels for the test set, and imputed data is generated using training
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set clusters that match the test set’s predicted pseudo-labels. The test set serves exclusively as an
imputation data source.

Although this methodology has enhanced performance in diverse downstream tasks across sev-
eral models, limitations persist. Specifically, when every sample in a cluster lacks certain joints,
these missing sections remain unimputed, thus not ensuring a comprehensive imputation of all ab-
sent skeleton coordinates.

3.2.3 Experiments

3.2.3.1 Datasets

NTU-60/120 with occlusion. Derived occluded datasets originate from NTU-60/120. The NTU-
60 dataset [161], captured through Microsoft Kinect sensors, consists of 56,578 skeleton sequences
across 60 unique action categories. It offers two division schemes [161]: 1) Cross-Subject (xsub),
where training and validation data are sourced from distinct individuals, and 2) Cross-View (xview),
in which training and validation datasets are obtained from disparate camera perspectives. The
NTU-120 dataset [116], an augmentation of NTU-60, includes 113,945 skeleton sequences covering
120 action categories. While maintaining the xsub protocol, NTU-120 introduces the xset protocol
for evaluations across different camera setups, as opposed to camera views.

Occlusions are categorized into two types: 1) Synthesized realistic occlusion [146] as mentioned
in Section 3.1 utilizes projections of 3D furniture to craft realistic occlusions. 2) Random occlu-
sion, determined by the minimum and maximum coordinate values, where 20% of the coordinates
undergo random selection for occlusion.

3.2.3.2 Protocols

Linear Evaluation Method. This approach involves training a supervised linear classifier, which
includes a fully connected layer followed by a SoftMax activation, while the encoder remains un-
changed.
Semi-Supervised TestingMethod. Initially, the encoder is pre-trained with the complete imputed
dataset. Then, the full model is fine-tuned using merely 1% or 10% of the labeled data, selected
randomly.
Fine-tuning Method. A linear classifier is coupled with the pre-trained encoder, and the entire
network is subsequently fine-tuned on the imputed dataset.
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3.2.3.3 Implementation Details

In our research, the skeleton based feature learning backbone of each self-supervised learning
approach is unified as ST-GCN [209] with 16 hidden channels. The preprocessing methodology is
in alignment with those outlined in CrosSCLR [106] and AimCLR [72], entailing the elimination
of invalid frames from skeleton sequences, normalization of sequence length to 50 frames through
linear interpolation, and conversion of coordinates to a relative format. Additionally, we analyze the
distribution of missing joints (B) within the dataset. For the training phase, the Adam optimizer [92]
is utilized, coupled with a CosineAnnealing scheduler across a span of 150 epochs for both the
learning of representations and application to downstream tasks. The training is conducted with a
batch size of 128 and an initial learning rate of 5e−3.
Data Augmentation. Before the feature extraction phase in model training, data augmentation
techniques are applied to enhance the variability of skeleton sequences. Different models implement
their own distinct combinations of data augmentation strategies. For example, SkeletonCLR [106]
and CrosSCLR apply one form of spatial augmentation (Shear) along with a temporal augmentation
technique (Crop). Conversely, PSTL employs a trio of spatial augmentations (Shear, Rotate, Spa-
tial Flip) and a single temporal augmentation (Crop). Our model, OPSTL, adopts the identical data
augmentation scheme as that of PSTL.
Self-Supervised Pre-training Protocol. To facilitate a fair comparison with PSTL, identical pa-
rameter settings are employed. As illustrated in Fig. 3.7, the transformation τ applies to the incom-
plete skeleton sequence s, producing three distinct views s, s′, and ŝ. Both s′ and ŝ undergo ASM
and MATM processes, respectively, resulting in partial skeleton sequences s′a and ŝm. Using ST-GCN
as the backbone, we extract 256-dimensional features f, f′a, and f̂m, which are further transformed
into 6,144-dimensional embeddings z, z′a, and ẑm via the projector g. The cross-correlation matrices
between z and z′a, and between z and ẑm, are computed to understand the relationships between
masked and unmasked joints. The loss is calculated from these matrices with loss parameter λ set
to 2e−4, incorporating a warm-up period of 10 epochs. The weight decay parameter is 1e−5. For
ASM, 9 joints are selected for masking, and for MATM, 10 frames are masked.
Imputation Strategy. Our proposed imputation strategy addresses occlusion challenges. For clus-
tering in the imputation phase, KMeans is utilized with 60 clusters for NTU-60 and 120 clusters
for NTU-120 datasets, specifically for handling realistic occlusions. The KNN method, with k = 5,
identifies neighboring samples for imputation.

58



Table 3.14: Linear evaluation results on NTU-60 with synthesized realistic occlusion, randomly imputed

values, and imputed values by our proposed method. “∆” represents the difference compared to the non-

imputed NTU-60. J andM represent the joint stream and the motion stream.

Method Stream
Occluded

(%)
Randomly
imputed (%)

Our imputed (%)

xsub xview xsub xview xsub xview
acc. acc. acc. ∆ acc. ∆ acc. ∆ acc. ∆

SkeletonCLR[106] J 56.74 53.25 47.12 ↓9.62 58.09 ↑4.84 57.61 ↑0.87 64.43 ↑11.18
2s-CrosSCLR[106] J+M 59.88 57.47 51.96 ↓7.92 52.18 ↓5.29 62.76 ↑2.88 62.54 ↑5.07

AimCLR[71] J 58.90 55.21 6.36 ↓52.54 53.91 ↓1.30 63.40 ↑4.50 56.68 ↑1.47
PSTL[229] J 59.52 63.60 62.18 ↑2.66 67.97 ↑4.37 67.31 ↑7.79 71.10 ↑7.50

OPSTL (ours) J 61.11 65.55 65.63 ↑4.52 68.01 ↑2.46 67.11 ↑6.00 71.39 ↑5.84

Table 3.15: Linear evaluation results on NTU-120 with synthesized realistic occlusion, randomly imputed

values, and imputed values by our proposed method. “∆” represents the difference compared to the non-

imputed NTU-120. J andM represent the joint stream and the motion stream.

Method Stream
Occluded

(%)
Randomly
imputed (%)

Our imputed (%)

xsub xset xsub xset xsub xset
acc. acc. acc. ∆ acc. ∆ acc. ∆ acc. ∆

SkeletonCLR[106] J 44.93 42.78 44.42 ↓0.51 40.12 ↓2.66 48.63 ↑3.70 45.06 ↑2.28
2s-CrosSCLR[106] J+M 49.63 48.14 39.11 ↓10.52 33.77 ↓14.37 49.58 ↓0.05 54.43 ↑6.29

AimCLR[71] J 44.58 48.93 0.86 ↓43.72 1.16 ↓47.77 52.50 ↑7.92 52.83 ↑3.90
PSTL[229] J 54.18 51.90 56.12 ↑1.94 52.66 ↑0.76 57.05 ↑2.87 57.94 ↑6.04

OPSTL (ours) J 55.65 54.18 56.43 ↑0.78 53.90 ↓0.28 59.29 ↑3.64 58.25 ↑4.07

3.2.3.4 Evaluating Against Non-imputed NTU-60/120

To validate the efficacy of our imputation technique, it is benchmarked on the original NTU-
60/120 datasets with realistic occlusion. As demonstrated in Tables 3.14, 3.15, and 3.16, the perfor-
mance across nearly all three downstream tasks for all evaluated methods exhibits improvements
on the imputed versions of the NTU-60/120 datasets. We observe that most of the existing self-
supervised skeleton-based human action recognition approaches can not work well under the dis-
turbance from occlusions, while our OPSTL approach with ASM structure can outperforms all of
the leveraged baselines, illustrating the importance by using the proposed adaptive spatial masking
strategy in three branch contrastive learning framework. OPSTL delivers 61.11% and 65.55% ac-
curacy on NTU-60 xsub and xview and 55.65% and 54.18% accuracy on NTU-120 xsub and xview
by using the linear evaluation protocol, respectively.
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Table 3.16: Finetune and semi-supervised results on the imputed NTU-60/120 with synthesized realistic

occlusion.“∆” represents the difference compared to the non-imputed NTU-60/120 with synthesized realistic

occlusion. J andM represent the joint stream and the motion stream.

Method Stream
Imputed

NTU-60 (%)
Imputed

NTU-120 (%)
xsub xview xsub xset

acc. ∆ acc. ∆ acc. ∆ acc. ∆

Finetune:
SkeletonCLR[106] J 70.58 ↑3.22 80.76 ↑4.42 63.17 ↑4.06 62.12 ↑1.20
2s-CrosSCLR[106] J+M 72.94 ↑1.32 80.34 ↑0.09 65.06 ↑0.39 67.45 ↑2.43

AimCLR[71] J 70.53 ↑0.44 75.52 ↓3.21 67.08 ↑5.25 66.62 ↑1.91
PSTL[229] J 75.16 ↑2.48 85.24 ↑2.05 69.10 ↑1.20 69.42 ↑2.71

OPSTL (ours) J 75.43 ↑2.41 86.01 ↑1.92 70.89 ↑2.21 69.14 ↑1.89

Semi 1%:
SkeletonCLR[106] J 31.99 ↑13.47 31.18 ↑10.16 20.45 ↑3.13 16.24 ↑2.23
2s-CrosSCLR[106] J+M 32.66 ↑4.69 31.18 ↑10.35 19.38 ↑0.21 20.12 ↑7.59

AimCLR[71] J 34.44 ↑5.28 27.04 ↑8.92 22.59 ↑6.13 20.68 ↑5.38
PSTL[229] J 40.81 ↑7.99 39.61 ↑13.06 27.43 ↑5.92 25.52 ↑6.52

OPSTL (ours) J 40.07 ↑6.48 38.65 ↑10.76 27.90 ↑4.69 24.57 ↑4.71

Semi 10%:
SkeletonCLR[106] J 55.97 ↑2.98 60.83 ↑9.37 44.37 ↑2.33 42.68 ↑7.72
2s-CrosSCLR[106] J+M 59.17 ↑3.16 59.01 ↑3.86 46.89 ↑2.07 48.24 ↑8.44

AimCLR[71] J 59.64 ↑2.30 54.34 ↓0.36 48.38 ↑6.25 48.96 ↑3.63
PSTL[229] J 63.04 ↑4.41 68.89 ↑7.54 53.26 ↑2.80 53.42 ↑4.14

OPSTL (ours) J 64.04 ↑5.26 70.04 ↑6.22 54.71 ↑2.90 53.50 ↑3.38

3.2.3.5 State-of-the-art Comparisons

Our evaluation of OPSTL includes comprehensive comparison experiments. According to the re-
sults presented in Tables 3.14, 3.15, and 3.16, OPSTL surpasses the previously leading PSTL in linear
evaluations across both non-imputed and imputed variants of NTU-60/120. Specifically, OPSTL ex-
hibits enhancements of 1.59% and 1.95% for xsub and xview protocols on the NTU-60 dataset with
realistic occlusion, respectively. Moreover, it secures gains of 1.47% and 2.28% on xsub and xset
protocols of the NTU-120 dataset, also under conditions of realistic occlusion. These improvements
are evident not just on the non-imputed dataset but extend to the imputed versions of NTU-60/120 as
well. Compared with OPSTL w/o imputation, our imputation method can deliver 3.64% and 4.07%
accuracy improvements while limited benefits are delivered by randomly imputation, indicating the
effectiveness of the skeleton completion. The superior performance brought by our proposed im-
putation method demonstrating its promising capability of completing missing skeleton body joints
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which are disrupted by occlusions.

3.2.3.6 Ablation Analysis

Through ablation studies, we underscore the efficacy of our proposed ASM and imputation strat-
egy. Evaluating the imputation strategy involved testing with random imputation on NTU-60/120
datasets featuring realistic occlusion. The comparative analysis, as seen in Table 3.14 and Table 3.15,
reveals that our imputation method significantly surpasses random imputation in linear evalua-
tion. Methods such as SkeletonCLR, 2s-CrosSCLR, and AimCLR experience performance drops with
random imputation, with AimCLR showing the most drastic decrease, where accuracy plunges by
nearly 1%. This indicates that random imputation adversely affects the integrity of skeleton data,
which is critical for action recognition methods that rely on complete skeleton information.

Conversely, for approaches that engage partial skeleton sequences in learning representations,
like PSTL, accuracy still slightly increases even with random imputation applied. Nevertheless, with
our ASM approach, any improvement is marginal or sometimes negative. For example, on the xset
protocol of randomly imputed NTU-120, OPSTL sees a decline of 0.28% in accuracy compared to
its non-imputed counterpart, yet it remains superior to the state-of-the-art PSTL. This demonstrates
ASM’s capacity to harness high-quality data effectively for learning representations.

3.2.4 Discussion

This study makes significant contributions to self-supervised skeleton-based action recognition
by addressing the critical challenge of occlusions in real-world environments. We introduce a large-
scale benchmark by incorporating realistic occlusions and random occlusions on self-supervised
skeleton-based human action recognition approaches. This benchmark highlights the substantial
performance degradation of existing self-supervised skeleton-based human action recognitionmeth-
ods under occlusions, emphasizing the need formore generalizable solution. Current self-supervised
methods often rely on contrastive learning to understand human motion sequences, expecting sim-
ilar sequences to have smaller latent space distances. However, occlusions disrupt this similarity
by introducing noise and missing information, particularly harming contrastive learning’s ability to
accurately group similar actions.

To address these challenges, we propose the OPSTL framework. This framework introduces an
adaptive spatial masking data augmentation technique, which masks joints based on their occlusion
frequency, leveraging high-quality skeleton data to enhance feature learning. Unlike traditional
methods, adaptive spatial masking dynamically adjusts based on observed occlusion patterns, pro-
viding a more realistic and robust training process. Additionally, a two-stage imputation approach
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completes missing skeleton data efficiently. First, KMeans clustering groups semantically similar
samples from sequence embeddings. Second, KNN within each cluster imputes missing coordinates
based on the closest sample neighbors, preserving geometric and temporal continuity essential for
action recognition.

Experimental results demonstrate OPSTL’s superior performance acrossmultiple self-supervised
skeleton-based action recognitionmodels. On occluded versions of theNTU-60 andNTU-120 datasets,
OPSTLmitigates occlusion effects and enhances accuracy and robustness. In linear evaluation proto-
cols, OPSTL consistently outperforms existing methods, achieving higher accuracy in cross-subject
and cross-view settings. For example, on the NTU-120 dataset with realistic occlusions, OPSTL im-
proves accuracy by 1.47% in cross-subject and 2.28% in cross-set protocols. In semi-supervised
evaluation protocols, OPSTL shows significant gains, particularly with a small percentage of labeled
data, highlighting its efficiency and effectiveness.

Overall, our study emphasizes the importance of addressing occlusions in self-supervised skeleton-
based action recognition. By combining advanced data augmentation techniques with efficient im-
putation methods, the OPSTL framework enhances the performance and reliability of action recog-
nition systems in dynamic and unpredictable environments.
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4 | Towards Open-Set Skeleton-Based
Action Recognition

Apart from the challenge of occlusion on the tasks requiring discriminative feature learning in
the field of skeleton-based human action recognition, open-set recognition is a more challenging
and still unexplored area in the skeleton-based human action recognition, which requires the model
to deliver low confidence score on the unseen categories. In this chapter, we will for the first time
open the vistas to the task open-set skeleton-based action recognition. Part of the content of this
chapter is from our publication [149] in the thirty-eighth AAAI conference on artificial intelligence.

4.1 Introduction

Utilizing skeleton sequences for recognizing human actions offers numerous advantages, includ-
ing enhanced privacy, reduced data size, and improved adaptability to unfamiliar human appear-
ances. Contemporary approaches based on skeletons [230] are static in their predictive capabilities
post-training. A scenario closer to reality involves models encountering open sets, which include
both known and previously unseen action categories [136]. Actions not within the model’s learned
categories often lead to incorrect classifications as known actions, potentially causing considerable
issues, especially when these outputs have influence on decision-making processes, such as in the
context of assistive robotics. The necessity for advancements in open-set, skeleton-based action
recognition is highlighted by previous research [62, 137], driving the motivation behind our study.

While several methods have been developed for open-set action recognition in videos [10], the
challenge of identifying novel actions from skeleton data has not been adequately addressed. Despite
pursuing similar objectives, the two tasks differ significantly due to the lack of visual background
information and the sparse nature of skeleton sequences, posing unique challenges in managing
out-of-distribution actions. Addressing the absence of an appropriate benchmark, we establish a
comprehensive benchmark for Open-Set Skeleton-based Action Recognition (OS-SAR), incorporat-
ing three notable backbones for skeleton-based human action recognition, which are CTRGCN [33],
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HDGCN [100], and Hyperformer [49]. This benchmark is constructed on three publicly available
datasets, i.e., NTU-60 [161], NTU-120 [114], and Toyota Smart Home [43], and includes defined open-
set splits and evaluation protocols. Effective open-set recognition methods should sustain consistent
performance across various dataset and backbone combinations. Adopting practices from open-set
image classification [127], we compute performance averages over five random splits of unseen
classes. However, traditional open-set recognition techniques often falter in delivering consistent
OS-SAR outcomes, with recognition accuracy varying significantly across different backbones and
evaluation settings. This variation underscores the limitations of current approaches in addressing
OS-SAR challenges, which can not disentangle the samples from seen and unseen categories well
on the perspective of the prediction confidence.

To address these issues, we introduce a novel strategy for OS-SAR. Our multimodal method
utilizes three streams: joints, velocities, and bones, facilitating an exchange of distribution-wise
information in their latent spaces through a Cross-Modality Mean Max Discrepancy (CrossMMD)
suppression mechanism. Additionally, we tackle the issue of overconfidence in SoftMax-normalized
probability estimate when dealing with mixed distributions by leveraging a distance-based confi-
dence measure, the Channel Normalized Euclidean distance (CNE-distance), relative to the nearest
training set embeddings in latent space. While this approach markedly enhances open-set recogni-
tion, it does not perform as well in close-set scenarios compared to traditional SoftMax. Tomerge the
strengths of both approaches, we propose a cross-modality distance-based logits refinement tech-
nique, combining modality-averaged logits with CNE-distances. This integrated method, named
CrossMax, incorporates both CrossMMD for training and cross-modality distance-based refinement
for testing, setting new state-of-the art performances on OS-SAR task across datasets, backbones,
and evaluation settings.

Our primary contributions are summarized as follows:

• The development of a large-scale benchmark for Open-Set Skeleton-based Action Recognition
(OS-SAR), encompassing three datasets for skeleton-based human action recognition classi-
fication, seven open-set recognition baselines, and three established backbones for skeleton
data streams.

• A multimodal OS-SAR strategy that leverages joints, velocities, and bones streams, with a
Cross-ModalityMeanMaxDiscrepancy (CrossMMD) suppressionmechanism for inter-stream
information exchange.

• The introduction of a Channel Normalized Euclidean distance (CNE-distance) as a confidence
measure to mitigate overconfidence issues in SoftMax-normalized probabilities, thereby im-
proving open-set recognition accuracy.
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• The proposal of the CrossMax approach, which merges CrossMMD training and a cross-
modality distance-based logits refinement technique, achieving generalizable superior OS-
SAR performance in various evaluations.

4.2 Methodology

4.2.1 Task Introduction

In this work we focus on open-set recognition problem. Open-set recognition addresses the
challenge of classifying skeleton sequences from both known and unknown classes. The confidence
sore is usually measured by the SoftMax probability of the correct/wrongly predicted class within
the open-set realm. Formally, let X denote the input space and Y = {y1,y2, . . . ,yC} represent the
set of known classes, where C is the number of classes present during training. Given a training
dataset Dtrain = {(xi,yi)}N

i=1 consisting of N labeled samples, where xi ∈ X and yi ∈ Y , the goal is
to learn a classifier f : X →Y that can accurately classify test samples from the known classes Y .

In the OSR setting, however, the test set Dtest = {x j}M
j=1 includes samples from both the known

classesY and a set of unknown classesYunknown, such thatYunknown∩Y = /0. The classifiermust not
only assign correct labels to samples from the known classes but also identify and reject samples
from the unknown classes, typically by assigning them to a special "unknown" class label or by
outputting a low confidence score for such samples.

To evaluate the performance in this open set scenario, we consider two main objectives:

• Closed Set Accuracy: The accuracy of the classifier in labeling samples from the known
classes Y .

• Open Set Detection: The ability of the classifier to correctly identify and reject samples from
the unknown classes Yunknown. This is often measured by metrics such as the Area Under
the Receiver Operating Characteristic Curve (AUROC) or the Area Under the Precision-Recall
Curve (AUPR).

In a typical OSR scenario, the model is trained on a set of known classes, but during inference,
the models are required to provide low confidence scores on the previous unseen categories during
the training procedure.

4.2.2 Benchmark

We present OS-SAR, a comprehensive benchmark designed forOpen-Set Skeleton-basedAction
Recognition, incorporating CTRGCN [33], HDGCN [110], and Hyperformer [49] as foundational
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models to assess cross-model adaptability. This benchmark is developed upon the NTU-60 [161],
NTU-120 [114], and Toyota Smart Home [43] datasets, which are adapted for skeleton-based human
action recognition under open-set scenarios. The selection of backbones and benchmarks will be
elaborated upon, with the dataset details to be discussed in the experiments section.

4.2.2.1 Backbones for Skeleton Representation Learning.

CTRGCN [33] utilizes the Channel-wise Topology Refinement Graph Convolution (CTRGC) mech-
anism for dynamically learning unique topologies, thereby enabling efficient feature aggregation
across various channels. HDGCN [110] employs a Hierarchically Decomposed (HD) GCN structure.
It takes advantage of an HD-Graph that segregates nodes into several groups, facilitating the cap-
ture of both structurally adjacent and semantically relevant distant connections. Hyperformer [49]
adopts a transformer-based model, integrating bone connectivity through graph distance embed-
dings. Thesemodels were chosen to examine the adaptability of open-set approaches across different
architectures, given their proven effectiveness in standard benchmarks for skeleton-based human
action recognition and their diverse foundational technologies.

4.2.2.2 Existing Open-Set Recognition Baselines.

Our benchmark incorporates open-set recognition methodologies from image and video classi-
fication fields, due to the absence of open-set recognition methods tailored for skeleton data. These
methods are adaptable to various skeleton-based architectures. From image classification open-set
baselines: We adopt principal-point distance-based methods such as RPL [25] and ARPL [24], along
with the prototype learning method PMAL [127], which stands as the current frontrunner in open-
set image classification, and the foundational SoftMax score [74] for comparison. From video-based
action recognition open-set baselines: We select DEAR [10], employing deep evidential learning for
estimating open-set probabilities, alongside Monte Carlo Dropout + Voting (MCD-V) [155], and
Humpty [53], which utilizes temporal graph reconstruction for open-set probability assessment.
These open-set recognition baselines are applied in conjunction with our chosen skeleton represen-
tation backbones to ensure equitable evaluation, replacing the conventional image/video backbones
with our specified skeleton-based models.

4.2.3 CrossMax

To exploit the distinct cues offered by various skeleton data modalities (e.g., joints, bones, and ve-
locities) for open-set action recognition, we employ three ensembled backbones to perform feature
extraction. To align the learned latent spaces across modalities, we first introduce a cross-modality
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Figure 4.1: An overview of CrossMax method. During training, we utilize the Cross-modality Mean Maxi-

mumDiscrepancy (CrossMMD), to better align the latent spaces across different modalities. At test-time, for

each modality, we calculate the Euclidean distance to the closest training set sample and combine this with

the averaged logits from the three branches. This combination undergoes a refinement process based on

the cross-modality distance, which is conducted differently on the salient and not-salient logits. The refined

logits are then processed through SoftMax, a better confidence estimate for both in- and out-of-distribution

samples, while keeping the accurate close-set classification capability inherent to the standard SoftMax.

mean-max discrepancy suppression approach (CrossMMD) in training phase to ensure consistency
in the learned information, while using conventional SoftMax score as open-set probability. How-
ever, we observe that effectively disentangling the in-distribution and out-of-distribution data re-
mains an open challenge for open-set recognition through vanilla SoftMax score. To tackle this
concern, we then propose a novel solution using the channel-wise L2 normalized nearest Euclidean
distance to the train set embeddings, in a cross-modality setting to serve as distance-based open
set probability score and considering different modalities. Nonetheless, it is worth noting that the
probability predicted by SoftMax, operating on logits, offers valuable probability-like values for each
category, facilitating intuitive probability interpretation and clear decision-making by selecting the
class with the highest probability, where these benefits are not preserved for distance-based ap-
proaches. To capitalize on the benefits of both the proposed distance-based probability prediction
schema and the conventional SoftMax probability prediction schema, we introduce a novel logits
refinement approach during the test phase. This approach refines the predicted logits employed be-
fore SoftMax by using the averaged cross-modality distance. CrossMax combines these techniques
while enhancing the overall predictive capabilities, providing more robust and accurate discrimina-
tion between in-distribution and out-of-distribution samples in terms of the distribution style on the
predicted open-set probability while preserving the accurate close-set classification. The two major
components of our CrossMax approach will be introduced in the following. This allows us to cali-
brate the aggregated cross-modality SoftMax score after the cross-modality mean-max discrepancy
suppression, facilitating the disentanglement of uncertainty predictions for both in-distribution and
out-of-distribution samples during the test phase. The two major components of our CrossMax
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approach will be introduced in the following.

4.2.3.1 CrossMMD.

We introduce CrossMMD during training phase to enhance the information interchange across
different modalities. Utilizing the concept of MMD, which measures the disparity between proba-
bility distributions [70], CrossMMD is applied as a loss function to foster greater alignment among
distributions from diverse modalities, addressing the paucity of MMD research in cross-modal con-
texts.

Our aim is to mitigate the significant variance between the latent spaces of different modalities,
capitalizing on the unique open-set discriminative features inherent to each modality for effective
information sharing based on distribution characteristics. To accomplish the CrossMMD, we employ
the Gaussian kernel within the Reproducing Kernel Hilbert Space (RKHS) for this purpose.

Given two batches of embeddings, Ωx and Ωy, from distinct modalities, viewed as separate dis-
tributions, we first concatenate them to create Ωz =Concat(Ωx,Ωy). Subsequently, we calculate the
pairwise L2 Norm distance among all samples, denoted as dz. The kernel function’s bandwidths,
determined by Eq. 4.1 based on the sum of distances and the number of samples,

BW =
∑(dz)

(Nz)2 −Nz
, (4.1)

where Nz represents the number of samples. With Nk indicating the number of kernels, we derive a
bandwidth list LBW as {BW ∗ (α)i| i ∈ [0,Nk]}, where α is a scaling parameter. Smaller bandwidths
are employed to detect fine-grained differences among embeddings, beneficial for distributions with
complex local structures, whereas larger bandwidths are used for capturing broader, global discrep-
ancies.

The kernel matrix for the embeddings is formulated as Eq. 4.2,

Hk = {exp(−dz

β
)|β ∈ LBW}. (4.2)

For each kernel K ∈Hk, the intra-source differences are calculated by Eq. 4.3,
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]
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where E signifies the empirical mean, and ztr
j , ztr

b , and ztr
v are the training embeddings from the three

modalities, as demonstrated in Fig. 4.1. Conversely, the inter-source differences among modalities
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are determined by Eq. 4.4,
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The CrossMMD loss, as defined in Eq. 4.5,

CrossMMD(ztr
j ,z

tr
b ,z

tr
v ) = Intra(ztr

j ,z
tr
b ,z

tr
v )− Inter(ztr

j ,z
tr
b ,z

tr
v ), (4.5)

which is formulated to minimize intra-class variance and maximizes the inter-class variance, en-
abling efficient cross-modal information sharing at multi-scale levels through Gaussian kernels. In
addition to the LMMD loss, our training process incorporates the cross-entropy loss for each of the
three modalities, as shown in Eq. 4.6,

Loverall = L j
CE+L b

CE+L v
CE+λ ·LMMD, (4.6)

where λ is a predetermined constant to ensure the gradients of the two types of loss are on the
same scale. The terms L j

CE, L b
CE, and L v

CE represent the cross-entropy losses for the joint, bone,
and velocity branches, respectively.

4.2.3.2 Refinement of Logits Based on Cross-Modality Distance.

Employing the averaged logits from the three modalities, adjusted by CrossMMD, the model
calculates a preliminary open-set probability using the maximum score derived from SoftMax ap-
plied to the logits. While this method enhances the accuracy of predicting open-set probabilities,
we observed that relying solely on SoftMax for these predictions leads to inadequate differentiation
between in- and out-of-distribution samples with respect to their open-set probability distributions,
hindering further advancements in OS-SAR performance.

To address this challenge, we introduce the concept of Channel-Normalized Euclidean distance
(CNE-distance). This approach allows for the creation of Gaussian-like probability distributions,
facilitating a clearer separation between in- and out-of-distribution samples. Initially, embeddings
for the training samples across the three modalities are extracted, yielding the embedding sets Ωtr

a ,
where a encompasses j,b,v. This extraction process is replicated for the test sample embeddings,
denoted as zte

a . For every test sample, three distances are computed relative to the closest training set
embedding within Ωtr

a , specifically d j, db, and dv. The process begins with L2 normalization applied
to each embedding along the channel dimension, ensuring the feature values are scaled between
0 and 1. Subsequently, the Euclidean distance to the nearest training set embedding is calculated,
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serving as the measure for open-set probability. Thus, the CNE-distance is formulated as in Eq. 4.7,

d j,db,dv = D
[
NC(zte

j ),NC(Ω
tr
j )
]
,D

[
NC(zte

b ),NC(Ω
tr
b )
]
,D

[
NC(zte

v ),NC(Ω
tr
v )
]
, (4.7)

where te and tr refer to the test and training datasets respectively, and D [·] represents the Euclidean
distance. NC(·) denotes channel normalization. The mean distance is then derived as per Eq. 4.8,

dm = Mean(d j,db,dv). (4.8)

Our experiments reveal the effectiveness of the CNE-distance in producing more reliable proba-
bility estimates under open-set conditions, especially when differentiating between in- and out-of-
distribution samples. Yet, when using the CNE-distance to determine the class among the known
classes, as in Fig. 4.1, the close-set accuracy are sub-optimal.

To address this, we introduce a novel refinement methodology. This approach refines the aver-
aged logits utilizing the CNE-distance, addressing the disparities among modalities and improving
the close-set classification. By incorporating the averaged CNE-distances among modalities, our
method seeks to strike a balance between effective open-set probability estimation and good close-
set classification. We first acquire the position with the highest logit value of the averaged logits by
Eq. 4.9,

MP = ArgMax((l j + lb + lv)/3), (4.9)

where l j, lb, and lv denote the predicted logits for joints, bones, and velocities branches through
classification heads. Then we refine the predicted averaged logits lm by using Eq. 4.10 considering a
given sample, where the salient logit position is indicated by a one-hot maskMP. We use this formula
to achieve a separated calibration of the predicted categories and the none-predicted categories,
where the distribution of the confidence score of the seen categories and the unseen categories can
be well disentangled.

lm [MP] := Log(exp(lm [MP]∗d2
m)(

1
dm

−1)). (4.10)

While the not salient positions are indicated by mask MNP, the not saliency logits are refined by
Eq. 4.11,

lm [MNP] := lm [MNP]∗d2
m. (4.11)

Then, we get the refined full logits lm, which will be passed through SoftMax further to get the
classification and the open-set probability. The final predicted open-set probability is as follows,

Pprob=Max(So f tMax(lm)), (4.12)
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Table 4.1: Experiments on NTU-60/120 datasets, where CS, CV, and B indicate Cross-Subject/View evalu-

ations and Backbone. The results are averaged for five random splits. RPL [25], ARPL [24], PMAL [127],

the vanilla SoftMax score (SoftMax) [74], Monte Carlo Dropout + Voting (MCD-V) [155], DEAR [10], and

Humpty [53] are chosen as open-set baselines to construct the benchmark.

B Method
NTU-60 NTU-120

O-AUROC O-AUPR C-ACC O-AUROC O-AUPR C-ACC
CS CV CS CV CS CV CS CV CS CV CS CV

CT
RG

CN

SoftMax 83.68 87.77 67.37 76.38 90.56 93.83 82.37 83.10 91.84 91.88 90.37 91.04
RPL 84.02 88.06 67.86 76.75 90.82 95.38 82.06 83.40 91.55 92.05 90.40 90.96
ARPL 84.13 88.37 68.24 76.58 91.00 95.45 81.93 83.03 91.54 91.80 90.12 91.16
PMAL 82.72 88.06 64.99 73.31 90.74 95.09 80.46 81.75 90.55 90.93 89.61 90.14
DEAR 83.11 87.54 63.07 75.52 84.14 95.41 81.98 82.66 91.51 91.67 90.11 90.61
Humpty 82.08 85.82 62.05 69.09 89.17 93.75 82.12 83.35 90.78 91.06 89.89 90.54
MCD-V 81.31 85.58 61.88 69.99 90.14 94.72 78.83 79.17 89.60 76.93 88.12 88.10
Ours 90.62 94.14 80.32 88.07 93.68 97.51 85.44 85.42 93.67 93.36 91.43 92.94

H
D
GC

N

SoftMax 81.52 86.95 63.62 73.89 89.14 94.67 81.34 82.90 91.49 91.83 89.92 90.21
RPL 82.92 88.38 66.06 76.27 91.92 95.32 82.00 83.05 91.59 91.83 89.77 90.77
ARPL 83.92 87.19 67.76 74.49 90.65 94.90 82.06 82.80 91.51 91.74 90.08 90.68
PMAL 82.41 83.57 64.53 66.98 90.26 93.33 80.68 81.89 90.71 91.22 89.53 90.75
DEAR 83.87 87.92 67.76 76.15 90.65 95.15 81.89 82.78 91.38 91.63 89.85 90.68
Humpty 81.91 87.47 61.49 71.32 88.70 94.64 82.38 83.26 90.72 85.78 89.40 89.93
MCD-V 82.51 86.74 64.24 72.70 90.04 94.88 80.55 80.24 90.26 90.27 89.80 89.00
Ours 89.57 93.14 78.82 86.48 93.30 96.88 83.76 84.46 92.84 93.07 90.82 91.67

H
yp

er
Fo
rm

er

SoftMax 83.40 87.11 66.29 74.38 90.46 94.90 81.16 82.74 91.40 91.60 90.69 90.95
RPL 79.97 83.96 60.15 68.52 88.39 92.46 81.26 82.20 91.19 91.30 89.65 90.31
ARPL 82.37 84.88 64.38 69.74 89.87 93.99 82.08 82.06 91.25 91.53 90.19 90.46
PMAL 82.43 85.80 64.29 70.89 90.33 94.79 81.95 81.90 91.63 89.13 90.65 90.42
DEAR 81.47 85.22 62.87 70.33 89.94 94.26 81.00 81.90 90.96 91.15 89.51 90.15
Humpty 71.72 73.66 55.21 60.95 89.98 94.67 70.67 69.28 86.93 86.29 89.92 89.40
MCD-V 82.52 79.69 65.00 59.46 93.05 88.80 80.21 81.17 90.24 90.64 88.87 89.80
Ours 88.98 92.73 77.75 85.94 93.24 96.71 83.67 83.70 92.84 92.62 91.30 92.50

while the open-set novelty score can be obtained by 1−Pprob. By using this refinement method, the
accurately predicted class from the SoftMax score computed on averaged logits can be preserved
while the predicted open-set probability can achieve a distance-controllable disentanglement. This
disentanglement ability benefits the OS-SAR a lot, as observed in our experiments. We refer to our
full pipeline combining CrossMMD and the proposed distance-based refinement as CrossMax.

4.3 Experiments

4.3.1 Metrics

To assess open-set performance, we employ the Area Under the Receiver Operating Characteris-
tic (O-AUROC) and theArea Under the Precision-Recall curve (O-AUPR), which provide insights into
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Table 4.2: Experiments on Toyota Smart Home [43] dataset, where CS and CV indicate Cross-Subject/View
evaluations. The results are averaged for five random splits.

Method
Toyota Smart Home

O-AUROC O-AUPR C-ACC O-AUROC O-AUPR C-ACC O-AUROC O-AUPR C-ACC
CS CV CS CV CS CV CS CV CS CV CS CV CS CV CS CV CS CV

CTRGCN HDGCN Hyperformer
SoftMax 70.04 65.18 70.10 69.02 70.41 78.52 72.88 54.47 71.16 61.07 78.37 75.10 74.25 72.26 74.30 74.94 78.68 81.40
RPL 56.74 51.90 60.46 59.46 74.42 75.41 74.26 61.93 73.97 63.61 78.35 77.02 73.24 74.30 72.62 75.84 78.62 82.23
ARPL 74.11 64.22 73.80 67.04 78.55 79.53 73.00 64.53 72.93 68.73 78.75 77.62 72.73 72.77 72.99 73.98 78.60 82.67
PMAL 57.80 51.73 61.27 52.94 74.06 67.50 64.64 74.72 69.20 73.41 77.23 78.39 73.48 51.89 73.68 47.26 78.01 69.97
DEAR 76.19 60.54 75.42 74.52 78.49 65.50 75.03 59.25 75.10 63.41 78.41 78.54 72.86 74.54 72.70 76.09 78.20 82.87
Humpty 65.10 59.17 68.71 62.43 77.76 75.19 62.41 57.12 66.78 66.32 77.83 80.12 72.32 62.70 71.26 62.88 78.32 80.23
MCD-V 69.61 67.92 71.12 71.68 77.74 76.41 72.29 64.64 72.57 69.20 79.90 78.93 61.69 53.71 65.17 62.70 74.15 48.20
Ours 83.99 84.00 86.74 87.37 80.25 80.51 84.32 83.70 86.57 86.44 80.41 81.29 82.23 80.76 84.28 81.46 79.58 83.54

the model’s performance with varying focus on category balance. Close-set classification accuracy
(C-ACC) is also measured to determine if the open-set method maintains good close-set classifica-
tion performance. Following PMAL [127], O-AUROC and C-ACC are primary metrics, with O-AUPR
added due to the imbalance in the ToyotaSmartHome dataset.

4.3.2 Implementation Specifications

Our model is implemented using PyTorch1.8.0, trained with an SGD optimizer (learning rate of
0.1), a step-wise learning rate scheduler (decay rate of 0.1 at steps 35,55,70), a weight decay of
0.0004, and a batch size of 64 over 100 epochs on four Nvidia A100 GPUs with an Intel Xeon Gold
6230 processor. Parameters λ , Nk, and α are set to 0.1, 5, and 2.0, respectively, resulting in model
sizes of 4.29 MB for CTRGCN, 5.04 MB for HDGCN, and 7.8 MB for Hyperformer.

4.3.3 Benchmark Insights

An extensive analysis of existing open-set recognition methods within our benchmark reveals
principal point distance-based methods like RPL [25] and ARPL [24] offer good O-AUROC improve-
ments on CTRGCN and HDGCN compared to SoftMax [74] on the NTU-60 (CS). Yet, their perfor-
mance lags on the Hyperformer backbone for NTU-60, highlighting the challenge of cross-backbone
adaptability, as shown in Table 4.1. Examining cross-dataset adaptability, RPL and ARPL show
superiority over SoftMax using HDGCN and Hyperformer on NTU-120 but underperform on the
Toyota Smart Home (CS) with CTRGCN as shown in Table 4.2. The prototypical learning method
PMAL [127] generally falls short in OS-SAR task. Similarly, video-based open-set approaches like
DEAR [10], MCD-V [155], and Humpty [53] demonstrate limited efficacy on OS-SAR task, likely
due to the significant differences between skeletal and RGB image/video data, as well as the sparse
character of skeletal data. The reliance on GCNs rather than CNNs for feature extraction in skeletal
data suggests the need for a specific OS-SAR method that is effective across various datasets and
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Figure 4.2: A comparison of open-set probability estimated using HD-GCN on the NTU-60 (CS) dataset

across one randomly selected split.

backbones.
To handle the underlying issue for existing open-set recognition approaches, we analyze the dis-

entanglement capability between the in- and out-of-distribution samples considering the open-set
probability in Fig. 4.2, where open-set probability tends to 1.0 when the prediction is quite certain.
We observe that most of the baselines can not well disentangle in- and out-of-distribution samples
according to their predicted open-set probabilities, which serves as a critical reason for the undesired
performance on OS-SAR. Keeping this issue in mind, we propose CrossMax by using CrossMMD in
the training phase and cross-modality distance-based logits refinement in the test phase. CrossMax
delivers superior disentanglement in terms of the open-set probability considering the in- and out-
of-distribution samples. CrossMax achieves 6.94%, 8.05%, and 5.58% O-AUROC improvements
and 12.95%, 15.20%, and 11.46% O-AUPR improvements on CTRGCN, HDGCN, and Hyperformer
backbones within NTU-60 cross-subject evaluation compared with vanilla SoftMax, while consis-
tent performances can be found for different backbones, datasets, and settings, demonstrating the
importance of the superior disentanglement ability for open-set probability between in- and out-of-
distribution samples.

4.3.4 Analysis of Observations and Ablations

4.3.4.1 Advantages of Implementing CrossMMD

Through t-SNE visualizations comparing models trained without CrossMMD (labeled as Ensem-
ble) and with CrossMMD, as shown in Fig. 4.3, it’s evident that CrossMMD significantly enhances
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Joints Bones Velocities

CrossMMD

Ensemble

Figure 4.3: T-SNE [130] visualizations on NTU-60 (CS) using CTRGCN. Out- and in-of-distribution samples

are marked by red and other colors.

Figure 4.4: Comparison of SoftMax, CNE-distance, and CrossMax using HDGCN on NTU-60 (CS) on one

split.

the discriminative ability and structure of latent spaces for both in- and out-of-distribution samples.
This improvement aligns with the performance gains detailed in Table 4.3, where both Ensemble
and CrossMMD configurations utilize the SoftMax score for estimating open-set probabilities.

4.3.4.2 CNE-distance Versus Conventional SoftMax

Comparative analysis reveals that the open-set recognition performance on the corresponding
metrics, i.e., O-AUROC and O-AUPR, are substantially higher for the CNE-distance across all modal-
ities than for the conventional SoftMax without logits refinement, as demonstrated in Fig. 4.4. The
CNE-distance method surpasses the vanilla SoftMax by 2.86%, 3.78%, and 1.12% in O-AUROC for
joints, bones, and velocities, respectively. Despite its strengths, the CNE-distance method falls short
in ensuring satisfactory performance in close-set classification accuracy. The proposed logits refine-
ment method leverages the strengths of both the vanilla SoftMax and CNE-distance to enhance both
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Table 4.3: Module ablation on NTU-60 (CS) on CTRGCN, where the results are averaged among five random

splits.

Method O-AUROC O-AUPR C-ACC

Ensemble 86.23 71.35 93.31

CrossMMD (Ours) 88.31 74.80 93.68
CrossMax (Ours) 90.62 80.32 93.68

open- and close-set recognition performances.

4.3.4.3 Logits Refinement Versus CNE-distance Evaluation

Addressing inquiries about the superiority of the proposed cross-modality distance-based logits
refinement over CNE-distance variations in predicting open-set probabilities, we present a compara-
tive analysis in Fig. 4.5 from five random splits (R1 to R5).

(a) O-AUROC (b) O-AUPR

Figure 4.5: Comparison of open-set recognition performances

using CTRGCN backbone on NTU-60 cross-view evaluation for

five different random splits.

The comparison includes CNE-distance
variations based on joint-modality
(Dist_joints), bone-modality (Dist_bones),
velocity-modality (Dist_velocities), and
both minimum (Dist_min) and max-
imum (Dist_max) aggregation across
modalities. A regular pentagon shape
in the curve signifies consistent and
generalizable performance across dif-
ferent splits. The logits refinement
approach exhibits the most stable and
superior performance among all, indi-
cating that this method not only pro-
videsmore stable estimations of open-
set probabilities but also maintains exceptional close-set classification performance.

4.3.4.4 Ablation of Each Module.

We use CrossMMD during training while using cross-modality distance-based logits refinement
during test. We show the benefits from different modules in Table 4.3, where Ensemble indicates
using ensembled modalities and vanilla SoftMax, CrossMMD indicates using CrossMMD and vanilla
SoftMax, and CrossMax indicates using CrossMMD and the proposed logits refinement method.
CrossMMD achieves 2.08%, 3.45%, and 0.37% improvements for O-AUROC, O-AUPR, and C-ACC
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Table 4.4: Ablation study for OS-SAR under different open-set ratios using CTRGCN on NTU-60 [161]

dataset for cross-view and cross-subject evaluations, where the results are averaged on five random splits.

Method O-AUROC O_AUPR C-ACC O-AUROC O_AUPR C-ACC
CS CV CS CV CS CV CS CV CS CV CS CV

1 Case1. 2 Case2.

SoftMax 83.68 87.77 67.37 76.38 90.56 93.83 83.10 85.58 91.54 96.05 95.10 95.76
RPL 84.02 88.06 67.86 76.75 90.82 95.38 83.72 87.58 95.34 96.51 92.20 95.54
ARPL 84.13 88.37 68.24 76.58 91.00 95.45 83.72 87.52 95.34 96.49 92.20 95.49
DEAR 83.11 87.54 63.07 75.52 84.14 95.41 83.00 86.13 95.00 96.15 91.30 95.28

Ours 90.62 94.14 80.32 88.07 93.68 97.51 94.61 96.20 98.63 99.04 94.17 96.90

compared with the ensemble variant, while CrossMax preserves the superior C-ACC of CrossMMD
and delivers improvements by 2.31% and 5.52% of O-AUROC andO-AUPR, showing the importance
of using both.

4.3.4.5 Ablation for Different Open-Set Ratios

In this ablation study, we evaluate the performance of four leading models, i.e., SoftMax [74],
RPL [25], ARPL [24], DEAR [53], and our own model, CrossMax, on the NTU-60 dataset, using
CTRGCN as the backbone framework. The results, presented in Table 4.4, cover both cross-subject
and cross-view scenarios under varying open-set conditions. Specifically, Case1 utilizes 40 classes
for training as known classes and designates 20 classes as unknown, whereas Case2, which presents
a more challenging scenario, trains on only 10 classes and leaves 50 as unseen due to the signifi-
cantly reduced prior knowledge available for training. The outcome reveals a minor decline in O-
AUROC scores for the baseline models in Case2, yet CrossMax maintains robust performance across
different open-set ratios, marking improvements of 10.89% and 8.68% over ARPL in O-AUROC
for cross-subject and cross-view evaluations, respectively. Moreover, when compared to its perfor-
mance in Case1, CrossMax exhibits gains of 3.99% and 2.06% in O-AUROC and 18.31% and 10.97%
in O-AUPR for the two evaluation scenarios, respectively, underscoring its exceptional capability in
handling challenging open-set contexts. Additionally, the distribution of predicted open-set proba-
bilities for both in- and out-of-distribution samples, shown in Fig. 4.6, highlights CrossMax’s supe-
rior disentanglement capability in terms of the open-set probability on seen and unseen categories
on a different open-set ratio. Performance stability is further evidenced by consistent top-tier results
across different random open-set splits (R1 to R5), as detailed in Fig. 4.7.
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Figure 4.6: A Visualization of the open-set probability comparison using the CTRGCN [33] backbone on the

NTU-60 [161] dataset for a cross-subject evaluation on Run1 for a specific open-set ratio scenario (Case2).

(a) O-AUROC for Case1 (b) O-AUROC for Case2 (c) O-AUPR for Case1 (d) O-AUPR for Case2

Figure 4.7: Comparison of open-set recognition performances using CTRGCN [33] backbone on NTU-

60 [161] cross-subject evaluation for five different random splits on two different open-set ratios (case 1

and case 2), where R1 to R5 indicates the five random splits.

Table 4.5: Ablation study for OS-SAR under Gaussian noise disturbance using CTRGCN on NTU-60 [161]

dataset for cross-view and cross-subject evaluations, where the results are averaged on five random splits.

Method O-AUROC O_AUPR C-ACC O-AUROC O_AUPR C-ACC
CS CV CS CV CS CV CS CV CS CV CS CV

1 Without Noise. 2 Gaussian Noise Disturbance.

SoftMax 83.68 87.77 67.37 76.38 90.56 93.83 72.76 76.36 52.04 57.63 56.44 57.68
RPL 84.02 88.06 67.86 76.75 90.82 95.38 74.21 77.79 53.31 59.49 71.74 75.36
ARPL 84.13 88.37 68.24 76.58 91.00 95.45 74.99 78.66 54.99 60.55 82.76 88.26
DEAR 83.11 87.54 63.07 75.52 84.14 95.41 73.65 76.83 52.51 57.32 82.14 86.63

Ours 90.62 94.14 80.32 88.07 93.68 97.51 79.94 83.36 66.03 73.91 85.93 89.31

4.3.4.6 Ablation for Noise Disturbance

In this ablation study, we explore the performance of our CrossMaxmodel alongwith four promi-
nent baselines, i.e., SoftMax, DEAR, ARPL, and RPL, on the NTU-60 dataset [161], employing CTR-
GCN [33] as the feature extraction backbone, under conditions of Gaussian noise perturbation, as
summarized in Table 4.5. This investigation follows a similar methodology to our prior ablation
study, focusing on the same leading baselines. A skeletal sequence is represented as s ∈ R3×T×N j .
Gaussian noise is then introduced, denoted by n ∈ R3×T×N j , generated from a normal distribution.

77



O
-A

U
R

O
C

: 7
6

.5
5

ARPL DEAR

O
-A

U
R

O
C

: 7
5

.0
5

O
-A

U
R

O
C

: 7
5

.5
8

RPLRPL SoftMax

O
-A

U
R

O
C

: 7
5

.5
8

O
-A

U
R

O
C

: 7
4

.5
3

O
-A

U
R

O
C

: 7
9

.8
2

D
e

n
s

ity

Figure 4.8: Comparison of the open-set probabilities using CTRGCN [33] as the backbone on NTU-60 [161]

for cross-subject evaluation for Run1 under Gaussian noise disturbance.

(a) O-AUROC w/o Noise (b) O-AUROC w/ Noise (c) O-AUPR w/o Noise (d) O-AUPR w/ Noise

Figure 4.9: Comparison of open-set recognition performances using CTRGCN [33] backbone on NTU-

60 [161] cross-subject evaluation for five different random splits for w/ noise and w/o noise scenarios, where

R1 to R5 indicates the five random splits.

The noise-interrupted skeletal sequence is expressed as sn = s+γ ∗n, with γ set to 0.3. This Gaussian
noise is applied to both the training and testing datasets.

The introduction of Gaussian noise leads to a noticeable decrease in performance across all mod-
els, indicating the adverse impact of such disturbances on OS-SAR results. Despite this, CrossMax
demonstrates a relatively minor decline in effectiveness, maintaining its lead in performance amidst
noise challenges. The method continues to achieve superior results under noise conditions. Fur-
thermore, we present the predicted probabilities for both in- and out-of-distribution samples in the
face of noise in Fig. 4.8, where CrossMax’s exceptional ability to disentangle these sample types
under various open-set ratios is evident. The model’s performance across various random splits
(R1 to R5) is detailed in Fig. 4.9, where CrossMax consistently provides stable and leading perfor-
mance across different open-set divisions for OS-SAR tasks on the NTU-60 dataset [161], utilizing
the CTRGCN [33] backbone for cross-subject evaluations.

4.3.4.7 Ablation under Occlusions

This ablation presents the outcomes of the OS-SAR experiments conducted with random occlu-
sions on the NTU-60 dataset [161], utilizing CTRGCN [33] as the feature extraction backbone, as
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Figure 4.10: Comparison of the open-set probabilities using CTRGCN [33] as the backbone onNTU-60 [161]

for cross-subject evaluation for Run1 under random occlusion disturbance.

(a) O-AUROC w/o Occlu-

sion

(b) O-AUROC w/ Occlu-

sion

(c) O-AUPR w/o Occlusion (d) O-AUPR w/ Occlusion

Figure 4.11: Comparison of open-set recognition performances using CTRGCN [33] backbone on NTU-

60 [161] cross-subject evaluation for five different random splits for w/ occlusion andw/o occlusion scenarios,

where R1 to R5 indicates the five random splits.

Table 4.6: Ablation study for OS-SAR under random occlusion disturbance using CTRGCN on NTU-60 [161]

dataset for cross-view and cross-subject evaluations, where results are averaged on five random splits.

Method O-AUROC O_AUPR C-ACC O-AUROC O_AUPR C-ACC
CS CV CS CV CS CV CS CV CS CV CS CV

1 Without Occlusion. 2 With Random Occlusions.

SoftMax 83.68 87.77 67.37 76.38 90.56 93.83 77.34 80.09 58.88 63.67 67.32 71.24
RPL 84.02 88.06 67.86 76.75 90.82 95.38 76.72 78.96 57.71 61.63 74.39 78.97
ARPL 84.13 88.37 68.24 76.58 91.00 95.45 79.92 79.55 61.55 63.35 87.18 88.01
DEAR 83.11 87.54 63.07 75.52 84.14 95.41 79.79 81.45 60.45 65.23 87.44 90.75

Ours 90.62 94.14 80.32 88.07 93.68 97.51 84.44 86.30 69.89 74.07 88.69 92.66

detailed in Table 4.6. To simulate random occlusions, we applied a random occlusion rate θ chosen
from the set {10%,20%,30%}, setting θ percentage of the coordinates in a skeleton sequence to
zero. This method emulates the effects of random occlusion, which poses significant challenges for
OS-SAR by inducing geometric discontinuities and exacerbating the sparsity of skeletal data.

Comparative analyses, against experiments without occlusion mentioned in Table 4.6, reveal a
marked decline in the performance of all baseline models when faced with occluded data. This de-
cline underscores the detrimental impact of occlusions on OS-SAR model efficacy. An examination
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of the predicted open-set probabilities for in- and out-of-distribution samples, illustrated in Fig. 4.10,
demonstrates increased overlap between these sample types under occlusion conditions. Nonethe-
less, our CrossMax model retains its excellent capability for disentangling these sample categories.

In terms of quantitative performance, CrossMax achieves scores of 84.44%, 69.89%, and 88.69%
for O-AUROC, O-AUPR, and C-ACC, respectively, in the cross-subject evaluation. For the cross-view
evaluation, it records 86.30%, 74.07%, and 92.66% for O-AUROC, O-AUPR, and C-ACC, respec-
tively. Performance metrics under random occlusion across different data splits are showcased in
Fig. 4.11. Here, while all considered OS-SAR baseline models display significant performance vari-
ations, CrossMax demonstrates the most consistent and superior performance across these evalua-
tions.

Table 4.7: Comparison with our implemented MM-ARPL on NTU-60 [161] cross-subject evaluation on

CTRGCN backbone, where the results are averaged among five random splits.

Method O-AUROC O-AUPR C-ACC

SoftMax [74] 83.68 67.37 90.56
ARPL [24] 84.13 73.27 91.00
Ensemble (MM-SoftMax) 86.23 71.35 93.31
MM-ARPL 87.60 73.27 93.67

CrossMMD (Ours) 88.31 74.80 93.68
CrossMax (Ours) 90.62 80.32 93.68

4.3.4.8 Comparison with ARPL under Three Modalities

In this evaluation, we delve into the performance comparison of our CrossMax method against
the top-performing baseline, ARPL [24], within amulti-modality framework on theNTU-60 dataset [161],
using CTRGCN [33] as the backbone for cross-subject analysis. Due to ARPL’s exemplary perfor-
mance with the CTRGCN architecture on the NTU-60 dataset, it has been selected to accomplish a
multi-modality variant, where ARPL is trained separately across three modalities, i.e., joints, bones,
and velocities, with the outputs averaged prior to calculating the final open-set probability. This
multi-modality version of ARPL is referred to as MM-ARPL in Table 4.7. Additionally, the perfor-
mances of amulti-modal adaptation of SoftMax, labeled as Ensemble, alongside the standard versions
of SoftMax [74], and ARPL [25] are documented in Table 4.7.

Compared to the standard ARPL model, the MM-ARPL variant exhibits improvements of 3.47%,
5.03%, and 2.67% in O-AUROC, O-AUPR, and C-ACC metrics, respectively. These enhancements
highlight the significance of incorporatingmultiple modalities in OS-SAR task. Moreover, our Cross-
Max method not only continues to outperform MM-ARPL by margins of 3.02% and 7.05% in O-
AUROC and O-AUPR, respectively, but also demonstrates advantageous close-set performance (C-
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ACC), underscoring our approach’s superior design in addressing open-set challenges. It is worth
noting that within our benchmark, O-AUROC and O-AUPR are prioritized as key indicators of open-
set model performance, whereas C-ACC serves as a secondary metric for evaluating close-set clas-
sification efficacy.

4.3.4.9 Stability for Different Splits across Backbones

This section discusses the results of OS-SAR experiments conducted using various data splits
on the NTU-60 dataset for cross-subject evaluation, comparing different models across backbones,
as depicted in Fig. 4.12. The evaluations focus on O-AUROC and O-AUPR metrics. Our model,
CrossMax, consistently outperforms other methods, achieving the highest scores while displaying
consistent performance across all splits, indicating its superior generalization capabilities.

(a) O-AUROC (CTRGCN) (b) O-AUPR (CTRGCN) (c) O-AUROC (HDGCN)

(d) O-AUPR (HDGCN) (e) O-AUROC (Hyperformer) (f) O-AUPR (Hyperformer)

Figure 4.12: Experimental results for all five random splits on NTU-60 [161] dataset under cross-subject

evaluation on HDGCN [110].
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4.3.5 Evaluation Protocols

In this section, more details of the evaluation protocols are introduced. The challenge level of
OS-SAR varies with different data splits. To ensure equitable comparisons, we generate five random
splits for each dataset, maintaining consistent seen and unseen class divisions across comparisons.

For the NTU-60 dataset, the classes designated as unseen are listed in Table 4.8, according to the
NTU-60 [161] class index scheme. The remaining classes are considered seen. The NTU-120 dataset
follows a similar approach, with seen classes detailed in Table 4.9, based on the NTU-120 [114] class
index system, and the remaining classes categorized as unseen. For the Toyota Smart Home dataset,
unseen classes are enumerated in Table 4.10, with the rest deemed seen.

Table 4.8: Unseen classes for five random splits on NTU-60 [161] dataset.

NTU-60 Unseen classes

Run1 50, 40, 30, 37, 12, 48, 45, 49, 8, 29, 58, 13, 1, 39, 27, 47, 14, 52, 3, 44

Run2 41, 21, 52, 6, 12, 36, 24, 56, 35, 57, 15, 26, 39, 53, 19, 4, 27, 25, 17, 47

Run3 46, 10, 47, 39, 55, 14, 58, 53, 13, 40, 24, 9, 45, 23, 27, 3, 7, 54, 33, 17

Run4 21, 55, 11, 43, 41, 3, 52, 39, 46, 59, 47, 15, 17, 54, 40, 33, 9, 38, 31, 57

Run5 56, 14, 17, 7, 40, 52, 37, 50, 36, 6, 44, 11, 41, 9, 47, 24, 53, 2, 10, 58

Table 4.9: Seen classes for five random splits on NTU-120 [114] dataset.

NTU-120 Seen classes

Run1 0, 37, 52, 70, 96, 92, 91, 4, 39, 12, 46, 81, 87, 31, 72, 48, 16, 62, 42, 102, 112, 68, 56, 49, 22, 11, 88, 107, 93, 43

Run2 17, 90, 47, 80, 79, 48, 27, 82, 61, 53, 96, 117, 62, 35, 23, 85, 8, 98, 104, 77, 51, 75, 56, 105, 54, 25, 18, 44, 40, 109

Run3 76, 9, 57, 59, 5, 51, 83, 104, 73, 27, 92, 72, 42, 111, 100, 67, 105, 4, 101, 12, 84, 119, 15, 33, 78, 62, 82, 24, 65, 108

Run4 48, 12, 26, 63, 20, 109, 80, 33, 79, 67, 100, 6, 24, 11, 76, 61, 10, 59, 0, 99, 19, 4, 90, 58, 28, 88, 44, 95, 72, 18

Run5 45, 0, 44, 13, 100, 14, 32, 72, 101, 17, 39, 63, 20, 56, 105, 71, 78, 73, 8, 99, 19, 115, 23, 54, 12, 109, 15, 37, 88, 18

4.4 Discussion

4.4.1 Societal Contributions

In this study, we introduce the first large-scale benchmark for open-set skeleton-based action
recognition task, termed the OS-SAR benchmark. This benchmark encompasses a wide range of
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Table 4.10: Unseen classes for five random splits on ToyotaSmartHome [43] dataset.

TYT Unseen classes

Run1 ’Drink.Fromcup’, ’Cook.Cleandishes’, ’Laydown’, ’Enter’, ’Takepills’, ’Walk’, ’Usetablet’, ’Cook.Usestove’, ’Leave’, ’Eat.Snack’,
’Maketea.Boilwater’, ’Cook.Cut’, ’Pour.Frombottle’, ’Drink.Fromglass’, ’Uselaptop’, ’WatchTV’, ’Pour.Fromkettle’, ’Usetelephone’

Run2 ’Leave’, ’Usetelephone’, ’Maketea.Boilwater’, ’Cook.Usestove’, ’Eat.Snack’, ’Cook.Cleanup’, ’Pour.Fromkettle’, ’Cook.Stir’, ’Walk’,
’Usetablet’, ’Pour.Frombottle’, ’Drink.Fromglass’, ’Getup’, ’Makecoffee.Pourgrains’, ’Drink.Fromcup’, ’Takepills’, ’Makecoffee.Pourwater’, ’Cutbread’

Run3 ’Usetelephone’, ’Makecoffee.Pourwater’, ’Cook.Usestove’, ’Maketea.Insertteabag’, ’Uselaptop’, ’Enter’, ’Maketea.Boilwater’, ’Cutbread’, ’Pour.Frombottle’,
’Drink.Fromcan’, ’Cook.Stir’, ’Laydown’, ’Cook.Cleanup’, ’Drink.Fromcup’, ’Readbook’, ’Drink.Frombottle’, ’Leave’, ’Pour.Fromcan’

Run4 ’Cutbread’, ’Usetelephone’, ’Drink.Frombottle’, ’Walk’, ’Usetablet’, ’Cook.Cleanup’, ’Drink.Fromcan’, ’Drink.Fromglass’, ’Drink.Fromcup’, ’Pour.Fromcan’,
’Makecoffee.Pourgrains’, ’Maketea.Boilwater’, ’Leave’, ’Cook.Stir’, ’Makecoffee.Pourwater’, ’WatchTV’, ’Laydown’, ’Eat.Attable’

Run5 ’Enter’, ’Eat.Attable’, ’Pour.Frombottle’, ’Eat.Snack’, ’Cook.Cleanup’, ’Takepills’, ’Pour.Fromkettle’, ’Sitdown’, ’Makecoffee.Pourgrains’, ’WatchTV’,
’Uselaptop’, ’Drink.Frombottle’, ’Drink.Fromcan’, ’Cook.Cut’, ’Readbook’, ’Cutbread’, ’Maketea.Boilwater’, ’Maketea.Insertteabag’

backbones, datasets, and evaluation methodologies. To select reasonable baselines, seven open-set
recognition methods, including vanilla SoftMax [74], RPL [25], ARPL [24], DEAR [10], Humpty
Dumpty [53], PMAL [127], and MCD-V [155], originally developed for image classification and
video-based action recognition, are adapted to skeleton-based human action recognition approaches
due to the lack of related researches in OS-SAR direction. Our evaluations reveal that these existing
methods generally underperform on the OS-SAR benchmark, attributed to the significant differences
between the rich image/video data and the comparatively sparse skeleton data.

According to the observation on the limitations faced by all evaluated methods, we identified
a lack of effective separation between in- and out-of-distribution samples based on their open-set
probabilities. Addressing this, we developed CrossMax, which employs a cross-modality mean max
discrepancy during training and a cross-modality logits refinement during testing. This approach
significantly improves the disentanglement capability between in- and out-of-distribution samples
in terms of open-set probability. CrossMax achieves state-of-the art performances on the constructed
benchmarks for open-set skeleton-based action recognition across various backbones, datasets, and
evaluation protocols. Its superior performance are validated on both of the open-set metrics and the
close-set metrics.

Despite its advancements, CrossMax is susceptible to misclassifications and may inadvertently
propagate biased content, leading to incorrect predictions with potential adverse societal impacts.

4.4.2 Limitations

The CrossMax methodology necessitates the tripling of the model due to its reliance on ensem-
ble modalities, covering joints, bones, and velocities. Despite this, the memory footprint remains
manageable, especially when considering the relatively compact size of GCN models tailored for
skeleton data.
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4.4.3 Future Works

Our empirical analysis reveals that the incorporation of multi-modality data yields enhanced
open-set performance within the OS-SAR benchmark. As a consequence, we identify a compelling
avenue for future research stemming from our devised OS-SAR benchmark. This prospective di-
rection pertains to the optimal utilization of multi-modality data to further improve the efficacy of
OS-SAR.
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5 | Towards Video Based Domain
Adaptation for Human Action
Recognition

Unlike skeleton-based action recognition where only sparse body joints are available, video-
based human action recognition approaches can make use of video data which has rich appearance
and background information and serves as another option to accomplish human action recognition
task. However, video-based domain adaptation has its own shortcomings, i.e., high sensitivity to the
background change and the appearance change, which make generalizability to different domains
very essential to the video-based human action recognition methods. In the following part of this
thesis, few-shot video-based domain adaptation for general human action recognition (illustrated
in Section 5.1) and cross-modal RGB2Depth unsupervised domain adaptation for human fall detec-
tion (illustrated in Section 5.2) will be explored, which are separately important for efficient domain
adaptation when we take data-label trade-off into consideration, and for real-wold privacy support-
ing applications, respectively. Part of the content in this chapter comes from our submission in ACM
Multimedia [148] and our publication on IEEE Sensors Journal [200].

5.1 Exploring Few-Shot Domain Adaptation for Video Based
Human Action Recognition

5.1.1 Introduction and Motivation

Domain shifts, i.e., distribution discrepancies between source domain data and target domain
data, are inevitable in real-world applications. Most existing works in the field of human action
recognition are conducted within a single domain [30, 129, 164, 167, 184, 199]. The performance
of human action recognition models can be significantly impacted by factors such as changes in
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sensor types and placements, variations in room layouts, or transitions from synthetic to real-world
settings [45, 156].

The majority of current domain adaptation research focuses on Unsupervised Domain Adap-
tation (UDA) [28, 37, 63, 87, 158, 198] and Semi-Supervised Domain Adaptation (SSDA) [159, 210,
216] settings for human action recognition. These paradigms facilitate the transfer of recognition
capabilities from the source domain to the target domain. The advantage of UDA lies in minimizing
the labor-intensive labeling of large-scale data in the target domain. However, both UDA and SSDA
paradigms require a substantial number of target domain samples, with SSDA additionally requir-
ing a few labeled target domain samples. Our work focuses on another perspective to achieve do-
main adaptation, i.e., Few-Shot Domain Adaptation for Action Recognition (FSDA-AR), while
considering various domains. FSDA-AR minimizes reliance on extensive target domain examples,
instead requiring only a few or even a single annotated sample per class in the target domain. These
labeled target domain samples act as knowledge support to bridge the domain gap. Unlike pixel-
wise tasks, such as semantic segmentation [59], human action recognition assigns a single label to
a video sample. Consequently, annotating a few target domain samples for FSDA-AR is less time-
consuming, given the substantial human effort required for acting or video surveillance. Collecting
video samples demands significant human effort, making few-shot domain adaptation a more prac-
tical approach. Despite this advantage, research on FSDA-AR remains sparse.

Among the published works most relevant to our task, one addresses FSDA-AR in videos but
does not provide a publicly available benchmark [64], while another [108] focuses solely on a specific
data type (radar-based action recognition), which is not ideal for general action recognition. Xu et
al. [204] investigate FSDA for sports and daily living scenarios, which have limited domain diversity,
and the feature extraction backbone is not as standardized as in the UDA task.

To further explore the applicability of FSDA-AR in diverse and challenging domain adaptation
scenarios, we evaluate our approach using five publicly available video-based human action recog-
nition datasets. This evaluation encompasses a variety of conditions, including both small and large
domain gaps. Specifically, we investigate the adaptation from Sims4Action [156] to Toyota Smart
Home (TSH) [47], different scenarios inside EPIC-KITCHENS [45], from HMDB [96] to UCF [177],
and vice versa.

The selected datasets represent a range of scenarios, such as transitioning from movie-based to
real-world third-person datasets, adaptation among egocentric kitchen action recognition datasets,
and synthetic-to-real domain adaptation with significant domain differences. The benchmark in-
cludes various baseline approaches, such as UDA methods, few-shot action recognition techniques,
and statistical methods, all reformulated to fit the FSDA-AR framework.

Our observations reveal that existing baselines often fail to deliver consistent performance across
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the diverse domains involved in FSDA-AR tasks, particularly with challenging domain adaptation
datasets. This highlights the necessity for a novel method specifically designed for few-shot do-
main adaptation, capable of adapting to a wide range of domains. Consequently, we introduce our
innovative approach for FSDA-AR in this study.

Our approach is structured around three core objectives: (1) Enhancing temporal data gener-
alization: We aim to improve the model’s ability to generalize when handling temporal data by
developing mechanisms to extract transferable temporal patterns and features across different do-
mains. (2) Leveraging statistical distributions: We utilize the statistical properties of source-domain
samples and a small number of labeled target-domain samples to enrich features within the latent
space, thereby enhancing robust and discriminative feature learning. (3) Establishing a unified em-
bedding space: We aim to create a shared embedding space that integrates both source and target
domains, enabling cohesive operation across various domains and promoting cross-domain knowl-
edge transfer.

To achieve these objectives, we propose RelaMiX. RelaMiX is constructed by three components,
which are TRAN-RD, SDFM, and CDIA loss. The Temporal Relational Attention Network with Re-
lation Dropout (TRAN-RD) is designed to enhance the generalizability of temporal features. TRAN-
RD captures nuanced neighborhood information by considering diverse snippet levels, relational
attention, and relation combinations, with relation dropout enhancing the representativeness of
each combination. Statistical Distribution-based Feature Mixture (SDFM) Mechanism increases fea-
ture diversity within the aligned latent space. By computing the covariance and empirical mean
for each temporal snippet, we construct Gaussian distributions for latent space features from the
source domain. We then generate mixed-domain features through empirical mean transformations
and interpolation techniques. During training, we fine-tune the temporal aggregation network with
features from both source and target domains, as well as mixed features, fostering cross-domain
knowledge transfer. Cross-Domain Information Alignment (CDIA) aligns the source domain with
target domain centers and distances them from negative anchors, applying a similar strategy to
mixed features with temporally augmented positives and random mixed negatives. This alignment
bridges the domain gap and enhances feature transfer using few-shot samples.

These innovations collectively utilize diverse temporal data, enhance feature diversity, and en-
sure domain alignment, leading to RelaMiX achieving top performance on the benchmark. Our
contributions are summarized as follows:

• We tackle the task of Few-Shot Domain Adaptation for Action Recognition (FSDA-AR) by
establishing a new benchmark that addresses diverse and challenging domains. These domains
include transitions from movie data to real-world third-person data, cross-person egocentric
perspectives, and synthetic data to real-world data.
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• We introduce the novel RelaMiX approach, which consists of three pivotal components: the
Temporal Relational Attention Network with Relational Dropout (TRAN-RD) for enhanced
temporal generalization, the Statistic Distribution-based Feature Mixing (SDFM) mechanism
to enrich the shared latent space, and the Cross-Domain Information Alignment (CDIA) to
effectively bridge significant domain gaps.

• Our method sets a new standard by achieving state-of-the-art results on the FSDA-AR bench-
mark across the 1-, 5-, 10-, and 20-shot settings. Notably, compared to UDA solutions, RelaMiX
for FSDA-AR demonstrates comparable performance.

5.1.2 Method

5.1.2.1 Problem Formulation

The FSDA-AR task operates under the assumption of having a fully labeled large-scale source
domain training set Dsource = (vsource

i , lsource
i )

Ntrain
source

i=1 and a small target domain training set Dtarget =

(vtarget
i , ltarget

i )
Ntrain

target
i=1 , which contains only a few labeled samples per class. Our aim is to train a model

utilizing both Dsource and Dtarget to ensure that the model performs well on the target domain test
set, denoted as Ttarget = (vtarget

i , ltarget
i )

Ntest
target

i=1 .
Here, Ntrain

source, Ntrain
target , and Ntest

target refer to the number of samples in the source domain training
set, target domain training set, and target domain test set, respectively. The index i indicates the
sample number, while v and l represent the video sample and their corresponding label.

5.1.2.2 Baselines on FSDA-AR Benchmark

For our FSDA-AR benchmark, we construct a range of diverse baselines by incorporating three
FSDA-AR specific approaches: FS-ADA [108], SSA2Lign [204], and PASTN [64]. Additionally, we
adapt establishedUDAapproaches for FSDA-AR, including TA3N [28], TranSVAE [198], CoMix [158],
and CO2A [41]. We also include few-shot human action recognitionmethods reformulated for FSDA-
AR, such as TRX [151] and HyRSM [194]. Furthermore, we evaluate statistical baselines including
random chance (Random), K-Nearest Neighbors (KNN), Nearest Neighbor (NN), and Nearest Center
(NC).

For consistency, all baselines utilize the I3D backbone [19] pre-trained on Kinetics400 [89], as
I3D is a standard choice for video feature extraction in UDA tasks [198].
Statistical baselines. Video features are extracted with I3D, omitting the final classification layer,
and these features are used by all statistical baselines except for the Random method. The Random
baseline randomly assigns a class to test samples, setting a performance lower bound. In the KNN
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method, labels for test samples are determined by averaging outcomes from the 3-, 5-, and 10-
NN methods, using neighbors from the source domain. The Nearest Center method assigns labels
based on the nearest class center in the source domain, while the Nearest Neighbor method uses
the closest source domain sample for labeling. These methods maintain consistent performance
across different shot settings by using the same source domain. They serve as statistical baselines
to highlight Domain Generalization (DG) performance, emphasizing the advantage of incorporating
few-shot samples from the target domain.
Unsupervised domain adaptation baselines. To enrich our FSDA-AR benchmark and facilitate
comparisons with existing domain adaptation frameworks, we implement and adapt several estab-
lished video-based UDAmethods for the few-shot domain adaptation task. This adaptation involves
incorporating supervised classification loss on the target domain training set and converting the
unsupervised contrastive loss into triplet margin loss, using only a few-shot samples from the target
domain.

Specifically, we leverage four prominent methods: TA3N [28], TranSVAE [198], CO2A [41], and
CoMix [158]. TA3N and CO2A utilize domain adversarial learning, TranSVAE focuses on domain
disentanglement, and CoMix aims to bridge domain gaps by mixing background information from
both domains.
Few-shot learning baselines. To evaluate the performance of few-shot learning approaches in
the few-shot domain adaptation task, we leverage two representative works in video-based few-
shot learning: TRX [151] and HyRSM [194]. These methods are employed to assess how effectively
few-shot learning techniques can be adapted to the FSDA-AR context.
Few-shot domain adaptation baselines. We utilize three existing approaches for FSDA-AR. The
first approach is FS-ADA [108], which addresses radar-based FSDA-AR using adversarial domain
adaptation. The second approach, PASTN [64], introduces a pairwise attentive, adversarial spatio-
temporal network. The third approach, SSA2Lign [204], employs attentive alignment of snippets to
bridge the domain gap.

To explore FSDA-AR againstmore diverse domain shifts and achieve the unification of the feature
backbone for a fair comparison with UDA tasks, we establish a novel benchmark using publicly
accessible datasets that encompass diverse domain styles. We replicate the performance of these
methods by unifying the video extraction backbone as I3D [19], ensuring a fair comparison with
UDA methods.

5.1.2.3 Introduction of RelaMiX Method

In this section, we introduce the key concepts of our proposed RelaMiX approach, illustrated in
Fig. 5.1.
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Figure 5.1: An overview of the RelaMiX architecture. The input video is first separated into overlapped snip-

pets extracted through a fixed-size temporal sliding window and then fed into the video feature extraction

backbone to extract snippet-level features. Then, we calculate the statistical empirical mean and covariance

of each class for each snippet considering all the samples from the source domain training set. The mean

and covariance of the Top-K nearest centers corresponding to a snippet from the given query are chosen

to generate the synthesized cluster center of the samples of target-domain latent space. We use the gener-

ated mean and covariance to formulate Gaussian distributions for each temporal snippet and sample more

latent space features according to the few available shots from the target domain. Next, temporal relation

sets are built, we make use of Relation-Dropout Multi-Head Self-Attention (RD-MSHA) to learn representa-

tive features within each relation set while using scale-wise Multi-Head Self-Attention (Scale-wise MSHA)

to aggregate features across different relation scales. Finally, alongside cross-entropy losses, Cross-Domain

Information Alignment (CDIA) loss is leveraged to bridge the domain gap by using target space batch-wise

prototypes.

RelaMiX begins by utilizing I3D [19] to extract snippet-wise features. It then integrates a statistic
distribution-based feature mixture technique to enhance the information in the latent space shared
across domains. Additionally, it employs a temporal relation attention networkwith relation dropout
to achievemore generalizable temporal information aggregation. Lastly, a cross-domain information
alignment loss is applied to facilitate representative feature learning and bridge the domain gap.
Snippet-wise video feature extraction. Similar to our baselines, we adopt I3D [19] as our back-
bone to obtain video representations and use a temporal sliding window to extract snippet features
for a given video. Consider a video sample represented as v = {v1, . . . ,vNT }, where vi denotes the
i-th frame of the video, Nw is the window size of the sliding temporal window, and NT is the number
of frames. We can derive a set of video snippets, denoted as Eq. 5.1,

{si}= {{vi, . . . ,vi+Nw} | i ∈ [1,NT ]}, (5.1)

where zero padding is used at the start and end of the video.
Next, we extract snippet-wise features. By inputting these snippets into the I3D-based feature
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extractor Hα , we obtain the set of clip features for a sample, denoted as Eq. 5.2,

f = [Hα(s1), . . . ,Hα(sNT )] . (5.2)

Statistic distribution-based feature mixture (SDFM). To better leverage the information pro-
vided by the few-shot samples from the target domain, we propose a new method, SDFM, to synthe-
size more target-domain embeddings using the statistics calculated from the snippet features of the
source domain training set. The details of the SDFM are as follows. We first calculate the statistical
centers and covariance matrix as shown in Eq. 5.3 and Eq. 5.4.

µ
(t,source)
c =

∑
Nc
i=1 f(t,source)

(i,c)

Nc
, (5.3)

σ
(t,source)
c =

√√√√∑
Nc
i=1 (f

(t,source)
(i,c) −µ

(t,source)
c )2

Nc −1
, (5.4)

where µ
(t,source)
c and σ

(t,source)
c represent the mean and covariance of the embeddings of the c-th

category and t-th snippet from the source domain. Here, Nc denotes the number of samples in
category c, and f(t,source)

(i,c) indicates the embeddings from the i-th sample within the c-th category,
considering the t-th snippet.

For a sample from the few-shot target domain training set with embeddings f̂(t,target) for the t-th
snippet, we first calculate the Top-K nearest cluster centers for each snippet. This calculation is
based on the distance to the mean of the snippet embeddings from the source domain, as shown in
Eq. 5.5.

It
c = TopKc∈Ωc(e

(1−D(µ
(t,source)
c ·f̂(t,target)))), (5.5)

where It
c indicates the categories which are selected. D(·) indicates the Euclidean distance. Ωc

indicates the set of categories. Then we calculate the synthesized empirical mean for this target
domain embeddings according to Eq. 5.6,

µ̂
t , σ̂ t =

f̂(t,target)+∑k∈It
c
µ
(t,source)
k

K +1
,
∑k∈It

c
σ
(t,source)
k

K
+α, (5.6)

where α is a fixed factor and K is the number of selected centers.
Next, we construct a multivariate normal distribution based on the synthesized empirical mean

and covariance, as shown in Eq. 5.7.

f̂(t,target)
new ∼ 1

σ̂ t
√

2π
e
− (x−µ̂t )2

2(σ̂t )2 . (5.7)
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Additional embeddings can be derived by leveraging the established normal distributions for
each temporal snippet within the target domain. The newly generated features f̂(t,target)new share the
same class as f̂(t,target).

This process utilizes statistical parameters obtained from the source domain in conjunction with
the provided few-shot samples from the target domain. The aim of this approach is to enhance
diversity within the latent space while simultaneously integrating information from both the source
and target domains.
Temporal relational attention network with relation dropout (TRAN-RD). When adapting
the model to another domain using only a few samples, a highly generalizable temporal aggregation
approach is essential for capturing important cues from different temporal relations. To address
this, we propose a new temporal aggregation mechanism, namely the TRAN-RD. This mechanism
incorporates two major concepts: Relation-Dropout based Multi-Head Self-Attention (RD-MHSA)
and Scale-wise Multi-Head Self-Attention (Scale-wise MHSA), which focus on different temporal
relational granularities and learn representative and generalizable features.

RD-MHSA is applied to all the embeddings from the source domain, the target domain, and the
generated embedding set of the target domain. We first generate multi-scale relational index sets as
shown in Eq. 5.8,

Ωr ={(i, ...,k, ..., j)|i ≤ ...≤ k ≤ ...≤ j,

(i, ...,k, ..., j) ∈ [1,NT ]
r , and r ∈ [2,NT ]},

(5.8)

where we can capture relational indexes according to different scales. The selected snippets preserve
the temporal order. The variable r is used to define the selected scales of the desired relational set.

RD-MHSA is first used to aggregate the temporal features within each snippet. The relational
attended snippet embedding f̂s for a snippet fs from the given snippet relation set Ωs ⊆ Ωr can be
calculated using Eq. 5.9.

fa = LN
[

So f tMax
[

PQ(fs) ·PK(fs)√
dk

]
∗PV (fs)

]
, (5.9)

f̂s = LN

[
fs +

Nh

∑
h=1

fh
a +FFN(fs)

]
, (5.10)

where LN denotes layer normalization, and FFN denotes a multi-layer-perceptron (MLP) based
Feed-Forward Network. The term dk is a scale factor. PQ, PK , and PV are linear projections. fh

a

indicates the relational attention obtained through Nh heads.
Following this process, we obtain the self-attended relation set Ω̂s. We then apply dropout to

92



the snippets within each attended relation set as shown in Eq. 5.11.

Ω̂
DP
s = DropOut(Ω̂s,β ), (5.11)

where β is the pre-defined dropout ratio for the snippets within one relation set. The RD-MHSA
aims to learn representative features even when some snippets are randomly unavailable during the
training procedure.

Scale-wise MHSA is then used to aggregate the information within each scale. First, we con-
catenate all snippets inside one relation set after the relation dropout along the temporal dimension,
denoted as f̂Ωs

s . The temporal dimension is then treated as the token dimension forMHSA. Scale-wise
MHSA is then performed as shown in Eq. 5.12 and Eq. 5.13,

f̂Ωs
a = LN

[
So f tMax

[
P̂Q(f̂Ωs

s ) · P̂K(f̂Ωs
s )√

d̂k

]
∗ P̂V (f̂Ωs

s )

]
, (5.12)

f̃Ωs
a = LN

[
f̂Ωs
s +

Nh

∑
h=1

f̂(Ωs,h)
a +FFN(f̂Ωs

s )

]
, (5.13)

where all the projections P̂Q, P̂K , and P̂V are linear projections. The term d̂k is a fixed scale factor,
and Nh denotes the number of heads. Finally, the aggregated embedding is calculated using Eq. 5.14.

f∗ =
∑Ωs⊆Ωr f̃Ωs

a

Ns
, (5.14)

where Ns = NT −1 denotes the total number of the relation sers.
Cross Domain Information Alignment (CDIA).When a source domain anchor is given as fsource

after the TRAN-RD, we wish it could be closer to its corresponding cluster centers ftarget
c calculated

on the target domainwhile being far away from the negative anchors f̃source from different categories.
The CDIA loss can be therefore calculated via Eq. 5.15,

LCDIA =− 1
N

N

∑
i=1

log

 e(cos(fsource
i , ftarget

(i,c) ))

∑
Nn
j=1 e(cos(fsource

i , f̃source
j ))

 , (5.15)

where N denotes the number of samples from the source domain and Nn denotes the number of
negative anchors for the i-th anchor from the source domain. The term cos indicates the cosine
similarity. ftarget

(i,c) represents the nearest target domain center (of the c-th category) for the i-th anchor.
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The target domain centers can be calculated using Eq. 5.16.

ftarget
c =

∑
Nc
i=1 ftarget

(i,c)

Nc
, (5.16)

where Nc indicates the number of samples for class c, and ftargetc represents the target domain center
for class c. In addition to the CDIA loss, we use supervised cross-entropy losses for samples from the
source domain training set, the target domain few-shot training set, and the target domain generated
training set, denoted asLCES,LCET , andLCEA, respectively. To obtain representative features from
the generated target domain training set, we use an additional contrastive learning loss, as shown
in Eq. 5.17.

Laux =− 1
Ng

Ng

∑
i=1

log

[
e(cos(ftarget

i , ftarget
j ))

∑
Nn
k=1 e(cos(ftarget

i , f̃target
k ))

]
, (5.17)

where the positive anchors f̃targetk are generated through random permutation of the input snippet
along the temporal axis and ftarget

j denotes another randomly selected sample from the same category
with ftarget

i . Ng indicates the number of generated features in the shared latent space, and cos denotes
cosine similarity. The overall supervision is achieved by a weighted sum of the aforementioned loss
functions, as shown in Eq. 5.18.

Lall = ω1 ∗LCDIA +ω2 ∗LCES +ω3 ∗LCET+

ω4 ∗LCEA +ω5 ∗Laux.
(5.18)

5.1.3 Experiments

5.1.3.1 Datasets

Weutilize five popular human action recognition datasets, namelyHMDB-51 [96], UCF-101 [177],
EPIC-KITCHENS-55 [45], Toyota Smart Home (TSH) [47], and Sims4Action [156], to investigate
FSDA-AR. These datasets encompass a wide range of action types and recording environments, en-
abling a comprehensive evaluation of domain adaptation techniques. Methods categorized underDG
use only the source domain samples, whereas methods under FSDA-AR utilize samples from both
the source and target domains. HMDB-51 [96] contains 6,766 video clips from various sources,
covering 51 action categories with a minimum of 101 clips per action. For the DA task, 12 action
classes are selected.
UCF-101 [177] consists of 13,320 video clips across 101 action categories. These datasets are em-
ployed in the HMDB→ UCF and UCF→ HMDB adaptation tasks, where they share 12 classes.
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Table 5.1: Experimental results on UCF [177] → HMDB [96], HMDB [96] → UCF [177], and EPIC-

KITCHEN [45]. S-X indicates Shot-X.

Method 1 UCF → HMDB 2 HMDB → UCF 3 EPIC-KITCHEN mean 4 Sims4Action→ TSH
S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20

D
G

Random —————— 8.6 —————— —————— 8.1 —————— —————— 12.5 —————— —————— 11.1 ——————
KNN —————— 81.1 —————— —————— 88.3 —————— —————— 28.1 —————— —————— 3.3 ——————
Nearest Center —————— 83.9 —————— —————— 91.5 —————— —————— 27.4 —————— —————— 28.0 ——————
Nearest Neighbor —————— 80.1 —————— —————— 88.6 —————— —————— 25.5 —————— —————— 3.27 ——————

FS
DA

-A
R

CoMix [158] 83.1 88.1 89.7 90.8 91.0 93.2 96.8 96.3 31.2 31.8 32.1 32.7 24.2 20.6 28.9 35.5
CO2A [41] 83.9 88.1 89.1 91.1 92.5 94.0 96.7 97.5 32.6 36.4 38.0 38.2 21.9 26.6 34.0 42.1
TA3N [28] 83.3 88.9 88.3 91.7 93.7 95.1 97.5 98.0 37.9 41.2 42.1 43.0 21.1 29.8 35.8 42.7
TranSVAE [198] 82.3 82.8 83.2 84.8 89.7 89.0 94.4 95.1 37.6 41.1 40.8 43.3 22.6 22.7 18.9 22.7
TRX [151] 77.2 80.3 78.6 81.9 82.2 83.1 81.1 84.4 26.7 27.4 28.7 30.2 14.0 13.8 19.0 18.9
HyRSM [194] 79.7 81.1 82.2 83.6 88.1 90.1 91.0 90.8 35.8 36.7 37.1 37.8 18.9 22.4 27.4 28.0
FS-ADA [108] 82.7 87.2 88.6 87.2 91.9 94.4 93.7 96.5 37.0 39.7 39.3 40.4 17.1 22.6 28.3 28.0
PASTN [64] 83.4 86.2 88.3 89.8 91.2 94.2 95.8 96.5 36.1 40.5 40.3 42.5 22.6 22.6 22.6 28.0
SSA2lign [204] 80.6 85.0 88.3 87.8 87.0 94.4 94.6 94.4 31.5 40.1 40.9 42.0 22.6 23.7 35.0 41.3
RelaMiX (ours) 85.6 91.1 91.1 92.2 94.1 97.2 97.9 98.4 40.7 43.9 44.4 45.2 27.0 31.0 38.9 49.2

HMDB51 

UCF101

Sims4Action

Toyota Smart Home

EPIC-KITCHEN P01

EPIC-KITCHEN P22

Figure 5.2: An overview of domain differences.

EPIC-KITCHENS-55[45] comprises 55 hours of egocentric videos, capturing kitchen activities
from 32 participants. We leverage the domain adaptation benchmark defined by [141] on 8 overlap-
ping activities.
Toyota Smart Home (TSH) [47] includes 16,115 video clips of 31 daily living activities, with 10
selected for our domain adaptation benchmark.
Sims4Action [156] is a synthetic dataset designed for cross-domain evaluation on TSH. It consists
of 13,232 video clips depicting 10 daily living activities performed by avatars in the Sims4game,
used in the Sims4Action → TSH adaptation task. These datasets provide a robust foundation for
exploring DA techniques in various cross-domain scenarios, presenting challenges inherent in both
real-world and synthetic video data.
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Table 5.2: Experimental results on the EPIC-KITCHEN dataset considering six different adaptation settings.

Method 1 D1 → D2 2 D2 → D1 3 D1→ D3 4 D3 → D1 5 D2 → D3 6 D3→ D2
S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20 S-1 S-5 S-10 S-20

D
G

Random ———— 12.5 ———— ———— 12.3 ———— ———— 12.7 ———— ———— 12.6 ———— ———— 12.3 ———— ———— 12.4 ————
KNN ———— 25.5 ———— ———— 26.9 ———— ———— 26.2 ———— ———— 27.4 ———— ———— 28.5 ———— ———— 33.9 ————
Nearest Center ———— 24.0 ———— ———— 29.2 ———— ———— 29.2 ———— ———— 25.1 ———— ———— 34.0 ———— ———— 23.1 ————
Nearest Neighbor ———— 22.1 ———— ———— 24.9 ———— ———— 26.6 ———— ———— 26.4 ———— ———— 24.1 ———— ———— 28.7 ————

FS
DA

-A
R

CoMix [158] 31.5 32.0 34.3 35.7 25.2 27.9 31.1 29.9 30.0 30.4 28.5 30.8 30.4 30.2 28.8 30.4 34.0 34.5 35.3 34.4 36.0 35.7 34.5 35.1
CO2A [41] 31.7 33.5 33.6 33.3 32.6 38.4 36.1 39.8 30.2 36.4 38.3 38.0 34.0 36.6 40.5 40.0 34.7 36.6 40.5 40.0 32.6 36.8 39.0 38.6
TA3N [28] 36.8 39.0 40.2 43.5 36.8 38.9 40.4 40.5 36.7 40.2 41.0 40.3 33.1 40.0 40.9 41.8 41.1 43.4 43.5 45.6 42.8 45.8 46.5 46.5
TranSVAE [198] 32.9 39.5 39.5 42.8 35.3 40.4 37.5 41.7 37.0 39.1 40.3 42.3 36.1 38.2 37.5 41.4 42.8 44.9 44.5 45.9 41.2 44.4 45.6 45.6
TRX [151] 24.8 25.0 25.2 25.9 26.1 27.7 30.7 31.6 25.3 25.9 28.1 28.8 26.6 28.9 29.3 30.0 28.4 28.0 30.6 31.9 28.8 29.1 28.4 33.1
HyRSM [194] 31.1 33.5 34.0 37.2 33.4 32.7 33.9 34.8 33.2 37.2 36.5 36.7 35.0 34.8 35.7 35.0 40.4 40.3 41.2 41.4 41.6 41.8 41.5 41.5
FS-ADA [108] 36.4 38.1 38.4 37.7 34.7 36.8 39.1 39.3 36.1 37.4 38.2 40.5 32.2 39.8 35.9 38.6 42.4 42.5 42.0 44.3 40.4 43.5 42.1 42.2
PASTN [64] 33.3 38.2 37.7 41.3 34.0 38.9 36.8 40.9 35.3 39.4 39.0 41.0 33.6 37.9 38.2 41.1 39.2 43.1 44.4 44.6 43.0 45.5 45.9 45.8
SSA2lign [204] 32.0 40.4 37.6 41.5 31.3 40.1 40.5 41.6 30.1 39.3 42.0 42.6 34.5 38.9 41.1 39.1 28.7 42.9 42.1 44.5 32.3 38.7 41.9 42.7
RelaMiX (ours) 39.1 43.9 43.7 47.9 38.4 41.6 42.1 42.8 38.4 42.1 42.5 43.1 37.9 41.6 42.3 42.5 45.1 46.2 47.4 46.5 45.5 48.0 48.1 48.1

5.1.3.2 Implementation Details

We randomly select Nshot samples per class from the target domain training set to construct
our benchmarks, with Nshot ∈ {1,5,10,20}. The few-shot samples are fixed to enhance knowledge
guidance through co-training using information from both the source and target domains. To ensure
fair comparison, all feature extraction backbones are unified as I3D [19], initialized with pre-trained
weights from Kinetics400 [89].

Our model is trained on an NVIDIA A100 GPU using PyTorch 1.12, with a batch size of 32.
The learning rate decays in steps at epoch 60 and 80, and we use the Adam optimizer [92] with an
initial learning rate of 0.0001 for 100 epochs. The sliding window size for feature extraction is set
to Nw = 16, with temporal zero padding of 8. For SDFM, K = 2 is chosen. The weights of the losses
are set as ω1 = 0.0001, ω2 = 1, ω3 = 1, ω4 = 0.01, and ω5 = 0.0001. The β parameter in TRAN-RD
is set to 0.5. Both RD-MHSA and Scale-wise MHSA use 8 heads. In SDFM, α is set to 0.21, and
200 samples are generated for each action category. The computational complexity of our model is
108.92 GFLOPS.

5.1.3.3 Analysis of the Benchmark

The performance results for the transfer tasks involving UCF [177] to HMDB [96], HMDB [96]
to UCF [177], EPIC-KITCHEN [45], and Sims4Action [156] to Toyota Smart Home [47] (TSH) set-
tings are presented in Table 5.1 ( 1 , 2 , 3 , and 4 ), respectively. We also provide per-split perfor-
mances on the EPIC-KITCHEN dataset in Table 5.2, where S-1, S-5, S-10, and S-20 indicate shot
1, shot 5, shot 10, and shot 20, respectively. Regarding the experiments on EPIC-KITCHEN [45],
the Top-1 accuracy under different shot settings for various methods are as follows: CoMix [158],
CO2A [41], TA3N [28], TranSVAE [198], FS-ADA [108], and PASTN [64] achieve 31.2%, 32.6%,
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Table 5.3: Task comparison between FSDA-AR and UDA.

1 UDA approaches on UDA task on EPIC-KITCHEN (2645 shots).
TranSVAE [198] ——————— 52.6 ———————
CoMix [158] ——————— 43.2 ———————
TA3N [28] ——————— 39.9 ———————
DANN [63] ——————— 39.2 ———————
ADDA [189] ——————— 39.2 ———————

2 TA3N and RelaMiX on FSDA-AR task on EPIC-KITCHEN.

Method Shot-1 Shot-5 Shot-10 Shot-20
TA3N [28] 38.9 41.8 42.1 43.0
RelaMiX (ours) 41.0 44.4 44.5 45.1

3 UDA approaches for UDA tasks on UCF→ HMDB (840 shots).
TranSVAE [198] ——————— 87.8 ———————
CoMix [158] ——————— 86.7 ———————
TA3N [28] ——————— 81.4 ———————
DANN [63] ——————— 80.1 ———————
ADDA [189] ——————— 79.2 ———————

4 TA3N and RelaMiX for FSDA-AR task on UCF→ HMDB.

Method Shot-1 Shot-5 Shot-10 Shot-20
TA3N [28] 83.3 88.9 88.3 91.7
RelaMiX (ours) 84.4 89.7 90.3 92.8

5 UDA approaches for UDA tasks on HMDB→ UCF (1438 shots).
TranSVAE [198] ——————— 99.0 ———————
CoMix [158] ——————— 93.9 ———————
TA3N [28] ——————— 90.5 ———————
DANN [63] ——————— 88.1 ———————
ADDA [189] ——————— 88.4 ———————

6 TA3N and RelaMiX for FSDA-AR task on HMDB→ UCF.

Method Shot-1 Shot-5 Shot-10 Shot-20
TA3N [28] 93.7 95.1 97.5 98.0
RelaMiX (ours) 95.6 96.5 97.7 98.2

7 UDA approaches for UDA task on Sims4Action→ TSH (8552 shots).
Schneider et al. [160] ——————— 36.3 ———————
TA3N [28] ([160]) ——————— 8.0 ———————

8 TA3N and RelaMiX for FSDA-AR task on Sims4Action→ TSH.

Method Shot-1 Shot-5 Shot-10 Shot-20
TA3N [28] 21.1 29.8 35.8 42.7
RelaMiX (ours) 24.6 31.4 36.7 45.7
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38.9%, 37.6%, 37.0%, 36.1% under 1-shot, 31.8%, 36.4%, 41.8%, 42.1%, 39.7%, 40.5% under 5-
shot, 32.1%, 38.0%, 42.1%, 40.8%, 39.3%, 40.3% under 10-shot, and 32.7%, 38.2%, 43.0%, 43.3%,
40.4%, 42.5% under 20-shot, respectively.

Both the UDA methods implemented within the FSDA-AR context and the previously published
FSDA-AR techniques show notable performance, consistently outperforming random baseline. This
observation underscores the effective reduction of domain gaps when utilizing a limited number
of labeled shots. Notably, the required number of target domain samples is substantially reduced
in FSDA-AR compared to traditional UDA tasks. For instance, with only 5 labeled shots, the total
required sample count is approximately 1.6% of that used in the conventional UDA setting on EPIC-
KITCHEN D1→D2.

However, it is noteworthy that the TranSVAE method [198] exhibits inferior performance in the
FSDA-AR task, even though it outperforms TA3N [28] in the UDA context, as reported in Table 5.3.
This discrepancy suggests that the disentanglementmethod used in domain adaptation heavily relies
on the availability of large-scale data from the target domain to effectively capture adaptation cues.
Similar trends can be observed with the CoMix approach [158], which depends on the diversity of
backgrounds in the target domain for adaptation, particularly in scenarios involving datasets with
substantial domain gaps.

In all our experiments, we employ the I3D backbone [19] to ensure equitable comparisons. To
facilitate a comparison with the SSA2Lign approach [204], we replace the TimesFormer [12] back-
bone in SSA2Lign with the I3D backbone. The reduction in performance observed in the adapted
SSA2Lign model on the leveraged datasets can be attributed to two primary factors. Firstly, there
are disparities in domain gaps in our experimental configurations. Secondly, SSA2Lign relies on
transformer features from the TimesFormer [12] backbone.

However, to ensure a fair comparison with methods originally tailored for UDA, it is imperative
to standardize the backbone to I3D [19]. This standardization is necessary because I3D is commonly
employed in UDAworks [198], allowing us to effectively demonstrate that the observed performance
enhancements are a consequence of our proposed method, rather than a consequence of backbone
substitution.

Comparing against the best baseline for each shot-setting, our proposed RelaMiX achieves 2.8%,
2.7%, 2.3%, and 1.9% performance improvements for the 1∼20-shot settings on EPIC-KITCHEN [45]
in terms of FSDA-AR, as shown in Table 5.1 3 . The per-split performances are showcased in Ta-
ble 5.2, where RelaMiX consistently demonstrates superior results on the FSDA-AR task for each
split of EPIC-KITCHEN [45]. Some UDA approaches adapted for FSDA-AR do not outperform the
statistical baselines, indicating that fewer target domain samples can cause overfitting in approaches
that require a large number of samples, especially on datasets with substantial domain differences,
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Figure 5.3: Qualitative results for FSDA-AR on Shot-20 Sims4Action [156]→ TSH [47].

such as CoMix [158] on EPIC-KITCHEN [45].
Regarding the FSDA-AR task on UCF [177] → HMDB [96] and HMDB [96] → UCF [177], as

introduced in Table 5.1 1 and 2 , all approaches show promising performance even under the 1-
shot setting. When Nshot ≥ 5 on UCF [177]→ HMDB [96], CoMix [158], CO2A [41], and TA3N [28]
under FSDA-AR outperform the state-of-the-art performance of 87.8% achieved by TranSVAE for
the UDA task, as shown in Table 5.3 1 . This demonstrates that FSDA-AR is more efficient than UDA
when dealing with small domain gaps.

Compared with the approach that has the best performance among all the baselines for the 1∼20
shot settings, RelaMiX achieves performance improvements of 1.7%, 2.2%, 1.4%, and 0.5% for
FSDA-AR onUCF [177]→HMDB [96] and 0.4%, 2.1%, 0.4%, and 0.4% onHMDB [96]→UCF [177],
respectively.

Similarly, consistent performance improvements are observed on the Sims4Action [156]→TSH [47]
task. Compared with the best-performing baseline for the 1∼20 shot settings, RelaMiX achieves per-
formance improvements of 2.8%, 1.2%, 3.1%, and 6.5%, as introduced in Table 5.1 4 .

The consistent performance enhancements produced by RelaMiX across various datasets indi-
cate that the proposed method effectively utilizes the guidance provided by the few-shot labeled
samples from the target domain. Furthermore, RelaMiX can achieve a generalizable temporal aggre-
gation that accounts for diverse domain differences.
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In terms of video-based domain adaptation, the FSDA-AR task exhibits comparable performance
to the UDA task for human action recognition, as reported in Table 5.3. Consequently, our ex-
periments confirm the feasibility of FSDA-AR, and we believe it to be an essential future research
direction in domain adaptation for human action recognition.

5.1.3.4 Ablation of Each proposed Module

Table 5.4: Module ablation on EPIC-KITCHEN [45] D1→ D2.

Method Shot-1 Shot-5 Shot-10 Shot-20

w/o TARD-RD 36.3 40.3 40.9 44.1
w/o CDIA 37.9 41.3 40.7 47.2
w/o SDFM 34.7 42.5 42.3 45.3
w/ All 39.1 43.9 43.7 47.9

To assess the efficacy of each component of our RelaMiX method, we conduct ablation experi-
ments on the EPIC-KITCHEN [45] dataset, specifically the D1→ D2 split, as detailed in Table 5.4.

First, we compare RelaMiX against RelaMiX without TARD-RD, employing Temporal Relation
Networks (TRN) as an alternative for temporal aggregation. The results indicate that RelaMiX out-
performs RelaMiX without TARD-RD, achieving performance improvements of 2.8%, 3.6%, 2.8%,
and 3.8% across the 1∼20 shot settings. These findings highlight the superiority of our TRAN-RD
method for temporal aggregation in the FSDA-AR task. The integration of relational attention with
relation dropout and scale-wise self-attention is shown to be effective in facilitating generalizable
temporal aggregation and feature learning.

Next, we compare RelaMiX with RelaMiX without the SDFM component. In this scenario, Re-
laMiX demonstrates superiority over its SDFM-lacking counterpart, exhibiting performance im-
provements of 4.4%, 1.4%, 1.4%, and 2.6% for the 1∼20 shot settings. These results indicate that
SDFM effectively enhances the learned embeddings of the target domain.

Finally, we compare RelaMiX with RelaMiX without CDIA. RelaMiX outperforms the CDIA-
lacking variant by 1.2%, 2.6%, 3.0%, and 0.7% for the 1∼20 shot settings, revealing that CDIA
plays a significant role in bridging the domain gap by extracting pertinent information from a few
target-domain samples. More ablations can be found in the supplementary material. Notably, the
contributions of each component in the proposed solution vary across the different shot settings.
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5.1.3.5 Analysis ofQualitative Results

Apart from the quantitative analysis, we also assess the qualitative results of the proposed FSDA-
AR task. As shown in 1 – 8 in Fig. 5.3, we visualize ten action recognition results from the 20-shot
Sims4Action → TSH setting, encompassing all ten classes used for FSDA-AR. For each sample, we
compare the action predictions from FS-ADA [108], TA3N [28], SSA2Lign [204], PASTN [64], and
our RelaMiX.

Given the significant domain gap between the synthesized and real datasets, most of the base-
lines do not guarantee superior performance. However, RelaMiX, which considers temporal general-
izability, latent space diversity, and cross-domain alignment, demonstrates impressive performance
in challenging settings. This showcases the effectiveness of our novel techniques in enhancing tem-
poral aggregation generalizability.

Thanks to the proposed method, which accounts for temporal generalizability, latent space di-
versity, and cross-domain alignment, our RelaMiX achieves much better generalization ability and
yields state-of-the-art results in few-shot domain adaptation for video data. Our RelaMiX approach
correctly classifies eight out of ten samples. The qualitative results support the assumption that the
model benefits from the proposed techniques and achieves generalizable temporal aggregation as
well.

5.1.3.6 Ablation of the TRAN-RD

We present ablation experiments for the TRAN-RD in Table 5.5a. Here, w/o RD-MHSA means
replacing RD-MHSA with a multi-layer perceptron (MLP), w/o Scale-wise MHSA means using mean
average for multi-scale aggregation, and w/o RD indicates discarding the relation dropout.

First, comparing TRAN-RD with w/o RD-MHSA, we find that using RD-MHSA improves per-
formance by 7.5%, 6.8%, 4.5%, and 8.7% for the 1∼20 shot settings, showcasing the importance
of RD-MHSA in snippet-wise temporal information aggregation. Next, comparing TRAN-RD with
w/o Scale-wise MHSA, we observe performance gains of 11.0%, 6.0%, 4.4%, and 8.6%, indicating
the superiority of scale-wise information reasoning. Finally, comparing TRAN-RD with w/o RD,
the relation dropout enhances performance by 6.8%, 4.4%, 6.4%, and 8.2% for the 1∼20 shot set-
tings. This study demonstrates that each component of the module design collaborates to achieve a
generalizable temporal aggregator for the FSDA-AR setting.

5.1.3.7 Ablation of the CDIA

We conduct ablation experiments in Table 5.5b for CIDA loss. Two ablations are performed for
CDIA: w/o prototypes, where prototype-based positive anchors are replaced with randomly tempo-
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Table 5.5: Ablation studies for TRAN-RD and CDIA on EPIC-KITCHEN D1→ D2.

aModule ablation for TRAN-RD.

Method S-1 S-5 S-10 S-20

w/o RD-MHSA 31.6 37.1 39.2 39.2
w/o Scale-wise MHSA 28.1 37.9 39.3 39.3
w/o RD 32.3 39.5 37.3 39.7
w/ All 39.1 43.9 43.7 47.9

bModule ablation for CDIA.

Method S-1 S-5 S-10 S-20

w/o prototypes 31.5 35.7 35.7 42.5
w/o mixed domain negatives 34.4 38.3 37.2 39.3
w/ All 39.1 43.9 43.7 47.9

Table 5.6: Ablation study of the SDFM and temporal aggregation comparison.

aModule ablation for SDFM for the K nearest clusters.

Method S-1 S-5 S-10 S-20

K=1 33.6 38.4 39.1 44.5
K=3 32.7 38.0 38.5 43.6
K=4 34.9 39.3 38.8 43.9

K=2 39.1 43.9 43.7 47.9

bComparison between TRAN-RDwith other temporal

aggregation methods.

Method GFLOPS S-1 S-5 S-10 S-20

LSTM 0.09 31.3 40.9 35.2 37.7
GRU 0.10 32.5 32.9 36.5 39.1
TRN 0.04 33.2 43.1 40.1 41.5

TRAN-RD 0.92 39.1 43.9 43.7 47.9

rally permuted anchor embeddings, andw/o mixed domain negatives, where mixed domain negatives
are replaced with source-domain negative anchor embeddings. Using target domain prototypes as
positive anchors improves performance by 7.6%, 8.2%, 8.0%, and 5.4% compared to w/o prototypes.
Using mixed domain negatives improves performance by 4.7%, 5.6%, 6.5%, and 8.6% compared
to w/o mixed domain negatives. These observations indicate that mixed domain negatives and tar-
get domain prototypes together provide more effective FSDA-AR supervision with few-shot target
domain samples.

5.1.3.8 Ablation of the SDFM

We perform the ablation study for SDFM in Table 5.6a to investigate the influence of different
numbers of cluster centers, with experiments conducted forK ∈ 1,2,3,4. The settingK = 2 generally
performs well for feature mixture. Using more cluster centers may results in less discriminative
generated target domain embedding while using less cluster center is harmful to the distribution
diversity, thereby K = 2 is selected in SDFM.

5.1.3.9 Comparison with Other Temporal Aggregators

We conduct an ablation study between TRAN-RD and other existing temporal aggregators, such
as LSTM, GRU, and TRN [227], as shown in Table 5.6b. TRAN-RD outperforms all others by a
large margin for the 1∼20 shot settings. Although TRN performs well in the 5∼20 shot settings, it
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struggles with generalizable temporal aggregation with extremely small shot numbers, such as in
the 1-shot setting. LSTM and GRU also face similar issues.

Our proposed TRAN-RD overcomes this difficulty using superior relation-based techniques for
temporal aggregation in different scale settings. Alongside recognition performance, we also pro-
vide GFLOPS of different temporal aggregators to illustrate the computational complexity of our
approach during inference. Since all baselines in our benchmark use I3D [19] as the feature extrac-
tor, which accounts for most of the computational complexity (108 GFLOPS), directly comparing
the GFLOPS of the temporal aggregator is more revealing. Our TRAN-RD increases computational
complexity by only 0.92 GFLOPS due to the RD-MHSA and Scale-wise MHSA mechanisms. This
increase is minimal compared to the 108 GFLOPS of the I3D backbone. Moreover, CDIA and SDFM
only participate in the training phase and do not contribute to computational complexity during
inference.

5.1.3.10 Analysis of the Target Domain Sample Number of FSDA-AR and UDA

We present the required sample number to construct the training set on the target domain sepa-
rately for FSDA-AR and UDA tasks across all leveraged DA settings in Table 5.7. Compared to UDA,
FSDA-AR requires significantly less data from the target domain for training. Since labeling for ac-
tion recognition does not require pixel-wise annotation and each sample only needs one label, data
collection may take more time than labeling.

For example, on Sims4Action → TSH, FSDA-AR discards 97.7% of the target domain samples
used in UDA, while delivering better performance. The comparable performance of FSDA-AR to
UDA indicates that FSDA-AR is a more efficient setting, especially when data collection in the target
domain is challenging. We emphasize that FSDA-AR is an important research direction, and our
work serves as a crucial test bed for future studies in this area.

(a) FS-ADA (b) PASTN (c) SSA2
Lign (d) Ours

Figure 5.4: The t-SNE feature visualization [130] on the UCF test set [177] for FSDA-AR on 20−Shot

HMDB [96]→ UCF [177].
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Table 5.7: Analysis of the sample number that is required for FSDA-AR and UDA under each setting.

Setting FSDA UDA
S-1 S-5 S-10 S-20

UCF [177]→HMDB [96] 12 60 120 240 840
HMDB [96]→UCF [177] 12 60 120 240 1438
Sims4Action [156]→TSH [47] 10 50 100 200 8552
D1→D2 [45] 8 40 80 160 2495
D2→D1 [45] 8 40 80 160 1543
D2→D3 [45] 8 40 80 160 3897
D3→D2 [45] 8 40 80 160 2495
D1→D3 [45] 8 40 80 160 3897
D3→D1 [45] 8 40 80 160 1543

5.1.3.11 Analysis of the t-SNE Visualization

To investigate the performance of few-shot domain adaptation in the latent space, we present
the t-SNE distribution [130] in Fig. 5.4. Figures (a) to (d) show the t-SNE distributions for FS-ADA,
PASTN, TA3N, and our RelaMiX, respectively.

Under the setting of HMDB [96] → UCF [177], the samples shown in Fig. 5.4 are selected from
the UCF101 test set. Compared to the other methods, the features from our RelaMiX are more
distinguishable across different classes in the latent space, demonstrating a better generalization
ability of RelaMiX, which is crucial in FSDA-AR.

5.1.4 Comparison with Other Domain Adaptation Settings

We begin by distinguishing the few-shot domain adaptation task from other commonly used do-
main adaptation settings. The task we address is Few-Shot Domain Adaptation (FSDA), where only
a small number of labeled examples are available for each category in the target domain. The com-
parison among Semi-Supervised Domain Adaptation (SSDA) [159, 210, 216], Unsupervised Domain
Adaptation (UDA) [28, 37, 87, 158, 198].

Unlike FSDA, both UDA and SSDA require a large amount of unlabeled data in the target domain
to construct the training set, which may not always be feasible due to high-quality data collection
constraints. FSDA, however, requires only a small number of labeled examples from the target do-
main, balancing data collection expenses and labeling efforts. In our benchmark, the few-shot setting
results in a 70% to 98% reduction in the target domain data needed to construct the training set com-
pared to SSDA and UDA. Since action recognition does not require pixel-level dense annotations,
the trade-off between annotation and data collection is significant.

It is important to note that FSDA is distinct from domain adaptation for few-shot learning [39,
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221], which focuses on adapting to new classes with limited examples. In FSDA, the goal is to adapt
to new domains without introducing new action classes.

5.1.5 Discussion

This workmakes significant exploration in FSDA-AR by addressing its distinct challenges and in-
troducing a novel framework, RelaMiX, to enhance adaptation across diverse domains by effectively
using few labelled target domain samples. Initially, we establish a new FSDA-AR benchmark us-
ing five well-known datasets: Sims4Action, ToyotaSmartHome, EPIC-KITCHENS, HMDB, and UCF.
This benchmark is meticulously designed to evaluate the performance of FSDA-AR methods across
a variety of domain adaptation settings, encompassing transitions from synthetic to real-world data,
cinematic to real-life third-person views, and scenario changes in egocentric perspectives. By cover-
ing such a broad spectrum, the benchmark provides a rigorous testbed for assessing the robustness
and adaptability of FSDA-AR methods.

This study reveals the limitations of existing domain adaptation techniques when applied to
FSDA-AR tasks, particularly highlighting their struggles with generalization due to the scarcity of
labeled data in the target domain. To overcome these challenges, we propose RelaMiX, a novel
approach that integrates several advanced mechanisms to maximize the utility of limited labeled
target samples and ensure more reliable domain adaptation.

RelaMiX incorporates a TRAN-RD to enhance the generalization of temporal feature aggrega-
tion. This new proposed temporal aggregation method improves the model’s ability to capture and
transfer temporal patterns across different domains by utilizing relation dropout and multi-scale
self-attention mechanisms on both of the relation set and relation scale perspectives. This approach
ensures that the temporal relationshipswithin the data are effectively learned and generalized, which
is critical for accurate action recognition.

Additionally, the framework includes SDFM, which enhances the latent space by blending fea-
tures from both source and target domains. This mixture is achieved by calculating the statistical
properties of the source domain features and generating additional target domain embeddings. This
method enriches the latent space, promoting better feature diversity and improving the model’s
capacity for generalizable and discriminative feature learning.

To further bridge the domain gaps, RelaMiX employs CDIA loss, which uses few-shot samples
from the target domain to align the feature distributions of the source and target domains. This
alignment is achieved through a contrastive learning approach that minimizes the distance between
similar samples from different domains while maximizing the distance between dissimilar ones. This
mechanism ensures that the model can effectively transfer knowledge from the source domain to
the target domain, even with minimal labeled data.
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The experimental results demonstrate the effectiveness of RelaMiX, showing significant perfor-
mance improvements across all datasets in the FSDA-AR benchmark. RelaMiX consistently outper-
forms existing FSDA-AR and UDAmethods, achieving state-of-the-art results in various challenging
settings. For instance, on the EPIC-KITCHENS dataset, RelaMiX achieves performance improve-
ments of up to 2.8% in the 1-shot setting and maintains superior results across higher shot settings.
These findings highlight the framework’s ability to leverage few-shot target domain samples effec-
tively, enhancing both open-set and close-set recognition capabilities.

By addressing the critical issues of temporal generalization, feature diversity, and domain align-
ment, this study provides a generalizable and versatile method for FSDA-AR. The proposed methods
significantly enhance the reliability and accuracy of action recognition methods in real-world sce-
narios where labeled data is limited. This work lays a strong foundation for future research in
FSDA-AR, suggesting practical applications in various fields where data labeling is labor-intensive
or costly.

5.2 Towards Privacy Support RGB2Depth Domain Adaptation
for Fall Detection

5.2.1 Introduction and Motivation

According to United Nations’ predictions, 13% of the global population was aged 60 or elderly
people [113], highlighting the importance of developing responsible technologies to support and
assist the elderly. Falls pose a major danger, not only causing physical harm to elderly adults but
also to young individuals who live alone. As reported by theWorld Health Organization1, falls result
in approximately 684,000 deaths annually, with 37.3 million falls severe enough to require medical
attention.

Various approaches exist for fall detection, such as wearable equipment [1, 7, 16, 26, 111, 206,
215], using Wi-Fi signals [23, 48, 78, 191, 197], or video monitoring systems [6, 14, 57, 93, 183, 207,
226]. Video-based approaches are physically practical as they do not impose burdens on users or
require complex operations compared to wearable devices [197]. These methods typically build on
established action recognition models to achieve accurate results [6].

Most current datasets and methodologies for fall detection rely on RGB data [57]. However, pri-
vacy concerns have grown, and using RGB data has been criticized for potentially revealing detailed
personal information. Therefore, there is increasing interest in privacy-supporting frameworks.

1https://www.who.int/news-room/fact-sheets/detail/falls
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Depth data, or 3D data, represents the distance of objects from a camera or sensor without pre-
serving detailed texture information, enhancing privacy while providing valuable information for
fall detection. A fall detection method leveraging depth data at test time would be preferable if it
achieves accurate results. However, existing depth-based datasets for fall detection are relatively
small, providing limited data for training action recognition deep learning networks. Given the dif-
ferent privacy-preserving abilities of different modalities, users might choose different modalities at
test time according to their needs. Cross-modal adaptation thus becomes an important research di-
rection for fall detection, allowing the use of well-established models pretrained on large-scale RGB
datasets to achieve depth-based fall detection at test time. In this work, we focus on using labeled
RGB data and unlabeled depth data for training and transferring knowledge from the RGB domain
to the depth domain (RGB2Depth), an area overlooked in fall detection research.

Since most depth-based fall detection datasets are small-scaled and insufficient for training and
testing while video-based approaches, such as X3D [61], require large-scale pretraining for conver-
gence, we reformulate and adopt the Kinetics dataset [89] for unsupervised domain adaptation in the
RGB2Depth fall detection task. A subset of the data is converted to depth data through P2Net [218]
to provide sufficient test samples, and well-established RGB-based pretrained weights are used to
initialize the models.

To bridge the gap between the RGB and depth domains for fall detection, we establish the cross-
modal unsupervised domain adaptation pipeline UMA-FD using the X3D [61] model, a promising
backbone for accurate action recognition. We utilize an intermediate domain module [44] to bridge
RGB and depth representations, and employ multiple losses to constrain the latent space, such as an
adversarial modality discrimination loss, triplet margin losses on the two domains, and classification
loss on the source RGB data and pseudo-labeled depth data.

Since different losses contribute in various ways, a fixed scheme for weighting the losses may
restrict the learning process during different stages. Therefore, we propose an adaptive weighting
approach for the loss functions, using an additional multi-layer perceptron-based head to predict
weighting parameters. Our contributions are summarized as follows:

• We propose the RGB-to-Depth (RGB2Depth) unsupervised domain adaptation task in fall de-
tection and develop a new multi-source dataset and benchmark protocol.

• We introduce a new pipeline to address this task, employing 3D-CNN+LSTM [128], C3D [186],
I3D [19], and X3D [61] as feature extraction backbones. We utilize the intermediate domain
module, modality adversarial alignment, and triplet margin loss to minimize the cross-modal
domain gap, and propose an adaptive weighting method for balancing the loss functions.

• Ourmodel, UMA-FD, achieves state-of-the-art performance on the proposed RGB2Depth UDA
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Table 5.8: Comparison with other fall detection dataset. For NTU-60 with multiple non-falling actions, we

take the same number of other samples with falling action samples.

Datasets Fall Samples Other Samples Total Number

UR Fall Detection [98] 30 40 70

NTU-60 [161] 948 948 1,896

Our Dataset 1,490 1,489 2,979

Table 5.9: The number of samples in our dataset.

Training Set Test Set Total Number

Positive Sample falling off bike /678 falling off chair /612 falling off bike /100 falling off chair /100 1,490

Negative Sample washing hands /644 sweeping floor /645 washing hands /100 sweeping floor /100 1,489

Total Number 2,579 400 2,979

task compared to existing fall detection methods. Ablation studies demonstrate the efficiency
of each proposed component within our framework.

5.2.2 Dataset

To study cross-modal unsupervised domain adaptation fromRGB2Depth for fall detection, we re-
quire multi-modal data that includes both RGB and depth information in fall scenarios. The Kinetics-
700 video dataset [18] contains 650,000 video clips spanning 700 human action classes, with each
clip annotated with an action class and lasting approximately 10 seconds. From the Kinetics-700
dataset, we select two categories related to falling actions: the falling off bike class and the falling
off chair class. These videos serve as positive samples for fall detection. Additionally, we randomly
select two categories, washing hands and sweeping floor, as negative samples for fall detection.

The four categories of videos in our dataset initially contain only RGB data. To generate the
corresponding depth data, we use advanced depth estimation algorithms, specifically P2Net [218],
to produce 288x384 depth data for each frame. To standardize the format, each RGB video frame
is resized to 256x256, resulting in a labeled fall detection dataset containing both RGB and depth
modalities.

Given the imbalance in sample numbers across the four categories and our goal for an equal num-
ber of positive and negative samples, we randomly sample the data from each category. Our dataset
is compared with two existing datasets that include RGB videos and corresponding depth data for
fall detection, as shown in Table 5.8. The UR Fall Detection dataset [98] has only 30 falls and 40 ac-
tivities of daily living sequences, insufficient for training a deep model. The NTU-60 dataset [161],
comprising 60 action classes including 948 fall videos, also includes indoor scenes, limiting its va-
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Figure 5.5: An overview of the proposed architecture.

riety. In contrast, our dataset contains 1,490 fall samples and 1,489 other samples, offering a larger
and more diverse collection of scenes.

We then divide our dataset into training and test sets. The distribution of samples for each
category after sampling is provided in Table 5.9. Our dataset includes 2,979 samples, with 1,490
positive and 1,489 negative samples. We randomly select 100 samples from each category for the
test set, resulting in 2,579 training samples and 400 test samples, each containing both RGB and
corresponding depth data. Additionally, we use the NTU-60 dataset [161] in later experiments to
enhance the validity of our results.

5.2.3 Proposed Method

This section outlines our proposed method for RGB2Depth fall detection, which we refer to
as Unsupervised Cross-Modal Adaptation for Fall Detection (UMA-FD). Fig. 5.5 presents an overview
of the UMA-FD method, using cross-modal unsupervised domain adaptation to transfer knowledge
from the RGB source modality to the depth target modality. In UMA-FD, we preprocess the RGB and
depth data to generate a compatible input format and use a unified backbone network to generate
feature maps for both data streams.

In order to achieve effective cross-modal feature learning, we incorporate an Intermediate Do-
main Module (IDM) [44] to generate an intermediate modality feature map, and then compute the
bridge feature loss [44]. The classification layers of our network consist of three heads: the label
classification head, the modality agnostic head, and the loss weight adaptive head. Next, we define
the unsupervised modality adaptation problem and describe each building block of our proposed
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method in detail.

5.2.3.1 IDM and Bridge Feature Loss

During the training process, vR and vD are randomly paired as inputs to the backbone network.
The IDM accepts data from both modalities as input and generates an intermediate modality feature
map byweighted summation of the featuremaps from the twomodalities. Theweighting coefficients
are obtained through adaptive learning within the network.

IDM can be added between any two hidden layers of the backbone, generating the intermediate
modality to bridge the distinct two modalities. The data from this intermediate modality and the
othermodalities is then fed into the subsequent backbone network layers. The intermediatemodality
embeddings generated by IDM can be represented as the following two equations.

fa = So f tMax(Mα(Mβ1(Concat(fR
havg

, fR
hmax

))+Mβ2(Concat(fD
havg

; fD
hmax

)))), (5.19)

finter = fR
a · fR

h + fD
a · fD

h . (5.20)

where fh represents the feature map of the hidden layer, subscript avg and max denote average
pooling and max pooling, Mβ denotes fully connect layer, Mα stands for multi-layer perceptrons.
In our case, different backbones are employed, and we always add the IDM module after the first
convolution block.

The backbone network generates the final feature maps for the RGB, depth, and intermediate
modalities. We employ the bridge feature loss [44] to constrain the weighted sum of distances
between the intermediate modality feature map and those of the RGB and depth modalities. The
weighted sum employs the weighting coefficients derived from the IDM module. This ensures that
when the RGB modality significantly influences the intermediate modality, the bridge feature loss
emphasizes the distance between the RGB and intermediate modalities. Similarly, this procedure
applies to the depth modality.

The bridge feature loss is computed as Eq. 5.21.

L R&D
bridge =

1
NB

NB

∑
i=1

∑
k∈{R,D}

[
ak

i · ||fk
i − finter

i ||2
]
, (5.21)

where f is the featuremap of the final output of the backbone, a is theweighting coefficient generated
by the IDM module, and || · || represents the L2 norm to calculate the spatial Euclidean distance
between two feature maps.

The bridge feature loss ensures that the feature map of the intermediate modality lies between
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the RGB and depth modalities in the spatial distribution, thus constraining the backbone to learn
appropriate feature maps for both modalities.

5.2.3.2 Unsupervised Modality Adaptation

Even though the source and target modalities are different, the underlying clues used for fall de-
tection have strong potential correlations. In this context, supervised training on the sourcemodality
can help uncover informative cues in the target modality. Motivated by this, our method minimizes
both the classification loss of the source modality and the distribution discrepancy between the
source and target modalities.

Following the backbone, a supervised classification head is constructed using a fully connected
network. For the RGB modality data, which has associated sample labels, we compute the cross-
entropy loss according to Eq. 5.22,

L R
cls =

1
NB

NB

∑
i=1

−y log p(vR), (5.22)

where p(vR) denotes the prediction from the classification head when vR is ultilized as input
to the neural network. Since there are no labels available for the depth data, a threshold-based
pseudo-labeling technique is employed for supervision, allowing us to obtain the classification loss
on the depth data. With this approach, we estimate pseudo-labels for the depth samples that meet
the threshold condition according to Eq. 5.23.

Y D
pseudo =


0, Sigmoid(p(vD))≤ τ

1, Sigmoid(p(vD))> τ

(5.23)

where τ is the pseudo label threshold. We then calculate the corresponding pseudo-label cross-
entropy loss as follows Eq. 5.24.

L D
pseudo = ∑

vD∈T part

−ypseudologp(vD). (5.24)

where T part represents the depth samples set that meets the threshold condition.
Triplet loss [75] is a commonly used loss for metric learning, and can be also used to enhance the

discriminative capability of the learnt embeddings. Due to the use of a 3D convolutional network
model for video data and the limited memory of a single GPU, the batch size of training data is quite
small. This makes it challenging to compute the triplet loss within a single batch. The cross-batch
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memory mechanism (XBM) [196] addresses this issue by serving as a module that stores previously
processed training data during the training process. During the training process, the XBM compo-
nent retains the feature maps from previous batches. Triplet loss is then calculated based on the
current batch’s embeddings and those stored in the XBM. As a result, we obtain the XBM_triplet
loss (L R&D

XBM_triplet ), which can be represented as Eq. 5.25.

L R&D
XBM_triplet = max(d(fcur, fp

pre)−d(fcur, fn
pre)+margin,0). (5.25)

where fcur represents the embeddings of the current sample, and fp
pre, fn

pre respectively represent
the previous sample embeddings with the same label and the current sample with different label,
respectively. The L R&D

XBM_triplet constraints the maximum distance of embeddings between samples
with same label smaller than the minimum distance between samples with different label, which
improves the discriminative ability of the learned latent representations on both of the depth and
RGB modalities.

5.2.3.3 Modalities Adversarial Alignment

In unsupervised domain adaptation, both generative and discriminative adversarial approaches
have been proposed for bridging the distribution discrepancy between source and target domains.
For high-dimensional data streams, such as video, discriminative approaches are more suitable [141].
Discriminative methods train a discriminator, MD(·), to predict the modality of an input from the
learnt features from the backbone MH(·). By maximising the discriminator loss, the network learns
a feature representation that is invariant to both modalities.

In our scenario, to align the RGB and depth data, we propose a modality discriminator that pe-
nalizes feature variability between the modalities. The modality discriminator, MD(·), contains a
Gradient Reversal Layer (GRL) [105] and a fully connected network to learn the modality repre-
sentation. Given a binary modality label, ym, indicating if a sample v belongs to the RGB or depth
domain, we propose the following modality agnostic loss as described in Eq. 5.26.

L R&D
modality = ∑

k∈{R,D}
−ymlog(MD(MH(vk)))− (1− ym)log(MD(MH(vk))). (5.26)

The L R&D
modality loss reduces the variance between different modalities in the backbone’s feature

maps. This ensures that the features trained on the RGB data become more applicable to the depth
data.
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5.2.3.4 Total Loss and Loss Weight Adaptation

To summarize the aforementioned components, the final loss can be expressed as Eq. 5.27,

L = λaL
R

cls +λbL
D
pseudo +λcL

R&D
modality + λdL

R&D
bridge +λeL

R&D
XBMtriplet

. (5.27)

where λa,λb,λc,λd,λe are the proportional coefficients. During the training process, the overall
network consists of five losses, and the impact of each loss on the final depth data’s classification ac-
curacy is unknown. Therefore, we need to adjust the values of λa,λb,λc,λd,λe accordingly. Manual
adjustment can be time-consuming and may not yield an optimal combination. To address this prob-
lem, we consider using an adaptive network to automatically learn the loss weights, aiming to obtain
the optimal solution. The loss weight adaptive network MW (·) consists of a three-layer fully con-
nected network with corresponding activation functions. The network output is a five-dimensional
weight coefficient as follows,

[λa,λb,λc,λd,λe] = So f tMax(MW (MH(v))). (5.28)

5.2.4 Experiments and Results

In this section, we first discuss the implementation details and evaluationmetrics. Then, we eval-
uate our proposed method UMA-FD and compare the results with the baseline and the supervised
target method for fall detection on the NTU-60 dataset [161] and our dataset. To enhance the validity
of the results, we compare the performance of a fall detection backbone 3D-CNN+LSTM [128] and
three other CNN-based backbones: C3D [186], I3D [19], and X3D [61]. Next, we discuss the results
of various ablation experiments. Finally, we present qualitative results of UMA-FD and analyze the
classification results of some samples.

5.2.4.1 Implementation Details and Evaluation Metrics

During training, we use the dataset described in Section 5.2.2. The NTU-60 dataset includes 948
videos of falls (positive samples) and 948 videos of other actions (negative samples). We use 180
positive and 180 negative samples for testing, with the rest for training. Additionally, we create a
dataset from the Kinetics-700 database, generating RGB and corresponding depth data for each frame
using a depth estimation model. The training set includes 5,158 samples (2,579 labeled RGB and
2,579 unlabeled depth clips). The test set has 400 depth samples, equally split between positive and
negative examples. Experiments are conducted on two NVIDIA GeForce RTX 3090 GPUs with 24GB
memory. We use mmaction2 [40] and pre-trained models C3D [186], I3D [19], and X3D [61]. Model
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parameters for ablation experiments are based on previous best configurations. We use SGD [3] with
a momentum of 0.9. Initial learning rates are 0.0001 for I3D and X3D, and 0.001 for C3D. Models are
trained for 120 epochs, with the learning rate decaying by one-tenth after 60 epochs. Pseudo-label
thresholds are 0.8 for 3D-CNN+LSTM and C3D, I3D, and 0.7 for X3D. Evaluation metrics include
accuracy, F1 score, and AUC. Metrics are calculated based on predicted labels.

5.2.4.2 Comparison with Baseline and Supervised Target Method

Since fall detection through cross-modal unsupervised adaptive learning is a novel problem,
we need to define a baseline for this new task to justify the soundness of our proposed method.
The most straightforward approach, utilizing the concept of transfer learning, involves training a
fall detection model on the labeled RGB data and then directly predicting using the unlabeled depth
dataset. This method is used as the baseline for comparison in this study. Additionally, we can obtain
results from a supervised target method, in which we assume the depth data labels are known. In
this supervised target method, we use both labeled RGB and depth data training sets for training.
We then validate the performance of the model on the test set of depth data. This target supervised
method is regarded as the upper bound of this task. To verify the cross-backbone generalizability of
our proposed method, comparative experiments are conducted on 3D-CNN+LSTM [128], C3D [186],
I3D [19], and X3D [61] by implementing our proposed mechanisms on those backbones.

The results comparison on the NTU-60 dataset and our generated Kinetics dataset are provided
in Table 5.10a and Table 5.10b, respectively. On the NTU-60 dataset, compared with the baselines
using 3D-CNN+LSTM, C3D, I3D, and X3D backbones, the accuracy of UMA-FD increases by 10.83%,
5.95%, 6.66%, and 10.83%, the F1 scores increases by 45.05%, 9.06%, 9.89%, and 10.61%, and the AUC
increases by 5.96%, 20.16%, 20.77%, and 6.63%, respectively. Note that 3D-CNN+LSTM is a well-
established fall detection backbone proposed by [128], while the others are backbones designed for
general action recognition. On our generated Kinetics dataset, compared with the baseline using
the fall detection backbone, i.e., 3D-CNN+LSTM, and conventional action recognition backbones,
i.e., C3D, I3D, and X3D, the accuracy of UMA-FD increases by 3.25%, 4.75%, 4.25%, and 5.5%, the
F1 scores increases by 10.56%, 5.14%, 9.19%, and 8.61%, and the AUC increases by 4.19%, 3.92%,
3.12%, and 8.61%, and the AUC increases by 4.19%, 3.92%, 3.12% and 4.26%, respectively. The results
consistently demonstrate that our cross-modal unsupervised adaptation method achieve superior
performance on various datasets and various feature extraction backbones for the RGB2Depth un-
supervised domain adaptation task. This improvement is independent of the specific backbone used,
highlighting the versatility of our method.

The I3D backbone, which has fewer parameters, achieves results comparable to the C3D back-
bone. In contrast, the X3D backbone, being one of the most promising backbones for action recog-
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Table 5.10: Experimental results on NTU-60 and Kinetics datasets.

a Experimental results on NTU-60 dataset.

methods 3D-CNN+LSTM
Accuracy F1 Score AUC

Baseline 57.78 28.97 74.49
UMA-FD 68.61 74.02 80.45

Supervised Target 94.44 94.38 98.55

methods C3D
Accuracy F1 Score AUC

Baseline 60.32 65.03 62.90

UMA-FD 66.27 74.09 83.06

Supervised Target 95.96 96.33 98.37

methods I3D
Accuracy F1 Score AUC

Baseline 59.17 63.88 61.20

UMA-FD 65.83 73.77 81.97

Supervised Target 95.83 95.73 98.16

methods X3D
Accuracy F1 Score AUC

Baseline 83.89 84.16 91.63

UMA-FD 94.72 94.77 98.26

Supervised Target 98.33 98.33 99.50

b Experimental results on Kinetics dataset.

Methods 3D-CNN+LSTM
Accuracy F1 Score AUC

Baseline 61.25 57.88 65.74

UMA-FD 64.50 68.44 69.93

Supervised Target 73.25 72.21 81.18

Methods C3D
Accuracy F1 Score AUC

Baseline 67.00 64.89 72.67

UMA-FD 71.75 70.03 76.59

Supervised Target 79.75 80.20 85.43

Methods I3D
Accuracy F1 Score AUC

Baseline 68.00 62.13 74.70

UMA-FD 72.25 71.32 77.82

Supervised Target 79.25 78.66 86.33

Methods X3D
Accuracy F1 Score AUC

Baseline 73.00 70.00 81.79

UMA-FD 78.50 78.61 86.05

Supervised Target 92.50 92.43 97.90

nition, yields significantly better results than the other two backbones. However, when compared
to the supervised target method, the accuracy of UMA-FD is still lower due to the absence of label
information for depth data.

There remains room for improvement in the accuracy of our method, which will be the focus of
future research. Given that the X3D backbone produces the best results, all subsequent experiments
in the abkation will be conducted using the X3D backbone.

5.2.4.3 Ablation Study

Next, we analyze the individual contributions of different components of UMA-FD. Using the
X3D backbone, we add various module parts and loss functions of our proposed method based on
the baseline method to conduct ablation experiments. The results, detailed in Table 5.11, illustrating
the contribution of different building blocks and corresponding loss functions. For convenience,
each experiment is numbered; for instance, the baseline is denoted as V-01.

First, we add the modality agnostic head and modality adversarial loss to the baseline model,
referred to as V-02. The accuracy increases from 73.00% to 75.25% compared to V-01, an absolute
improvement of 2.25%, with significant improvements in F1 score and AUC. These results indicate
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Table 5.11: Ablation of our proposed method UMA-FD, showing the contribution of the various module and

corresponding loss functions.

Method Accuracy F1 Score AUC

Baseline (V-01) 73.00 70.00 81.79
+Modality Loss (V-02) 75.25 74.02 83.04
+Pseudo Loss (V-03) 76.25 78.16 83.05

+Bridge Feature Loss (V-04) 77.25 75.34 84.67
+XBM_riplet Loss (V-05) 77.75 77.00 84.10

UMA-FD (V-06) 78.50 78.61 86.05

Figure 5.6: T-SNE plots of RGB data (red points) and Depth data (blue point) feature spaces produced by

baseline, the method of adding modality loss and our proposed method UMA-FD.

that the modality agnostic head and modality adversarial loss effectively mitigate the differences
between the features of different modalities, allowing more information learned from RGB data to
be applied to depth data. This conclusion will be further confirmed by the qualitative results in the
next section.

Building upon the optimal model from V-02, we set a threshold to distinguish positive and neg-
ative sample pseudo-labels and incorporate a pseudo loss, denoted by the V-03 model. The V-03’s
accuracy further improves, reaching 76.25%, a 1% increase compared to V-02. The F1 score also
shows a significant improvement, and the AUC is slightly better than the previous version, demon-
strating an overall noticeable enhancement. V-03 capitalizes on V-02’s ability to classify depth data
and employs partial pseudo-label information with higher confidence, enabling the model to learn
more depth data information.

Next, we verify the effect of the bridge feature loss based on the optimal model of V-03. We
add the IDM and bridge feature loss (V-04), leading to an accuracy gain from 76.25% to 77.25%.
Adjusting the threshold improves the outcome significantly: the AUC increases to 84.67% compared
to 83.05% in V-03. Overall, the performance has been improved, indicating that the IDM module
and bridge feature loss indeed reduce the difference in representations between different modalities.
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Next, we add XBMtriplet loss to V-04, referred to as V-05. The XBMtriplet loss also requires the
labels of samples. For the RGB sample data, the real label is used directly. For the unlabeled depth
data, the pseudo label that meets the threshold is used to calculate the triplet loss. Comparing the op-
timal results of V-05 with V-04, the accuracy increases from 77.25% to 77.75%. The XBMtriplet loss
benefits the model by learning discriminative features for both modalities. A comprehensive com-
parison of accuracy with F1 score and AUC shows that V-05 outperforms V-04, demonstrating that
the XBMtriplet loss is also effective for cross-modal fall detection. Finally, we verify the effectiveness
of the loss weight adaptation method. Based on the optimal model from V-05, we incorporate the
loss weight adaptive network to automatically learn the weight of each loss. This model, numbered
V-06, represents our proposed method, UMA-FD. The accuracy increases from 77.75% to 78.5%,
an absolute improvement of 0.75%. The F1 score and AUC are the best among all experimental re-
sults, showcasing a clear enhancement. This demonstrates that the superiority of the proposed loss
weight adaptive network for the training assistance. The ablation experiments provide a compre-
hensive verification of each individual module. By employing cross-modal unsupervised adaptive
learning, the classification accuracy of the unlabeled depth data is increased from 73% (baseline)
to 78.5%, a significant gain of 5.5%. The above analyses indicate that the proposed UMA-FD can
achieve superior RGB2Depth domain adaptation performance and show large performance improve-
ment compared withe the baseline. The proposed method can serve as a good solution in real-world
application for cross-modal fall detection task.

5.2.4.4 Analyses of the T-SNE Results

We present the t-SNE visualization of the RGB data and depth data feature spaces M(·) generated
by the baseline method, the method incorporating modality loss, and our proposed method UMA-FD
in Fig. 5.6. It is evident that our proposed method mitigates the differences between the source and
target modalities to some extent.

In the baseline method, where the RGBmodel is directly used to predict depth data, the resulting
feature distributions differ significantly. Adding modality loss to mitigate these differences improves
the situation considerably. In our final proposed method UMA-FD, the feature distributions are
essentially mixed, which is the desired outcome. Therefore, we can more effectively utilize the
information learned from the RGB data when applied to the depth data, thereby improving the
classification accuracy of depth data. However, the feature space distributions of the two modalities’
data still differ significantly, and even with our proposed method UMA-FD, these differences are not
completely eliminated. Identifying ways to further reduce these differences will be an important
direction for future work in this task.
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5.2.5 Discussion

In this work, we addressed the RGB to depth unsupervised domain adaptation for fall detection
task, extending unsupervised domain adaptation to meet specific application needs. We generated a
dual-modality fall detection dataset with RGB and depth data, comprising 2,979 samples, surpass-
ing most existing fall detection datasets in the scale of the dataset. This dataset was created using
the public Kinetics-700 and NTU-60 datasets and an off-the-shelf depth estimation algorithm. To
enhance classification accuracy for unlabeled depth data, we applied various UDA methods to the
RGB to Depth unsupervised domain adaptation scenario, achieving scene adaptation.

In single-task multi-loss scenarios, manually adjusting loss weights is inefficient and suboptimal.
To solve this, we designed a loss weight adaptive network that automatically learns each loss’s
weight. Integrating these optimization methods significantly improved our model’s performance,
raising classification accuracy from 73% (baseline) to 78.5% on our generated Kinetics-700 dataset,
demonstrating the feasibility of cross-modal unsupervised adaptive learning.

This study shows the superiority of the modality agnostic loss, modality agnostic head, cross-
batch triplet margin loss, and the pseudo label based target domain supervision method on the
RGB2Depth unsupervised fall detection task, which is an essential application of human action
recognition. However, due to the large performance difference between our proposed method and
the upper boundary by using supervised target domain for training, future work on this task is
expected, e.g., using foundation model.
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6 | Conclusions and Remarks

6.1 Impact to the Community

The contributions made in this thesis have a significant impact in the field of human action
recognition, which involve the observation of limitations of the existing works and the proposal of
solutions from multiple perspectives to explore how to achieve more generalizable deep learning in
the field of human action recognition. This thesis first highlights the significant challenge posed by
diverse occlusions, which are common real-world perturbations, on skeleton data in tasks such as
one-shot and self-supervised action recognition. They point out that most current methods in these
fields struggle with occlusion perturbations, demonstrating limited performance. This underscores
the difficulty of addressing occlusions in tasks that focus on generalizability. Besides, the introduc-
tion of the first open-set recognition skeleton-based human action recognition benchmark opens
the vistas for open-set model confidence calibration on skeleton-based human action recognition
and highlights the limitations of existing methods developed for video/image data when employed
on skeleton data. This study spurs the development of more effective solutions like the CrossMax
approach.

Moreover, exploration on the generalizable challenges on video-based human action recognition
are explored in this thesis, which focuses specifically on different types of domain adaptation. The
construction of a large-scale few-shot domain adaptation benchmark and the proposed RelaMiX
method demonstrate the efficiency and potential of few-shot domain adaptation over unsupervised
domain adaptation, promoting its application in diverse real-world scenarios, especially when the
target domain sample is hard to collect. Additionally, the cross-modal fall detection approach using
unlabelled depth domain data offers valuable advancements for assistive technology, particularly in
elderly care, where privacy supporting is likely to be considered by the users.

Overall, this thesis provides novel solutions and benchmarks on various unexplored generaliz-
able challenges in the field of the human action recognition field, which will significantly benefit the
research community and practical applications and pave the way to accomplish more reliable and
generalizable deep learning.
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6.2 New Generalizable Benchmarks

In this thesis, several benchmarks are constructed to address various generalization challenges in
human action recognition field. First, we benchmark one-shot skeleton-based human action recog-
nition task and the self-supervised skeleton-based human action recognition task under diverse oc-
clusions, where state-of-the art one-shot skeleton-based action recognition approaches and self-
supervised skeleton-based human action recognition approaches are involved. This benchmark is
delivered to demonstrate the existing approaches designed for each specific generalizable challenge
under the perturbation of different kinds of occlusion.

Moreover, an open-set skeleton-based human action recognition is constructed, which includes
three datasets, different open-set splits, different validation settings, and incorporates three skeleton-
based human action recognition backbones. This benchmark is designed to evaluate the perfor-
mance of existing open-set recognition methods, which often struggle with the sparsity of skeleton
data and lack of visual background information.

Additionally, the thesis introduces a benchmark for few-shot domain adaptation in video-based
human action recognition. This benchmark compares the performance of few-shot domain adapta-
tion with domain adaptation settings across various domains, highlighting the efficiency of few-shot
domain adaptation in scenarios where collecting large-scale unlabeled target domain data is chal-
lenging.

Finally, this thesis includes a small study about cross-modal unsupervised RGB2Depth domain
adaptation for fall detection. These comprehensive benchmarks provide foundations for future re-
search on generalizable deep learning, enabling the evaluation and development of more reliable
action recognition methods across various challenges.

6.3 Novel Methods for the Generalizable Challenges

This thesis introduces several innovative methods to address the generalization challenges in
human action recognition. For one-shot skeleton-based action recognition under occlusions, the
Trans4SOAR method is proposed. It utilizes a transformer architecture to achieve multi-modal fea-
ture fusion at the patch embedding level, combining human body joints, bones, and velocities derived
from 3Dmotion data. By incorporating a prototype-based latent space consistency loss, Trans4SOAR
enhances the generalizability and robustness of learned embeddings and demonstrates superior per-
formance in both occluded and non-occluded scenarios. To address self-supervised skeleton-based
action recognition under occlusions, the OPSTL method is developed. This two-stage imputation
method can be integrated into various self-supervised learning pipelines. It employs three-stream
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contrastive learning with adaptive spatial masking for data augmentation during training. After pre-
training, KMeans clustering finds cluster centers, and the K nearest neighbors within each cluster
are used for imputation. This approach is validated across different camera settings, datasets, and
occlusion scenarios. For open-set skeleton-based human action recognition, the CrossMaxmethod is
introduced. CrossMax relies on cross-modal mean max discrepancy training across three branches
for different modalities: joints, bones, and velocities. During the test phase, a channel normal-
ized distance-based logits calibration approach combines the advantages of both SoftMax open-set
probability scores and channel normalized distance-based open-set probability scores. This method
delivers significant performance improvements across various datasets and GCN backbones.

In the field of video-based human action recognition, the RelaMiX method is introduced for few-
shot domain adaptation. RelaMiX includes temporal relational dropout, snippet-wise and scale-wise
attentional fusion for temporal aggregation, and source domain statistics-based feature mixture. It
uses cross-domain information alignment loss to enhance the representation of the source and tar-
get domains for the same category. RelaMiX shows promising performances on leveraged datasets
and serves as a significant baseline in this field. Additionally, a cross-modal fall detection approach
is proposed to achieve test-time depth-based fall detection using unlabelled depth domain data dur-
ing training. This method relies on domain agnostic adversarial learning and cross-batch triplet
margin loss to learn discriminative embeddings. An intermediate domain module bridges the latent
spaces from different modalities, proving effective on various datasets and backbones. These meth-
ods represent significant advancements in addressing generalization challenges in human action
recognition, providing more reliable solutions that enhance the generalizability and effectiveness of
action recognition deep learning methods in diverse conditions and scenarios.

6.4 OpenQuestions to Future Works

Building on the advancements in this thesis, several future directions can enhance human action
recognition models. One promising area is developing more sophisticated methods for handling oc-
clusions in real-time applications. This could involve exploring advanced imputation methodologies
using deep cluster approaches instead of KMeans and integrating them with robust machine learn-
ing models to improve performance in dynamic and cluttered environments. Expanding the scope
of open-set recognition in skeleton-based action recognition is another potential direction. Future
research could focus on open-set human action localization, which is more challenging as it requires
predicting the spatio-temporal localization of the person alongside the actions. In video-based hu-
man action recognition, future work could explore few-shot semi-supervised learning techniques
across various domains and tasks. Developing methods to efficiently transfer knowledge from syn-
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thetic to real-world data would significantly enhance system generalizability. Additionally, inte-
grating unsupervised domain adaptation techniques with few-shot learning approaches could yield
more flexible and adaptive models. Improving the interpretability and transparency of human ac-
tion recognition models is also important. As these systems are deployed in critical applications
like healthcare and surveillance, understanding their decision-making processes becomes essential.
This could involve developing techniques for visualizing learned features and representations or
creating frameworks that provide intuitive explanations of model outputs. Overall, these future di-
rections have the potential to significantly advance human action recognition, making systemsmore
robust, generalizable, and ethically sound while expanding their applicability to a broader range of
real-world scenarios.
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