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ABSTRACT Age-of-Information (AoI) is a new performance metric for critical networked cyber-physical
systems (CPS), where performance depends on how quickly fresh data is received in update packets. When
multiple users communicate these updates over a shared channel in a random access manner, packet losses
can occur due to overlapping transmissions. In this study, we analyse theAoI for slottedALOHA,which is the
classical medium access control protocol in communication networks. Our stochastic analysis provides exact
results for the moments of the AoI at random slot boundaries and for the peak AoI, which is different from
previous studies that rely on approximations. Additionally, we provide a recursive algorithm to calculate the
probability mass function of the AoI. Finally, we explore how packet arrival and transmission probabilities
impact the AoI through a numerical example. Our results, which characterise the AoI distribution in random
access channels, have significant implications for the safety assessment of CPS in critical scenarios.

INDEX TERMS Age of information (AoI), probability generating function, slotted ALOHA.

I. INTRODUCTION
Cyber-Physical Systems (CPS) depend on the exchange
of updates on physical processes facilitated by digital
communication [1], [2], [3]. In the era of the Internet of
Things, traditional networking metrics such as throughput
and delay are no longer sufficient. The focus has shifted
to Age-of-Information (AoI) or the freshness of available
updates, as highlighted in literature [4], [5], [6], [7]. In mobile
ad-hoc networks, communicating nodes normally use a
dedicated random access channel for their mutual updates
[8], [9]. The inherent broadcast feature of the radio channel
naturally fits the communication goals since the updates are
often intended for all the nodes in the immediate proximity
[10], [11]. Furthermore, random access avoids the difficulty
with centralised channel access coordination in highly
dynamic network topologies [12], [13]. Hence, examining
the AoI characterisation within ALOHA, a classical random
access scheme [14], becomes significant for evaluating CPS
performance [15], [16].
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A prominent illustration of such a cyber-physical system
in action is seen in cooperative autonomous vehicles,
as highlighted by several studies [17], [18], [19]. In these
application scenarios, a vehicular ad-hoc network is used for
the exchange of periodic broadcast packets over a dedicated
communication channel [20], [21], [22]. The content of
these packets enhances vehicular awareness (for example
awareness about the presence of vulnerable road users [23]),
improves vehicular perception (e.g. via collective perception
services [24]) or serves as an input for autonomous driving
control loops (e.g. during cooperative manoeuvring [25]).
Driving safety, which is the main argument for introducing
vehicular communication, relies on the timeliness of status
updates received from the surrounding road users [26],
[27], [28]. It is thereby important to consider the complete
distribution of the Age of Information (AoI) while evaluating
the risks associated with packet losses in cooperative
driving scenarios. More specifically, probabilities of the AoI
exceeding certain threshold values characterise the lack of up-
to-date information about the status of autonomous vehicles
and, thus, the impossibility of safely accomplishing the
driving manoeuvre in case of a hazardous road event [29].
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The AoI tail distributions may also play a crucial role in the
cooperative planning of pre-crash manoeuvring [30].
Both state-of-the-art vehicular networking technologies—

broadband cellular approaches (e.g. 5G NR) and wire-
less local area-based systems (e.g. IEEE 802.11bd) —
incorporate, at least in certain modes, random access
mechanisms [31]. The industrial standards mentioned above
are often approximated by the ALOHA protocol [32], [33],
[34] at least via modelling back-off mechanisms by a fixed
channel access probability. Such approximations date back
to Bianchi’s analysis of IEEE 802.11 [35].
Few ALOHA modifications have been considered in

analytic AoI studies. In [36] and [37] a user transmits
via slotted ALOHA only when its status update reaches a
certain threshold. Moreover, a short control sequence ahead
of the actual data transmission and respective carrier-sensing
is considered in [38]. The AoI in frame slotted ALOHA
is analysed in [39], [40], [41], and [42]. The age-aware
back-off protocol is discussed in [43]. In the current work,
we consider classical ALOHA with a fixed channel access
probability. The paper extends the findings of [44] which
studies the expected age and peak age of information in
classical ALOHA. The present extension provides recursive
expressions for higher order moments of the age and peak
age, as well as recursive expressions for the age and peak age
distribution.

There are but a few generic studies on the AoI in
random access channels. Age-efficient transmission policies
are proposed in [45] under the assumption that new packets
can replace undelivered older ones. The relation between
the retransmission policy and the peak AoI is investigated
in [46]. Retransmission strategies to minimise the average
AoI are proposed in [47]. In [48], a system with source nodes
and relays is studied where source nodes neither buffer nor
retransmit, while relay nodes do. Unfortunately, it is often
practically not possible to adopt retransmission policies for
broadcast (and not unicast) packets. Hence, various authors
study bufferless systems without retransmissions. Allowing
for packet drops naturally improves information freshness,
since new packets contain the latest information [49]. The
peak AoI is studied in [50] when the packet at the source can
be updated if new information becomes available. A similar
model is studied in [51] for Gilbert-Elliot channels with
a focus on evaluating penalty functions of the peak AoI.
The authors in [52] investigate how (not) replacing the
information in the buffer affects the peak age of information
as it may not be practically feasible to remove old packets
already waiting in the queue. In this work, we made the
practical assumption that the buffer size is limited to one
packet which cannot be replaced and only one transmission
attempt is allowed.

When studying the AoI, some authors adopt different
assumptions about the random access system. For example,
[53] assumes that the number of contending users is known.
The ability for successive interference cancellation (allowing
to decode overlapping packets) is incorporated in [54]

and [55], and the capture effect is considered in [56]. Our
work follows the classical random access vision: the number
of users is unknown and the simultaneous transmission of any
two (or more) of them makes the reception impossible. Our
stochastic model includes the states of the different users, and
the age of information for a particular user. We present an
exact analysis which relies on probability generating function
techniques to calculate various performance measures of
interest.

The remainder of this paper is organised as follows.
We introduce the AoI model and its analysis in the next
section. We first study the packet arrival and departure
processes and the probability generating function of the age
of information. These probability generating functions are
then used to obtain recursive expressions for the moments of
the AoI, as well as for the probability mass function of the
AoI. We then illustrate our results by a numerical example in
section III and conclude in section IV.

II. STOCHASTIC MODEL AND ANALYSIS
To assess the age of information in slotted ALOHA,
we examine a system with M + 1 users who communicate
information over a shared channel. Each user possesses
a buffer capable of storing a single piece of information
or packet, if available. Each user with a packet accesses
the channel with a fixed probability 0 ≤ p ≤ 1, and
a transmission is considered successful if no other users
are transmitting simultaneously. If a transmission fails, the
packet is lost and not retransmitted. New packets arrive at
the users’ buffers according to a Bernoulli process with a
positive success probability λ > 0, in accordance with [57].
Generated packets are immediately stored in the buffer,
such that the arrival time at the buffer equals the packet
generation time. There may be multiple synchronous events
at a slot boundary. We here assume that transmissions at a
slot boundary precede arrivals: if a user transmits at a slot
boundary and there is a new packet arrival, the old packet
is transmitted and the new packet occupies the user’s buffer.
Moreover, the new packet cannot be transmitted at its arrival
slot boundary.
Remark 1: Although the assumption that transmissions

are only successful if no other users are transmitting is not
true in general, the assumption holds for the context of our
study. Cooperative autonomous vehicles in a vehicular ad-hoc
network are located in a close proximity to each other and
communication between them is short-range. This makes
the received powers from the different users similar for the
collided packets.
Remark 2: Buffering is necessary if one excludes the

case of immediate transmission (p = 1). As the case
p = 1 overloads the multiple access channel, the generation
process of the packets is restricted by regulations. It can
be argued that dropping old packets in the buffer and
transmitting new ones is a better strategy from the freshness
perspective [58]. However, from the perspective of the

VOLUME 12, 2024 159463



D. Fiems, A. Vinel: Age-of-Information Distribution in Slotted ALOHA

practical implementation, it is often impossible to remove the
packet from the buffer.

We focus on a single user in particular. In the remainder,
we refer to this user as the tagged user. For this tagged user we
track the age of information at the receiverAk at the beginning
of slot k , and the age of information at the sender Bk at the
beginning of slot k . In line with the literature, the age at
the receiver equals the time since the arrival time of the last
correctly received packet. The age at the sender is the time
since the arrival of the last packet, if there is such a packet in
the buffer. If the tagged user’s buffer is empty, it is convenient
to set Bk = −1. For the other users, we only track how many
users have information, that is, howmany users have a packet
to send. Let Xk denote the number of users with a packet at
the beginning of slot k .

A. THE NUMBER OF USERS WITH A PACKET
We now aim at relating the age of information of the tagged
user at the sender Bk and receiver Ak at consecutive slot
boundaries. To this end, we first study how the number of
users with a packet evolves over time. Let Xk denote the
number of users with a packet at the kth slot boundary.
To explicitly express Xk+1 in terms of X , let 3ℓ,k and Tℓ,k
denote the indicator that there is an arrival and transmission
for the ℓth user, respectively. With the assumptions above,
{3ℓ,k} and {Tℓ,k} are independent doubly indexed sequences
of Bernoulli random variables with success probabilities λ

and p, respectively. As the order of the users does not affect
the evolution of Xk , we can assume that the users with packets
have the lowest indices. This notational convenience then
allows for the following explicit recursion,

Xk+1 =

Xk∑
ℓ=1

Qℓ,k +

M∑
ℓ=Xk+1

3ℓ,k . (1)

Here, we introduced the random variables

Qℓ,k
.
= 1 − Tℓ,k + Tℓ,k3ℓ,k (2)

to simplify the notation. The random variable Qℓ,k is the
indicator that the ℓth user with a packet at the kth slot
boundary, has a packet at the (k + 1)st slot boundary as well.
Note that a user with a packet at the kth boundary still has one
at the k + 1st slot boundary if she did not transmit, or if she
transmits and there is a new packet arrival. A user without a
packet cannot transmit and has a packet at boundary k+1with
a new arrival. Clearly, each Qℓ,k is an independent Bernoulli
distributed random variable, with success probability

q .
= P[Qℓ,k = 1] = λp+ 1 − p.

Clearly, the process {Xk} is a Markov process. This is
immediate from the observation that equation (1) expresses
Xk+1 in terms of Xk and independent random variables. Let
xmn denote the transition probability from state Xk = m to
state Xk+1 = n,

xmn = P[Xk+1 = n|Xk = m] ,

for m, n ∈ M = {0, 1, 2, . . . ,M}. By means of equation (1),
and by invoking the independence of the random variables
{Qℓ,k} and {3ℓ,k} we find the following expression for the
transmission probabilities,

xmn = P

 m∑
ℓ=1

Qℓ,k +

M∑
ℓ=m+1

3ℓ,k = n


=

n∑
i=0

P

[
m∑

ℓ=1

Qℓ,k = i

]
P

 M∑
ℓ=m+1

3ℓ,k = n− i

 .

Now both probabilities in the expression above concern the
probabilities of fixed sums of Bernoulli random variables.
As a sum of Bernoulli random variables follows a binomial
distribution, we have

xmn =

min(n,m)∑
i=max(0,n+m−M )

(
m
i

)
qiq̄m−i

(
M − m
n− i

)
λn−iλ̄M−m−n+i.

(3)

for m, n ∈ M. Note that we here accounted for the range
of the Binomial random variables by changing the upper and
lower bounds of the summation. Moreover, we introduced the
notation q̄ = 1 − q and λ̄ = 1 − λ for convenience.
For the evolution of the age of information, we need a

more detailed description of the process {Xk}. To this end,
let Yk denote the indicator that there is a transmission at
the kth slot boundary. The process {(Xk ,Yk )} constitutes a
marked Markov process, where Xk is the state of the Markov
process, and Yk is the mark. The process is now characterised
by the marked transition probabilities. Let x tmn denote the
probability that there is a transition from statem to state nwith
a transmission, and let xntmn denote the probability that there is
a transition from state m to state n without transmissions,

x tmn = P[Xk+1 = n,Yk = 1|Xk = m] ,

xntmn = P[Xk+1 = n,Yk = 0|Xk = m].

We have no transmission (Yk = 0) if and only if none of
the non-tagged users transmits. Hence, we have Yk = 0 if
and only if Tℓ,k = 0 for all ℓ. Moreover, Tℓ,k = 0 implies
Qℓ,k = 3ℓ,k , see equation (2). Combining these observations
with equation (1), and accounting for the independence of
3ℓ,k and Xk , we can express the transition probability with
no transmissions as follows,

xntmn = P

m+

M∑
ℓ=m+1

3ℓ,k = n,
m∑

ℓ=1

Tℓ,k = 0

 .

Again we use the property that the sum of Bernoulli random
variables follows a binomial distribution. Therefore, the
expression above simplifies to,

xntmn =

 p̄m
(
M − m
n− m

)
λn−mλ̄M−n for m = 0, . . . , n ,

0 otherwise,

(4)

for m, n ∈ M.
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To calculate the marked transition probabilities with
transmissions, we can develop analogous arguments. It is
however more convenient to note that there are either
transmissions or no transmissions. Therefore the sum of
the marked transition probabilities equals the transmission
probability and we have,

x tmn = xmn − xntmn ,

for m, n ∈ M.

B. AGE OF INFORMATION
1) STOCHASTIC RECURSION
Having studied the evolution of the number of users that
have a packet, we now turn to the evolution of the age of
information of the tagged user. In line with the notation for the
other users, let 3k denote the indicator that there is an arrival
for the tagged user, and let Tk denote the indicator that the
tagged user transmits, assuming there is a packet to transmit
in the tagged user’s buffer.

The age at the sender is the time since the arrival instant
of the packet in the buffer (if any), or equivalently, the time
since the packet in the buffer was generated. Hence, the age
at the sender is incremented if there is a packet at the sender
and there is neither arrival nor transmission. The age is reset
to 0 if there is an arrival. In all other cases, the age is reset to
−1, which indicates the absence of a packet. Hence, we can
concisely express Bk+1 in terms of Bk as follows,

Bk+1 =

{
Bk + 1 if Tk = 3k = 0 ,Bk ≥ 0 ,

3k − 1 otherwise.
(5)

The age at the receiver is the time since the arrival of the last
received packet. Hence, the age at the receiver is incremented
as long as there is no successful transmission. If there is such
a transmission, the new age is the age of the correctly received
packet. More precisely, the age at the receiver is reset to
Bk+1 if there is a successful transmission. Recall that one can
only have a correct transmission if there is a packet (Bk > 0),
if there is a transmission (Tk = 1) and if there are no other
transmissions (Yk = 0). Given these observations we can
express the age at the (k + 1)st slot in terms of Ak and Bk ,

Ak+1 =

{
Bk + 1 if Bk ≥ 0,Tk = 1,Yk = 0 ,

Ak + 1 otherwise.
(6)

2) JOINT GENERATING FUNCTION
In view of the stochastic recursions (1), (5) and (6), the
process {(Ak ,Bk ,Xk ), k ∈ N} constitutes a Markov process
with state space N × (N ∪ {−1}) × M. We now study the
limiting distribution of this Markov process. To this end, let
Pn(y, z) denote the following partial probability generating
function,

Pn(y, z) = lim
k→∞

Pn(y, z; k)

= lim
k→∞

E
[
yBk+1zAk1{Xk=n}

]
,

for |y| ≤ 1, |z| ≤ 1 and n ∈ M. Here 1{·} is the indicator
function which evaluates to 1 if its argument is true, and to
0 otherwise. For notational convenience, we first condition
on the number of users with a packet in the preceding slot
and on the presence of transmissions of other users. We have,

Pn(y, z) =

M∑
m=0

(Ptmn(y, z) + Pntmn(y, z)) , (7)

with Ptmn(y, z) = limk→∞ Ptmn(y, z; k + 1) and Pntmn(y, z) =

limk→∞ Pntmn(y, z; k + 1), and with,

Ptmn(y, z; k + 1) = E
[
yBk+1+1zAk+11{Xk+1=n,Xk=m,Yk=1}

]
,

Pntmn(y, z; k + 1) = E
[
yBk+1+1zAk+11{Xk+1=n,Xk=m,Yk=0}

]
,

for m, n ∈ M.
By conditioning on the number of arrivals, transmissions

and the presence of a packet, we can express the partial
joint probability generating functions at slot k + 1 in terms
of random variables at slot k . In view of the recursions (5)
and (6), we find,

Ptmn(y, z; k + 1)

= E
[
yBk+1zAk+11{Xk+1=n,Xk=m,Yk=1}Fk

]
+ E

[
y3k zAk+11{Xk+1=n,Xk=m,Yk=1} (1 − Fk)

]
.

where we introduced Fk = 1{Tk=3k=0,Bk≥0} to simplify
notation. A further simplification of the equation above
by some standard z-transform manipulations and sending
k → ∞ yields,

Ptmn(y, z) = yzλ̄p̄Pm(y, z)x tmn + λ̄p̄(1−y)zPm(0, z)x tmn
+ (yλ + λ̄p)zPm(1, z)x tmn , (8)

for |y| ≤ 1, |z| ≤ 1 and n ∈ M, with p̄ = 1−p. Analogously,
conditioning on the number of arrivals, transmissions and the
presence of a packet yields,

Pntmn(y, z; k + 1)

= E
[
yBk+2zAk+11{Xk+1=n,Xk=m,Yk=0}1{Tk=0,3k=0,Bk≥0}

]
+ E

[
yzAk+11{Xk+1=n,Xk=m,Yk=0}1{Tk=0,3k=1,Bk≥0}

]
+ E

[
y3k zBk+11{Xk+1=n,Xk=m,Yk=0}1{Tk=1,Bk≥0}

]
+ E

[
y3k zAk+11{Xk+1=n,Xk=m,Yk=0}1{Bk=−1}

]
.

After some standard z-transform manipulations and sending
k → ∞, we have,

Pntmn(y, z)

= λ̄p̄yzPm(y, z)xntmn
+ (λ̄ + λy)p(Pm(z, 1) − Pm(0, 1))xntmn
+ yzp̄λPm(1, z)xntmn + z(λ̄(1 − y) + py)Pm(0, z)xntmn , (9)

for m, n ∈ {0, 1, . . . ,M}, |y| ≤ 1 and |z| ≤ 1.
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Plugging equations (8) and (9) in (7), yields the following
system of equations,

Pn(y, z)

=

M∑
m=0

(
yzλ̄p̄Pm(y, z)x tmn + λ̄p̄(1−y)zPm(0, z)x tmn

+ (yλ + λ̄p)zPm(1, z)x tmn + λ̄p̄yzPm(y, z)xntmn
+ (λ̄ + λy)p(Pm(z, 1) − Pm(0, 1))xntmn

+ yzp̄λPm(1, z)xntmn + z(λ̄(1 − y) + py)Pm(0, z)xntmn
)

,

(10)

for n ∈ M. This system of equations contains all information
that is needed for determining the partial joint generating
functions Pn(y, z), and therefore also for the stationary
distribution of the Markov chain. The expressions however
contain several unknown functions which will be determined
in the next section. To this end, it is convenient to introduce
vector-matrix notation for the system of equations above.

3) MATRIX REPRESENTATION
Let P(y, z) be the row-vector with entries Pm(y, z) (m ∈ M),
and let X t and X nt be the (M + 1) × (M + 1) matrices
with entries x tmn and x

nt
mn, respectively (m, n ∈ M). Finally,

let X = X t
+ X nt. The matrix X collects the transition

probabilities xmn.
We then have the following vector representation of the

system of equations (10),

P(y, z)
(
I − λ̄p̄yzX

)
= P(0, z)

(
λ̄p̄(1−y)zX t

+ z(λ̄(1 − y) + py)X nt)
+ P(1, z)

(
(yλ + λ̄p)zX t

+ yzp̄λX nt)
+ (P(z, 1) − P(0, 1))(λ̄ + λy)pX nt. (11)

Here, we collected the terms in P(y, z) on the left-hand side
for convenience.

We now find an explicit expression for P(y, z). To this end,
we evaluate the functional equation (11) in specific values to
determine the unknown functions in the functional equation.
First, substituting y = 1 and z = 1 gives

P(1, 1) = P(1, 1)X .

This is not unexpected. This expression corresponds to
the balance equations of the Markov process {Xk}. Indeed,
we have Pm(1, 1) = limk→∞ P[Xk = m]. Comple-
menting this expression with the normalisation condition
P(1, 1)e′

= 1 (e is a row vector of ones, and x′ is the transpose
of x), we have,

P(1, 1) = e (I − X + e′e)−1. (12)

Secondly, evaluating (11) in y = 0 and z = 1, and solving
for P(0, 1) gives,

P(0, 1) = P(1, 1)λ̄p(I − λ̄p̄X )−1

= e (I − X + e′e)−1λ̄p(I − λ̄p̄X )−1. (13)

Note that the inverse matrix in the expression above is well
defined as λ̄p̄X is a sub-stochastic matrix. The mth entry of
this vector is the probability of having m users with a vector
when the tagged user does not have a packet: Pm(0, 1) =

limk→∞ P[Xk = m,Bk = −1].
Now we set z = 1 and y = z in equation (11), which

yields an equation where only P(z, 1) is not known. Solving
for P(z, 1) yields,

P(z, 1) =
(
P(0, 1)λ̄p̄(1−z) + P(1, 1)(zλ + λ̄p)

)
×
(
I − λ̄p̄zX

)−1
, (14)

for |z| ≤ 1. The inverse matrix in the expression above is well
defined, as the spectral norm of λ̄p̄zX is smaller than 1 for
|z| < λ̄−1. The expression above particularly reveals that the
stationary distribution of the age of information at the sender
does not depend on the availability of the channel. Indeed,
the expression does not depend on the marked transition
probability matrices X t and X nt, but only on the transition
matrix X . This is in line with the modelling assumptions: the
age increments every slot and resets to 0 with a new arrival,
and to −1 with a transmission (independent of its success).

Finally, evaluating (11) in y = 0 and y = 1 yields,

P(0, z)
(
I − λ̄z

(
p̄X t

+ X nt))
= P(1, z)λ̄pzX t

+ (P(z, 1) − P(0, 1))λ̄pX nt ,

and,

P(1, z)
(
I − z(X t

+ p̄X nt)
)

= P(0, z)pzX nt
+ (P(z, 1) − P(0, 1))pX nt ,

respectively. Solving for P(0, z) and P(1, z) leads to,

P(0, z) = P(1, z)A(z) , (15)

P(1, z) = (P(z, 1) − P(0, 1))pX nt(B(z))−1 , (16)

with,

A(z) = λ̄(I − zp̄X )(I−zp̄λ̄X )−1 , (17)

B(z) = I − z(X t
+ p̄X nt)−pzA(z)X nt , (18)

for |z| < 1. The inverse of B(z) in (16) is again well defined
for all |z| < 1.

4) GENERATING FUNCTIONS OF THE AGE AND PEAK AGE
We have now determined all unknown functions on the
right-hand side of (11). We now express the probability
generating functions of the mean AoI at random slot
boundaries and the peak AoI in terms of P(y, z). Let Ar (z)
denote the probability generating function of the age of
information at random slot boundaries. From the definition
of P(y, z), we immediately have,

Ar (z) = P(1, z)e′. (19)

For the peak age of information, we note that there is a
successful transmission provided that (i) there is a packet
at the sender, (ii) there is a transmission by the sender,
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and (iii) there are no transmissions by other senders. We can
therefore express the probability generating function of the
peak age in terms of known functions as follows,

Ap(z) =
(P(1, z) − P(0, z))X nte′

(P(1, 1) − P(0, 1))X nt ,

or equivalently,

Ap(z) =
P(1, z)(I −A(z))X nte′

P(1, 1)(I −A(1))X nte′
. (20)

These expressions will be used in the following two subsec-
tions to construct recursive expressions for the moments and
probabilities of the age and peak age.

C. MOMENTS
The moment-generating property allows for retrieving
moments up to any order by evaluating higher-order deriva-
tives of the generating function in 1. As such moment
expressions quickly grow in size, we here focus on recursive
equations for the factorial moments. The nth factorial
moment equals the nth derivative of the generating function
evaluated in z = 1. In particular, we have

E[(Ar )n] = A(n)r (1).

where (x)n = x(x − 1) . . . (x − (n − 1)) denotes the falling
factorial and A(n)r (z) is the nth derivative of the generating
function Ar (z) of Ar . Factorial moments easily relate to
moments and central moments. In particular, the mean and
variance equal

E[Ar ] = A′
r (1) , var[Ar ] = A′′

r (1) + A′
r (1) − (A′

r (1))
2.

More generally the nth moment can be expressed in terms of
the factorial moments up to order n as follows,

E[Anr ] =

n∑
m=0

{
n
m

}
E[(Ar )m]. (21)

The curly braces in the expression above denote Stirling
numbers of the second kind,{

n
m

}
=

m∑
ℓ=0

(−1)m−ℓℓn

(m− ℓ)!ℓ!
.

Of course, similar expressions relate the moments and
factorial moments of the peak age to the derivatives of Ap(z)
in z = 1.

To retrieve the moment recursion, we introduce the
following notation for the derivatives of P(1, z), P(z, 1),A(z),
and B(z),

αn =
∂nP(1, z)

∂zn

∣∣∣∣
z=1

, βn =
∂nP(z, 1)

∂zn

∣∣∣∣
z=1

,

Ân =
∂nA(z)

∂zn

∣∣∣∣
z=1

, B̂n =
∂nB(z)

∂zn

∣∣∣∣
z=1

.

Combining the definition of Ar (z), see equation (19), with
the definition of αn above, we immediately have,

E[(Ar )n] = A(n)r (1) = αne′. (22)

The expressions of the factorial moments of the peak AoI Ap
are somewhat more involved. To calculate the nth derivative
of the vector-matrix product in the numerator on the right-
hand side, we apply the general Leibniz rule. Evaluating in
z = 1 yields,

E[(Ap)n] =
αnX nte′

α0(I − Â0)X nte′

−

n∑
k=0

(
n
k

)
αkÂn−kX nte′

α0(I − Â0)X nte′
. (23)

We now find recursive equations for the unknown vectors
αn and βn, and for the unknown matrices Ân and B̂n.
By evaluating the derivatives of (17) and (18) in z = 1,
we find,

Â0 = λ̄(I − p̄X )(I − λ̄p̄X )−1 ,

Â1 = λ̄p̄(Â0 − I)X (I − λ̄p̄X )−1 ,

Ân = nÂn−1p̄λ̄X (I − λ̄p̄X )−1 , (24)

and,

B̂0 = I − (X t
+ (1 − p)X nt)−pÂ0X nt ,

B̂1 = −X t
− (1 − p)X nt

−pÂ0X nt
−pÂ1X nt ,

B̂n = −pÂnX nt
−npÂn−1X nt , (25)

respectively.
By using the definition β0 = P(1, 1) and equation (12), the

identity P(0, 1) = β0Â0 which follows from evaluating (15)
in z = 1, and by evaluating the derivatives of (14) in z = 1,
we find,

β0 = e (I − X + e′e)−1 ,

β1 = β0
(
λI + λ̄p̄(I − Â0)

) (
I − λ̄p̄X

)−1
,

βn = nβn−1λ̄p̄X
(
I − λ̄p̄X

)−1
, (26)

Finally, we can express α0 in terms of known quantities by
noting that α0 = P(1, 1) and by equation (12). Moreover,
by evaluating the nth derivative of (16) in z = 1 and by
applying the generalised Leibniz rule, we find,

α0 = e (I − X + e′e)−1 ,

αn =

(
βnpX nt

−

n∑
k=1

(
n
k

)
αn−k B̂k

)
(B̂0)−1. (27)

Summarising, in the nth step of the recursion, we first
determine Ân by (24) and B̂n by (25). We need these
matrices to calculate the vectors αn by (27) and βn by (26).
Evaluating (22) and (23) then yields the nth factorial moments
of the age and peak age, respectively. The corresponding nth
moment then follows from (21). The calculations are indeed
recursive: we only need vectors and matrices up to order
(n− 1) in the nth step.
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D. AGE OF INFORMATION DISTRIBUTION
The probability generating functions Ar (z) and Ap(z) of
the average and peak age of information can be inverted
numerically, see e.g. [59]. In the present setting, we can
however also retrieve a simple recursion for the probabilities.
To this end, consider the following Taylor series expansions
of the vector generating functions P(1, z) and P(z, 1),

P(1, z) =

∞∑
k=0

akzk , P(z, 1) =

∞∑
k=0

bkzk .

To simplify notation, we further introduce the expansion of
the matrix-generating function as well,

A(z) =

∞∑
k=0

Ãkzk .

From equation (17), we have,

A(z)(I−zp̄λ̄X ) − λ̄(I − zp̄X ) = 0.

Plugging the expansion of A(z) in this expression and
isolating the terms in zk (k = 0, 1, . . .) yields,

Ã0 = λ̄I , Ã1 = −p̄λ̄X ,

and,

Ãk = p̄λ̄Ak−1X ,

for k ∈ {2, 3, . . .}. Hence, we can recursively calculate the
matrices Ãk for any index k .

Analogously, using (14), we have,

P(z, 1)
(
I − λ̄p̄zX

)
− P(0, 1)λ̄p̄(1−z) − P(1, 1)(zλ + λ̄p) = 0.

Plugging the expansion of P(z, 1) in the expression above and
isolating the terms in zk (k = 0, 1, . . .) leads to,

b0 = P(0, 1) , b1 = λP(1, 1).

and

bk = (1 − λ)(1 − p)bk−1X

for k ∈ {2, 3, . . .}. Note that P(1, 1) and P(0, 1) are expressed
in terms of the system parameters in equations (12) and (13),
respectively.

Finally, from equation (14), we have

P(z, 1)
(
I − λ̄p̄zX

)
− P(0, 1)λ̄p̄(1−z)

− P(1, 1)(zλ + λ̄p) = 0 , (28)

We can then express ak in terms of the sequences {bk} and
{Ak} by plugging the three expansions in the expression
above. By isolating the terms in zk (k = 0, 1, . . .) in the
resulting expression, we find,

a0 = 0 , a1 = pb1X nt

FIGURE 1. Mean and standard deviation of the AoI at random slot
boundaries vs. the transmission probability p for low arrival intensity
λ = 0.1 and for different numbers of users M as indicated.

and,

ak

= bkpX nt
+ ak−1(X t

+ (1 − p)X nt) + p
k−1∑
ℓ=1

aℓAk−ℓ−1X nt

for k ∈ {2, 3, . . .}.
The recursions above allow for determining ak and bk for

any index k . Note that the nth term in the expansion of a
probability generating function equals the probability that the
corresponding random variable equals n. We can therefore
simply express the distribution of the age of information at
random slot boundaries and of the peak age of information
in terms of the vectors ak and the matrices Ãk . Indeed,
substituting P(1, z) and A(z) with their expansions in (19)
and (20), and isolating the term in zk yields,

P[Ar = k] = ake′ ,

P[Ap = k] =
(ak −

∑k
ℓ=0 aℓÃk−ℓ)X nte′

α0(I − Â0)X nte′
,

for k ∈ {0, 1, 2, . . .}.

III. NUMERICAL EXAMPLE
We now illustrate our results with some numerical examples.
All results follow from the analytic calculations in the
preceding sections. To verify the correctness of the analytic
results, we also simulated the system for various parameter
sets. We do not add the simulation results to the plots, as these
do not provide additional information.

Figures 1 and 2 show the mean and standard deviation of
the age at random slot boundaries and the peak age vs. the
transmission probability p, respectively. The arrival intensity
is fairly low (λ = 0.05) and the number of users varies
from M = 8 to M = 32 as indicated. For the parameters
at hand, increasing the transmission probabilities improves
performance, that is, the mean and standard deviation are
lower. The value of the transmission probability affects the
age in two ways. First, information remains longer at the
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FIGURE 2. Mean and standard deviation of the peak AoI vs. the
transmission probability p for low arrival intensity λ = 0.1 and for
different numbers of users M as indicated.

FIGURE 3. Mean and standard deviation of the AoI at random slot
boundaries vs. the transmission probability p for high arrival intensity
λ = 0.25 and for different numbers of users M as indicated.

sender if the transmission probability is lower. An increase
therefore means that the information is sent more timely.
On the other hand, a higher transmission probability also
increases the probability that there is a collision. For low
arrival intensity, one expects that a timely transmission is
more important as there is not that much information to
send and the collision probability is fairly low. These figures
indeed confirm this. We further observe that the presence of
more users negatively affects performance. This of course
stems from having more collisions if there are more users.
Comparing the mean age and mean peak age, the latter
is higher for all p. Somewhat surprisingly, the standard
deviations of the age and peak age are almost identical, the
standard deviation of the peak age is somewhat larger, but the
difference is limited to 3.5%.

In Figures 3 and 4 we retain the assumptions of the
preceding figures, but we increase the arrival intensity to
λ = 0.2. Here the adverse effects of the transmission
probability on the age become apparent. The performance
only improves with increasing p for low values, while for

FIGURE 4. Mean and standard deviation of the peak AoI vs. the
transmission probability p for high arrival intensity λ = 0.25 and for
different numbers of users M as indicated.

FIGURE 5. Probability mass function of the age and peak age of
information for λ = 0.1, p = 0.1 and M as indicated.

higher p a further increase affects performance negatively.
This can be explained by the increased arrival rate and the
corresponding increase of collisions for higher p. We again
see that more users have a negative impact, and we find that
the mean peak age exceeds the mean age. The somewhat
surprising fact that the variance of age and peak age are
almost identical is confirmed as well. The standard deviation
of the peak age is again slightly larger, the difference being
less than 1%.

The standard deviation is somewhat smaller than the mean
(peak) age of information in the preceding plots. As the age is
non-negative, one expects that the probability mass function
of the age is positively skewed. This is indeed confirmed by
Figures 5 and 6 which show the age and peak age probability
mass functions for different values of the number of usersM
as indicated. The arrival rate equals λ = 0.05 in both
plots, which corresponds to the rate in plots 1 and 2. The
transmission probability equals p = 0.1 if Figure 5 and
p = 0.3 in Figure 6. A comparison of the age and peak age
probability mass functions in both plots and for all M shows
that low values of the age are more likely than low values of
the peak age, while for somewhat larger values we observe
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FIGURE 6. Probability mass function of the age and peak age of
information for λ = 0.1, p = 0.3 and M as indicated.

FIGURE 7. AoI-optimal and pAoI-optimal transmission probabilities vs.
the arrival probability λ for different M as indicated.

the opposite. The difference between both probability mass
functions is most outspoken for these low to intermediate
age values. For larger values of the (peak) age, the (tail)
probabilities converge to the same value which does depend
on M . The number of users M affects the probability mass
functions as expected: higher M means more collisions and
the probability shifts to the right, with tail probabilities that
decay more slowly.

To investigate how the optimal p changes with the packet
arrival rate λ, Figure 7 depicts the optimal pwhich minimises
the mean AoI at slot boundaries, as well as the p which
minimises the mean pAoI. When there are but a few packets,
it is optimal to immediately send.When the packet arrival rate
is higher, the optimal probability drops quickly. The drop is
initiated for lower λwhen the number of usersM+1 is higher.
This is not unexpected, as the chance of contention increases
when the number of users increases. Finally, note that
optimising the AoI and pAoI yields considerably different p,
the optimal p for the pAoI is higher than the p optimising
the AoI. Hence, there is no single optimal transmission
probability p, and the choice between optimising for the AoI
at slot boundaries or the peak AoI depends on the application
at hand.

FIGURE 8. AoI-threshold-optimal transmission probabilities vs. the arrival
probability λ for different M and θ as indicated.

FIGURE 9. pAoI-threshold-optimal transmission probabilities vs. the
arrival probability λ for different M and θ as indicated.

Depending on the application at hand, one prefers min-
imising the probability that the age of information exceeds
some threshold θ over minimising the mean (peak) age
of information. Therefore, Figure 8 shows the optimal
transmission probability to minimise the probability that the
age exceeds a threshold θ while Figure 9 shows the optimal
transmission probability for the peak age. On both plots,
different thresholds θ (in terms of slots) and different numbers
of users M are assumed as indicated. When there are but a
few packets, it is optimal to immediately send, in line with
the p that optimises the mean (peak) age. When the packet
arrival rate is higher, the optimal probability drops quickly.
The drop is initiated for lower λ when the number of users
M + 1 is higher, and when the threshold θ is higher. While
the shape of the curves in Figures 7, 8 and 9 is similar, the
drop is quick, and initiated at considerably different λ which
complicates the optimal control.

IV. CONCLUSION
We considered the age and peak age of information for
slotted ALOHA. Our analytic approach is exact and can
generate various performance measures like the moments
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and the probability mass function of the age and peak
age of information fast. While we relied on a probability
generating function approach for the main performance
measures, we also provided recursive algorithms to calculate
the moments and the probability mass function of the age of
information and the peak age of information. No numerical
conversion of the generating function is needed. We then
explore the impact of packet arrival and transmission
probabilities on the age of information through a numerical
example. In particular, we find the optimal transmission
probabilities for ALOHA which either minimise the mean
(peak) age of information or the tail probabilities of the
age. The work paves the way towards safety assessment of
networked cyber-physical systems.
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