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Abstract—Research on the effects of essential hyperparameters
of DP-SGD lacks consensus, verification, and replication. Contra-
dictory and anecdotal statements on their influence make matters
worse. While DP-SGD is the standard optimization algorithm for
privacy-preserving machine learning, its adoption is still com-
monly challenged by low performance compared to non-private
learning approaches. As proper hyperparameter settings can
improve the privacy-utility trade-off, understanding the influence
of the hyperparameters promises to simplify their optimization
towards better performance, and likely foster acceptance of
private learning.

To shed more light on these influences, we conduct a replica-
tion study: We synthesize extant research on hyperparameter
influences of DP-SGD into conjectures, conduct a dedicated
factorial study to independently identify hyperparameter effects,
and assess which conjectures can be replicated across multiple
datasets, model architectures, and differential privacy budgets.
While we cannot (consistently) replicate conjectures about the
main and interaction effects of the batch size and the number
of epochs, we were able to replicate the conjectured relationship
between the clipping threshold and learning rate. Furthermore,
we were able to quantify the significant importance of their
combination compared to the other hyperparameters.

Index Terms—Replication Study, DP-SGD, Hyperparameters,
Differential Privacy, Privacy-Preserving Machine Learning

I. INTRODUCTION

Replication studies serve the research by verifying experi-
mental results, by refining scientific theories, and ultimately by
helping establish highest levels of reliability in the scientific
record of knowledge. Therefore, where any line of inquiry
encounters a problem of scattered and unverified insights,
replicatory works can help streamline understanding and so
advance the research. One such problem is found in the recent
research on hyperparameter effects in differentially private
stochastic gradient descent (DP-SGD). Multiple recent works
have contributed propositions and valuable insights into these
effects. However, the insights are scattered across many works
[1]–[12] and what is more, the insights are not consistently
and reliably based on independent empirical verification. Here
especially, replication can create consensus and refine the
current body of knowledge.

DP-SGD [1] has become the de facto standard for training
machine learning models with differential privacy guarantees
[13], [14]. Yet, models trained with DP-SGD perform worse
than their counterparts trained with stochastic gradient descent

(SGD) [15]. By properly adjusting the learning pipeline, recent
works not only managed to significantly decrease the accuracy
gap to SGD. They also demonstrated that hyperparameter ef-
fects differ between SGD and DP-SGD. For example, multiple
works demonstrated that the optimal batch size is significantly
larger in DP-SGD than in SGD [9], [10], and further ob-
servations of other hyperparameter effects have been made.
However, to date, no systematic or replicatory studies have
been conducted on the hyperparameter effects in DP-SGD.

In this work, we conduct a replication study on how
DP-SGD’s essential hyperparameters (i.e. batch size, num-
ber of epochs, learning rate, and clipping threshold) affect
model accuracy on non-convex machine learning tasks. We
do not intend for this work to break ground on state-of-the-
art performance; therefore, we also do not consider specific
alterations to the learning pipeline [11], [16] or pre-training
on public data [9], [11]. Instead, we focus on refining the
understanding of the essential hyperparameters’ effect on DP-
SGD. To this end we review extant literature which discusses
the effect of hyperparameters of DP-SGD or otherwise reports
on them. Based on these insights we synthesize six testable
conjectures. To assess the replicability of the conjectures,
we conduct a dedicated experiment to independently identify
the hyperparameter effects of DP-SGD in a systematic and
structure way. As most research on the effect of hyperparame-
ters of DP-SGD considered image classification and language
modeling, we also chose these two domains for our study.
In our factorial experiments we evaluate 3822 hyperparameter
tuples across six datasets, six model architectures, and three
differential privacy budgets. Based on the results, we assess
the hyperparameters’ importance, their main, and interaction
effects. Subsequently, we discuss the effects identified in
our experiment in relation to the conjectured effects from
related work. Besides enabling us to assess the replicability1

of conjectures from related work, this large-scale experiment
also provides the most comprehensive investigation on the
hyperparameter effects of DP-SGD to date.

In summary, we make the following contributions:

• In a first step toward replication, we review the literature

1We follow the terminology of the ACM on replicability, see https://www.
acm.org/publications/policies/artifact-review-and-badging-current.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current


and collect scattered insights into hyperparameter effects
in DP-SGD. Further, we synthesize these insights into
six testable observations about hyperparameter effects of
DP-SGD.

• Our large-scale factorial study across multiple datasets,
model architectures, and differential privacy budgets in-
dependently identifies and quantifies the importance of
main and interaction effects of the four essential hyper-
parameters of DP-SGD.

• We evaluate which of the synthesized conjectures about
the hyperparameter effects in DP-SGD can be supported
by independent experimental results.

The remainder of this paper is organized as follows: In
Section II we introduce DP-SGD, how the differential privacy
budget is calculated, and how the budget interacts with the
algorithm’s hyperparameters. In Section III we review the
related work on the hyperparameters effect and synthesize
their insights into conjectures. In Section IV we motivate and
introduce our study design including what machine learning
tasks we evaluated, how we chose and evaluated the hyper-
parameter space, and especially, how we identified main and
interaction effects based on the results from our experiment.
In Section V we report the identified main and interaction
effects of the hyperparameters and discuss the replicability of
the conjectures from related work. In Section VI we conclude
this study.

II. BACKGROUND

A randomized mechanismM : D → R with domain D and
range R satisfies (ε, δ)-differential privacy [17] if for any two
adjacent inputs d, d′ ∈ D and for any subset of (measurable)
outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eε Pr[M(d′) ∈ S] + δ.

To make the stochastic gradient descent (SGD) algorithm
(ε, δ)-differentially private, the most common approach re-
quires two major alterations to the SGD algorithm [1]. First,
for each step of SGD, the gradients of each training record
inside a minibatch are individually clipped such that their
L2-norm does not exceed the clipping threshold C: Let x
denote a minibatch of training records of size B that is
sampled from all training records, xi denote the ith training
record inside the minibatch, and g(xi) denote the calculated
gradient for xi. In DP-SGD, the gradient g(xi) is scaled to
g(xi) ← gt(xi)/max(1, ∥gt(xi)∥2

C ). Note that this clipping
is done before averaging the gradients over all examples in
the minibatch. Second, after all the individual and clipped
gradients g(xi) have been averaged together, Gaussian noise
with variance σ2C2 (where σ is called noise multiplier) is
added to the averaged gradient: ĝ(x) ← 1

B (
∑

i g(xi) + Z)
with Z ∼ N (0, σ2C2I). The clipped, noised, and averaged
gradient ĝ(xi) is then used for a standard gradient descent
step.

The differential privacy budget (ε) of training a model
with DP-SGD is given by the batch size (B), the noise
multiplier (σ), the number of epochs (E) and the number

of training examples (N ) used for training2. Given values
for these four hyperparameters and δ, the privacy budget
(ε) can be computed without the need to actually train the
model. Increasing the number of epochs (E) or the batch size
(B) increases the consumed privacy budget. Increasing the
noise multiplier (σ) or the number of training examples (N )
decreases the consumed privacy budget. The clipping threshold
(C), further hyperparameters, and model architecture choices
do not influence the calculation of the differential privacy
budget. Equation 1 demonstrates this relationship (i.e. whether
ε increases or decreases with respect to the parameters).

ε (B,E, σ,N) ≈ E,B

σ,N
(1)

However, as one usually targets a specific differential pri-
vacy budget, the noise multiplier σ is not set a priori as
Equation 1 would suggest, but calculated based on the other
values: Given a batch size B and the dataset size N , the noise
multiplier σ is calculated such that the targeted privacy budget
ε is reached after training for E epochs. Consequently, when
targeting a specific differential privacy budget, changing one
of the three variables will require adjusting at least one of the
remaining ones. For example, given a hyperparameter config-
uration, increasing the number of epochs in that configuration
will either require decreasing the batch size or increasing
the noise multiplier in order to achieve the same differential
privacy budget.

While increasing the amount of training data (N ) is not only
beneficial to machine learning in general, it also decreases the
consumed privacy budget of training a machine learning model
with DP-SGD. However, increasing the amount of training
data is difficult, especially when working with sensitive data.
We therefore do not further discuss this parameter in more
detail, as one usually has no option to increase the amount of
training data.

Please note that compared to SGD, the role and influence of
hyperparameters in DP-SGD is slightly different and at times
becomes more complex. For example, as also discussed by
Dörmann et al. [10], in classic SGD the batch size defines
the amount of inherent sampling noise in each gradient step.
In DP-SGD, however, it also affects the noise multiplier σ
via the privacy amplification by sub-sampling theorem (in
combination with the dataset size) [1]. Thus, by changing the
batch size in DP-SGD, one does not only affect the inherent
sampling noise of the minibatch as in SGD, but also the
added noise of the Gaussian mechanism required to satisfy
differential privacy. Further, the role and influence of the
number of epochs and the learning rate also changes. Thus
a direct comparison to the hyperparameter effects in SGD is
non-trivial.

III. RELATED WORK

Many works discussed the effects of the hyperparameter on
model accuracy in varying degrees of detail, but the insights

2For a more detailed derivation of how exactly these parameters define the
differential privacy budget, please see Abadi et al. [1] or McMahan et al. [2].



are distributed across many works. Recently, Ponomareva et
al. [18] (partially) summarized results on the influence of
hyperparameters on DP-SGD. However, their summary does
not contain any empirical evaluations of their validity. In con-
trast, we not only summarize previous findings from literature,
but also test whether we can replicate these results with an
independent and dedicated study. Further, we are also the first
to additionally quantify the strength of the hyperparameters
main and interaction effects by applying a functional analysis
of variance.

In the following, we discuss the insights from related work
on the effects of the essential hyperparameters (i.e. batch size,
number of epochs, learning rate, and clipping threshold) on
model accuracy and privacy budget. We focus our attention on
observations that can be made from the results of the related
work, the authors’ observations, and the authors’ conjectures
made on the influence of the hyperparameter of DP-SGD.
Where possible, we directly extract the conjectures made by
related work or otherwise synthesize the observations into
conjectures ourselves. In total, we form six groups labeled
Conjecture 1 (C1) through Conjecture 6 (C6).

A. Batch Size

Increasing the batch size (B) will increase the consumed
privacy budget (see Equation 1), as larger batch sizes benefit
less from privacy amplification by sub-sampling [1]. Thus,
intuitively, one would opt for a very small batch size to reduce
the consumed privacy budget. However, it has been shown
empirically that larger batch sizes are preferable to smaller
batch sizes in terms of maximizing model accuracy, even
though increasing the batch size has to be balanced with an
increase of the added noise or a decrease in the number of
epochs.

C1: The batch size is the most important hyperparameter:
Besides considering the value of hyperparameters, some hy-
perparameters are also deemed more important than others.
Especially the batch size is deemed the most important hy-
perparameter to tune in DP-SGD [9] and its tuning should
be preferred to adjusting other hyperparameters such as the
clipping threshold or the noise multiplier [2]. However, extant
research on DP-SGD does neither operationalize this concept
nor quantifies it empirically.

C2: Increasing the batch size increases accuracy: Finding
an optimal batch size is discussed in many works and the
general consensus is that larger batch sizes are better than
smaller batch sizes for training with DP-SGD; for private
training from scratch [1], [2], [4], [5], [8], [10], [11] and
also for private fine-tuning [9], [12], [19]. However, while
many works seem to agree on the concept of large batch sizes
being beneficial, the range of values tagged as large can vary
a lot. For example, on CIFAR-10 and with varying models
and hyperparameter settings the reported optimal batch sizes
range from 1024 to 16384 [1], [8], [10], [11]. While varying
greatly, these proposed batch sizes are all significantly larger
for DP-SGD than for SGD [20].

Dörmann et al. [10] offer a possible explanation for why
larger batch sizes are beneficial. Stochastic gradient descent
contains inherent sampling noise due to the minibatch sam-
pling technique. This has been shown to be beneficial for
generalization performance [20]. Since DP-SGD adds addi-
tional Gaussian noise onto the gradients of each training step,
Dörmann et al. argue that the inherent sampling noise of small
batch sizes is no longer necessary to improve generalization
performance. Thus, large batch sizes paired with correspond-
ingly large noise multipliers can lead to the same effect. While
Dörmann et al. do not explicitly state that this phenomenon
is the cause of why larger batch sizes are beneficial for DP-
SGD3, it is a reasonable and interesting theory derivable from
their work.

C3: The batch size has interaction effects: There also have
been many additional observations or recommendations for
setting the other hyperparameters in conjunction with the batch
size: For example, Papernot et al. [6] and Dörmann et al.
[10] suggest combining large batch sizes with few number
of epochs to reduce the computational costs while retaining
comparative performance. Further, large batch sizes should be
combined with a large learning rate [4] and its optimal value
depends on the learning rate [8] and number of epochs [9],
[11].

B. Number of Epochs

In the non-private SGD setting, the number of epochs
usually is not tuned as a hyperparameter. Rather, a model
is typically trained until convergence or until a predefined
early-stopping criterion is met. With DP-SGD, however, each
epoch of training consumes privacy budget. This makes also
intuitive sense: Training for more epochs means that each
training record is used for more updates to the model. But
as in a differential privacy setting every data access consumes
privacy budget, more epochs also consume more budget. Thus,
increasing the number of training epochs (E) will increase the
privacy budget (see Equation 1).

Towards choosing the number of epochs, recall that the
noise multiplier is calculated such that the training reaches the
desired privacy budget exactly after training for the specified
number of epochs (given a batch size and number of epochs).
Thus, the optimal number of epochs would be such that the
model has converged exactly after training for these number
of epochs and that the privacy budget would have been exactly
consumed. Training for more epochs is not possible without
exceeding the specified privacy budget and converging too
early wastes privacy budget that would have been better spent
elsewhere.

Therefore, the choice of the number of epochs is important
and its misconfiguration can lead to unnecessary poor perfor-
mance.

C4: The number of epochs has a significant effect on
model accuracy: Compared to the batch size, there are less

3They only state that increasing the noise multiplier and the batch size
should increase generalization performance.



insights on the optimal setting of the number of epochs,
but multiple works attribute a measurable effect on model
accuracy to the number of epochs. De et al. [11] claim that
there exist an optimal value for the number of epochs and
that as the batch size increases, the optimal number of epochs
also seems to increase [18]. Their results also indicate that
the higher the targeted privacy budget, the more training steps
are optimal (which is either achieved by decreasing the batch
size or increasing the number of epochs). Kurakin et al. [12]
suggest that increasing the number of epochs and offsetting the
additional privacy cost with a higher noise multiplier increases
model accuracy. Papernot et al. [6] suggest favoring a small
number of epochs and spending the privacy budget on large
batch sizes instead. However, we deem there not to be an
overarching theme that allows us to formulate a more precise
conjecture.

C. Clipping Threshold

The clipping threshold (C) is the last hyperparameter that
relates to the DP modifications of SGD. While not directly
impacting the privacy budget, it scales the amount of noise
introduced and impacts the signal-to-noise ratio of the gradient
updates. A higher clipping threshold will clip less gradients,
therefore preserving more information. However, the amount
of noise per parameter scales linearly with the clipping
threshold. Thus, a higher clipping threshold increases the
amount of added noise. In contrast, a low clipping threshold
clips the gradients more aggressively, reducing the amount of
information in each gradient update, but also decreases the
added noise.

C5: The clipping threshold’s effect is affected by the
learning rate: Multiple works described the influence of the
clipping threshold in DP-SGD. Kurakin et al. [12] observed
that the best private accuracy is obtained when the clipping
threshold is chosen to be below a threshold value CT . Below
that threshold, large clipping thresholds have been reported to
pair well with low learning rates and vice versa [9], [11], [12].

D. Learning Rate

Even though the learning rate (lr) has no direct impact on
the differential privacy budget of DP-SGD, it is an integral
component of SGD. Its setting is important for achieving rea-
sonable performance [21]. It has been shown empirically that
the optimal value for the learning rate differs between SGD
and DP-SGD [6], [8], [11], [22]. However, it is inconclusive
whether the optimal learning rate for DP-SGD is lower [8] or
higher [6], [9], [22] than for SGD.

C6: The learning rate’s effect is affected by the clipping
threshold: Kurakin et al. [12] observe a relationship between
the clipping threshold and learning rate. They observe that the
highest model accuracy is achieved with inversely proportional
learning rate and clipping threshold values (which would mean
that the product lr ·C is constant). Kurakin et al. [12] conclude
that there is an optimal update size such that values for
the learning rate and the clipping threshold do not matter
significantly, as long as their product is constant.

IV. STUDY DESIGN

The primary goal of this study is to assess how well
conjectures about the effects of DP-SGD’s hyperparameters
can be replicated across different datasets, model architectures,
and differential privacy budgets. However, the insights from
related work, on which these conjectures are based, come
from very diverse experimental settings, which often were not
designed to derive hyperparameter effects in the first place.
For example, some insights are based on the results of a
hyperparameter optimization run, which can cause a bias in
the hyperparameter space, thus making these results often unfit
for identifying hyperparameter effects [23]. Other insights are
derived from one-factor-at-a-time (OFAT) experiments, which
cannot detect interaction effects and are prone to identify
incorrect main effects [24]. Furthermore, some insights are
based on experiments that do not consider multiple datasets,
model architecture, or differential privacy budgets, making
it unclear whether and how well the effects generalize. In
consequence we abandon all experimental setups of original
works. Instead, we identify the hyperparameter effects of DP-
SGD independent of those works so that we may compare our
new results to the conjectures derived from the experiments
of the related works. For that reason, we conduct a factorial
study to derive in a systematic and structure way both the main
and interaction effects of hyperparameters in DP-SGD across
multiple datasets, model architectures, and privacy budgets.

A. Machine Learning Tasks, Datasets and Models

To identify the effects of the hyperparameters on model
accuracy, we conducted a fractional factorial study [24]. The
four key hyperparameters of DP-SGD (batch size, number
of epochs, clipping threshold, and learning rate) are inde-
pendently randomly sampled, a model is trained with these
hyperparameter values using the Opacus framework [13] as
implementation of DP-SGD, and the models’ test accuracy is
recorded as a response variable. It is important to note that to
discover the effects properly, the experiments have to follow a
factorial design compared to the often-popular OFAT design.

For the remainder of this paper, we define a scenario as tuple
of dataset, model architecture and targeted privacy budget. To
cover as many scenarios used in the related works as possible
while still keeping the computational complexity (and thus
resource consumption) of factorial experiments in check, we
chose to conduct three different sets of experiments. Each
experiment set is a collection of multiple datasets, model
architectures and privacy budgets. We classify the experiment
sets as a simple image classification task, an intermediate
image classification task, and a simple text classification task
(see Table I). Inside each experiment set, the scenarios are
full factorial and the hyperparameters are uniformly randomly
sampled. The hyperparameter space is the same for every
experiment set.

For the simple image classification set, we chose SVHN [25]
and CIFAR-10 [26] as comparatively small and easy datasets.
We chose two ResNets (i.e. R18 and R34) as popular and
canonical vision architecture. To make the ResNets compliant



TABLE I: Overview of the three experiment sets (IS = Image
Simple, II = Image Intermediate, TS = Text Simple), datasets,
architectures, privacy budget (ε), and number of hyperparam-
eter tuples sampled (#S).

Set Datasets Architecture ε #S

IS {C10, SVHN} {DP-CNN, R18, R34} {3, 5, 7.5} 125
II {IN, C100} {DP-CNN, R18, D121} {7.5} 150

TS {NEWS, IMDB} {RNN, LSTM} {7.5} 168

with DP-SGD, we replaced the batch normalization layer
with group normalization. Further, we included the DP-CNN
architecture of Papernot et al. [22] because it outperforms
conventional image processing architectures such as plain
ResNets without additional architectural modifications or data
augmentation at the chosen privacy budgets [11]. We trained
the models at three commonly used privacy budgets ε ∈
{3, 5, 7.5} with δ = 10−5. For each of the 18 scenarios,
we evaluated 125 uniformly randomly drawn hyperparameter
tuples.

For the intermediate image classification set, we chose more
difficult datasets with ImageNette and CIFAR-100. ImageNette
is a subset of the popular ImageNet dataset, containing 13 393
images of size 160 × 160 px across 10 classes, compared
to for example CIFAR-10’s RGB images of size 32 × 32 px
[27]. Additionally, we also included CIFAR-100 as it contains
RGB images of 100 different classes compared to CIFAR-10’s
10 classes. Both are considered more difficult than CIFAR-
10 or SVHN. As model architectures we used DP-CNN, a
ResNet-18, and additionally a DenseNet-118 [28]. As we did
neither expect nor observe any meaningful difference between
the privacy budgets in the simple image classification set,
we only trained models with a targeted privacy budget of
ε = 7.5 for the intermediate image and simple text set to
reduce the amount of necessary computation. For each of the
six scenarios, we evaluated 150 uniformly randomly drawn
hyperparameter tuples.

To also investigate the hyperparameter effects in machine
learning tasks from domains different to image classification,
we included a text based domain, the second most popular
domain for previous hyperparameter studies of DP-SGD. We
choose the IMDB [29] and NEWS [30] datasets for text
classification. We used two simple model architectures which
embed the words in R100 using GloVe [31], followed by an
RNN or LSTM layer of size 192, followed by a fully connected
layer of size 96 into the output layer, and use tanh as activation
function. For each of the four scenarios, we evaluated 168
uniformly randomly drawn hyperparameter tuples.

B. Hyperparameter Space

One key aspect during the design of this study was to
minimize the risk of missing well-performing regions in the
hyperparameter space, ultimately skewing the conclusions on
the hyperparameter effects. To mitigate this risk, we used a
simple heuristic to evaluate the search space of each hyperpa-
rameter. After running the experiments, we partition the results

TABLE II: Overview of the hyperparameter ranges tested in
our experiment; a range is described by its lower and upper
bound; N denotes the number of data samples in a dataset.

Hyperparameter Symbol Range
From To

Batch Size B 16 N
Epochs E 25 500
Learning Rate lr 10−5 10
Clipping Threshold C 10−5 10

Privacy budget ε {3, 5, 7.5}
Relaxation param. δ

{
10−5

}

to only include the hyperparameter tuples that perform well.
We then examine the marginal density distribution of each
hyperparameter in this subset. If the mode of this distribution
is near the boundary of the chosen range and the search space
could be extended in that direction, the chosen search space is
insufficient and needs to be adjusted. Based on this heuristic,
we adjusted the range of the number of epochs twice. This led
to the following hyperparameter space.

As the range of possible batch sizes is naturally limited by
1 and the number of available training examples, recommen-
dations regarding the optimal batch size vary widely in related
work, and even full batch training being recommended, we did
not limit the search range for the batch size. Thus, it ranges
between 16 (to still be able to benefit from GPU acceleration)
and the size of the dataset (i.e. full batch training). Based on
observations from prior work, the range of the learning rate
and the clipping threshold is set to be between 10−5 and 10
[12] and the range for the number of epochs to be between 25
and 500 [11]. Table II summarizes the hyperparameter search
space of the experiment.

C. Identifying Main and Interaction Effects

The training of a deep learning model can be modeled as
a function evaluation: The learning algorithm (e.g. SGD) is
a function that is parameterized by multiple variables (e.g.
the hyperparameters, the model architecture, and the dataset)
and returns a trained model (or, in our viewpoint, a model
accuracy). Thus, the model accuracy becomes a function of
the hyperparameters, model and dataset.

One way to characterize such a functional relationship
between variables is by describing the main and interaction
effects of the independent variables (i.e. the hyperparameters)
on the dependent variable (i.e. the model accuracy). A main
effect describes how the change in one independent variable
will change the value of the dependent value, in our case
how a single hyperparameter directly impacts model accuracy
independently of and across all values of the other hyperpa-
rameters. An interaction effect describes how the effect of one
independent variable on the dependent variable is affected by
the value of another independent variable. Last, the strength
of the effects – the importance of (sets of) hyperparameters –
can be described via the amount of variance of the dependent
variable they explain.



To identify the effects based on the results from a factorial
experiment, one can fit a regression model to approximate
the relationship between independent and dependent variables.
Subsequently, the effects of the independent variables can
be extracted from the fitted regression model. Explicating
main and interaction effects from simple parametric regression
models such as linear regression is straightforward, as the
effects are the learned coefficients of each regressor. Unfortu-
nately, linear regression is too simple of a model to properly
approximate the relationship in question, as the relationship
between the variables is not linear. Instead and based on an
automated model selection and hyperparameter optimization
run, we chose an extremely randomized trees regression model
[32]. However, while tree-based models can approximate the
relationship significantly better than linear models, identifying
main and interaction effects from tree-based regression models
is more complicated.

One option is to use interpretable machine learning (IML)
methods that try to explain the effects of features on the
prediction of machine learning models. First, we analyzed
the regression model with a functional analysis of variance
(fANOVA) [33], [34] to assess the importance of each hy-
perparameter. For each input variable of a regression model
(here any combination of DP-SGD’s four hyperparameters),
fANOVA calculates the amount of variance in the model’s
outcome (here predicted accuracy) the input explains. This
not only works for single variables, but also for sets of input
variables and thereby allows us to quantify the importance
of the interaction effects. For interaction effects, fANOVA
produces two different values, the individual and the total
amount of variance the set of input variables explain. The total
variances describe the amount of variance that the combination
of multiple input variable explain. It is the sum of the variance
each input variable exclusively explains plus the amount
variance the interaction individually explains. The individual
variance of a set of variables describes the additional amount
of variance that can only be explained by observing input vari-
ables in conjunction instead of in isolation. For example, let V1

and V2 be two variables, let TI denote the total importance of a
set of variables and II denote the individual importance of a set
of variables. Then TI(V1, V2) = TI(V1)+TI(V2)+II(V1, V2).

Second, to assess the main and interaction effects we use in-
dependent conditional expectation (ICE) [35] and accumulated
local effect (ALE) [36] plots. Both, ICE and ALE plots aim
to describe how the output of a regression model is affected
by an input along its range. Much simplified, they report
the expected outcome of the regression model for each value
of an input variable. Additionally, we used centered ICE (c-
ICE) and derivative ICE (d-ICE) plots to make the analysis
of interaction effects easier. In c-ICE plots the level effects
of the individual conditional expectation curves are removed,
thus effectively making them all start at the same vertical
point. This is helpful to detect and identify interaction effects.
The d-ICE plots display the first derivative of the individual
conditional expectation curves, revealing whether interaction
effects are equally distributed across their range. As the

fANOVA also describes the individual importance of sets of
hyperparameters, thus the amount of variance their interaction
explains, the fANOVA results informed our analysis towards
which interaction effects are worth investigating.

Regression models for our analysis: We fitted three ex-
tremely randomized tree regression models [32] – one for each
experiment set – that approximate the relationship between
batch size, number of epochs, learning rate, clipping threshold,
dataset, model architecture, privacy budget, and test accuracy.
To make the results comparable across scenarios, we min-max
scaled the test accuracy to be in [0, 1] and further included
dataset, model architecture, dataset size, and the sampling rate
(i.e. the batch size divided by the dataset size) into the set of
predictor variables.

For the majority, there was no difference in the effects
between dataset, model architecture, and differential privacy
budget, thus, we grouped all scenarios of one set together into
one regression model to ease the subsequent analysis. This
aligns with theory, that predicts hyperparameter effects to be
similar on similar scenarios (i.e. inside the experiment sets)
[37], [38]. Thus, in the following analysis, we generally omit
the absence of differences and only report if significant dif-
ferences between dataset, model architectures, or differential
privacy budget were noticeable. The regression models had
a mean absolute error on a holdout set between 0.036 and
0.057 on the min-max scaled test accuracy. We deem this to be
accurate enough to derive general main and interaction effects.
For the subsequent analysis the regression models were refitted
with all available data including the holdout set.

V. RESULTS

In the following we systematically analyse our results to
determine the hyperparameters’ importance, their main effects
as well as their interaction effects. Subsequently and where
applicable, we compare our findings with the conjectures
derived from related work and discuss whether we were able
to replicate results that support the conjectures.

A. Hyperparameter Importance

As first analysis step, we calculate the importance of each
(set of) hyperparameter using a functional analysis of variance,
see Table III. The results show that the learning rate (lr) and
clipping threshold (C) are the most important hyperparame-
ters. Individually they each already account for between 23%
and 28% of the variance, their interaction for between 10%
and 13%, and combined for between 59% and 60%.

In contrast, the batch size (B) and the number of epochs
(E) seem rather unimportant overall, as they individually only
account for 3% or less of the total variance for the image
classification task. There also does not seem to be a strong
interaction between these two.

The other non-negligible interaction effects seem to be
between the number of epochs and the learning rate (E+lr)
or clipping threshold (E+C) respectively with 3.5% and
4% of accounted variance respectively for the simple image
classification set.



TABLE III: The amount of individual and total variance each
hyperparameter subset explains across the three experiments.
Values with non-negligible individual importance are high-
lighted in bold.

Hyperparameter Image Simple Image Inter. Text Simple
Indiv. Total Indiv. Total Indiv. Total

B 0.004 0.004 0.017 0.017 0.011 0.011
E 0.026 0.026 0.007 0.007 0.001 0.001
lr 0.232 0.232 0.232 0.232 0.281 0.281
C 0.24 0.24 0.241 0.241 0.226 0.226

B+E 0.002 0.032 0.003 0.026 0.001 0.012
B+lr 0.009 0.245 0.01 0.259 0.018 0.309
E+lr 0.035 0.292 0.016 0.255 0.005 0.287
B+C 0.006 0.25 0.016 0.273 0.016 0.252
E+C 0.04 0.306 0.011 0.259 0.004 0.231
lr+C 0.116 0.588 0.128 0.6 0.096 0.602

B+E+lr 0.003 0.31 0.003 0.287 0.001 0.318
B+E+C 0.005 0.323 0.003 0.298 0.001 0.259
B+lr+C 0.01 0.617 0.019 0.663 0.014 0.661
E+lr+C 0.032 0.72 0.016 0.651 0.007 0.62

B+E+lr+C 0.003 0.762 0.003 0.726 0.001 0.682

B. Main Effects

In order to identify main effects we used individual condi-
tional expectation (ICE) and accumulated local effect (ALE)
plots. Please note that for clarity, the ICE plots only contain
a random fraction of all ICE curves.

1) Batch size: Analyzing the effect of the batch size on
model accuracy has to be prepended with a word of cau-
tion: Comparing or aggregating the batch size’s effect across
datasets is challenging as its range of possible values can
be different for different datasets. For example, ImageNette
has only 9469 training images while the NEWS dataset has
120k training examples. Thus, comparing their effect based on
absolute values is difficult. Instead, analyzing the batch size
as sampling rate (batch size divided by the number of training
examples) seems to allow for an easier comparison as they
are uniformly distributed in the input space across datasets.
However, one has to be keep in mind that the same sampling
rates on two different datasets can translate to different actual
batch sizes. As both approaches have benefits and drawbacks,
we decided to incorporate both viewpoints into our analysis.

As already indicated by the fANOVA, the batch size’s
effect on the expected min-max normalized model accuracy
is not very strong: For the image classification tasks, the
ALE plots reveal the batch size only affects the expected
min-max normalized accuracy by at most 4%, see Figure 1.
Furthermore, the effect itself, even though its amplitude is
very small, varies across dataset and model architectures. For
example, in the simple image classification set, the batch
size’s and sampling rate’s effect on the expected min-max
normalized model architecture on CIFAR-10 plummets for
batch sizes smaller than 10k while on SVHN the effect peaks
in this area. Similarly, in the advanced image classification set,
the batch size’s effect with the DenseNet or ResNet peaks for
batch sizes smaller than 5k, whereas the effect for the DP-
CNN peaks at round 20k and is the lowest below 10k. Thus,
no general effect can be easily formulated.

The text classification tasks seem more strongly affected
by the batch size, up to 8% according to the ALE plots,
see Figure 1. While the sampling rates’ effect seems to be
consistent across the datasets, the batch sizes’ and sampling
rates’ effects differ between the model architectures. The
overall positive effect for smaller batch sizes and sampling
rates can be mostly attributed to the LSTM model, as the
RNN model is not strongly affected by the batch size or
sampling rate. This implies, that the batch sizes’ effect is
not attributable to DP-SGD in general, but differs between
scenarios. Further, this clearly highlights the importance of
contextualizing conjectured hyperparameter effects and that it
is necessary to test such conjectures for generalization.

To summarize, based on our results, the batch size does
neither exhibit a strong main effect (as it explains only little
variance and the amplitude of the ALE plots is mostly very
small) nor exhibits a consistent effect across datasets or model
architectures (as for some scenarios, the effect increases with
increased batch sizes, for others the effect decreases, and for
some the batch size does not seem to exhibit any effect at all).
Thus, we cannot replicate results that suggest the conjectured
effects of the batch size in DP-SGD, especially C1 that the
batch size is the most important hyperparameter to tune or C2
that increasing the batch size will increase model accuracy.
These effects might hold for certain scenarios, but we cannot
attribute a general batch size effect to DP-SGD.

2) Number of Epochs: As indicated by the fANOVA,
the targeted number of epochs overall only has a small to
negligible effect on the expected model accuracy across all
sets.

For the image classification tasks, the effects of the number
of epochs is straightforward: In the simple task, the expected
min-max normalized model accuracy increases by roughly
15% up to 300 epochs and plateaus afterwards, while in the
advanced image task, it increases by roughly 9% up to its peak
at 175 epochs and slightly decreases afterwards, see Figure 2.
In the advanced image task, for the CIFAR-100 dataset the
expected model accuracy drops by up to 12% for small epochs
(E < 100) compared to the ImageNette dataset. Besides this,
there is no significant difference in the accumulated local
effects across the levels of the categorical variables for the
image classification tasks. The positive effect is especially
noticeable when not considering the averaged effect of the
accumulated local effects or partial dependence plots, but the
subset of ICE curves that predict a high accuracy, see Figures 2
and 9. The majority of curves in this subset increase in value
first and then remain constant.

The effect for the text classification task seems to be less
strong according to the ALE plot. In total, the number of
epochs only affects the min-max normalized expected model
accuracy by a maximum of 2%, see Figure 2. However, similar
to the batch size, the effect is not consistent across the model
architectures, as the LSTM seems to be more affected by
number of epochs (up to 4% of expected model accuracy) than
the RNN. While this difference is clear, the overall amplitude
of the effect is still small for the text classification task.



Fig. 1: ALE-plots for batch size (left) and sampling rate (right) across the three experiment sets

To summarize, based on our results, increasing the number
of epochs (up to some threshold) does seem to increase the
expected model accuracy for some tasks (i.e. image clas-
sification). However, for other tasks (i.e. text classification)
the main effect seems to be negligible. We can partially
replicate results suggesting C4 that the number of epochs
has a significant effect on model accuracy, in fact a positive
effect, but only for the image classification task and not the
text classification task.

3) Learning rate and clipping threshold: As predicted by
the fANOVA, the learning rate and clipping threshold have
the strongest main effects, as they impact the expected min-
max normalized model accuracy by up to 50% according to
the ALE plots, see Figure 3. The effects of learning rate
and clipping threshold seem to mostly mirror each other. The
expected model accuracy is the highest for small values, peaks
between 0.5 and 1, and then almost continuously decreases
with increasing values. However, for the intermediate image
classification task, the effect decreases considerably slower
when compared to the simple image or text classification tasks.
Their effects do not differ significantly between the sets or
across the levels of the categorical values inside each set.

C. Interaction Effects
Informed by the fANOVA, we investigate the most promis-

ing interaction effects in descending order. For brevity, we
only show plots for the simple image classification task, except
when specifically mentioned otherwise.

1) Learning rate and clipping threshold: To recapitulate,
the condensed main effect on the expected accuracy is that by
increasing the clipping threshold or learning rate, the expected
accuracy decreases. However, as can be seen from the centered
ICE plots (see Figure 4), the individual lines diverge from the
average line. The effect of the variable is thus not consistent
across the range of the other variables but rather indicates
interaction effects with other variables. If the effect of a
variable would be independent of the other variables, we would
expect all the lines in the centered ICE plot to be on top of
each other and the same as the average line.

The d-ICE plots (see Figure 4 and 7) further showcase that
the variance of the derivatives of the individual curves is not

consistent across the learning rate’s (or clipping threshold’s)
range. This indicates that the interaction effect on the learning
rate is not consistent across the learning rate’s range, but
rather that the learning rate’s effect is affected differentially
by another variable across the learning rate’s range (and vice
versa for the clipping threshold). The interaction seems to be
stronger for lower learning rate values (or clipping threshold)
than for higher ones. Or in other words, varying the clipping
threshold will affect the expected model accuracy more if the
learning rate is small compared to if it is large.

As indicated by the fANOVA, the interaction in question
is between the learning rate and clipping threshold. Thus, to
analyze the nature of this interaction, we colored the ICE plots
of one variable with the value of the other. Red corresponds
to low values, green to high values (see Figure 4, 6, and 7).
Unfortunately, the interactions between the variables are not
clearly deducible from this visualization, as no clear or obvious
pattern emerges. At most, one could hypothesize/speculate
trends, such that high values (green) tend to have more extreme
negative derivatives, which would indicate that high values
have a stronger effect than lower ones.

To test for trends in the interaction we additionally use ALE
interaction plots, here for all three sets (simple image, ad-
vanced image and simple text), see Figure 5. The plots for the
image classification tasks clearly show a relationship between
the learning rate and the clipping threshold (even stronger
for the simple tasks). While the main effects do suggest that
small values between 0.5 and 1 yield the highest expected
performance for both hyperparameters, the interaction plot
shows that fixing both variables at the same time to this value
would lead to bad expected performance. Instead, it seems
optimal to pair large values of one hyperparameter with small
values of the other or to pair medium values together. This
interaction effect seems to be less strong for the advanced
image classification task than for the simple one, but still
clearly observable.

Interestingly, while the main effects of both, learning rate
and clipping threshold, are similar between the image and text
classification tasks, the interaction effect seems to be slightly
different. While very low values of one hyperparameter can



Fig. 2: ALE-plots for number of epochs across thee three experiment sets (left) and ICE plot for the number of epochs on the
simple image task (right)

Fig. 3: ALE-plots for learning rate (left) and clipping threshold (right) across the three experiment sets

be paired with high values of the other to gain a higher
expected model accuracy than average, the area seems to be
significantly less pronounced when compared to the image
classification tasks. Furthermore, combinations that would lead
to a higher than average expected model accuracy for the
image classifications tasks would be below average expected
model accuracy on the text classification task. Instead, and in
contrast to image classification, the most promising area for
higher than average performance seems to be with combination
of small (but not tiny) values.

To summarize, based on our results, the learning rate (lr)
and clipping threshold (C) exhibit strong and consistent main
effects. However, more importantly, the effect of the learning
rate heavily depends on the clipping threshold, and vice versa.
Considering both in isolation may lead to unnecessary low
expected model accuracy, as the effect of one hyperparameter
is significantly altered by the value of the other. Thus, these
two hyperparameters have to be considered in conjunction.

For the image classification tasks, our results clearly repli-
cate findings from prior works that conjectured there to be

an interaction effect, that is, there is a constant such that
hyperparameters that lie on a lr · C = const curve exhibit
a higher expected model accuracy than hyperparameter tuples
that do not lie on this curve. For the text classification tasks,
our results only partially exhibit this effect, weakening this
hypothesis. However, we can replicate results that support C5
that the clipping threshold’s effect is affected by the learning
rate and C6 that the learning rate’s effect is affected by the
clipping threshold. Due to this interaction effect, the effect of
the learning rate heavily depends on the value of the clipping
threshold and vice versa. Isolated conjectures from related
work about the effect of the learning rate or clipping threshold
therefore seem to be ill-informed. This further highlights the
importance of proper factorial experiment design to test for
interactions instead of an one-factor-at-a-time experiment.

2) Epochs and learning rate or clipping threshold: The
other possibly interesting interaction effect according to the
fANOVA is between the number of epochs (E) and learning
rate (lr) or clipping threshold (C). Figure 6 shows the ICE and
two dimensional ALE interaction plots for the interaction with



Fig. 4: Colored centered ICE (left) and derivative ICE (right) plots for the learning rate (lr) colored by the clipping threshold
(C) for the simple image classification task. Red lines corresponds to low, green to high values of the clipping threshold (C).

Fig. 5: Two dimensional ALE-plots for learning rate (x-axis) and clipping threshold (y-axis) on the simple image task (left),
intermediate image task (center), and the simple text task (left). Darker colors represent high, lighter colors represent low
expected model accuracy values.

the learning on the simple image tasks (see the Appendix for
the plot describing the interaction with the clipping threshold).

Similarly as with the learning rate or clipping threshold,
while the ICE plots provide a clear indication of the existence
of interaction effects, the nature of the interaction is hard
to grasp. However, the ALE plots indicate a clear but not
necessarily very strong interaction between learning rate (or
clipping threshold) and the number of epochs on the simple
image classification task. The effect of few epochs seem to
be negatively impacted by small learning rates (or clipping
thresholds) and positively by large ones. The positive effect
of a large number of epochs seem to be amplified by small
learning rates (or clipping thresholds) and reduced by large
ones. Even though this effect is negligible for the other sets in
our experiment, this interaction effect has not been observed
by the related work so far, warranting further analysis in future
work.

3) Batch size and number of epochs: Even though the
fANOVA already indicates that the interaction of the number
of epochs (E) and the batch size (B) is not strong, discussing
this interaction effect is still of interest. Please recall that

the combination of both determines the noise multiplier (σ)
– and thus, in combination with the clipping threshold (C),
the amount of Gaussian noise that is injected during the
training (Z ∼ N (0, σ2C2I)). Related work conjectured that
to avoid a large noise multiplier, one should balance large
batch sizes with fewer epochs. This is based on the implicit
assumption that the accuracy loss of DP-SGD is primarily
attributable to the added noise, and thus, that reducing the
amount of noise added is the most promising avenue for
closing the accuracy gap between SGD and DP-SGD. Thus,
if large noise multipliers would be generally detrimental to
model accuracy, there would be an interaction effect such that
large batch sizes and high number of epochs would decrease
the expected model accuracy. However, as we cannot identify
an interaction effect between the number of epochs and batch
size, we cannot confirm this conjecture. Instead, it appears that
in some scenarios it even is beneficial to choose a large number
of epochs, even though this implies a large noise multiplier,
which intuitively seems disadvantageous. To summarize, based
on our result, we cannot replicate results that suggest C3 that
the batch size has interaction effects and especially not that



Fig. 6: Colored centered ICE plot (left) for the number of epochs (E) colored by the learning rate (lr) for the simple image
classification task. Red lines corresponds to low, green to high values of the learning rate (lr). Two dimensional ALE plot
(right) for the number of epochs (x-axis) and learning rate (y-axis) for the simple image classification task. Darker colors
represent high, lighter colors represent low expected model accuracy values.

the batch size has a negative interaction effect with the number
of epochs.

VI. CONCLUSIONS

Investigating the effects of hyperparameters in DP-SGD is
an interesting endeavor, not only for practice, but also for
research in order to better understand the privacy-utility trade-
off in differentially private machine learning. In this work,
we tried to replicate conjectures from prior research about
the effects of hyperparameters when training machine learning
models with DP-SGD. By conducting the largest independent
and dedicated experiment and subsequently identifying main
and interaction effects, we were able to replicate the strong
and important relationship between the clipping threshold and
the learning rate. However, we were not able to consistently
(across datasets, model architectures, and differential privacy
budgets) replicate other conjectures, such as an interaction
between the number of epochs and the batch size.

Our results imply, especially for practice, that one cannot
circumvent hyperparameter optimization entirely. However,
even though there is no free lunch when it comes to hyperpa-
rameter configurations in machine learning [39], insights on
the hyperparameter effects can still be valuable in practice to
speed up hyperparameter optimizations. For example, the in-
verse relationship between learning rate and clipping threshold
can serve as a solid prior for warm-starting model based hy-
perparameter optimization methods, as similar learning tasks
do correlate with similar hyperparameter configurations [37],
[38], [40]. Furthermore, understanding hyperparameter effects
of learning algorithms is not only beneficial for maximizing
model accuracy, but also for practitioners to increase their
trust into models when deploying them into production [41].
This naturally extends to understanding the privacy-utility
trade-off in DP-SGD. Using interpretable machine learning

methods in general, and the methods we applied specifically,
has been demonstrated to be useful to foster the understanding
of hyperparameter effects in different contexts [23].

As many insights on the hyperparameter effects from related
works were drawn from experiments that were not primarily
designed to identify such effects, it is not necessarily surprising
that we were not able to replicate all of the conjectured effects.
Rather, it highlights that the identification of effects of inde-
pendent variables on dependent variables can be sensitive to
the experiment design. While some effects might be distinctly
identifiable in certain scenarios, on certain datasets, or with
certain architectures, its is necessary to distinguish whether
these effects are attributable to the learning algorithm or the
specific scenario. Thus, dedicated, independent and factorial
replication studies like this one are refining the scientific body
of knowledge.
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APPENDIX

Please find below c-ICE and d-ICE plots on the interaction
effects of the clipping threshold and learning rate (Figure 7), as
well as c-ICE and 2d ALE plots (Figure 8) for the interaction
of the number of epochs and clipping threshold. Both have
been omitted from the main part for brevity. For completeness,
we also include the individual conditional expectation plots of
all hyperparameters across all three experiment sets below, see
Figure 9 and 10. Please note that for visual clarity, we only
plotted a random fraction of all ICE curves.



Fig. 7: Colored centered ICE (left) and derivative ICE (right) plots for the clipping threshold (C) colored by the learning rate
(lr) for the simple image classification task. Red lines corresponds to low, green to high values of the learning rate (lr).

Fig. 8: Colored centered ICE plot (left) for the number of epochs (E) colored by the clipping threshold (C) for the simple
image classification task. Red lines corresponds to low, green to high values of the clipping threshold (C). Two dimensional
ALE plot (right) for the number of epochs (x-axis) and clipping threshold (y-axis) for the simple image classification task.
Darker colors represent high, lighter colors represent low expected model accuracy values.

Fig. 9: ICE-plots for the batch size across all three experiment sets



Fig. 10: ICE-plots for sampling rate, number of epochs, learning rate, and clipping threshold across all three experiment sets
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