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Abstract

The rapid advance of autonomous robots in the personal sector is driven by their
potential to transform the service and hospitality, healthcare and nursing, and
domestic sectors, offering improvements in efficiency and quality of life. For
example, in the service and hospitality industry, robots can automate repetitive
tasks, manage inventories, and enhance customer service, reducing labor costs and
increasing operational efficiency. In the healthcare and nursing domains, robotic
assistants can improve patient care, medication management, and routine check-
ups, alleviating the burden on healthcare workers. Their ability to assist with daily
living activities and support rehabilitation can become crucial for maintaining the
autonomy of individuals with impairments. In domestic settings, personal robots
can manage everyday chores, providing practical assistance and emotional support,
particularly for those living alone.

Despite their potential, the deployment of robotic assistants is hindered by chal-
lenges related to their versatility, reliability, and adaptability in unstructured
environments . Overcoming these challenges is essential to enhance task generality
and reduce the dependency on task-specific knowledge. Versatility is crucial for
robotic assistants in order to deal with the large variety of tasks in the personal
sector, reducing the need for pre-specified task information. Reliability is funda-
mental for ensuring the safe and efficient operation of robots in the presence of
uncertainties inherent to unstructured environments , especially in human-centric
applications. Enhancing adaptability will allow robots to adjust to the changing
circumstances and requirements for their operation, improving their ability to
handle the variability of real-world applications.

Addressing these core capabilities will enable robots to realize their full potential in
applications across the personal sector. Therefore, this thesis will investigate ways
to increase the versatility of action discovery , improve the reliability of selected
actions despite uncertainty , and enhance the adaptability of task execution.

Versatile Discovery of Interaction Possibilities

Flexible grasp synthesis approaches are proposed to enable interaction in un-
structured environments with minimal task-specific information. A novel model
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encoding multiple spatial features in an implicit neural field is introduced for
objects with shared properties, termed similar objects, which improves geometric
consistency and reconstruction from partial observations. By creating a detailed
descriptor space for precise correspondences and accurate grasp transfer, it en-
hances pick-and-place tasks in unstructured settings. A grasp evaluation network
further refines grasp poses, with evaluations in both simulated and real-world
environments demonstrating the approach’s efficacy. The model and the associ-
ated framework effectively handle variability and partial observations, increasing
versatility in diverse and dynamic scenarios. Additionally, a novel approach for
manipulating unknown objects based on local surface geometry is introduced, using
point cloud analysis and heuristics to identify potential actions without accurate
scene information. This method, designed for unstructured environments , operates
efficiently by approximating local surface geometry and defining affordances like
graspability using surface metrics. Actions are generated within a local coordinate
system, providing a reliable basis for execution, which is demonstrated in multiple
real-world grasping experiments.

Selection of Robust Action Candidates

Several probabilistic methods to enhance the reliability of mobile manipulation
tasks are proposed, particularly for grasping unknown objects in unstructured
environments, addressing the high uncertainty inherent in these tasks. First, a
method using Bayesian state estimation is presented, combining an Unscented
Kalman Filter with a Hidden Markov Model to estimate and update both pose
and existence certainty of action hypotheses over multiple observations, thereby
improving the grasping of unknown objects despite noisy sensor data. Experimental
results show that this approach can enhance the grasp success rate in real-world
grasping experiments. Secondly, a probabilistic method to optimize the grasp
selection is proposed that evaluates grasp candidates based on Gaussian-distributed
metrics and derives a ranking score to maximize the grasp success rate. Experiments
involving over 1100 grasps on unknown objects demonstrate a significant increase
in grasp success rates using this optimized selection method, highlighting the
effectiveness of probabilistic approaches in improving the reliability in mobile
manipulation tasks.

Adaptable Task Execution

The adaptability of mobile manipulation tasks to handle missing information or
changing conditions is enhanced by proposing methods and representations that
facilitate knowledge transfer between low-level sensory and motor information and
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high-level symbolic representations. A task description and execution framework
is integrated with a high-level planning framework. The task execution framework
allows the flexible and autonomous generation and execution of manipulation
actions, thus facilitating the transfer of skills across different tasks, environments,
and robots. The framework’s affordance-based representation supports collab-
orative learning and allows for accumulating and sharing mobile manipulation
experiences, thereby improving adaptability. Real-world experiments, including
uni- and bimanual grasping , placing, and memory-enabled skill transfer, validate
the effectiveness of these methods. On the other hand, the planning system employs
Large Language Models to interpret natural language commands and generate
adaptable plans based on affordance-based scene representations, demonstrating
the system’s ability to handle diverse tasks in service and assistance scenarios. The
real-world experiments demonstrate the framework’s ability to generate success-
ful plans despite missing information and execute complex tasks in unstructured
environments .
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Deutsche Zusammenfassung

Die rasche Verbreitung autonomer Roboter im privaten Sektor wird durch ihr
Potenzial vorangetrieben, das Dienstleistungs- und Gaststättengewerbe, das Ge-
sundheitswesen und die häusliche Pflege zu reformieren, indem sie die Effizienz
steigern und die Servicequalität verbessern. Im Dienstleistungs- und Gaststät-
tengewerbe beispielsweise können Roboter repetitive Tätigkeiten automatisieren,
Lagerbestände verwalten und den Kundenservice verbessern, wodurch die Arbeits-
kosten gesenkt und die Betriebseffizienz gesteigert werden. Im Gesundheits- und
Pflegesektor können Roboterassistenten die Patientenpflege, die Verabreichung von
Medikamenten und Routineuntersuchungen verbessern und damit das Pflegeperso-
nal entlasten. Ihre Fähigkeit, bei Aktivitäten des täglichen Lebens zu helfen und
die Rehabilitation zu unterstützen, kann für die Erhaltung der Unabhängigkeit von
Menschen mit Behinderungen entscheidend sein. Im häuslichen Umfeld können
persönliche Roboter alltägliche Aufgaben übernehmen und insbesondere allein
lebenden Menschen praktische Hilfe und emotionale Unterstützung bieten.

Trotz ihres Potenzials wird der Einsatz von Assistenzrobotern durch Herausfor-
derungen im Zusammenhang mit ihrer Vielseitigkeit, Zuverlässigkeit und Anpas-
sungsfähigkeit in unstrukturierten Umgebungen behindert. Die Bewältigung dieser
Herausforderungen ist von entscheidender Bedeutung, um die Generalisierbarkeit
der Anwendungen zu verbessern und die Abhängigkeit von aufgabenspezifischem
Wissen zu verringern. Vielseitigkeit ist für Roboterassistenten von entscheidender
Bedeutung, um die große Vielfalt von Aufgaben im persönlichen Bereich zu be-
wältigen und den Bedarf an vordefinierten Aufgabeninformationen zu verringern.
Zuverlässigkeit ist angesichts der Unvorhersagbarkeit unstrukturierter Umgebungen
von grundlegender Bedeutung für den sicheren und effizienten Betrieb von Robo-
tern, insbesondere in Anwendungen, bei denen der Mensch im Mittelpunkt steht.
Die Verbesserung der Anpassungsfähigkeit wird Roboter in die Lage versetzen,
sich an die wechselnden Umstände und Anforderungen ihres Einsatzes anzupassen,
und damit ihre Fähigkeit verbessern, mit der Variabilität realer Anwendungen
umzugehen.

Die Berücksichtigung dieser Kernfähigkeiten wird es Robotern ermöglichen, ihr
volles Potenzial in Anwendungen im gesamten persönlichen Bereich auszuschöp-
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fen. In dieser Arbeit werden daher Möglichkeiten untersucht, die Vielseitigkeit
der Handlungsfindung zu erhöhen, die Zuverlässigkeit durch Auswahl der bes-
ten Handlung trotz Unsicherheit zu verbessern und die Anpassungsfähigkeit der
Aufgabenausführung zu steigern.

Vielseitige Erkennung von Interaktionsmöglichkeiten

Es werden flexible Ansätze zur Griffsynthese vorgeschlagen, um Interaktionen in
unstrukturierten Umgebungen mit minimaler aufgabenspezifischer Information zu
ermöglichen. Für Objekte mit gemeinsamen Eigenschaften, die als ähnliche Objekte
bezeichnet werden, wird ein neuartiges Modell eingeführt, das mehrere räumliche
Merkmale in einem impliziten neuronalen Feld kodiert, was die Konsistenz und
die Rekonstruktion aus Teilbeobachtungen verbessert. Durch die Schaffung eines
detaillierten Deskriptorraums für präzise Korrespondenzen und genaue Greiftrans-
fers werden Pick-and-Place-Aufgaben in unstrukturierten Umgebungen verbessert.
Ein Griffbewertungsnetzwerk verfeinert die Griffkandidaten weiter, wobei Eva-
luationen in simulierten und realen Umgebungen die Effektivität des Ansatzes
belegen. Das Modell und das dazugehörige Framework gehen effektiv mit Variabili-
tät und teilweisen Beobachtungen um, was die Vielseitigkeit in unterschiedlichen
und dynamischen Szenarien erhöht. Darüber hinaus wird ein neuartiger Ansatz zur
Manipulation unbekannter Objekte vorgestellt, der auf der lokalen Oberflächengeo-
metrie, der Punktwolkenanalyse und Heuristiken zur Identifizierung potenzieller
Aktionen ohne genaue Szeneninformationen basiert. Diese Methode, die für un-
strukturierte Umgebungen entwickelt wurde, arbeitet effizient, indem sie die lokale
Oberflächengeometrie approximiert und Affordanzen wie Greifbarkeit mit Hilfe von
Oberflächenmetriken definiert. Die Aktionen werden in einem lokalen, abstrakten
Koordinatensystem generiert, das eine zuverlässige Basis für die Ausführung bietet,
was in mehreren realen Greifexperimenten demonstriert wird.

Auswahl robuster Handlungskandidaten

Zur Verbesserung der Zuverlässigkeit mobiler Manipulationen, insbesondere beim
Greifen unbekannter Objekte in unstrukturierten Umgebungen, werden mehrere
probabilistische Methoden vorgeschlagen, um der hohen Unsicherheit dieser Auf-
gaben zu begegnen. Zunächst wird eine Bayes’sche Zustandsschätzungsmethode
vorgestellt, die einen Unscented Kalman Filter mit einem Hidden Markov Modell
kombiniert, um sowohl die Pose als auch die Existenzwahrscheinlichkeit von Akti-
onshypothesen über mehrere Beobachtungen zu schätzen und zu aktualisieren, und
so das Greifen unbekannter Objekte trotz verrauschter Sensordaten zu verbessern.
Experimentelle Ergebnisse zeigen, dass dieser Ansatz die Erfolgsrate beim Greifen
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in realen Experimenten erhöhen kann. Basierend darauf wird eine probabilistische
Methode zur Optimierung der Greifauswahl vorgeschlagen, die Greifkandidaten
mithilfe von Gauß-verteilten Metriken bewertet und daraus eine Wertung zur Ma-
ximierung der Greiferfolgsrate ableitet. In Experimenten mit mehr als 1100 Griffen
an unbekannten Objekten konnte mit dieser optimierten Auswahlmethode eine
signifikante Steigerung der Greiferfolgsrate nachgewiesen werden, was die Wirk-
samkeit probabilistischer Ansätze zur Verbesserung der Zuverlässigkeit mobiler
Manipulationen unterstreicht.

Adaptive Ausführung von Aufgaben

Die Anpassungsfähigkeit mobiler Manipulationsfähigkeiten an fehlende Informa-
tionen oder sich ändernde Umstände wird verbessert, indem Methoden und Dar-
stellungen vorgeschlagen werden, die den Wissenstransfer zwischen sensorischen
und motorischen Informationen auf niedriger Ebene und symbolischen Darstel-
lungen auf hoher Ebene verbessern. Ein Verfahren für die Aufgabenbeschreibung
und -ausführung wird mit einen Planungssystem kombiniert. Das Framework für
die Aufgabenausführung ermöglicht die flexible und autonome Generierung und
Ausführung von Manipulationsaktionen und erleichtert die Übertragung von Fähig-
keiten auf verschiedene Aufgaben, Umgebungen und Roboter. Die affordanzbasierte
Repräsentation des Frameworks unterstützt kollaboratives Lernen und ermöglicht
das Sammeln und Teilen von Manipulationserfahrungen, wodurch die Anpassungs-
fähigkeit verbessert wird. Reale Experimente, einschließlich ein- und zweihändigem
Greifen, Platzieren und dem Transfer von erlernten Fähigkeiten über ein kogni-
tives Roboter-Gedächtnis, bestätigen die Effektivität dieser Methoden. Auf der
Planungsseite verwendet das entwickelte Verfahren Large Language Models, um
natürlichsprachliche Befehle zu interpretieren und adaptive Pläne zu generieren, die
auf affordanzbasierten Szenenrepräsentationen aufbauen. Die realen Experimente
zeigen die Fähigkeit des Systems, trotz fehlender Informationen und komplexer
Aufgaben in unstrukturierten Umgebungen erfolgreiche Pläne zu generieren.
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1. Introduction

The rise of robotic assistants is driven by their potential to revolutionize the tertiary
sector, including applications in the service and hospitality, healthcare and nursing,
and domestic domains. These robots promise to enhance efficiency, improve quality
of life, and provide essential support across various domains. The development of
more autonomous and intelligent systems, which are a prerequisite for the effective
deployment of robotic assistants in unstructured environments, has advanced
rapidly in the last decades. Service robots, like robot wheelchairs, surveillance
drones, therapy robots, and entertainment robots, are increasingly being integrated
into diverse sectors, offering significant advancements in automation and user
interaction (Lee, 2021). The global market for service robots was predicted to
grow 7 times as fast as that of industrial robots by 2022 due to the rapid adoption
of robotics in the service and hospitality industry (Xiao and Kumar, 2021). In
healthcare and nursing, robotic assistants are becoming more important for personal
care, as they assist with activities of daily living and support individuals with
impairments (Bilyea et al., 2017). Furthermore, personal service robots can help
balance the impact of the demographic change and support the aging population
in their own homes (Fischinger et al., 2016).

In the service and hospitality industries, robotic assistants have the potential to
automate repetitive tasks, manage inventories, and significantly improve customer
service (Murphy et al., 2017). Tuomi et al. (2021) emphasize the transformative
impact of service robots in the hospitality industry, which can lead to reduced labor
costs, increased operational efficiency, and improved brand differentiation. Similarly,
robots in education can enhance student engagement, foster interdisciplinary
learning, and develop essential problem-solving and teamwork skills, ultimately
preparing students more effectively for future technological challenges (Miller and
Nourbakhsh, 2016). However, the customer’s perception of the quality of service
and acceptance of robots depends to a large degree on the assurance (i. e., ability
to perform tasks with expertise, politeness, and trust) and reliability of the service
robot (Chiang and Trimi, 2020).

Robotic assistants hold significant potential for enhancing various aspects of the
healthcare and nursing industry, including patient care, medication management,
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1. Introduction

and routine check-ups. Furthermore, they can alleviate the burdens on healthcare
workers by automating repetitive tasks. Robotic dispensing systems, for exam-
ple, have improved patient safety, inventory management, and staff satisfaction
in outpatient hospital pharmacies by minimizing medication dispensing errors
(Rodriguez-Gonzalez et al., 2019). In nursing care, potential tasks for robotic
assistants include delivering medication, processing patient data, aiding with daily
living activities (Ohneberg et al., 2023), and supporting rehabilitation and cognitive
therapy (Feil-Seifer and Matarić, 2009). Robots have proven crucial in helping
sustain autonomy in users by addressing age-related challenges such as cognitive,
motor, and perceptual declines (Bilyea et al., 2017; Smarr et al., 2014). However,
adaptability is essential to comply with personal preferences (Martinez-Martin and
del Pobil, 2018) and the individual needs of care recipients, such as mobility and
communication capabilities (Pineau et al., 2003).

In domestic environments, personal robots have the potential to handle everyday
chores such as cleaning, cooking, and organizing, thereby freeing up time for
individuals and families (Young et al., 2009). These robots can also provide
companionship and support for those living alone, addressing both practical and
emotional needs (Feil-Seifer and Matarić, 2009; Fischinger et al., 2016). The
acceptance of social robots in domestic settings is influenced by factors such as
versatility, usability, and perceived usefulness. Studies have shown that older adults
prefer a robot’s help over that of a human for chores, manipulating objects, and
information management (De Graaf et al., 2019). However, current applications in
domestic environments include floor, pool, and window cleaning robots, lawnmowers,
ironing robots, intelligent refrigerators, and digital wardrobes (Prassler et al., 2016),
disregarding the social and manipulation aspects almost entirely.

Even though robots are already able to manipulate and grasp objects under certain
conditions and in simple situations, contact-rich or even bimanual manipulation in
cluttered environments is still a major challenge in robotics (Billard and Kragic,
2019). Existing systems often struggle with adapting to new and varied environ-
ments, requiring significant human intervention, or lack the reliability needed for
safe operation in unstructured settings. Brock et al. (2016) identify high dimension-
ality, uncertainty , and task variability as the main obstacles in mobile manipulation
research. These must be thoroughly addressed to increase task generality and min-
imize the dependency on task-specific knowledge. On an architectural level, robotic
systems need to manage uncertainty , handle various temporal scopes, and integrate
high-level planning with low-level uncertainty to enhance the autonomy of robotic
assistants (Kortenkamp et al., 2016). In order to cope with the inherent variability
robots encounter in real-world applications, the transfer of knowledge and skills
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across tasks, environments, and robots is a major opportunity for adapting to
novel situations (Jaquier et al., 2024).

To address the challenges in real-world applications and truly benefit humans,
robotic assistants must achieve a higher degree of autonomy . This autonomy enables
them to (inter-)act independently without constant human supervision, which is
essential for their effective operation. Robots must be capable of analyzing diverse
scenarios and perceiving their environment to make optimal decisions for each
situation. Increasing autonomy ensures that robots can safely and effectively coexist
with humans, providing assistance even when users are unable to communicate
efficiently (e. g., in the case of disabilities) or assess potential risks accurately (e. g.,
due to lack of expertise, Van der Loos et al., 2016). In addition, the degree of
autonomy significantly impacts Human-Robot Interaction (HRI), influencing both
the quantity of interaction required to complete tasks and the nature of interactions
between humans and robots. Higher autonomy allows robots to work unsupervised
for extended periods and facilitates more sophisticated HRI (Beer et al., 2014).
Robots must infer appropriate actions independently to handle complex, dynamic,
and partially known environments. This ability to reason about actions, intended
effects, and unintended side effects is crucial for autonomous decision-making in
real-world applications (Beetz et al., 2016).

Despite their potential benefits, the widespread deployment of robotic assistants is
hindered by several obstacles, as outlined in Brock et al. (2016). This thesis ad-
dresses three primary challenges to enhance the operation of robots in unstructured
environments , increase task generality , and minimize dependency on task-specific
knowledge. These challenges primarily revolve around promoting the autonomy
of robots in unstructured environments by improving their versatility, reliability,
and adaptability. Versatility is essential for robots to perform effectively in diverse
and dynamic environments and a variety of tasks, therefore being able to handle
the high dimensionality of information in the real world (e. g., Sawyer et al., 2021;
Young et al., 2009). Reliability ensures consistent and safe performance under
uncertainty in perception and scene understanding, crucial for building trust and
fostering acceptance of robotic assistants (e. g., Zhang et al., 2022). Meanwhile,
adaptability enables robots to leverage their knowledge, experience, and acquired
skills to adjust to various situations and circumstances, helping them cope with
the broad variability of objects, tasks and environments (e. g., Wirtz et al., 2018).

Versatility is a cornerstone for the effectiveness of robotic assistants in diverse
and dynamic environments, enabling them to handle various tasks and changing
surroundings while reducing the need for pre-specified task information. Assistive
systems must be capable of managing a wide range of tasks for individuals with
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diverse conditions, irrespective of specific needs or environments (Chen et al., 2013).
Example applications with such requirements include supporting caregivers and
individuals in need of care in nursing scenarios (Ohneberg et al., 2023), assisting
individuals with upper limb impairments in performing daily living activities (Bilyea
et al., 2017) and handling a range of tasks, from providing emotional support to
assisting with daily activities, in elderly care (Martinez-Martin and del Pobil, 2018).
Versatility not only enhances performance but could provide a strategic advantage in
the future marketing of domestic robots, as highlighted by Young et al. (2009). The
ability to cope with all context variations, such as different handling requirements
for objects based on their state and environment, is essential for maintaining
effectiveness across various applications (Beetz et al., 2016). Moreover, increased
versatility enhances the autonomy of robots by allowing them to work with imperfect
knowledge about the task and their environment and maintain performance without
constant human intervention. This facilitates the generalization of robotic systems
to different tasks and supports human operators or supervisors in maintaining
control over these systems in dynamic and unforeseen situations (Sawyer et al.,
2021).

Reliability is fundamental to ensuring the safety and efficiency of robotic assis-
tants in unstructured environments. In human-centric applications, robustness
to unknown disturbances is of great importance, as unmodeled disruptions can
lead to catastrophic failures. Resilient systems that can adapt and reorganize in
response to unknown disturbances are crucial for maintaining consistent and safe
performance under uncertainty (Prorok et al., 2021). Trustworthy robots capable
of dependable and safe interaction with humans are essential for reducing errors in
hospital pharmacies (Rodriguez-Gonzalez et al., 2019), assisting individuals with
disabilities (Van der Loos et al., 2016), the elderly in nursing homes (Pineau et al.,
2003) or at their own homes (Fischinger et al., 2016), and maintaining customer
trust and satisfaction in the hospitality industry (Chiang and Trimi, 2020). To
handle real-world variations such as diverse materials, lighting, and clutter, shared
autonomy can serve as an intermediate step, directly impacting the reliability of
robots (Chen et al., 2013). Integrating modalities like segmentation, object recogni-
tion, and collision-free motion planning into grasping and manipulation can increase
robustness in unstructured environments (de Jong et al., 2018). However, error
correction during execution might become necessary to address the uncertainties
introduced through visual perception and proprioception (Ciocarlie et al., 2014).
Ultimately, by enhancing reliability, the autonomy of robots is promoted, enabling
them to operate more independently and effectively in unstructured real-world
applications.
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Adaptability is a critical challenge for robotic assistants, as they must learn and
operate effectively in diverse environments and tasks. Adjusting to new tasks or
unexpected situations while maintaining predictable behavior is of great importance
for multi-purpose robotic assistants in scenarios with changing conditions and
incomplete knowledge (Hawes et al., 2017). For instance, a robot used in domestic
settings might need to adapt its skills after moving to a different house, where the
environment and tasks differ but still relate closely to its previous experience. In
an evolving world, transferring knowledge across different tasks and environments
is crucial for coping with the variability of objects and scenarios encountered in
realistic applications. Unlike special-purpose robots (e. g., vacuuming and lawn-
mowing robots), general-purpose robotic assistants must handle multiple tasks in
any environment. While current robots can adapt to small variations in object
properties during manipulation, these adaptations are often limited to a number of
expected changes (Billard and Kragic, 2019). Therefore, leveraging experience from
one task to improve performance in another and generalizing tasks across different
environments will be necessary for truly versatile robotic assistants (Jaquier et al.,
2024). Moreover, adaptability is essential for robots to infer appropriate actions
in partially unknown environments or tasks that are too complex for defining
the correct behavior in all cases, as they need to reason about constraints and
context-specific variations based on their previous experience (Beetz et al., 2016).
In socially assistive robots, particularly in the context of elderly care, where
robots must dynamically adjust their roles to align with the evolving needs and
preferences of users (Huber et al., 2014), adaptability ensures that these robots
can provide personalized and contextually appropriate support, thereby enhancing
user satisfaction and promoting long-term acceptance. Therefore, robotic assistants
should be able to transfer and adapt their knowledge and skills to meet the
particular requirements and constraints of each user and their environment (De
Graaf et al., 2019; Sawyer et al., 2021). By developing comprehensive representations
of tasks and leveraging symbolic reasoning, robots can effectively encode both low-
level motions and high-level action sequences, enhancing their ability to adapt skills
across different environments (Billard et al., 2016). Thus, increasing adaptability
is not only tightly coupled with the versatility of robots but also promotes their
autonomy by enabling them to independently handle a broader spectrum of tasks
and scenarios in real-world applications.

Improving the versatility, adaptability, and reliability of mobile manipulation skills
is crucial for the advancement of robotic assistants. Addressing these core capabili-
ties will enable robots’ safe and effective integration into real-world applications,
offering significant benefits across various sectors. The transformative potential of
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1. Introduction

assistive robots in these areas motivates overcoming ethical and societal challenges
to ensure their beneficial integration (Wirtz et al., 2018). Therefore, research in
mobile manipulation has tried to improve the robustness, task generality , and au-
tonomy in unstructured environments while decreasing the amount of task-specific
or hardcoded knowledge necessary for these scenarios (Brock et al., 2016).

1.1. Problem Statement

This thesis aims to improve general-purpose robots’ mobile manipulation capa-
bilities in the context of service and assistance tasks, as commonly found in
applications in the personal sector (e. g., domestic, healthcare and nursing, and
service and hospitality domains). Therefore, it follows along the lines of research in
this topic and has the objective of maximizing the task generality of autonomous
systems while minimizing the amount of task-specific knowledge required, as pointed
out by Brock et al. (2016). Specifically, this thesis has the goal of increasing the
autonomy of robots in unstructured environments so that they can work in human-
centric environments without constant supervision. Therefore, the main objective
of the thesis is formulated as follows:

Main Objective

Increase the autonomy of robotic assistants by improving the task generality
and decreasing the amount of task-specific knowledge required in order to
deploy them to real-world, human-centric applications in the personal sector.

As the objects involved in realistic applications in these domains are often not pre-
cisely known, robots should not rely too much on the availability of explicit object
models. Gibson (1966, 1979) introduced the concept of affordances1, which repre-
sent interaction possibilities that the environment offers to an agent. Applying this
concept from cognitive psychology to mobile manipulation offers the opportunity
to think of the environment and objects in terms of what can be done with them
instead of what specific kind of object it is. Şahin et al. (2007) introduce the repre-
sentationalist formalization of affordances as the tuple (effect , (entity , behavior)),
which states that an affordance is an effect generated by applying a behavior to an
entity (e. g., an object). This representation has the advantage of separating the
agent-specific (i. e., behavior) and agent-agnostic (entity) parts of mobile manipula-
tion tasks. In doing so, it makes the concept of affordances very well mappable to
the three stages of a discriminative approach to mobile manipulation: (i) discovery

1For a more in-depth account of affordances, see Appendix A.
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of potential actions, where the environment is scanned for interaction possibilities
(i. e., entities) (ii) selection of the best action, where the robot decides on the most
promising behavior to execute, and (iii) execution of the action in order to produce
the desired effect.

Action
Discovery

Action
Selection

Action
Execution

Generate multiple

viable hypotheses

Select optimal

candidate

Versatility Reliability Adaptability

Figure 1.1.: Overview of the core capabilities that this thesis addresses with respect
to the discriminative approach to mobile manipulation.

Therefore, to contribute to the main objective, this thesis focuses on improving the
three stages of discriminative manipulation by targeting a specific core capability
relevant to each stage in order to enhance the autonomy of robotic assistants. These
core capabilities, visualized in Figure 1.1, aim at overcoming the task variability
and uncertainty that robots have to deal with in unstructured environments .

1.1.1. Core Capabilities

The core capabilities of robotic assistants that are in the center of interest for this
thesis, already shortly introduced in the beginning of Chapter 1, are versatility,
reliability, and adaptability. By improving aspects related to these core capabilities,
this thesis aims at enhancing the autonomy of robotic assistants in unstructured
environments .

Core Capability 1: Versatility

Versatility refers to the ability of an individual, system, or object to perform a
wide range of tasks or functions. It implies having multiple skills, capabilities, or
uses, making one competent in various situations. Versatility is about breadth –
being able to handle many different scenarios effectively. Versatility is essential
for robotic assistants as they must operate effectively in diverse and dynamic
environments and solve a multitude of tasks. These robots need to be able to
handle new assignments, various objects, missing prior information, and changing
surroundings without extensive reprogramming to remain useful and efficient. The
goal is to have systems that can seamlessly transition between different tasks and
environments and maintain high performance levels.
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Core Capability 2: Reliability

Reliability refers to the consistency and dependability of a person, system, or
process to perform its intended function over time without failure. A reliable
entity consistently produces the expected outcomes under various conditions and
is trusted to work correctly whenever needed. Reliability is critical for ensuring the
safe and robust operation of robotic assistants. They must cope with uncertainties
in their environment, visual perception, and available information to avoid accidents
and maintain trustworthiness. Achieving robust and dependable performance is
vital for gaining user confidence and ensuring that robots can consistently support
various tasks without failure and without the need for constant supervision from
human operators.

Core Capability 3: Adaptability

Adaptability is the ability to adjust to new conditions, environments, or situations.
It refers to how well someone or something can change or be changed in response
to new challenges or changing circumstances. Adaptability is about change – how
effectively one can modify behavior or function in response to evolving external
factors. Adaptability involves the ability of robotic assistants to apply learned skills
across different tasks and environments. Often, this requires robots to leverage
and transfer experience from one context to enhance their performance in another,
ensuring versatility and reliability in their service delivery. The goal is to have
systems that can generalize learned behaviors and adapt to a wide range of
applications, thus maximizing their utility and effectiveness.

1.1.2. Research Questions

From the core capabilities, defined in Section 1.1.1, this thesis derives three concrete
research questions that are tackled in order to contribute to the main objective.

Research Question 1: How Can Robotic Assistants Extract Versatile
Manipulation Actions from the Visual Perception of Unstructured Envi-
ronments?

The ability of robotic assistants to handle diverse and dynamic environments is
crucial for their effective deployment in real-world applications. This research
question addresses the task of enabling robots to perform flexible grasping and
manipulation tasks in unstructured settings, which is essential for their autonomy .
More specifically, by facilitating the discovery of hypotheses for mobile manipulation
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actions in unstructured environments with minimal pre-specified information, robots
can become more flexible and perform a wide range of tasks and objects. Therefore,
this thesis leverages machine learning and computer vision approaches to extract
information from the visual perception of the robot in order to find high-quality
interaction possibilities in the environment. These advancements ensure that robotic
assistants can operate efficiently in unstructured environments and handle the large
variability encountered in these scenarios, ultimately improving their practical
applicability and autonomy .

Research Question 2: How Can Probabilistic Approaches Enhance the
Reliability of Mobile Manipulation?

The reliability of mobile manipulation skills is crucial for the effective deployment
of robotic assistants in real-world applications. While robots have become very
adept at grasping and manipulation in static and known environments, it remains
a difficult problem if the visual inputs deviate from the anticipated or uncertainty
is present (Vincze et al., 2020). This research question addresses the challenge of
ensuring that manipulation actions are robust to noise and uncertainties in their
perception and available information. By employing probabilistic methods, the
system can make informed decisions in unstructured environments , increasing the
robustness of mobile manipulation actions. Taking the various uncertainties that
arise into account, this thesis investigates methods for the optimization of the
selection process with regard to the success rate of the selected actions, thereby
making them more robust against external influences. This enhances the reliability
of robotic manipulation, making robotic assistants more dependable and effective
in diverse and dynamic settings and increases their autonomy .

Research Question 3: How Can the Execution of Mobile Manipulation
Skills be Adapted to Different Conditions and Situations?

Developing adaptable mobile manipulation skills is crucial for increasing the
autonomy of general-purpose robots in real-world applications. This research
question addresses the challenge of enabling robots to apply their manipulation skills
across different situations and adjust their execution to the current conditions. By
focusing on an adaptable execution of mobile manipulation tasks, the dissertation
aims to enhance the performance, operational capability, and practical applicability
of robotic assistants. This involves creating systems that can generalize learned
skills to new scenarios and adapt to missing information. Addressing this question
is essential for ensuring that robotic assistants can operate effectively in diverse
and dynamic environments, adapt to new tasks and surroundings, and learn from
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previous experience or even other robots. Through increasing the adaptability of
task execution, robots can retain their autonomy despite changing circumstances
and evolving requirements for their operation in service and assistance scenarios.

1.2. Contributions

By addressing the research questions from Section 1.1.2, this thesis aims to make
significant contributions to the autonomy of robotic assistants in the personal sector.
In the following, the concrete contributions will be introduced and associated with
several scientific publications in robotic journals and conferences that originated
in the course of the thesis. An overview of the relevant publications of this thesis
in the Contributor Role Taxonomy (CRediT)2 can be seen in Table 1.1.

Table 1.1.: CRediT roles for publications of this thesis.

CRediT Role 1 2 3 4 5 6 7 8 9

Conceptualization        G# #

Data Curation  G#  #  #  # #

Formal Analysis  #  # # #  # #

Funding Acquisition # # # # # G# G# G# #

Investigation          

Methodology        G# #

Project Administration         #

Resources # # # # # # # # #

Software  #  G#  #  #  

Supervision #  #  #  #  #

Validation    G#  G#  G# #

Visualization  G#    #  #  

Writing - Original Draft          

Writing - Review & Editing      G#    

1: Pohl et al., 2020 2: Birr et al., 2022 3: Pohl and Asfour, 2022
4: Baek et al., 2022 5: Pohl et al., 2022 6: Birr et al., 2024
7: Pohl et al., 2024 8: Cai et al., 2024 9: Suarez et al., 2024

2https://credit.niso.org/
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1.2. Contributions

Contribution 1: Versatile Action Discovery in Unstructured Environ-
ments using Visual Perception

In order to address Research Question 1, approaches for the versatile discovery of
interaction possibilities in unstructured environments using visual perception are
proposed. This is crucial to be able to operate within real-world scenarios with a
minimal amount of task-specific knowledge required. Versatile action hypotheses,
which do not require full knowledge about the objects under consideration, are
necessary to be able to work in dynamic and cluttered environments with incomplete
information about the scene available. For example, in domestic applications robotic
assistants should be able to handle daily tasks in the kitchen independent of which
concrete bottle of milk was bought or which specific cup is available for pouring
the coffee.

For objects sharing some properties with other objects of the same class, so-called
similar objects, the Multi-feature Implicit Model (MIMO, Cai et al., 2024) is
introduced, which is an object representation model that encodes multiple spatial
features between a point and an object in an implicit neural field. MIMO’s capability
to predict dense correspondences across slight variations in geometry enables
robots to learn from visual demonstrations and apply these learned behaviors
in dynamic, unpredictable settings. The improved consistency of the geometric
features of partially observed objects enhances MIMO’s shape reconstruction
accuracy and enables more accurate transfer of poses across instances of the same
class. Additionally, a grasp evaluation network is introduced that predicts the
probability of success of grasp poses, refining them if necessary. Extensive real-
world experiments demonstrate the efficacy of MIMO and the proposed grasping
framework in one-shot and few-shot visual imitation learning of manipulation
tasks.

As the amount of information about objects is very limited in real-world applica-
tions, the main focus of this contribution is the manipulation of objects without
any prior knowledge available, so-called unknown objects. To this end, an approach
based on the local surface geometry of the environment is presented. By analyzing
the local surface structure of a point cloud and using heuristics on the averaged
local surface information, the Geometry-based Action Extraction (GAE, Pohl and
Asfour, 2022) identifies potential manipulation actions without relying on precise
information about the scene, which is often noisy and inaccurate in real-world
applications. The method is specifically designed to operate efficiently in cluttered
and unstructured environments by not depending on any object- or task-specific
knowledge. Instead, it approximates the local surface of a raw point cloud using
quadrics, which allows the calculation of properties of the local surface geome-

11



1. Introduction

try. By using surface metrics such as curvature and normal direction, different
affordances like graspability , pushability , and placability are heuristically defined.
Actions are then generated in a uniquely defined local coordinate system called
the Abstract Affordance Frame. This frame uses the averaged normal and minimal
curvature direction of supervoxels to create a coherent and reliable basis for action
execution. The approach is evaluated through extensive experiments with over 900
grasp executions using the humanoid robot ARMAR-6 (Asfour et al., 2019) in
various unstructured scenes. The experimental results demonstrate a significant
improvement in grasp success rates (almost 10% compared to a baseline approach
using Object-Oriented Bounding Boxes) and robustness in handling scenes with
varying degrees of clutter. This shows that the use of local surface geometry for
defining affordances significantly improves the robot’s ability to perform versatile
manipulation tasks in unstructured environments .

Contribution 2: Probabilistic Methods for Reliable Grasping of Unknown
Objects

Employing probabilistic methods to enhance the reliability of mobile manipulation,
particularly in the context of the selection of the most promising action to exe-
cute, can significantly increase robots’ ability to cope with the high uncertainty
present in unstructured environments. In order to address Research Question 2,
two contributions to improve the robustness of grasping unknown objects using
probabilistic methods are proposed by this thesis: (i) the spatiotemporal fusion or
filtering of grasp candidates to reduce uncertainty in the perception of the robot,
and (ii) the probabilistic treatment of the grasp selection process to account for
uncertainties in the scene representation and understanding.

In order to address the first aspect, the Probabilistic Action Extraction and Fusion
(PAEF, Pohl and Asfour, 2022), a robust method for improving the reliability of
grasping unknown objects by employing Bayesian state estimation to handle the
uncertainties in action hypotheses, is presented. Specifically, the system combines
an Unscented Kalman Filter with a Hidden Markov Model to estimate both the
pose and the existence certainty of action hypotheses over multiple observations.
This probabilistic approach allows the system to refine its understanding and
improve the reliability of the actions despite noisy and uncertain sensor data.
Each action hypothesis is represented as a pose and its associated uncertainty ,
which are updated recursively as new observations are made. To associate new
observations with existing hypotheses, the method uses Gaussian models for the
position and orientation, facilitating the computation of correspondence likelihoods.
Once a correspondence is found, the system updates the hypothesis using the
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Unscented Kalman Filter, which adjusts both the pose and the uncertainty . The
Hidden Markov Model further refines the hypothesis by determining the likelihood
of the action’s existence, enhancing robustness against spurious detections and
disappearing objects. In the experiments with ARMAR-6, PAEF could improve
the grasp success rate by another 5% over GAE, showing that accounting for
uncertainties in perception can indeed improve the robustness and quality of
grasping and manipulation.

To address the second aspect, the Uncertainty-Aware Sensitivity Optimization
(UASO, Baek et al., 2022), a probabilistic approach to optimize the selection of
grasp candidates, is introduced. Each grasp candidate is evaluated based on specific
metrics that are treated probabilistically. Different Gaussian-distributed metrics
are used to characterize each grasp and account for uncertainties . A scalar ranking
score is derived to rate each grasp candidate. This score is calculated based on
the sensitivities of the metrics towards grasp success and is aimed at maximizing
the grasp success rate. The ranking score incorporates both global weighting
(influence of each metric on success) and local weighting (likelihood of success for
each candidate). The experiments involve over 1100 grasp attempts on unknown
objects using the humanoid robot ARMAR-6. These grasps were executed under
real-world conditions to provide a robust dataset for optimization and validation.
The evaluation shows a significant improvement in grasp success rates using the
proposed UASO method. Out of 932 randomly performed grasps, only 32.6%
were successful. However, using the optimized grasp selection method based on
the ranking score, the success rate increases to 73.8% for 187 additional grasps.
This demonstrates the effectiveness of the probabilistic approach in enhancing the
reliability of mobile manipulation.

Contribution 3: Methods and Representations for Adapting the Execu-
tion of Mobile Manipulation Skills

In an effort to increase the adaptability of manipulation skills, this thesis proposes
methods and representations for adjusting the execution of tasks to varying con-
ditions and evolving requirements. Vernon and Vincze (2017) present a list of 11
fundamental capabilities that a cognitive robot should have. "Adaptive planning"
and "High-level instruction and context-aware task execution" are two of these
capabilities, which need to be improved for robotic assistants to be useful in
real-world applications. Focusing on these two capabilities, and thereby addressing
Research Question 3, a task description and execution framework is combined with
a high-level planning framework to increase the adaptability of mobile manipulation
skills.
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The Memory-centered and Affordance-based Task Execution Framework for Trans-
ferable Mobile Manipulation Skills (MAkEable, Pohl et al., 2024) integrates an
affordance-based task description into the memory-centric cognitive architecture3

of the ARMAR humanoid robot family. This supports the transfer of knowledge
and experience across different tasks, environments, and robots. By representing
mobile manipulation actions through affordances, the framework provides a unify-
ing structure for the autonomous uni- and multi-manual manipulation of known
and unknown objects in various environments. Incorporating this representation
into a universal task description fosters collaborative learning among robots. This
description is flexible enough to adapt to various tasks and scenarios, facilitating
the autonomous and semi-autonomous generation and execution of manipulation
actions. The integration into a memory-centric cognitive architecture allows for
the accumulation and sharing of rich repositories of mobile manipulation knowl-
edge. This supports learning from previous experiences and enables the practical
transfer of skills among different robots and tasks. The improved adaptability
is demonstrated through real-world experiments involving grasping known and
unknown objects, object placing, bimanual object grasping , and memory-enabled
skill transfer, such as a drawer opening scenario across different robots (ARMAR-6
and ARMAR-DE).

Furthermore, the planning system AutoGPT+P (Birr et al., 2024) is introduced,
which utilizes Large Language Models (LLMs) to select tools that support generat-
ing a plan to accomplish tasks based on the affordance-based scene representation.
The integration of affordances additionally facilitates the generalization of the
planning domain and even allows handling missing objects, thereby relaxing the
closed-world assumption of conventional planners. In doing so, AutoGPT+P com-
plements the task execution capabilities of MAkEable on a semantically high
abstraction level by improving and adapting the action sequences that MAkEable
can execute. Therefore, the combination of these two systems presents the unique
opportunity to increase the adaptability of the execution of mobile manipulation
tasks from the formulation of plans to their execution. This was demonstrated in
multiple experiments conducted on the humanoid robots ARMAR-6 and ARMAR-
DE, which validate the system’s feasibility in real-world scenarios. AutoGPT+P’s
ability to perform tasks such as picking , placing , handover, pouring , and wiping ,
even with missing objects, showcases its potential for practical applications in
various sectors like healthcare and nursing, domestic settings, and the service and
hospitality industries.

3Peller-Konrad et al., 2023.
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1.3. Structure of Thesis

In the pursuit of the main objective, this thesis is structured as follows. In Chapter 2,
the state of the art with a focus on discriminative grasping and software frameworks
for mobile manipulation is introduced. In the grasping specific part, relevant works
for the discovery of grasp candidates for unknown objects and similar objects in
Section 2.1, as well as grasp selection based on different grasp quality measures in
Section 2.2, are listed. Subsequently, robotic software frameworks for the execution
of manipulation tasks are investigated in Section 2.3.

Introduction
(Chapter 1)

Related Work
(Chapter 2)

Selection of Reliable
Grasp Candidates for

Unknown Objects using
Probabilistic Methods

(Chapter 4)

Versatile Grasp Discovery
using Visual Perception
in Unstructured Envi-
ronments (Chapter 3)

Methods and Represen-
tations for the Adaptable

Execution of Mobile Manip-
ulation Skills (Chapter 5)

Research Question 1

Contribution 1

Research Question 2

Contribution 2

Research Question 3

Contribution 3

Conclusion
(Chapter 6)

Figure 1.2.: Structure of the thesis.

Chapter 3 focuses on answering Research Question 1 and introducing the works
relevant for Contribution 1. To this end, it investigates methods for the discovery
of potential interaction possibilities in unstructured environments using visual
perception methods. To minimize the amount of task-specific knowledge required
for autonomous manipulation, the chapter proposes methods that can extract
grasping and manipulation hypotheses with little to no prior knowledge about
the objects involved. Therefore, Section 3.1 introduces MIMO and its framework
for the task-oriented grasping and rearrangement of similar objects. To further
decrease the amount of object information required, Section 3.2 introduces GAE
that extracts action hypotheses for multiple different affordances using only the
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local surface structure, therefore completely decoupling action generation from the
concept of objects.

Chapter 4 introduces the research relevant for Contribution 2 that tries to answer
Research Question 2. Using the surface-based action hypotheses that were extracted
using GAE, Section 4.1 introduces PAEF in an attempt to increase the reliability
of mobile manipulation in unstructured environments . Through the spatiotemporal
fusion of the poses of the related Abstract Affordance Frame, a covariance as well as
an existence certainty of this geometrically-inspired, coherent frame are calculated.
This is used in Section 4.2 to calculate an optimized grasp score using UASO. This
grasp score can be used to account for the various uncertainties involved in the
grasping process in order to find the most robust and likely-to-succeed action in
the current scene.

Chapter 5 is concerned with answering Research Question 3 using Contribution 3.
The main focus of this chapter is the increase of adaptability in mobile manipula-
tion skills that stems from the combination of a task description and execution
framework with a high-level planning system. To this end, Section 5.1 introduces
MAkEable and its general task description. This facilitates the transfer of knowledge
and experience for the execution of skills across varying requirements and situations
that can arise in real-world applications of general-purpose robots. Subsequently,
Section 5.2 demonstrates how the flexible planning system AutoGPT+P can be
combined with MAkEable to facilitate and adapt the generation and execution of
plans under missing information in realistic scenarios.

At the end, in Chapter 6, a short summary and conclusion of the thesis will be
given with an outlook to future research directions of interest.
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This thesis aims to make progress towards the main objective of increasing the
autonomy of robotic assistants in unstructured environments – as frequently en-
countered in the domestic, healthcare and nursing, and service and hospitality
industries – by answering Research Questions 1 to 3. To this end, the Contri-
butions 1 to 3 are proposed, which focus on improving the task generality of
mobile manipulation tasks while decreasing the task-specific knowledge necessary
(see Brock et al., 2016). In the context of this thesis, these contributions are based
on a discriminative approach to manipulation under variability and uncertainty in
unstructured environments . Furthermore, the evaluation of the contributions was
performed considering the graspability affordance in most cases. Therefore, the
first part of this chapter will discuss only approaches relevant to discriminative
grasping . The chapter has a similar structure as Figure 1.1 indicates: The first
part of related work is concerned with the discovery of potential grasp opportuni-
ties (Section 2.1), while the second part discusses the selection of suitable grasp
candidates (Section 2.2). Finally, software architectures for robotic systems with
a special focus on the execution of mobile manipulation tasks are reviewed in
Section 2.3.

2.1. Grasp Synthesis

This section delves into robotic grasping, focusing specifically on the discovery
of grasp hypotheses in unstructured environments. It highlights the different
approaches commonly found in the literature regarding the amount of information
available for the object under consideration. Generally, objects can be categorized
into three distinct classes, depending on how much about the object’s properties
and features is known (Bohg et al., 2014):

(a) For known objects, full knowledge about the geometry and the object’s
properties is available, including object meshes, textures, or visual features.

(b) For similar objects, full knowledge about the object’s class is available, and
the object’s geometry does not vary much compared to other instances of
the same class.
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(c) For unknown objects, no prior information about the object is available.

To analyze and subsequently categorize the works for grasp synthesis, this thesis
uses an extended version of the scheme from Newbury et al. (2023). There, four
categories of approaches – sampling , direct regression, reinforcement learning , and
exemplar methods – for deep learning-based grasp synthesis, as well as three types
of scenes – singulated , structured and piled clutter – were introduced. To extend
this to classical approaches (i. e., not employing deep learning), a fifth category
of geometric analysis1 is added for this analysis. However, it is noteworthy that
the sampling and geometric analysis categories are very similar and sometimes
even identical, as many of the geometric analysis approaches generate multiple
candidates and select one for execution. Therefore, in this thesis, methods that
focus on the shape and geometry of an object are categorized as geometric analysis ,
while generative models and other learning-based sampling methods are categorized
as sampling approaches. An overview of the features of interest for this section’s
analysis can be seen in Figure 2.1.

Grasp Candidate Discovery

Object Type

Similar Unknown Known
Scene Type

Singulated Structured Clutter Piled Clutter

Approach Type

Sampling Direct
Regression

Reinforcement
Learning Exemplar Geometric

Analysis

Figure 2.1.: Overview of the different features of grasp discovery approaches of
interest for this section.

Grasp synthesis for known objects in cluttered environments has seen significant
advancements, with methodologies focusing on precise object detection, pose esti-
mation, and collision-free manipulation. For example, Ge et al. (2023) presented a
novel network for grasp detection in cluttered trays specifically designed for medical
test tubes. Focusing on deformable objects, de Farias et al. (2022) transferred grasps
based on shape similarities through functional map correspondence. Logothetis et al.
(2018) employ a model-predictive control approach for vision-based object grasping,
calculating optimal grasping areas using the tracked object’s point cloud data.

1see e. g., Kragic and Vincze, 2009, Section 4.1.
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These approaches rely on the availability of detailed object knowledge, including
geometry and class, for practical grasp synthesis in unstructured environments .

However, in scenarios related to commonplace activities as encountered in service
and assistance applications, complete object knowledge cannot be guaranteed.
Therefore, robotic assistants must handle tasks autonomously despite partial or
missing object information. To this end, Section 2.1.1 will introduce works for
grasping similar objects and Section 2.1.2 works for grasping unknown objects.

2.1.1. Grasping Similar Objects

The ability to grasp similar objects represents a significant challenge and oppor-
tunity for advancing autonomy of robotic assistants. This subsection delves into
various methodologies developed to generate grasp hypotheses for objects classified
as similar based on their class or primitive shape. The aim is to provide a detailed
exploration of recent works to gain insights into how contemporary approaches
facilitate object grasping without requiring instance-specific knowledge, instead
relying on general characteristics shared within object categories (e. g., handles of
cups, the neck of bottles, etc.).

Table 2.1.: Overview of grasp discovery approaches for similar objects.

sampling direct
regression

reinforcement
learning exemplar geometric

analysis

Bohg et al. (2012) # # #  #
Chen et al. (2022) G# # # #  
Chen et al. (2023a) #  # # #
Detry et al. (2017) # G# # #  
Ficuciello et al. (2019) G# G#  # #
Hidalgo-Carvajal et al. (2023) #  # #  
Huang et al. (2023) #  #  #
Kurenkov et al. (2017) # # #  #
Li et al. (2024) # # # #  
Madry et al. (2012) # # #  #
Rodriguez et al. (2018) # # #  #
Simeonov et al. (2023, 2022) #  #  #
Tang et al. (2024a) #  # # #
Tekden et al. (2023) # # # G#  
Tsagkas et al. (2024) # # # #  
Vahrenkamp et al. (2016) # # #   
Wen et al. (2022)   #  #
Wu et al. (2023c) # # #  #

Cai et al. (2024)   #  #
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Exemplar Methods

Grasping similar objects in robotics often involves leveraging knowledge from known
examples to facilitate grasp synthesis on novel items. For instance, Madry et al.
(2012) introduce a probabilistic system that integrates task-oriented reasoning with
object categorization for grasp transfer from a 2D-3D object database, capitalizing
on visual properties. Bohg et al. (2012) leverage a database of object models,
categorized by type, which is annotated with task-specific grasp hypotheses. When
a new object is encountered, the system identifies its category, retrieves the most
similar exemplar, and selects the appropriate grasp based on the given task.
Furthermore, Kurenkov et al. (2017) explore grasp transfer through 3D shape
deformation, enabling the application of known grasps to novel objects without
requiring instance-specific knowledge. Similarly, a method for transferring grasping
skills to novel instances within a category, using latent space non-rigid registration
to handle partially occluded shapes effectively, is introduced in Rodriguez et al.
(2018). While these approaches, rooted in the exemplar category, underscore the
potential of using knowledge from a canonical object model for a category, other
approaches focus more on objects’ shapes than their class.

Geometric Analysis

Grasp synthesis for similar objects through geometric analysis enables robots
to handle objects with slight variations in shape by focusing on their geometric
similarities. Chen et al. (2022) propose a transformer-based shape completion
module to enhance grasping interaction by restoring sparse point clouds, underlining
the importance of geometric information in grasp synthesis. Through optimization
of latent shape codes and aligning object poses, Tekden et al. (2023) present an
approach that transfers grasp knowledge across objects with geometrically similar
surfaces and shows the applicability of their approach even across classes. Moreover,
Hidalgo-Carvajal et al. (2023) leverage Neural Networks (NNs) for first completing
the object shape and a subsequent grasp posture prediction, targeting specific
object categories. By using visual diffusion descriptors, geometric analysis, and
user-defined interaction points, Tsagkas et al. (2024) create an approach that allows
for zero-shot precise manipulation.

Direct Regression & Reinforcement Learning

While most approaches for grasping similar objects focus on exemplar or geometric
analysis, there are also approaches in the direct regression and reinforcement
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learning categories. For example, Ficuciello et al. (2019) demonstrate the use of
reinforcement learning to adaptively grasp objects with primitive shapes, employing
a synergy-based control framework for an anthropomorphic hand-arm system.
Chen et al. (2023a) introduce Keypoint-GraspNet, leveraging direct regression via
Convolutional Neural Networks (CNNs) to predict grasp poses from RGB-D input,
focusing on objects of known classes.

Task-Oriented Synthesis

Using category-level knowledge has proven valuable for generating task-oriented
grasps, enabling robotic systems to adapt to diverse environments by reducing
the task-specific knowledge necessary for grasping . Leveraging part segmentation
and semantic labeling, Vahrenkamp et al. (2016) focus on shape and functionality
similarities for grasp planning on familiar objects. Similarly, Detry et al. (2017)
combine semantic and geometric scene understanding to plan task-oriented grasps,
relying on geometric models to align the gripper with object surfaces. Wen et al.
(2022) introduces CaTGrasp, a framework that learns task-relevant grasping in clut-
ter from simulation, using the NUNOCS representation for dense correspondences
across object instances, showing promise for industrial applications in cluttered
scenarios. Wu et al. (2023c) present a method for transferring functional grasp
information across objects within the same category using touch codes. Li et al.
(2024) further this concept with ShapeGrasp, which uses geometric decomposition
and LLMs to assign semantic meanings to the decomposed parts. In a subsequent
step, the LLM is used to decide which part to grasp for task-oriented grasping
based on geometric analysis of the parts. Similarly, Tang et al. (2024a) leverage
foundation models to encode semantic and geometric knowledge, which is then
used by a Transformer-based evaluator to directly predict the task relevancy of a
set of generated grasp candidates to satisfy both stability and task-compatibility
constraints.

Neural Descriptor Fields

Simeonov et al. introduce Neural Descriptor Fields (NDFs, Simeonov et al., 2022),
which are continuous functions mapping 3D spatial coordinates to category-level
descriptors that are SE(3)-equivariant, meaning they remain consistent under
arbitrary translations and rotations of the object. NDFs are computed using
a neural network trained via a 3D reconstruction task, allowing the network
to encode spatial relationships and key features of objects without requiring
manual keypoint annotation. This approach is extended to relational tasks by
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introducing the Relational-Neural Descriptor Field (R-NDF, Simeonov et al.,
2023), which uses NDFs to model interactions between multiple objects, solving
for relative transformations necessary for tasks like stacking or arranging objects.
A similar approach, Neural Interaction Field and Template (NIFT, Huang et al.,
2023), encodes object interactions by using a Neural Interaction Field to capture
spatial features around objects and a Neural Interaction Template derived from
the Interaction Bisector Surface to optimize object poses for imitation learning.
Unlike NDF, which focuses on individual object representation, NIFT emphasizes
interaction between objects, improving generalization in manipulation tasks.

The exploration of grasp synthesis and candidate extraction for similar objects, as
discussed in this subsection, underscores the diversity of current methodologies.
By focusing on the shared attributes of object classes or shapes, these approaches
demonstrate a robust capacity for enhancing robotic manipulation in environments
populated with a multitude of similar yet distinct items.

2.1.2. Grasping Unknown Objects

In scenarios and applications where there is no prior knowledge about the objects
available, different approaches to those presented in Section 2.1.1 are needed.
Grasping unknown objects presents a significant challenge due to the absence of
information about the objects’ shapes, sizes, or materials. Therefore, this subsection
focuses on the methodologies dealing with generating grasp hypotheses without
prior knowledge, exploring various approaches from geometric analysis and direct
regression methods to adaptive grasping strategies and the integration of multi-
modal data.

Geometric Analysis

Early approaches focus on geometric properties of 3D image data for grasping
singulated2 unknown objects. The work by Dune et al. (2008) introduces a method
for estimating the rough shape of unknown objects through contour analysis and
3D reconstruction using quadrics. Bohg et al. (2011) and Kraft et al. (2009) both
address the incompleteness of object observation, with the former predicting full
shapes from partial observations and the latter learning objects and grasping
affordances through autonomous exploration. Similarly, Schiebener et al. (2016)
leverage symmetry of objects and scene context for 3D object shape completion,

2The concepts of singulated objects in contrast to structured and piled clutter are described in
Newbury et al., 2023.
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Table 2.2.: Overview of grasp discovery approaches for unknown objects.

sampling direct
regression

reinforcement
learning exemplar geometric

analysis

Ala et al. (2015) # # # #  
Barad et al. (2023)  # # # #
Bohg et al. (2011) # # # #  
Chen et al. (2016) # # # #  
Chen et al. (2023c) #  # # G#
Cheng et al. (2020) #  # # #
Cheng et al. (2022) #  # # #
Danielczuk et al. (2020) # #  # #
Deng et al. (2019) #  # #  
Dune et al. (2008) # # # #  
Eppner and Brock (2013) # # # #  
Fischinger and Vincze (2012);
Fischinger et al. (2013, 2015)  # # #  

Gabellieri et al. (2020) #  # #  
Grimm et al. (2021) # # # #  
Guo et al. (2024) #  # # G#
Hoang et al. (2022) G#  # # #
Jiang et al. (2021)  G# # # G#
Kopicki et al. (2019, 2016)  # #  #
Kraft et al. (2009) # # # #  
Li et al. (2022) #  # # #
Liu et al. (2022) G# G# # #  
Mahler et al. (2017)  G# # # #
Marton et al. (2010) # # # #  
Mosbach and Behnke (2024) # #  # #
Ni et al. (2021) #  # # #
ten Pas et al. (2017)  # # #  
Patten et al. (2020) # # #  #
Player et al. (2023) #  # # #
Popović et al. (2010) # # # #  
Qin et al. (2023) #  # # #
Rao et al. (2010)  # # #  
Sabzejou et al. (2023) # # # #  
Saxena et al. (2008) #  # #  
Schiebener et al. (2012) # # # #  
Schiebener et al. (2016) # # # #  
Schmidt et al. (2018) #  # # #
Song et al. (2018a) #  # # #
Su et al. (2024) # #  # #
Sundermeyer et al. (2021) #  # # #
Suzuki et al. (2022) # # # #  
Tang et al. (2024b)  G# # #  
Wei et al. (2022)  # # # #
Wu et al. (2023a)  # # # #
Wu et al. (2019) # #  # #
Xu et al. (2022) #  # # #
Xu et al. (2023) #  # # #
Zhang et al. (2021) #  # # #

Pohl and Asfour (2022)  # #   
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enhancing the grasp synthesis process for singulated objects. Meanwhile, Suzuki
et al. (2022) propose a real-time grasp-stability evaluation using proximity sensing,
dynamically adjusting the hand pose for stable grasps on unknown objects.

Grasping unknown objects in structured clutter environments, on the other hand,
requires approaches that can handle occlusions and incomplete shapes. Rao et
al. (2010) use depth segmentation to identify and classify graspable segments,
constructing a triangular mesh for shape completion and employing a supervised
learning method to select the most stable antipodal grasp points based on the
partial 3D information obtained. Similarly, Popović et al. (2010) leverage co-
planarity and color information from visual cues to formulate grasping strategies.
Marton et al. (2010) focus on reconstructing 3D models from single views using
geometric model fitting, facilitating classical grasp planning for novel objects.
Furthermore, Schiebener et al. (2012) present an integrated approach for discovery,
segmentation, and reactive grasping of unknown objects, employing geometric
analysis to iteratively segment and refine object hypothesis by pushing. Eppner
and Brock (2013) simplify perception by exploiting the shape adaptability between
the hand and objects, as well as the environmental constraints, allowing for robust
grasping without detailed object models. Ala et al. (2015) propose a 3D grasp
synthesis algorithm based on geometric analysis of cloud points to identify stable
contact points, facilitating grasping in complex environments. Chen et al. (2016)
introduce a probabilistic approach to grasp planning, utilizing a probabilistic
Signed Distance Function to address sensor uncertainty.

For the extraction of robust grasp hypotheses for piled unknown objects, the Height
Accumulated Features (HAF, Fischinger and Vincze, 2012) that analyze the vertical
structure of point cloud data have proven effective. HAF enable the abstraction
of shape information for grasp synthesis by calculating the sum of height values
within defined regions of a discretized point cloud grid. The approach is extended
with Symmetry Height Accumulated Features (SHAF, Fischinger et al., 2013),
which enhance the grasp synthesis process by incorporating symmetry information,
improving grasp accuracy in complex environments. In Fischinger et al. (2015) the
HAF and SHAF methods are applied to a broader range of scenarios, emphasizing
topographic analysis to refine grasp quality and adaptability across different robotic
platforms. Grimm et al. (2021) follow a different approach, where grasp candidates
are generated by segmenting the scene based on depth data, approximating object
shapes with 3D bounding boxes derived from 2D projections, filtering out noise and
outliers through spatiotemporal clustering over multiple frames, and aligning the
grasp poses to maximize execution robustness, all while ensuring computational

24



2.1. Grasp Synthesis

efficiency suitable for resource-constrained robots. Finally, Liu et al. (2022) focus
on robotic picking in piled clutter through domain-invariant learning from synthetic
data. They use geometric analysis to reason about suitable suction regions, from
which possible candidates are sampled and then rated according to their quality
based on a NN. Similarly, Sabzejou et al. (2023) employ object skeletons generated
from the 2D contour of unknown objects for keypoint generation without prior
object knowledge, demonstrating adaptability across diverse objects.

Direct Regression

Direct regression methods have significantly advanced the grasping of unknown
objects in cluttered environments by utilizing depth and point cloud data. For
example, Gabellieri et al. (2020) leverage human expertise and geometric analysis ,
using a reduced database of human-performed grasps and a Oriented Bounding Box
decomposition algorithm to regress grasps for unknown objects. Sundermeyer et al.
(2021) and Player et al. (2023) demonstrate approaches to generate stable 6-Degree
of Freedom (DoF) grasp poses in real-time for objects in dynamic, cluttered settings,
including underwater and tabletop scenes, by directly regressing from depth video
or point cloud data to grasp configurations. Zhang et al. (2021) use a CNN-
based architecture to estimate grasp quality for suction grippers, trained on a large
synthetic dataset of point clouds and grasp poses, and integrate a closed-loop control
algorithm with feedback from a 6-DoF force-torque sensor for optimizing grasp
execution. The work by Ni et al. (2021) introduces a method that employs a SPH3D-
GCN-based network to predict grasp poses, categories, and qualities directly from
point clouds, followed by an iterative refinement process to enhance grasp accuracy
without requiring traditional sampling or search processes. Similarly, Li et al.
(2022) present HGC-Net, a data-driven method predicting grasp poses from point
clouds in cluttered scenes, demonstrating significant improvements in grasp success
rates and time efficiency. Furthermore, Hoang et al. (2022) propose VoteGrasp,
employing a deep Hough voting mechanism where each point in the cloud votes
for potential grasp centers, followed by clustering these votes to form candidate
grasp configurations that are refined using a context-learning module to ensure
robustness against occlusions and to generate collision-free grasps. The approach
of Chen et al. (2023c) involves using a grasp region exploration module to enhance
point density around grasp points, followed by a grasp region attention module to
dynamically aggregate features and directly regress 7-DoF grasp poses from the
point cloud data in cluttered scenes. Finally, Guo et al. (2024)’s PhyGrasp model
integrates physical commonsense reasoning with multi-modal data, generalizing
robotic grasping for singulated objects.
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Instead of using 3D depth data, several methods focus on generating grasp poses
directly from RGB or RGB-D images, utilizing the advances from computer vi-
sion in the field of image understanding. Saxena et al. (2008) present a learning
algorithm that uses supervised learning to identify optimal grasp points directly
from 2D images and employs geometric triangulation to infer their 3D positions
for effective robotic grasping. Song et al. (2018a) introduce a novel approach using
multi-level CNNs to imitate human grasping skills for unknown objects, mapping
RGB-D images to grasping postures without requiring prior object knowledge.
Similarly, Schmidt et al. (2018) employ CNNs to generate grasping actions from
depth images, which are trained on synthetic images of objects and grasps gen-
erated by classical grasp planning. The work of Deng et al. (2019) proposes an
attention-based visual analysis framework that combines a computational visual
attention model and a deep CNN to generate grasp-relevant information for guiding
grasp synthesis of unknown objects, followed by a geometric analysis to optimize
grasp configurations. Cheng et al. (2020) propose a dense prediction model that
directly generates grasp poses from images, efficiently handling similar objects by
analyzing their surface properties and shapes. Furthermore, Cheng et al. (2022)
introduce a robot grasping system that employs a single-stage anchor-free deep
grasp detector to generate grasp possibility heatmaps and estimate grasp properties
directly from RGB-D inputs, showcasing versatility in handling unknown objects
in both singulated and piled clutter scenes. GKNet, introduced by Xu et al. (2022),
simplifies grasp candidate detection by treating it as a keypoint detection problem,
enabling real-time, accurate grasp predictions in various scenarios, including piled
clutter. Xu et al. (2023), on the other hand, develop a single-stage grasp synthesis
model that integrates grasp representation with instance segmentation, predicting
grasp configurations for specific objects using RGB-D images. Similarly, the DG-
CAN model (Qin et al., 2023) employs a two-stage approach for grasp candidate
generation using RGB-D images, where grasp proposals are first generated by a
Grasp Proposal Network based on multi-modal feature maps (from RGB and depth
images), and then refined by a Grasp Region of Interest Network to predict precise
6-dimensional grasp configurations including depth, with the depth information
being refined through a Local Cross-modal Attention module to enhance the fusion
of RGB and depth features.

Reinforcement Learning

On the other hand, adaptive grasping of unknown objects through reinforcement
learning has shown promising advancements in recent years. Wu et al. (2019)
employ an approach that integrates a pixel-attentive policy gradient method to
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train a multi-fingered robotic grasping policy using depth images, which enhances
grasping success in piled clutter through an attention mechanism that allows the
robot to zoom into relevant sub-regions of the image. Furthermore, Danielczuk
et al. (2020) model the task as a Markov Decision Process (MDP), where the
BORGES algorithm explores different stable poses of an unknown polyhedral object,
iteratively refining grasp actions based on the success of previous attempts and the
probabilistic transitions between poses. Mosbach and Behnke (2024) introduced a
Teacher-Augmented Policy Gradient method, integrating reinforcement learning
with instance segmentation for grasping arbitrary objects in cluttered environments,
demonstrating strong zero-shot transfer capabilities. Similarly, Su et al. (2024)
explored tactile-based reinforcement learning for manipulating unknown objects,
emphasizing the importance of tactile feedback and zero-shot Sim2Real transfer
capabilities.

Sampling

Sampling-based methods have shown promising results in handling the complexities
of grasping unknown objects in cluttered environments. Dex-Net 2.0 (Mahler et al.,
2017) uses a deep CNN trained on a large synthetic dataset to predict the success of
grasps from depth images, where grasps are specified by their planar position, angle,
and depth relative to an RGB-D sensor, and then planning grasps by sampling
and ranking candidate grasps based on their predicted robustness. Furthermore,
the method presented by ten Pas et al. (2017) directly sample grasp poses from
point clouds by using the Darboux frame as the grasp, utilizing a CNN to classify
thousands of 6-DoF grasp candidates, showing effectiveness in densely cluttered
environments. The FlexLoG framework introduced by Tang et al. (2024b) employs
a novel approach that identifies potential grasp points through sampling , then
extracting local geometric features to predict high-quality grasps within specific
regions of a scene that are suitable for specific downstream tasks.

Generative models have emerged as a powerful tool for synthesizing grasps on
unknown objects that employ the sampling paradigm. Jiang et al. (2021) introduce
the GIGA model, which leverages synergies between grasp affordance prediction
and 3D reconstruction through the use of deep implicit neural representations,
enabling the model to learn geometrically-aware features from self-supervised grasp
trials. Wei et al. (2022) employ a Conditional Variational Auto-Encoder (CVAE) to
generate high-degree-of-freedom grasps, incorporating a point completion module
and iterative refinement to enhance grasp synthesis. Similarly, Wu et al. (2023a)
introduce a method combining a CVAE with bilevel optimization to predict and
refine contact points on unseen objects, demonstrating high success rates in
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experiments. Barad et al. (2023) leverage latent diffusion models for generating
6-DoF grasps, highlighting the method’s scalability and quality of grasp samples.

Exemplar

Being a popular approach for grasping similar objects, the exemplar approach
is hard to apply to unknown objects due to its reliance on similarity. However,
Kopicki et al. (2019, 2016) utilize Learning from Demonstration (LfD) to transfer
kinesthetically taught grasps to generate new grasp candidates for novel objects
by sampling from a probabilistic model, emphasizing the importance of genera-
tive models and a product of experts formulation for adapting to various object
orientations. Similarly, Patten et al. (2020) use the Dense Geometrical Correspon-
dence Matching Network to encode the geometry of objects into a feature space
through metric learning, allowing the system to retrieve and transfer grasps from
a database of past successful grasps to new, geometrically similar objects. This
method incrementally builds a database of grasp experiences and uses dense 3D-3D
correspondence reconstruction to adapt these grasps to unseen objects, improving
grasp success over time as more experiences are accumulated.

The exploration of robotic grasping of unknown objects showcases a broad spectrum
of methodologies, each contributing to the field’s advancement in distinct ways.
From leveraging geometric analysis in cluttered environments to employing direct
regression for real-time grasp prediction and integrating depth and RGB data
for enhanced grasp detection, these studies advance the autonomy of robotic
manipulation in unstructured environments . The detailed examination of various
approaches underscores the ability of robots to handle a wide array of objects
without prior knowledge, marking significant progress towards the main objective
of this thesis.

2.1.3. Discussion

To deal with the diverse set of tasks, a general purpose robotic assistant has to cope
with everyday situations. Thus, a versatile discovery of interaction possibilities
based on visual perception is a fundamental requirement. Since applications in
real-world scenarios involve a large variety of objects, it is reasonable to assume
that a robot will never have access to all the information required for conventional
grasp planning. More likely, a robot will have to deal with objects that are similar
to ones they have already dealt with or are completely unknown. Therefore, this
section investigated approaches for the synthesis of grasp candidates for similar
and unknown objects. The field of grasp synthesis has rapidly evolved over the
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last decade (see Bohg et al., 2014; Newbury et al., 2023). Especially the advance
of NNs and deep learning has influenced these developments (e. g., Mosbach and
Behnke, 2024; Schmidt et al., 2018; Sundermeyer et al., 2021; Wu et al., 2023a).
However, still a large section of the approaches rely on geometric analysis for the
grasp candidate extraction (e. g., Liu et al., 2022; Sabzejou et al., 2023; Suzuki
et al., 2022). Utilizing task-specific knowledge for grasping of objects with the same
semantic class is a visible trend for improving the efficacy of functional grasping
(e. g., Tang et al., 2024a; Wen et al., 2022; Wu et al., 2023c).

Previous methods for generating task-oriented grasps have primarily relied on large,
manually annotated datasets to train NNs, but these approaches fail to generalize
to new objects with significant shape variations, and manual annotation is both
costly and challenging. While visual imitation learning approaches offer more
efficient means to generalize manipulation skills across categorical objects using
human demonstrations, they often require multiple views of the object, which may
not be available in real-world scenarios, leading to less precise grasp candidates
and potential instability. Similarly, affordance-based methods often depend on
primitive shapes or large datasets and face challenges such as inaccurate simulation-
based representations of real-world physics, labor-intensive manual definitions, and
limitations in generalizing to novel scenarios. Furthermore, learning from human
demonstrations can be slow and task-specific, with real-world exploration being
risky and dependent on noisy sensor data.

Therefore, this thesis will present two novel approaches for grasping similar (Cai
et al., 2024) and unknown objects (Pohl and Asfour, 2022), respectively.

2.2. Grasp Selection and Quality Prediction

The second step in discriminative grasping – after the generation of a large number
of grasp hypotheses – is the selection of a candidate for execution that maximizes
the chances of success. To this end, different measures of the quality of a grasp
have been introduced in the literature. This section revolves around introducing
some of these measures and approaches for grasp selection and categorizing them
with regard to how these measures are obtained. In this context, three different
categories will be used: (a) analytical quality measures rely on mathematical models
and physical principles to assess grasp stability and performance, (b) heuristic
quality measures use experience-based techniques, simplified rules, and practical
guidelines rather than strict mathematical formulations to evaluate grasp quality,
and (c) learned quality measures leverage machine learning algorithms to predict
grasp success based on training data.
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Grasp Candidate Selection

Quality Measures

Analytical Quality Heuristic Quality Learned Quality

Figure 2.2.: Overview of the different features of grasp selection approaches of
interest for this section.

Some works use grasp quality prediction in an online fashion to improve finger
positioning during grasp execution. For example, the approach of Song et al. (2018b)
presents a method for predicting and measuring grasp quality by building a contact
score map on a 3D object’s voxelization and iteratively adjusting the hand’s pose
and joint angles to optimize the fit between the hand’s geometric shape and the
object’s surface. Similarly, the work by Arapi et al. (2020) proposes an end-to-end
deep learning approach that uses Inertial Measurement Units (IMUs) on soft
robotic hands to predict grasp failures by leveraging a NN for real-time prediction,
enabling proactive adjustments to prevent failures. Kumar and Mukherjee (2022)
use an algorithm to search for an optimal grasp pose with rolling contacts by
reducing the geodesic distance between the current and desired manipulability
matrices through defining a manipulability measure that characterizes the grasp for
multi-fingered robotic handling. The work by Si et al. (2022) presents a simulation
framework that predicts grasp stability during execution by using tactile images
generated from simulated contact forces and deformation, integrating a vision-based
tactile sensor and contact dynamics model, and achieving high prediction accuracy
when transferred from simulation to real-world tasks without additional real-world
training data. While this line of research uses quality measures to increase the
grasp success rate, the focus of the following related work is the use of quality
measures to select the best grasp out of several grasp candidates.

To this end, Section 2.2.1 introduces approaches using analytical quality mea-
sures. Subsequently, Section 2.2.2 focuses on methods using heuristic quality and
Section 2.2.3 on approaches using learned quality measures.

2.2.1. Analytical Grasp Quality Prediction

In grasp selection, the analytical quality metrics serve as a fundamental basis
for evaluating and selecting potential grasps. Analytical quality measures are a
class of techniques based on precise mathematical models and physical principles.
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Table 2.3.: Overview of grasp selection approaches.
analytical quality heuristic quality learned quality

Almeida and Moreno (2021)   #
Arapi et al. (2020) # #  
Asif et al. (2014) #  #
Baressi Šegota et al. (2022) # #  
Cavalli et al. (2019)  #  
Chen et al. (2018) #  #
DeGol et al. (2016) # #  
Erkan et al. (2010) # #  
Ghalamzan E. et al. (2016) G# #  
Goins et al. (2014)  #  
Gori et al. (2013)    
Gravdahl et al. (2019) #  #
Gualtieri et al. (2016) # #  
Herzog et al. (2012, 2014) #   
Kappler et al. (2015, 2016) # #  
Kent and Toris (2018) #  #
Konrad et al. (2022) # #  
Krug et al. (2016)  # #
Kumar and Mukherjee (2022)  # #
Lin and Sun (2015)  # #
Lu et al. (2020) # #  
Mavrakis et al. (2017)  # #
Mnyussiwalla et al. (2022)  # #
Morales et al. (2003) #   
Nadon and Payeur (2020) #  #
Pardi et al. (2021)  # #
Qian et al. (2020) #   
Quispe et al. (2016)   #
Rohanimanesh et al. (2023) # #  
Rubert et al. (2018, 2017) #   
Sharif et al. (2019) #  #
Si et al. (2022) # #  
Song et al. (2011, 2015) # #  
Song et al. (2018b)  # #
Vollhardt et al. (2019)  # #
Wakabayashi et al. (2022) # #  
Ying et al. (2018)   #

Baek et al. (2022)    

They often involve the calculation of various metrics derived from the laws of
physics and mechanics, such as force closure, torque equilibrium, and wrench
space analysis. These measures often provide a high degree of predictability and
reliability in assessing grasp quality and can be distinguished by their reliance on
exact calculations and theoretical foundations. This subsection delves into various
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approaches that revolve around physical and geometric properties, dynamic and
energy-based evaluations, optimization strategies, and task-specific planning.

Contact-based Approaches

Some approaches for calculating analytical quality measures revolve around the
physical properties of the hand-object-contact, similar to metrics used in classical
grasp synthesis. Krug et al. (2016) evaluate the containment of a set of task
wrenches within the Grasp Wrench Space (GWS), using tactile feedback to alleviate
contact placement uncertainties and employing a quality criterion that measures
the maximum scaling factor of the task wrenches that can be resisted by the
grasp, thereby predicting grasp success without the need for extensive modeling
or training data. Similarly, the work by Mnyussiwalla et al. (2022) provides a
comprehensive analysis of various analytical grasp quality criteria of two categories
– either depending exclusively on the contact points, such as force closure and the
volume of the GWS, or the kinematics of the hand, e. g., the hand-object Jacobian,
which are essential for optimizing dexterous manipulation.

Energy-based Approaches

In addition to these contact-based approaches, dynamic and energy-based analytical
methods offer precise evaluations of grasp stability and safety. Mavrakis et al.
(2017) propose a method to minimize impact forces in post-grasp manipulations
by calculating the effective mass and kinetic energy matrix, aiming to enhance
safety in dynamic environments. Similarly, Vollhardt et al. (2019) introduce an
energy-based stability analysis for multi-fingered, compliant robotic hands, focusing
on stability characterization through metrics like minimum destabilizing energy
and grasp stiffness. This approach allows for the selection of grasps that are robust
against external disturbances.

Task-specific Approaches

Contrary to general analytical strategies in grasp selection, other approaches are
tailored to task-specific grasp selection. Lin and Sun (2015) propose a task-oriented
grasp quality metric based on the distribution of task disturbances captured during
task demonstrations, ensuring the chosen grasp covers the most frequent distur-
bances while maintaining computational efficiency by reducing the configuration
space using specific thumb placements and directions. Furthermore, Ying et al.
(2018) integrate an EEG-based Brain-Computer Interface that detects user interest
in visual stimuli, allowing the user to iteratively filter and refine grasp options
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generated by an online planner until the most suitable grasp is chosen, leveraging
both analytical (e. g., reachability and maximum wrench perturbation force) and
heuristic (e. g., closeness between the hand and the object’s surface) grasp quality
metrics to ensure effectiveness in cluttered environments. Cavalli et al. (2019)
introduce a framework that evaluates task-oriented grasps through analytical qual-
ity metrics like grasp robustness and rotational inertia and train NNs to predict
these metrics from vision. Additionally, the work of Pardi et al. (2021) presents an
optimization-based algorithm that selects the best grasp location by minimizing
the effort needed to keep an object stable against external forces. It specifically
considers the dynamic interactions and force profiles involved in the manipulation
tasks, ensuring that the grasp quality is optimized for the specific requirements of
the task being performed.

In summary, analytical quality metrics provide a robust framework for evaluating the
efficacy of grasps. By leveraging physical properties, dynamic analyses, optimization
techniques, and task-specific considerations to provide precise measures of grasp
quality, these methods enhance the versatility, reliability, and adaptability of
robotic manipulation.

2.2.2. Heuristic Grasp Quality Prediction

Heuristic quality metrics in grasp selection utilize various pre-defined heuristics to
evaluate and prioritize grasp candidates. In contrast to analytical quality measures,
they are usually derived from the experience or intuition of experts and are
not always based on precise theoretical modeling of hand-object relations. The
advantages of heuristic quality measures include their speed and simplicity. They
can provide rapid assessments without the need for complex calculations, making
them suitable for real-time applications where quick decision-making is essential.
For example, the work of Sharif et al. (2019) proposes a framework utilizing
particle filters to systematically combine various cues, primarily hand trajectory
information, for accurately inferring user intent (i. e., selecting a grasp type) and
estimating the remaining time until the hand reaches the object, which enables
precise grasp planning and execution for prosthetic robot hands. However, their
reliance on general rules means they may not always be as accurate or reliable as
more rigorous analytical methods.

Efficiency Optimization

Heuristic measures are often used to optimize the grasp selection process, signif-
icantly enhancing efficiency and practicality. For example, Quispe et al. (2016)
propose an approach combining both arm and hand metrics, which includes evalu-
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ating the arm’s ease of reach and comfort (based on analytical Inverse Kinematics
(IK) and manipulability measures) in combination with the hand’s grasp robustness
heuristic, to ensure that the chosen grasp is not only stable but also feasible and
efficient in execution. Similarly, Chen et al. (2018) propose a probabilistic frame-
work that leverages heuristic measures for force closure and perceptual uncertainty,
optimizing grasp selection through a simulated annealing process. In the study by
Gravdahl et al. (2019), a heuristic method is employed to prioritize grasp candi-
dates based on reachability, planning, and execution time, focusing on practical
feasibility within the robot’s workspace. Almeida and Moreno (2021) introduce
heuristics to streamline the computation of the Potential Grasp Robustness metric,
significantly reducing the complexity involved in evaluating grasp stability for
underactuated hands.

Geometry-based Approaches

Other approaches analyze the object’s shape or curvature in order to improve grasp
selection from visual perception. Gori et al. (2013) present a grasping pipeline
for effectively grasping unknown objects by matching object surface curvature
with the robot’s palm, utilizing binocular vision to segment 3D point clouds into
smooth surfaces and rank potential grasp points. The score function for evaluating
these grasp points incorporates a learned component using a Least-Square Support
Vector Machine to map the local curvature of object surfaces to the curvature of
the robot’s hand, an analytical measure assessing the manipulability of the hand
configuration, and heuristic rules based on object dimensions and user-defined task
preferences. Additionally, Asif et al. (2014) introduce a vision-based approach that
utilizes shape descriptors and distances to surfel mean positions as heuristics for
selecting grasps for unknown stacked objects. Furthermore, Kent and Toris (2018)
present an approach for the pairwise ranking of grasp candidates based on a set of
grasp metrics and object features to adaptively select the best grasp with reduced
data collection and improved generalization to novel objects. Lastly, Nadon and
Payeur (2020) integrate RGB-D computer vision with a three-finger robotic gripper
to identify optimal grasp regions on the object’s contour based on distance to target
shape, followed by a validation of grasp stability through curvature analysis and
heuristic force closure criteria. This approach efficiently narrows down potential
grasps by eliminating those that do not allow desired reshaping or are unstable,
ensuring the grasp respects the robotic hand’s mechanical constraints.

Heuristic quality metrics play a significant role in improving the efficiency and
effectiveness of grasp selection for robotic manipulation. Therefore, they comple-
ment analytical quality measures by reducing the computational complexity and
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overall runtime of the grasp selection process. In the following, the third category
for grasp selection approaches will be introduced.

2.2.3. Learned Grasp Quality Prediction

Learned quality measures are techniques for evaluating the effectiveness and stability
of a grasp hypothesis using machine learning approaches that are trained e. g.,
on large datasets of successful and unsuccessful grasps. Relevant features that
influence grasp quality, such as object shape, surface texture, and contact points,
are extracted from the data. Once trained, the model can predict the quality of
new grasps based on the learned patterns. The system can continuously improve by
incorporating feedback from new grasps, refining its predictions, and adapting to
new objects and conditions. In contrast to analytical quality and heuristic quality
metrics, learned approaches utilize the strengths of machine learning to provide a
flexible, adaptive, and data-driven method for assessing grasp quality. This allows
them to handle complex and varied grasping scenarios that may be difficult to
model analytically or capture through heuristics alone.

Classical Approaches

Early approaches mostly used classical machine learning classifiers to learn from
data and improve the grasp success rate. As one example, Morales et al. (2003) focus
on predicting grasp performance from heuristic visual features, using a k-nearest
neighbor rule to assess grasp reliability. Erkan et al. (2010) explored using Kernel
Logistic Regression to map hypothetical grasp configurations obtained from visual
descriptors into class conditional probability values and using semi-supervised and
active learning techniques to improve the model’s performance with limited labeled
data. Furthermore, Herzog et al. (2012, 2014) contribute by using a template-based
algorithm that learns grasp configurations from demonstrated examples, matches
new objects to a library of shape templates, and adapts over time using feedback
from previous grasp attempts to improve performance. Lastly, Rubert et al. (2017)
analyze and evaluate various grasp metrics using a large-scale database of simulated
grasps and different classifiers (including neural networks) to understand their
predictive capabilities, while Rubert et al. (2018) build on this by combining these
metrics using machine learning classifiers and validating their effectiveness through
real-world experiments and a novel 3-category classification system to improve
grasp success prediction for robotic manipulation.
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Deep Learning-based Approaches

The integration of deep learning and neural network-based grasp selection methods
has significantly advanced the field of robotic grasping, enabling more nuanced
and effective approaches to object manipulation. For instance, DeGol et al. (2016)
explored the use of CNN for automatic grasp selection in prostheses, showcasing
the potential of incorporating deep learning on visual data into the daily lives of
prosthesis users. Similarly, Gualtieri et al. (2016) classify each candidate using a
CNN trained on informative representations of grasp geometry and appearance,
leveraging prior object knowledge and pre-training on simulated data to enhance
detection accuracy and achieve a 93% grasp success rate in piled clutter scenarios.
Kappler et al. (2015) introduce a large-scale dataset and validate stability metrics for
grasp planning using deep learning, demonstrating that such data can significantly
enhance performance. Building on this foundation, Kappler et al. (2016) propose a
novel ranking loss method specifically adapted for binary-labeled grasp hypotheses,
optimizing the selection of the top grasp hypothesis from noisy sensor data and
showing significant performance improvements over the previous approach. Qian
et al. (2020) proposed using a neural network to segment key regions of cloth (edges,
inner edges, and corners) from depth images, estimating grasp direction based
on the correspondence between outer and inner edge points, and computing the
directional uncertainty to select the grasp point with the lowest uncertainty. Konrad
et al. (2022) present VGQ-CNN, a 6-DoF grasp quality prediction network that
evaluates grasp candidates based on depth images and versatile grasp datasets from
a wide range of camera poses, allowing for flexible and efficient grasping without
the need for network retraining for each new camera setup. Finally, Wakabayashi
et al. (2022) introduced a self-supervised learning system, VGP-Net, to optimize
grasp poses for tableware objects, demonstrating the flexibility of learned models
in adapting to environmental constraints (e. g., avoiding collisions or dirty spots).

Probabilistic Models

On the other hand, the use of probabilistic models and Bayesian inference has
greatly improved the robustness and reliability of grasp selection methods. For
example, Song et al. (2011) introduces a novel approach using a Bayesian Network,
learned from discretized high-dimensional sensory and motor data through Gaus-
sian Process Latent Variable Models and Gaussian Mixture Models (GMMs), to
probabilistically evaluate and select the most suitable grasp configuration for a
given manipulation task based on the dependencies and relationships among the
observed features. Building on this, Song et al. (2015) use probabilistic inference
within a Bayesian Network to select the most appropriate grasp configuration that

36



2.2. Grasp Selection and Quality Prediction

meets the specific constraints and requirements of a given task based on learned
probabilistic relationships among task-relevant variables. Similarly, Goins et al.
(2014) use a Gaussian Process-based classifier that combines multiple analytical
grasp metrics, significantly improving prediction accuracy compared to individual
metric thresholding. Ghalamzan E. et al. (2016) build on recent grasp-learning
methods and combine a probabilistic model of grasp likelihood with a manipulation
capability index, which is computed analytically but relies on learned models for
grasp generation, aiming to optimize both stable grasp likelihood and task-relevant
manipulability. The paper by Lu et al. (2020) uses a probabilistic inference ap-
proach in a learned Deep Neural Network (DNN) which integrates a voxel-based
3D CNN to predict grasp success probabilities based on the object voxel grid and
grasp configuration, enhanced by an object-conditional prior modeled as a Mixture
Density Network that captures the distribution of grasp configurations relative
to the observed object geometry. Finally, Rohanimanesh et al. (2023) present an
approach for online tool selection with learned grasp prediction models in robotic
bin-picking systems. The primary challenge is selecting the most efficient sequence
of grasps and corresponding tool changes to maximize system throughput despite
occlusions and the dynamic nature of visible objects, modeling this as a MDP
optimized through model predictive control and integer linear programming to
handle real-time decision-making efficiently.

Learning from previous grasp executions through machine learning, NN, and
probabilistic methods has greatly improved the reliability and versatility of robotic
grasping in unstructured environments . However, in contrast to analytical quality
and heuristic quality measures, learned quality measures often need a large amount
of training data, which is hard to obtain, especially in real-world scenarios.

2.2.4. Discussion

Selecting the best action for the current task in a scene can have a large influence
on the reliability of a manipulation task. In the literature, this is usually done by
calculating some kind of quality measure and selecting the action with the highest
quality. To give an overview of related methods, this section categorized approaches
according to the way these measures are computed. The exact calculations that
are the foundation of analytical quality measures (e. g., Krug et al., 2016; Kumar
and Mukherjee, 2022; Lin and Sun, 2015) make them very precise if the required
information is available. Heuristic quality metrics (e. g., Gravdahl et al., 2019; Kent
and Toris, 2018; Nadon and Payeur, 2020), in contrast, are easier and faster to
calculate as they involve less complicated computations. Finally, learned quality
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measures (e. g., Erkan et al., 2010; Rohanimanesh et al., 2023) heavily rely on
the quality of the available datasets learn what a good action is from previous
experiences.

Despite the advances in grasp candidate selection methods, significant challenges
remain, particularly in dealing with perceptual and systematic uncertainties . Many
existing approaches lack robust mechanisms for handling these disruptive factors,
which can result in unreliable and inefficient grasping processes. For instance,
analytical quality metrics, while precise when all required information (such as
friction coefficients) is available, can be computationally expensive and often assume
perfect knowledge of the environment. In contrast, heuristic quality metrics offer
faster computation but tend to be less accurate due to their inability to account
for noise and incomplete information. Learned quality methods may address some
of these issues by leveraging large datasets, yet they come with their own set of
challenges, including the need for extensive training data and the potential lack of
interpretability for human operators.

To address these limitations, Chapter 4 will introduce a framework for the
uncertainty-aware grasp candidate selection using the approach from Baek et
al. (2022), based on the spatiotemporal fusion of grasp candidates from Pohl and
Asfour (2022).

2.3. Robotic System Architectures

Three-tiered robot architectures (Bonasso, 1991; Firby, 1989) have long been a
standard for operating mobile robots in unstructured and uncertain environments
and executing mobile manipulation tasks (see e. g., Kortenkamp et al., 2016).
The three layers – Planning , Executive, Behavioral Control – of the architecture
correspond to different abstraction levels and robot capabilities (e. g., from Jaquier
et al., 2024) and are visualized in Figure 2.3.

The Behavioral Control layer focuses on real-time, low-level control of the robot’s
actions and interactions with its environment. This includes sensor processing,
motor control, and immediate responses to environmental stimuli to ensure the
robot operates safely and effectively. It executes the specific actions and tasks
assigned by the Executive layer and responds with real-time feedback on the robot’s
status and environmental conditions, enabling adjustments and ensuring the robot
can adapt to changes or unexpected situations. The medium-level Executive layer
acts as an intermediary between the Planning and Behavioral Control layers. Its
main role is to decompose high-level plans into detailed tasks and manage the
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Planning (Section 2.3.2)

Executive (Section 2.3.1)
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Figure 2.3.: Components of a generic three-tiered robot architecture (e. g.,
Kortenkamp et al., 2016) combined with the capabilities stack from
Jaquier et al. (2024). The different layers are color-coded corresponding
to their respective abstraction level as follows: high abstraction ( ),
medium abstraction ( ), and low abstraction ( ).

sequence of these tasks. It oversees the execution of plans, handles contingencies,
and ensures that the robot’s actions align with the strategic goals set by the
Planning layer. The abstract Planning layer is responsible for high-level decision-
making and generating long-term goals. It typically involves strategic thinking,
such as route planning, task sequencing, and problem-solving based on the robot’s
objectives and constraints.

The humanoid robots of the ARMAR (Asfour et al., 1999; Asfour et al., 2017)
family are an example of the successful implementation of the three-tiered robot
architecture for applications in the personal sector. ARMAR-III (Asfour et al.,
2006) employs a hierarchically organized control architecture with three levels: task
planning (Planning), task coordination (Executive), and task execution (Behavioral
Control). This architecture enables dynamic task execution and interaction in
domestic environment. ARMAR-6 (Asfour et al., 2019), developed for the assistance
of technicians working on maintenance tasks, builds on these concepts and extends
the capabilities to advanced cognitive functions like human action recognition,
facilitated by the ArmarX (Vahrenkamp et al., 2015) software framework.

A recent trend in mobile manipulation frameworks based on a combination of
multi-modal foundational models, so-called Robotic Transformers (Brohan et al.,
2023a,b; O’Neill et al., 2024), capitalizes on the generalization capabilities of
transformer-based models when trained on large datasets. In contrast to the three-
tiered robot architecture, these approaches combine the three layers to directly
predict actions based on visual perception and natural language instructions. Even
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though these models show remarkable emerging capabilities (e. g., generalizing
concepts from web-scale data to perform tasks that were not in the training set),
they require a tremendous amount of data and result in decreased performance in
the control layer (Jaquier et al., 2024). Therefore, this section will focus on the
more "traditional" approaches resembling the three-tiered robot architecture.

In order to introduce the state of the art related to Contribution 3 and discuss
the adaptability of mobile manipulation skills, this section will consider mainly
two fields of research. First, Executive mobile manipulation frameworks will be
analyzed regarding their capacity to transfer knowledge, experience, and skills
across varying situations (Section 2.3.1). Subsequently, Section 2.3.2 will review
current trends that incorporate and use LLMs in the Planning layer.

2.3.1. Task Execution Frameworks

The review of Jaquier et al. (2024) of transfer learning in robotics introduces three
main modes of transfer : environment , task , and robot . This thesis adopts these
categories in an attempt to increase the adaptability of mobile manipulation skills
in real-world applications. First, task transfer focuses on leveraging the ability of
a robot to perform a given task to learn how to execute a different but related
task in the same environment. An example would be the reuse of trajectories
from grasping an object to place it again. Second, robot transfer aims to endow a
target robot (e. g., a humanoid robot) with the ability to perform a task known by
another source robot (e. g., an industrial manipulator) in the same environment.
Finally, environmental transfer involves the ability of a robot to perform a task
equally well in a target environment compared to a different source environment.
That could mean a robot can execute a task in a household scenario as well as an
industrial setup. Even though Jaquier et al. (2024) specifically include Sim-to-Real
transfer in this category, the following analysis of related works does not.

Task Execution Frameworks

Modes of Transfer

Task Robot Environment

Figure 2.4.: Overview of the different modes of transfer for task execution frame-
works used in this section.
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Transfer in the Behavioral Control, Executive, and Planning Layers

The Behavioral Control layer is not suited for the transfer of knowledge and
experience because it operates at a low level of abstraction, dealing with specific
sensor processing and motor control tasks that are tailored to individual robots.
These tasks are highly dependent on the robot’s hardware and environment, making
them difficult to generalize across different systems. Additionally, the Behavioral
Control layer lacks the flexibility to adapt to varied contexts without significant
reprogramming. For example, Wächter et al. (2016) discuss the use of hierarchical,
distributed statecharts for robot programming. While these enhance programming
convenience, they limit skill transfer due to their detailed, robot-specific nature.
Similarly, Bohren and Cousins (2010) highlight the challenges in coordinating Robot
Operating System (ROS, Quigley et al., 2009) nodes through nested state machines
because of the reliance on explicit, robot-specific task scripting. The NUClear
framework (Houliston et al., 2016) exemplifies a low-latency, modular message-
passing architecture designed to optimize communication and data handling in
humanoid robotic systems, enabling efficient real-time processing and component
reuse. Despite these advantages, the need for extensive reprogramming to adapt
to different tasks or robots remains. Lastly, Iovino et al. (2023a) examine the
programming effort required for Finite State Machines (FSMs) and Behavior Trees
(BTs) in robotic applications, underscoring the limitations of FSMs in adapting to
varied tasks without extensive modifications. Consequently, transferring knowledge
from the Behavioral Control layer to other robots or settings is impractical and
inefficient.

The Planning layer is not suited for the transfer of knowledge and experience
because it operates at a high level of abstraction, providing broad goals without
detailed execution instructions. This generality makes it easy to transfer, but it
lacks the specific, actionable information needed to implement tasks directly on
different robots. Specifically, Jaquier et al. say that "the difficulty of transfer, as
well as the resulting performance, is highly dependent on the capability stack that is
made available a priori for each robot." (Jaquier et al., 2024) For instance, Brohan
et al. demonstrate the innovative SayCan (Brohan et al., 2023c) framework, which,
despite its promise, struggles with skill transfer due to its high-level linguistic
abstraction. Similarly, the planning framework of Ruiz-Celada et al. (2022) employs
perception and ontology-based reasoning to generate Planning Domain Definition
Language (PDDL) files, integrates symbolic and geometric planning, and uses
BTs for robust task execution while depending on predefined actions and domain-
specific configurations without a mechanism for generalizing learned knowledge.
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The approach of Mullen Jr. and Manocha (2024) involves leveraging LLMs and
affordance scores to align model confidence with task success, reducing human
intervention and mitigating LLM hallucinations by evaluating the plausibility
and safety of actions within a given scene. However, it relies on specific, context-
dependent affordance scores that do not generalize well to different settings and
scenarios. Ruiz et al. (2022) use BTs and automated PDDL generation based on
ontological reasoning for task and motion planning but fail to enable knowledge
transfer due to their dependency on predefined, task-specific predicates and actions.
Sun et al. (2023) uses LLMs for interactive planning in uncertain environments by
guiding robots to collect observations and update actions but requires task-specific
belief states and policies. Generally speaking, the Planning layer requires a pre-
existing framework of low- to mid-level capabilities for each robot, which limits its
practicality for direct knowledge transfer. This gap necessitates additional layers
to bridge high-level goals with executable actions.

The Executive layer is ideal for transferring knowledge and information due to its
intermediate level of abstraction. Unlike the low-level Behavioral Control layer,
which deals with specific, robot-tailored tasks and instructions that are difficult
to transfer, and the high-level Planning layer, which often uses abstract natural
language descriptions with limited concrete task details, the Executive layer has
a good balance of task-specific information and abstraction. It bundles actions
and executions into skills with specific goals, providing enough detail for execution
while maintaining flexibility for adaptation across different robots , environments ,
and goals. For instance, high-level plans generated by LLMs describe goals in
natural language but lack concrete execution details. The Executive layer bridges
this gap by grounding these high-level descriptions into robot-specific instructions,
facilitating execution across various agents and environments. This ability to
translate abstract plans into detailed, executable steps makes the Executive layer
the best suited for the transfer of knowledge and experience in robotic systems.

Delimitation of the Analysis’ Scope

Some works investigating the transfer of knowledge and experience specifically
target task description languages. Even though these are a fundamental requirement
for transferring knowledge, a task description language in itself is not able to execute
any manipulation task. As an example, the instantaneous Task Specification
using Constraints (iTaSC, De Schutter et al., 2007) framework for constraint-
based task specification and estimation in robotic systems, focuses on handling
geometric uncertainties through feature coordinates and systematic estimation
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methods. The approach aims to integrate task specification with real-time sensor-
based adjustments to manage dynamic environments. Furthermore, the work of
Aertbelien and De Schutter (2014) advances this concept with the eTaSL/eTC
framework, introducing expression graphs for a more modular and composable task
specification, along with a clear separation of specification, solver, and execution
layers. This newer framework enhances flexibility, enabling knowledge transfer
across different environments , tasks , and robots with minimal reprogramming and
supports integration with various robotic execution environments. As the aim of
this section is to introduce approaches that actually execute mobile manipulation
actions and can handle one or more of the modes of transfer, task description
languages will not be part of the analysis.

Early Executive frameworks for mobile manipulation created integrated solutions
that do not facilitate the transfer of knowledge. For example, Bagnell et al. (2012)
present an integrated system developed under the DARPA ARM-S program. This
system combines open-source packages, BTs, and advanced perception and control
algorithms to enable autonomous robotic manipulation. Despite its innovative
approach, the study reveals significant limitations in achieving seamless adaptability
due to hardware issues, calibration errors, and the absence of dual-hand tracking
and bi-manual motion planning. In contrast to this, the following sections will
introduce Executive frameworks for mobile manipulation that allow the transfer
of knowledge and experience across one or more of the modes task , environment ,
and robot .

Single-Mode Transfer

In contrast to integrated approaches, there exist multiple Executive approaches
that can handle the transfer of knowledge, experience, and skills across a single
mode in the field of mobile manipulation. Each modality presents unique challenges
and opportunities for enhancing robotic capabilities, from reusing trajectories in
different tasks to executing skills across varied environments and platforms. The
papers discussed in this section exemplify relevant approaches and methodologies
that have contributed towards achieving versatile and autonomous robotic systems
capable of adapting to new tasks , environments , or robotic platforms with minimal
reconfiguration.

Jaquier et al. (2024) define single-mode transfer as knowledge or experience being
transferred across a single dimension. In this context, one mode (robot , task ,
or environment) changes while the other two remain the same. For example,
transferring a skill learned by one robot to another robot , while keeping the task
and environment constant, would be an instance of robot-mode transfer. Similarly,
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Table 2.4.: Overview of task execution frameworks regarding their ability to trans-
fer knowledge and capabilities across tasks , environments , and robots .

tasks robots environments

Borghesan et al. (2014) # #  
Burgess-Limerick et al. (2022) # G#  
Chen et al. (2024) G#   
Dömel et al. (2017) #   
Garcia et al. (2018) #  G#
Hart et al. (2014, 2015, 2022) G#   
Hermann et al. (2011) # #  
Iovino et al. (2023b)  # G#
Jiang et al. (2018)  G# G#
Kasaei and Kasaei (2024)  #  
Keleştemur et al. (2019) # #  
Koubaa et al. (2016) #  #
Liang et al. (2022)  # G#
Liu et al. (2024a) # #  
Martins et al. (2023)   #
Nam et al. (2020) G#   
Nebot and Cervera (2007) #  G#
Paikan et al. (2015) #  #
Pane et al. (2020)  G# G#
Ren et al. (2024) # #  
Rovida and Kruger (2015);Mayr et al. (2023)  G# G#
Staroverov et al. (2023) #   
Verma et al. (2021) # #  
Wang et al. (2023a)  # #
Wang et al. (2024) #  #
Wu et al. (2020) #   
Yang and Zhang (2023)  # #
Yao et al. (2022)   G#
Yenamandra et al. (2024) G# #  
Yi et al. (2020) G#   
Yokoyama et al. (2023) G# #  

Pohl et al. (2024)    

task -mode or environment-mode transfers focus on changing just the task or
environment , respectively.

Task Transfer The transfer of manipulation skills across tasks represents a criti-
cal aspect of advancing robotic versatility and adaptability. Especially in service
and hospitality, healthcare and nursing, and domestic robotics, the ability to apply
learned skills to new tasks without extensive reprogramming is essential for efficient
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and flexible operation and acceptance from non-expert users. For example, the
SkiROS framework, introduced by Rovida and Kruger (2015), is a skill-based, mod-
ular software architecture designed to facilitate intuitive task-level programming for
autonomous mobile manipulators in industrial environments, focusing on modular-
ity and scalability within the ROS middleware. Building on this, Mayr et al. (2023)
present SkiROS2, which enhances the original framework by incorporating behav-
ior trees, improved knowledge representation using the Web Ontology Language,
and support for multiple skill implementations to increase adaptability across
different tasks , environments , and hardware scenarios. SkiROS2 facilitates transfer
across tasks effectively, while both frameworks support partial transferability across
environments and robots due to the need for specific skill implementations and
adaptations for different settings and hardware. Similarly, the Layered Architecture
for Autonomous Interactive Robots (LAAIR, Jiang et al., 2018) is a three-layer
hybrid architecture for autonomous interactive robots, integrating reactive control
for dynamic task sequencing, deliberative control for goal planning, and modular
skills for interaction. LAAIR supports the reuse of skills across various tasks , but
the transfer across different environments and robots is only partially supported
due to the need for some adjustments in implementation and reprogramming for
specific contexts and robot-specific skill implementations. The work of Pane et al.
(2020) introduces a constraint-based skill programming framework that separates
task and progress constraints, allowing for the composition and reuse of skills in
different contexts. This approach enables the creation of complex, reactive robot
behaviors adaptable to various tasks and potentially different robotic platforms
and environments . Furthermore, Liang et al. (2022) contribute a search-based task
planning framework utilizing learned Skill Effect Models, which iteratively train on
diverse task data to enable flexible, parameterized skill planning and adaptation
to new tasks and scenarios. This approach allows the planner to efficiently incor-
porate new skills and tasks over time, facilitating lifelong learning and transfer
of knowledge across varying contexts. Iovino et al. (2023b) propose a framework
that combines LfD and Genetic Programming to create and evolve BTs for robotic
applications, allowing non-expert users to semi-automatically generate adaptable
and efficient robot programs. This approach enables the reuse of learned behaviors
across related tasks and different settings with minimal reprogramming. Moreover,
the work of Wang et al. (2023a) presents a deep reinforcement learning framework
that employs Hindsight Experience Replay and a novel knowledge transfer tech-
nique to enhance dexterous robotic manipulation by leveraging learned strategies
from simpler tasks to solve more complex tasks within the same robotic platform.
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Lastly, the Structural-BT framework (Yang and Zhang, 2023) enhances robotic
software development efficiency by reusing BT structures for abstracting and imple-
menting task planning paradigms, allowing flexible composition and customization
of software components. This framework modularizes the interaction pipelines
between sensing, planning, and acting functions, facilitating reuse across different
tasks while requiring specific adaptations for various robots and environments .

Environment Transfer The adaptability of robotic systems to diverse environ-
ments is a critical aspect of their utility, particularly in dynamic, unstructured,
or novel settings where no prior knowledge about the scene exists, and the envi-
ronment has not been prepared particularly for the robot. For instance, Hermann
et al. (2011) present a highly integrated hardware and software architecture for a
bimanual mobile manipulator, combining multi-sensor perception with fast multi-
level planning to enable adaptive and intuitive execution of a wide range of tasks
in varying industrial environments . The approach illustrates the capability of the
manipulator to operate across various environments , albeit with some limitations in
demonstrating the extent of their environmental diversity. The work of Borghesan
et al. (2014) presents a method for specifying and controlling manipulation tasks
using constraint- and synergy-based approaches within the iTaSC framework,
enabling the adaptation of robotic actions to various environments through the
definition of objects and robots in different scenes, but requiring explicit program-
ming for each task and robot configuration. The work by Keleştemur et al. (2019)
presents a system architecture for autonomous mobile manipulation in domestic
environments, utilizing NNs for object detection, Natural Language Processing
(NLP) for task comprehension and integrated modules for perception, navigation,
and motion planning. The framework is implemented on Toyota’s Human Support
Robot and demonstrates adaptability to various domestic settings. Furthermore,
Verma et al. (2021) propose a framework that utilizes automatically generated BTs
to enable robust execution and real-time adaptation of robotic manipulation tasks
in dynamic environments by integrating symbolic and geometric reasoning for
seamless task and motion planning. Burgess-Limerick et al. (2022) present a gener-
alized architecture for reactive mobile manipulation on-the-move, enabling flexible
and robust task execution across various environments while being adaptable to
different robotic platforms with minimal modifications. The work of Yokoyama
et al. (2023) presents Adaptive Skill Coordination, a framework that utilizes a
library of basic visuomotor skills (navigation, picking, placing) alongside a skill
coordination policy and a corrective policy to adapt and coordinate these skills for
long-horizon tasks in diverse, unstructured real-world environments. The skills are
trained entirely in simulation and deployed zero-shot on the Boston Dynamics Spot
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robot, demonstrating robust performance without needing detailed maps or precise
object locations. Yenamandra et al. (2024) present HomeRobot, an integrated frame-
work and benchmark for open-vocabulary mobile manipulation, enabling robots to
navigate and manipulate a wide range of objects in diverse, multi-room household
environments using a combination of simulation and real-world components. This
approach leverages reinforcement learning and heuristic baselines to facilitate the
generalization of robotic skills across different settings aimed at creating versatile
household assistants. Similarly, the OK-Robot (Liu et al., 2024a) framework inte-
grates vision-language models with navigation and grasping primitives to enable
zero-shot pick-and-drop operations in novel home environments, utilizing pre-
trained models and a modular approach for robust performance without additional
training. Lastly, Ren et al. (2024) present a dual-arm manipulation framework
that integrates a learning-based dexterity-reachability-aware perception module
for autonomous bimanual grasping of unknown objects and an optimization-based
versatility-oriented control module for real-time cooperative manipulation, ensuring
system safety and adaptability. While this approach enables the transfer of skills
across different environments due to its robust perception capabilities, it only
parenthetically mentions the possibility to generalize to other tasks and robots .

Robot Transfer The transfer of manipulation skills across different robotic plat-
forms is a critical aspect in the personal sector, as it facilitates robots learning
from each other’s experiences and failures to advance robotic autonomy and versa-
tility in these scenarios. As an early example, the Acromovi architecture (Nebot
and Cervera, 2007) is a distributed, agent-based software framework designed
to seamlessly integrate and coordinate multiple heterogeneous robotic systems,
such as mobile bases and manipulator arms, enabling flexible and reusable code
across different robotic platforms. By leveraging agent wrappers and middleware,
the framework facilitates component interaction and resource sharing, promoting
efficient task execution and cooperation between diverse robotic elements. Fur-
thermore, the work of Paikan et al. (2015) presents a framework for transferring
object grasping skills between different humanoid robots, utilizing a bridge system
to interconnect varied software frameworks and employing reactive correction
behaviors to adapt grasp definitions to new robot embodiments. This approach
enables the execution of grasping tasks across robots with different kinematics
and middleware without extensive reprogramming. The paper by Koubaa et al.
(2016) presents a service and hospitality-oriented software architecture for robotic
assistants using ROS, featuring the COROS framework and ROS Web Services to
enable modular, distributed, and easily extensible applications. This architecture
abstracts robot control and application logic, facilitating interaction with different
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ROS-enabled robots and integrating them with client applications via standard web
service protocols. Additionally, Garcia et al. (2018) present SERA, a Self-adaptive
dEcentralized Robotic Architecture, which enables decentralized collaboration and
adaptation among heterogeneous robots through a three-layered modular design.
This architecture allows for flexible integration and coordination of robots in various
settings, supporting reusable components and efficient management across diverse
robotic systems in varying environments . Recently, the MOSAIC framework (Wang
et al., 2024) introduced a modular architecture that integrates pre-trained vision-
language models and reinforcement learning to coordinate multiple robots and a
human user for collaborative cooking tasks in a predefined kitchen environment.
The system uses a task planner to convert high-level instructions into robot actions,
enabling seamless interaction and execution across different robots but requiring
environment-specific setups and independently trained task modules.

In conclusion, the transfer of manipulation skills across a single mode represents
a first step in the evolution of robotic systems towards greater autonomy and
adaptability. The research highlighted in this subsection underscores the diverse
strategies and frameworks developed to address the challenges inherent in each
transfer modality.

Dual-Mode Transfer

According to Jaquier et al. (2024), dual-mode transfer refers to changing two of
the modes while keeping only a single mode constant. This could, for example,
mean transferring knowledge from one robot performing a task in one environment
to a different robot performing a similar task in a different environment. Some
Executive frameworks have a greater focus on the adaptability and facilitate such
a transfer of knowledge across two modes at the same time. This enables them to
perform a wide array of tasks across various environments and platforms. This
subsection delves into the research focusing on the transfer of knowledge and
capabilities across two out of the three identified modalities.

Task-Robot & Task-Environment Transfer Multiple recent approaches com-
bined tasks with another mode of transfer to improve the adaptability of robotic
systems in unstructured environments . For example, the work of Yao et al. (2022)
proposes a hierarchical control framework integrating disturbance predictive con-
trol with reinforcement learning and a forward model to adapt quadruped robots
equipped with various robotic arms to different manipulation tasks. This approach
enables the system to predict and mitigate disturbances from different robotic
arms, facilitating skill transfer across tasks and robots , with partial adaptability
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to different environments . Additionally, Martins et al. (2023) introduce LOLA, a
user-centric framework for robotic manipulation that utilizes a robot-agnostic af-
fordance library and high-level task authoring, enabling seamless task creation and
execution across various robotic platforms and related tasks. Contrarily, Kasaei and
Kasaei (2024) present a modular approach to robotic manipulation by integrating
pushing, grasping, and throwing actions through model-free deep reinforcement
learning, enabling robots to autonomously manage cluttered environments. The
framework, tested in both simulated and real-world scenarios, demonstrates the
effective transfer of learned skills across different environments and related tasks
but is tailored to one specific robot.

Environment and Robot Transfer Because task transferability is still largely un-
explored in Executive frameworks, many approaches investigated the transfer across
environments and robots to improve versatility in mobile manipulation. Dömel
et al. (2017) introduce a modular, hierarchical framework for autonomous mobile
manipulation that enhances flexibility and adaptability, enabling the transfer of
components across different environments and robotic platforms with advanced
perception and path planning. Furthermore, the Generative Attention Learning
(GenerAL) (Wu et al., 2020) framework leverages deep reinforcement learning
to perform high-DoF multi-fingered grasping by using a single depth image to
generate 6-DoF grasp poses and finger joint angles, ensuring robustness across
different robotic hands and various cluttered environments with novel objects. This
approach demonstrates high adaptability across varied robotic platforms without
the need for additional training. The unified software framework for intelligent
home service and hospitality robots, introduced by Yi et al. (2020), presents a
modular, general-purpose software framework for intelligent mobile manipulation
robots, enabling seamless adaptation across different robots and environments by in-
tegrating navigation, perception, manipulation, and HRI modules. This framework
supports the robust execution of various service tasks with minimal adjustments,
as demonstrated in international robot competitions. Similarly, Nam et al. (2020)
present a modular software architecture for autonomous service robots that in-
tegrates deep learning-based perception, symbolic reasoning, AI task planning,
and geometric motion planning, all implemented in ROS. This architecture en-
ables robots to perform manipulation and navigation tasks in varied settings by
autonomously generating and executing task plans based on contextual knowledge
without extensive reprogramming. SkillFusion (Staroverov et al., 2023), a hybrid
framework combining classical and learning-based modules for visual ObjectGoal
Navigation (ObjectNav), dynamically selects the optimal skill for navigation tasks.
This approach ensures robustness and adaptability across different environments
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and robotic platforms without the need for extensive retraining or reprogramming.
Lastly, the RoboScript framework (Chen et al., 2024) generates deployable robot
manipulation code from natural language instructions by integrating perception
tools, motion planning, and ROS-based simulation, enabling seamless execution
across various environments and robotic platforms. It leverages a unified code
generation pipeline and hierarchical agent architecture to handle complex tasks
with minimal reprogramming, facilitating adaptability and knowledge transfer
across different robots and tasks.

Affordance Templates A special mention deserves the Affordance Templates
(ATs, Hart et al., 2014) framework, which places special emphasis on the transfer
of mobile manipulation skills. Introduced by Hart et al. (2014), it provides a
graphical 3D environment for specifying and adjusting robot task goals aimed at
improving HRI through shared autonomy. In Hart et al. (2015), the framework is
extended by developing a ROS package that standardizes task descriptions in a
robot-agnostic format, enabling easy application of the same templates to different
robots with minimal configuration changes. This package includes integration with
motion planning tools like MoveIt!, facilitating more efficient task execution across
varied robotic platforms. The work of Hart et al. (2022) further advances the
framework to support generalized mobile manipulation, introducing autonomous
grasp determination and perceptual registration, thus improving the transfer of
tasks across different environments without extensive reprogramming. Throughout
these developments, the framework maintains its flexibility and adaptability for
different robots and related tasks while progressively enhancing environmental
transfer capabilities. However, an AT has to be created for each task separately,
hindering a transfer of capabilities and knowledge across tasks .

The ability to transfer knowledge across two modes constitutes significant progress
towards achieving adaptable and versatile robotic systems in service and hospitality,
healthcare and nursing, and domestic applications. Through the lens of the discussed
research, it is evident that the field is moving towards a future where robots can
seamlessly adapt their manipulation skills across different tasks , environments , and
robotic platforms. This progress is crucial for the development of robots capable of
operating in the dynamic and unpredictable real world. While the achievements in
these domains are noteworthy, they also highlight the complexity of achieving full
transferability, especially when considering the integration of all three modalities.
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2.3.2. Planning Frameworks

The Planning layer usually transfers knowledge and adapts to the current circum-
stances via goal specifications. Conventionally, this is done via the definition of a
goal state for a planner (e. g., using PDDL). However, on an even higher abstraction
level (Jaquier et al., 2024), this transfer happens through verbal instructions. In
the domain of NLP, transformer-based LLMs that are trained on a very large
corpus of text have been shown to excel at understanding and generalizing natural
language instructions (Zhao et al., 2023) – facilitating transfer as the by-product
of a large amount of training data. As planning is not the focus of this thesis and
giving a proper review of the current state of the art for planning frameworks
would go beyond the scope of this work, only the recent trends of integrating LLMs
in the Planning layer will be shortly recapitulated. Therefore, the following section
will introduce the current state of the art in task and manipulation planning using
LLMs and is taken from the publication about the topic by Birr et al. (2024).

Disclaimer

Parts of the content presented in this section were previously published in:

Timo Birr, Christoph Pohl, Abdelrahman Younes, and Tamim Asfour (2024). “Auto-
GPT+P: Affordance-based Task Planning with Large Language Models”. In: Proceedings of
Robotics: Science and Systems. Robotics: Science and Systems. Vol. 20. Delft, Netherlands

Recently, LLMs have shown significant advancements, even surpassing human
performance in numerous areas. Despite these achievements, their capability for
coherent reasoning remains limited (Valmeekam et al., 2022). Nevertheless, there
are numerous recent instances of LLMs being employed in task planning for robotic
mobile manipulation. Sarkisyan et al. (2023) identify three primary operational
modes: subtask evaluation, full autoregressive plan generation, and step-by-step
autoregressive plan generation. This categorization is only applicable when the
LLM itself functions as the planner. Conversely, recent research (such as Liu et al.,
2023a) proposes an alternative model where LLMs are used to generate symbolic
goal descriptions and are paired with a conventional planner, referred to as LLM
with Planner . This section aims to delineate the various methodologies and classify
them according to Figure 2.5.

Subtask Evaluation

This mode uses the LLM as a scoring model, selecting the optimal subtask from
predefined options by scoring all possibilities and choosing the best one based on
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Note: Adapted from Birr et al. (2024).

LLMs for Planning

LLM as
Planner

Subtask Evaluation Autoregressive
Plan Generation

Full Plan Generation Step-by-Step
Plan Generation

LLM with Planner

Figure 2.5.: A taxonomy of LLMs in planning tasks with the related work from
this section referenced.

the current state. The model output is constrained to specific tokens to ensure exe-
cutability. While resource-intensive, this method reduces computational complexity
by filtering subtasks using environmental constraints and common-sense rules
(Sarkisyan et al., 2023). A key example is SayCan (Brohan et al., 2023c), which
combines a Reinforcement Learning-based affordance function, which evaluates
action viability within the environment, with an LLM to estimate action success.
Plans are built incrementally by selecting actions with the highest combined scores.
Zhao et al. (2024) extends SayCan with a greedy next-best action evaluation and
tree search, enhancing Monte Carlo Tree Search planning through an LLM-based
common-sense heuristic.

Full Autoregressive Plan Generation

In this mode, the LLM can generate complete plans from prompts. However, while
less resource-intensive than subtask evaluation, this often results in unreliable plans
due to mismatched actions, free-form outputs, and logical inconsistencies. Wu
et al. (2023d) and Wake et al. (2023) address this by grounding the LLM with
object lists, restricting actions to listed items. To improve performance, Song et al.
(2023) use dynamic in-context retrieval for replanning. Furthermore, Rana et al.
(2023) reduce complexity by filtering irrelevant objects via 3D scene graph traversal.
Zhou et al. (2023) translate problems into PDDL, enabling plan validation and
self-correction through a feedback loop. Proposing a hybrid method combining
subtask evaluation with full plan generation, Lin et al. (2023) use semantic checks
and a greedy algorithm to meet goal conditions.

Step-By-Step Autoregressive Plan Generation

Here, the LLM generates and executes subtasks iteratively, balancing feasibility
and computational complexity by grounding actions to the environment, which
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Table 2.5.: Overview of the taxonomy for planning using LLMs.

Subtask
Evaluation

Full Plan
Generation

Step-by-Step
Plan

Generation

LLM with
Planner

Bärmann et al. (2024) # #  #
Brohan et al. (2023c)  # # #
Chen et al. (2023b) # # #  
Ding et al. (2023) # # #  
Driess et al. (2023) # #  #
Guan et al. (2023) # # #  
Huang et al. (2022a) # #  #
Huang et al. (2022b) # #  #
Liang et al. (2023) # #  #
Lin et al. (2023)   # #
Liu et al. (2023a) # # #  
Rana et al. (2023) #  # #
Singh et al. (2023) # #  #
Song et al. (2023) #  # #
Wake et al. (2023) #  # #
Wang et al. (2023b) # #  #
Wu et al. (2023b) # #  #
Wu et al. (2023d) #  # #
Xie et al. (2023) # # #  
Zhao et al. (2024)  # # #
Zhou et al. (2023) #  # #

Birr et al. (2024) # #   
Note: Adapted from Birr et al. (2024).

improves accuracy compared to full plan generation, but requires new prompts at
each step. As an example for this, Huang et al. (2022a) address the problem of
grounding LLMs in real-world scenes via a dual-step approach: a planning-LLM
generates an ungrounded plan, which a translation-LLM subsequently adapts
to the robot’s capabilities. In a follow up work, Huang et al. (2022b) improved
upon this by using incremental planning, where feedback after each step enhances
performance. Other works, such as ProgPrompt (Singh et al., 2023), use LLMs to
generate plans in Python code, with feedback from error messages aiding corrections.
Similarly, TidyBot (Wu et al., 2023b) refines code by identifying patterns in prior
iterations. Furthermore, Bärmann et al. (2024) present a system that learns from
human corrections to improve future plan generation. Wang et al. (2023b) propose
a four-step method where the LLM iteratively plans, revises based on failures,
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and selects actions to optimize execution. Finally, Driess et al. (2023) present an
embodied version of the Pathways Language Model (PaLM, Chowdhery et al.,
2023), named PaLM-E, enabling multi-modal task planning using visual and robot
state inputs.

LLM with Planner

In this mode, the LLM generates a PDDL goal state from a natural language task,
which is then used by a conventional planner. Xie et al. (2023) introduced this
approach, demonstrating LLMs’s effectiveness in translating language into PDDL
goals, though performance drops for complex tasks. Expanding on this, LLM+P
(Liu et al., 2023a) generates both goals and problems, improving success by using
minimal domain examples. Liu et al. (2024b) enhance LLM+P with scene graphs
for initial problem states and subgoal decomposition for faster planning. Guan
et al. (2023) propose LLM-based problem and domain generation, using syntactic
feedback to correct errors and a hybrid approach for faster planning. Furthermore,
AutoTAMP (Chen et al., 2023b) replaces PDDL with Signal Temporal Logic,
integrating automatic error correction in the form of plans insufficient to achieve
the goal, which are identified by the LLM. Ding et al. (2023) extend LLMs to
open-world scenarios, allowing for dynamic action generation and affordance-based
planning to handle unforeseen situations.

2.3.3. Discussion

The three-tiered robot architecture is a standard paradigm for building robotic
software frameworks. Having an adaptable task execution is majorly influenced
by the flexibility of the software architecture. Therefore, this section focuses on
comparing approaches in the Executive and Planning layer of the three-tiered
robot architecture.

In their review about transfer learning in robotics, Jaquier et al. (2024) introduce
the three modes of transferability: robot , task , environment . Accordingly, relevant
Executive frameworks for mobile manipulation were investigated regarding their
ability to transfer knowledge and experience across these modes. Works like
Borghesan et al. (2014); Iovino et al. (2023b); Wang et al. (2023a) facilitate
transfer across a single mode, while other approaches like Dömel et al. (2017);
Kasaei and Kasaei (2024); Staroverov et al. (2023) can handle two modes of transfer .
However, only very few works try to address all three modes (e. g., Hart et al.,
2022; Yao et al., 2022), while none put an explicit focus on the flexibility that this
transfer can bring to the execution process of mobile manipulation. To this end,
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Section 5.1 introduces an Executive framework that explicitly targets the transfer
of knowledge, experience and skills across the three modes.

For the Planning layer, related works were analyzed with respect to the role that
LLMs play in the creation of a plan. Some approaches, like Brohan et al. (2023c);
Zhao et al. (2024) use the LLM to select the best subtask to execute next in
order to reach a goal. Works like Lin et al. (2023); Rana et al. (2023); Wake et al.
(2023) use LLMs directly to generate entire plans, while others like Bärmann et al.
(2024); Driess et al. (2023); Huang et al. (2022b) use it to only generate the next
step. Finally, some approaches have combined LLMs with conventional planners to
capitalize on the advantages of both sides. However, most of these approaches are
limited by the closed-world assumption, lack of automated error correction, and
deterministic modeling, which restrict their ability to handle dynamic, uncertain
environments. Additionally, these approaches struggle with adaptability, feedback
integration, and generating long plans, reducing their effectiveness in real-world
applications. Therefore, Section 5.2 will introduce a hybrid step-by-step approach in
combination with a conventional planner that addresses some of these limitations.
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Visual Perception in
Unstructured Environments

In this chapter, approaches for flexible grasp synthesis in unstructured environments
using visual perception are revisited to address Research Question 1. This is
essential for interacting with unstructured environments with minimal task-specific
knowledge. To this end, methods related to Contribution 1 will be introduced.
These methods enable versatile grasp discovery that does not require full object
knowledge, facilitating work in dynamic and cluttered settings with incomplete
scene information. This is especially important for real-world applications in
the context of this thesis’ main objective. In real-world scenarios, it is often
not reasonable to assume complete knowledge of objects for grasping, as the
appearance of objects might change over time or depend on the state of the object
or its environment. Therefore, reducing the amount of prior knowledge required for
grasping and manipulation in these settings can greatly enhance the versatility and
subsequently the autonomy of robotic assistants. Therefore, this chapter introduces
an affordance-based action discovery method for unknown objects. Second, for
cases where information about the semantic object class is available, an additional
method is introduced that capitalizes on available similarities of objects of the
same semantic class.

Disclaimer

Parts of the content presented in this chapter were previously published in:

• Pohl, Christoph and Tamim Asfour (2022). “Probabilistic Spatio-Temporal Fusion
of Affordances for Grasping and Manipulation”. In: IEEE Robotics and Automation
Letters 7.2, pp. 3226–3233

• Cai, Yichen, Jianfeng Gao, Christoph Pohl, and Tamim Asfour (2024). “Visual
Imitation Learning of Task-Oriented Object Grasping and Rearrangement”. In: Proc.
of the 2024 IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems. International
Conference on Intelligent Robots and Systems (IROS). Abu Dhabi, UAE: IEEE/RSJ,
accepted for publication
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For handling objects that share characteristic traits with other instances of the
same class (e. g., "cups" or "bottles"), referred to as similar objects, a framework
for task-specific grasping based on the Multi-feature Implicit Model is introduced in
Section 3.1. The model’s capability to encode multiple spatial features and improve
object shape reconstruction from partial observations increases the success rate of
object grasping and rearrangement tasks in unstructured environments . Moreover,
an approach for grasping and manipulating unknown objects based on the local
surface geometry is detailed in Section 3.2. Its efficiency in cluttered environments
is established by using surface metrics such as curvature and normal direction
to define affordances like graspability , pushability , and placability . In addition to
the theoretical foundations, extensive experiments demonstrate the improvements
in grasp success rates and versatility and validate the practical applicability and
robustness of both methods in diverse and dynamic scenarios.

3.1. Task-Specific Grasp Synthesis for Similar

Objects

For applications in the service industry, especially in domestic environments, many
objects are not completely unknown. They often have similar shapes and functional
parts, which are shared for every instance of that class. For example, cups usually
have handles, an opening on top and are flat on the bottom. Along with shared
geometrical features, affordances are shared between the instances of a class. In the
case of the cup, that would be graspability , fillability , and placability , among others.
To allow for versatile grasping and manipulation in scenarios where the class of
the object is known, an approach for task-oriented grasping and rearrangement
was established.

To this end, a novel neural network based on neural fields – called Multi-feature
Implicit Model (MIMO, Cai et al., 2024) – was developed that facilitates the
transfer of poses from a canonical object to newly observed (potentially incomplete)
instances of the same class. Using this network, it is possible to transfer grasp
poses to novel instances that have been extracted from human observation or
autonomously generated by a grasp generation network trained in simulation.
Therefore, the approach improves the versatility of grasp synthesis by capitalizing
on knowledge from a canonical instance.

The following sections will describe the development and application of MIMO for
task-oriented grasp generation, which has been previously published in Cai et al.
(2024). The aim is to showcase how MIMO addresses Research Question 1 and
therefore contributes to the main objective of this thesis.
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3.1.1. Motivation

In order to handle everyday tasks in real-world applications, robotic assistants
should be able to use knowledge about common objects in these scenarios and
generalize it to unseen situations. Truly versatile general-purpose robots need to
be able to execute tasks, even if the objects involved have not been encountered
before. However, especially in the personal sector, many objects share common
features with other instances from the same class. General-purpose robots should
be able to handle a task independent of the concrete instance of such a similar
object, as the affordances involved do not change. Therefore, robots should be
able to transfer the task-specific knowledge from one object instance to another,
as long as they are similar. In the case of grasping, the robot must identify the
optimal grasps for specific tasks and generate an appropriate motion trajectory to
achieve the desired configuration. For example, a side grasp by the mug handle is
ideal for pouring water from a mug, while a top grasp by the rim is more suitable
when placing the mug into a container to avoid collision between the hand and
the container. To engage Research Question 1, a novel neural network is used to
transfer task-specific grasping knowledge across different instances of the same
semantic class, thereby improving the versatility of the grasp synthesis for similar
objects.

Previous methods for generating task-oriented grasps have concentrated on train-
ing neural networks using large, manually annotated datasets (see Section 2.1.1).
Despite their effectiveness, these methods cannot generalize to new objects with
significant shape variations. Furthermore, manual annotation is both costly and
challenging to obtain. In contrast, visual imitation learning approaches offer effi-
cient means to teach robots manipulation skills based on human demonstrations,
enabling generalization to new scenarios with categorical objects. Neural Descriptor
Fields (NDFs), which implicitly encode the spatial properties of objects, have proven
very successful in this regard (Simeonov et al., 2023, 2022). They can be trained
in a self-supervised manner by leveraging an inherent bias towards object classes,
thus eliminating the need for manual annotation (Hidalgo-Carvajal et al., 2023).
This bias is crucial for establishing dense 3D correspondences across categorical
objects, enabling the adaptation of object manipulation skills to previously unseen
object instances (Biza et al., 2023; Huang et al., 2023). However, these approaches
often require multiple object views, which are not always available in real-world
applications (Kerr et al., 2023; Rashid et al., 2023). When presented with a partial
view or categorical objects with significant shape variations, these approaches may
produce less precise grasp candidates, potentially leading to collisions or unstable
object placements (Hidalgo-Carvajal et al., 2023).
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To address these challenges, MIMO is designed to predict multiple spatial prop-
erties of a 3D point relative to an object. This allows the model to generate a
richer descriptor space and thus more precise dense correspondences than similar
approaches, facilitating the accurate transfer of grasps and object target poses to
new situations. MIMO can also reconstruct object shapes from partial observations,
which is beneficial for coping with task constraints defined on the hidden part of
the object. Leveraging MIMO’s capabilities, a framework that efficiently learns and
generates task-oriented grasps from single or multiple human demonstration videos
is proposed. Additionally, an evaluation network is used to predict the success
probability of the generated grasps and refine them if necessary.

Therefore, the contributions to improving the versatility of robotic assistants are
twofold: (1) A novel neural network called MIMO is introduced that predicts mul-
tiple spatial features of a point relative to an object, yielding an informative point
and pose descriptor space. It outperforms similar NDF methods in terms of shape
reconstruction and pose transfer. The model can be trained in a self-supervised
manner without relying on human annotations. (2) MIMO is integrated into a
visual imitation learning framework to learn, generate, and refine task-oriented
grasps efficiently. It achieves one- and few-shot imitation learning and demonstrates
a direct transfer of the learned manipulation tasks to categorical objects.

3.1.2. Multi-feature Implicit Model

Task-oriented grasping is an important skill for robotic assistants to deal with the
various scenarios they encounter in everyday applications. Leveraging MIMO’s
strengths in measuring pose similarities and transferring poses, a framework is
introduced to learn task-specific grasping and object rearrangement from human
demonstrations. This framework can generate optimal grasp poses for new object
instances based on partial observations, addressing the need for robots to handle
diverse and dynamic environments. By training a model that can transfer task-
specific knowledge between different object instances of the same class in simulation
entirely without human labeling, this approach enhances the robot’s ability to
perform flexible grasping and manipulation tasks in unstructured settings and
increases its autonomy , thereby answering Research Question 1.

Neural Network Architecture

The network architecture, as visible in Figure 3.1, MIMO employs a shared Vector
Neurons-PointNet encoder ϵ(P) (Deng et al., 2021) to embed the geometric infor-
mation of the point cloud P into an equivariant latent code, and a partly shared
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Note: Adapted from Cai et al. (2024). © 2024 IEEE.
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Figure 3.1.: Network architecture of MIMO.

Multi-Layer Perceptron (MLP) decoder with multiple branches to represent SO(3)-
invariant spatial relations of a point x relative to P. The occupancy Φocc (Mescheder
et al., 2019) and signed distance Φsdf (Park et al., 2019) branches enable precise
shape reconstruction, with the occupancy branch facilitating mesh construction
using the Multi-resolution IsoSurface Extraction algorithm (Mescheder et al., 2019).
To enhance the neural field’s capability in capturing geometric details and direction
awareness, two novel feature branches, Extended Space Coverage Feature (ESCF)
and Closest Distance Direction (CDD), are introduced. The ESCF branch Φescf ,
using the coefficients of spherical harmonics expansion across all orders and degrees
for supervision, captures finer geometric details compared to the Space Coverage
Feature (SCF, Zhao et al., 2016) branch used in similar approaches (e. g., Huang
et al. (2023)). The CDD branch Φcdd, defined as the inner product of unit vectors
vd and vp, where vd points from a point x to the closest point on the object
and vp follows a chosen principal direction, enhances direction-awareness. The
combined descriptor space, trained with four branches (Φocc, Φsdf , Φescf , Φcdd), is
more informative and precise in distinguishing fine geometric details and, therefore,
better at measuring geometric similarity.

Pose Descriptor and Transfer

The generation of pose descriptors is necessary to transfer task-relevant information
from a canonical model of the object class to unseen instances of that same class.
For every point x in the point cloud P, the point descriptor z is obtained by
concatenating the activation layers of the partially-shared decoder for ESCF and
CDD. The Basis Point Set (BPS, Prokudin et al., 2019) sampling strategy is
then used to create point descriptors for a set of points around an object, which
are concatenated to form the pose descriptor Z. Specifically, for a set of points
X ∈ RN×3 sampled from a rigid object OB in pose T around the point cloud PA of
object OA, the pose descriptor of OB is derived using the trained MIMO of object
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category A, denoted as AZB = φ(T,X|PA). This encodes poses relative to OA in a
way that similar poses exhibit a small L1 distance between their pose descriptors.
For instance, in the context of grasping, OA could be a "mug" and OB the hand,
with AZB representing a grasp pose. For improved accuracy of the pose descriptor
for partially visible objects, the object’s mesh is first reconstructed using the
occupancy and signed distance branches. Subsequently, a reference point cloud is
sampled which is used for the calculation of the pose descriptor AZB = φ(T,X|Pr

A).

To enable the transfer of grasp candidates across similar objects, it is necessary
to identify corresponding poses on two different instances of the same class. To
this end, the pose of the object in question can be optimized to be as similar as
possible to a reference pose descriptor. Given a trained MIMO for object category
A and a reference pose descriptor AẐB, the pose of a new instance of category B
(ŌB) is optimized relative to a new instance of category A (ŌA) by solving

T∗ = argmin
T

∥φ(T,X|P̄r
A)−

AẐB∥1 , (3.1)

where P̄r
A is the reconstructed point cloud of ŌA. The optimization procedure

follows the approach in Simeonov et al. (2022).

In a visual imitation learning setup, the reference pose descriptor can be obtained
from human demonstration videos by tracking the hand pose with respect to the
object point cloud. In terms of grasping similar objects, the new optimal grasping
pose (i. e., the most similar grasp pose to the demonstration), can be found using
this reference pose descriptor and Eq. (3.1) to find the pose T∗ of ŌB with respect
to the new instance of category A that corresponds to the reference pose. Using
the trained MIMO for object category A, a reference pose descriptor AẐB (e. g.,
from human observation), and a new object instance (ŌA), the pose of ŌB (e. g.,
the robot’s hand) is optimized relative to ŌA (the new object) by minimizing the
L1 distance between the inferred pose descriptor and the reference pose descriptor.

3.1.3. Pick and Place Framework

The framework for performing pick-and-place actions leverages the strengths of
MIMO in measuring pose similarities and transferring poses to learn task-specific
grasps and object rearrangements from one or multiple human demonstrations.
The framework can generate optimal grasp poses for new object instances based
on partial observations, as illustrated in Figure 3.2. This capability is crucial for
enabling robotic assistants to adapt to diverse and unstructured environments,
thereby enhancing their autonomy and effectiveness in real-world applications.
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Figure 3.2.: Proposed MIMO-based grasp framework.

To learn grasps from human observation, demonstration videos consisting of
sequences of RGB and depth images of a manipulation task are used. Hand poses
in all frames are estimated using the approach from Lin et al. (2021). Subsequently,
a Via-point Movement Primitive (VMP, Zhou et al., 2019) is trained to represent
the hand motion. The grasping time step tg and the demonstrated grasp pose Td

g

∈ SE(3) is determined following Gao et al. (2024). The source object OS is the
one being grasped, while the target object OT sets a reference frame for placing
OS at the last time step tT . Segmented point clouds of both objects at tg and tT

are obtained using Grounded SAM (Kirillov et al., 2023; Liu et al., 2023b).

In order to facilitate a task-specific synthesis of grasp candidates, the information
obtained from human observation needs to be generalized so that it can be used for
all other instances of the same class. To this end, a Riemannian Gaussian Mixture
Model (GMM) that represents the task-specific grasps is trained in simulation. For
training the GMM, a set of task-agnostic grasp poses {Ta

g } is generated using
the method from Sundermeyer et al. (2021) on a canonical point cloud Pc

S for the
class of the source object OS. From this, two strategies are employed to obtain
task-relevant grasp candidates for simulation: (i) using MIMO as a discriminator
for pose similarity to find the most similar grasps in {Ta

g } to Td
g, or (ii) using

MIMO to directly transfer the demonstrated grasp Td
g to PA using Eq. (3.1). The

combined set of task-relevant grasp poses {Tr
g } is then simulated with a humanoid

hand in Isaac Gym (Makoviychuk et al., 2021). Specifically, a grasp is considered
successful if the object is picked up and does not drop after being subjected to
random shaking. The rearrangement of the object is subsequently simulated based
on the successful grasps. If the task is completed successfully, the grasp is added
to the set of successful task-relevant grasp poses { T̄r

g }. These grasps are used to
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3. Versatile Grasp Discovery in Unstructured Environments

train a GMM on a Riemannian manifold (i. e., R3 × S3). This GMM can then be
used to generate task-oriented grasps during inference.

Even though the GMM would suffice to generate and execute task-oriented grasp
candidates, a task-agnostic grasp evaluation network is proposed to ensure the
quality of the sampled grasps. This network computes the success probability of a
grasp pose Tg relative to an arbitrary point cloud P. First, P is encoded using the
frozen encoder ϵ(P) of MIMO. Subsequently, a MLP decoder conditioned on this
encoding predicts the success probability given a set of keypoints on the humanoid
hand, representing its pose. The model is trained using a binary cross-entropy loss
on a dataset that includes all task-agnostic grasp candidates from all tasks and
their binary success labels.

During inference, grasp poses T̂g are sampled from the trained GMM for the task at
hand relative to the canonical point cloud Pc

S and transferred to a partially-observed
point cloud Po

S of a novel categorical instance. The success probability pS(T̃g) of
a transferred grasp pose T̃g is computed using the trained task-agnostic grasp
evaluation network. If the success probability is below a certain threshold, the grasp
pose is refined by maximizing the grasping success likelihood using the evaluation
network, resulting in the optimal grasp pose T∗

g. This inference process ensures
that the generated grasps are not only task-relevant but also optimized for success
in diverse and unstructured environments .

3.1.4. Experiments

To assess the proposed task-oriented grasp generation framework, multiple ex-
periments across various manipulation tasks were conducted using the humanoid
robots ARMAR-6 and ARMAR-DE. More details, evaluation videos, and source
code are available via the project page1.

In addition to the real-world pick-and-place experiments, multiple ablation stud-
ies comparing the efficacy of MIMO to similar state-of-the-art approaches were
performed by Cai et al. (2024). For the sake of completeness, they are listed in
Appendix B. The ablation studies demonstrate MIMO’s superior performance
across a range of manipulation tasks when compared to similar approaches such as
Neural Descriptor Field (NDF, Simeonov et al., 2022), Relational-Neural Descriptor
Field (R-NDF, Simeonov et al., 2023), and Neural Interaction Field and Template
(NIFT, Huang et al., 2023). In simulation, MIMO consistently achieves higher
grasp and placement success rates, particularly in scenarios involving arbitrary

1https://sites.google.com/view/mimo4
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3.1. Task-Specific Grasp Synthesis for Similar Objects

Note: Adapted from Cai et al. (2024). © 2024 IEEE.

(a) Mug Pick and Place (E1). (b) Mug Pick and Pour (E2).

(c) Bottle Pick and Place (E3). (d) Bottle Pick and Pour (E4).

Figure 3.3.: Example visualizations of the real-world experiments on ARMAR-DE
using MAkEable (see Section 5.1).

object starting poses. A key advantage of MIMO lies in its ability to generate
accurate grasps and placements even for objects with challenging geometries, such
as bottles and mugs, which often pose difficulties for other methods due to failures
in distinguishing between top and bottom orientations. Additionally, Cai et al.
show that the integration of shape reconstruction in the framework is shown to
significantly improve performance, particularly in tasks that require precise object
placement. By leveraging enhanced shape descriptors and novel neural features,
MIMO excels in SE(3)-equivariant manipulation tasks, providing a more robust and
versatile solution for object grasping and rearrangement in complex environments.

The real-world experiments were conducted using the humanoid robots ARMAR-
6 and ARMAR-DE to evaluate the proposed MIMO-based task-oriented grasp
generation framework. The setup involved four specific tasks with only a single,
partial view on the object: (E1) grasping a mug at its rim and placing it upright,
(E2) grasping a mug at its handle and pouring into a bowl, (E3) grasping a
bottle at its neck and placing it upright, and (E4) grasping a bottle at its body
and pouring it into a bowl. For all experiments, MIMO was used to reconstruct
object shapes from the partially-observed point cloud. The grasp poses are sampled
from the GMM, transferred to the observed objects, and evaluated by the grasp
evaluator (see Section 3.1.3). If the estimated success probability dropped below
0.9, the grasp pose was optimized with a learning rate of 10−3.
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3. Versatile Grasp Discovery in Unstructured Environments

An Azure Kinect camera mounted on the robot head provided RGB and depth im-
ages to extract object point clouds. For ARMAR-DE, the manipulation tasks were
validated and executed using the mobile manipulation framework MAkEable (Sec-
tion 5.1), while ARMAR-6 utilized a task-space impedance controller to execute
motions generated by learned movement primitives. The target poses corresponded
to the grasp pose during the grasp phase and the object rearrangement pose during
the placement or pouring phase. Qualitative results are shown in Figure 3.3 and
showcase the applicability of the MIMO-based task-oriented grasping framework
to real-world scenarios.

3.2. Affordance-based Action Extraction using the

Local Surface Geometry

The MIMO-based approach described in Section 3.1 can successfully transfer
manipulation knowledge across instances of the same class. However, it does not
facilitate grasping objects without any prior knowledge. To allow for versatile
grasping and manipulation in scenes with unknown objects, a flexible method for
affordance extraction, called the Geometry-based Action Extraction (GAE), based
on the local surface geometry of point clouds, is developed. This approach applies
the concept of discriminative grasp synthesis to affordance extraction by analyzing
every point in the point cloud, calculating the local surface curvature, and assigning
affordances based on heuristics of the principal curvatures and normals at the
point. Therefore, this approach completely decouples affordance extraction from
the notion of "objects" and is ideal for grasping and manipulation of unknown
objects.

Furthermore, by extracting affordances using heuristics on the local surface infor-
mation of supervoxels, a uniform and coherent state can be defined for different
affordances based on a local, geometry-aware coordinate frame (see Section 4.1).
The approach is evaluated through grasping experiments with the humanoid robot
ARMAR-6, demonstrating an improved grasping success rate. The following sec-
tions will delve into the details of the Geometry-based Action Extraction method
and its implications for robotic manipulation in unstructured environments .

The content of this section has already been published in the paper Pohl and
Asfour (2022) and will now be put into the context of this thesis.
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3.2.1. Motivation

The interaction of robotic assistants with unstructured and unknown environments
based on visual information remains a difficult task. It requires a detailed under-
standing of the scene and the objects therein to allow the generation of appropriate
actions that can be executed in a given situation. Especially for real-world applica-
tions in the personal sector, the ability to interact with cluttered, unstructured,
and dynamic scenes is a key requirement for robots to operate autonomously .
In these contexts, robots must handle a wide range of different tasks without
relying on task-specific knowledge. Therefore, increasing the versatility of grasping
and manipulation in unstructured environments is a requirement to advance the
autonomy of robotic assistants (i. e., the main objective of this thesis). To this end,
the local surface geometry of point clouds is used to extract action hypotheses
without any form of prior knowledge about the scene or its objects.

While Section 3.1 introduced an approach for the grasping and rearrangement
of similar objects, it is not always feasible to assume that knowledge about an
object’s class exists. As a possible solution for this, the representationalist view
on affordances (see Appendix A) decouples possible actions in a scene from the
concept of "objects". By interpreting the scene as a set of entities that are
connected to possible behaviors of the robot, it facilitates an object-agnostic scene
understanding and, therefore, the discovery of interaction possibilities for unknown
objects. Previous affordance-based approaches for grasping and manipulation rely
either on overly simplistic scene representations (e. g., primitive shapes; Kaiser
et al. (2017) and Kaiser and Asfour (2018)) or require large manual efforts (e. g., for
dataset generation; Song et al. (2016)). Accordingly, Yamanobe et al. (2017) find in
their review that simulation-based approaches often fail to accurately represent real-
world physics, leading to performance gaps, while manually defining affordances
(i. e., in an ontology) is labor-intensive and may not generalize well to novel
scenarios. Additionally, learning from human demonstration is slow and limited
to specific tasks, requiring significant human effort, while real-world interaction
and exploration can be risky, slow, and heavily dependent on noisy sensor data.
There exists a large body of research that investigates grasping of unknown objects
(see Section 2.1.2 and Table 2.2). However, these approaches are either tailored to
specific scenarios or require large amounts of training data with limited potential
for generalization to unseen situations. Contrarily, using the local surface geometry
of depth data (as done by e. g., ten Pas et al. (2017)) to extract coordinate frames
along the Principal Curvature Directions, so-called Darboux frames, poses a unique
opportunity to extract affordances and a corresponding 6D end-effector pose for
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Note: Adapted from Pohl and Asfour (2022). © 2022 IEEE.

(a) (b)

(c) (d)

Figure 3.4.: Overview of the Geometry-based Action Extraction. In (a) the surface
normals and principal directions for each point in a surface patch are
displayed. (b) shows the clustered supervoxels and (c) the averaged
surface information. (d) shows the extracted action observations.

the discovery of versatile interaction possibilities without the need for task-specific
knowledge.

To improve the versatility of robotic assistants, the Geometry-based Action Ex-
traction (GAE) – an affordance-based approach to grasping and manipulation of
unknown objects in unstructured environments using the local surface geometry –
is developed. By employing quadric approximations of the local surface of a point
cloud, the Principal Curvature Directions are extracted and used to heuristically
derive affordances for surface patches. Quadric surface approximations enhance the
accuracy of vision-based manipulation in noisy point clouds by using a universal
parameterization of surface patches for all shapes and affordances. These affor-
dances are associated with an Abstract Affordance Frame (AAF), a Darboux frame
that is uniquely defined for every point of the point cloud, allowing for the direct
generation of end-effector poses. By doing so, GAE decouples action discovery
from the notion of objects, making it ideal for the grasping and manipulation of
unknown objects in diverse and dynamic environments. Thus, the geometry-based
extraction of affordances ensures versatile action generation and is particularly
beneficial for robots operating under realistic conditions and incomplete knowledge.
An overview of the approach can be seen in Figure 3.4.
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3.2.2. Geometry-based Action Extraction

The Geometry-based Action Extraction for flexible grasping and manipulation in
unstructured environments is divided into four primary steps: (i) First, the local
surface geometry of a point cloud is examined by fitting quadric patches to the
neighborhood of every point to compute the surface normal and principal curvatures.
(ii) This enables the extraction of locally consistent surface patches through a
modified supervoxel clustering technique. (iii) Next, the averaged geometrical
features of these supervoxels are used to heuristically define affordances and
(iv) establish a spatiotemporally consistent coordinate system (referred to as the
AAF in this thesis) for each patch. By focusing on the local surface geometry
and extracting a shared state for all affordances, GAE improves the versatility of
grasping and manipulation actions and builds the foundation for applying recursive
Bayesian estimation in Section 4.1.

Local Surface Approximation

In order to analyze the local surface structure of the raw point clouds and obtain
a geometrical representation of the scene, quadric patches are fit to each point in
the point cloud. Quadrics (see e. g., Kobayashi and Nomizu (1996) or Hartshorne
(2013)) are D-dimensional hypersurfaces embedded in a space of dimension (D+1),
where D = 2 in this case. Fitting quadrics to the local neighborhood of each point
allows the noisy surfaces to be treated as functions. Consequently, methods of
differential geometry allow for the closed-form calculation of essential metrics for
the local surface geometry, like the surface normal and the principal curvatures (see
e. g., Patrikalakis and Maekawa, 2010, Chapter 3). An overview and description of
the used metrics can be found in Table 3.1.

Table 3.1.: Overview of the most important surface metrics.
Metric Symbol Description
Surface Normal n Vector of the direction that is perpendicular to the sur-

face at the origin
Principal Directions λ± Direction of the extremal values of curvature of a surface

at the origin. Representing the local extrema of the
curvature values.

Principal Curvatures κ± Amount of curvature at the origin of the surface in the
directions λ±, respectively.

Note: Reprinted from Pohl and Asfour (2022). © 2022 IEEE.

To efficiently approximate the local surface of a raw point cloud as quadrics, the
GPU implementation of Spek et al. (2017) is employed. This method yields the
surface surface normal n, the principal curvatures κ±, and the second fundamental
form coefficients L, M, N .
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In order to calculate the AAF in later steps, the principal directions λ± are of great
importance, as they are used in combination with n to calculate the orientation of
the frame. To be able to calculate λ±, the first and second fundamental form of a
parametric surface r = r(u, v) are needed:

I = E du2 + 2F du dv +Gdu2

II = Ldu2 + 2M dudv +N du2

In their work, Spek et al. (2017) use a local neighborhood around each point in
the cloud to fit a parametric paraboloid of the form

r(u, v) =

 u

v
L
2
u2 +Muv + N

2
v2

 , or

z =
L

2
u2 +Muv +

N

2
v2 .

From this, it can be seen that at the origin:

E = ru · ru = 1; F = ru · rv = 0; G = rv · rv = 1

The vector kλ± ∈ R3 of the principal directions λ± = du
dv

represents the three-
dimensional direction of the greatest and smallest curvatures in Euclidean space.
kλ± can be obtained from the definition of the principal curvatures through the
surface parameters:

κ± =
M +Nλ±

F +Gλ±
=

L+Mλ±

E + Fλ±

κ± =
M +Nλ±

λ±
= L+Mλ± (3.2)

λ± = − M

N − κ±
= −L− κ±

M

Now, kλ± can be calculated as

kλ± =

 1

λ±
nx+λ± ny

nz


due to the orthogonality of the principal directions to the surface normal n.
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Supervoxel Clustering

Calculating the principal directions and principal curvatures would be theoretically
enough to extract affordances and the AAF. However, as only a small neighborhood
is taken into account for the calculation of the surface metrics, they are still strongly
affected by noise in the point cloud. Therefore, the next step consists of extracting
small surface patches with uniform appearance and geometry to calculate averaged
surface metrics. This is achieved by using the clustering algorithm described
in Papon et al. (2013), which adheres to object boundaries and provides an
over-segmentation of the scene into so-called supervoxels. As it is reasonable to
assume that points with similar local surface properties, such as the principal
directions, belong to one semantic segment and, therefore, share affordances, the
implementation in the Point Cloud Library (PCL, Rusu and Cousins, 2011) was
modified to incorporate the previously extracted local surface metrics.

A supervoxel V = (t, c,n,kλ− , K) represents a cluster of similar points and is
defined using the averaged features of all points within it. Here, t ∈ R3 denotes
the position, c ∈ [0 . . . 255]3 the color, n ∈ R3 the surface normal, kλ− ∈ R3 the
direction of minimal curvature, and K = κ+ · κ− the Gaussian curvature. Starting
with an initial seeding, supervoxels are iteratively grown based on the distance
dvccs between two adjacent voxels V1 and V2 in the feature space2, given by

dvccs = α||t2 − t1||+ β||c2 − c1||+ γ(1− |n1 · n2|),

where α, β, γ are scaling constants.

To better account for the local surface structure, the feature space was extended
by incorporating the principal directions and Gaussian curvatures of the point
cloud. Consequently, the new distance metric in the feature space is defined as

daug = dvccs + δ(1− |kλ−,1 · kλ−,2|) · |K2 −K1|,

where δ is an additional scaling constant. This augmented distance metric ensures
that the clustering process is more sensitive to the local surface geometry.

Heuristic Affordance Extraction

Threshold-based decision functions are used for defining affordances based on the
local surface geometry, similar to Varadarajan and Vincze (2013). In the prior
work of Kaiser et al. (2016), such functions were utilized to determine affordances
on geometric primitives extracted from the environment. In this work, heuristics

2Note that this is the distance used in the PCL implementation, in Papon et al. (2013) a
39-dimensional feature space is used.
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derived from the local surface geometry are employed to extract affordances. For
instance, flat surfaces with surface normal anti-parallel to the direction of gravity
are assumed to afford placability or supportability. Additionally, convex objects, as
defined by the curvature direction convention in Patrikalakis and Maekawa (2010)
with κ− ≤ 0, are considered to afford graspability . An overview of the heuristics
used for affordance extraction can be found in Table 3.2.

Table 3.2.: Surface metrics for the definition of affordances.

Surface Metric Affordances
Graspability Pushability Placability

Mean Surface
Curvature Convex – Flat

Mean Normal
Direction

Upper
Hemisphere Horizontal Upwards

Volume < Grasp Volume – > Object/
Threshold

Note: Reprinted from Pohl and Asfour (2022). © 2022 IEEE.

Using this approach, every point in the point cloud has the necessary information
to extract affordances. However, as this is often not necessary (except for e. g., a
teleoperated affordance extraction procedure as the one used in Section 5.1.3), the
averaged metrics of the supervoxel can be used to extract more robust affordances.
This reduces the noise in the extracted affordances and does not influence the
accuracy too much, as the supervoxels adhere to object boundaries.

Action Generation in Local Coordinate System

In addition to the extraction of affordances, the local surface geometry facilitates
the definition of a unique, spatiotemporally coherent, local coordinate system,
referred to as Local Curvature Frame in Pohl and Asfour (2022), that can be used
as an abstract reference frame in which end-effector poses can be constructed based
on the assigned affordances of the supervoxel. In the context of this thesis, such a
frame that is connected to and represents one or more affordances at a specific
point of an object’s surface will be called Abstract Affordance Frame (AAF),
as the concept extends to other applications, where the frame is not necessarily
extracted from the local curvature. This AAF – which is a Darboux frame – can
be uniquely defined at any non-umbilical point on a parametric surface, using the
surface normal and the direction of curvature, as these are always orthogonal for
differential surfaces (Patrikalakis and Maekawa, 2010).
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Using the extracted surface metrics, the pose T of the AAF in the global coordinate
frame can be derived as

T =


| | | |

kλ+ kλ− n t

| | | |
0 0 0 1


To show that the pose T is uniquely defined for any non-umbilical point on
a parametric surface, an alternative formulation of the principal curvatures to
Eq. (3.2) in terms of the Gaussian curvature K and the mean curvature H = κ++κ−

2

is used:
κ± = H ±

√
H2 −K (3.3)

Note that the argument of the square root in Eq. (3.3) is always ≥ 0. Depending
on the geometry of the surface, there are three different cases to consider, which
influence the definition of T:

1.
√
H2 −K = 0 and H = K = 0

2.
√
H2 −K = 0 and H ̸= K ̸= 0

3.
√
H2 −K ̸= 0

Case 1 is the trivial flat case, where both principal curvatures are equal to 0. The
second case happens when H2 = K, and implies that κ+ = κ− = κλ. In this case,
the curvature is the same for every direction λ, which happens, for example, on
the surface of a sphere or on saddle points. The last case implies κ+ ≠ κ− ̸= 0.
Here, the principal directions are uniquely defined, as is T. In the other two cases,
which correspond to umbilical points on surfaces, T is defined up to a rotation
around the surface normal n.
The AAF serves as a universal reference frame for manipulation actions regardless of
their affordance. In this way, it provides the possibility of constructing end-effector
poses for different actions using the same reference pose. Therefore, it facilitates
the definition of a universal and coherent state for affordance-based manipulation
actions in this framework, which will be fundamental for the spatiotemporal fusion
of action observations in Section 4.1. For example, a grasp candidate could be
generated in such a way that the fingers of the hand align with the minimal
curvature direction (i. e., y-axis of the AAF), while the forward direction of the
hand for a push candidate could be aligned with the surface normal.

3.2.3. Experiments

To assess the performance of GAE, a series of real-world grasping experiments were
conducted using the humanoid robot ARMAR-6. The experiments were carried out
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in two distinct cluttered setups: a box-emptying and a table-clearing scenario. In
both scenarios, unknown objects were randomly placed, and the robot was tasked
with grasping and manipulating these objects to either empty the box or clear
the table. These setups were designed to test the versatility of the approach in
unstructured environments , directly addressing the Research Question 1. A video
detailing the approach and experiments is available online3.

In both experimental setups, top-grasp candidates were generated using GAE,
as well as the approach based on Object-Oriented Bounding Box (OOBB) from
Grimm et al. (2021) combined with a region-growing segmentation as a comparison.
The OOBB-based grasp candidate extraction was chosen as a baseline in order
to compare the efficiency and precision of GAE. For the supervoxel clustering,
the parameters were set to α = β = γ = δ = 5. The respective feature distances
were normalized, ensuring that each parameter contributed equally. Once grasping
action candidates were generated, each one was tested for reachability by solving
the IK. Based on the grasp candidate’s orientation, the mobile robot base was
positioned appropriately, and the optimal hand was chosen for executing the grasp.
Among all valid candidates, the highest was selected, executed, and recorded for
reference. Future candidates were favored if they fell outside a small region around
each previous candidate, enhancing grasp variability and preventing repetitive
execution. Reaching motions for execution were generated using VMPs.

Box Emptying Experiments

For the box-emptying experiments, a varying number of unknown objects were
randomly placed inside a box. For each candidate generation method, 30 grasp
attempts were performed, and the results were recorded. This process was repeated
across five different setups, with the number of objects ranging from 6 to 14 per
setup. The objects included simple shapes like boxes and cylinders, as well as
more complex items such as bent pipes, a hammer, and a spray bottle. To increase
variability, the object configuration was changed after every five grasp attempts by
rearranging or exchanging objects through a human operator. Successful grasps
involved lifting the object and dropping it from a height of 30 cm before the next
attempt. This interaction aimed to reduce the bias of the human operator when
creating the scenes and increase the randomness of the object configurations.

Grasp attempts were categorized based on their execution outcomes and failure
reasons. The categories included "grasped", "stable lifted", "lifted", "collision",

3https://youtu.be/lXxWtTIySB0
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Table 3.3.: Possible outcomes of grasping attempts.
Outcome Description
Grasped The object does not touch the ground for 5 seconds

Stable Lifted The object is lifted for 5 seconds but parts of the object still
touch the ground

Lifted The object is visibly lifted for less than 5 seconds

Collision The object is not lifted because the hand collides with other
objects or the environment (e. g., box)

Slipped The object is not lifted because the hand slipped off the
object / was misaligned

Missed The grasp is generated incorrectly, no object is close enough
to be grasped or no executable grasp is found after 2 minutes

Note: Reprinted from Pohl and Asfour (2022). © 2022 IEEE.

"slipped", and "missed"; each with specific criteria for classification. The descrip-
tions of all categories can be found in Table 3.3. Additionally, the time from
candidate generation to selection was measured for each attempt.

The results of these experiments, as depicted in Figure 3.5 show that GAE performs
better than the OOBB-based grasp extraction across all degrees of clutter. Counting
only the "grasped" and "stable lifted" categories as successful, the GAE method
achieved an average success rate of 46.0%, while the OOBB method had a success
rate of 38.7%. There was no strong correlation between the number of objects and
successful grasps for both methods (ρGAE = 0.18 and ρOOBB = −0.42), while for
grasps in the "missed" category the OOBB method showed a significant correlation
(ρGAE = −0.28 and ρOOBB = 0.96). This indicates that while both methods can
generate good candidates in cluttered scenes, GAE consistently performed well
even in difficult scenarios. The use of local surface geometry, independent of point
cloud segmentation, positively influenced the accuracy of the approach, confirming
the initial hypothesis.

Note: Adapted from Pohl and Asfour (2022). © 2022 IEEE.

(a) GAE-based Grasping (b) OOBB-based Grasping

Figure 3.5.: Results of the box emptying experiments on ARMAR-6
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Table Clearing Experiments

The table-clearing experiments’ aim was to investigate the ability of GAE to
perform well across different environments and tasks , showcasing the versatility of
the approach. The experiment involved clearing an 80 cm× 80 cm table cluttered
with 18 diverse objects, including boxes, cups, plates, and various fruits. The
process required the robot to stow these objects into a box. If a grasp attempt
failed or an object was dropped, the grasping process was manually restarted by a
human operator. The grasp candidate generation, selection, and execution followed
the same protocol as in the box-emptying scenario. Both methods were tested by
clearing the table five times, recording the number of objects successfully stowed,
the total time taken, and the number of grasp attempts required. The experiment
concluded either when all objects were removed or if no executable grasp was
found within five minutes.

Table 3.4.: Results of the table clearing experiments.
GAE OOBB

Stowed Boxes 4.6± 1.7 4.2± 0.8
Stowed Plates 2.8± 0.4 1.6± 1.1
Stowed Cups 2.0± 1.0 2.2± 0.8
Stowed Fruit 2.4± 1.1 1.8± 1.3
Total Stowed 11.8± 1.5 9.8± 1.1

Remaining Objects 0.8± 0.8 5.2± 2.4
Grasp Attempts 37.0± 2.2 29.4± 6.1
Total Time [min] 33:11 ± 2:31 25:24 ± 2:50

Note: Adapted from Pohl and Asfour (2022). © 2022 IEEE.

The results of the table-clearing experiments, as shown in Table 3.4, again highlight
the performance of the GAE method compared to the OOBB method. The GAE
method stowed on average 11.8±1.5 objects and required 37.0±2.2 grasp attempts
with 0.8± 0.8 remaining on the table. The OOBB method showed slightly lower
performance, with an average of 9.8±1.1 objects stowed and a much higher number
of remaining objects (5.2± 2.4). The total number of grasp attempts, however, was
significantly lower as for GAE. This was caused by the OOBB experiments being
aborted early because either all objects dropped from the table or no executable
grasp candidates could be found. These results underscore the versatility and
effectiveness of the GAE method in unstructured environments , despite the higher
number of grasp attempts required.
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3.3. Conclusion

General-purpose robots need to be able to deal with incomplete or missing infor-
mation regarding the various objects that are commonly found in unstructured
environments. For some objects, knowledge about the semantic class is enough
to infer possible interaction possibilities with other instances. In those cases, the
Multi-feature Implicit Model and the associated pick-and-place framework can
successfully provide the required versatile task-oriented grasping and rearrangement
capabilities. However, for cases where robots have to deal with completely unknown
objects, the Geometry-based Action Extraction represents a viable solution for
increasing the versatility of the discovery of interaction possibilities.

Section 3.1 introduced a novel implicit neural field designed to enhance task-
oriented grasp generation for similar objects, called the Multi-feature Implicit
Model (MIMO). By providing SE(3)-equivariant point and pose descriptors, MIMO
enables a more precise shape similarity measure, which is crucial for effective
grasping and manipulation. The network is trained on multiple spatial features,
including occupancy and signed distance, as well as the novel Extended Space
Coverage Feature and Closest Distance Direction feature, allowing it to detect finer
correspondences and achieve more accurate pose transfers compared to existing
methods. Additionally, MIMO supports shape reconstruction to handle partial
observations, further improving its robustness in unstructured environments . MIMO
is integrated into a task-oriented grasping and object rearrangement framework,
which includes a novel evaluation and refinement network to boost success rates.
The versatility of MIMO for manipulating similar objects is demonstrated through
its performance in one- and few-shot visual imitation learning experiments for pick-
and-rearrangement tasks on the humanoid robots ARMAR-6 and ARMAR-DE.

For the more general grasping and manipulation of unknown objects, Section 3.2
introduced the Geometry-based Action Extraction (GAE) method for extracting
scene affordances based on the local surface geometry of point clouds and sub-
sequently generating manipulation actions. The approach involves analyzing the
local surface curvature and assigning affordances using heuristics derived from the
principal curvatures and surface normal at each point. By defining a unique and
spatiotemporally coherent abstract reference frame, termed the Abstract Affor-
dance Frame in this thesis, which is derived entirely from the local surface geometry,
the method decouples affordance extraction from the concept of "objects", making
it suitable for the grasping and manipulation of unknown objects.

GAE was evaluated in various real-world grasping scenarios using the humanoid
robot ARMAR-6, demonstrating its versatilitys in unstructured environments . The

77



3. Versatile Grasp Discovery in Unstructured Environments

proposed method consistently outperformed the OOBB-based baseline approach
across different levels of scene clutter, resulting in an increase of almost 10%

in grasp success rate. Additionally, the success rate of this method was largely
independent of the degree of clutter of a scene, highlighting its ability to enable
versatile manipulation in complex and cluttered environments.

The ability to handle similar and unknown objects, and, therefore, deal with
incomplete object knowledge, directly contributes to the overarching main objective
of this dissertation, which is to increase the autonomy of robotic assistants for
deployment in real-world applications. By enabling more versatile and accurate
grasp synthesis using visual perception, MIMO and GAE address the critical
challenge of versatility in dynamic and unstructured environments by decreasing
the amount of task-specific knowledge required. Therefore, in response to the
Research Question 1, this work demonstrates that robotic assistants can adapt to
diverse and unstructured environments for effective grasping and manipulation by
leveraging local surface geometry for affordance extraction or similarities that are
shared across instances of the same class.
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4. Selection of Reliable Grasp
Candidates for Unknown
Objects using Probabilistic
Methods

Building on the contributions from Chapter 3 (see also Contribution 1), this
chapter deals with improving the reliability (Core capability 2) of grasping and
mobile manipulation in unstructured environments. To this end, the details of
Contribution 2 are revisited and further elaborated. Specifically, the main focus
of this chapter is to enhance the robustness of the second step of discriminative
grasping (see Figure 1.1) – the selection of the best grasp or action hypothesis in the
current scene. Doing so improves the trustworthiness and safety of robotic assistants
in applications that revolve around humans by increasing the degree of autonomy
such a system has. Integrating probabilistic and statistical methods into the grasp
selection process enhances the tolerance to uncertainties in perception and increases
the success rate of executions. Therefore, by answering Research Question 2,
it becomes possible to decrease the susceptibility to errors and environmental
influences.

Disclaimer

Parts of the content presented in this chapter were previously published in:

• Pohl, Christoph and Tamim Asfour (2022). “Probabilistic Spatio-Temporal Fusion
of Affordances for Grasping and Manipulation”. In: IEEE Robotics and Automation
Letters 7.2, pp. 3226–3233

• Baek, Woo Jeong, Christoph Pohl, Philipp Pelcz, Torsten Kroger, and Tamim As-
four (2022). “Improving Humanoid Grasp Success Rate Based on Uncertainty-Aware
Metrics and Sensitivity Optimization”. In: IEEE-RAS International Conference on
Humanoid Robots. Vol. 2022-Novem, pp. 786–793

In Section 4.1, the shared state for affordances introduced in Section 3.2 is used in
combination with recursive Bayesian estimation to track an action hypothesis over
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multiple observations of a scene in order to increase its robustness. Specifically,
this facilitates the estimation of the covariance and the existence certainty for
the associated pose of an action hypothesis. These probabilistic measures for
the certainty and accuracy of an extracted affordance are subsequently used in
Section 4.2 to calculate a grasp score that combines multiple uncertainty-aware
grasp quality metrics that can be used to select the most reliable grasp candidate
in a scene.

4.1. Spatiotemporal Action Fusion using Bayesian

Recursive State Estimation

To increase the robustness of manipulation actions for unknown objects, a spa-
tiotemporal fusion approach for affordances and their respective actions was
developed. To this end, the coherent, uniquely defined reference frame introduced
in Section 3.2 is used in combination with techniques from recursive Bayesian
estimation to get a probabilistic estimate of the perceptual uncertainty involved
in the affordance extraction. Using a Unscented Kalman Filter (UKF, Wan and
Van Der Merwe, 2000) on Lie groups and a Hidden Markov Model (HMM), the
state of affordances is tracked in the scene, and an updated estimation of the
involved uncertainty is provided. Therefore, the approach described in this section
aims at answering Research Question 2 and contributes towards the main objective
of increasing the autonomy of robotic assistants.

The content of the following sections has already been published in the paper of
Pohl and Asfour (2022). Toward the objective of situating the Probabilistic Action
Extraction and Fusion within the context of this thesis, the most important aspects
will be reexamined hereafter.

4.1.1. Motivation

The interaction of autonomous robots with unstructured and unknown environ-
ments presents significant challenges, particularly when relying on visual perception
alone and dealing with incomplete information. This task requires a comprehensive
and precise interpretation of the scene to select appropriate actions for execution,
which is crucial for enhancing the autonomy of robots in human-centric, real-world
applications. Affordances represent a valuable framework for enabling robots to
identify potential actions based on visual perception. However, existing affordance-
based methods often suffer from noise and perceptual uncertainties, leading to
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unreliable actions. To improve the reliability of robotic interactions in dynamic and
unstructured environments, the Probabilistic Action Extraction and Fusion (PAEF,
Pohl and Asfour, 2022) is proposed, a probabilistic approach for estimating the
pose and existence certainty of action hypotheses by tracking a related coherent
frame through multiple observations.

Current affordance-based methods for robotic manipulation face multiple limita-
tions, especially in dealing with noisy perception and missing information. PAEF
builds on prior work on the formalization of affordances as Dempster-Shafer belief
over the space of end-effector poses (Kaiser et al., 2018) and their extraction (Kaiser
and Asfour, 2018). Using this formulation, information from different sources can
be fused to hierarchically define affordances on primitive shapes (e. g., spheres,
cylinders, and boxes). Even though this formulation allows for the calculation of a
degree of certainty in the existence of an affordance for a discrete end-effector pose,
it cannot improve the state estimate over multiple observations, and, therefore,
correct for perceptual and proprioceptive uncertainties . The use of the local surface
geometry of point clouds to improve the versatility of affordance extraction for
unknown objects has been described in Section 3.2. There, a uniquely defined and
spatiotemporally consistent reference frame referred to as the Abstract Affordance
Frame (Section 3.2.2), was extracted and used as a universal and continuous state
for all affordances. Although Recursive State Estimation is a well-understood
problem in robotics (Thrun et al., 2006), estimating the 6D pose remains difficult,
as conventional recursive filters in Euclidean space cannot easily handle orienta-
tions. However, ready-to-use algorithms for the fusion of poses have recently been
developed based on recursive Bayesian estimation (Brossard et al., 2017; Sjøberg
and Egeland, 2021).

By employing these methods, PAEF combines multiple observations of a scene to
improve the state estimate of affordances, and, thereby, increases the reliability
of grasping and manipulation. It uses a coherent, geometrically inspired reference
to fuse information in a shared state for affordances over multiple observations
to correct for uncertainties using a combination of a UKF and HMM. By doing
so, PAEF enhances the robustness and fault-tolerance of the extracted action
hypotheses, in turn increasing the degree of autonomy in grasping and manipulation
tasks. Multiple real-world grasping experiments in industrial and domestic scenarios
were conducted on the humanoid robot ARMAR-6 to showcase the improved
success rates. Section 4.1.2 will introduce the theoretical background for the
spatiotemporal fusion of action hypotheses, while Section 4.1.3 showcases the
real-world experiments.
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4.1.2. Probabilistic Action Extraction and Fusion

In Section 3.2, the Geometry-based Action Extraction (GAE), a method for the
extraction of scene affordances and the definition of their unique and coherent
state based on the local surface geometry of point clouds, was presented. The basic
approach of GAE is split into the four steps (i) estimation of the principal curvatures,
(ii) the extraction of locally consistent surface patches, (iii) heuristic definition of
affordances, and (iv) establishment of a spatiotemporally consistent coordinate
system (referred to as the Abstract Affordance Frame (AAF) (Section 3.2.2)).
Additionally, it was shown that the AAF is uniquely (up to a rotation around
the surface normal in edge cases) defined for every point of the point cloud, and,
therefore, spatially and temporally coherent. Consequently, the AAF is an ideal
way of tracking affordance-related action candidates over multiple observations of
a scene.

These properties of the AAF can now be used to define the coherent state of an
action observation A:

At = (T, t , {a1, . . . , an}).

Formally, an action observation A is linked to the AAF with pose T at time step t

∈ R+ and is associated with n affordances a i. In terms of the representationalist
formulation (see Appendix A) of affordances, it represents a potential behavior of
the robot that can be executed at a certain point on an entity in the scene at one
specific time (i. e., a single point cloud captured by the camera).

Given that interaction possibilities in a scene can appear and disappear at any
time, such as when an object is removed, it is insufficient to model only the action’s
pose T and its uncertainty. Therefore, PAEF introduces an additional measure
for the existence certainty of an action. Hence, a combination of a UKF (for the
spatial filtering of action observations) with an HMM (for the temporal tracking of
the existence certainty) is used for the complete probabilistic state estimation of
the actions. To this end, an action hypothesis Ā is formed by combining multiple
distinct action observations A:

Āt = (T̄,ΣT, t , {pa1E , . . . , pamE }),

where paiE represents the existence certainty of the hypothesis for the i-th affordance
a i, and ΣT∈ R6×6 is the covariance matrix of the filtered mean pose T̄ with the
time of the last observation t .

When estimating hypotheses from multiple observations of a scene, two main
challenges arise:
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(a) For each new action observation, an appropriate action hypothesis must be
identified. Specifically, a hypothesis Āt−1 that matches the current action
At needs to be found:

Ai
t → Āj

t−1 .

(b) The current observation At must be combined with the previous state
estimation Āt−1 to estimate the new state Āt of the action hypothesis:

Āi
t ← Āi

t−1 ⊕Aj
t .

Correspondence Search

To identify correspondences between different action observations, the fundamental
assumption is that observations of the pose T of an action hypothesis Ā are
Gaussian-distributed around the mean pose T̄. For the positional component t

of the pose, this is expressed by a multivariate Gaussian Probability Density
Function (PDF), conditioned on the correspondence C:

p(t|C) =
1√

det(2πΣt)
exp

(
−1

2
(t− t̄)TΣt

−1(t− t̄)

)
, (4.1)

where t̄ is the mean position of the action observation and Σt is its covariance
matrix.

Since the orientational part R of the pose of an action is an element of the special
orthogonal group SO(3) and cannot naturally be represented by Eq. (4.1), the
standard PDF requires adaptation. Following Solà et al. (2018), local perturbations
on the Lie group SO(3) can be used to model orientation uncertainty. A Lie
group G is a smooth manifold M that locally resembles a linear space, with a
unique Euclidean tangent space at each point Y. Probability distributions on G
can be modeled by defining Y as a perturbation with τ around the mean point Ȳ
in its tangent space TȲM. Thus, Y and its covariance matrix ΣY can be expressed
in terms of τ :

Y = Ȳ ⊕ τ := Ȳ ◦ Exp(τ ) ∈M
τ = Y ⊖ Ȳ := Log(Ȳ

-1 ◦Y) ∈ TȲM
ΣY = Σ

[
ττ T

]
≜ E

[
(Y ⊖ Ȳ)(Y ⊖ Ȳ)T

]
∈ Rm×m,

where Exp(τ ) is the retraction of τ onto the manifoldM and Log is the inverse
operation that maps an element ofM to its tangent space TȲM. This approach
allows for a natural expression of Gaussian-distributed variables on Lie groups as
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Y ∼ N(Ȳ,ΣY), which can now be used to adapt Eq. (4.1) to the orientational
case. Therefore, the likelihood of the orientation R ∈ SO(3) conditioned on C is
calculated as:

p(R|C) =
1√

det(2πΣR)
exp

(
−1

2
(R⊖ R̄)TΣR

−1(R⊖ R̄)

)
, (4.2)

where ΣR∈ R3×3 is the orientational covariance matrix, and R̄ is the mean
orientation of an action hypothesis. The mean values are derived from filtered
action hypotheses of the UKF.

Assuming conditional independence of the orientation R and position t, the
joint probability of the pose conditioned on C can be written as p(R, t|C) =

p(R|C) · p(t|C). Using Bayes’ rule, the correspondence likelihood p(C|R, t) that
the observed action A at position t and orientation R corresponds to the action
hypothesis Ā is:

p(R, t|C) =
p(C|R, t) · p(R, t)

p(C)

p(C|R, t) =
p(C) · p(R, t|C)

p(R, t)

p(C|R, t) =
p(C) · p(R|C) · p(t|C)

p(R) · p(t)
∝ p(R|C) · p(t|C)

A k-dimensional tree search is employed to efficiently identify correspondences
between hypotheses and observations in a scene. For each hypothesis, a search
radius r = 3·σm = max diag(Σt) is utilized, justified by the multivariate normal dis-
tribution of the hypothesis position with independent components. The confidence
region, defined by the three times scaled Standard Deviational Hyper-Ellipsoid, is
enclosed by this sphere, ensuring a probability greater than ∼ 97% of finding a
corresponding observation within this radius (Wang et al., 2015).

Once a corresponding observation At for the filtered action hypothesis Āt−1 is
identified, the estimated state of the filtered action is updated using this observation.
This involves updating both the existence certainty paE and the mean pose T̄ of
the hypothesis.

Estimation of Existence Certainty

The existence certainty paE is determined using the previously calculated p(C|R, t).
To this end, a Continuous Density Hidden Markov Model (CDHMM) with two
states is employed (see e. g., Rabiner, 1990). The hidden states are S1 (action
hypothesis exists) and S2 (action hypothesis does not exist). Initially, the CDHMM
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is assumed to be in S1, and the state can only transition from existing (S1) to not
existing (S2), meaning a hypothesis can only vanish. The state λ = (A,B, π) of
the CDHMM is defined with π =

(
1 0

)
and

A =

(
a11 1− a11

0 1

)
, B =

(
p(C|R, t) 1− p(C|R, t)

1− b22 b22

)
.

A visual representation of the CDHMM can be found in Figure 4.1

S1 S2

a11 1

1− a11

Figure 4.1.: Representation of the existence certainty as a 2-state CDHMM

Now, the forward-backward algorithm can be applied to calculate the probability
paE of being in state S1 at time t for the affordance a i. Let

f0:t =

(
f(S1|λ,O)

f(S2|λ,O)

)

be the probabilities of the HMM being in states S1 and S2, respectively, after ob-
servations 0...t. The state probabilities of the current observation can be calculated
via the probabilities of the previous observation and the correspondence likelihood:

f0:t = c−1
t f0:t−1AOt ,

where the diagonal observation matrix for the event (i. e., an action was observed
or not observed) j ∈ {1, 2} is Oj,t = diag(B∗,j)t. If one is only interested in an
unnormalized certainty of the existence (or: the HMM being in state S1), this can
be calculated using the probability of an identity transition a11 as:

paE ∝ a11 · f(S1|λ,O)t−1 ·O1j,t .
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Pose Estimation Using UKF on Lie Groups

As mentioned before, the orientational part R of the pose of the AAF cannot easily
be estimated using Gaussian distributions in R3. Therefore, a simple Kalman filter
is inadequate for pose estimation in robotic applications due to the complexity of
modeling orientations in Euclidean space. However, recent research has highlighted
the advantages of using Lie groups for recursive Bayesian estimation, as they
provide a natural and smooth representation of poses (Brossard et al., 2017; Lee,
2018; Sjøberg and Egeland, 2021; Solà et al., 2018).

To address the limitations of conventional Kalman filters, Gaussian distributions
on manifolds are employed in Brossard et al. (2017) to implement a UKF for
generic Lie groups. This approach uses retractions onto the tangent space, allowing
standard UKF algorithms to update and propagate the state. For the spatial fusion
of action observations, the open-source implementation of a UKF on manifolds
(UKF-M, Brossard et al., 2020) was used to combine multiple action observations A
to obtain the mean pose T̄ of an action hypothesis Ā and its covariance matrix
ΣT over multiple observation of a scene.

Combined with the temporal filtering of the HMM for estimating the existence
certainty paE of an action hypothesis, the spatial filtering of the mean pose T̄ using
a UKF on manifolds constitutes the foundation of the PAEF approach. This way,
PAEF answers Research Question 2 by increasing the reliability of grasping and
manipulation as a consequence of accounting for perceptual and proprioceptive
uncertainties .

4.1.3. Experiments

To showcase the increase in reliability of manipulation actions, PAEF was evaluated
alongside GAE in a series of real-world grasping experiments using the humanoid
robot ARMAR-6 with more than 900 grasp executions. For a more detailed
description of the experimental setup and the results for the GAE method, see
Section 3.2.3. The experiments were carried out in two cluttered setups: a box-
emptying setup and a table-clearing setup. In both scenarios, unknown objects
were randomly placed, and ARMAR-6 was tasked with grasping and manipulating
these objects to either empty the box or clear the table. A video detailing the
approach and experiments is available online1.

For the spatiotemporal fusion of action hypotheses, action observations were
extracted using GAE for a new point cloud at every time step t . Afterwards, the

1https://youtu.be/lXxWtTIySB0
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methods detailed in Section 4.1.2 were used to find correspondences between a list
of already observed hypotheses Āt−1 and the newly extracted action observation At .
Once a correspondence was identified, the existence certainty paE and the mean
pose T̄ of the action hypothesis Āt−1 were updated using the HMM and UKF,
respectively, to obtain Āt . The initial position covariance for the UKF was set to
1 cm, and the initial orientation covariance to 0.1 rad. The HMM parameters were
chosen as a11 = 0.9 and b22 = 0.5. After fusion, the action hypotheses were checked
for validity and executed analogously to Section 3.2.3.

Box-Emptying Experiments

The results of the box-emptying experiments comparing the grasping success rates
of PAEF and GAE to a baseline approach using OOBBs (Grimm et al., 2021)
can be seen in Figure 4.2. As in Section 3.2.3, grasp attempts were categorized
according to Table 3.3, and the categories "grasped" and "stable lifted" were
counted as successful grasps, while the categories "slipped" and "missed" were
counted as failed grasp attempts. Additionally, the time from point cloud capture
to selection was measured for each attempt. Since the PAEF and OOBB methods
rely on previous scene observations, they were reset after each attempt to estimate
the worst-case time required for grasp candidate generation and selection in novel
scenes.

Note: Adapted from Pohl and Asfour (2022). © 2022 IEEE.

(a) Success Rate (b) Failure Rate (c) Extraction Time

Figure 4.2.: Results of the box-emptying experiments on ARMAR-6 comparing
the OOBB-based grasp generation with GAE (Section 3.2) and PAEF

The PAEF method achieved a success rate of 50.7%, outperforming the GAE
and OOBB methods, which had success rates of 46.0% and 38.7%, respectively.
The PAEF method showed no strong correlation between the number of objects
and successful grasps (Person’s correlation coefficients: ρPAEF = −0.11, ρGAE =

0.18, ρOOBB = −0.42), indicating its robustness even in very cluttered scenes.
While the failure rates of GAE (ρGAE = −0.28) and PAEF (ρPAEF = 0.22)
show also no correlation to the number of objects in the box, the OOBB-based
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grasping (ρOOBB = 0.96) performed worse for more cluttered environments. The
PAEF method’s improved success rate over the non-filtered GAE and consistent
performance in difficult scenes confirmed the positive impact of spatiotemporal
fusion on the reliability of mobile manipulation in unstructured environments .

As shown in Figure 4.2c, the time required for grasp selection varied among
the methods. The PAEF method generally required more time than GAE and
OOBB-based grasp extraction due to the increased computational effort of finding
correspondences (i. e., with a tree-search) and the spatiotemporal fusion. Addition-
ally, there is a clear correlation with the number of items in the box, as the more
objects there are in the box, the more action observations are extracted by GAE
(i. e., more AAFs are connected to the graspability affordance), and therefore, the
tree-search grows more complex. The OOBB method required almost constant
time across different clutter levels due to its efficient grasp pose generation. The
GAE method was the fastest, as it processed a fixed number of surface patches
regardless of the scene’s complexity.

Table Clearing Experiments

The table-clearing experiment was designed to evaluate the robustness of the
spatiotemporal affordance fusion approach in a realistic kitchen scenario. The setup
remained the same as in Section 3.2.3. The results are visualized in Figure 4.3.

The PAEF method demonstrated a higher success rate in stowing objects compared
to the GAE and OOBB methods. Although the total number of objects stowed
by the PAEF method was only slightly higher than that of the GAE method
(Figure 4.3a), the PAEF method required significantly fewer grasp attempts (Fig-
ure 4.3c). This means that the "raw" extracted candidates from GAE failed a lot
more often than the filtered candidates from PAEF, validating the claim that the
spatiotemporal fusion of grasp candidates indeed improves the reliability of grasp-
ing. This, in turn, results in the total time required for clearing the table almost
being the same for both methods (Figure 4.2c), even though the box-emptying
experiments showed that the grasp synthesis process for PAEF is slower than for
GAE. Despite the PAEF method’s longer extraction times, its higher accuracy
nearly offset this, resulting in a total table clearing time comparable to the GAE
method. The OOBB method, while having fewer grasp attempts and a shorter
clearing time, left an average of more than 5 objects on the table due to the time
constraint (Figure 4.3d), underscoring its lower effectiveness.
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Note: Adapted from Pohl and Asfour (2022). © 2022 IEEE.

(a) Total Stowed (b) Total Time

(c) Grasp Attempts (d) Remainig Objects

Figure 4.3.: Results of the table-clearing experiments on ARMAR-6 comparing the
OOBB-based grasp generation with GAE (Section 3.2) and PAEF

4.2. Uncertainty-aware Grasp Candidate Selection

The previously described Probabilistic Action Extraction and Fusion method (Sec-
tion 4.1) established a probabilistic approach to affordance-based action extraction
for mobile manipulation in unstructured environments that improved the reliability
of grasping in real-world experiments. The grasp candidates in the evaluation with
ARMAR-6 were chosen based on height and improved the success rate by about
5% compared to the GAE method. However, PAEF provides two probabilistic
measures, the existence certainty and the pose covariance, which can add valuable
insights about the quality of a grasp candidate. Therefore, this section investigates
how PAEF can be used in combination with other uncertainty-affected metrics to
improve the grasp selection in unstructured environments. To this end, a sensi-
tivity-optimized grasp score is calculated, which indicates the quality of a grasp
candidate, that is used to select the most reliable grasp in the scene.
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To derive this grasp score, multiple uncertainty-affected metrics that could be
relevant for the outcome of grasping were selected. Subsequently, a large dataset
of real-world grasp executions was collected on the humanoid robot ARMAR-6.
Using this dataset, the sensitivities of the metrics towards the grasp outcome were
analyzed and used to obtain global and local weighting factors for each metric.
With these weighting factors, it then becomes possible to calculate a grasp score
that can be used to select the grasp candidate with the highest likelihood of success.
In a real-world evaluation on ARMAR-6, grasp selection using the optimized grasp
score showed large improvements in the grasp success rate compared to randomized
grasping.

The content of the following sections will present the details of the Uncertainty-
Aware Sensitivity Optimization for grasp selection in unstructured environments ,
which have already been published in the paper by Baek et al. (2022).

4.2.1. Motivation

For the interaction with unstructured environments , as they appear in the personal
sector, robotic assistants need to be able to handle uncertainty and missing
or incomplete information. For example, Brock et al. (2016) define uncertainty
as one of the three main challenges in mobile manipulation research. Likewise,
Research Question 2 designates reliability in uncertain situations as one of the core
capabilities that this thesis tries to address. In Section 4.1, the Probabilistic Action
Extraction and Fusion (PAEF), an approach for the spatiotemporal filtering of
affordance-based action hypotheses, was introduced that determines the existence
certainty and pose covariance for each hypothesis over multiple observations. In
Pohl et al. (2020), it was shown that the selection of autonomously generated grasp
candidates by a human operator in a semi-autonomous setup can largely enhance
the success rate of grasping. By simply incorporating human intuition and scene
understanding into the discriminative grasping process via Virtual Reality-based
grasp selection, the reliability of grasping in unstructured environments improved.
Therefore, in an effort to address Research Question 2 and contribute to the main
objective of the thesis, this section tries to increase the level of scene understanding
and the awareness of uncertainty in the selection of grasp candidates in order to
improve the reliability of mobile manipulation tasks. An overview of the approach
can be seen in Figure 4.4.

Perceptual and systematic uncertainties that impair the robot’s ability to extract
and execute reliable grasps are problematic to current approaches in autonomous
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grasp selection. Many methods lack robust mechanisms for handling these un-
certainties, resulting in fragile and slow grasping processes that are unsuitable
for complex, real-world tasks (see Section 2.2 and Table 2.3). Approaches using
analytical quality metrics as a basis for selecting grasp candidates can incorporate
probabilistic approaches in their models. However, their calculation can become
time-consuming and often they require perfect knowledge of the environment (e. g.,
friction coefficients). Heuristic quality metrics, on the other hand, are fast to
compute but often do not account for missing information and noise, and might
therefore be less precise. Learning-based methods for grasp candidate selection
might be able to handle these cases, but often require large, time-consuming
datasets for training and lack insight for human operators. Taking these limitations
and advantages into account, the proposed approach uses a combination of all
three categories to select the most reliable grasp candidate using visual perception
under uncertainty and missing information.

This section presents a probabilistic approach to enhancing autonomous grasp-
ing by integrating traditional statistical tools to maximize grasp success rates
and, therefore, the reliability of grasping . The proposed method introduces an
Uncertainty-Aware Sensitivity Optimization (UASO, Baek et al., 2022) framework
that derives a scalar ranking score for grasp candidates based on the sensitivities
of predefined grasp metrics. These metrics, modeled as Gaussian distributions,
encapsulate high-level scene understanding and the associated uncertainties. By
analyzing a dataset of 932 grasps executed by the humanoid robot ARMAR-6
under real-world conditions, the method assigns weights to each metric according
to its influence on the grasp success rate. Validation experiments demonstrate a
significant improvement in success rates by explicitly considering uncertainties.
Additionally, this approach allows for detailed correlation studies and statistical
analyses, providing deeper insights into the impact of individual metrics on grasp
reliability. Therefore, the contribution lies in presenting an explainable, generaliz-
able method that improves the reliability of robotic grasping by accounting for
the influence of perceptual uncertainties . In doing so, UASO addresses Research
Question 2 and contributes to the main objective of this thesis.

4.2.2. Sensitivity Optimization for Grasp Candidate Selection

In order to derive a grasp score for autonomously selecting grasp candidates,
probabilistic techniques in the form of a uncertainty-aware sensitivity optimization
are employed to improve the reliability of the selected grasp candidates in presence
of noise and uncertainty . To this end, a number of Gaussian-distributed and
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Note: Adapted from Baek et al. (2022). © 2022 IEEE.
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Figure 4.4.: Overview of the Uncertainty-Aware Sensitivity Optimization approach.

uncertainty-affected grasp metrics relevant to the success rate of grasping are
chosen and analyzed towards their respective correlation to the outcome of a grasp
execution. Based on a dataset detailing the outcome of grasps and their respective
grasp metrics, a global weighting factor and a local weighting factor for each grasp
metric are calculated, which represent the sensitivities of that grasp metric.

Probabilistic Framework

Each grasp g is characterized by n specified grasp metrics mi, represented as
Gaussian distributions mi ∼ N(µi, σi) with mean value µi and standard deviation
σi. The key idea behind this is to somehow capture the uncertainties of these
metrics, despite the lack of detailed knowledge about their specific behaviors. For
the derivation of a scalar grasp score z, a functional model y: R+ → R+

0 of the
relations between the different grasp metrics is required:

z := y (m1, ...,mn)

= y (N(µ1, σ1), ..., N(µn, σn), c) , (4.3)
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In the interest of obtaining a grasp score that maximizes the success rate rs of
grasps, with

rs :=
gs

gtot ,

Eq. (4.3) should capture the sensitivities of the grasp metrics mi towards rs,
i. e., the amount of influence these grasp metrics have on a successful outcome.
Technically speaking, the sensitivity describes how the output of a system behaves
with respect to changes in the input parameters (BIPM et al., 2008). With this in
mind, each grasp candidate is classified as either succeeded (gs) or failed (gf ) after
execution. Assuming there exists a dataset of grasp outcomes and the corresponding,
uncertainty-afflicted grasp metrics mi, it becomes possible to derive weighting
factors for each mi linked to their sensitivity . To get meaningful results, this
dataset needs to be of adequate size, cover the respective ranges of the grasp
metrics and sufficiently distinguishes the successful from the failed grasps. Given
the dataset and the associated information about the grasp metrics and their
uncertainty , one PDF pi for the successful grasps (psi ) and one for failed grasps (pfi )
can be calculated by simply summing over the individual, Gaussian-distributed
observations in the dataset.

For an optimal grasp score z, i. e., one that takes the sensitivities of the grasp
metrics into account, a local and global weighting factor are calculated based on psi
and pfi . These weights represent the local and global importance of the respective
grasp metric for the grasp outcome. The global weighting factor f glob can be
calculated using using the KL divergence DKL, which measures the difference
between two distributions P and Q:

DKL(P∥Q) :=

∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx.

Here, p(x) and q(x) denote the PDFs of P and Q, respectively. Therefore, the
global weighting factor is defined as

f glob
i :=DKL(P

s
i ||P

f
i ), (4.4)

where P s
i and P f

i represent the PDFs for grasp metric i of successful and failed
grasps, respectively. In the second step, the likelihood of a candidate grasp g

belonging to the set of successful grasps gs, denoted as the local weighting factor f loc,
is derived. This is calculated as

f loc
i (g) :=

psi (mi|g)
psi (mi|g) + pfi (mi|g)

, (4.5)
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by referring to the specific values of the PDFs pfi and psi for the measured metrics of
g. Therefore, the total weighting factor f tot for the grasp metric i can be calculated
as

f tot
i :=f glob

i · f loc
i .

Having calculated the total weighting factor that can be used to calculate an
optimized grasp score z with respect to the sensitivities of the grasp metrics mi,
all that is left is to chose a suitable functional model y. For the context of this
thesis, the form

yexp(α,mi, β):=α ·
n∑

i=1

f tot
i + β (4.6)

was chosen, where α, β are scalar constants.

Grasp Selection

The general form Eq. (4.6) facilitates the selection of any uncertainty-afflicted
grasp metric and calculating an optimized grasp score for the selection of grasp
candidates. This highlights the strength of UASO, being a general framework for
the optimization of data with respect to one category. In theory, it is possible to
exchange a grasp g for any other kind of binary variable. In addition, only deter-
ministic methods were applied to derive Eq. (4.6), making the method explainable,
i. e., it is possible to trace and analyze the decisions of the model. Therefore, UASO
combines the advantages learned, analytical, and heuristic grasp quality measures
while remaining lightweight, explainable, and precise.

Relying on uncertainty estimations of the grasp metrics for the calculation of the
grasp score makes UASO naturally compatible with PAEF: By filtering grasp
candidates over time, the uncertainty connected to each hypothesis is quantified
by the existence certainty paE and pose covariance ΣT. The existence certainty –
representing the overall confidence that an action can be executed at the pose of the
AAF – influences all other grasp metrics for the grasp, and, therefore, intuitively
fits the role of α = paE. Additionally, based on the uncertainty of the pose of a
grasp, the following grasp metrics were selected:

1. Height (h): This metric indicates how high a grasp candidate is above the
floor, favoring objects on top of clutter. The mean and variance (µh, σ

2
h) are

derived from the grasping pose and its covariance, computed using PAEF.

2. Distance to center (d): This metric measures the distance from the grasp
position to the center of the object’s bounding box, favoring grasps near
the object’s center of mass. It is calculated by combining PAEF with scene
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segmentation. The variance σ2
d is estimated as 10% of the bounding box

length, while the mean µd is the distance to the bounding box center.

3. Support relation (s): This metric counts the number of objects supported
by the point cloud segment closest to the grasping pose, favoring objects
not covered by others. The mean and variance (µs, σ

2
s) are obtained from a

probabilistic support graph, as described in Paus and Asfour (2020). This
graph is based on Random Sample Consensus shape estimations and details
the support relations between the estimated shapes in a segmented scene.

4. Manipulability (a): This metric reflects how freely an end-effector can move
at a certain position, favoring easily reachable grasps. It uses the extended
manipulability score from Vahrenkamp et al. (2012), calculated solely from
the grasping pose using PAEF. The mean and variance (µa, σ

2
a) are derived

from a manipulability map based on how many hits of randomly sampled
joint configurations the corresponding map entry has.

With these grasp metrics, the following assignments are used for Eq. (4.6):

m1 7→ h; m2 7→ d; m3 7→ s; m4 7→ a;

α 7→ paE; β = 0; .

Therefore, the final form of the grasp score z is

z = yexp(p
a
E, h, d, s, a)

= paE ·
(
f tot
h + f tot

d + f tot
s + f tot

a

)
. (4.7)

4.2.3. Data Collection and Evaluation

To assess the effectiveness of the proposed Uncertainty-Aware Sensitivity Optimiza-
tion in enhancing the reliability of grasp selection, extensive real-world experiments
using the humanoid robot ARMAR-6 were conducted. These experiments included
over 1100 grasp attempts on various unknown objects, creating a comprehensive
dataset for optimizing and evaluating the reliability and success rate of the pro-
posed probabilistic grasp grasp metrics. A video showcasing the approach and
experimental procedures is available online2.

The experimental setup for data collection and the evaluation of the UASO
approach is very similar to the one of Section 3.2.3 and Section 4.1.3. For each
experiment, 11 objects (five plastic pipes, four boxes, and two metal pipes) were

2https://youtu.be/puJmGsK6hSE
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Note: Reprinted from Baek et al. (2022). © 2022 IEEE.

Figure 4.5.: Examples of the experimental setup with ARMAR-6.

placed randomly in a box. Grasp candidates were then extracted using the GAE
approach and subsequently filtered using PAEF over multiple consecutive scans of
the scene. Additionally, each point cloud was segmented using a region-growing
segmentation. Before execution, each candidate’s IK and distance to the box
borders were checked to ensure reachability and collision avoidance. After each
grasp attempt, ARMAR-6 placed the object back into the box to introduce random
changes in the scene, ensuring a dynamic and varied dataset. If the scene remained
unchanged for multiple attempts, either due to no graspable objects or repeated
grasping of the same object, a human operator would randomly rearrange the
objects in the box. Two example setups of ARMAR-6 grasping unknown objects
can be seen in Figure 4.5.

Data Collection

For the optimization of sensitivities of the selected grasp metrics, a dataset of
grasp executions and the corresponding mean values µi and standard deviations
σi of the grasp metrics mi is required. To this end, a set of 932 grasp executions
(304 successful and 628 failed, rs = 0.326) was recorded over four consecutive days,
during which a grasp was randomly selected from the set of reachable candidates
and executed by ARMAR-6. For each executed grasp, the relevant grasp metrics
as described in Section 4.2.2 were calculated and recorded along the outcome of
the grasp execution (i. e., either failed or successful).

To perform the global and local weighting steps outlined in Equation 4.4 and
Equation 4.5, the PDFs of the set of failed and successful grasps were calculated
from the dataset. The resulting normalized PDFs can be seen in Figure 4.6.
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Note: Reprinted from Baek et al. (2022). © 2022 IEEE.

(a) Height h in [mm] (b) Distance to center d in [mm]

(c) Number of support relations s (d) Manipulability a in [arb. units]

Figure 4.6.: PDFs for succeeded ( ) and failed ( ) grasp attempts of the
considered metrics from Section 4.2.2 for randomly selected grasps.
These distributions provide the basis for calculating the ranking score
according to Eq. (4.7).

Sensitivity Analysis

The PDFs of the grasp grasp metrics represent their distribution in the recorded
dataset. From these, the local weighting factor f loc and global weighting factor f glob

can be calculated using Eq. (4.5) and Eq. (4.4), respectively. The global weighting
factor corresponds to the information value that is encoded by the grasp metric mi

with respect to the grasp outcome.

As shown in Table 4.1, the height metric exhibits the highest KL divergence at
0.460, indicating a significant difference between successful and failed grasps. In
contrast, the distance to center, support relation, and manipulability grasp metrics
have much lower KL divergence values, suggesting less influence on the grasp
outcome.
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Table 4.1.: KL divergences of the metrics obtained from random grasping.
Metric KL divergence DKL

Height h 0.460
Distance to center d 0.034
Support relation s 0.014
Manipulability a 0.010

Note: Reprinted from Baek et al. (2022). © 2022 IEEE.

Optimized Grasp Selection

To evaluate the effectiveness of the scoring function in grasp selection, the PDFs
from the random dataset were utilized. The same experimental setup and grasp
candidate generation process as previously described were employed, with the key
difference being the use of the grasp score z to select the grasp candidate. To this
end, the relevant metrics and subsequently the grasp score from Eq. (4.7) were
computed for each candidate, and the grasp with the highest z was chosen for
execution. This approach was tested in a series of experiments, where 187 grasps
were performed using ARMAR-6.

The application of the optimized grasp selection method led to a significant
improvement in performance. Specifically, the success rate of grasp attempts
increased from 32.6% (random grasping) to 73.8%, with 138 successful grasps out
of 187 attempts. This improvement underscores the efficacy of UASO in enhancing
the reliability of grasp selection. The substantial increase in success rate highlights
the potential of probabilistic methods to improve the autonomy and robustness of
robotic grasping in real-world scenarios.

4.3. Conclusion

This chapter introduced a combined approach for the increase in reliability of the
selection of manipulation actions. To this end, the Probabilistic Action Extraction
and Fusion, a novel method for the probabilistic, spatiotemporal fusion of grasping
and manipulation candidates, was integrated into the Uncertainty-Aware Sensitivity
Optimization, a comprehensive framework for optimizing the sensitivity in scenarios
were the outcome is influenced by uncertainties . This combination, when applied
to the concept of autonomous grasp selection, demonstrated a significant increase
in the reliability of grasping in multiple real-world experiments using the humanoid
robot ARMAR-6, thereby addressing Research Question 2.

Section 4.1 introduced the Probabilistic Action Extraction and Fusion (PAEF).
A geometry-aware shared state for all affordances is used in combination with
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recursive Bayesian estimation techniques to improve the estimate of the pose
of an action hypothesis over multiple distinct observations. The approach was
rigorously tested in various real-world grasping scenarios using the humanoid
robot ARMAR-6. The experimental results clearly demonstrate that the PAEF
method significantly enhances the reliability of mobile manipulation actions. By
incorporating spatiotemporal affordance fusion, the PAEF method consistently
outperformed the GAE and OOBB methods in both the box-emptying and table-
clearing scenarios with more than 900 grasp executions of the humanoid robot
ARMAR-6. The higher success rates and fewer grasp attempts required by the
PAEF method underscore its increased reliability in handling perceptual and
proprioceptive uncertainties and dynamic changes in unstructured environments .

Section 4.2 introduced the Uncertainty-Aware Sensitivity Optimization (UASO)
and applied the concept to autonomous grasp selection. Utilizing 932 randomly
selected grasps performed by the humanoid robot ARMAR-6 under real-world
conditions, a broad dataset was built for the optimization of a grasp score that
can be used to select grasp candidates based on uncertainty-afflicted grasp metrics.
This grasp score integrates four specific metrics, which are combined using a
global and local weighting factor for each grasp metric, as well as the existence
certainty from PAEF. This scoring function was subsequently employed in a
second set of experiments to identify the most reliable grasp candidate for a given
scene, resulting in a grasp success rate of 73.8% compared to 32.6% with random
selection. This improvement highlights the effectiveness of the selected metrics
in predicting successful grasps. By connecting PAEF with UASO, it becomes
possible to incorporate global information (i. e., from scene understanding) into
the candidates extracted by local surface geometry. Furthermore, the results
demonstrate the role of sensitivity optimization in enhancing the reliability and
autonomy of robotic grasping.

In response to Research Question 2, the findings substantiate the hypothesis
that probabilistic approaches can significantly enhance the reliability of mobile
manipulation. By spatiotemporally tracking and fusing the associated frame of
affordance-based action hypotheses, the success rate in grasping could be increased
by almost 15% compared to a baseline approach using OOBBs. Furthermore, by
utilizing these probabilistic measures in the Uncertainty-Aware Sensitivity Op-
timization that integrates multiple probabilistic grasp grasp metrics, the grasp
success rate could be improved by more than 40%, compared to a random grasp
selection. This substantial increase underscores the effectiveness of probabilis-
tic methods in handling uncertainties in visual perception and proprioception,
thereby enhancing the reliability of robotic grasping in unstructured environments .
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Therefore, robotic assistants can act more autonomous in these scenarios, which
represents the contribution to the main objective of this section.
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5. Methods and Representations
for the Adaptable Execution of
Mobile Manipulation Skills

After introducing the enhancements to the versatility in grasp discovery (Chapter 3)
and the reliability of the selection of potential grasp candidates (Chapter 4), this
chapter is concerned with improving the final step of discriminative grasping . One of
the core capabilities introduced in Section 1.1.1 is the adaptability of the execution
of manipulation skills, which is fundamental for the main objective of this thesis,
as it enables robotic assistants to adjust their behavior to changing circumstances
and the actual, varying conditions at their place of operation. Additionally, having
adaptable manipulation skills facilitates the deployment of robots to various
domains without the need for extensive reprogramming. Vernon and Vincze (2017)
present a list of 11 priorities for cognitive robotics in industrial setups, with "High-
level instruction and context-aware task execution" and "Adaptive planning" being
two of these. This chapter argues that these priorities also apply to robotics in
the personal sector and introduces a context-aware task execution framework, as
well as an adaptive planning framework to address these priorities. To this end,
this chapter reports on the contributions to the adaptability of the execution of
mobile manipulation skills in unstructured environments. Specifically, the main
focus will be on the advantages of using an affordance-based, memory-centric
and execution framework. Additionally, the opportunities of a combination of

this Executive framework with an adaptable Planning system using LLMs will be
detailed. Therefore, this section explains how Contribution 3 addresses the Research
Question 3 and, by doing so, increases the adaptability of robotic assistants in
real-world applications.
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Disclaimer

Parts of the content presented in this chapter were previously published in:

• Pohl, Christoph, Fabian Reister, Fabian Peller-Konrad, and Tamim Asfour
(2024). “MAkEable: Memory-centered and Affordance-based Task Execution Frame-
work for Transferable Mobile Manipulation Skills”. In: Proc. of the 2024 IEEE/RSJ
Intl. Conf. on Intelligent Robots and Systems. International Conference on Intel-
ligent Robots and Systems (IROS). Abu Dhabi, UAE: IEEE/RSJ, accepted for
publication

• Timo Birr, Christoph Pohl, Abdelrahman Younes, and Tamim Asfour (2024).
“AutoGPT+P: Affordance-based Task Planning with Large Language Models”.
In: Proceedings of Robotics: Science and Systems. Robotics: Science and Systems.
Vol. 20. Delft, Netherlands

Section 2.3 introduced the three-tiered robot architecture that separates the
responsibilities of mobile manipulation frameworks into three separate layers:
Behavioral Control , Executive, and Planning . As the Behavioral Control layer
is very hardware-dependent and consists of Situated Behviors (Kortenkamp et
al., 2016), adaptability in this layer is limited to specific situations and involves
some form of reaction to sensory stimuli, which is not the focus of this thesis.
Contrarily, this chapter investigates the adaptation of the execution of mobile
manipulation skills to different external influences, which has to originate in the
medium- and high-level tiers (see e. g., Jaquier et al., 2024). Therefore, this chapter
will investigate how to improve the adaptability of task execution by improving
the Executive and Planning layers.

To this end, a mobile manipulation framework that facilitates the transfer of skills
across different tasks , environments , and robots will be introduced in Section 5.1.
Subsequently, in Section 5.2, the increased adaptability that results from integrating
affordances and LLMs into the Planning layer will be detailed.

5.1. Memory-centered and Affordance-based

Mobile Manipulation Framework

In order to adapt to the different situations and changing circumstances that
robotic assistants have to face in realistic applications in the personal sector, it
will be necessary to take their knowledge and experience and transfer them to the
conditions of the current task. The ability to generalize and abstract their knowledge,
experience, and skills directly influences the autonomy of robotic assistants by
maximizing the task generality of autonomous systems while minimizing the amount
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of task-specific knowledge required (Brock et al., 2016). Additionally, it enables
robots to learn from each other and decreases the manual effort required to adapt
to changes in their environment , task , and embodiment.

Therefore, this section presents a Memory-centered and Affordance-based Task
Execution Framework for Transferable Mobile Manipulation Skills (MAkEable,
Pohl et al., 2024) designed to enable the transfer of mobile manipulation skills
across different modes (i. e., robots , environments , and tasks ; as defined in Jaquier
et al., 2024). The framework features a universal, affordance-based task description
and supports the customization of individual aspects to the user’s needs and various
scenarios. The framework is centered around the cognitive memory architecture
of Peller-Konrad et al. (2023), which fosters a collaborative learning environment
among robots and supports explainability through introspection. It demonstrates
the transfer across the three modes through use cases such as uni- and bimanual
grasping , placing of known and unknown objects, and transferring a drawer-opening
skill to another robot. Additionally, the framework’s versatility is showcased by
executing a pouring task in simulation with different robots.

The content of the following sections has already been published in the paper
Pohl et al. (2024). Hereafter, the beneficial impact of the transfer of knowledge
and experience across robots , environments , and tasks on the adaptability of the
execution of mobile manipulation skills will be detailed.

5.1.1. Motivation

In the dynamic and various applications that robots encounter in the service indus-
tries, the efficient transfer of learned skills and experiences between robots or across
various environments is crucial. This ability not only speeds up the deployment
of robots into new settings but also significantly improves their adaptability and
functionality. For example, in domestic scenarios, this could mean that a robot can
seamlessly transition from one home to another, adapting to different layouts and
task requirements without extensive reprogramming. Additionally, sharing their
experiences through a central knowledge base or memory system can facilitate the
learning and generalization of new behaviors.

Jaquier et al. (2024) suggest that this transfer can happen on different abstraction
levels that correspond partially to the layers in the three-tiered robot architecture
(see Figure 2.3). Furthermore, they argue that transfer comes naturally in the
Planning layer, i. e., in the form of semantic descriptions, while the Executive layer
facilitates the translation of these descriptions to the low-level, hardware-dependent
instructions required by the Behavioral Control layer. For this reason, the Executive
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layer is the central place that needs to support the transfer , and therefore, the
adaptation of skills across the three modes of robots , environments , and tasks .

However, most current Executive frameworks for mobile manipulation are designed
with specific scenarios, applications, or contexts in mind, making it challenging to
reuse skills in different circumstances (see Section 2.3.1). In fact, most frameworks
facilitate only single- (e. g., Borghesan et al., 2014; Hermann et al., 2011; Keleştemur
et al., 2019) or dual -mode (e. g., Dömel et al., 2017; Martins et al., 2023; Staroverov
et al., 2023) transfer of mobile manipulation skills (see Table 2.4). However, there
is no framework yet that explicitly focuses on transferring knowledge, experience,
and skills across all three modes. As a special mention, the Affordance Template
(AT, Hart et al., 2014) framework has a similar focus on facilitating the transfer of
mobile manipulation skills, with a key difference being that an AT has to be created
for each task separately, hindering the transfer of capabilities and knowledge across
tasks .

To address the three modes of transfer – robot , environment , and task – there
is a need for a universal framework that facilitates the flexible design and imple-
mentation of mobile manipulation skills involving known and unknown objects
in unstructured environments. To this end, MAkEable, a memory-centered and
affordance-based framework for mobile manipulation that unifies the description
and execution of actions across the different modes, is introduced in Section 5.1.2.
MAkEable is the first Executive framework to explicitly tackle all three modes of
transfer , allowing for the autonomous and semi-autonomous execution of uni- and
multi-manual manipulation actions. Its flexibility is demonstrated in several use
cases in Section 5.1.3 using the humanoid robots ARMAR-6 and ARMAR-DE,
including uni- and bimanual grasping , placing of known and unknown objects,
and transferring a drawer-opening skill to another robot. Additionally, a pouring
task in simulation using an industrial manipulator confirms MAkEable’s ability to
accommodate different robots.

5.1.2. Memory-centered and Affordance-based Executive
Framework

The MAkEable framework is designed to facilitate the autonomous execution of
mobile manipulation tasks in unstructured environments across various robotic
platforms. The framework is embedded within the cognitive memory architecture of
ArmarX (Vahrenkamp et al., 2015) introduced by Peller-Konrad et al. (2023). This
integration fosters the accumulation of a rich repository of mobile manipulation
experiences for collaborative learning among robots. Using an interpretable data
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format, an affordance-based task description is defined to facilitate a universal
and generalizable formulation of mobile manipulation skills. Based on this task
description, a five-stage system architecture is realized that is modular and easily
adaptable to the current circumstances. A visualization of MAkEable can be seen
in Figure 5.1.

Note: Reprinted from Pohl et al. (2024). © 2024 IEEE.
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Figure 5.1.: Embedding of MAkEable into the memory-centric cognitive architec-
ture (Peller-Konrad et al., 2023) implemented in ArmarX. Several
strategies that implement the five stages of the architecture (see Sec-
tion 5.1.2) are connected to the robot’s memory.

Affordance-based

The foundation of MAkEable is the universal, affordance-based task description
formulated using the Interpretable Data Format (IDF, Peller-Konrad et al., 2023). It
consists of multiple data structures that represent the different stages of MAkEable’s
manipulation cycle. In its center is the Affordance class, which – analogously to the
definition of an affordance in cognitive psychology (Gibson, 1979) – corresponds
to an interaction possibility of an agent with its environment. It, therefore, acts
as the liaison between the environment and the robot. Since affordances are per
definition agent-specific, the notion of the action hypothesis from Section 4.1.2 is
used as a robot-agnostic counterpart for the representation of the environment. An
ActionHypothesis therefore represents an end-effector pose in an Abstract Affordance
Frame (AAF; see Section 3.2.2) associated with an ActionType, such as Grasping ,
Placing , or Pulling . This abstraction allows for the extraction of action candidates
from visual perception, independent of the specific robot, thus facilitating the
transfer of skills. Furthermore, by assigning action possibilities to relevant objects
and locations, the affordance-based formulation of the task description allows
reasoning about what can be done with objects rather than focusing on which
specific robot is used. This makes affordance-based representations easier to transfer
across different agents and environments.
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Note: Adapted from Pohl et al. (2024). © 2024 IEEE.
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Figure 5.2.: Class and data flow diagrams for MAkEable.

In order to execute mobile manipulation actions based on an Affordance, the
ExecutableAction encapsulates all necessary information tailored to a specific robot.
It can include up to n Unimanuals, each containing details pertinent to a single end-
effector. By generating an ExecutableAction with a Unimanual for each end-effector,
MAkEable supports the execution of complex multi-manual manipulation actions.
A Unimanual action is defined as an EndEffectorTraj, which is a trajectory consisting
of EndEffectorState as the keypoint’s type, executed at the pose of the execEES.
Each EndEffectorState consists of a FramedPose and optionally includes finger-joint
values or a hand-shape name. Optional preEES and retractEES can be specified
to define safe poses for the end-effector before and after the action has been
executed. Post-execution, the result, and all relevant information are stored in an
ExecutedAction object for memory introspection and continual learning, enhancing
the robot’s ability to adapt and improve over time. A class diagram of the task
description can be seen in Figure 5.2a.

Memory-centric System Architecture

The memory-centered system architecture of MAkEable is designed to support
the discovery and execution of mobile manipulation actions in unstructured envi-
ronments. It has to be flexible enough to adapt to various tasks, environments,
and robots . The architecture divides the overall task of generating and executing
actions into five distinct stages, ensuring a structured and modular approach to
task execution. This design allows for the seamless integration of new tasks and the
adaptation of existing ones, promoting the transfer of knowledge and experience
across different contexts and circumstances. The five stages of the MAkEable’s
manipulation cycle are:
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1. Discovery of potential actions candidates (ActionHypothesis) from various,
multi-modal inputs (e. g., visual perception or prior-knowledge).

2. Parameterization of ExecutableActions by enriching an ActionHypothesis

with robot-specific data. This involves deriving all necessary information
required for execution (e. g., EndEffectorTraj, robot base poses, etc.).

3. Validation of all created ExecutableActions by e. g., checking for collision,
calculating the IK, in order to ensure the feasibility of an action before
executing it.

4. Selection of the ExecutableAction that is best suited for execution through
autonomous ranking or teleoperation

5. Execution of the ExecutableAction on the specific robot and storing the
results in an ExecutedAction

Each stage is implemented using the Strategy behavioral design pattern (Gamma
et al., 1993) to ensure enough flexibility of the architecture to be adapted to specific
use cases. For example, there might be a Strategy for the Discovery stage that
takes the FramedPose and ObjectInfo of an object to be grasped from the Object
Memory to create a ActionHypothesis, and another Strategy might take raw camera
images from the Vision Memory to directly derive a ActionHypothesis using one
of the methods introduced in Chapter 3. In doing so, a combination of fitting
Strategies for the task can be selected during runtime using a simple Finite State
Machine. Each stage is embedded within the cognitive memory architecture of
Peller-Konrad et al., 2023, meaning that all internal and external communication –
i. e., between stages and with the robot, respectively – runs through the memory.
This ensures that every step of the manipulation cycle is logged and introspectable
by default. This modular design facilitates the easy integration of new Strategies
(e. g., the methods developed in Chapter 3 for the Discovery and Chapter 4 for the
Selection stage). Additionally, each stage in the manipulation cycle is equipped with
specific interfaces to accommodate externally implemented Strategies, enhancing
the system’s flexibility for various use cases.

The data flow within the framework is designed to ensure seamless integration
and execution of tasks. Figure 5.2b illustrates MAkEable’s data flow, which is
managed through a FSM that dynamically selects the appropriate Strategies
based on the concrete type of IDF. This FSM orchestrates the workflow by
triggering and parametrizing the stages, allowing for real-time decision-making
and adaptability. Users can leverage high-level skills (such as "grasp an unknown
object" or "place the object at a certain location"), which are stored in the
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robot’s procedural memory (see e.g., Peller-Konrad et al., 2023), to request specific
Strategy combinations, thereby tailoring the system to meet diverse and complex
requirements. The behavior of each stage is then dynamically adapted based on the
memory’s content, such as object poses or common knowledge like typical fetching
and placing positions. Since the knowledge within the memory is generalized and all
robots share the same memory structure (i. e., distributed working and long-term
memory in the form of memory servers and segments), execution knowledge can
be seamlessly transferred from one robot to another.

5.1.3. Use Cases and Experiments

To assess the effectiveness of and adaptability to different circumstances of MAkE-
able, various real-world experiments using the ARMAR humanoid robots were
performed. These experiments aimed to demonstrate the framework’s ability to
transfer knowledge across various tasks , robots , and environments . The scenarios
included a table-clearing, a box-picking, and a drawer-opening task, each selected
to validate MAkEable’s design principles. Additionally, a simulation experiment
was performed to illustrate the transferability across entirely different robot archi-
tectures, including industrial manipulators. Videos documenting the execution of
all experiments are available on MAkEable’s project page1.

An ExecutableAction was executed using the approach described by Pohl et al.
(2022), regardless of its ActionType. To this end, the execution is structured into
four key stages: (a) positioning the robot’s Tool Center Point (TCP) to a safe preEES

close to where the action is executed, (b) moving the TCP into contact with the
object (i. e., to the execEES), (c) executing the specific EndEffectorTraj associated
with the ActionType, and (d) retracting the end-effector to the retractEES after
the action is completed. The system uses VMPs in combination with a variable-
stiffness impedance controller, where the stiffness is adjusted at each stage to
balance precision and compliance—being more rigid during positioning and highly
compliant during contact and execution to prevent damage and accommodate the
interaction with the environment.

Table-Clearing Task

The table-clearing setup was designed similar to the experiments of Sections 3.2.3
and 4.1.3 to demonstrate the generalization and transfer of manipulation tasks
across different robots using the two humanoid robots ARMAR-6 and ARMAR-DE.

1https://sw.pages.h2t.iar.kit.edu/makeable/project_page/
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The primary objective was to evaluate the robots’ ability to grasp both known and
unknown objects and place them at common locations depending on the object,
thereby covering various use cases. Both robots, ARMAR-6 and ARMAR-DE,
are humanoid robots with two anthropomorphic 8 DoF arms and underactuated
five-finger hands with 2 DoF (ARMAR-6) and 4 DoF (ARMAR-DE). The setup
involved seven different rigid and deformable household objects placed arbitrarily
on a table in structured clutter. Known objects were associated with specific
common places such as the sink, kitchen countertop, or workbench, and the robots
prioritized manipulating these known objects before addressing unknown ones.
This scenario aimed to test MAkEable’s ability to handle a mixed setup of known
and unknown objects and place them at the correct locations.

The technical execution of the experiments involved utilizing RGBD-based pose
estimation on both robots and additional stereo-based pose estimation on ARMAR-
6 for 6D object pose estimation. ARMAR-DE was capable of recognizing objects
such as mustard, bio-milk, apple-tea, and spraybottle, placing them on the countertop
or workbench as appropriate. In contrast, ARMAR-6 could recognize additional
objects like the screwbox and sponge, placing them on the workbench and sink,
respectively. Objects that were unrecognized or unknown were placed on a free
table next to the kitchen. The OOBB-based grasp candidate extraction from
Grimm et al. (2021) was used to grasp the unknown objects. This allowed the
robots to identify and manipulate objects with varying degrees of familiarity.

Note: Reprinted from Pohl et al. (2024). © 2024 IEEE.

1○ 2○ 3○ 4○ 5○

1○ 2○ 3○ 4○ 5○

Figure 5.3.: Table-clearing of known and unknown objects with ARMAR-DE and
ARMAR-6. 1○ Initial setup, 2○ grasping of known objects, 3○ placing
of known objects, 4○ grasping of unknown objects, and 5○ placing of
unknown objects.

The results of the experiments, illustrated in Figure 5.3, showed that both ARMAR-
6 and ARMAR-DE successfully cleared the table by recognizing and placing known
objects in their designated locations and handling unknown objects appropriately.
The differences in 6D object pose estimation between the two robots led to
variations in object recognition, but both robots were able to complete the task
effectively. Addtionally, for all ActionTypes (i. e., Grasping and Placing) and both
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robots, the same EndEffectorTraj was used: a TCP-finger-trajectory that gradually
closes the fingers and curls the wrist, which was executed in reverse for placing an
object. This showcases the transfer of knowledge across robots , as well as tasks .

Bimanual Pick-and-Place Task

The bimanual pick-and-place experiments were designed to demonstrate MAkE-
able’s ability to execute multi-manual actions. Additionally, these experiments
were conducted in a semi-autonomous setup, showing the capability to incorporate
user feedback and experience through teleoperation (in this case in the Discovery
stage). In this case, a bimanual grasp consisted of simply synchronizing a uniman-
ual grasp for each end-effector of ARMAR-6. After successfully lifting an object,
ARMAR-6 autonomously navigated to a designated location to place the object,
employing a strategy similar to unimanual placing but again synchronized for
bimanual execution.

Note: Reprinted from Pohl et al. (2024). © 2024 IEEE.

Figure 5.4.: The humanoid robot ARMAR-6 grasping and carrying multiple objects
(exhaust, pan, and pipe) bimanually.

For the generation of a bimanual ActionHypothesis, a human operator selects two
grasp points in the Discovery stage – one for the left end-effector and one for the
right – in the scene via a graphical user interface. Then, grasp candidates are
generated based on the local surface structure of the neighborhood of the selected
points using GAE (see Section 3.2). Finally, the robot executes the grasp after the
operator’s approval (given during the Selection stage as only one ExecutableAction

was generated), with synchronization between the arms handled by predefined
keypoints (i. e., preEES, execEES, end of the EndEffectorTraj, and retractEES) and
compliant control. A few examples of ARMAR-6 grasping diverse unknown objects
bimanually can be seen in Figure 5.4.

Drawer-Opening Task

To demonstrate the relevance of MAkEable for Learning from Demonstration and
the transfer of knowledge and experience across different robots , a drawer-opening
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experiment was performed, in which ARMAR-DE learned and executed a task
that was previously taught to ARMAR-6. The primary objective was to assess the
framework’s ability to transfer learned skills between different robotic platforms,
and, by doing so, showcase the beneficial impact of MAkEable on robot learning.

In this experiment, ARMAR-6 was tasked with opening a drawer. Although
ARMAR-6 understood what it means to open a drawer (i. e., it can handle an
ActionHypothesis with the ActionType "Opening"), it lacked the EndEffectorTraj to
interact with the drawer. The robot utilized its prior knowledge of the drawer’s han-
dle position to derive and approach a suitable execEES. A human then demonstrated
the motion for opening the drawer through kinesthetic teaching for ARMAR-6’s
right hand, which was stored in the robot’s procedural memory. Afterwards, the
trajectory was transferred (by simply copying the EndEffectorTraj) to ARMAR-DE,
which then executed it using its left hand. This outcome underscores MAkEable’s
ability to abstract and generalize knowledge using its universal task description,
which facilitates the sharing of experience across different robots to enhance the
adaptability and autonomy of robotic assistants in real-world applications. Key
scenes from the drawer-opening task can be seen in Figure 5.5.

Note: Reprinted from Pohl et al. (2024). © 2024 IEEE.

Figure 5.5.: Transfer of drawer-opening skill, which was learned through kinesthetic
teaching, from ARMAR-6 to ARMAR-DE.

Relational Pouring in Simulation

To show that MAkEable can be used to transfer knowledge and experience be-
tween different embodiments, a simulated experiment was designed where a human
motion was executed on an industrial manipulator. To this end, the grasping and
pouring skills were instantiated for an Omni-Frankie robot (Haviland et al., 2022),
which features a 7-DoF Franka-Emika Panda manipulator mounted on an Omron
LD-60 two-wheel differential-drive base. Unlike the ARMAR humanoid robots,
Omni-Frankie is equipped with a parallel-jaw gripper. Despite these differences,
MAkEable’s universal task and robot description enabled the autonomous genera-
tion of grasp hypotheses for the robot and its gripper in the same way as in the
table-clearing experiments, allowing it to grasp and lift the object successfully.
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Note: Reprinted from Pohl et al. (2024). © 2024 IEEE.

(a) Example (b) Reference motion (c) Grasped mug (d) Pouring

Figure 5.6.: Exemplary pouring motion selected from the KIT Bimanual Manipula-
tion Dataset (Krebs et al., 2021) (a). Extracted reference motion of the
bottle’s pourability AAF relative to the cup’s fillability AAF (b). Omni-
Frankie grasping a milk jug (c) and pouring milk into a mug using an
EndEffectorTraj learned and adapted from human demonstrations (d).

Instead of focusing on the motion of the robot’s gripper, the approach for pouring
concentrates on the motion of two AAFs relative to one another, as inspired by
Muhlig et al. (2009). This facilitates the execution of tasks that require considering
two affordances. Examples include hitting a nail with a hammer (contact of the
hammer head with the nail) or pouring water from a bottle into a glass (pouring
out of the bottleneck and filling into the glass). In the latter case, the motion of
the pouring frame of the bottle can be described within the filling AAF of the
glass, as illustrated in Figure 5.6b. This representation can be easily transferred to
new pouring tasks (e. g., using different objects) as long as the AAFs are included
in the object description. For the simulation, VMPs are learned from the reference
motion of a human from the KIT Bimanual Manipulation Dataset (Krebs et al.,
2021), and subsequently transferred to MAkEable’s universal task description. For
the execution of the pouring task, an ActionHypothesis was generated using this
knowledge for the Frankie robot, which then executed a grasping (Figure 5.6c)
followed by a pouring (Figure 5.6d) skill adapted to the new objects and their
poses.

When combined, the results from the experiments demonstrate MAkEable’s ability
to adapt manipulation knowledge and experience to various circumstances, thereby
addressing Research Question 3. These observations underscore the framework’s
potential to generalize learned behaviors, thereby addressing the research question
of how mobile manipulation knowledge and experience can be transferred across
robots , tasks , and environments .
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5.2. Affordance-based Task Planning with Large

Language Models

Having introduced the highly-flexible Executive framework MAkEable in Sec-
tion 5.1, this section will investigate the Planning layer of the three-tiered robot
architecture. Specifically, the main focus is to demonstrate how combining a flexible
Planning system with MAkEable can further improve the adaptability in real-world
applications. The Planning layer is responsible for high-level decision-making and
strategy. It interprets goals and tasks, generating a sequence of actions or plans
to achieve those objectives. This layer typically coordinates the robot’s activities
by considering the current environment, future states, and potential obstacles.
Recently, the integration of LLMs into the Planning layer (such as Brohan et al.,
2023c; Liu et al., 2023a; Song et al., 2023) has led to a large improvement over
conventional planners, as LLMs offer great generalization capabilities and under-
standing of natural language instructions. As MAkEable already demonstrated,
employing an affordance-based environment representation can largely enhance
the adaptability of the execution of mobile manipulation actions.

Therefore, this section will introduce AutoGPT+P, a LLM-based Planning system
that uses the concept of affordances to increase the flexibility of the PDDL domain
by describing actions in terms of the functionality of objects instead of their
concrete class. This has the additional advantage of being able to handle incomplete
information and, therefore, relaxing the closed-world assumption of conventional
planners. Being able to adapt to the current circumstances while planning, possibly
tackling solvable sub-problems first (like exploring the environment for objects) or
suggesting replacements for missing objects based on their affordances, improves
the success rate of AutoGPT+P for planning in real-world applications.

The following content has previously been published in the paper by Birr et al.
(2024). The rest of this chapter will detail the implementation of AutoGPT+P
and its implications on the autonomy of robots in the personal sector.

5.2.1. Motivation

Section 5.1 has demonstrated the advantages of an Executive framework that
facilitates the transfer of knowledge and experience across tasks, environments,
and robots . However, per design, MAkEable is only able to execute single actions
like grasping and object or placing it. Its role as an Executive framework is to
translate the high-level requirements for a task into the low-level instructions
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needed by the Behavioral Control layer. Therefore, planning mobile manipulation
actions is of great importance for applications in the service and assistance domains,
as many tasks require multiple steps to be fulfilled. For example, the simple request
of "Bring me a glass of milk!" can require the execution of multiple manipulation
actions. To this end, a robotic assistant might need to go to the fridge, open its
door, grasp the bottle of milk, and pour the milk into a glass to bring it to a
human. To create this sequence of actions from a user request is the goal of the
Planning layer of robot architectures. Increasing the adaptability of this layer is
of great importance for the overall autonomy of robots, as problems can arise at
every step of the plan. Staying with the above example, once the robot opens the
fridge, it might realize that there is no milk in it. Conventional planners would
abort the plan at this point and the request of the user would remain unfulfilled.
Therefore, Research Question 3 can be further addressed by combining MAkEable
with a flexible Planning system that can capitalize on MAkEable’s abilities to
transfer knowledge and experience.

Natural language interaction is essential for improving the usability and efficiency of
robots, especially in situations where they have to coexist or cooperate with humans.
Studies have demonstrated that natural language commands offer an intuitive
and effective means for humans to communicate with robots Liu and Zhang, 2019.
Recently, LLMs have shown great promise for improving the capabilities and
the adaptability of the Planning layer (see Section 2.3.2 and Table 2.5), as they
excel in understanding and generalizing natural language tasks. However, they
struggle to translate instructions directly into executable plans for robotic tasks.
This limitation is mainly due to their restricted reasoning abilities (Valmeekam
et al., 2022), which hinder their effectiveness in handling the complexities of task
planning in dynamic environments (e. g., Brohan et al., 2023c or Valmeekam et al.,
2024). Recent efforts, such as LLM+P (Liu et al., 2023a), have sought to improve
LLMs’ planning capabilities by combining them with classical planners. However,
these systems are constrained by the closed-world assumption, meaning they can
only generate plans if all necessary objects are present. Additionally, they lack
automated error correction and are susceptible to contradictory goal definitions,
further limiting their applicability in real-world scenarios.

To address these limitations and improve the adaptability of the Planning layer
to unforeseen circumstances, AutoGPT+P, a system designed to enable robots
to execute tasks based on natural language commands, even when some objects
required for the task are missing from the immediate environment, is introduced.
AutoGPT+P enhances robots’ ability to dynamically respond to such constraints
by searching for missing objects, proposing alternatives, or progressing towards
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sub-goals. By employing an affordance-based environment representation, Auto-
GPT+P can dynamically deduce viable actions within a given scene, facilitating the
formation of a plan to achieve the user’s objective. For example, if a user requests
a glass of milk but no glass is detected, AutoGPT+P can propose using a cup
instead. Additionally, it has been shown that the combination of parametric and
non-parametric memories, so-called Retrieval-Augmented Generation (RAG, Lewis
et al., 2020), leads to improved content generation results for LLMs. Therefore,
AutoGPT+P extends the LLM+P approach by incorporating automated semantic
and syntactic error correction and dynamic planning domain generation based on
the robot’s capabilities by connecting it to a non-parametric, cognitive memory
architecture (Peller-Konrad et al., 2023), similar to RAG. This allows the robot
to seek human assistance when encountering tasks beyond its capabilities, such
as opening a milk box. Therefore, AutoGPT+P ensures that the robot can fulfill
the user’s request despite environmental limitations, thereby addressing Research
Question 3 by increasing the system’s adaptability and autonomy .

The main contributions of AutoGPT+P are as follows: (i) A novel affordance-based
scene representation that combines object detection with an Object Affordance
Mapping (OAM) automatically generated using ChatGPT. (ii) A task planning
approach based on the established OAM and an LLM-based tool selection to gener-
ate plans, partial plans, and explore alternatives in case of missing objects needed
to achieve a task goal specified by the user in natural language. (iii) Real-world
validation experiments with the ARMAR humanoid robots demonstrating that a
combination with MAkEable can improve the adaptability of task execution.

In Section 5.2.2, the AutoGPT+P framework and its affordance-based environment
representation will be introduced. Subsequently, Section 5.2.3 will give an insight
into the evaluation of the system and the positive impact of AutoGPT+P to the
adaptability of the execution of mobile manipulation actions, thereby linking the
approach to the main objective of this thesis.

5.2.2. Affordance-based Planning in Unstructured
Environments

AutoGPT+P’s approach for task planning consists of two stages: First, an af-
fordance-based scene representation is extracted from visual perception using
off-the-shelf object detection and the OAM. Second, the AutoGPT+P feedback
loop is used to iteratively improve the PDDL domain and problem description in
order to solve the user-specified task despite incomplete knowledge. Both steps
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depend largely on the generalization capabilities and the natural language un-
derstanding of LLMs. In the following, the details of both stages will be further
explained. Additionally, both steps rely heavily on the concept of affordances, as it
facilitates actions in the planning domain to be defined by the functionality of the
objects involved and not their semantic class, allowing for a more generic planning
approach (Lörken and Hertzberg, 2008).

Scene Representation

The affordance-based scene representation of AutoGPT+P establishes a foundation
for relaxing the closed-world assumption of the PDDL planning problem. By
representing the interaction possibilities of an agent ζ in a scene S, they allow for
symbolic planning using Conceptual Equivalence Classes (CECs, Varadarajan and
Vincze, 2011), i. e., sets of objects that share the same functionalities, instead of
the semantic class. This improves the generality of the planning domain ∆ and
facilitates the suggestion of alternatives if an object is missing. To this end, a
scene S∈ S is represented as a set of object-affordance pair pi, i. e., S = {p1 . . . pn}.

For the use in AutoGPT+P’s scene representation, the representationalist view
of affordances by Şahin et al. (2007) was adopted. This means that, similar to
the concept of an action hypothesis in Section 4.1 and Section 5.1, the agent’s
capabilities are not taken into account when observing the scene. Instead, the
semantic information about the functionality of an object that is encoded in its class
is used to assign affordances. To this end, objects in an image are first identified
using a conventional object detector, and subsequently, an offline-generated OAM
is used to map the object to its affordances.

In contrast to Varadarajan and Vincze (2011), where the CEC was defined using
multiple ontologies and grasp datasets by categorizing objects with respect to
their affordances, the OAM uses the advanced commonsense knowledge (see e. g.,
Kandpal et al., 2022) of LLMs to query the affordances that a class has directly.
Therefore, the OAM (i. e., mapping from objects to affordances) represents the
inverse of CECs (i. e., affordance to object mapping).

The OAM was created using multiple, simple, binary and atomic queries (e. g., "Can
a typical <object_class> be used to contain fluids" for fillability) per affordance
investigating the functionalities of an object class. If the LLM answered all of these
questions with "yes", the object class was assigned the corresponding affordance.
An ablation study on the effectiveness of different querying strategies for the
creation of the OAM can be found in Appendix C.1.
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Tool-based Architecture

The tool-based architecture of AutoGPT+P is designed to generate plans from
user commands by defining a PDDL goal state Ω through the use of LLMs and
iteratively updating the robot’s memory, so that the definition of the domain ∆

from the memory allows a conventional planner to solve the problem Ξ. The main
planning loop queries an LLM to select the appropriate tool based on the current
scene state and prior knowledge. This iterative process continues until a final plan
is found or a threshold for maximum iteration is reached, as illustrated in Figure
5.7.

Note: Adapted from Birr et al. (2024).

User Specified
Task

Initial Memory

Tool Selection

Abort Plan

Partial Plan

Explore

Suggest
Alternative

Update Memory

Plan Execution Done

Figure 5.7.: Overview of the AutoGPT+P tool selection process presented in
Section 5.2.2.

The planning task is formally defined as generating an action sequence or plan P

= (α1, . . . , αn) given a scene S∈ S, object relations R∈ RS, explorable locations L∈
L, and a user-specified task λ ∈ Λ in natural language. The actions α ∈ A are
defined as capabilities c ∈ Cζ executed by an agent ζ. A capability is a symbolic
representation that specifies the parameters, logical preconditions, and effects of
an action and is derived from the available skills in the robot’s procedural memory
at run-time. The scene S can be updated by exploring new locations location l∈ L

and adding the object-affordance pairs p, which are detected in an image I taken
at that location.

AutoGPT+P’s approach to adapt to incomplete information and varying circum-
stances (see Research Question 3) is based on a hybrid approach combining the
Step-by-Step Autoregressive Plan Generation and LLM with Planner paradigms
(see Section 2.3.2). Specifically, it tries to relax the closed-world assumption by
iteratively improving the amount of knowledge in the memory until the planning
problem is solvable by a conventional planner. To this end, AutoGPT+P is centered
around a tool-based architecture and planning loop that chooses the best possible
tool for the current situation out of four possible tools:
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Plan: Given the current knowledge in the memory, generate a planning problem
for the user-specified task that a conventional planner can solve.

Partial Plan: Given the current knowledge in the memory, generate a planning
problem that a conventional planner can solve, which addresses the user-
specified task as much as possible under the current circumstances.

Explore: Move the robot to an unexplored location l ∈ L, extract the object-
affordance pairs p from the camera image I and update the scene S.

Suggest Alternative: Suggest an alternative for a missing object that is crucial
for the realization of a plan. The alternative object should be in the CEC for
the object regarding its utility for the task.

A tool is selected based on the user prompt and current memory state, which
includes the affordance-based scene representation, object relations, explorable
locations, agent locations, instruction history, known alternatives, and the most
recent plan. After selecting a tool, it is executed, and its results are written into
the memory. This process is repeated until a final plan is reached or a maximum
number of iterations is reached.

If an explicitly requested object is not available, AutoGPT+P can leverage the
affordances involved in the user-specified task λ to suggest a replacement. This
is done using a handcrafted Chain-of-Thought process (Wei et al., 2023): First,
the LLM is queried to list the affordances of the missing object that are relevant
to λ. Subsequently, the most relevant of these affordances in the scene is found
using a heuristic (i. e., taking the least common affordance). Finally, the LLM is
tasked to find the object that is most similar to the missing object regarding this
affordance. If no replacement object could be found (e. g., no object has all the
relevant affordances or the LLM returns an object not in the scene), the LLM is
asked to find a replacement without any additional reasoning as a fallback.

Plan Generation

Inspired by Liu et al. (2023a), AutoGPT+P dynamically generates a PDDL
domain ∆ = (Θ,Υ,A) and problem Ξ = (Γ,Ψ,Ω) from the affordance-based
scene representation S and user-specified task λ. The goal of the Plan tool is,
therefore, to generate the goal state Ω in PDDL syntax with a LLM using the
domain ∆ and the initial state Γ, which are derived from the current state of
the memory. Subsequently, the generated goal state is checked for semantic and
syntactic errors and, if necessary, corrected by the LLM. Finally, the generated
domain ∆ and problem Ξ are given to a conventional planer for solving. An
overview of the Plan tool can be seen in Figure 5.8. The procedure for the Partial

118



5.2. Affordance-based Task Planning with Large Language Models

Plan is very similar, however it allows explicitly for incomplete goal states to be
generated by the LLM, so that a plan for sub-goals can be created.

Note: Reprinted from Birr et al. (2024).

Figure 5.8.: Overview of the Plan tool. Rounded boxes represent the input and
output of the components, which are represented as rectangles.

In PDDL, the types Θ are hierarchically structured by defining sub-types of a given
type, with three top-level types for AutoGPT+P: object , agent , and location. To
allow for interactions such as handing over an object, the agent is also a subtype
of location. The type hierarchy is built by first declaring all affordances in A as
subtypes of objects and then defining all objects that have this affordance as a
subtype of it in turn. This is done by reversing the OAM to map affordances to
object classes in the scene. For agents , all capabilities in Cζ are defined as subtypes,
and each agent with a specific capability c is further categorized under the type
for c. In this way, human-robot collaboration is enabled by defining different agent
types, such as robot and human, and dynamically assigning costs to them based on
user preferences, influencing which agent performs an action α. The initial state Γ

of the problem Ξ is defined by adding each object instance with its type and
specifying current agent locations. The goal state Ω can then be determined using
a LLM that has access to the initial state and domain definition. Using affordances
simplifies the domain by allowing a single logical action for all objects with the
same affordance (i. e., using CECs instead of semantic classes). This reduces the
complexity of the domain and the search time for the planner, making the planning
process more efficient and scalable.

Gou et al. (2023) demonstrated that conversational agents using LLMs can self-
correct when provided with expressive error messages from external programs.
Therefore, an automated check for syntactic and semantic errors in the goal state
is performed. Syntactic errors, such as incorrect use of parentheses or invalid predi-
cates, can be identified by matching predicate names and object types with those
in the domain and initial state. Semantic errors involve the logical inconsistency
of multiple predicates being true simultaneously, as when an object cannot be
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in two places at once, e.g., (on apple table) and (on apple counter). Unlike Chen
et al. (2023b), where semantic errors are tied to action sequences, this work defines
them based on the feasibility of predicate co-occurrence. Semantic conditions are
expressed in predicate logic and checked using Prolog by transforming the goal state
into its Disjunctive Normal Form and mapping sub-states to Prolog predicates. If
no sub-state satisfies all semantic conditions, the error message for the sub-state
with the fewest errors is returned to the LLM for self-correction.

5.2.3. Experiments

To demonstrate the advantages of a combination of a flexible Planning system
like AutoGPT+P with MAkEable, several experiments were performed on the
humanoid robots of the ARMAR family. For all experiments, Fast Downward
(Helmert, 2006) with a time limit of 300 seconds was used as the planner.

In addition to the real-world experiments, Birr et al. (2024) performed a series of
ablation studies in simulation to evaluate the efficacy of the parts of AutoGPT+P.
For the sake of completeness, these results are listed in Appendix C. The OAM
evaluations show that using logical combinations of simple yes/no questions achieves
the highest accuracy for generating the OAM. For the Plan tool, the results indicate
better performance compared to standard LLM as Planner implementations,
particularly in long-horizon and embodied tasks. While having no negative effect
on the Plan tool in AutoGPT+P, the inclusion of affordances was found to reduce
planning effectiveness due to information overload for the LLM as Planner baselines.
However, the affordance-based approach for alternative suggestion outperforms
a naive approach in identifying suitable replacements for missing objects. Error
correction experiments showed that self-correction mechanisms led to a noticeable
increase in success rates, especially in complex scenarios requiring commonsense
reasoning. Lastly, the integration of all tools in complex tasks demonstrated
AutoGPT+P’s ability to effectively manage tool selection.

To evaluate the feasibility of using AutoGPT+P with MAkEable in mobile ma-
nipulation under realistic conditions, several experiments were conducted on the
humanoid robots ARMAR-6 and ARMAR-DE. To facilitate the integration with
the robotic platforms, several controlled assumptions were made. Predefined ob-
ject models were used for manipulation tasks, including grasping , placing , and
pouring . The robot operated within a fully known environment model, with fixed
locations for navigation. However, the system dynamically detected the positions
of all manipulable objects. For the detection of liquids within containers, a pre-
defined liquid type was assumed in each container; however, to prevent potential
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damage to the robot, real liquids were not used during the experiments. Object
relations were inferred based on the affordances of related objects, and the spatial
relationships between object poses were estimated using a fine-tuned version of
MegaPose (Labbé et al., 2022). Object detection was performed using the yolov5
object detector (Jocher et al., 2022), which was fine-tuned on a predefined object
set as described in Younes and Asfour, 2024. For grasping and placing MAkEable
(see Section 5.1) was used, while for pouring tasks, the affordance keypoint de-
tection method from Gao et al. (2023) was employed to identify the opening of
the source container. It was assumed that the target container was symmetric, so
aligning the source container’s keypoint above the center of the target container
was deemed sufficient. The experimental tasks comprised four types: pick-and-place,
handover, pouring , and wiping tasks. These tasks varied in the degree of required
human-robot collaboration, with the robot executing pick-and-place and wiping
tasks autonomously but requiring human assistance to open liquid containers dur-
ing pouring tasks. In handover tasks, both the robot and the human contributed
equally to task completion.

The experimental results demonstrate the proficiency of the AutoGPT+P system
in generating executable plans for robotic tasks. Out of 20 real-life scenarios,
the system successfully planned 15. Analysis of failure cases identified that most
errors were due to false positive object detections or the robot’s inability to
accurately grasp the target object. This shows AutoGPT+P’s ability to adapt to
varying circumstances under realistic conditions. By combining a flexible Planning
framework, which facilitates the generation of plans that can adjust to incomplete
or missing information and task specifications (thereby relaxing the closed-world
assumption of conventional planners), with an Executive framework that focuses on
transferability of skills like MAkEable, this section addresses Research Question 3
and contributes to the main objective of this thesis.

5.3. Conclusion

This chapter investigated how the adaptability of the execution of mobile ma-
nipulation skills in unstructured environments can be improved by combining a
Executive framework focusing on the transfer of knowledge and experience with a
flexible, affordance-based Planning system. By providing methods for adapting to
the current conditions and requirements of the task, this combination increases
the task generality while decreasing the amount of task-specific knowledge required
for real-world service and assistance applications.
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Section 5.1 presented the memory-centered and affordance-based task execution
framework for transferable mobile manipulation skills, a modular Executive frame-
work designed to unify the autonomous manipulation of both known and unknown
objects across environments , tasks , and robots . It introduced an affordance-based
task description that facilitates the generalization of manipulation knowledge. The
memory-centered architecture of MAkEable enables unified internal and external
communication and improves the introspection of the framework. The subdivision
of the manipulation cycle into five distinct stages ensures the separation of concerns
and makes the behavior of MAkEable easily adaptable to the circumstances and
requirements of the current task. By bundling different versions of the stages into
high-level skills, an easily accessible user interface through the memory is created.
The integration in a cognitive memory system enhances contextual awareness,
enabling the use of common knowledge in manipulation tasks and facilitating
learning from both successes and failures across different agents.

In Section 5.2, a flexible Planning system, called AutoGPT+P, for the generation of
mobile manipulation plans using a LLM-based hybrid architecture was introduced.
By means of an Object Affordance Mapping, it leverages the general knowledge
encoded in LLMs to create Conceptual Equivalence Classes that can be used to
simplify the planning domain and suggest alternatives for missing objects necessary
to fulfill the user-specified task. Combined with an iterative procedure centered
around the four tools Plan, Partial Plan, Explore, Suggest Alternative to update the
memory of the robot, this facilitates the generation of a successful plan despite the
initial knowledge about the scene being incomplete. Additionally, the autonomously
derived domain of AutoGPT+P supports human-robot collaboration by definition
and the subsequently generated goal state is checked for semantic and syntactic
errors before the plan is generated through a conventional planner.

Through extensive real-world and simulated experiments of varying use cases,
MAkEable demonstrated its adaptability by changing the behavior of the stages
depending on the current task , environment , and robot . Multiple realistic experi-
ments on the humanoid robots ARMAR-6 and ARMAR-DE, like grasping known
and unknown objects, placing objects depending on their common locations, or
opening a drawer by learning a trajectory through Learning from Demonstration,
showed the various applications of the framework to mobile manipulation. By
supporting multiple autonomy levels, including full autonomy, semi-autonomy, and
teleoperation, as well as the generation and execution of both uni- and bimanual
actions, MAkEable can adapt to the various requirements and constraints on
general-purpose robots when operating in real-world scenarios. The framework’s
capability to transfer knowledge and experience across tasks , environments , and
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robot is beneficial for the adaptability of robots in the real world where they have to
cope with changing environments and circumstances. Furthermore, the validation
experiments of a combination of AutoGPT+P with MAkEable on the humanoid
ARMAR robots confirmed that the generated plans can be successfully executed
on a robot when integrated with a flexible Executive framework that can transform
the symbolic plans to the sub-symbolic representations required for execution on a
real robot. This supports the claim that MAkEable and AutoGPT+P complement
each other to form an overarching and adaptable task execution framework for
mobile manipulation that can handle and adjust to changing circumstances and
various real-world situations. Therefore, by addressing the Research Question 3
through adapting the execution of mobile manipulation skills, MAkEable and
AutoGPT+P contribute to the main objective of this thesis.
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The stated main objective of this thesis is to increase the degree of autonomy
of robotic assistants in unstructured environments in order to facilitate their
deployment to applications in different domains. To exhaust their full transformative
potential in these environments, robots need to be able to handle a variety of
tasks, deal with uncertainties and incomplete information, and adapt to changing
requirements and conditions. Therefore, research in mobile manipulation tries to
increase the task generality of autonomous robots while decreasing the amount of
task-specific knowledge required.

The concept of affordances from cognitive psychology is utilized to represent envi-
ronments in terms of their provided functionality instead of the explicit objects
therein. The representationalist view of affordances synergizes well with a dis-
criminative approach to mobile manipulation, as it facilitates the separation of
robot-agnostic and robot-specific functionalities and can be mapped to the three
stages of manipulation: discovery , selection, and execution.

Consequently, this thesis explicitly targets three core capabilities – one correspond-
ing to each stage of the discriminative approach – that should be improved. The
versatility of the discovery of interaction possibilities with the unstructured envi-
ronment directly influences the robot’s ability to perform a large number of tasks,
thereby improving its task generality . Enhancing the reliability of the selected
actions by accounting for uncertainty in visual perception and proprioception
makes HRI more secure and fosters trust and acceptance of the robotic assistants.
Finally, making the execution of mobile manipulation tasks more adaptable to
external influences and situational circumstances decreases the amount of a priori,
task-specific knowledge required to complete the robot’s duties.

To improve the core capabilities of robotic assistants in mobile manipulation, this
thesis investigates three research questions (Research Questions 1 to 3) by proposing
three contributions (Contributions 1 to 3). To this end, each chapter addresses
a single research question by detailing a contribution consisting of previously
published papers.
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6.1. Summary

Chapter 2 introduces the state of the art in discriminative mobile manipulation.
Therefore, it is split into three sections, each dealing with one of the substages
of discovery , selection, and execution. Due to the relevance to the experimental
validations of the contributions of this thesis, this chapter focuses on works in the
context of grasping . Therefore, Section 2.1 reviews work related to the discovery
of grasp candidates for similar and unknown objects. Subsequently, Section 2.2
categorizes approaches for the selection of grasp candidates based on different
quality metrics. Finally, in Section 2.3 focuses on the Executive and Planning layers
of the three-tiered robot architecture for the execution of grasping and mobile
manipulation skills.

Chapter 3 presents and discusses approaches for improving the versatility of
the discovery of action hypotheses in unstructured environments. To this end, it
concentrates on grasp discovery for similar and unknown objects. In Section 3.1,
the Multi-feature Implicit Model (MIMO, Cai et al., 2024) is introduced, which
is a neural fields-based network that facilitates the intra-class transfer of poses.
Combined with Visual Imitation Learning, the Multi-feature Implicit Model can
be used for task-oriented grasping and rearrangement of similar objects. However,
as the Multi-feature Implicit Model does not facilitate the grasp synthesis without
any prior knowledge of the objects involved, a Geometry-based Action Extraction
(GAE, Pohl and Asfour, 2022) based on the local surface structure of point clouds
is presented in Section 3.2 for grasping and manipulation of unknown objects.

Chapter 4 is concerned with increasing the reliability of the selected action candi-
dates. It focuses on probabilistic approaches that enhance the robustness of grasping
and manipulation by accounting for perceptual and proprioceptive uncertainties .
In Section 4.1 a combination of a UKF and HMM is used by the Probabilistic
Action Extraction and Fusion (PAEF, Pohl and Asfour, 2022) to spatiotemporally
track the state of action hypotheses across multiple observations of a scene in
order to estimate the existence certainty and covariance of the pose of an abstract
affordance frame connected to the action. Subsequently, the Uncertainty-Aware
Sensitivity Optimization (UASO, Baek et al., 2022) from Section 4.2 uses these
estimates in combination with other uncertainty-affected grasp metrics to optimize
a grasp score based on the sensitivities of the metrics towards the success rate of
grasp executions in a dataset.

Chapter 5 is comprised of the contributions regarding the adaptability of the
execution phase. To this end, a Memory-centered and Affordance-based Task
Execution Framework for Transferable Mobile Manipulation Skills (MAkEable,
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Pohl et al., 2024) is introduced in Section 5.1. This is an Executive framework that
explicitly facilitates the transfer of knowledge, experience, and skills across tasks ,
environments , and robots by creating a universal, affordance-based task description.
As a complementary system for MAkEable in the Planning layer, AutoGPT+P
(Birr et al., 2024), a hybrid task planning approach based on LLMs, was presented
in Section 5.2. AutoGPT+P relaxes the closed-world assumption of conventional
planners by using an affordance-based scene representation for simplifying the
PDDL planning domain and suggesting alternatives for missing objects in the
scene.

6.2. Contributions

The three research questions formulated in Section 1.1.2 provide the foundation and
structure of this thesis by defining the scope of the scientific framework, which was
addressed in Chapters 3 to 5. Therefore, they will be summarized and addressed
hereafter.

Research Question 1 is investigating how flexible action hypotheses can be extracted
from the visual perception of unstructured environments. The versatility of action
discovery is particularly important for real-world applications of general-purpose
robots as it ensures their usability in a broad range of tasks. The Multi-feature
Implicit Model and the Geometry-based Action Extraction are the two components
of Contribution 1 that address this research question detailed in Chapter 3. The
improved spatial features of the Multi-feature Implicit Model facilitate the task-
oriented grasping and rearrangement of similar objects using only partial views.
Validation experiments on the humanoid robots ARMAR-6 and ARMAR-DE
proved that the visual imitation learning approach in combination with the Multi-
feature Implicit Model can facilitate the versatile manipulations in unstructured
environments . In the case of unknown objects, the box-emptying and table-clearing
experiments with the humanoid robot ARMAR-6 demonstrated the improved
flexibility of grasp candidates generated by the Geometry-based Action Extraction
when compared to a baseline method based on scene segmentation and OOBBs.
Here, the success rate of grasping could be increased by almost 10% when using the
Geometry-based Action Extraction. Collectively, these experiments demonstrate
the increased versatility of action discovery when employing the methods developed
in this thesis.

Research Question 2 considers the impact uncertainty has on the reliability of
robotic assistants in realistic scenarios. Specifically, Contribution 2 investigates
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the benefit of incorporating probabilistic methods into the grasp selection process
in order to improve the reliability of grasping and manipulation in Chapter 4.
The evaluation of the Probabilistic Action Extraction and Fusion with ARMAR-6
showed that by spatiotemporally fusing action observations over multiple sequential
camera images, the success rate of grasping in unstructured environments could be
improved by almost 5% compared to the Geometry-based Action Extraction. This
showed that the filtered pose of the abstract affordance frame is indeed more robust
to noise in the visual perception. Additionally, by tracking the state of an action
hypothesis with an HMM, a measure for the confidence in the existence of an
interaction possibility can be established. As a consequence, the Uncertainty-Aware
Sensitivity Optimization can use this existence certainty in combination with other
grasp metrics to optimize a grasp score. In the experiments with ARMAR-6 the
grasp selection using the optimized grasp score was able to improve the success
rate of the executed grasps by more than 40% compared to randomly selected
grasps. This supports the claim that integrating uncertainty measures in the grasp
selection process can vastly improve the reliability grasping and manipulation.

Research Question 3 is concerned with the execution of actions in unstructured
environments under changing conditions and incomplete information. As robots
will eventually encounter new situations and the requirements for their application
will evolve over time, the adaptability of task execution is fundamental for their
continued autonomy in these scenarios. To this end, Contribution 3 examines the
Executive and Planning layers of the three-tiered robot architecture paradigm
for mobile manipulation software frameworks. The transferability of knowledge,
experience, and skills across tasks, environments, and robots that MAkEable
provides promotes flexible manipulation skills that lay the groundwork for the
Planning layer. This adaptability has been demonstrated in multiple real-world
validation experiments with the robots of the humanoid ARMAR family, including
pick-and-place of known and unknown objects, bimanual semi-autonomous grasp-
ing , and learning from demonstration for a drawer-opening task. Subsequently,
AutoGPT+P could capitalize on the transferable manipulation skills of MAkE-
able to prove its capabilities in multiple real-world mobile manipulation scenarios
with ARMAR-6 and ARMAR-DE. Consequently, the combination of these two
frameworks improves the adaptability of task Execution in real-world applications.
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6.3. Outlook and Future Work

This thesis has contributed multiple improvements for the versatility, reliability,
and adaptability of robotic assistants in unstructured environments, leading to
more autonomy for real-world applications in the personal sector. Hereafter, a
short outlook to future work centered around this thesis’ contributions is given.

The Multi-feature Implicit Model has shown great potential in transferring geo-
metrical knowledge across instances of the same class to improve grasping and
rearrangement of similar objects, while the Geometry-based Action Extraction has
improved the grasp synthesis for unknown objects. This leads to greater versatility
of mobile manipulation in unstructured environments by decreasing the amount
of task-specific knowledge needed. In the future, this could be further enhanced
by combining both approaches to transfer geometrical knowledge independent
of semantic classes, thereby utilizing prior knowledge for grasping geometrically
consistent structures in unknown objects.

The integration of probabilistic methods in the selection process to account for
perceptual and proprioceptive uncertainties had a significant impact on the relia-
bility of grasping and manipulation. The combination of the Probabilistic Action
Extraction and Fusion with the Uncertainty-Aware Sensitivity Optimization al-
lowed for the estimation of noise in the visual perception of a scene and facilitated
the optimization of a grasp score for choosing the best action in a situation. The
analysis of the chosen grasp metric showed that the height of a grasp had the most
influence on the outcome. Therefore, additional metrics should be investigated to
find a set of informative values that might also apply to the execution of different
actions than grasping . Furthermore, the combination of the Uncertainty-Aware
Sensitivity Optimization with a cognitive memory architecture (e. g., Peller-Konrad
et al., 2023) could enable lifelong learning of the sensitivities to continuously
improve the selection process.

The combination of the memory-centered and affordance-based task execution
framework MAkEable and the LLM-based planning framework AutoGPT+P in-
creases the adaptability of mobile manipulation tasks by introducing more flexibility
in the Executive and Planning layers, respectively, utilizing a top-down commu-
nication. However, the three-tiered robot architecture also intends for feedback
to be given from the lower to the higher layers. Such feedback could potentially
improve the functionality of the Executive layer in unstructured environments by
facilitating a more reactive approach to manipulation. Similarly, incorporating
more feedback for the Planning layer could help AutoGPT+P’s fault tolerance
and further improve the autonomy of robots.
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A. Affordances

The theory of affordances, initially proposed by Gibson (1966, 1979), suggests
to represent the environment in terms of properties or possibilities that it offers
to an organism. Therefore, affordances are a relationship between the organism
and its environment, highlighting how an organism perceives its environment in
terms of what it can do with it. In their view on Gibson’s definition, Turvey (1992)
define affordances as dispositions of the environment that become actualized if they
combine with their counterpart. Disagreeing with this purely environment-centric
view, Chemero (2003) and Stoffregen (2003) extend the gibsonian understanding of
affordances by proposing to define affordances not as properties of the environment
or the organism individually but as relations between the abilities of animals
and features of the environment. Şahin et al. (2007) conclude that these different
representations of affordances are caused by differing perspectives on where to
place them. Accordingly, they argue that there exist three – not one – different
perspectives: the (i) agent perspective (the agent realizes it has the affordance of
interacting once it sees the object), the (ii) environmental perspective (the object
offers the interaction potential to the agent), and the (iii) observer perspective
(an external observer would say that the object-agent system affords this inter-
action). Subsequently, Şahin et al. define their own formalization as the tuple
of (effect , (entity , behavior)), meaning that an agent can generate the effect by
applying the behavior to the entity . This approach was coined by Chemero and
Turvey (2007) as the representationalist view on affordances. They use hyperset
theory to compare the representationalist and gibsonian formulations and argue
that even though gibsonian systems are complex, they can still be modeled com-
putationally and offer a more accurate representation of perception and action in
natural systems.

Following the representationalist view while focusing on a developmental context
for robotics, Montesano et al. (2008) formalize affordances using Bayesian Networks
as the probabilistic relationships between actions, objects, and the resulting effects.
These relationships are learned by the robot through exploration and interaction
with the environment, using sensory inputs and motor outputs. In their framework,
the robot does not inherently know what actions are possible; instead, it must
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learn these possibilities through interaction. In a complementary approach, Krüger
et al. propose Object Action Complexes (OACs, Krüger et al., 2011) as grounded
abstractions that link sensorimotor experiences with symbolic representations,
thereby providing a hierarchical structure for autonomous cognitive robots to learn
and refine their interactions with the environment. OACs extend the concept of
affordances by formalizing not only the potential actions an object offers but also
integrating prediction, execution, and learning processes to support adaptive behav-
ior in cognitive systems. Centering around Conceptual Equivalence Classes (CECs,
Varadarajan and Vincze, 2011), the Affordance Network (AfNet, Varadarajan and
Vincze, 2013) and its extension to domestic robotics, Affordance Network Ontol-
ogy for Robotics (AfRob, Varadarajan and Vincze, 2013), use the k -TR theory
to visual perception to formalize affordances using structured ontologies. While
AfNet employs the Recognition by Component Affordances and k -TR theories to
define a broader database of affordance features for various objects, AfRob uses
so-called afbits and affordance filtrations for scalable, real-time object recognition
in robots. The formalization of affordances using Dempster-Shafer belief functions
from Kaiser et al. (2018) allows for the integration and hierarchical composition of
evidence from various sources, enhancing the robot’s ability to detect and reason
about action possibilities in complex environments. This approach facilitates the
consistent fusion and propagation of affordance-related evidence, supporting more
robust and adaptable robotic behaviors. Based on the affordance representation of
Montesano et al., Moldovan et al. (2018) introduce relational affordances by con-
sidering the interactions and spatial relationships between multiple objects, rather
than treating objects in isolation. This approach uses probabilistic programming
to manage the complexity and uncertainty in multi-object scenarios, allowing for
more generalized and effective manipulation in robotic systems.

A more detailed view about affordances and their application to robotics can
be found in multiple reviews regarding this topic. Investigating the relation of
perceiving objects, identifying the actions on them, and estimating the outcome or
effect of applying the action, the works of Ardón et al. (2020, 2021) categorize the
related work regarding their reliance on prior knowledge (similar to e. g., "known",
"similar", "unknown" objects) and how this object-action-effect relationship is
established. Another general review of affordances for mobile manipulation by
Yamanobe et al. (2017) focuses on object recognition and grasping, manipulation,
and planning. Additionally, it introduces a cloud database that accumulates various
data related to manipulation tasks.
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B. Ablation Studies for MIMO

To assess the proposed task-oriented grasp generation framework based on MIMO,
multiple experiments and ablation studies across various manipulation tasks were
conducted. By doing so, MIMO was compared against state-of-the-art methods,
including Neural Descriptor Field (NDF, Simeonov et al., 2022), Relational-Neural
Descriptor Field (R-NDF, Simeonov et al., 2023), and Neural Interaction Field
and Template (NIFT, Huang et al., 2023). This evaluation assesses the versatility
of the MIMO-based grasping and rearrangement framework and its effectiveness in
generating grasps for similar objects. More details, evaluation videos, and source
code are available via the project page1.

Disclaimer

The experiments and results of this section were not contributed by this
thesis and are only listed for completeness and better understanding. The
original content is taken from:
Cai, Yichen, Jianfeng Gao, Christoph Pohl, and Tamim Asfour (2024).
“Visual Imitation Learning of Task-Oriented Object Grasping and Rearrange-
ment”. In: Proc. of the 2024 IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems. International Conference on Intelligent Robots and Systems (IROS).
Abu Dhabi, UAE: IEEE/RSJ, accepted for publication

B.1. Training and Experimental Setup

The training of MIMO employs a multi-task loss function that combines the loss
functions of each feature branch through a weighted sum. To avoid the challenge of
manually adjusting these weights, homoscedastic uncertainty (Kendall et al., 2018)
is introduced for each branch. This approach models the likelihood as a Gaussian
distribution where the output is the mean and the uncertainty is the variance.
The total loss function, defined as L =

∑4
i=1(e

−siLi(Wi) + si), combines binary
cross-entropy loss for occupancy, clamped L1 loss for signed distance, and L1 losses

1https://sites.google.com/view/mimo4
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for ESCF and CDD branches. By minimizing this loss function with respect to the
model weights Wi and uncertainty si, the training process ensures balanced and
effective learning without manual tuning.

MIMO can be trained entirely without human annotation of data. The general
procedure is very similar to that of NIFT: The training process of NIFT begins with
the creation of a large dataset in a simulated environment containing 100,000 point
clouds of various objects in random poses and scales. Spatial points are uniformly
sampled around these objects, and their spherical function features are computed
to provide ground truth for network training. The neural network, designed to
predict the SCF for each point, is trained using an L1 loss for SCF and binary
cross-entropy loss for occupancy prediction, optimized with the Adam optimizer
over 50 epochs. In theory, both NIFT and NDF provide datasets that could be
used for training; however, two issues prohibit their use for MIMO: (i) The bottom
of meshes of the "bottle" class from NDF is hollowed out, which influences the
shape reconstruction quality, and (ii) the scaling of meshes is non-uniform, leading
to wrong labels for SCF and signed distance. Therefore, a new dataset consisting of
watertight meshes with rendered point clouds for each mesh is generated from the
ShapeNet dataset (Chang et al., 2015) using the methodology described in Stutz
and Geiger (2018). Training NIFT and MIMO is conducted using the new dataset
on a single NVIDIA A100 GPU, employing the pre-trained weights of NDF and
R-NDF as provided by the original authors.

For the experiments in simulation, three different settings were considered: (S1) ten
demonstrations with four viewpoints, where the point cloud is fused from four depth
cameras positioned at the corners of the table; (S2) a single demonstration with
four viewpoints, using the same camera positions, and (S3) a single demonstration
with a single viewpoint, ensuring visibility of the mug handle and bottle opening
The evaluation utilized Basis Point Set (BPS) for all models, distinguishing between
upright (U) and arbitrary (A) initial object poses. The success of the task was
determined by the grasp success (object grasped without dropping) and placement
success (object correctly placed in the target pose).

The performance of MIMO is first evaluated against various state-of-the-art ap-
proaches. To demonstrate the effectiveness of the novel ESCF and CDD features in
MIMO (denoted MIMO4 ), additional evaluation results are provided for a variant
(denoted MIMO3 ) with three branches in the decoder to predict occupancy, signed
distance, and SCF separately. Additionally, the results of MIMO4 without shape
reconstruction (denoted MIMO4−) are evaluated to investigate the effect of this
step on grasp candidate generation.
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B.2. Comparison with NDF

To benchmark the proposed approach, a comparison with NDF was conducted
using a simulation environment. The evaluation included three pick-and-place
tasks: (T1) picking a mug by the rim and placing it on a rack by the handle, (T2)
picking a bowl and placing it on a shelf, and (T3) picking a bottle from the side
and placing it on a shelf. Each task was performed 100 times under settings (S1)
and (S3).
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Note: Adapted from Cai et al. (2024). © 2024 IEEE.

Figure B.1.: Success rate of the pick-and-place tasks (T1)-(T3) with unseen objects
under setting (S1) for models NDF( ), NIFT( ), MIMO3 ( ),
and MIMO4 ( ), respectively.

As shown in Figure B.1, all approaches achieve high success rates for tasks (T1)-
(T3) in setting (S1). MIMO4 consistently achieves the best results, with MIMO3

slightly lower. The overall success rates of MIMO4 drop by only 2% in arbitrary
poses compared to upright poses, demonstrating superior SE(3)-equivariance.

Table B.1.: Unseen object pick-and-place success rate with setting (S3) (single
viewpoint, single demonstration).

Mug (T1) Bowl (T2) Bottle (T3) Mean

Grasp Place Overall Grasp Place Overall Grasp Place Overall Grasp Place Overall

NDF 0.95 0.73 0.72 0.89 0.93 0.84 0.90 0.69 0.65 0.91 0.78 0.74
NIFT 0.99 0.92 0.92 0.98 1.00 0.98 0.96 0.94 0.90 0.98 0.95 0.93
MIMO3 1.00 0.92 0.92 0.99 1.00 0.99 0.92 0.93 0.91 0.97 0.95 0.94
MIMO4− 0.99 0.92 0.92 0.98 0.98 0.97 0.94 0.64 0.62 0.97 0.85 0.84

U
pr

.
P
os

e
U

MIMO4 1.00 0.98 0.98 1.00 0.99 0.99 0.97 0.97 0.95 0.99 0.98 0.97
NDF 0.53 0.58 0.34 0.76 0.80 0.64 0.42 0.91 0.40 0.57 0.76 0.46
NIFT 0.46 0.90 0.42 0.96 0.88 0.87 0.38 0.93 0.37 0.60 0.90 0.55
MIMO3 0.86 0.94 0.80 0.94 0.99 0.94 0.77 0.87 0.71 0.86 0.93 0.82
MIMO4− 0.53 0.96 0.50 0.97 0.95 0.94 0.67 0.52 0.50 0.72 0.81 0.65

A
rb

.
P
os

e
A

MIMO4 0.92 0.97 0.90 0.98 0.97 0.95 0.95 0.97 0.93 0.95 0.97 0.93

Note: Reprinted from Cai et al. (2024). © 2024 IEEE.

In contrast, Table B.1 shows that MIMO4 significantly outperforms others in
setting (S3), particularly in tasks (T1) and (T2) with arbitrary object poses.
MIMO3 and NIFT perform comparably to MIMO4 only in the placing phase of
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B. Ablation Studies for MIMO

(T2) involving bowls. This is due to the partially-observed point cloud of bowls
with large openings, making it easier to distinguish their orientation compared to
mugs and bottles in (T1) and (T2).

Comparing the average success rates, methods incorporating shape reconstruction
(MIMO3 , MIMO4 ) outperform those without it (NDF, NIFT, MIMO4−), verifying
the effectiveness of shape reconstruction. Interestingly, NIFT achieves a higher
success rate in task (T3) for placing, likely because it is trained on bottles hollowed
at the bottom, making it easier to distinguish the top and bottom.

Note: Adapted from Cai et al. (2024). © 2024 IEEE.

Ref. Obj. Obs. MIMO NDF NIFT

Figure B.2.: Point correspondence and shape similarity measure using point de-
scriptors from partially-observed point clouds (•). Given a point on a
reference object, the novel object mesh is colorized based on the L1
distance of point descriptors to the reference point, where blue means
more similar and marks the most similar points (•).

As shown in Figure B.2, NDF and NIFT often fail to distinguish the top and
bottom of bottles and mug handles, causing low success rates in (T1) and (T3) with
arbitrary poses. MIMO’s descriptor field is more informative, achieving accurate
pose transfer and higher success rates.

In Figure B.3, the angle error between the object’s upright direction and gravity is
computed at the target pose for bowls and bottles in (T2) and (T3). A smaller
angle indicates more precise placement. MIMO4 has the smallest average angle
error and variance across all tasks, further validating the superiority of the novel
neural descriptors.

B.3. Comparison with R-NDF

In addition to the comparison to NDF, the effectiveness of the approach for
task-oriented object rearrangement with respect to object relations was evaluated
using the simulation environments from R-NDF, focusing on three specific tasks:
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Note: Adapted from Cai et al. (2024). © 2024 IEEE.
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Figure B.3.: Angle error of bowls and bottles. Colors as Figure B.1.

(T4) hanging a mug on a hook, (T5) placing a bowl on a mug, and (T6) placing
a bottle in a container. These tasks were tested under the three settings (S1),
(S2), and (S3), concentrating solely on the target configurations of the objects
and disregarding the grasp procedure. A task was deemed successful if the source
object was placed on the target object without falling or exerting excessive force.
Each task was conducted over 100 trials to compute success rates.

Table B.2.: Success rates of unseen object rearrangement. U and A stand for upright
and arbitrary poses, respectively.

(T4) (T5) (T6) Mean

Models U A U A U A U A

(S1)
R-NDF 0.71 0.55 0.75 0.75 0.80 0.54 0.75 0.61
MIMO3 0.91 0.87 0.92 0.91 0.84 0.85 0.89 0.88
MIMO4 0.88 0.85 0.91 0.89 0.87 0.93 0.89 0.89

(S2)
R-NDF 0.56 0.53 0.64 0.61 0.12 0.18 0.44 0.44
MIMO3 0.89 0.89 0.90 0.88 0.85 0.87 0.88 0.88
MIMO4 0.92 0.92 0.90 0.87 0.91 0.93 0.91 0.92

(S3)
R-NDF 0.29 0.21 0.10 0.13 0.16 0.07 0.18 0.14
MIMO3 0.85 0.85 0.88 0.87 0.72 0.70 0.82 0.81
MIMO4 0.89 0.86 0.90 0.88 0.90 0.83 0.90 0.86

Note: Reprinted from Cai et al. (2024). © 2024 IEEE.

The results, as detailed in Table B.2, indicate that MIMO4 and MIMO3 performed
equally well in setting (S1) with a success rate of approximately 89%. In settings
(S2) and (S3), MIMO4 significantly outperformed R-NDF by about 48% and 70%,
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respectively. The performance of MIMO3 declined in these settings, demonstrating
the effectiveness of the novel ESCF and CDD features in the partly shared decoder
of MIMO.

B.4. Evaluation of the MIMO-based Grasping

Framework

To evaluate the task-oriented grasp generation approach, additional experiments
were conducted in simulation. Four specific tasks (equivalent to the tasks (E1)
- (E4)) were defined for these experiments: (T7) grasping a mug at its rim and
placing it upright, (T8) grasping a mug at its handle and pouring into a bowl,
(T9) grasping a bottle at its neck and placing it upright, and (T10) grasping
a bottle at its body and pouring it into a bowl. Object poses were randomly
initialized, ensuring the visibility of mug handles. For all experiments, MIMO4

was used to reconstruct object shapes from the partially-observed point cloud.
The grasp poses are sampled from the GMM, transferred to the observed objects,
and evaluated by the grasp evaluator (see Section 3.1.3). If the estimated success
probability dropped below 0.9, the grasp pose was optimized with a learning rate
of 10−3.

Table B.3.: The success rates of unseen object grasping (G) and rearrangement (R).

(T7) (T8) (T9) (T10) Mean

Models G R G R G R G R G R
NIFT 0.80 0.62 0.92 0.80 0.86 0.08 0.92 0.68 0.88 0.55

MIMO4 0.94 0.88 0.96 0.94 0.90 0.80 0.98 0.88 0.95 0.88
Note: Reprinted from Cai et al. (2024). © 2024 IEEE.

The simulation experiments were executed using Isaac Gym and compared MIMO4

against NIFT as a baseline. Each task was executed 50 times in (S3). As shown in
Table B.3, MIMO4 outperforms NIFT in all tasks, particularly excelling in (T9),
with a success rate improvement of about 72%. As in previous experiments, the
baseline approach struggled to differentiate between the top and bottom of the
bottle, leading to failures in placement. In contrast, the MIMO-based task-oriented
grasping framework achieved higher success rates, benefiting from the reconstructed
shape and enhanced descriptor space, with an average success rate of 95% for
grasping, including challenging side grasps at the mug handle.
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C. Ablation Studies for
AutoGPT+P

In order to investigate the behavior and benefits of the single components of
AutoGPT+P (Section 5.2), multiple ablation studies in simulation were conducted.
Appendix C.1 investigates the three different querying strategies used for generating
the OAM. Furthermore, Appendix C.2 compares the efficacy of different planning
paradigms on the SayCan instruction set. Subsequently, Appendix C.3 demonstrates
the ability of the automatic error correction to improve the planning success rate
of AutoGPT+P. Appendix C.4 compares the Suggest Alternative tool against a
naive suggestion using LLMs. Finally, Appendix C.5 evaluates the efficacy of the
entire AutoGPT+P planning loop and demonstrates its ability to correctly select
tools for the circumstances.

Disclaimer

The experiments and results of this section were not contributed by this
thesis and are only listed for completeness and better understanding. The
original content is taken from:
Timo Birr, Christoph Pohl, Abdelrahman Younes, and Tamim Asfour
(2024). “AutoGPT+P: Affordance-based Task Planning with Large Language
Models”. In: Proceedings of Robotics: Science and Systems. Robotics: Science
and Systems. Vol. 20. Delft, Netherlands

C.1. Object-Affordance Mapping

To assess the Object Affordance Mappings (OAMs), the key metrics1 are preci-
sion (prec), recall (rec), and the F1-score (Chinchor, 1992; Van Rijsbergen, 1977;
equivalent to DICE Dice, 1945), defined as follows:

prec =
TP

TP + FP
, rec =

TP

TP + FN
, F1 = 2× prec× rec

prec + rec
1All these metrics range from 0 to 1, with higher values indicating better performance.
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where:

• TP (True Positives) represents the number of object-affordance pairs p

correctly identified, i.e., those present in both the ground truth (GT) and
the detected set.

• FP (False Positives) represents the number of object-affordance pairs that
were detected but do not appear in the GT.

• FN (False Negatives) denotes the number of object-affordance pairs that are
present in the GT but were not detected.

To generate the OAM, the reproduction abilities of LLMs when prompted with
simple questions are utilized. Three different querying strategies were distinguished
when generating the OAM:

1. The List-Affordance strategy involves querying the LLM for the affordances of
each object directly and providing a list of affordances with descriptions. This
method is efficient regarding token usage and speed but may lack accuracy
due to potential ambiguities in affordance descriptions.

2. The Yes/No-Questions strategy improves accuracy by querying the LLM
with binary questions about each affordance. This method allows for precise
definitions of affordances, reducing ambiguity. However, it requires more
tokens and time, as each affordance must be queried individually, making it
a more resource-intensive approach.

3. The Yes/No-Questions + Logical Combinations strategy further enhances
accuracy by breaking down complex queries into atomic yes/no questions.
This method ensures that each query is simple and unambiguous, although
it consumes even more tokens and time. It is the most accurate approach
but also the most resource-intensive.

An independent training set of 30 object classes was used to optimize the prompts.
The evaluation was conducted using a test set of 70 new object classes, each
annotated with their corresponding affordances. These annotations were also
utilized to evaluate the Plan and Suggest Alternative tools’ functionalities. The F1-
score was calculated for the three querying strategies for affordances and analyzed
using a set of 40 affordances, partially derived from Varadarajan and Vincze, 2012,
2013.

As shown in Table C.1, GPT -4 generally outperforms GPT -3 across most strate-
gies. The data suggests that the most effective approach combines yes/no questions
with logical reasoning. However, despite the high accuracy achieved, the uncertainty
in affordance estimation remains a consideration for future research.
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C.2. Planning Tool

Note: Reprinted from Birr et al. (2024).

GPT List-Affordances Yes/No Logical
prec rec F1 prec rec F1 prec rec F1

3 0.31 0.49 0.38 0.70 0.78 0.74 0.78 0.85 0.81
4 0.59 0.67 0.62 0.78 0.95 0.86 0.87 0.91 0.89

Table C.1.: Comparison of OAM methods using different versions of the Generative
Pre-trained Transformer (GPT) on the proposed set of affordances
with the best values for precision, recall, and F1-score in bold

C.2. Planning Tool

The evaluation involved a series of scenarios, each defined by a user-specified task,
a formal goal state, and the scene’s specifications, including object relations, and
explorable locations. The effectiveness of the generated plans was assessed by
simulating their execution using Prolog and determining whether the resulting
scene state met the desired goal state.

The Plan tool was evaluated against the provided code for SayCan on its instruction
set and two additional LLM as Planner implementations. The first implementation
generated plans based on a textual representation of the initial state and the
user-specified task. The second implementation included additional affordance
information about objects in the prompt to examine the impact of affordances on
planning performance.

In Table C.2, the results of the evaluation on SayCan’s instruction set can be seen.
The proposed method outperformed the naive LLM as Planner implementations for
both GPT -3 and GPT -4 , aligning with findings from previous studies. However,
adding affordance information in the prompt reduced performance, likely due to
information overload. Compared to SayCan, the method showed superior results
when using GPT -4 , particularly in scenarios involving embodiment and long-
horizon tasks, although it performed worse with GPT -3 . However, as SayCan is
based on PaLM, the difference in LLMs employed makes it impossible to directly
compare both approaches.

The results indicate that while GPT -4 handles explicit tasks well, it struggles
with tasks requiring nuanced interpretation of the user’s intentions. Contextual
understanding remains crucial, and the system should seek clarification when the
goal is not clearly stated.
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C.3. Error Correction

C.3. Error Correction

To identify limitations in the reasoning capabilities of a LLM in understanding user
intentions, five subsets of scenarios were created, each containing 30 prompts with
diverse tasks, such as cutting, heating, and moving objects. The subsets Simple
Task, Simple Goal, Complex Scene, Complex Goal, Knowledge, and Implicit vary in
complexity and the necessity for commonsense knowledge or implicit understanding.

The Plan tool’s performance was evaluated across these subsets. Simple Task
and Simple Goal involved straightforward requests, while Complex Scene and
Complex Goal introduced higher complexity through more objects and logical
subgoal connections. Knowledge required commonsense reasoning, and Implicit
involved indirect user intentions. Additionally, the impact of scene complexity on
planning time was assessed, alongside the role of self-correction mechanisms.

Note: Reprinted from Birr et al. (2024).

Subset GPT -3 GPT -3 Auto GPT -4 GPT -4 Auto
success min success min success min success min

Simple
Task 0.70 0.63 0.70 0.63 0.97 0.97 1.00 1.00

Simple
Goal 0.63 0.60 0.90 0.83 1.00 0.97 1.00 0.93

Complex
Scene 0.17 0.13 0.77 0.53 0.93 0.87 0.97 0.93

Complex
Goal 0.23 0.17 0.33 0.23 0.87 0.70 0.87 0.73

Knowledge 0.10 0.10 0.10 0.10 0.53 0.53 0.57 0.57
Implicit 0.10 0.10 0.13 0.13 0.43 0.40 0.47 0.43
Average 0.32 0.29 0.49 0.42 0.79 0.74 0.81 0.77

Table C.3.: Ablation results of planning with the Plan tool with different versions
of GPT and with or without automatic self-corrections (Auto) on
AutoGPT+P’s own instruction set. Success refers to the success rate,
whereas min refers to the rate of plans that had the minimal length
possible for the given goal.

As can be seen in Table C.3, the Plan tool performed reliably on simple tasks but
struggled with more complex and vague tasks, especially in the Knowledge and
Implicit subsets. GPT -3 faced difficulties with vague instructions, while GPT -4
showed better performance, often rendering self-correction unnecessary. The self-
correction improved success rates slightly, more so for GPT -3 than GPT -4 . In the
SayCan instruction set (see Table C.2), self-correction led to notable improvements,
particularly in handling structured language (i. e., the Structured instruction set).

145



C. Ablation Studies for AutoGPT+P

The experiment revealed significant increases in planning time as scene complexity
grew. For the Simple Goal subset, where scenes involved around 30 objects, the
average planning time was 8.4 seconds with GPT -3 and 28.0 seconds with GPT -4 .
However, in the Complex Scene subset, which increased the object count to 100,
the planning time rose sharply to 31.6 seconds for GPT -3 and 59.4 seconds for
GPT -4 . Despite the minimal increase in LLM inference time – from 2.7 to 2.8
seconds for GPT -3 and from 19.1 to 21.8 seconds for GPT -4 – the overall planning
time was primarily impacted by the Fast Downward planner.

This demonstrated the planner’s effectiveness in handling simple tasks and exposed
its limitations with complex and implicit instructions. GPT -4 demonstrated strong
performance, minimizing the need for self-correction, while scene complexity pri-
marily affected planning time. The results suggest that enhancing error messaging
and addressing planner inefficiencies could further improve performance.

C.4. Alternative Suggestion

The Suggest Alternative tool experiment compares AutoGPT+P’s approach (ex-
plained in Section 5.2.2) with a naive alternative suggestion method. The naive
method relies on the LLM to identify a suitable replacement for a missing object
within a scene without incorporating any additional reasoning processes. The
performance of both methods was evaluated across 30 predefined scenarios, each
characterized by a missing object, a user-specified task, a set of objects present
in the scene, and a list of permissible alternative objects. The task is deemed
successful if the method identifies one of the allowed alternatives. The scenarios
are categorized into three levels of difficulty based on the number of objects in the
scene: simple (5 objects), medium (20 objects), and complex (70 objects). This
reflects the hypothesis that increased scene complexity, in terms of object quantity,
poses a greater challenge for accurately identifying the missing object.

Note: Reprinted from Birr et al. (2024).

GPT -3 GPT -4
Naive AutoGPT+P Naive AutoGPT+P

simple 0.73 0.87 0.90 0.90
medium 0.63 0.90 0.70 0.83
complex 0.33 0.80 0.67 0.80

Table C.4.: Comparison of the success rate of the Suggest Alternative tool with a
naive approach. The best values for the success rate are in bold.
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The experimental results, shown in Table C.4, reveal a trend where the accuracy
of both methods diminishes as the complexity of the scene increases. The naive
approach shows a significant decline in accuracy, from 0.73 to 0.33 with GPT -3 and
from 0.9 to 0.67 with GPT -4 , as the number of objects increases from 5 to 70. In
contrast, AutoGPT+P’s approach demonstrates greater resilience, with accuracy
only slightly decreasing from 0.9 to 0.8 with GPT -3 and from 0.87 to 0.8 with
GPT -4 under the same conditions. Notably, the difference in performance between
GPT -3 and GPT -4 is minimal when using the novel method. This consistent
accuracy is attributed to AutoGPT+P’s utilization of a directed Chain-of-Thought
process, which guides the LLM through the reasoning needed for object replacement,
thereby reducing the likelihood of incorrect suggestions.

C.5. AutoGPT+P

The evaluation of the overall planning approach and tool selection process of
AutoGPT+P was conducted using five distinct scenario sets, each consisting of
30 scenarios designed to rigorously assess the system’s performance across various
tasks. Four of these sets were focused on evaluating the system’s interaction with
individual tools, while the fifth set required the integration of all tools to complete
more complex tasks. Specifically, the Plan subset included randomly selected
scenarios from previous evaluations, whereas the Explore and Partial Plan subsets
were constructed with entirely new scenarios. The Explore scenarios provided
partial hints about the location of objects, such as "Bring me the cucumber
from the fridge," to evaluate the system’s exploration capabilities. The Suggest
Alternative and Combined sets shared the same scenarios, with the latter set
involving initial location exploration to assess tool selection and combination
strategies. An additional metric, referred to as minimal tools, was incorporated
to determine the optimal number of tools required for each scenario, aiming to
quantify the efficiency of the tool selection process in achieving successful outcomes.

The experimental results from Table C.5 demonstrate that AutoGPT+P is effective
in selecting the appropriate tools for task completion, with performance metrics
indicating that the introduction of a prior tool selection process does not diminish
its effectiveness in planning-based scenarios. However, including exploration tasks
resulted in a slight decrease in success rates, primarily due to premature plan-
ning before all relevant locations were fully explored. The Suggest Alternative set
exhibited a similar reduction in success rate, attributable to invalid alternative sug-
gestions, with an overall success rate 0.07 lower in the Combined set, emphasizing
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Note: Reprinted from Birr et al. (2024).

Subset
GPT -3 GPT -4

success minimal minimal
tools success minimal minimal

tools
Plan 0.53 0.50 0.30 0.87 0.80 0.80

Partial Plan 0.37 0.20 0.23 0.83 0.67 0.13
Explore 0.10 0.03 0.00 0.77 0.23 0.63
Suggest

Alternative 0.13 0.13 0.03 0.77 0.53 0.73

Combined 0.13 0.07 0.10 0.70 0.53 0.47
Average 0.25 0.19 0.13 0.79 0.55 0.55

Table C.5.: Evaluation of AutoGPT+P in the metrics success rate, minimal plan
length, and minimal tool usage rate comparing GPT -3 to GPT -4 .
Best values are written in bold.

the challenge of integrating exploration with tool selection. Additionally, the analy-
sis highlighted a trend towards minimal tool usage when only one tool was required,
although the Partial Plan set occasionally exhibited inefficient tool selection, often
cycling through the Suggest Alternative tool. It was observed that when provided
with hints, the tool selection process effectively identified the correct location,
whereas the absence of clues led to random and sometimes illogical explorations. In
comparison, GPT -3 displayed suboptimal tool selection, particularly in scenarios
requiring exploration or alternative suggestions, with a tendency to randomly select
tools, resulting in a markedly lower success rate. Overall, while the tool selection
process of AutoGPT+P shows promise in addressing tasks with missing objects
and partially unexplored environments, challenges remain, particularly in avoiding
premature planning and improving the accuracy of alternative suggestions.
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D. Tools and Resources
The following tables provide an overview of the tools and resources utilized in the
course of this research. Their inclusion serves to ensure transparency regarding
the methodologies and technologies employed, aligning with the principles of
the German Research Foundation’s (DFG) Code of Conduct for Good Research
Practice1.

D.1. Generative Tools and Websites

Tool Usage

ChatGPT

Generation of TikZ figures
Analysis and summarization of papers
Structuring
LaTeX troubleshooting
Text reformulation

GPT-API
Analysis and summarization of papers
Structuring of related work
Reformulation of papers

Grammarly Premium
Grammar analysis and correction
Text reformulation

DeepL Translation of text

Website Usage

SciSummary
Analysis of papers
Summarization of papers

Semantic Scholar Semantic search for papers
Google Scholar Search for papers
Thesaurus Search for synonyms
Overleaf Writing and compiling LaTeX documents
StackExchange Help with solving technical problems
Linguee Translation of words

1https://www.dfg.de/en/basics-topics/basics-and-principles-of-funding/
good-scientific-practice
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D. Tools and Resources

D.2. Copyright Notice

In reference to IEEE copyrighted material which is used with permission in this
thesis, the IEEE does not endorse any of Karlsruhe Institute of Technology’s
products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications_standards/publications/
rights/rights_link.html to learn how to obtain a License from RightsLink. If
applicable, University Microfilms and/or ProQuest Library, or the Archives of
Canada may supply single copies of the dissertation.
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Glossary

Large Language Model (LLM)
Familiy of neural networks that show great capabilities for generating text

Interpretable Data Format (IDF, Peller-Konrad et al., 2023)
data format of the cognitive memory architecture of ArmarX

Human-Robot Interaction (HRI)
the field of study concerning itself with the design of systems that facilitate
communication and collaboration between humans and robots

Virtual Reality (VR)
a computer-generated simulation of a three-dimensional environment that
can be interacted with in a seemingly real or physical way using special
electronic equipment

Grasp Wrench Space (GWS)
a mathematical representation of all possible forces and torques that can be
applied by a robotic gripper to an object

Inverse Kinematics (IK)
a computational method used to determine the joint angles needed to place
the end-effector of a robotic arm at a desired position and orientation in
space

Behavior Tree (BT)
a hierarchical model used to control the decision-making process of au-
tonomous agents by organizing actions and conditions in a tree structure

Robot Operating System (ROS, Quigley et al., 2009)
a flexible framework for writing robot software that provides tools and
libraries for building, simulating, and controlling robotic systems

Finite State Machine (FSM)
a computational model consisting of a finite number of states, transitions
between those states, and actions, used to design both computer programs
and sequential logic circuits

157



Glossary

Learning from Demonstration (LfD)
a technique in robotics where a system learns to perform tasks by observing
and mimicking human actions

Random Sample Consensus (RANSAC)
a robust statistical method used to estimate parameters of a mathematical
model from a subset of inliers within a dataset containing outliers

Probability Density Function (PDF)
a function that describes the likelihood of a continuous random variable
taking on a particular value within a given range

Kullback-Leibler (KL)
see DKL

Dynamic Movement Primitive (DMP)
a framework for encoding and reproducing complex motor behaviors in robots
through a combination of learned and adaptable movement patterns

Inertial Measurement Unit (IMU)
a device that measures and reports a body’s specific force, angular rate, and
sometimes the magnetic field surrounding the body, often used in navigation
and motion tracking systems

Markov Decision Process (MDP)
a mathematical framework used for modeling decision-making in situations
where outcomes are partly random and partly under the control of a decision-
maker

Contributor Role Taxonomy (CRediT, https://credit.niso.org/)
A standardized framework used to describe and acknowledge the various
roles and contributions of individuals in collaborative projects.

Affordance Template (AT, Hart et al., 2014)
Executive framework for mobile manipulation

Height Accumulated Features (HAF, Fischinger and Vincze, 2012)
visual feature based on a height map of unknown objects

Symmetry Height Accumulated Features (SHAF, Fischinger et al., 2013)
improved version of HAF

instantaneous Task Specification using Constraints (iTaSC, De Schutter
et al., 2007)

a method for defining robot tasks in real-time by applying specific constraints
to guide the robot’s actions and behaviors
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Layered Architecture for Autonomous Interactive Robots (LAAIR, Jiang
et al., 2018)

a design framework that organizes the control and decision-making processes
of autonomous robots into hierarchical layers, each responsible for different
levels of abstraction and functionality

Neural Network (NN)
a computational model inspired by the human brain, consisting of inter-
connected nodes (neurons) that process information in layers to recognize
patterns and make decisions

Deep Neural Network (DNN)
a type of artificial NN with multiple layers between the input and output
layers, enabling the modeling of complex patterns and representations in
data

Convolutional Neural Network (CNN)
a type of DNN designed to process and analyze visual data by using convo-
lutional layers to automatically and adaptively learn spatial hierarchies of
features from input images

Variational Auto-Encoder (VAE)
a type of generative model that learns to encode input data into a latent space
and then decodes it back to the original data distribution while incorporating
probabilistic elements

Conditional Variational Auto-Encoder (CVAE)
a type of neural network that combines VAE with conditional inputs to
generate data samples conditioned on specific attributes or labels

Mixture Density Network (MDN)
a neural network model that predicts the parameters of a mixture of proba-
bility distributions, allowing for the modeling of complex, multimodal output
distributions

Long-Short-Term Memory (LSTM)
a type of recurrent neural network architecture designed to effectively capture
and utilize long-range dependencies in sequential data through its unique
gating mechanisms

Multi-Layer Perceptron (MLP)
a type of NN composed of multiple layers of nodes, where each layer is
fully connected to the next one and used for tasks such as classification and
regression
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Gaussian Process Latent Variable Model (GP-LVM)
a probabilistic model that uses Gaussian processes to capture the underlying
structure of high-dimensional data by mapping it to a lower-dimensional
latent space

Pathways Language Model (PaLM, Chowdhery et al., 2023)
a LLM designed to understand and generate human language by leveraging
multiple pathways for processing information and improving efficiency and
accuracy

Retrieval-Augmented Generation (RAG, Lewis et al., 2020)
a technique that combines information retrieval with text generation in LLMs
to produce more accurate and contextually relevant responses by leveraging
external knowledge sources

Abstract Affordance Frame (AAF)
abstract coordinate frame, relative to the Darboux frame at any point on an
object’s surface, that is connected to an affordance in which actions can be
defined relative to the pose of the frame; equivalent to the Local Curvature
Frame of Pohl and Asfour (2022)

Oriented Bounding Box (OBB)
a bounding parallelepiped whose faces and edges are not parallel to the basis
vectors of the frame in which they’re defined.

Object-Oriented Bounding Box (OOBB)
a OBB that is oriented according to the object it bounds

Unscented Kalman Filter (UKF, Wan and Van Der Merwe, 2000)
an extension of the Kalman filter that works well for non-linear models

Hidden Markov Model (HMM)
a statistical model used to represent systems with hidden states, where
the system transitions between these states with certain probabilities and
generates observable outputs based on the current hidden state, see e. g.,
Rabiner (1990)

Continuous Density Hidden Markov Model (CDHMM)
a type of HMM that uses continuous probability density functions to model
the observation probabilities for each state

Point Cloud Library (PCL, Rusu and Cousins, 2011)
an open-source software framework designed for processing and analyzing 3D
point cloud data, enabling tasks such as filtering, feature estimation, surface
reconstruction, and object recognition
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Probabilistic Action Extraction and Fusion (PAEF, Pohl and Asfour, 2022)
probabilistic approach for the extraction of affordance-based manipulation
actions

Geometry-based Action Extraction (GAE, Pohl and Asfour, 2022)
surface patch-based action extraction

Generative Pre-trained Transformer (GPT)
type of LLM and a prominent example generative artificial intelligence
developed by OpenAI

Multi-feature Implicit Model (MIMO, Cai et al., 2024)
neural network for transferring points across intra-class object models

Neural Descriptor Field (NDF, Simeonov et al., 2022)
a representation technique that encodes spatial information using neural
networks to describe the geometry and appearance of 3D objects or scenes
as SE(3)-equivariant point and pose descriptors

Relational-Neural Descriptor Field (R-NDF, Simeonov et al., 2023)
a version of NDF that relaxes the limitation of one object being known
and fixed by manually selecting keypoints and associated local frames in
task-relevant regions

Neural Interaction Field and Template (NIFT, Huang et al., 2023)
a descriptive and robust interaction representation of object manipulations
to facilitate imitation learning leveraging the SCF

Space Coverage Feature (SCF, Zhao et al., 2016)
a descriptor of spatial relations between object surfaces that encodes the
geometry of the open space around objects

Gaussian Mixture Model (GMM)
a probabilistic model that represents a distribution of data points as a
combination of multiple Gaussian distributions, each with its own mean and
variance

Extended Space Coverage Feature (ESCF, Cai et al., 2024)
extended version of the SCF using coefficients of spherical harmonics expan-
sion across all orders and degrees

Closest Distance Direction (CDD, Cai et al., 2024)
novel feature improving the direction awareness of the MIMO

Basis Point Set (BPS, Prokudin et al., 2019)
a method for representing 3D shapes by a set of basis points
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Visual Imitation Learning (VIL)
a machine learning technique where robots learn to perform tasks by observing
and mimicking human actions through visual inputs

Karlsruhe Institute of Technology (KIT)
university of the city of Karlsruhe

Anthropomorphic Multi-Armed Robot (ARMAR, Asfour et al., 1999; Asfour
et al., 2017)

humanoid robot family developed at the KIT

Degree of Freedom (DoF)
a parameter that defines the number of independent movements or variables
a system or mechanism can have

Tool Center Point (TCP)
the specific point on a robotic tool or end-effector that is used as a reference
for positioning and orientation in a robotic system.

Via-point Movement Primitive (VMP, Zhou et al., 2019)
a form of DMP in which the motion can be diverted through via-points

Uncertainty-Aware Sensitivity Optimization (UASO, Baek et al., 2022)
probabilistic approach to improving grasp success rates through sensitivity
optimization of uncertainty-affected metrics

Memory-centered and Affordance-based Task Execution Framework for
Transferable Mobile Manipulation Skills (MAkEable, Pohl et al., 2024)

transferable Task Description and Execution Framework

Object Affordance Mapping (OAM)
mapping of affordances to class types of objects

Object Affordance Detection (OAD)
the process of detecting affordances in an image

Natural Language Processing (NLP)
a field of artificial intelligence that focuses on the interaction between com-
puters and humans through natural language.

Planning Domain Definition Language (PDDL)
a formal language used to specify the components and constraints of planning
problems in artificial intelligence

Conceptual Equivalence Class (CEC, Varadarajan and Vincze, 2011)
sets of objects that are interchangeable based on their functional affordances,
which refer to the potential actions that the objects can support
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Disjunctive Normal Form (DNF)
a standardization of a logical formula in Boolean algebra where the formula
is expressed as an OR of ANDs, with each AND term consisting of literals

Affordance Network (AfNet, Varadarajan and Vincze, 2013)
affordance-based framework for cognitive object recognition

Affordance Network Ontology for Robotics (AfRob, Varadarajan and Vincze,
2013)

extension of AfNet to domestic robotics

Recognition by Component Affordances (RBCA, Varadarajan, 2011)
extension of the Recognition by Component theory designed for the use with
affordances

Object Action Complex (OAC, Krüger et al., 2011)
formalized entities that represent and operationalize the interaction between
objects and actions, integrating prediction, execution, and learning to enable
cognitive systems to adapt and reason about their environment

tertiary sector
the segment of the economy that provides services rather than goods, includ-
ing industries such as healthcare and nursing, service and hospitality, and
domestic services

AutoGPT+P (Birr et al., 2024)
planning system using a LLM and an affordance-based scene representation
to solve planning tasks based on user-specified tasks in natural language

affordance (Gibson, 1966, 1979)
the possibility of an action on an object or environment based on various
properties such as shape, weight, stability etc. For example, a chair affords
sitting, but it does not afford rolling.

Local Curvature Frame
See AAF

Darboux frame
a moving orthonormal coordinate system along a curve on a surface, consisting
of the tangent vector to the curve, the normal vector to the surface, and the
binormal vector orthogonal to both. In the special case of the curve being
the principal curve of the surface, it consists of the normal vector and the
two Principal Curvature Directions.

Principal Curvature Direction
the direction along a surface at a given point where the curvature is either

163



Glossary

maximized or minimized, providing critical information about the surface’s
geometric properties

known object
an object whose properties, dimensions, and characteristics are fully identified
and understood within the context of a given robotic system or application

similar object
an object that shares common characteristics or features with another one
from a specific class of objects (e. g., cups, bottles, etc.), making them
comparable in certain aspects

unknown object
an object about which no specific prior information (like meshes, shapes,
weight, features, etc.) is known, sometimes not even that it is an object

statechart
a visual representation of a system’s states and the transitions between them,
often used to model the behavior of complex systems in software and robotics

Jacobian
a matrix of all first-order partial derivatives of a vector-valued function, used
to describe the rate of change of the function with respect to its variables

quadric
a hypersurface (of dimension D) in a (D+ 1)-dimensional space, and defined
as the zero set of an irreducible polynomial of degree two in D + 1 variables

recursive Bayesian estimation
a method for updating the probability estimate for a hypothesis as more
evidence or information becomes available, using Bayes’ theorem in a recursive
manner

L1 distance
a measure of the distance between two points in some space, calculated as
the sum of the absolute differences of their coordinates

visual perception (see e.g., Chapter 3, Kragic and Vincze, 2009)
the process by which an entity interprets visual information and stimuli from
the environment to form a coherent representation of the surroundings

proprioception
ability of a system to sense its own position, movement, and orientation in
space, allowing it to coordinate and control its actions accurately

three-tiered robot architecture (Bonasso, 1991; Firby, 1989)
a hierarchical software design paradigm for robots that separates functionality
into three distinct layers: Behavioral Control , Executive, and Planning
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Strategy (Gamma et al., 1993)
behavioral software design pattern that lets the program choose different
algorithms at runtime without changing the code that uses them by keeping
the algorithms separate and interchangeable

closed-world assumption
presumption that anything not explicitly known or stated within the system’s
knowledge base is considered false or does not exist

object detector
a system, network, or algorithm designed to identify and locate objects within
an image or video frame, usually returning the type object and its bounding
box

Prolog
a high-level programming language associated with artificial intelligence
and computational linguistics, known for its use of logic and rules to solve
problems through pattern matching and automated reasoning

representationalist (Şahin et al., 2007)
a view on Gibson’s theory of affordances

gibsonian (Chemero, 2003; Chemero and Turvey, 2007)
a view on Gibson’s theory of affordances

Fast Downward (Helmert, 2006)
a planning system that employs heuristic search techniques to solve automated
planning problems efficiently

ARMAR-6 (Asfour et al., 2019)
6th iteration of the ARMAR humanoid robot family; intended for the assis-
tance in maintenance tasks

ARMAR-III (Asfour et al., 2006)
3rd iteration of the ARMAR humanoid robot family; developed for real-world
applications in domestic environments

ARMAR-DE
newer, updated version of ARMAR-6 with stronger motors and 4-DoFs hands

ArmarX (Vahrenkamp et al., 2015)
robot software framework of the ARMAR humanoid robot family

end-effector
the component of a robotic arm designed to interact with the environment,
performing tasks such as gripping, welding, or sensing.
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long-term memory
a type of memory system responsible for storing information over extended
periods, allowing for the retention and retrieval of knowledge and experiences

working memory
a cognitive system responsible for temporarily holding and processing in-
formation necessary for complex tasks such as reasoning, learning, and
comprehension

prior knowledge
information or understanding that is already known before encountering new
data or experiences, often used to inform decision-making or analysis.

ChatGPT
A variant of the GPT model developed by OpenAI, designed for conversational
tasks.

LLM+P (Liu et al., 2023a)
A planning approach that integrates LLMs with classical planners to improve
planning capabilities

SayCan (Brohan et al., 2023c)
a task planning system that integrates language models with physical actions
to enable robots to understand and execute complex tasks based on natural
language instructions

procedural memory (see e.g., Peller-Konrad et al., 2023)
a type of long-term memory responsible for the storage and retrieval of motor
skills and actions

Robotic Transformer (Brohan et al., 2023a,b; O’Neill et al., 2024)
type of multi-modal foundational model trained on large datasets for robotic
mobile manipulation

Isaac Gym (Makoviychuk et al., 2021)
a high-performance robotics simulation environment developed by NVIDIA,
designed to facilitate large-scale training and testing of robotic systems using
GPU acceleration

adaptability
the ability of a robotic system to deal with changes in the circumstances or
requirements for task execution; one of the core capabilities of this thesis

versatility
the ability of a system or component to handle a wide range of tasks or
functions efficiently and effectively and adapt to changes in its environment
or conditions; one of the core capabilities of this thesis
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reliability
the likelihood that a robotic system will perform its required functions under
stated conditions for a specified period of time; one of the core capabilities
of this thesis
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Symbols

Name Symbol Description

Time step t a single instance in time, corresponding to e. g., a
specific image from a camera

Action
observation

A observation of a candidate for a mobile
manipulation action for a single time step
connected to all possible affordances at that point

Action
hypothesis

Ā spatio-temporally coherent state of a mobile
manipulation action, corresponding to multiple
fused action observations

Principal
curvatures

κ± the maximum and minimum values of the
curvature as expressed by the eigenvalues of the
shape operator at a given point of a surface

Principal
directions

λ± the directions of the minimum and maximum
principal curvatures tangential to the surface

Direction of
curvature

kλ± direction of curvature in Euclidean space

Affordance a see affordance
Surface normal n normal vector to a surface at a specific point
Covariance Σ a square matrix that summarizes the covariances

between multiple variables, with each element
indicating the degree to which two variables
change together

Position t coordinates in R3 representing the translation
from the origin

Position
covariance

Σt covariance of the position

Mean position t̄ mean value of the position
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Name Symbol Description

Orientation R specific direction or alignment of an object or
system in relation to a reference point or
coordinate system

Orientation
covariance

ΣR covariance of the orientation

Mean
orientation

R̄ mean value of the orientation

Pose T combined position and orientation
Pose covariance ΣT covariance of the pose
Mean pose T̄ mean value of the pose
Special
orthogonal
group

SO(3) group of all 3x3 orthogonal matrices with
determinant 1, representing rotations in
three-dimensional space

Special
euclidean group

SE(3) comprises all rigid body transformations in
three-dimensional space, combining rotations and
translations

Euclidean space R3 three-dimensional space of all ordered triples of
real numbers, representing points with three
coordinates

Lie group G a mathematical structure that combines elements
of group theory and differential geometry, where
the group’s elements form a smooth manifold,
and the group operations (multiplication and
inversion) are smooth functions

Manifold M a space that, around every point, looks like a flat,
Euclidean space (like a plane or
higher-dimensional equivalent) when viewed up
close, making it possible to use methods of
calculus within these small regions

PDF p a function that describes the likelihood of a
continuous random variable taking on a
particular value within a given range

Correspondence C binary random variable representing whether or
not two poses correspond to each other
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Name Symbol Description

Correspondence
likelihood

p(C|R, t) likelihood that the observed action A at position
t and orientation R corresponds to the
hypothesis Ā

Existence
certainty

paE the likelihood that an action observation exists
at its associated pose after multiple
temporally-distinct observations

Point Y point on a Lie group
Mean point Ȳ average of points on a Lie group
Point covariance ΣY covariance of the mean points on a Lie group
Tangent space TȲM tangent space of a manifold at the mean point Ȳ
Tangent τ vector in the tangent space of a Lie group G
First
fundamental
form

I captures the inner product of tangent vectors,
providing information on metric properties like
lengths and angles of a parametric surface

Second
fundamental
form

II describes the curvature of a parametric surface,
describing how it bends by incorporating the
derivative of the unit normal vector

Second
fundamental
form coefficients

L, M, N coefficients of the second fundamental form

First
fundamental
form coefficients

E, F, G coefficients of the first fundamental form

Parametric
surface

r two dimensional parametric surface in 3D space

Gaussian
curvature

K a measure of the intrinsic curvature of a surface
at a point, calculated as the product of the
principal curvatures at that point

Supervoxel V a cluster of points with similar properties in a
point cloud

Color c a vector of the RGB color values of a point
Existing state S1 initial state of the HMM, representing that the

Ā exists
Non-exisiting
state

S2 state of the HMM, representing that the Ā does
not exists

HMM state λ state of the HMM
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Name Symbol Description

State transition
probabilities

A state transition probability matrix, representing
the probabilities of transitioning from one state
to another in the HMM

Observation
probabilities

B observation probability matrix, which defines the
probability of observing a particular output given
a specific state

Initial state
probabilities

π initial state probability vector, indicating the
probabilities of starting in each possible state
when the process begins

Identity
transition

a11 probability of transitioning from state S1 to S1,
i. e., staying in the same state

True positive
observation

b22 probability of observing the second type of
observation given that the system is in S2

Point cloud P perceived point cloud of an object, as seen from
a single view

Point cloud of
object A

PA point cloud of object A

Reconstructed
point cloud of
object A

Pr
A reconstructed point cloud of object A

Canonical point
cloud

Pc
S canonical point cloud of source object

Observed point
cloud

Po
S observed point cloud of source object

Demonstrated
point cloud

Pd
S point cloud from human demonstration of a task

in a VIL setup
Point x single point in a point cloud P

Point set X set of points x in a point cloud P

Point descriptor z point descriptor to measure geometric similarity
obtained from the activation layers of the
partly-shared decoder for ESCF and CDD

Pose descriptor Z concatenation of the point descriptors of a set of
points around an object
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Name Symbol Description

Pose descriptor
of object B with
respect to
object A

AZB pose descriptor encoding the pose T of OB with
respect to the point cloud of object A PA

Reference pose
descriptor

AẐB reference pose descriptor of object B with respect
to object A obtained from e. g., VIL

Vector Neurons-
PointNet
encoder

ϵ(P) shared encoder of MIMO

Arbitrary pose A experimental setting where the objects are
initially in an arbitrary pose in the air

Upright pose U experimental setting where the objects are
initially in an upright pose on a table

MIMO4 MIMO4 complete version of MIMO, using all feature
branches

MIMO4- MIMO4− version of MIMO, using all feature branches but
no shape completion

MIMO3 MIMO3 version of MIMO, with three branches in the
decoder to predict occupancy, signed distance,
and SCF separately

Demonstrated
grasp pose

Td
g pose of the grasp demonstrated by a human in a

VIL setup
Set of
task-agnostic
grasp poses

{Ta
g } set of task-agnostic grasp candidates generated

on the canonical point cloud

Set of
task-relevant
grasp poses

{Tr
g } set of task-relevant grasp candidates generated

by MIMO for the source object

Set of successful
task-relevant
grasp poses

{ T̄r
g } set of task-relevant grasp candidates that were

executed successfully in simulation

Sampled grasp
pose

T̂g sampled grasp candidates generated by the
GMM trained in simulation for the source object

Optimized grasp
pose

T∗
g grasp pose that has been optimized using the

grasp evaluation network
Grasp pose Tg end-effector pose of a grasp candidate
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Symbols

Name Symbol Description

Transferred
grasp pose

T̃g the sampled grasp pose after being transferred to
the observed point cloud Po

S

Success
probability

pS(T̃g) success probability of a transferred grasp pose T̃g

Object A OA object space for class A
Object B OB object space for class B
Source object OS source object, i. e., the object being grasped
Target object OT target object, i. e., the object that sets a

reference frame for placing the source object OS

Grasping time
step

tg time step of the video demonstration where the
source object OS is grasped

Last time step tT last time step of the video demonstration
Occupancy
features

Φocc output features of the occupancy feature branch
of MIMO

Occupancy
features

Φescf output features of the ESCF feature branch of
MIMO

Occupancy
features

Φsdf output features of the signed distance feature
branch of MIMO

Occupancy
features

Φcdd output features of the CDD feature branch of
MIMO

KL divergence DKL a measure of how one probability distribution
diverges from a second, expected probability
distribution

Grasp score z A scalar value used to select the most likely
successful grasp

Grasp g An attempt by a robotic system to hold or
manipulate an object

Grasp metric m A specific measure used to evaluate the quality of
a grasp

Mean value of a
grasp metric

µ average value of a specific grasp metric

Standard
deviation of a
grasp metric

σ measure of the amount of variation or dispersion
of a grasp metric

Successful grasp gs A grasp that successfully holds or manipulates
an object
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Name Symbol Description

Failed grasp gf A grasp that fails to hold or manipulate an
object

Success rate rs The ratio of successful grasps to the total
number of executed grasps

Total number of
executed grasps

gtot The total number of grasps attempted by the
robotic system

Global
weighting factor

f glob global score for a grasp metric obtained from the
KL divergence of the successful and failed grasp
attempts

Local weighting
factor

f loc local score for a grasp metric representing the
likelihood of belonging to the set of successful
grasps

Total weighting
factor

f tot the combined score consisting of global weighting
factor and local weighting factor for a grasp

Functional
model

y A model used to derive the ranking score for
grasp selection

Manipulability a grasp metric representing extended
manipulability score

Support relation s grasp metric representing probabilistic support
relations

Distance to
center

d grasp metric representing the distance of a grasp
candidate from the center of a point cloud
segment

Height h grasp metric representing the height of a grasp
candidate

Action
hypothesis

ActionHypothesis a class that represents a hypothesis of an action

Action type ActionType a class that represents the type of an action
End-effector
trajectory

EndEffectorTraj a class that represents a finger-TCP-trajectory of
the end-effector

Affordance Affordance a class that represents an affordance
Executable
action

ExecutableAction a class that represents an action that has all
necessary information to be executed

Unimanual
action

Unimanual a class that contains all necessary information for
a single end-effector
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Symbols

Name Symbol Description

Executed action ExecutedAction a class that contains all information from an
execution of an ExecutableAction

Date DateTime a class representing some point in time
Framed pose FramedPose a pose that is connected to a certain frame or

coordinate system
Handedness Handedness a class that represents the handedness (e. g., left

or right) of an end-effector
End-effector
state

EndEffectorState a class that represents the state of the
end-effector at certain point of execution

Execution pose execEES a class member that represents the pose of the
end-effector at the start of the execution of an
ExecutableAction

Pre-pose preEES a class member that represents a safe pose before
the execEES

Retract pose retractEES a class member that represents a safe pose after
an ExecutableAction has been executed

Approach info ApproachInfo a class representing additional information about
the approach direction

Object info ObjectInfo a class representing additional information about
the target object

Planning info PlanningInfo a class representing additional information that
influences planning trajectories (arm or platform)

Robot
description

RobotDescription a class representing a description of the robot
used

Scene S an observation of the environment through visual
perception

Set of scenes S set of all possibly observable scenes
Object relations R an observation of object relations in the current

scene
Set of object
relations

RS set of all possible object relations in the scene

Space of natural
language

Λ space of all possible instructions in natural
language

User-specified
task

λ task description in natural language
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Name Symbol Description

Explorable
locations

L explorable locations in a scene

Set of all
explorable
locations

L set of all possible explorable locations in a scene

Location l specific location in a scene
Plan P sequence of actions needed to fulfill a task
Action α executed capability by an agent

Actions A specification of the possible operations that can
change the state of the world, including the
conditions under which these operations can be
performed (preconditions) and the effects that
result from performing them

Set of
capabilities

Cζ set of all possible actions that an agent could
execute

Capability c ability of an agent to perform an action in a scene
Agent ζ actor in a plan
Argument ρ parameter for a capability of an agent
Image I image of a scene at a specific location
Object-
affordance pair

p mapping of an object to its affordances

Object type o type of an object
Set of object
types

O set of all possible object types

Object instance
number

k instance number of an object

Natural
numbers

N0 set of natural numbers including 0

Set of
affordances

A set of all possible affordances

Goal state Ω goal state of the PDDL problem
Domain ∆ domain of the PDDL problem
Initial state Γ initial state of the PDDL problem
Problem Ξ state description of the PDDL problem
Objects Ψ set of objects that are in the scene
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Name Symbol Description

Predicate Υ set of predicates of the PDDL problem, i. e.,
logical statements that describe the properties or
relations between objects in the domain

Type Θ categories or classifications of objects that can
exist in the domain, allowing for the organization
and specification of different objects that actions
can interact with

GPT-4 GPT -4 4th iteration of the GPT architecture; version
GPT-4-0613 was used for experiments in this
thesis

GPT-3 GPT -3 3rd iteration of the GPT architecture; version
GPT-3.5-turbo-0613 was used for experiments
in this thesis
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