
H. Giese, K. Rosenthal (Hrsg.): Modellierung 2024 Satellite Events,
Digital Library, Gesellschaft für Informatik e.V., 2024 1

Modeling meets Large Language Models

Martin Forell 1 and Selina Schüler 1

Abstract:

Modeling business processes is often challenging due to its complexity and potential for errors.
One key issue arises when process experts and modelers are different individuals, which can lead
to communication gaps and result in low-quality business process models. Recognizing this, our
paper prioritizes the initial phase of modeling in Business Process Management (BPM). We propose
a method that leverages Large Language Models (LLMs) to efficiently transform written business
process descriptions into comprehensive graphical models. This approach offers a standardized and
streamlined procedure to enhance the quality and effectiveness of business process modeling. While
we focus on Petri nets as a primary example, our approach is adaptable to other graphical modeling
languages. We present a novel method involving a series of LLMs to extract essential data, setting the
stage for creating various graphical models. This technique aims to generate initial drafts that can
be further refined, and its sequential application allows for adaptability to different modeling tools,
including but not limited to the Horus Business Modeler.

Keywords: Large Language Model, Automatic Business Process Model Generation, Petri nets

1 Introduction

The rapid advancements in Natural Language Processing (NLP), especially in the domain
of Large Language Models (LLMs) have opened new opportunities in various fields,
including Business Process Management (BPM). Initial experiments, like those documented
in [FFK23], have showcased the capabilities of tools such as OpenAI’s ChatGPT [Op22] in
creating specific process models from given prompts. This paper delves into the deployment
of LLMs across the business process lifecycle, emphasizing their dynamic nature and
adaptability.
The structure of this paper is as follows: Sect. 2 motivates the use of LLMs in BPM. Sect. 3
provides an introduction to NLP, focusing on the concept of prompt engineering and LLMs.
In Sect. 4, we present the methodological framework adopted in this paper for incorporating
LLMs into business process modeling, including a detailed discussion of the implementation
and evaluation of this approach. Finally, Sect. 5 concludes the paper, offering insights into
future research directions and potential improvements to our implementation.

1 Karlsruhe Institute of Technology (KIT), Institute of Applied Informatics and Formal Description Methods
(AIFB), Kaiserstr. 89, 76133 Karlsruhe, Germany,
martin.forell@kit.edu, https://orcid.org/0000-0003-4512-6144;
selina.schueler@kit.edu, https://orcid.org/0000-0003-3498-9382
This work is licensed under Creative Commons Attribution 4.0 International License http://creativecommons.
org/licenses/by/4.0/, https://doi.org/10.18420/modellierung2024-ws-003

https://orcid.org/0000-0003-4512-6144
https://orcid.org/0000-0003-3498-9382
mailto:martin.forell@kit.edu
https://orcid.org/0000-0003-4512-6144
https://orcid.org/0000-0003-4512-6144
mailto:selina.schueler@kit.edu
https://orcid.org/0000-0003-3498-9382
https://orcid.org/0000-0003-3498-9382
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/110.18420/modellierung2024-ws-003

Modeling meets Large Language Models 2

2 Business Process Management including Large Language Models

The business process lifecycle, as illustrated in Fig. 1, consists of phases that are interrelated.
The phases are arranged in a cyclical configuration, effectively highlighting their logical
interdependencies. These dependencies do not imply a strict temporal order in which the
phases need to be executed [We19].

Fig. 1: Business process lifecycle [We19]

Various approaches have been proposed in research and practice to partially or fully
automate the creation of business process models. [SA24] conducted a systematic literature
review (SLR) on automatic generation of business process models or [De18] and [Ma19]
specially for NLP in business process modeling. The SLRs demonstrate that there are
different approaches for the automatic generation of business process models, which differ
in terms of input data, generation methods and modeling languages used. Despite active
research in the field of automatic model generation, there is still considerable potential
for improvement. New technologies are constantly being developed to support automatic
model generation. LLMs offer a solution whereby users can input data like textual process
descriptions, transforming them into process models [FFK23]. Prospects for the future
include extending this capability to handle a broader range of data beyond mere process
descriptions. Therefore, LLMs provide valuable support by establishing a solid starting
point for further process exploration based on user-provided data. Once the design phase is
completed, the business process model can be analyzed and improved. Various approaches
have been developed to enhance the quality of these models by evaluating their syntactic,
semantic, and pragmatic aspects, as discussed in [Co18]. In addition, alternative models are
created based on the model to find more efficient ways to accomplish certain tasks [TM19].
LLMs could facilitate this by allowing users to ask questions in natural language, to which
a possible answer is calculated based on the available data. The LLM then provides the
most probable response, even in instances where it may not precisely align with the posed
question. By uploading the initial process model along with other reference models or
guidelines for effective modeling, users can obtain suggestions for model adaptation. For
instance, if activities are independent, suggesting concurrency becomes possible.
In order to include all phases in the analysis for the inclusion of LLMs in BPM, the
business process must be implemented in the configuration phase after the business
process model has been designed and analyzed [We19]. In this phase, to facilitate the
integration of Artificial Intelligence (AI), there are methodologies available for explicitly

Martin Forell and Selina Schüler 3

modeling business processes that incorporate AI. [Ta24] present a comprehensive tool
concept for the step-by-step support of explicit modeling the integration of Machine
Learning (ML) applications in business processes modeled with Business Process Model
and Notation (BPMN), so that actual process models without ML can easily be extended
to process models with ML. More formal modeling of ML cases allows more options for
analyzing and using (e.g., executing) models. If the process becomes operational, LLMs
can continue to support process participants by answering questions based on the process
model or additional provided data. For instance, users might inquire about the consequences
of an incorrect invoice, and the LLM provides the most probable answer, which can be
annotated in the model. The implementation phase of BPM is followed by the evaluation
phase. LLMs can contribute to process improvement by using real process data in a similar
way to the introductory analysis stage. However, their effectiveness depends on the quality
of the underlying data.

3 Natural Language Processing

Natural Language Processing (NLP) is a subfield of AI and ML that focuses on enabling
computers to understand, interpret and generate human language, using techniques from
computer science and computational linguistics [Kh23; Zh23]. This domain has experienced
substantial growth over the past few years, largely driven by progress in ML [Ba22; Ka20;
Op23; Ou22; Va17]. According to [Li21], applications in NLP can be categorized into
five types, each encompassing various tasks such as sentiment analysis, natural language
inference, named entity recognition, or text summarization. However, for this paper, only
the task of text generation is relevant.

3.1 Large Language Models

Advancements in NLP have led to the emergence of LLMs as cutting-edge AI systems,
renowned for their coherent text processing and generalization capabilities across multiple
tasks [Ar22; Ra18]. These sophisticated generative models statistically represent the
distribution of tokens, including whole words, word fragments, individual characters, and
punctuation marks, in extensive human-generated text corpora [Sh23]. Central to the
effectiveness of these LLMs is the Transformer architecture, an influential neural network
design that has become a staple in modern NLP tasks [Va17; Zh23].
First introduced by Google Brain in 2017, the Transformer architecture [Va17] marked
a significant milestone in NLP, particularly in translation tasks. Unlike its predecessors,
the Transformer architecture offers a more structured memory system, better handling the
long-term dependencies typical in natural text sequences [Va17]. A critical innovation within
the Transformer architecture is the Multi-head Self-attention layer [Va17]. This layer enables
the model to concurrently process information from various representation subspaces at
different points in the architecture, a feature articulated by [Va17]. The architecture’s design,

Modeling meets Large Language Models 4

characterized by shorter internal signal paths, facilitates more effective learning of long-term
dependencies in text. This, in turn, allows for a deeper understanding of the semantics
of natural language, as further discussed by [Zh23]. Consequently, today’s cutting-edge
Transformer-based models, including GPT-4 [Op23] and ChatGPT [Op22], all stem from
the foundational principles of the Transformer architecture, albeit with specific architectural
enhancements. These models not only embody the original strengths of the Transformer
design but also demonstrate its versatility and ongoing evolution in the rapidly advancing
field of NLP.

3.2 Prompt Engineering

LLMs generate outputs through inputs in natural language, termed prompts, which essentially
act as directives to elicit specific responses from LLMs [Wa23]. This technique, known as
prompting, encapsulates the user’s intent in a query, thereby guiding the LLM to produce
the expected outcome by establishing specific parameters and instructions [Wa23]. An
illustrative example of prompt engineering in action is shown in Example: Prompt 1. Based
on [Wa23], this example demonstrates how the LLM engages in a focused dialogue, asking
specific questions about a business process description. The LLM persists in this interactive
process until it has collected enough information to effectively model a Petri net. This case
highlights the LLM’s ability to proactively seek out context-relevant information, showcasing
the versatility and expanded capabilities of prompt-based programming. Moving beyond
basic tasks like "generate a method that does X"or straightforward question-answering,
this example underscores the sophisticated application possibilities of prompt engineering
[Wa23].

Example: Prompt 1
Please review the business process description I have provided
and ask me clarifying questions to better understand it. Once you
have gathered sufficient information, identify and extract the key
components necessary for modeling this as a Petri net.

Upon extracting the necessary data for a specific task, like generating business process
models, one methodology is OpenAI’s function calling feature [AJL23]. These advancements
enable the LLM to generate JSON objects specific to certain functions, enhancing the
integration between the capabilities of LLMs such as GPT-4 and various external tools or
Application Programming Interfaces (APIs) [AJL23].
An example to demonstrate the function calling feature can be found in Listing 1, which
presents the schema for a Petri net in JSON format. This schema defines the basic structure
of data for a Petri net, focusing on essential components such as places, transitions, and
edges. It simplifies the representation by treating places and transitions as arrays of strings,
where each string represents a unique identifier for a place or transition. The edges are
defined as objects, specifying connections with a from and a to property, both of which
are strings. This structure captures the fundamental relationships within a Petri net without

Martin Forell and Selina Schüler 5

delving into detailed attributes like marking conditions or weights. The schema ensures that
any JSON data conforming to it must include these key elements.

1 {"$schema": "http://json-schema.org/draft-07/schema#",
2 "type": "object",
3 "properties": {
4 "places": {
5 "type": "array",
6 "items": {"type": "string"}},
7 "transitions": {
8 "type": "array",
9 "items": {"type": "string"}},

10 "edges": {
11 "type": "array",
12 "items": {
13 "type": "object",
14 "properties": {
15 "from": {"type": "string"},
16 "to": {"type": "string"}},
17 "required": ["from", "to"]}}},
18 "required": ["places", "transitions", "edges"]}

List. 1: JSON Schema Example Illustrating the Structure for a Petri net.

This JSON Schema, when combined with a LLM like OpenAI’s GPT-4-0125-preview and
provided with a prompt, such as shown in Example: Prompt 2, can be utilized to generate
structured output in the form of JSON, demonstrating the practical application of this
schema.

Example: Prompt 2
A Petri net modeling a simple decision process with two possible
outcomes and a single decision point.

Listing 2 exemplifies a JSON instance that conforms to the previously defined Petri net
schema and is generated by using the mentioned prompt. It illustrates how a simple decision
process within a Petri net is represented in JSON, adhering to the schema’s structural
constraints. This example serves as a clear demonstration of the LLM’s capability to interpret
prompts and generate structured, schema-compliant data.

1 {"places": [
2 "Start",
3 "Outcome1",
4 "Outcome2"],
5 "transitions": [
6 "DecisionPoint"],
7 "edges": [
8 {"from": "Start", "to": "DecisionPoint"},
9 {"from": "DecisionPoint", "to": "Outcome1"},

10 {"from": "DecisionPoint", "to": "Outcome2"}]}

List. 2: JSON Representation of a Petri net. Generated by using OpenAI’s Functions Feature.

Modeling meets Large Language Models 6

4 Framework, Implementation and Evaluation

This section outlines our methodological framework, details the implementation of our
prototype, and presents a thorough evaluation of its performance. We introduce an approach
leveraging LLMs for business process modeling, focusing on the strategic use of prompt
engineering and function calling.

4.1 Framework empowering Large Language Models for business process modeling

In this paper, we introduce a business process model generation approach using LLMs,
prompt engineering and the utilization of function calling capabilities. The approach involves
utilizing instructional prompts, which clearly define the main task for the LLM for the
extraction of relevant business process information (1), provide explicit guidelines for
specific modeling languages to generate a business process model based on the extracted
information (2) and define a format that is compatible with modeling tools to transform
the model into a specific export format (3). Lastly, the generated output is checked against
defined model properties (4). These steps are outlined in Fig. 2.

Fig. 2: Business process model generation approach using LLM.

As we focus on generating models from business process descriptions, the LLM might
be instructed to actively query the document provided. This procedure grants the LLM a
preliminary understanding of the business process in question. A business process is a set of
manual, semi-automated or automated activities that are executed in a company according
to specific rules, towards a specific goal [Ob96]. In particular, business process models
depict the temporal-logical sequence of activities [Fo10]. The temporal-logical sequential
conditions of activities result from the relationships between the activities within a process.
These relationships can be causal conditions or organizational specifications. Two activities
that are causally related must take place in a certain order. Causal relationships between
the activities of a process can be given, for example, by the flow of documents, forms, files
(folders) or process folders. Activities can also be mutually exclusive within a process - e.g.
if they use the same resource. Finally, activities can also take place causally independently
of each other ("concurrently") [Ob96]. In order to generate a business process model,
the information on the activities and their interrelationships must be extracted. Therefore,
the prompt should include that the following information is explicitly requested in the
process description: States of the process, activities of the process, relationships between
the activities such as sequences, cycles, concurrency and alternatives.

Martin Forell and Selina Schüler 7

The next step is to transform this information into a model in a specific modeling language.
Therefore, the prompt should describe the selected modeling language. This includes the
definition of the modeling language and the specification of how the extracted information
is mapped in a model in the respective modeling language. As we are focusing on Petri
nets in this work, these are defined as a bipartite graph consisting of places, transitions
and edges. In addition, the prompt must define how sequences, cycles, concurrency and
alternatives are mapped in a Petri net. For example, concurrent paths are represented by
splits at transitions and alternative paths by splits at places.
An external tool can be used to display a model graphically. Therefore, in this approach,
the generated model is transformed into a defined exchange format. To do this, it must be
specified in the prompt how the identified nodes and edges of the model are described in
the desired exchange format.
In order to improve the model quality, properties can also be formulated in the prompt that
should be checked and adapted if necessary. These include, for example, that source and
sink node of the Petri net should be places (where the marking with a token indicates start
and end state of the process).

4.2 Implementation for Petri nets

Our methodology for enhancing LLMs in business process modeling is realized through
a two-phase software prototype, as illustrated in Figure 3. The initial phase, named Pre-
Processing, encompasses the analysis and organization of the business process description.
Subsequently, the prototype transitions to the Processing phase, wherein the Petri net is
constructed. The full set of prompts is available at https://github.com/KIT-BIS/bpm-tool.

Fig. 3: Overview of the Prototype’s Architecture.

Phase 1: In the initial Pre-Processing phase an instruction prompt is provided to the LLM.
This phase plays a crucial role in the interpretation and organization of the input. As
illustrated in Fig. 4, the instruction prompt consists of four distinct parts and includes the
description of the business process as input for the analysis. This clear direction ensures that
the model understands its intended purpose. First, the objective is delineated, providing a

https://github.com/KIT-BIS/bpm-tool

Modeling meets Large Language Models 8

Fig. 4: Sections of the Instruction Prompt:
Pre-Processing

Fig. 5: Sections of the Instruction Prompt:
Processing

foundational understanding necessary for the task. This objective directs the attention of the
LLM toward its designated task and establishes a baseline understanding. Subsequently, a
comprehensive and clear definition of a Petri net is presented as background information for
the LLM. This should encompass an explanation of our understanding of a Petri net. After
defining the objective and background, the description of procedure outlines the procedural
steps involved in the analysis of the given input. It includes concurrency detection, title
determination, place and transition identification, edge analysis, examination of network
characteristics, and adherence to additional constraints. Each step is described in detail,
emphasizing the importance of recognizing patterns, naming elements, and ensuring strong
connectivity of the Petri net. The final segment of the instruction prompt specifies the
output format and provides some valid and invalid examples to the LLM. It details how
concurrency detections, places, transitions, and edges should be documented and formatted.

Phase 2: In the Processing phase, the LLM interprets the output from the Pre-Processing
phase. Its goal is to transform this output into a format compatible with various modeling
tools. By adapting the prescribed output JSON schema, our approach can be flexible and
used for different tools. We demonstrate its application using the Horus Business Modeler
[Ho23] and the JSON-Nets Editor [FFS23], with a focus on Petri net visualization. An
established JSON Schema, detailing the required input format for the modeling tool, is
combined with the output from Phase 1 and supplemented by an instructional prompt.
This prompt, as shown in Fig. 5, outlines the transformation objectives and the steps
necessary for constructing the Petri net. It also includes guidance on visualizing the Petri
net, instructing the LLM on the placement of elements to ensure clarity and coherence in the
final model. Our implementation accommodates the use of various LLMs, such as OpenAI’s
GPT-3.5-turbo, GPT-3.5-turbo-1106, GPT-4, and GPT-4-0125-preview. Additionally, we
tested different open-source LLMs such as Mistral 7B Instruct [AI23a] and Mixtral 8x7B
Instruct [AI23b]. For the purposes of this paper, we utilized GPT-4 and GPT-4-0125-preview,
as they demonstrated the best performance in our tasks. The selection of these models was

Martin Forell and Selina Schüler 9

based on their enhanced capabilities in accurately interpreting and processing business
process information, crucial for the effective construction and visualization of Petri nets.

4.3 Evaluation

In this section, we assess the efficacy and accuracy of our implementation in generating
Petri nets from textual descriptions of business processes. The aim is to critically analyze
the system’s ability to accurately interpret the process information, manage concurrency
and decision points, and translate these into coherent Petri nets. We focus on the syntactic
correctness (ensure it adheres to the defined syntax rules and standards), semantic correctness
(accurate identification of process elements and relationships) and pragmatic correctness
(usability and visual coherence of the generated models) of the outputs.

Evaluation strategy
Our evaluation strategy involves testing the system with a series of examples, each repre-
senting a different complexity level and structure of the business process description.

Process Description: Example 1

The process begins with a customer visiting the online bookstore,
place is called ’Bookstore visited’. The customer places an order
for a book. The order now is in the ’Order Received’ place. The
bookstore staff receives the order. The ’Process Order’ transition
is triggered, where they verify the order details, locate the book
in their inventory, package it, and prepare it for dispatch. The
process moves the order from ’Order Received’ to an intermediate
state indicating that the order is being processed. Once the order
is ready for dispatch, the ’Dispatch Order’ transition is activated.
This transition represents the act of handing the package over
to the delivery service. The order status now moves to the ’Order
Dispatched’ place. The customer is notified that the order has been
dispatched, completing the process.

Example 1 should represent a sequential process with clearly defined stages, making it an
ideal case to test the basic capabilities of our system to capture sequential process flows.
The evaluation focuses on the system’s ability to correctly identify and sequence the stages,
as well as the transitions between these stages. Therefore, Example 1 represents a standard
online bookstore process, beginning with a customer visit and ending with the dispatch of
an order.

Modeling meets Large Language Models 10

Process Description: Example 2

A customer visits the online bookstore and places an order for a
book. The bookstore staff receives the order. The order is being
processed and the bookstore staff verifies the order details,
locates the book in their inventory, packages it, and prepares
it for dispatch. Once the order is ready for dispatch, the package is
handed over to the delivery service. The customer is notified that
their order has been dispatched, completing the process.

Example 2 presents a condensed version of the bookstore process of Example 1. It challenges
the system’s ability to handle a more compressed narrative and infer the underlying process
structure. The key aspects of evaluation here are the system’s proficiency in extrapolating
the necessary stages from a less detailed description and its effectiveness in maintaining the
logical flow of the process.

Process Description: Example 3

A customer places an order for a book on the online bookstore. The
order is received. During the processing of the order, the order
details are verified and the stock availability is checked. If the
book is in stock, the order is processed. If not, the customer is
informed about the delay and options for backorder or substitution.

Example 3 is intended to introduce complexity in the form of conditional processing by
providing alternative paths in the process description. It tests the system’s capability to
handle branching scenarios and decision-making processes. The evaluation focuses on how
well the system identifies and represents these decision points, particularly the handling of
the ’in stock’ versus ’out of stock’ scenarios, and their impact on the overall process flow in
the Petri net.

Evaluation results
Fig. 6a displays the Petri net generated from the online bookstore process described
in Example 1. The implementation effectively identified and sequenced key stages like
Bookstore Visited, Order Received, Order Processed, and Order Dispatched, along with
their corresponding transitions. The Petri net correctly reflects the process’s sequential flow,
indicating a strong semantic understanding of the described procedure. Syntactically, the net
adheres to standard Petri net conventions, with logical connections and a coherent structure,
making it easy to interpret.

Fig. 6b illustrates the Petri net generated from the process description in Example 2. The
system generated a syntactically correct Petri net. The net adheres to the conventional
structure of Petri nets with places and transitions logically connected. This outcome confirms
the system’s capability to structure process information into a Petri net, even when the input
is less explicit. Notably, the model generated is more complex compared to the first example.
This complexity stems from the system’s attempt to infer process stages and transitions
from a narrative that lacks explicit details. This observation underscores the importance of
detailed process descriptions for generating simpler and more accurate Petri nets. Despite

Martin Forell and Selina Schüler 11

(a) Example 1

(b) Example 2

(c) Example 3

Fig. 6: Generated Petri nets for the given examples.

its syntactical correctness, the model reveals areas needing semantic improvement. A
prominent instance is the premature introduction of a place labeled Order placed before the
transition place order, indicating a misinterpretation of the process sequence. Additionally
the transition Process Order could be represented by three individual transitions (verify
order; locate book, pack order). This issue points to a limitation in the system’s ability to
accurately infer and sequence events from a brief narrative.

Fig. 6c illustrates the Petri net generated from the process described in Example 3.
The net adheres to the conventional structure of Petri nets, with places and transitions
logically connected. The model managed to identify a AND-Split, but did not generate it
completely correct. Despite its syntactical correctness, the model reveals areas needing
semantic improvement. The complete collection of images pertaining to Examples 1,
2, and 3, which have been generated based on the JSON-Nets Editor’s JSON-Schema
and imported into the JSON-Nets Editor, can be accessed at the following URL: https:
//github.com/KIT-BIS/bpm-tool.

https://github.com/KIT-BIS/bpm-tool
https://github.com/KIT-BIS/bpm-tool

Modeling meets Large Language Models 12

(a) Generated Petri net: Run 1 (b) Generated Petri net: Run 2

(c) Generated Petri net: Run 3 (d) Generated Petri net: Run 4

Fig. 7: Overview of different generated Petri nets for different runs for Process Description: Example 3

The evaluation of the three examples provides valuable insights into the capabilities and
limitations of our system in generating Petri nets from textual descriptions of business
processes. Across the examples, the system demonstrated the ability to produce Petri
nets that are syntactically correct. If there is a clear process description, the net is also
semantically correct. The naming conventions that transitions that represent activities are
actively named (e.g. place order) and places that represent states are passively named
(e.g. order placed) were adhered to. This affirms the system’s proficiency in accurately
interpreting and structuring process information into coherent Petri net models. However, the
evaluation also highlighted that achieving deterministic output continues to be a challenge
with LLMs. This characteristic was evident in the system’s tendency to produce different
solutions upon each execution. Fig. 7 illustrates this, showcasing four varied solutions from
four separate runs. Such variability, while indicative of the flexible and adaptive nature of
LLMs, also poses challenges in ensuring consistent output, which is crucial for reliable
process modeling. The multiple runs also show that it is particularly difficult to model
concurrency or alternatives and to merge them semantically correctly.

5 Outlook

In this paper, we introduced a business process model generation approach using LLMs,
prompt engineering and the utilization of function calling capabilities. Firstly, the approach
involves the use of instructional prompts, which clearly define the main task for the LLM.
Secondly, the approach entails providing clear directives tailored to specific modeling

Martin Forell and Selina Schüler 13

languages. Thirdly, the approach includes defining a format that is seamlessly compatible
with modeling tools. Lastly, the approach includes defining model properties which should
be checked. The procedural steps of this approach are shown in Figure 2.
We acknowledge the challenges faced by the current system, particularly when dealing with
intricate process structures that involve branching and parallelism. The system’s limitations
were most evident when it came to generating accurate representations of XOR-Splits/XOR-
Joins and AND-Splits/AND-Joins, with occasional misinterpretations leading to potential
inaccuracies in the resulting Petri nets.
In the future, we aim to implement several enhancements to our method and software tool,
particularly focusing on refining the conversion of textual business process descriptions into
Petri nets. Our primary objectives will be to develop sophisticated techniques for managing
complex structures and to improve the consistency of the outputs. These improvements are
crucial for boosting the overall performance and usefulness of the system.
Moreover, future iterations should expand the scope of testing to encompass additional
modeling languages, such as BPMN and extending compatibility to other modeling tools
beyond the Horus Business Modeler. Developing a specifically fine-tuned model could
improve the recognition of specific modeling languages, thereby enhancing the quality
of outputs. Incorporating human feedback could also significantly refine the information
extraction process. By enabling a collaborative interaction where either the LLM or the user
can pose clarifying questions or request refinements, we can move toward a more robust
and interactive system that leverages the strengths of both AI and human intelligence for
better business process modeling.

References

[AI23a] AI, M.: Mistral 7B, en-us, Section: news, 2023, url: https://mistral.ai/news/
announcing-mistral-7b/, visited on: 02/23/2024.

[AI23b] AI, M.: Mixtral of experts, en-us, Section: news, 2023, url: https://mistral.ai/
news/mixtral-of-experts/, visited on: 02/23/2024.

[AJL23] Atty Eleti; Jeff Harris; Logan Kilpatrick: Function calling and other API updates,
en-US, 2023, url: https://openai.com/blog/function-calling-and-other-api-
updates, visited on: 01/07/2024.

[Ar22] y Arcas, B. A.: Do Large Language Models Understand Us? Daedalus 151/2,
pp. 183–197, 2022.

[Ba22] Black, S.; et al.: GPT-NeoX-20B: An Open-Source Autoregressive Language
Model. In: Proceedings of BigScience Episode #5 – Workshop on Challenges &
Perspectives in Creating Large Language Models. Association for Computational
Linguistics, virtual+Dublin, pp. 95–136, 2022.

[Co18] Corradini, F.; Ferrari, A.; Fornari, F.; Gnesi, S.; Polini, A.; Re, B.; Spag-
nolo, G. O.: A Guidelines framework for understandable BPMN models. In:
Data & Knowledge Engineering. Vol. 113, pp. 129–154, 2018.

https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/announcing-mistral-7b/
https://mistral.ai/news/mixtral-of-experts/
https://mistral.ai/news/mixtral-of-experts/
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates

Modeling meets Large Language Models 14

[De18] De Almeida Bordignon, A. C.; Thom, L. H.; Silva, T. S.; Dani, V. S.; Fanti-
nato, M.; Ferreira, R. C. B.: Natural Language Processing in Business Process
Identification and Modeling: A Systematic Literature Review. In: Proceedings
of the XIV Brazilian Symposium on Information Systems. ACM, Caxias do Sul
Brazil, pp. 1–8, 2018.

[FFK23] Fill, H.-G.; Fettke, P.; Köpke, J.: Conceptual Modeling and Large Language
Models: Impressions From First Experiments With ChatGPT. In: Enterprise
Modelling and Information Systems Architectures (EMISAJ). Vol. 18, pp. 1–15,
2023.

[FFS23] Fritsch, A.; Forell, M.; Schüler: KIT-BIS/json-nets, original-date: 2023-01-
13T15:15:30Z, 2023, url: https://github.com/KIT-BIS/json-nets, visited on:
02/22/2024.

[Fo10] Foth, E.: Exzellente Geschäftsprozesse mit SAP: Praxis des Einsatzes in Un-
ternehmensgruppen. Springer-Verlag, Berlin, Heidelberg, 2010.

[Ho23] Horus software GmbH: Business Modeler, 2023, url: https://www.horus.biz/
de/produkte/business-modeler/, visited on: 01/08/2024.

[Ka20] Kaplan, J.; et al.: Scaling Laws for Neural Language Models, 2020, url:
https://arxiv.org/abs/2001.08361, visited on: 01/05/2024.

[Kh23] Khurana, D.; Koli, A.; Khatter, K.; Singh, S.: Natural language processing: state
of the art, current trends and challenges. In: Multimedia Tools and Applications.
Vol. 82. 3, pp. 3713–3744, 2023.

[Li21] Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G.: Pre-train, Prompt,
and Predict: A Systematic Survey of Prompting Methods in Natural Language
Processing, 2021, visited on: 12/08/2023.

[Ma19] Maqbool, B.; et al.: A Comprehensive Investigation of BPMN Models Generation
from Textual Requirements—Techniques, Tools and Trends. In (Kim, K. J.;
Baek, N., eds.): Information Science and Applications 2018. Vol. 514, Springer
Singapore, Singapore, pp. 543–557, 2019.

[Ob96] Oberweis, A.: Modellierung und Ausführung von Workflows mit Petri-Netzen.
Vieweg+Teubner Verlag, Wiesbaden, 1996.

[Op22] OpenAI.: Introducing ChatGPT, en-US, 2022, url: https://openai.com/blog/
chatgpt#OpenAI, visited on: 12/07/2023.

[Op23] OpenAI et al.: GPT-4 Technical Report, 2023, url: http://arxiv.org/abs/2303.
08774, visited on: 01/05/2024.

[Ou22] Ouyang, L.: Training language models to follow instructions with human
feedback. In: Advances in Neural Information Processing Systems. Vol. 35,
pp. 27730–27744, 2022.

https://github.com/KIT-BIS/json-nets
https://www.horus.biz/de/produkte/business-modeler/
https://www.horus.biz/de/produkte/business-modeler/
https://arxiv.org/abs/2001.08361
https://openai.com/blog/chatgpt#OpenAI
https://openai.com/blog/chatgpt#OpenAI
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774

Martin Forell and Selina Schüler 15

[Ra18] Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I.: Language
Models are Unsupervised Multitask Learners, 2018, url: https://techbooky.
com/wp- content /uploads /2019/02/Better- Language- Models - and- Their-
Implications.pdf, visited on: 01/07/2024.

[SA24] Schüler, S.; Alpers, S.: State of the Art: Automatic Generation of Business Process
Models. In (De Weerdt, J.; Pufahl, L., eds.): Business Process Management
Workshops. Vol. 492, Springer Nature Switzerland, Cham, pp. 161–173, 2024.

[Sh23] Shanahan, M.: Talking About Large Language Models, 2023, url: https :
//arxiv.org/abs/2212.03551, visited on: 01/05/2024.

[Ta24] Take, M.; Becker, C.; Alpers, S.; Oberweis, A.: Modeling the Integration
of Machine Learning into Business Processes with BPMN. In (Yang, X.-S.;
Sherratt, R. S.; Dey, N.; Joshi, A., eds.): Proceedings of Eighth International
Congress on Information and Communication Technology. Vol. 696, pp. 943–
957, 2024.

[TM19] Tikhonov, S. E.; Mitsyuk, A. A.: A Method to Improve Workflow Net Decom-
position for Process Model Repair. In (Van Der Aalst, W. M. P.; et al., eds.):
Analysis of Images, Social Networks and Texts. Vol. 11832, pp. 411–423, 2019.

[Va17] Vaswani, A.; et al., I.: Attention Is All You Need. In: Neural Information
Processing Systems. Vol. 30, Curran Associates Inc, Red Hook, NY, 2017.

[Wa23] White, J.; et al.: A Prompt Pattern Catalog to Enhance Prompt Engineering with
ChatGPT, 2023, url: https://arxiv.org/abs/2302.11382, visited on: 12/08/2023.

[We19] Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2019.

[Zh23] Zhang, A.; Lipton, Z. C.; Li, M.; Smola, A. J.: Dive into Deep Learning.
Cambridge University Press, 2023.

https://techbooky.com/wp-content/uploads/2019/02/Better-Language-Models-and-Their-Implications.pdf
https://techbooky.com/wp-content/uploads/2019/02/Better-Language-Models-and-Their-Implications.pdf
https://techbooky.com/wp-content/uploads/2019/02/Better-Language-Models-and-Their-Implications.pdf
https://arxiv.org/abs/2212.03551
https://arxiv.org/abs/2212.03551
https://arxiv.org/abs/2302.11382

