
Insights in New Physics through
Di-Higgs Production and Precision

Phenomenology

Zur Erlangung des akademischen Grades eines

DOKTORS DER NATURWISSENSCHAFTEN

von der KIT-Fakultät für Physik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von

M.Sc. Felix Egle
aus Ehingen (Donau)

Referentin: Prof. Dr. M. M. Mühlleitner (KIT, Karlsruhe)
Korreferent: Prof. Dr. R. Santos (ISEL & U. LISBOA, Lisbon)

Tag der mündlichen Prüfung: 25. Oktober 2024

KIT - Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu





This document is licensed under a Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License (CC BY-SA 4.0):

https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Abstract

In this thesis, we perform precision calculations and phenomenological studies in various new
physics scenarios. First, we investigate the complex singlet extension of the Standard Model
(CxSM), where we calculate electroweak higher-order corrections to Higgs decays. We work
out several renormalization schemes and perform an extensive parameter scan, including the-
oretical and experimental constraints. We use the obtained parameter sample to analyze
the typical sizes of the next-to-leading-order (NLO) corrections and their impact on the al-
lowed parameter space. In the second project, we consider a composite 2-Higgs doublet
model (2HDM), where we investigate di-Higgs production. We give a brief introduction to
composite Higgs models as well as the composite 2HDM and describe the calculation of the
leading-order (LO) di-Higgs cross section and the quantum chromodynamics (QCD) NLO
corrections in the heavy top limit. We introduce the setup we used to obtain a set of viable
parameter points, including theoretical and experimental constraints, in particular the con-
straints from resonant and non-resonant di-Higgs searches. We then investigate the impact
of the composite 2HDM on Higgs pair production compared to the Standard Model (SM)
and other 2HDM-like models, both on the inclusive cross section as well as the invariant mass
and pT distributions. Here, interesting interference effects appear in the composite 2HDM
that can be used to distinguish the composite 2HDM from other 2HDM realizations. Finally,
in the third project we consider the next-to-minimal supersymmetric extension of the SM
(NMSSM), where we calculate the decays of supersymmetric particles and implement them
into a new code that can be used for phenomenological studies. We give a brief introduction
to supersymmetry and the NMSSM. We describe the calculation and implementation of the
various two-body, three-body, and radiative loop decays, as well as the NLO QCD corrections
to the two-body decays of the supersymmetric particles. Finally, we describe the setup we
use to obtain viable parameter points and discuss example benchmark point scenarios.

Zusammenfassung

In dieser Dissertation führen wir präzise Berechnungen und phänomenologische Studien in ver-
schiedenen Szenarien neuer Physik durch. Als Erstes untersuchen wir die komplexe Singulett-
Erweiterung des Standardmodells (CxSM), in der wir elektroschwache Korrekturen höherer
Ordnung für Higgs-Zerfälle berechnen. Wir erarbeiten verschiedene Renormierungsschemata
und führen einen umfangreichen Parameterscan durch, in dem theoretische und experimentelle
Einschränkungen berücksichtigt werden. Wir verwenden die erhaltenen Parameterpunkte,
um die typischen Größen der Korrekturen nächstführender Ordnung (NLO) und deren Ein-
fluss auf den erlaubten Parameterbereich zu untersuchen. In dem zweiten Projekt betra-
chten wir ein composite 2-Higgs-Dublett-Modell (2HDM), in welchem wir die Produktion von
Higgs-Paaren untersuchen. Wir geben eine kurze Einführung in composite Higgs-Modelle, in
welchen das Higgs-Teilchen nicht elementar, sondern ein zusammengesetztes Teilchen ist, und
in das betrachtete composite 2HDM. Weiterhin beschreiben wir die Berechnung des Wirkungs-
querschnitts für die Higgs-Paar-Produktion in führender Ordnung (LO) sowie die NLO-
Korrekturen der Quantenchromodynamik (QCD) im schweren Quark-Limes. Wir beschreiben
die Einrichtung des Parameterscans, um erlaubte Parameterpunkte zu erhalten, welche die
relevanten theoretischen und experimentellen Einschränkungen erfüllen, insbesondere von res-
onanten und nicht-resonanten Untersuchungen von Higgs-Paar-Produktion. Anschließend
untersuchen wir den Einfluss des composite 2HDM auf Higgs-Paar-Produktion im Vergle-
ich zum Standardmodell (SM) und anderen 2HDM-Modellen, sowohl auf den inklusiven
Wirkungsquerschnitt als auch auf invariante Massen- und pT -Verteilungen. Hierbei treten
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interessante Interferenzeffekte im composite 2HDM auf, welche verwendet werden können,
um zwischen dem composite 2HDM und anderen 2HDM-Realisierungen zu unterscheiden.
Schließlich betrachten wir im dritten Projekt die nächstminimale supersymmetrische Er-
weiterung des SM (NMSSM), berechnen die Zerfälle der supersymmetrischen Teilchen und
implementieren die Resultate in einen neuen Code, welcher für phänomenologische Studien
verwendet werden kann. Wir geben eine kurze Einführung in das Konzept der Supersym-
metrie und in das NMSSM. Dann beschreiben wir die Berechnung der 2-Körper-, der 3-
Körper- und der schleifeninduzierten Zerfälle, sowie die NLO QCD Korrekturen zu den 2-
Körperzerfällen der supersymmetrischen Teilchen. Abschließend beschreiben wir den Pro-
grammaufbau, den wir verwenden, um gültige Parameterpunkte zu erhalten und disktuieren
exemplarische Benchmark-Punkt-Szenarien.
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CHAPTER 1

Introduction

The currently well established theory in particle physics is the Standard Model of Particle
Physics (SM) [1–3]. Its particle content was mostly discovered in the 20th century. The
interplay between theory and experiment led to discoveries of new particles, that resulted in
new developments and predictions on the theory side, which itself was then followed by new
discoveries. The last particle to be discovered was the Higgs boson. It was predicted already
in the 1960s [4–8], and was needed to complete the SM. The Higgs boson, however, was only
discovered almost 50 years after its prediction, in 2012 at the Large Hadron Collider (LHC)
[9, 10]. Therefore, new physics (NP) in this thesis entails theories beyond the SM (BSM).

With the SM we have a theoretically consistent and experimentally well tested theory, but
we know that BSM theories should be realized in nature, as there are several unexplained
phenomena. For example, we know that there exists a new form of matter in the universe,
called Dark Matter (DM). Its relic density was measured e.g. by the Planck collaboration
[11]. This new form of matter constitutes a sizeable amount of the total matter density in
the universe. A possible explanation is a new kind of particle. There is, however, no suitable
candidate in the SM, and we have to invoke BSM theories to accommodate new particles that
can fill the role of DM. Another unexplained phenomena is the matter-antimatter asymmetry
in the universe [12], i.e. why we observe more matter than anti-matter in the universe. This
asymmetry can be explained dynamically by a mechanism called electroweak (EW) baryoge-
nesis [13–21], provided the Sakharov conditions [22] are fulfilled. The SM could in principle
fulfil all conditions, but it would need a Higgs mass of about 70-80 GeV [23, 24] for an EW
phase transition to be of strong first order [25–27], which is in contrast to the discovered Higgs
mass of 125 GeV. Additionally, the CP violation within the SM is not large enough [28–30].
Thus, we have to resort to BSM theories to incorporate the conditions for baryogenesis and
explain the matter-antimatter asymmetry via this mechanism.

In addition to the mentioned unexplained phenomena, there are also theoretically motivated
reasons for new physics beyond the SM. The SM is a phenomenologically motivated theory,
that describes the experimental observations well but gives no deeper explanations. For
example, it does not explain why there are 3 generations of fermions and what the origin of
the Yukawa couplings and therefore the masses of the fermions is. Next, we have a description
for the mass generation for fermions and gauge bosons via the Higgs mechanism, but there
is no dynamical explanation of why the Higgs boson obtains a vacuum expectation value
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(VEV). Another theoretical issue is the hierarchy problem, that raises the question of the
naturalness of a light Higgs boson (light compared to e.g. the Planck scale [31]). We will give
a more detailed description of the hierarchy problem in Sec. 2.2.

Although it seems evident that new physics beyond the SM exists, and we gathered some
hints for it (e.g. DM), we have not yet found any clear deviation from the SM within our
experiments. Therefore, one of the current approaches in particle physics is to precisely
measure the SM masses, couplings and interactions. At the same time, from a theoretical point
of view, the complementary goal is to give precise theoretical predictions, both for the SM and
BSM theories, in order to compare them with experiments and provide benchmark scenarios.
Moreover, interactions that have not been measured experimentally and therefore leave room
for new physics are also investigated. One important, so far not measured interaction is the
Higgs self-interaction, which can be determined in Higgs pair production. We will give an
overview over di-Higgs production in Sec. 2.3. One of the main goals of this thesis is thus to
contribute to the overall effort of precision phenomenology in particle physics.

An interesting point is that all of the above described issues of the SM are related to the
Higgs sector in the SM or can be explained by theories that alter or extend the Higgs sector,
compared to the SM. Thus, in this thesis we will consider theories that are motivated by these
experimental phenomena and/or theoretical issues and are suited to explain one or more of
them. There are several approaches one can take. One idea is to simply extend the SM
Higgs sector with additional scalar singlets or doublets, with one possible model being the
complex singlet extension of the SM (CxSM) [32–44], which is considered in the first project
contained in this thesis. The CxSM is obtained from the SM by extending the scalar sector
with an additional complex singlet, which already leads to an interesting phenomenology,
as it can e.g. provide a DM candidate. These scalar extensions of the SM can be used to
accommodate for the unexplained phenomena, e.g. DM or the matter-antimatter asymmetry,
but they do not solve the theoretical issues of the SM described above. They can be seen as
a phenomenological exploration of the possible NP landscape. Another approach to NP is to
take one of the theoretical problems of the SM and use it as a motivation towards new theories.
For example, the hierarchy problem can be used as a motivation for composite Higgs models
[45–54] or supersymmetric models [55–64]. These models can be seen as a UV completion of
the SM at higher energies and are used to try to explain both the theoretical issues of the SM
as well as the unexplained experimental phenomena. In this thesis we consider a composite
2-Higgs-doublet model (2HDM) [65–69] and the next-to-minimal supersymmetric extension
of the SM (NMSSM) [70, 71]. As a side remark, we thus consider theories with an additional
complex singlet (the CxSM), 2 Higgs doublets (the composite 2HDM), and 2 Higgs doublets
and one complex scalar singlet (the NMSSM), highlighting the available possibilities for new
physics in the Higgs sector.

The overarching goal of this thesis is to explore these different avenues towards new phyiscs.
We perform calculations to give precise predictions and do phenomenological studies to be
able to compare with current and future experimental results. The work shown in this thesis
is based on the research papers in Refs. [72–74] and ongoing work that will soon be published.

We now present the structure of the thesis. First, in Chapter 2 we introduce some concepts
and notations. We present the SM Higgs sector in Sec. 2.1, which leads us to the discussion
of the hierarchy problem (Sec. 2.2) and some possible explanations, i.e. compositeness and
supersymmetry (SUSY). We then describe the theoretical and experimental status of di-Higgs
production in Sec. 2.3 and highlight the importance of this measurement for the SM and BSM
models.

After this introduction, we move on to the three projects contained in this thesis. In Part I,
we discuss the CxSM, where we calculate the electroweak (EW) next-to-leading-order (NLO)
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corrections to Higgs decays and investigate their impact. We first give an introduction to
the model and the setup we use in Chapter 3. Then, we discuss the renormalization of the
model and the calculations that we performed to obtain the NLO corrected decay widths
in the Chapters 4 and 5. Next, we describe the implementation of our analytical results
into the code EWsHDECAY, present our setup to obtain viable parameter points, including the
discussion of theoretical and experimental constraints, and examine the typical sizes of the
NLO corrections and their impact on the phenomenological landscape in Chapter 6. We give
a conclusion of the project in Chapter 7.

In the next project (Part II), we consider a composite 2HDM, where we analyze di-Higgs
production in this model. In Chapter 8 we give an introduction to composite Higgs models,
and the specific realization that we use. Next, we present the calculation we performed to
obtain the leading-order (LO) cross section for di-Higgs production, given the couplings of
the composite 2HDM in an effective Lagrangian approach in Chapter 9. We also mention the
NLO quantum chromodynamics (QCD) corrections in the heavy quark limit. Furthermore,
in Chapter 10 we describe the implementation of our analytic results for the cross sections
and the setup we used to obtain viable parameter points, which we then used for our phe-
nomenological study. We analyze the impact of the composite 2HDM on di-Higgs production,
compared to the SM and other 2HDM models, both on inclusive results as well as differential
distributions. Finally, we give a conclusion to the project in Chapter 11.

In the third and final project (Part III) contained in this thesis, we discuss a supersymmetric
model, the NMSSM. We calculate the supersymmetric particle decays in this model and
implement them into an extended version of the program SDECAY [75, 76], which is then
combined with the program NMSSMCALC [77–82] to perform phenomenological studies. We
first give an introduction to supersymmetry (SUSY) and the NMSSM in Chapter 12, where
we also renormalize the model for the NLO QCD corrections, which we included. Next, we
describe the calculation of the supersymmetric decays in the NMSSM in Chapter 13, including
two-body and three-body decays, radiative loop decays as well as NLO QCD corrections to
the two-body decays. In Chapter 14 we present the implementation of our calculation and the
setup we use to perform parameter scans. We then discuss some benchmark point scenarios.
Finally, we give a conclusion in Chapter 15.

After we discussed the third and final project in this thesis, we give an overall summary and
outlook in Chapter 16.





CHAPTER 2

Prerequisites

Before introducing the projects that are contained in this thesis, we review some important
aspects relevant for upcoming parts. In Sec. 2.1, we first briefly summarize the Standard
Model (SM) scalar sector. Next, we discuss the hierarchy problem (Sec. 2.2), which is one
of the core motivations for composite Higgs models and supersymmetric models considered
in the parts II and III. Finally, in Sec. 2.3 we elaborate on the importance of measuring the
Higgs self-coupling via Higgs pair production, the current experimental and theoretical status
and how we apply the experimental limits on di-Higgs production in our models.

2.1. The Scalar Sector of the Standard Model

In this section we will give a brief introduction to the SM, following [83]. With the discovery
of the Higgs boson [9, 10] almost five decades after its proposal [4–8], the SM is complete, all
predicted particles have been found. The SM is a gauge theory with an SU(3)c × SU(2)L ×
U(1)Y gauge group [1–3], where the SU(3)c describes the quantum chromodynamics (QCD)
interactions with the gluon g and the SU(2)L × U(1)Y the electroweak (EW) interactions
with the gauge bosons W , Z and the photon γ. The gluon, the W and Z bosons and the
photon are the particles mediating the forces. Experimentally it was found that the W and
Z bosons are massive, but mass terms for these fields in the Lagrangian are forbidden by
the gauge symmetry. Similarly, mass terms for chiral fermions, where left- and right-handed
fields transform differently under the SU(2)L symmetry, are also forbidden. Thus, the Higgs
mechanism was introduced as an elegant solution to obtain massive gauge bosons and fermions
via spontaneous symmetry breaking, i.e. without explicitly breaking the gauge symmetries.

In the following, we give a brief introduction into the Higgs sector of the SM (cf. e.g. [84]).
We have a complex SU(2)L scalar doublet Φ, where the scalar Lagrangian LScalar is given by

LScalar = (DµΦ)†(DµΦ) − VSM . (2.1)

Here Dµ is the covariant derivative [85],

Dµ = ∂µ + ig
σa

2
W a

µ + ig′
Y

2
Bµ , (2.2)
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with W a
µ (a = 1, 2, 3) and Bµ being the SU(2)L and U(1)Y gauge boson fields from the SM

and g, g′ the corresponding gauge couplings, the hypercharge Y and σa the Pauli matrices.
The scalar potential VSM can be written as

VSM =
µ2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
, (2.3)

with the mass parameter µ2 and the quartic coupling λ. Since the Higgs doublet Φ transforms
under the SM EW gauge groups, no other renormalizable terms are allowed in the potential.

Next, we expand Φ as

Φ =

 G+

1√
2

(
v + H + iG0

)
 , (2.4)

where we introduced the scalar fields H, G0, G+ and the vacuum expectation value (VEV) v.
The fields G0 and G+ are so-called would-be Goldstone bosons, as they will be absorbed by
the W and Z bosons to obtain massive gauge fields. The VEV v is chosen in order to satisfy
the minimization condition

∂VSM

∂v
= 0 , (2.5)

i.e. with Eq. (2.4) we expand the Lagrangian around the minimum of the potential. In this
case we obtain the relation

0 =
v

2

(
µ2 +

v2λ

2

)
. (2.6)

The quartic coupling λ has to be positive for the potential to be bounded from below, and
therefore we need µ2 < 0 to obtain a non-zero VEV v. We then can relate λ to the Higgs
mass parameter µ2 and the VEV v via

λ =
−2µ2

v2
. (2.7)

The interactions with fermions are given by the Yukawa Lagrangian LYuk,

LYuk = −L̄LYlΦlR − Q̄LYdΦdR − Q̄LYuΦ̃uR + h.c. , (2.8)

where we have in general complex matrices Yl, Yd, Yu, for the leptons and the up- and down-
quarks, respectively, and

Φ̃ ≡ iσ2Φ
∗ . (2.9)

Here, L,Q depict the left-chiral doublets and lR, dR, uR the right-chiral fields, and we have
the Pauli matrix σ2. Expanding the doublet Φ again with Eq. (2.4) results in mass terms for
the fermions.

With this setup, we then obtain masses for the gauge bosons mV and masses for the fermions
mf that are proportional to the Higgs VEV v, i.e.

mf ∼ yfv , mV ∼ gv , (2.10)

with the Yukawa couplings yf for the fermions and the gauge couplings g of the gauge bosons.
The mass of the Higgs is proportional to the Higgs mass parameter, i.e. m2

h ∼ |µ2|. Thus,



2.2. The Hierarchy Problem 7

the scalar sector of the SM is already determined by the Higgs mass and the VEV v since the
quartic self-coupling λ can be derived with Eq. (2.7).

This already concludes the introduction to the SM Higgs sector. There are, however, some
interesting remarks to be made. First of all, the setup with only one Higgs doublet is the
minimal choice that can be made and is compatible with experimental data. One could,
however, extend this setup with additional singlet or doublet fields (as we will do in part I)
and obtain new theories with rich phenomenologies.

Another interesting point is the fact that the Higgs mass parameter µ2 is the only dimensionful
parameter in the SM.1 If we now consider the SM as a low-energy effective theory that
resolves to a UV complete theory at higher energies, we can use naive dimensional analysis
to estimate the Higgs mass parameter. We would then expect that the dimensionful quantity
is proportional to some mass scale Λ given by the UV complete theory, e.g. the cutoff scale
where our effective theory of the SM is no longer valid. Since we have not yet found any
physics beyond the SM, we expect this scale Λ to be rather large, with an ultimate upper
limit at the Planck scale, Mplanck [31],

Mplanck ∼ 1√
GN

∼ 1 × 1019 GeV , (2.11)

with the gravitational constant GN, where we expect a new theory to emerge that unites
particle physics and general relativity.

Thus, we would expect the Higgs mass parameter and therefore the Higgs mass to be rather
heavy, which is in strong contrast with the experimental value of a 125 GeV Higgs boson. This
apparent discrepancy is called the hierarchy problem and will be discussed in the following
section.

Another remark to be made is that in the SM the scalar sector is already determined by
the VEV v and the Higgs mass mh, i.e. all the Higgs self-couplings can be calculated and
predicted. Thus, measuring the Higgs self-interactions gives key insights into the nature of
the Higgs boson, and whether the SM correctly describes the Higgs boson and the Higgs
mechanism, as we will discuss in more detail in Sec. 2.3.

2.2. The Hierarchy Problem

In this section, we describe the hierarchy problem in more detail and give some conceptual
ideas to solve it. We follow here the reviews on the hierarchy problem given in [62, 86–90].

As already mentioned in Sec. 2.1, the hierarchy problem is essentially the tension between
the naive prediction that a certain value has to be large, whereas the experiments measure a
relatively small value without an apparent reason in the theory (where large and small have to
be seen in the context). In the SM, this is the case, as already explained, for the Higgs mass.
The mass parameter in the scalar potential (and therefore the Higgs mass) would naively be
expected in an effective field theory approach to be of the order of the cut-off scale of the
theory, as described in Sec. 2.1. Even if the coefficient is absent at leading order, it would
be generated at loop level if the SM Higgs couples to the new heavy physics, and we again
would have the scaling relation µ ∼ Λ.

Thus, we are in a paradox situation that we expect new physics to appear at higher energies
that either would be in conflict with the measured SM-like Higgs or lead to massive fine

1if we consider the potential parameters µ2 and λ as input and use Eq. (2.7) to then relate µ2 and the VEV v.
Furthermore, we can relate all the gauge boson and fermion masses to the VEV v and use the dimensionless
Yukawa and gauge couplings as input.
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tuning issues. A possible solution is to develop a mechanism that is incorporated into a UV
complete theory at higher energies and leads to a relatively small Higgs mass. There are
several approaches to this mechanism (see e.g. [88, 91] for a list of approaches). We will focus
in the following on symmetry based solutions.

One possible idea to solve the hierarchy problem is the concept of technical naturalness [92].
Here, symmetries are used to explain how a parameter can be naturally small. In the SM, we
have masses for fermions and gauge bosons, and we can ask the question if they also would
obtain large corrections from new physics contributions at higher energies. This is, however,
not the case, since they are protected by symmetries. In the case of fermions, it is the chiral
symmetry (i.e. left- and right-handed parts of fermions transform differently in the SM, and
a mass term would mix them), and in the gauge boson case it is the gauge symmetry. Mass
terms for these fields are therefore forbidden in the SM, and we need the Higgs mechanism
to spontaneously break the symmetries and obtain masses for fermions and gauge bosons.
Thus, in the limit of vanishing fermion or gauge boson masses, we no longer break these
symmetries. These vanishing masses are protected by the symmetries in the sense that we
cannot break the symmetries with higher-order corrections, i.e. we cannot reintroduce the
mass terms through loop effects. The masses are zero to all orders. Following this statement,
we see that the loop corrections in the case of non-vanishing masses have to be proportional
to the masses themselves since then the higher-order corrections vanish in the case of zero
masses.

Thus, we conclude that the corrections to the masses have to be proportional to the masses
themselves and cannot be proportional to some new physics scale Λ at higher energies (at
least not quadratically, we can still have a logarithmic dependence that does not negate our
arguments and is better behaved, i.e. would not lead to large corrections and no hierarchy
problem). Therefore, if the masses are small, they remain small because of the protection
of the symmetry that is broken by the mass parameter. This mechanism is called technical
naturalness.

In the SM, the Higgs mass parameter respects all the symmetries of the SM, and therefore
setting it to zero does not restore any symmetries, the parameter is not technically natural.
Therefore, a possible solution to the hierarchy problem is to relate the Higgs mass parameter
to some new symmetry in order to make it technically natural. Moreover, from the point
of view of a UV complete theory, using symmetries at higher energies is an elegant way to
obtain light particles (compared to e.g. the Planck scale) and in fact all elementary particles
found thus far in the SM have mass parameters that are protected by symmetries and are
therefore technically natural, except for the Higgs boson.

In the following, we will describe two possible theories with symmetry solutions to the hier-
archy problem that will play a role later in this thesis. One possible symmetry extension is
supersymmetry (SUSY). We will give a short introduction to SUSY in Sec. 12.1 and refer to
the excellent reviews [62–64, 70, 71, 93, 94]. In SUSY, an additional symmetry is introduced,
which relates fermions and bosons and also their masses and interactions. The scalar Higgs
thus obtains a so-called superpartner, the Higgsino, a chiral fermion. As we already saw, the
masses of chiral fermions are technically natural, and via SUSY this then also translates to
the scalar Higgs mass. This protection manifests itself if one for example calculates the loop
corrections to the Higgs mass. If SUSY is realized in nature, the contributions from fields in
the loops would cancel out with the contributions from their superpartners (see e.g. [63] for
an explicit calculation).

Another possible solution to the hierarchy problem is the usage of the Goldstone boson theo-
rem. Here, we introduce an additional symmetry that is spontaneously (and later explicitly)
broken, and the Higgs is one of the scalar Goldstone bosons. Due to the remaining Goldstone
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Figure 2.1.: The Feynman diagrams appearing in the SM, contributing to Higgs pair produc-
tion with top and bottom quarks (t, b) in the loop. The diagrams here and in the following
were created with [96].

boson shift-symmetry, i.e. we can shift the fields by a constant, only terms containing deriva-
tives of the fields are allowed in the Lagrangian, whereas mass terms and terms in the scalar
potential are forbidden. Thus, the Goldstone bosons are massless. By explicitly breaking
the additional symmetry, we can generate a mass term that is then technically natural. This
approach is used e.g. in composite Higgs models (see Sec. 8.1 and the reviews [54, 86, 88,
95]). Moreover, we know that this approach is already realized in nature, as it can be used
to explain why the mass of the pion meson is light compared to the QCD scale (cf. [54]).

To conclude, we see that the hierarchy problem is one of the remaining unsolved theoretical
issues of the SM and it can be used to incorporate solution mechanisms that can lead to
interesting new theories beyond the SM.

2.3. Higgs Pair Production

After the discovery of the Higgs at the LHC, the next step has been to measure all the
properties of the Higgs boson and its couplings [97, 98]. One important interaction, however,
that has not been measured experimentally yet is the Higgs self-interaction. It is not only
a predicted coupling from the SM that has not yet been verified, but it also gives further
insight into the Higgs potential and a validation of the mechanism of electroweak symmetry
breaking (EWSB).

Experimentally, the Higgs self-interaction can be measured via Higgs pair production. In the
SM, the most important channel at the LHC is gluon fusion into di-Higgs production. The
relevant Feynman diagrams are given in Fig. 2.1 where we have a box and a triangle diagram
with quarks in the loop. The triangle diagram contains the dependence on the trilinear Higgs
coupling. The box and triangle contributions, however, interfere destructively, leading to an
overall small cross section. The calculation for di-Higgs production at LO was performed in
[99–101]. The first higher-order corrections were performed in the heavy top limit [102]. Since
then, many higher-order calculations have been performed [103–134] with the total di-Higgs
cross section value given as 31.05 fb at next-to-next-to-leading order (NNLO) FTapprox [117],
i.e. in the heavy-top limit with full leading-order (LO) and next-to-leading-order (NLO) mass
effects and full mass dependence in the one-loop double real corrections at NNLO QCD.
Additionally, Higgs pair production has been discussed in theories beyond the SM, e.g. in
[135–151], in composite Higgs models [152–156], and SUSY models [157–163].

Due to the destructive interference at LO, the cross section of di-Higgs production is small
and therefore challenging to measure experimentally. The experimental searches can be di-
vided into two categories, non-resonant and resonant searches. In non-resonant searches the
current experimental limits are 2.4-times the SM prediction with the trilinear couplings to
be constrained to −1.4 < κλ < 6.1 for the ATLAS experiment [164], and 3.4-times the SM
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prediction and −1.24 < κλ < 6.49 for CMS [98]. Here, κλ is defined as the trilinear coupling
normalized to the SM trilinear coupling,

κλ =
λhhh

λSM
hhh

, (2.12)

and thus describes the deviation from the SM prediction. It should be noted that the limits
on κλ do not assume any beyond SM (BSM) contributions to the overall cross sections, and
therefore the cross section limits are better suited to constrain models beyond the SM. In
BSM theories, we can have additional particles, couplings, or diagrams that can contribute
to the overall cross section and also lead to deviations in differential distributions. One
important contribution may occur if additional heavy scalars are present in the theory that
can be resonantly produced and then decay into a pair of SM-like Higgs bosons. This can
increase the overall cross section significantly.

In resonant searches, an additional heavy scalar with mass mH and a small width ΓH is
assumed, and the expected distribution of this setup is compared with the experimentally
measured results. Thus, by varying mH in the hypothesis, either a discovery for a certain
mass can be made or upper limits on the cross sections depending on the heavy Higgs mass
can be obtained. Thus far, no resonant Higgs has been found. We use the upper limits from
[165–177] as resonant constraints on our models.

Finally, we describe how we applied the resonant and non-resonant limits on our models with
extended scalar sectors where we potentially have a SM-like Higgs h and a heavy Higgs H.
In our approach, we follow [150]. We start with the categorization of parameter points in a
model. If for a given parameter point the heavy Higgs mass mH is smaller than 2mh, with
the SM-like mass mh, i.e. no resonant enhancement of the triangle diagram is kinematically
possible, the point will be labelled non-resonant. Moreover, if the heavy Higgs contribution is
small compared to the full cross section, it would not be distinguishable from an experimental
point of view, based on the total cross section measurement. Thus, we define a point to be
non-resonant if the single heavy Higgs production and decay into SM-like Higgs pairs is less
than 10 % of the total di-Higgs cross section. We then apply non-resonant limits on the full
cross section.

The resonant limits, in principle, are applied to all parameter points. Here we calculate
the single heavy Higgs production cross section times branching ratio into a pair of SM-
like Higgs times the branching ratios of the SM-like Higgs into the final state considered
in the various experimental analyses [165–177]. If the parameter point exceeds one of the
experimental limits, it is rejected. The experimental searches, however, apply the narrow
width approximation. Therefore, their limits can only be safely employed if the total width
of the heavy Higgs is small. We thus only apply resonant limits to points with a total width
that satisfies

ΓH

mH
≤ 5 % . (2.13)

Otherwise, the resonant limits will not be considered.
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CHAPTER 3

Introduction to the CxSM

In this project, we studied the complex singlet extension of the Standard Model (CxSM).
By adding only a complex scalar singlet to the theory, it is one of the simplest extensions
of the Standard Model (SM). The scalar sector is, in our realization of the model, increased
by an additional Higgs boson and a dark matter (DM) candidate. Thus, the model exhibits
an interesting phenomenology and may answer (or at least give hints to) some of the open
questions of the SM, as for example the nature of DM. Models obtained by adding singlets
(or doublets) have a good theoretical motivation. Extended Higgs sectors naturally emerge
in theories beyond the SM, e.g. in supersymmetric theories at least two Higgs doublets are
needed for a consistent theory [62]. Moreover, the parameters of the potential in these theories
are free parameters (in contrast to e.g. the composite or the supersymmetric case in part II
and III, where the Higgs potential is more constrained), but they do not solve the hierarchy
problem and can be seen as an agnostic approach to explore the phenomenological landscape
beyond the SM.

Singlet extensions of the SM have been studied in the literature [32–44]. Our goals in this
project were to analyze the allowed parameter ranges and the calculation of the next-to-
leading-order (NLO) electroweak (EW) corrections of all Higgs decay channels in this model.
We then analyzed the behaviour of these corrections, what sizes they typically have, if they
can become sizeable and why, what the theoretical uncertainty estimate based on the choice
of a specific renormalization scheme is and if the corrections have a significant impact on the
parameter space.

In the following, we present our approach. We choose a suitable set of input parameters,
work out the renormalization of the model, calculate the NLO corrections to all Higgs decay
channels in the theory, generate a viable set of parameter points considering the most relevant
theoretical and experimental constraints, and then perform an analysis to answer the above
mentioned questions.

In this chapter, we give the theoretical description of the model, set our notation and the
symmetries that we impose on our scalar potential, describe our chosen set of input parameters
and list the theoretical and experimental constraints we applied.

This part follows our published results [72, 73] and takes over, where needed, some results
from [178].
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3.1. The CxSM Lagrangian

The CxSM is obtained from the SM by extending the scalar sector by a complex singlet field
S. The additional scalar field is uncharged under all SM gauge groups and only couples to
the SM Higgs doublet. These types of models are also called Higgs portal models.

The general structure of the Lagrangian is

LCxSM = LSM\{Scalars} + LS, (3.1)

where = LSM\{Scalars} refers to the SM Lagrangian without the Higgs sector and LS describes
the extended scalar part,

LS = (DµΦ)† (DµΦ) + ∂µS∗∂µS− VScalar , (3.2)

with the SM Higgs doublet Φ, the covariant derivative Dµ (see Eq. (2.2)) and the scalar
potential VScalar. We impose a global U(1) symmetry on the scalar singlet that is softly
broken. The scalar potential then reads (compare with [42, 43], where also other realizations
are discussed),

VScalar =
m2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
+

δ2
2

Φ†Φ|S|2 +
b2
2
|S|2 +

d2
4
|S|4 +

(
b1
4
S2 + a1S + c.c.

)
,

(3.3)

with the potential parameters m2, λ, δ2, b2 and d2 that are real and the soft breaking param-
eters b1 and a1 that can be complex in general. We split up the scalar fields into their real
and imaginary components and also the vacuum expectation values (VEVs) v, vS and vA,

Φ =

 G+

1√
2

(
v + H + iG0

)
 , S =

1√
2

(vS + S + i(vA + A)) . (3.4)

As is the case in the SM, the G± and G0 will become the Goldstone bosons for the W± and
Z bosons. The real scalar fields H,S,A will give the particle spectrum of the scalar sector.

We specify our realization of the CxSM further by imposing a Z2 symmetry separately on the
real part S and the imaginary part A of the complex singlet field S, i.e. the Lagrangian has to
be invariant under both S → −S and A → −A. Thus, a1 = 0 and b1 is real. We impose these
Z2 symmetries in order to obtain a stable DM candidate. The Z2 symmetry for A needs to be
conserved and not be spontaneously broken, i.e. vA = 0, whereas we spontaneously break the
symmetry of the field S with a nonzero value for the VEV vS . We obtain for the potential

VScalar =
m2

2
Φ†Φ +

λ

4

(
Φ†Φ

)2
+

δ2
2

Φ†Φ|S|2 +
b2
2
|S|2 +

d2
4
|S|4 +

(
b1
4
S2 + c.c.

)
. (3.5)

Expanding the scalar fields in the potential according to Eq. (3.4), we see that the fields H
and S mix. Rotating the fields via the relation(

h1

h2

)
= Rα

(
H

S

)
, (3.6)

with the rotation matrix

Rα =

(
cosα sinα

− sinα cosα

)
≡

(
cα sα

−sα cα

)
, (3.7)



3.1. The CxSM Lagrangian 15

we can rotate the gauge eigenstates H and S into the mass eigenstates h1 and h2 with masses
mh1 ≤ mh2 , i.e. we have

diag(m2
h1
,m2

h2
) ≡ D2

hh = RαMRT
α , (3.8)

for the mass matrix given D2
hh in the basis of the mass eigenstates. The matrix M in the

gauge eigenstate basis (H,S) is given by

M =

 v2λ

2

δ2vvS
2

δ2vvS
2

d2v
2
S

2

+

T1

v
0

0
T2

vS

 , (3.9)

where the tadpole parameters T1, T2 are defined as

∂V

∂v
≡ T1 ⇒ T1

v
=

m2

2
+

δ2v
2
S

4
+

v2λ

4
, (3.10a)

∂V

∂vS
≡ T2 ⇒ T2

vS
=

b1 + b2
2

+
δ2v

2

4
+

v2Sd2
4

. (3.10b)

The mass term of the field A reads

m2
A =

−b1 + b2
2

+
δ2v

2

4
+

v2Sd2
4

= −b1 +
T2

vS
, (3.11)

and it does not mix with the other scalar fields. At tree-level we have T1 = T2 = 0.

Since we rotate the SM Higgs field H and the singlet field S into the mass eigenstates h1
and h2, they will couple to the SM particles with a coupling modifier defined by the rotation
angle, i.e. we obtain

ghiSM SM = gHSMSM SMki , ki ≡

{
cosα , i = 1

− sinα , i = 2
, (3.12a)

ghihjSM SM = gHSMHSMSM SMkikj (3.12b)

for any coupling ghiSM SM (or ghihjSM SM ) between hi (and hj) and two SM particles (i, j =
1, 2). The gHSMSM SM symbolizes the SM Higgs couplings to two SM particles, the gHSMHSMSM SM

the quartic couplings between two SM Higgs and two SM particles.

Finally, in the scalar potential we have 6 free parameters (m, λ, δ2, b2, d2, b1) that we can
exchange with the help of the above mentioned relations to our chosen set of input parameters:

v , vS , α , mh1 , mh2 , mA. (3.13)

The potential parameters can be written in terms of the chosen input parameters as

λ =
m2

h1
+ m2

h2
+ cos 2α(m2

h1
−m2

h2
)

v2
, (3.14a)

d2 =
m2

h1
+ m2

h2
+ cos 2α(m2

h2
−m2

h1
)

v2S
, (3.14b)

δ2 =
(m2

h1
−m2

h2
) sin 2α

vvS
, (3.14c)

m2 =
1

2

(
cos 2α(m2

h2
−m2

h1
) −

v(m2
h1

+ m2
h2

) + vS(m2
h1

−m2
h2

) sin 2α

v

)
, (3.14d)

b2 =
1

2

(
2m2

A −m2
h1

−m2
h2

+ cos 2α(m2
h1

−m2
h2

) −
v(m2

h1
−m2

h2
) sin 2α

vS

)
, (3.14e)

b1 = −m2
A . (3.14f)
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3.2. Theoretical and Experimental Constraints

In this section, we describe the various experimental and theoretical constraints we considered
and applied to our parameter scans in order to obtain a valid parameter sample. We follow
here mainly the works in [72, 178, 179] where more details can be found. All constraints
described here are implemented in the code ScannerS [42, 179] or applied additionally to the
parameter sample.

3.2.1. Theoretical Constraints

The following theoretical constraints were considered.

• Boundedness from Below:

In order to do a perturbative expansion around the minimum of the scalar potential
chosen by the input parameters, the potential has to be bounded from below. Otherwise,
the ground state would not be stable. The constraints

λ > 0 ∧ d2 > 0 ∧ (δ22 < λd2 if δ2 < 0), (3.15)

have to be fulfilled for the potential parameters (compare with [178, 179]).

• Vacuum Stability:

Apart from the condition that the potential is bounded from below, it has to be
checked that the EW minimum of the potential with v = 246 GeV chosen by the in-
put parameters is actually the global minimum. Otherwise, the ground state would be
metastable and the system could move into a deeper global minimum, which does not
have v = 246 GeV and is hence unphysical. It can be shown, however, that the chosen
minimum (v, vS , vA = 0) is the global minimum of the potential (at least at tree level),
if

δ22 < λd2, (3.16)

holds, which is automatically the case with our chosen set of input parameters (see [72,
178] for more details). Therefore, the minimum (v, vS , vA = 0) is automatically the
global minimum and stable at tree level.

• Perturbative Unitarity:

Due to the freedom in the input parameters, the quartic scalar couplings can become
sizeable, and the resulting interactions can violate unitarity, i.e. a perturbative approach
is not possible. Unitarity constraints are obtained by constraining the eigenvalues λi of
the 2 → 2 scattering matrix M2→2 via (c.f. [180])

|λi| ≤ 8π . (3.17)

This results in the relations (see also [178, 179])

|λ| ≤ 16π ∧ |d2| ≤ 16π ∧ |δ2| ≤ 16π ∧

∣∣∣∣∣∣32λ + d2 ±

√(
3

2
λ− d2

)2

+ 2δ22

∣∣∣∣∣∣ ≤ 16π . (3.18)
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3.2.2. Experimental Constraints

The following experimental constraints were considered.

• Electroweak Precision Parameters:

The beyond SM (BSM) deviations from the electroweak precision observables (EWPOs)
can be parametrized by the S, T , U parameters [181, 182]. They are given in terms of
the gauge boson self-energies, that obtain additional contributions in the CxSM. These
deviations have to be within the experimental limits. ScannerS uses a fit result and
compares the theoretical and experimental values for their compatibility.

• Higgs Searches and Measurements:

Since the discovery of the Higgs boson, its properties and couplings to SM particles
have been measured, and searches for additional scalar particles were conducted. In
the CxSM the couplings of the SM-like Higgs are modified and we have additional
scalars that can be detected. Thus, in turn the CxSM parameter space is constrained
in order to avoid the experimental limits. ScannerS implements these limits via the
tools HiggsBounds [183–187] and HiggsSignals [188, 189]. Moreover, we additionally
checked for resonant di-Higgs constraints, where we followed the approach in [150], see
also Secs. 2.3 and 6.2.

• Dark Matter Searches and Cosmological Constraints:

The CxSM contains a viable dark matter candidate that can contribute to the DM
abundance in the universe. Thus, we have to constrain the parameter space in order to
not exceed the measured value of the DM relic density (we allow for smaller abundances
and therefore additional contributions from other sources). ScannerS uses the tool
MicrOMEGAs [190–192] to calculate the relic density and include this constraint.

Additionally, the CxSM is constrained by direct detection searches for DM. Due to a
cancellation at LO, the tree-level cross section is negligible in the CxSM [193, 194].
The one-loop corrected cross sections (cf. [195, 196]), however, have to be below the
experimental limits, where we considered [197–199]. We will discuss these constraints
in more detail in Sec. 6.2.





CHAPTER 4

Renormalization of the CxSM

In quantum field theories, UV and IR divergences can appear in higher-order calculations.
In order to obtain meaningful results, they have to be treated properly. The UV divergences
are cancelled through regularization and renormalization (cf. [85]). IR divergences have to be
treated differently, see Sec. 5.3.1.

A common regularization prescription is (the so-called) dimensional regularization, in which
the appearing loop integrals are not calculated in 4 but in D = 4 − 2ε dimensions. The
divergences will then appear as ε−1 poles in the calculation. Constant terms that reappear
throughout the calculation are often combined into

∆ε ≡
1

ε
− γE + ln(4π) , (4.1)

with the Euler constant γE.

Next, a given input parameter is redefined via a renormalized parameter λ and the countert-
erm parameter δλ as

λ0 = λ + δλ , (4.2)

where λ0 is the bare parameter that appears in the unrenormalized Lagrangian. Similarly,
the bare field Φ0 appearing in the Lagrangian is shifted by the field wave function ZΦ via

Φ0 =
√

ZΦΦ ≈ (1 +
δZΦ

2
)Φ . (4.3)

We expanded the square root up to NLO. The counterterm δλ and the wave function renor-
malization constant δZΦ are determined by renormalization conditions. In a renormalizable
theory, as is the SM, the UV-divergent parts of the counterterms cancel the UV divergences,
leading to UV finite physical observables. The renormalization conditions furthermore fix the
finite parts of the counterterms. For more details on renormalization we refer to other works,
e.g. [85, 200].

In this chapter, we discuss the renormalization of the CxSM. We will follow the prescriptions
given in [72, 73] and [178]. Similar renormalization schemes have been worked out for other
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models [201, 202]. We will start by discussing the renormalization of the scalar sector and
describe the different renormalization schemes of the additional input parameters in the model
that we worked out and applied in this project in Sec. 4.1. We will then mention the fermion
and gauge boson sectors (Sec. 4.2), where we applied the prescriptions described in [200].
Finally, we also discuss how we change between renromalization schemes in Sec. 4.3, as this
will be useful to discuss the theoretical uncertainty of our calculations.

4.1. Scalar Sector

In this section, we describe the renormalization of the scalar sector. We start with the
renormalization of the fields and the mass parameters (Sec. 4.1.1) and also comment on how
we renormalized the tadpoles. Then, we move on to the remaining input parameters, i.e. the
schemes we applied to renormalize the mixing angle α (Sec. 4.1.2) and the singlet VEV vS
(Sec. 4.1.3).

4.1.1. Mass and Field Renormalization

We split up our fields and masses into renormalized fields and masses and corresponding
counterterms. Thus, we write

A0 =
√

ZAA ≈
(

1 +
δZA

2

)
A , (4.4)

m2
A,0 = m2

A + δm2
A , (4.5)

for the scalar field A and(
h1,0

h2,0

)
=
√
Zhh

(
h1

h2

)
≈
(

1 +
δZhh

2

)(
h1

h2

)
, (4.6)

D2
hh,0 = D2

hh + δD2
hh , (4.7)

for the mass eigenstates h1 and h2. At one-loop level the eigenstates can mix. Therefore, we
have to account for these contributions in the counterterms via the matrices δZhh and δDhh,

δZhh =

(
δZh1h1 δZh1h2

δZh2h1 δZh2h2

)
, δD2

hh =

(
δD2

h1h1
δD2

h1h2

δD2
h1h2

δD2
h2h2

)
. (4.8)

We introduce tadpole counterterms δTi for the tadpole contributions Ti, that are defined via

T̂i = Ti − δTi = 0 (i = 1, 2) , (4.9)

i.e. the renormalized tadpoles T̂i vanish.

Moreover, we use a tadpole scheme that follows the approach in [203] (and was also applied
in [201, 202]). In this scheme we introduce an additional shift in the VEVs that leads to
the inclusion of the tadpoles in the self-energies and therefore the counterterms as well.
Self-energy contributions with tadpoles included are labelled as Σtad. Moreover, tadpole
corrections have to be included in the vertex corrections. For a detailed prescription of this
procedure, see [178].

Here, we only state the results for the counterterms, and obtain
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δm2
A = Re

(
Σtad
A (m2

A)
)
, (4.10a)

δZA = −Re

(
∂Σtad

A (p2)

∂p2

∣∣∣∣
p2=m2

A

)
, (4.10b)

δm2
hi

= Re
(

Σtad
hihi

(m2
hi

)
)
, (4.10c)

δZhihi
= −Re

 ∂Σtad
hihi

(p2)

∂p2

∣∣∣∣∣
p2=m2

hi

 , (4.10d)

δZhihj
=

2

m2
hi

−m2
hj

Re
(

Σtad
hihj

(m2
hj

)
)

(i 6= j). (4.10e)

4.1.2. Renormalization of the Mixing Angle α

The remaining input parameters in the scalar sector will be discussed next. We start with
the renormalization of the mixing angle α. We write the bare parameter α0 as a combination
of the renormalized parameter and the corresponding counterterm δα,

α0 = α + δα . (4.11)

To obtain a relation for the counterterm, we follow the prescription introduced in [204]. In
this scheme we relate the bare mass eigentates h0i to the renormalized eigenstates hi by
rotating with the mixing matrix R given in Eq. (3.7) to the gauge eigenstates h and s and
then introduce counterterms. We obtain the relation(

h1,0

h2,0

)
= Rα,0

(
h0

s0

)
≈ RδαRα

√
ZG

(
h

s

)
=
√

ZM

(
h1

h2

)
, (4.12)√

ZM ≡ RδαRα

√
ZGR

T
α . (4.13)

Here, ZG is the field strength renormalization matrix used to renormalize the gauge eigenstates
(for more details, see [178] and compare with [201, 202]). From this relation we obtain the
result

δα =
δZh1h2 − δZh2h1

4
. (4.14)

This prescription, however, leads to a gauge-dependent counterterm and moreover to gauge-
dependent decay widths. To circumvent this problem and obtain gauge-independent results,
we implemented a modified prescription (cf. [201, 202]). We used the so-called pinch technique
[205–209] in order to obtain gauge-independent scalar self-energies and in turn a gauge-
independent counterterm δα. This scheme was also applied in [201, 202] for other theories,
and the details for the CxSM can be found in [178]. The pinched self-energy is composed of
Σtad and an additional contribution Σadd, and given by (i, j = 1, 2)

iΣpinch
hihj

(p2) = iΣtad
hihj

(p2) + iΣadd
hihj

(p2)

= iΣtad
hihj

(p2)
∣∣∣
{ξ=1}

+
−ig2

32π2c2W

(
p2 −

m2
hi

+ m2
hj

2

)
kikjB0(p

2,m2
Z ,m

2
Z)

+
−ig2

16π2

(
p2 −

m2
hi

+ m2
hj

2

)
kikjB0(p

2,m2
W ,m2

W ) ,

(4.15)
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with ξ denoting the gauge parameters (ξ = ξW , ξZ), ki defined in Eq. (3.12), cW the cosine
of the weak mixing angle, mW and mZ the masses of the W and Z boson, p the momentum
and B0 a 1-loop integral [200, 210, 211].

There is an additional freedom in the choice of the mass scale used in the self-energies for the
counterterm δα. The two possibilities we implemented are,

• OS scheme: Set the momenta to the OS masses, p2 = m2
hi

(i = 1, 2).

• p∗ scheme: Set the momenta to p2 = p∗ ≡
m2

h1
+ m2

h2

2
.

At the end, this results in the following two choices for the counterterm that we apply:

δαp∗ =
1

(m2
h1

−m2
h2

)
Re

(
Σtad
h1h2

(p2∗)
∣∣∣
{ξ=1}

)
, (4.16a)

δαOS =
1

2(m2
h1

−m2
h2

)
Re
(

Σpinch
h1h2

(m2
h1

) + Σpinch
h1h2

(m2
h2

)
)
. (4.16b)

Here, Σpinch is the scalar self-energy with the pinched contributions added. In the case of
the p∗ scheme the additional contributions vanish. The notation ξ = 1 here means, that the
gauge-independent result is equal to the result obtained if the gauge parameters ξ are set to
1.

4.1.3. Renormalization of the Singlet VEV vS

The remaining input parameter in the scalar sector to be renormalized, is the singlet VEV
vS . We split the bare parameter into the renormalized parameter and its counterterm,

vS,0 = vS + δvS . (4.17)

For the renormalization of vS we used a process-dependent (pd) scheme (cf. [201, 202] and
see [178] for more details). In this prescription we use a physical process and demand that
the parameter that is renormalized is given by the LO relation of this process and all higher-
order corrections are absorbed by the counterterm. In our case, we used a decay to obtain
the process-dependent counterterm, by demanding

ΓLO
X→Y Z = ΓNLO

X→Y Z , (4.18)

between the decay width at LO and NLO. The chosen process has to depend on vS already
at tree level. In our case, only scalar decays can thus be used. We chose the two processes
hi → AA (i = 1, 2). Since the LO amplitude is real, Eq. (4.18) simplifies to

0 = Re
(
ANLO

hi→AA

)
= Re

(
AVC

hi→AA + AVCT
hi→AA

)
, (4.19)

where ANLO is the amplitude at NLO consisting of vertex corrections AVC and the countert-
erm contribution AVCT. This can be further written as

0 = Re
(
AVC

hi→AA

)
− λhiAA

(
δλhiAA

λhiAA
+ δZA +

δZhihi

2
+

λhjAA

λhiAA

δZhjhi

2

)
, (4.20)
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with the virtual vertex correction AVC and the counterms inserted. Moreover, the trilinear
couplings λhiAA and their counterterms can be written as

λh1AA =
sαm

2
h1

vS
⇒ δλh1AA =

δm2
h1

m2
h1

λh1AA − δvS
vS

λh1AA + cot(α)δαλh1AA , (4.21a)

λh2AA =
cαm

2
h2

vS
⇒ δλh2AA =

δm2
h2

m2
h2

λh2AA − δvS
vS

λh2AA − tan(α)δαλh2AA , (4.21b)

Solving relation Eq. (4.20) for δvpdS we obtain the gauge-independent counterterm for vS in
the pd scheme.

The counterterm obtained by this procedure, however, is only valid if the underlying process
is kinematically allowed, i.e. in our case if mhi

> 2mA (i = 1 or i = 2). Otherwise, the pd
scheme cannot be used.

In order to improve on this insufficiency, we implemented the so-called zero momentum (ZEM)
scheme, where instead of using the physical decay hi → AA with all momenta set on-shell,
we now set all external momenta to zero and then again demand

0 = Re
(
ANLO

hi→AA({p2 = 0})
)
, (4.22)

as we did in Eq. (4.19), where p2 = 0 stands for all external momenta set to zero. This
approach was already applied in [212] for a different model. For more details on the approach
in the CxSM, see [178].

One detail that we have to take into account in this case, is that the external leg corrections
ALeg

hi→AA({p2 = 0}) are no longer exactly cancelled by the leg counterterms. Additionally, the
resulting counterterm from this procedure would be gauge-dependent and also lead to gauge-
dependent results. To circumvent this, we additionally used the pinched self-energies again in
the definition of the δZ counterterms (thus labelled δZpinch) which turn up in the prescription
δvZEMS . Then, we obtain a gauge-independent counterterm and gauge-independent results.
The relation to obtain δvZEMS thus finally reads:

0 = Re
(
AVC

hi→AA({p2 = 0}) + ALeg
hi→AA({p2 = 0})

)
+λhiAA

(
−δλhiAA

λhiAA
+ δZA +

δZpinch
hihi

2
+

δm2
hi

m2
hi

+
2δm2

A

m2
A

+
λhjAA

λhiAA

m2
hi

m2
hj

δZpinch
hihj

2

 .

(4.23)

4.2. Fermion and Gauge Boson Sector

After the renormalization of the scalar sector, we now turn to the fermion and gauge boson
part. We follow the prescription described in [200] and only briefly describe the schemes we
used and give the relations for the counterterms. All self-energies appearing in the following
will include the tadpole contributions. We will drop the suffix Σtad to simplify the notation.
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4.2.1. Mass and Field Renormalization

We start with the fermions. In the following, we will split up the fermionic fields into left-
handed and right-handed parts via fL/R = PL/Rf , with the projection operators PL/R given
by

PL/R =
1 ∓ γ5

2
. (4.24)

We introduce the wave function renormalization constants δZ for the left- and right-handed
parts separately. Thus, we obtain

f0,L =
√
ZfLfL ≈

(
1 +

δZfL

2

)
fL , (4.25a)

f0,R =
√
ZfRfR ≈

(
1 +

δZfR

2

)
fR , (4.25b)

mf,0 = mf + δmf , (4.25c)

where again the label 0 denotes the bare mass terms and fields. We also have introduced a
mass counterterm δmf for the fermion mass mf . The δZ counterterms can, in general, be
matrices if mixing between the fermions is considered.

Next, we divide the fermion self-energy Σf
ij in left- and right-handed parts,

Σf
ij(p

2) = /pPLΣf,L
ij (p2) + /pPRΣf,R

ij (p2) + mf,iPLΣf,Ls
ij (p2) + mf,jPRΣf,Rs

ij (p2) , (4.26)

where we introduced indices i, j for the fermion generations and we also split up the part
proportional to the mass into a left- and right handed part, compared to [200] (similar to
our approach in Sec. 12.4. Applying OS conditions to the renormalized fermion self-energies
leads to the following conditions for the fermionic counterterms:

δmfi =
mfi

2
R̃e
(

Σf,L
ii (m2

fi
) + Σf,R

ii (m2
fi

) + Σf,Ls
ii (m2

fi
) + Σf,Rs

ii (m2
fi

)
)
, (4.27a)

δZfL
ij =

2

m2
fi
−m2

fj

R̃e
(
m2

fj
Σf,L
ij (m2

fj
) + mfimfjΣ

f,R
ij (m2

fj
) (4.27b)

+m2
fi

Σf,Ls
ij (m2

fj
) + m2

fj
Σf,Rs
ij (m2

fj
)
)
,

δZfR
ij =

2

m2
fi
−m2

fj

R̃e
(
m2

fj
Σf,R
ij (m2

fj
) + mfimfjΣ

f,L
ij (m2

fj
) (4.27c)

+mfimfjΣ
f,Ls
ij (m2

fj
) + mfimfjΣ

f,Rs
ij (m2

fj
)
)
,

δZfL
ii = −R̃eΣf,L

ii (m2
fi

) + Kf
i , (4.27d)

δZfR
ii = −R̃eΣf,R

ii (m2
fi

) + Kf
i , (4.27e)

Kf
i ≡ −m2

fi

∂

∂p2
R̃e
(

Σf,L
ii (p2) + Σf,R

ii (p2) (4.27f)

+Σf,Ls
ii (p2) + Σf,Rs

ii (p2)
)∣∣∣

p2=m2
fi

,

where R̃e indicates that the real part is only applied to the one-loop integrals, but not the
potentially complex couplings.
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Now, we move on to the gauge boson sector. Again, we write the bare fields and mass
terms (labelled with a 0) in terms of renormalized fields, renormalized masses and their
counterterms,

W±
0 ≈

(
1 +

δZW

2

)
W± , (4.28a)

m2
W,0 = m2

W + δm2
W , (4.28b)(

Z0

γ0

)
≈

1 +
δZZZ

2

δZZγ

2
δZγZ

2
1 +

δZγγ

2

(Z
γ

)
, (4.28c)

m2
Z,0 = m2

Z + δm2
Z . (4.28d)

Here we take into account that at one-loop level there can be mixing between the Z boson
and the photon.

Moreover, we split the gauge boson self-energy ΣV1V2
µν (V1, V2 = W,Z, γ) into a transverse (T)

and longitudinal (L) part,

ΣV1V2
µν (p2) = −

(
gµν −

pµpν
p2

)
ΣV1V2
T (p2) − pµpν

p2
ΣV1V2
L (p2) , (4.29)

Applying OS conditions on the renormalized self-energies, we obtain the following conditions
for the mass and field counterterms:

δm2
V = R̃eΣV V

T (m2
V ) (V = W,Z) , (4.30a)

δZW = −R̃e
∂ΣWW

T (p2)

∂p2

∣∣∣∣
p2=m2

W

, (4.30b)

(
δZZZ δZZγ

δZγZ δZγγ

)
=


−R̃e

∂ΣZZ
T (p2)

∂p2

∣∣∣∣
p2=m2

Z

2R̃e
ΣγZ
T (0)

m2
Z

−2R̃e
ΣγZ
T (m2

Z)

m2
Z

−R̃e
∂Σγγ

T (p2)

∂p2

∣∣∣∣
p2=0

 . (4.30c)

4.2.2. Renormalization of the Electric Charge

The remaining parameter we have to renormalize in the fermion and gauge boson sectors is
the electric charge e. Again, we introduce a counterterm δZe via

e0 = (1 + δZe)e . (4.31)

To obtain a prescription for the counterterm, the photon-electron-positron vertex is considered
in the so-called Thomson limit, where the external particles are on shell with vanishing
momentum transfer [85, 200]. This results in the relation

δZα(0)
e =

1

2

δΣT
γγ(p2)

∂p2

∣∣∣∣∣
p2=0

+
sW
cW

ΣT
γZ(0)

m2
Z

, (4.32)

for the counterterm δZe, with sW, cW being the sine and cosine of the weak mixing angle.

However, another issue arises, when light fermions are present in the model. The above
relation then depends on large logarithimic corrections (logm2

f ) from small fermion masses
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mf . To resolve this, we follow the approach in [212, 213]. In order to improve the perturbative
behaviour, the electromagnetic constant will be determined from the Fermi constant Gµ, via
the relation

αGµ =

√
2Gµm

2
W

π
(1 −

m2
W

m2
Z

) , (4.33)

which absorbs already parts of the radiative corrections. In order to avoid double counting,
they have to be removed from the counterterm via the relation

δZ
Gµ
e = δZα(0)

e − ∆r

2
, (4.34)

with ∆r defined as [200, 214]

∆r =
∂Σγγ

T (p2)

∂p2

∣∣∣∣
p2=0

−
c2W
s2W

(
ΣZZ
T (m2

Z)

m2
Z

−
ΣWW
T (m2

W )

m2
W

)
+

ΣWW
T (0) − ΣWW

T (m2
W )

m2
W

(4.35)

− 2
cW
sW

ΣγZ
T (0)

m2
Z

+
α

4πs2W

(
6 +

7 − 4s2W
2s2W

log c2W

)
.

This removes the terms that contain logarithmic terms with small fermion masses and thus
improves the perturbative behaviour of the counterterm.

4.3. Change of Renormalization Schemes

In this section, we briefly describe how to change from one renormalization scheme to an-
other. The important issue is that input parameters always have to be defined in a given
renormalization scheme. If another scheme is to be used, they also need to be converted to
the new prescription (cf. e.g. [215]).

To obtain a relation between two schemes, the idea is that the bare parameter λ0 is indepen-
dent of the chosen renormalization scheme and can be used to relate the parameter in scheme
R1 with the parameter expressed in scheme R2,

λR2 + δλR2 = λ0 = λR1 + δλR1 . (4.36)

We can solve for λR2 to obtain a relation on how to convert a parameter from scheme R1 to
R2,

λR2 = λR1 + δλR1 − δλR2 . (4.37)

It is important to note here, that the counterterms δλR1, δλR2 themselves depend on the
input parameters in the corresponding scheme. Thus, one can use this relation iteratively
to converge to the desired renormalization scheme or use it linearly, i.e. use only the input
parameters given in the input scheme and apply the relation once. This dependence on the
scheme of the input parameters in the counterterms is a higher-order effect and should be
small for a sufficient perturbative stability.



CHAPTER 5

Calculation of NLO Corrected Decay Widths in the CxSM

In this chapter, we describe the calculations of the LO and NLO Higgs decay widths for all
possible channels in the CxSM. We briefly mention the kinematics and generic formula of
two-body decays in Sec. 5.1, describe the LO Higgs decay widths that appear in the CxSM
(Sec. 5.2) and then move on to the NLO-corrected widths (Sec. 5.3). Finally, we also discuss
the inclusion of NLO2 terms in the scalar Higgs-to-Higgs decay in Sec. 5.4.

It should be noted that we only discuss here on-shell (OS) decays and electroweak corrections.
In the code implementation we also included off-shell decays into gauge bosons and the top
quark and quantum chromodynamics (QCD) corrections, that we took over from HDECAY

[216, 217] and SHDECAY [218]. For more details, see our description of the implementation in
Sec. 6.1 and the manuals of HDECAY and SHDECAY.

5.1. Kinematics and General Formulas for Two-Body Decays

In the following, we present the generic formulas for two-body decays (for a proper derivation,
see e.g. [85]). In order to calculate a decay width at a given order, the sum of all amplitudes
(denoted as A) has to be calculated. The following equations are then used to calculate the
partial decay width of the considered process at LO and NLO:

ΓLO
f1→f2f3 = S

λ(m2
1,m

2
2,m

2
3)

16πm3
1

∑
d.o.f

(
|ALO

f1→f2f3 |
2
)
, (5.1a)

ΓNLO
f1→f2f3 = ΓLO

f1→f2f3 + S
λ(m2

1,m
2
2,m

2
3)

16πm3
1

∑
d.o.f

(
2Re

[(
ALO

f1→f2f3

)∗ANLO
f1→f2f3

])
(5.1b)(

+Γreal
f1→f2f3

)
.

Here, the factor S is a symmetry factor, and in the case of identical final particle states

(f2 = f3) we have S =
1

2
, otherwise S = 1. If the initial (f1) or final state particles (f2, f3) are

charged and there appear massless particles in the loops (e.g. photons) then real corrections

have to be added as well (denoted as Γreal). With
∑
d.o.f

we symbolize the sum over all degrees
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of freedom (d.o.f.) in order to obtain the partial width, where we sum over polarization, spin
and colour of outgoing particles and average over them for ingoing particles. In our case, we
apply the loop expansion in the expression |A|2 to NLO and |ANLO|2 is a higher-order effect
and therefore neglected. It can become important, however, as will be discussed in Sec. 5.4.
We also use the Källén function λ(x, y, z),

λ(x, y, z) ≡
√

x2 + y2 + z2 − 2xy − 2xz − 2yz . (5.2)

Furthermore, in two-body decays with one ingoing momentum p1 and two outgoing momenta
p2 and p3 with momentum conservation,

p1 = p2 + p3 , (5.3)

we can express all scalar products in term of the masses mi (i = 1, 3) of the in- and outgoing
particles,

p2i = m2
i , (i = 1, 2, 3) , (5.4a)

p1 · p2 =
1

2
(m2

1 + m2
2 −m2

3) , (5.4b)

p1 · p3 =
1

2
(m2

1 −m2
2 + m2

3) , (5.4c)

p2 · p3 =
1

2
(m2

1 −m2
2 −m2

3) . (5.4d)

We will use these relations and Eqs. (5.1) in the following to derive the formulas for the
partial widths into the various decay channels.

5.2. Leading-Order Decay Widths in the CxSM

We now briefly describe the LO decay widths of the scalars h1 and h2 in the CxSM. First of
all, the radiative loop decays hi → gg and hi → γγ into gluons and photons are as in the SM,
but multiplied by an additional factor cos2 α or sin2 α (compare to Eq. (3.12)). The other
decay modes of the Higgs particles hi are decays into fermions f , scalars Φ or massive vector
bosons V . At LO, they can be written as (provided they are kinematically allowed)

ΓLO
hi→ΦΦ =

λ(m2
hi
,m2

Φ,m
2
Φ)

32πmhi

λ2
hiΦΦ , (5.5a)

ΓLO
hi→V V =

Sλ(m2
hi
,m2

V ,m
2
V )

64πmhi
m4

V

g2hiV V

(
m2

hi
− 4m2

hi
m2

V + 12m4
V

)
, (5.5b)

ΓLO
hi→ff =

Ncλ(m2
hi
,m2

f ,m
2
f )

8πmhi

g2hiff

(
1 − 4

m2
f

m2
hi

)
. (5.5c)

Here, Nc are the colour degrees of freedom (Nc = 3 for quarks and Nc = 1 for leptons), and

S = 1 for V = W and S =
1

2
for V = Z. We additionally have Φ = h1, A and f can be any

lepton or quark, but we only considered third generations of fermions and the charm quark.
The couplings ghiff and ghiV V are as in the SM with an additional factor, see Eq. (3.12). In
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iANLO = iAVC + iACT = hi

P1

P2

+ hi

P1

P2

Figure 5.1.: Feynman diagram topologies appearing for a generic decay process hi → P1P2 into
two particles P1 and P2 with the vertex corrections AVC and the counterterm contributions
ACT.

order to calculate the hi decays into scalars, we need the trilinear scalar couplings λ. They
are given as

λh1h1h1 = 3m2
h1

vSc
3
α + vs3α
vvS

, (5.6a)

λh1h1h2 =
(2m2

h1
+ m2

h2
)sαcα(vsα − vScα)

vvS
, (5.6b)

λh1h2h2 =
(m2

h1
+ 2m2

h2
)sαcα(vcα + vSsα)

vvS
, (5.6c)

λh2h2h2 = 3m2
h2

vc3α − vSs
3
α

vvS
, (5.6d)

λhiAA =


m2

h1
sα

vs
, i = 1

m2
h2
cα

vs
, i = 2

. (5.6e)

if we set α = 0 and decouple the h2 and A fields from the rest of the SM, we see that λh1h1h1

equals the SM trilinear couplings, given by λHSMHSMHSM
= 3m2

HSM
/v, where HSM is the SM

Higgs and mh1 = mHSM
. Similarly, in the limit α = π/2 we decouple h1 and A and λh2h2h2

equals the SM trilinear coupling and h2 plays the role of the SM Higgs HSM.

5.3. Next-to-Leading-Order Decay Widths in the CxSM

We now move on to the calculation of the NLO EW corrections to the h1 and h2 decays. The
amplitude ANLO of a given decay process at NLO can be split up into the sum of all virtual
vertex corrections AVC and the counterterm contributions ACT (see also Fig. 5.1),

ANLO = AVC + ACT . (5.7)

In principle, also leg corrections and leg counterterms contribute, but we use an on-shell
prescription for the mass and field renormalization counterterms. Therefore, they cancel out
exactly. If the final state particles are charged, and massless particles appear in the loops
(e.g. photons) real corrections have to be considered. They will be discussed in Sec. 5.3.1.

The virtual corrections AVC comprise all EW vertex corrections and potential tadpole con-
tributions as explained in Sec. 4.1. The vertex contributions for all decay channels can be
seen in Fig. 5.2. The counterterm amplitudes ACT for the considered decays of h1 and h2
comprise of the counterterm for the coupling δg/δλ and the field renormalization constants
δZ for the involved fields, and is given by

ACT
hi→ff = δghiff + ghnff

δZhnhi

2
+ ghiff

δZfL + δZfR

2
, (5.8a)

ACT
hi→V V = δghiV V + ghnV V

δZhnhi

2
+ ghiV V δZV V , (5.8b)
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(a) Generic diagrams for the vertex corrections to the fermionic decay hi → f̄f .
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(b) Generic diagrams for the vertex corrections to the decay into gauge bosons, hi → V V .
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(c) Generic diagrams for the vertex corrections to the scalar decays, hi → ΦΦ.

hi

F, S, V
P1

P2

(d) Tadpole corrections to a generic decay hi → P1P2 that have to be considered (if the corresponding
4-point vertex exists) due to our choice in the tadpole renormalization (see Sec. 4.1.1). P1, P2 can be
scalars or bosons.

Figure 5.2.: Generic diagrams for the vertex corrections to the different decay channels, where
F denotes a generic fermion, S = h1, h2, A a generic scalar and V a generic vector boson in
the loop, and we ignored possible generation indices. Diagrams containing ghost particles are
not shown but also have to be included in principle.
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hi
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P2

γ

hi

P1

P2

γ

Figure 5.3.: Feynman diagram topologies contributing to the real corrections at NLO for a
decay process hi → P1P2 of two particles P1 and P2, where P1, P2 are either charged fermions
or W bosons.

for the decays into fermions and bosons. The counterterm amplitudes for the hi → AA decays
(i = 1, 2) and the decay h2 → h1h1 read

ACT
hi→AA = δλhiAA + λhnAA

δZhnhi

2
+ λhiAAδZAA , (5.9a)

ACT
h2→h1h1

= δλh2h1h1 + λhnh1h1

δZhnhi

2
+ λhihmh1δZhmh1 , (5.9b)

Here, we implicitly sum over the indices n,m = 1, 2. The couplings themselves then have
to be expressed in terms of input parameters and the corresponding counterterms inserted.
Finally, the virtual corrections and the vertex counterterms are added, and Eq. (5.1b) is used
to calculate the NLO corrected decay width. We checked analytically and numerically that
our results are UV finite and gauge-independent. We applied all renormalization prescriptions
described in Chapter 4.

5.3.1. Real Corrections

In the case of charged particles in the initial or final state, these particles can emit photons
(see Fig. 5.3 for the Feynman diagrams contributing to these real corrections). Although
this additional final state particle results in a different final state configuration, the decay
width of this process at LO is at the same order in powers of the gauge couplings as the NLO
decay width. Moreover, these so-called real corrections are needed to cancel remaining IR
divergences in the NLO decay width arising from massless particles, i.e. the photon, appearing
in the loops. Therefore, only the NLO decay width including these real corrections results in
IR finite and therefore physically meaningful quantities (c.f. [200]).

Furthermore, we introduce an energy threshold ∆E and only account for soft photons with
an energy smaller than this threshold. We assume that the soft photons are not detected
in an experiment, and therefore these radiation processes cannot be distinguished from the
decay without additional radiation and should be added to the decay width of the considered
process. We refer to [200, 219] for more details and only give the result for the decay width
obtained from the real corrections.

The real corrections to a generic decay process hi → P1P2 with charged final state particles
P1, P2 are given by,

Γreal
hi→P1P2

= − Q2e2

2(2π)3
ΓLO(I22 + I33 − 2I23) , (5.10)
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with the LO decay width ΓLO, the electric charge e and the fraction Q of the charge that the
final state particles carry. The integrals I are defined as

Iii = 2π

(
log

4∆E2

λ2
+

pi,0
|pi|

log
pi,0 − |pi|
pi,0 + |pi|

)
, (5.11a)

Iij = 4π
pipj

(pi,0 + pj,0)|pi|
(5.11b)(

1

2
log

pi,0 + |pi|
pi,0 − |pi|

log
4∆E2

λ2
− Li2

(
2|pi|

pi,0 + |pi|

)
− 1

4
log2

pi,0 + |pi|
pi,0 − |pi|

)
.

Here, ∆E is the energy threshold as discussed, λ is the artificial photon mass introduced
to regularize the expression, and Li2 is the Spence function. We use the notation for our
momenta given in Eqs. (5.3) and (5.4) and for Iij we used the fact that pi = −pj and
pi,0 = pj,0 (for i, j = 2, 3). The result for these integrals was taken from [200].

5.4. Decay Widths in the CxSM including NLO2 Corrections

In the scalar decay h2 → h1h1 it can occur that the coupling λh1h1h2 vanishes, depending on
the chosen input parameters. Comparing with Eq. (5.6b) this is the case if

λh1h1h2 = 0 ⇒ tanα =
vS
v

. (5.12)

As a result, the LO amplitude ALO
h2→h1h1

vanishes and therefore we have

ALO
h2→h1h1

= 0 ⇒ ΓLO
h2→h1h1

= ΓNLO
h2→h1h1

= 0 . (5.13)

The LO and NLO partial widths are zero (although in this case it would be more sensible
to talk about tree-level and one-loop level for these partial widths, as LO should always
denote the first non vanishing contribution). Thus, we have to consider the next term in the
expansion, and we obtain

ΓNNLOapprox
h2→h1h1

= ΓLO
h2→h1h1

+ ΓNLO
h2→h1h1

+
λ(m2

h1
,m2

h2
,m2

h2
)

32πm3
h1

∣∣ANLO
h1→h2h2

∣∣2 , (5.14)

where the label NNLOapprox stands for the inclusion of the |ANLO|2 term but not the term(
2Re

[(
ALO

h1→h2h2

)∗ANNLO
h1→h2h2

])
, (5.15)

that would be of the same order. If the tree-level amplitude vanishes exactly, this term is also
zero, but it does contribute as soon as the coupling λh1h1h2 deviates from zero. This would
then entail, however, a full two-loop calculation, which we omitted and we only allowed for the
inclusion of the NLO2 contribution in the region of the parameter space where the trilinear
coupling λh1h1h2 vanishes.

Another detail we want to mention here is the following. When calculating the NLO2 contri-
bution with our setup of OS conditions, we only cancel the real part of the leg corrections,
but the loop integrals appearing there can develop imaginary branch cuts and therefore cor-
rections to the imaginary part of the NLO amplitude (that can also carry gauge dependencies
that are needed for a gauge-independent NLO amplitude). Thus far, this was no issue as only
the real part of the 1-loop amplitude was needed (as the tree-level amplitude is already real),
but now they have to be explicitly included at the NLO2 level.

We give a more detailed discussion of the behaviour close to the vanishing point of the trilinear
coupling in Sec. 6.5.



CHAPTER 6

Numerical Evaluation

After introducing the model, describing the calculation and the methods we used to obtain
our results, we can now move on to the implementation and the analysis of our findings.

In this chapter, we start with the description of the code that we developed to evaluate
the NLO corrected Higgs decay widths we calculated (Sec. 6.1). In Sec. 6.2, we describe
our setup and give some technical details on how we performed our calculations. Here,
we also describe how we obtained our parameter sample and how we applied constraints.
Furthermore, we analyze the EW corrections in Sec. 6.3, their typical sizes, the origins of
large corrections and the theoretical renormalizaton scheme uncertainty. We also discuss the
impact of NLO corrections on our parameter space in Sec. 6.4. At the end, we illustrate the
NLO2 contributions in the case of vanishing tree-level amplitudes for the h2 → h1h1 decay
(Sec. 6.5).

6.1. The Code EWsHDECAY

We implemented our calculations into a new code called EWsHDECAY. As its foundation we used
the code sHDECAY [218], updated it with the newest version of HDECAY 6.61 [216, 217] and
then implemented our NLO corrections into it. The code HDECAY has already implemented all
the Higgs decays, including QCD corrections (which are the same in our model) and off-shell
decays into off-shell top quarks or off-shell gauge bosons for the SM. We could thus take
over the QCD corrections and also the off-shell decays, which are used if the corresponding
two-body decays are not kinematically allowed. They are then calculated without EW correc-
tions. Otherwise, we use the on-shell decays and our EW corrections to the two-body decay
processes.

The code is available at: https://github.com/fegle/ewshdecay/

In the following, we give a brief description of how to use EWsHDECAY, by giving a sample input
file and discussing the input options. For more information, see [73] and the information given
on the website of the code.

A sample input file may look like the following (only the parts relevant for our calculation
are shown):

https://github.com/fegle/ewshdecay/
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1 ********************** real or complex singlet Model *********************

2 Singlet Extension: 1 - yes , 0 - no (based on SM w/o EW corrections)

3 Model: 1 - real broken phase , 2 - real dark matter phase

4 3 - complex broken phase , 4 - complex dark matter phase

5 isinglet = 1

6 icxSM = 4

7

8 ...

9

10

11 *** complex singlet dark matter phase ***

12 alph1 = 0.2D0

13 m1 = 125.09 D0

14 m2 = 270.D0

15 m3 = 60.D0

16 vs = 300.D0

17 a1 = 0.0D0

18 ******************** EW Corrections ********************

19 ** Attention: This can only be used for the complex dark matter phase (icxSM

=4) of the CxSM with a1=0 **

20 **** ielwcxsm = 0 LO , = 1 include NLO corrections

21 ielwcxsm = 1

22 **** ren. scheme: vsscheme = 1 pd , = 2 ZEM , pdprocess = 1 h1 ->AA , =2 h2 ->AA ,

alpha_mix =1 OS , =2 pstar

23 vsscheme = 2

24 pdprocess= 2

25 ralph_mix= 1

26 **** IR parameter - DeltaE is the detector resolution (in GeV);

27 DeltaE = 10.0D0

28 **** NNLO approx: NNLOapprox =1, add NLO^2 term to h2h1h1 decay width if |tan(

alpha)*(v/vs) -1|<= deltaNNLO

29 NNLOapp = 0

30 deltaNNLO= 0.05D0

31 **** Parameter conversion , change input parameters vS and alpha accordingly ,

if given scheme above is not the specified input scheme

32 **** Paramcon = 0 no parameter conversion , =1 do parameter conversion

33 **** Standard scheme: stdvs = 1 pd , = 2 ZEM , stdproc = 1 h1 ->AA , =2 h2 ->AA ,

stdalpha =1 OS , =2 pstar

34 Paramcon = 0

35 stdvs = 2

36 stdproc = 2

37 stdalpha = 1

We will go through all options and their usage. First, with isinglet=1 the mode to use the
singlet extensions of the SM for the calculation of the Higgs decays is activated, and with
icxSM=4 our version of the model is chosen (in principle all the other singlet extensions from
sHDECAY haven been taken over as well, but no NLO corrections are implemented for them).
Next, the input parameters can be specified, where alph1 is the mixing angle α, m1 and m2

are the Higgs masses mh1 and mh2 , m3 is the DM mass mA and vs is the singlet VEV vS .
One has to be aware that in the original sHDECAY version a slightly different CxSM model
was implemented, where a1 is in general non-zero, but in our model it has to be set to zero.
Thus, if a1 is not given as zero, then the code gives out a warning and does not calculate the
NLO corrections.

The switch ielwcxsm turns on or off the NLO corrections, and with the variables vsscheme,
pdprocess and ralph_mix the chosen renormalization schemes for vS and α can be specified.
By setting vsscheme to 1 or 2 the process-dependent scheme for vS is used for on-shell decays
or at zero external momentum (ZEM), respectively. With pdprocess the process to be used
for this scheme is selected, 1 (2) for h1 → AA (h2 → AA), see also Sec. 4.1.3. For α we can
choose between the OS-pinched or the p∗ scheme (see also Sec. 4.1.2).
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Table 6.1.: The scan ranges for the input parameters of the CxSM, where ms is the scalar
mass that is not the 125 GeV Higgs. Taken from [73].

Parameter Range

Lower Upper

ms 30 GeV 1000 GeV

mA 10 GeV 1000 GeV

vS 1 GeV 1000 GeV

α −1.57 1.57

Table 6.2.: The SM input parameters used for the calculation. They were taken from the
original HDECAY input file. The input parameters mb and mc denote the MS quark masses at
the given scale. The other fermion masses not given are set to zero. We set the CKM matrix
to unity. Table taken from [73].

SM parameter Value

mZ 91.153 48 GeV

mW 80.3579 GeV

mh125 125.09 GeV

mτ 1.776 82 GeV

mb(mb) 4.18 GeV

mc(3 GeV) 0.986 GeV

mt 172.5 GeV

Gµ 1.166 378 7 × 10−5 GeV−2

The variable DeltaE sets the value for the energy cutoff ∆E in the real corrections (see also
Sec. 5.3.1).

If NNLOapp is set to 1, then the NNLOapprox decay width is taken into account for the
Higgs-to-Higgs decays (as discussed in Sec. 5.4), if the relation

| tan(α)
v

vS
− 1| ≤ deltaNNLO , (6.1)

is fulfilled, for a chosen value of deltaNNLO, i.e. the NLO2 contribution to the decay width is
only considered in the vicinity of where the coupling λh1h1h2 vanishes.

If Paramcon is set to one, then a parameter conversion is performed where stdvs, stdproc
and stdalpha define the input scheme for the vS and α renormalization (as described above),
and the parameters are transformed into the schemes defined by vsscheme, pdprocess and
ralph_mix. The transformation is performed as discussed in Sec. 4.3.

6.2. Setup and Parameter Scan

Here we give some technical details on how the calculation was performed, what values we
used for our input parameters and how we obtained viable parameter points (cf. [178]).

For the computation of the LO and NLO decay widths, a model file was generated with
the Mathematica package SARAH 4.14.2 [220–223]. The tools FeynArts 3.10 [224] and
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Figure 6.1.: The DM mass mA plotted against the scalar mass ms with scenario I (h1 = h125)
highlighted in red and scenario II (h2 = h125) highlighted in blue. Figure taken from [73].

FeynCalc 9.3.1 [225–228] were used to obtain Feynman diagrams and then mathematical
expressions for the desired partial widths. The final results were implemented into the code
EWsHDECAY (see Sec. 6.1). The loop integrals that appear in the calculation are evaluated
using LoopTools 2.15 [229, 230].

To obtain viable parameter points, we used the code ScannerS [42, 179]. This program pack-
age randomly scans the input parameters of a specified model in a certain range and checks
generated parameter points against theoretical and experimental constraints (cf. Sec. 3.2).
The constraints from Higgs searches and measurements were obtained from the tools Higgs-
Bounds [183–187] and HiggsSignals [188, 189]. The DM relic density was calculated with
the program MicrOmegas [190–192]. These programs were linked to ScannerS.

As mentioned in Sec. 3.2, the tree-level cross section for direct detection is negligible in the
CxSM [193, 194]. Therefore, we took over results from [195, 196] for the loop-corrected DM-
nucleon spin-independent cross section and compared them with experimental limits [197–
199].

We used the code BSMPT 2.6 [231–233] to check if our chosen minimum state is also stable
at NLO, i.e. including higher-order corrections to the effective potential. No parameter point
that we obtained in our sample was rejected by BSMPT. Additionally, we checked if we can have
a strong first-order EW phase transition (SFOEWPT), which is needed for EW baryogenesis,
as one of the Sakharov conditions [22]. No point in our sample had a SFOEWPT.

We also applied an additional cut on the Higgs masses, i.e. we demanded that the Higgs masses
mh1 and mh2 differ by more than 2.5 GeV in order to suppress interfering Higgs signals, which
would require a more special treatment in the analysis.
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Figure 6.2.: The input parameters α and vS plotted against each other in the upper row and
mS versus vS in the lower row, divided into scenario I (left, red points) with h1 = h125 and
scenario II (right, blue points) with h2 = h125. Figure taken from [73].

We applied resonant di-Higgs constraints, where we followed the prescription given in Sec. 2.3
(cf. [150]). We used NNLO single Higgs production cross sections for the heavy Higgs h2
via gluon fusion by using the interpolation tables in ScannerS which were calculated with
SusHi [234–236] and LO branching ratios, BR(h2 → h1h1), to calculate the resonant di-Higgs
production cross sections (in Sec. 6.4 we will discuss the impact of NLO branching ratios
when applying these limits). We compared our obtained values with experimental limits into
various final states [165–177].

In total, we scanned for 2 million parameter points. The scan ranges for all input parameters
are given in Tab. 6.1, the SM input parameters are given in Tab. 6.2. These points were
checked against all constraints explained above.

In the following, we will split the parameter sample into two parts. The parts are classified
by the 125 GeV Higgs mass, i.e. if the detected Higgs (denoted as h125) with this mass is the
lighter or the heavier Higgs in our model. We thus label points with mh1 = mh125 scenario I,
where we have a second Higgs mh2 heavier than the 125 GeV Higgs. Points with mh2 = mh125

we attribute to scenario II, where we have a second Higgs mh1 lighter than the 125 GeV Higgs.

To give an overview over the allowed parameter space, we show some scatter plots where we
display two input parameters against each other. These can be seen in Figs. 6.1 and 6.2. In
Fig. 6.1 we show the correlation between the DM mass mA and the scalar mass ms, which is
defined as the scalar Higgs mass mhi

that is not the 125 GeV Higgs mass. We can see that for
heavier masses there is no restriction, whereas for low masses the DM mass has to be close to
either half the 125 GeV Higgs mass, or half the ms mass. The reason is that for low masses the
annihilation of DM into gauge bosons via the Higgs portal coupling is kinematically closed,
and only the decay channel into bottom quark pairs (and lighter fermions) is available. Thus,
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Figure 6.3.: The relic density Ωch
2 plotted against the potential parameter δ2 with the mini-

mum of the quantities (2mA −mhi
)/mA, i = 1, 2 in colour code.

in order to reduce the obtained relic density below the observed value, the cross section needs
to be enhanced, which can be achieved by choosing the DM mass close to half of one of the
other scalar masses and thus resonantly enhancing the cross section and reducing the relic
density.

In Fig. 6.2 (upper row), we display the input values α and vS against each other. We see that
the mixing angle is either restricted to values close to 0 in scenario I or close to ±π/2. The
reason is that the h125 couplings to the SM are well known, and as can be seen in Eq. (3.12),
they scale with cosα in scenario I and sinα in scenario II, thus restricting α close to 0 or
±π/2. For small values of vS we have some outliers where the mixing angle can be larger (or
further away from ±π/2). For these points, the masses ms and mh125 are close to each other,
and HiggsBounds and HiggsSignals allow for larger mixing angles if the signals of the two
Higgs particles overlap.

In Fig. 6.2 (lower row), we also see that ms and vS are correlated and large masses with small
vS are forbidden. This is due to the perturbative unitarity constraints that relate ms and vS
(for more details, see [178]).

Next, in Fig. 6.3 we plot the relic density Ωch
2 of all generated parameter points against

the potential parameter δ2 (see Eq. (3.14c)). We can see that we can find parameter points
obtaining any value for the relic density, up to the observed value of (Ωch

2)obsDM = 0.120±0.001
[11]. Furthermore, we see that for large δ2 the relic density decreases, which is expected as
it is the strength of the Higgs portal coupling, and thus all DM interactions with the Higgs
bosons scale with δ2 which results in a smaller relic density for larger couplings. An exception
to this rule are the points with a small (2mA − mhi

)/mA (i = 1, 2) ratio. Here, as already
mentioned, the DM annihilation cross section is resonantly enhanced, thus the parameter
points are less dependent on δ2.
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Figure 6.4.: The effective spin-independent DM nucleon scattering cross section (fAA · SIσ)
plotted against the DM mass for the two scenarios (scenario II: left, scenario I: right) with
the scalar mass ms in colour code. The limits from XENON1T [197] and LUX-ZEPLIN [199]
are given by the dashed and full lines, respectively. The neutrino floor is indicated as the
grey shaded area. Taken from [73].

Next, we discuss the direct detection constraints. First we define the quantity

fAA =
(Ωch

2)A
(Ωch2)obs

, (6.2)

i.e. the fraction of the relic density of a given parameter point calculated in our model and the
observed relic density. In Fig. 6.4, the calculated effective spin-independent scattering cross
section fAA ·SIσ is plotted against the DM mass mA. We see that most of our points lie well
below the current experimental limits (only a few points were rejected by direct detection
constraints), and the majority of points are even below the neutrino floor and will not be
detectable by direct detection experiments. This emphasizes complementary search strategies,
for example collider experiment searches, to explore regions of the parameter space that are
difficult to detect or rule out with direct detection experiments. Therefore, precise theoretical
predictions for observables at collider experiments, e.g. decay widths and branching ratios,
are necessary to be able to compare with increasing experimental accuracy.

In Fig. 6.5 we depict the resonant di-Higgs constraints, which we applied on our parameter
sample, where we only show the most stringent limits [174–177]. We see that the current
experiments are already sensitive to our set of input parameters, and several points are
excluded by applying the experimental limits. It is important to note, however, that multiple
points are not rejected that lie above experimental limits. They are not rejected because their
total heavy Higgs width exceeds 5 %, and we do not apply the resonant constraints as they
use a narrow width approximation, which, in this case, is no longer valid (cf. Sec. 2.3 and
[150]).

Considering non-resonant constraints, we can compare upper limits on the trilinear couplings,
which are given in the κλ framework, i.e. the trilinear λh125h125h125 coupling normalized to
the SM value. The limits are κλ ∈ [−1.4, 6.1] by ATLAS [164] and κλ ∈ [−1.24, 6.49] by
CMS [98]. In our sample we find the ranges κλ ∈ [0.55, 1.10] for scenario I (i.e. h1 = h125)
and κλ ∈ [0.15, 1.21] for scenario II (i.e. h2 = h125). We are therefore still far away from
experimental limits, and moreover, we cannot achieve negative trilinear couplings. We remark
that for a more precise study one would have to calculate full di-Higgs cross section values,
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Figure 6.5.: The single heavy Higgs production cross section via gluon fusion (σ(gg → h2))
times branching ratio into two SM-like 125 GeV Higgs bosons (BR(h2 → h1h1)) for all param-
eter points (in blue). Additionally, the di-Higgs constraints into various final states [174–177]
are indicated by the dashed lines. On the left we see all points before the constraints were
applied, and on the right we see all remaining points after applying the constraints. The SM
di-Higgs cross section value is also indicated on the y-axis. For the SM cross section, the
NNLO FTapprox value was taken from [117].

select non-resonant points and compare them with experimental limits on the cross section.
Since our trilinear couplings (and the Yukawa couplings) are already quite constrained, we
do not expect large deviations from our above analysis.

6.3. Size and Impact of the Electroweak NLO Corrections

We now turn to the discussion of the electroweak NLO corrections to Higgs decays in the
CxSM. First, we define the relative corrections δEW(hi → XX) as

δEW(hi → XX) =
ΓNLO
hi→XX − ΓLO

hi→XX

ΓLO
hi→XX

, (6.3)

with a generic final state XX and the decay widths Γ of a given decay process hi → XX (i =
1, 2) at LO and NLO, respectively. We use the following convention to label the combination of
schemes which we used. ZEM is the ZEM scheme, and OS is the process-dependent scheme,
used for the renormalization of vS . With proc1, we label the process h1 → AA and with
proc2, the process h2 → AA which is used in the ZEM or process-dependent scheme. We
label the renormalization of α either with OS or with p∗ for the OS-pinched or the p∗-pinched
scheme, respectively. Thus, OSproc1-p∗ would stand for the process-dependent scheme with
h1 → AA and OS states used for the renormalization of vS and the p∗-pinched scheme used
for the renormalization of α. The definitions of all schemes are given in Chapter 4.
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Table 6.3.: Relative NLO corrections δEW(hi → XX) for scenario I for all decay channels and
renormalization schemes. Taken from [73].

OSproc1-OS OSproc1-p∗ OSproc2-OS OSproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.48 % 0.0 % −1.43 % 0.0 % −4.68 % 0.0 % −4.82 % 0.0 %

h1 → bb −1.44 % 0.0 % −1.39 % 0.0 % −4.64 % 0.0 % −4.78 % 0.0 %

h1 → ττ −4.64 % 0.0 % −4.59 % 0.0 % −7.84 % 0.0 % −7.98 % 0.0 %

h1 → AA 0.0 % 0.0 % 0.0 % 0.0 % −2.1 % 6.76 % −2.24 % 7.2 %

h2 → cc −9.62 % 0.0 % −10.0 % 0.0 % −10.6 % 19.64 % −10.95 % 24.99 %

h2 → bb −9.18 % 4.85 % −9.55 % 5.32 % −10.16 % 19.71 % −10.51 % 25.06 %

h2 → ττ −16.31 % 0.0 % −16.76 % 0.0 % −19.01 % 16.39 % −19.47 % 21.74 %

h2 → tt −6.15 % 5.46 % −6.1 % 6.1 % −6.15 % 11.04 % −6.1 % 10.91 %

h2 → WW −8.36 % 10.7 % −8.36 % 10.92 % −8.36 % 20.92 % −8.36 % 22.95 %

h2 → ZZ −2.27 % 5.69 % −2.18 % 6.54 % −2.27 % 13.41 % −2.18 % 14.64 %

h2 → h1h1 −14.15 % 10.64 % −14.04 % 10.55 % −99.39 % >100 % −98.24 % >100 %

h2 → AA −6.76 % 2.1 % −7.2 % 2.24 % 0.0 % 0.0 % 0.0 % 0.0 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −4.68 % −0.93 % −4.82 % −0.66 % −4.68 % −0.93 % −4.82 % −0.66 %

h1 → bb −4.64 % −0.89 % −4.78 % −0.62 % −4.64 % −0.89 % −4.78 % −0.62 %

h1 → ττ −7.84 % −4.08 % −7.98 % −3.82 % −7.84 % −4.08 % −7.98 % −3.82 %

h1 → AA −3.51 % 5.73 % −3.51 % 5.73 % −4.62 % 9.49 % −5.0 % 9.94 %

h2 → cc −99.7 % 19.64 % −99.77 % 24.99 % −99.7 % 19.64 % −99.77 % 24.99 %

h2 → bb −99.94 % 19.71 % −99.57 % 25.06 % −99.94 % 19.71 % −99.57 % 25.06 %

h2 → ττ −99.31 % 16.39 % −98.96 % 21.74 % −99.31 % 16.39 % −98.96 % 21.74 %

h2 → tt −99.28 % 11.04 % −99.11 % 10.91 % −99.28 % 11.04 % −99.11 % 10.91 %

h2 → WW −99.6 % 20.92 % −99.59 % 22.95 % −99.6 % 20.92 % −99.59 % 22.95 %

h2 → ZZ −99.89 % 13.41 % −99.76 % 14.64 % −99.89 % 13.41 % −99.76 % 14.64 %

h2 → h1h1 −99.95 % >100 % −100.0 % >100 % −99.92 % >100 % −99.88 % >100 %

h2 → AA −100.0 % 5.64 % −100.0 % 5.82 % −15.22 % 9.08 % −15.22 % 9.08 %

In Tabs. 6.3 and 6.4 we summarize the minimal and maximal sizes of the EW corrections
that we obtained for each decay channel and each renormalization scheme. Here, we did
not convert the input parameters from one scheme to another but assumed that the input
parameters were given in the chosen scheme. Thus, the values for each renormalization scheme
should not be compared but considered individually. We also rejected relative EW corrections
that were smaller than −100 %.

We see that many decay channels have relatively small to medium size corrections (up to
25 %) which is expected, as EW corrections should not be too large compared to the LO
result. There are, however, several decay channels in various renormalization schemes that
have very large EW corrections, and these need to be explained. Moreover, only the scalar
decays depend on vS as input at LO (since the couplings to SM particles only scale with cosα
or sinα, see Eqs. (3.12)). Thus, the other decay channels give the same result for both the
process-dependent or ZEM scheme. The ZEM scheme, however, can be used for all parameter
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Table 6.4.: Relative NLO corrections δEW(hi → XX) for scenario II for all decay channels
and renormalization schemes. Taken from [73].

OSproc1-OS OSproc1-p∗ OSproc2-OS OSproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.31 % 6.81 % −1.47 % 2.14 % −49.12 % 27.99 % −48.25 % 38.5 %

h1 → bb −1.29 % 6.02 % −1.67 % 0.82 % −49.17 % 27.17 % −48.3 % 37.37 %

h1 → ττ −4.4 % 5.31 % −4.47 % 1.61 % −52.03 % 26.53 % −51.15 % 37.54 %

h1 → AA 0.0 % 0.0 % 0.0 % 0.0 % −5.57 % 3.63 % −1.24 % 5.2 %

h2 → cc −1.42 % 0.0 % −1.42 % 0.0 % −1.44 % 0.0 % −1.43 % 0.0 %

h2 → bb −1.38 % 0.0 % −1.38 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 %

h2 → ττ −4.58 % 0.0 % −4.57 % 0.0 % −4.59 % 0.0 % −4.59 % 0.0 %

h2 → h1h1 −10.61 % 46.48 % −10.76 % 46.52 % −11.64 % >100 % −11.71 % >100 %

h2 → AA −3.63 % 5.57 % −5.2 % 1.24 % 0.0 % 0.0 % 0.0 % 0.0 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −49.12 % 29.13 % −48.25 % 38.5 % −49.12 % 29.13 % −48.25 % 38.5 %

h1 → bb −49.17 % 28.29 % −48.3 % 37.37 % −49.17 % 28.29 % −48.3 % 37.37 %

h1 → ττ −52.03 % 27.73 % −51.15 % 37.54 % −52.03 % 27.73 % −51.15 % 37.54 %

h1 → AA 0.0 % 7.08 % 0.0 % 7.08 % −3.03 % 8.13 % −0.54 % 9.7 %

h2 → cc −10.96 % −1.35 % −10.57 % −1.35 % −10.96 % −1.36 % −10.57 % −1.35 %

h2 → bb −10.92 % −1.32 % −10.53 % −1.31 % −10.92 % −1.32 % −10.53 % −1.31 %

h2 → ττ −14.11 % −4.51 % −13.73 % −4.5 % −14.11 % −4.51 % −13.73 % −4.5 %

h2 → h1h1 −72.49 % >100 % −58.37 % >100 % −30.3 % >100 % −30.29 % >100 %

h2 → AA −52.57 % 8.79 % −47.71 % 4.94 % −40.94 % 5.82 % −40.94 % 5.82 %

points, whereas the OS process-dependent scheme can only be used if the decay chosen for
the renormalization is kinematically allowed. Therefore, the sample used for the results with
an OS renormalization is smaller, and the minimum and maximum value can be different
compared to the ZEM scheme, even if the scheme change itself does not have an impact on
specific decays. Furthermore, in scenario II, the decay channels into WW , ZZ and tt are
kinematically not allowed, since we only consider on-shell decays.

The large corrections have several origins that will be explained in the following. First, we see
that in the process-dependent scheme the EW corrections are in general smaller than in the
ZEM scheme. The reason for this is because in the ZEM scheme we do not have kinematic
restrictions on the scalar masses and we can have threshold effects that can increase the size
of the counterterms and thus of the NLO corrections significantly. More precisely, if the
difference 2mA − mhi

is small but positive (thus the process-dependent scheme cannot be
applied), the integral DB0(m2

hi
,m2

A,m
2
A) (which shows up in the δZhihi

counterterms) has a
discontinuity, which can lead to large corrections.

Another reason for large corrections is that the scalar couplings can become large. Although
we apply the perturbative unitarity constraints on the quartic couplings of the Higgs poten-
tial (cf. Sef. 3.2) the quartic couplings can still be larger than 4π (and therefore also the
trilinear couplings appearing in the decay widths), which is often used as an upper limit for
perturbativity. Thus, these large couplings can lead to large corrections. As can be seen in
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Table 6.5.: Relative NLO corrections δEW(hi → XX) for scenario I for all decay channels and
renormalization schemes, after additional cuts were applied on the parameter space. Taken
from [73].

OSproc1-OS OSproc1-p∗ OSproc2-OS OSproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.48 % 0.0 % −1.43 % 0.0 % −1.58 % 0.0 % −1.49 % 0.0 %

h1 → bb −1.44 % 0.0 % −1.39 % 0.0 % −1.54 % 0.0 % −1.45 % 0.0 %

h1 → ττ −4.64 % 0.0 % −4.59 % 0.0 % −4.74 % 0.0 % −4.64 % 0.0 %

h1 → AA 0.0 % 0.0 % 0.0 % 0.0 % −2.1 % 6.27 % −2.24 % 5.89 %

h2 → cc −9.62 % 0.0 % −10.0 % 0.0 % −10.6 % 5.95 % −10.95 % 8.45 %

h2 → bb −9.18 % 3.96 % −9.55 % 4.03 % −10.16 % 6.58 % −10.51 % 8.56 %

h2 → ττ −16.31 % 0.0 % −16.76 % 0.0 % −17.1 % 2.5 % −17.69 % 5.0 %

h2 → tt −6.05 % 5.32 % −6.1 % 5.2 % −6.05 % 7.28 % −6.1 % 6.9 %

h2 → WW −8.3 % 10.7 % −8.36 % 10.92 % −8.3 % 11.75 % −8.36 % 12.24 %

h2 → ZZ −2.16 % 5.65 % −2.18 % 5.59 % −2.16 % 8.67 % −2.18 % 8.97 %

h2 → h1h1 −6.35 % 6.13 % −6.7 % 5.41 % −54.96 % 10.88 % −54.18 % 10.53 %

h2 → AA −6.27 % 2.1 % −5.89 % 2.24 % 0.0 % 0.0 % 0.0 % 0.0 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.58 % −1.15 % −1.49 % −1.06 % −1.58 % −1.15 % −1.49 % −1.06 %

h1 → bb −1.54 % −1.11 % −1.45 % −1.02 % −1.54 % −1.11 % −1.45 % −1.02 %

h1 → ττ −4.74 % −4.31 % −4.64 % −4.21 % −4.74 % −4.31 % −4.64 % −4.21 %

h1 → AA −2.45 % 4.47 % −2.45 % 4.47 % −4.62 % 4.72 % −5.0 % 4.57 %

h2 → cc −17.65 % 5.95 % −18.0 % 8.45 % −17.65 % 5.95 % −18.0 % 8.45 %

h2 → bb −12.93 % 6.58 % −13.33 % 8.56 % −12.93 % 6.58 % −13.33 % 8.56 %

h2 → ττ −28.84 % 2.5 % −29.19 % 5.0 % −28.84 % 2.5 % −29.19 % 5.0 %

h2 → tt −18.96 % 7.28 % −18.95 % 6.9 % −18.96 % 7.28 % −18.95 % 6.9 %

h2 → WW −21.15 % 11.75 % −21.14 % 12.24 % −21.15 % 11.75 % −21.14 % 12.24 %

h2 → ZZ −15.01 % 8.67 % −15.0 % 8.97 % −15.01 % 8.67 % −15.0 % 8.97 %

h2 → h1h1 −49.8 % 89.17 % −49.98 % 88.84 % −55.45 % 11.58 % −54.67 % 11.58 %

h2 → AA −99.98 % 5.64 % −99.99 % 5.82 % −15.22 % 6.17 % −15.22 % 6.17 %

the Eqs. (5.6), the couplings become large if vS is chosen small compared to the scalar masses
mhi

(i = 1, 2).

Another fact to consider is the interplay between the various applied constraints. They can
already reject points that would otherwise lead to large corrections (coming from the above
described origins), and thus only for certain scenarios and renormalization schemes do we
observe large corrections in the Tabs. 6.3 and 6.4.

The decay channel h2 → h1h1 is more intricate. We already mentioned that the LO decay
width of this process can vanish (see Sec. 5.4). Thus, in the region of parameter space where
the coupling vanishes, the NLO corrections can become as large or even larger than the LO
contribution. Moreover, as in the previous cases, large couplings and threshold effects can
lead to large NLO corrections.
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Table 6.6.: Relative NLO corrections δEW(hi → XX) for scenario II for all decay channels and
renormalization schemes, after additional cuts were applied on the parameter space. Taken
from [73].

OSproc1-OS OSproc1-p∗ OSproc2-OS OSproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.31 % 5.31 % −1.34 % 2.14 % −1.31 % 12.78 % −1.34 % 19.76 %

h1 → bb −1.29 % 4.45 % −1.32 % 0.82 % −2.77 % 11.92 % −1.32 % 18.51 %

h1 → ττ −4.4 % 3.93 % −4.43 % 1.61 % −4.4 % 11.39 % −4.43 % 18.97 %

h1 → AA 0.0 % 0.0 % 0.0 % 0.0 % −4.67 % 1.01 % −1.24 % 1.52 %

h2 → cc −1.42 % 0.0 % −1.42 % 0.0 % −1.44 % 0.0 % −1.43 % 0.0 %

h2 → bb −1.38 % 0.0 % −1.38 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 %

h2 → ττ −4.58 % 0.0 % −4.57 % 0.0 % −4.59 % 0.0 % −4.59 % 0.0 %

h2 → h1h1 −10.61 % 46.48 % −10.76 % 46.52 % −11.64 % >100 % −11.71 % >100 %

h2 → AA −1.01 % 4.67 % −1.52 % 1.24 % 0.0 % 0.0 % 0.0 % 0.0 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

Min Max Min Max Min Max Min Max

h1 → cc −1.31 % 12.78 % −1.34 % 19.76 % −1.31 % 12.78 % −1.34 % 19.76 %

h1 → bb −2.77 % 11.92 % −1.32 % 18.51 % −2.77 % 11.92 % −1.32 % 18.51 %

h1 → ττ −4.4 % 11.39 % −4.43 % 18.97 % −4.4 % 11.39 % −4.43 % 18.97 %

h1 → AA 0.0 % 2.56 % 0.0 % 2.56 % −3.03 % 2.63 % −0.54 % 3.19 %

h2 → cc −5.64 % −1.35 % −5.54 % −1.35 % −5.64 % −1.36 % −5.54 % −1.35 %

h2 → bb −5.6 % −1.32 % −5.5 % −1.31 % −5.6 % −1.32 % −5.5 % −1.31 %

h2 → ττ −8.8 % −4.51 % −8.69 % −4.5 % −8.8 % −4.51 % −8.69 % −4.5 %

h2 → h1h1 −72.49 % >100 % −58.37 % >100 % −30.3 % >100 % −30.29 % >100 %

h2 → AA −17.37 % 5.76 % −12.06 % 4.02 % −13.53 % 2.84 % −13.53 % 2.84 %

Another feature that appears in the ZEM scheme is that the counterterm δvS in this scheme
increases if the difference between the dark matter mass mA and the scalar mass mhi

increases
(i = 1 if ZEMproc1 is chosen and i = 2 if ZEMproc2 is chosen, i.e. the difference between
mA and the mass of the initial state particle of the decay considered for the ZEM scheme).
This leads to large corrections if we choose to renormalize with the ZEM1 scheme (i.e. the
lighter Higgs mass) and go to large DM masses. Thus, the mass difference becomes large, and
in turn the NLO corrections to the decays hi → AA (i = 1, 2) and h2 → h1h1 can become
sizable (recall that only they depend on the vS renormalization).

To showcase our findings, we applied additional cuts to our parameter space to remove points
with large scalar couplings and threshold effects. Therefore, we applied the constraints

• |2mA −mhi
| > 9 GeV,

• |λ| < 4π,

where λ here stands for all the quartic couplings λhihjhkhl
, λhihjAA, λAAAA (i, j, k, l = 1, 2).

We then obtain the sizes for the NLO corrections given in the Tabs. 6.5 and 6.6. We see that
now only the decay channels h2 → h1h1 in several renormalization schemes and hi → AA
(i = 1, 2) in the ZEMproc1 scheme still have large relative corrections. They originate, as
explained, from the fact that the LO width can vanish for the decay h2 → h1h1 and the
ZEMproc1 scheme can lead to large corrections for large mass differences mA −mh1 .
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Table 6.7.: Relative corrections δEW and relative renormalization scheme uncertainties δren
for all decay channels and renormalization schemes for benchmark point BP1. The input
parameters α and vS are given in the corresponding renormalization scheme. Taken from
[73].

OSproc1-OS OSproc1-p∗ OSproc2-OS OSproc2-p∗

α 0.1654 0.1655 0.1654 0.1655

vS 439.21 GeV 439.37 GeV 444.64 GeV 444.64 GeV

δEW δren δEW δren δEW δren δEW δren

h1 → cc −1.4 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 %

h1 → bb −1.36 % 0.0 % −1.36 % 0.0 % −1.36 % 0.0 % −1.36 % 0.0 %

h1 → ττ −4.56 % 0.0 % −4.56 % 0.0 % −4.56 % 0.0 % −4.56 % 0.0 %

h1 → AA 0.0 % −3.01 % 0.0 % −3.01 % 2.44 % −0.64 % 2.37 % −0.71 %

h2 → cc −5.26 % 0.0 % −5.33 % −0.08 % −5.26 % 0.0 % −5.32 % −0.07 %

h2 → bb −1.23 % 0.0 % −1.3 % −0.07 % −1.23 % 0.0 % −1.3 % −0.07 %

h2 → ττ −14.16 % 0.0 % −14.22 % −0.08 % −14.15 % 0.0 % −14.22 % −0.08 %

h2 → tt −2.23 % 0.01 % −2.3 % −0.05 % −2.24 % 0.0 % −2.31 % −0.07 %

h2 → WW −0.27 % 0.01 % −0.34 % −0.06 % −0.28 % 0.0 % −0.35 % −0.07 %

h2 → ZZ 2.73 % 0.01 % 2.67 % −0.06 % 2.73 % 0.0 % 2.66 % −0.07 %

h2 → h1h1 0.72 % 0.25 % 0.66 % 0.19 % 0.52 % 0.05 % 0.46 % −0.01 %

h2 → AA −2.46 % −3.11 % −2.39 % −3.04 % 0.0 % −0.67 % 0.0 % −0.67 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

α 0.1654 0.1655 0.1654 0.1655

vS 447.05 GeV 447.21 GeV 446.14 GeV 446.14 GeV

δEW δren δEW δren δEW δren δEW δren

h1 → cc −1.4 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 % −1.4 % 0.0 %

h1 → bb −1.36 % 0.0 % −1.36 % 0.0 % −1.36 % 0.0 % −1.36 % 0.0 %

h1 → ττ −4.56 % 0.0 % −4.56 % 0.0 % −4.56 % 0.0 % −4.56 % 0.0 %

h1 → AA 3.51 % 0.4 % 3.51 % 0.4 % 3.11 % 0.0 % 3.03 % −0.07 %

h2 → cc −5.25 % 0.0 % −5.32 % −0.07 % −5.25 % 0.0 % −5.32 % −0.07 %

h2 → bb −1.23 % 0.0 % −1.3 % −0.07 % −1.23 % 0.0 % −1.3 % −0.07 %

h2 → ττ −14.15 % 0.0 % −14.22 % −0.08 % −14.15 % 0.0 % −14.22 % −0.08 %

h2 → tt −2.25 % 0.0 % −2.32 % −0.07 % −2.25 % 0.0 % −2.32 % −0.07 %

h2 → WW −0.28 % 0.0 % −0.35 % −0.07 % −0.28 % 0.0 % −0.35 % −0.07 %

h2 → ZZ 2.72 % 0.0 % 2.65 % −0.07 % 2.73 % 0.0 % 2.66 % −0.07 %

h2 → h1h1 0.44 % −0.03 % 0.37 % −0.1 % 0.47 % 0.0 % 0.41 % −0.06 %

h2 → AA 1.08 % 0.41 % 1.16 % 0.48 % 0.67 % 0.0 % 0.67 % 0.0 %

Next, we consider the theoretical renormalization scheme uncertainty. We use as an estimate
the relative difference between two renormalization schemes δren, which is defined as

δren =
Γb − ΓZEMproc2-OS

ΓZEMproc2-OS
, (6.4)
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Table 6.8.: Relative corrections δEW and relative renormalization scheme uncertainties δren
for all decay channels and renormalization schemes for benchmark point BP2. The input
parameters α and vS are given in the corresponding renormalization scheme. Taken from
[73].

OSproc2-OS OSproc2-p∗

α −1.5669 −1.5668

vS 23.74 GeV 24.49 GeV

δEW δren δEW δren

h1 → cc 14.45 % −4.09 % 8.4 % −9.16 %

h1 → bb 13.71 % −4.11 % 7.66 % −9.21 %

h1 → ττ 12.86 % −4.14 % 6.81 % −9.28 %

h2 → cc −1.38 % 0.0 % −1.38 % 0.0 %

h2 → bb −1.34 % 0.0 % −1.34 % 0.0 %

h2 → ττ −4.54 % 0.0 % −4.54 % 0.0 %

h2 → AA 0.0 % 47.22 % 0.0 % 47.22 %

ZEMproc1-OS ZEMproc1-p∗ ZEMproc2-OS ZEMproc2-p∗

α −1.5669 −1.5668 −1.5669 −1.5668

vS 21.58 GeV 21.58 GeV 20.46 GeV 21.21 GeV

δEW δren δEW δren δEW δren δEW δren

h1 → cc 17.4 % −1.61 % 10.74 % −7.19 % 19.33 % 0.0 % 11.11 % −6.88 %

h1 → bb 16.66 % −1.62 % 10.01 % −7.24 % 18.59 % 0.0 % 10.38 % −6.93 %

h1 → ττ 15.81 % −1.64 % 9.15 % −7.29 % 17.74 % 0.0 % 9.52 % −6.98 %

h2 → cc −1.38 % 0.0 % −1.38 % 0.0 % −1.38 % 0.0 % −1.38 % 0.0 %

h2 → bb −1.34 % 0.0 % −1.34 % 0.0 % −1.34 % 0.0 % −1.34 % 0.0 %

h2 → ττ −4.54 % 0.0 % −4.54 % 0.0 % −4.54 % 0.0 % −4.54 % 0.0 %

h2 → AA −18.93 % 19.35 % −25.59 % 9.55 % −32.07 % 0.0 % −29.83 % 3.3 %

where b is the label for the chosen new renormalization scheme and we always use the ZEM-
proc2-OS scheme as the standard input scheme. We also have to convert the input parameters
from the initial to the new scheme (see Sec. 4.3).

We selected two benchmark points to show examples for the sizes of the theoretical uncer-
tainties which can occur. The first benchmark point, BP1, has the input parameters:

BP1: mh1 = 125.09 GeV, mh2 = 590.48 GeV, mA = 61.93 GeV, vS = 446.13 GeV,
α = 0.1654 .

We summarized the changes in the input parameters dependent on the renormalization
scheme, the EW corrections δEW and the theoretical uncertainty δren for all decay channels
in Tab. 6.7. First of all, we see that the theoretical uncertainty is zero for the ZEMproc2-OS
scheme, which is our input scheme. Furthermore, the input parameters α and vS change only
slightly, which is also expected as the theoretical uncertainty for this benchmark point also
only amounts up to about 3 %. Moreover, the relative EW corrections are small and do not
exceed 15 %.

Additionally, we selected another benchmark point BP2 with the input parameters:

BP2: mh1 = 67.96 GeV, mh2 = 125.09 GeV, mA = 58.29 GeV, vS = 20.46 GeV, α = −1.5669 .
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We see that here vS is small compared to the scalar masses mh1 and mh2 and thus expect
large couplings and potentially large EW corrections. In Tab. 6.8 we summarize again the
relative EW corrections and the theoretical uncertainties for all decay channels. Since the
decay h1 → AA is kinematically not available for this benchmark point, we cannot use the
OSproc1 schemes.

We see that the relative EW corrections are relatively large, especially for the decay h2 → AA,
and also the theoretical uncertainty is large. We have to note, however, that in the OSproc2
decays we use the process h2 → AA for renormalization and thus the NLO width equals the
LO width. We then compare this LO result with the NLO width in the other scheme when we
compute δren for this change of renormalization schemes. Since the NLO corrections for this
decay are large, the theoretical uncertainty is also substantial. If we change to other ZEM
schemes, we see that the theoretical uncertainty can be large for the h2 → AA decay, but if
we only change the renormalization scheme for α (i.e. OS to p∗), we see that the theoretical
uncertainty is only around 3 %. Similarly, if we consider the h1 decays into SM fermions, we
see that the theoretical uncertainty is larger if we change the renormalization scheme for α.
Since these decays do not depend on the vS counterterm, this is to be expected.

To summarize, we can observe, that the theoretical uncertainties are of small or moderate
size, if the EW corrections are also small or moderate, but if the EW corrections turn large,
the theoretical scheme uncertainties tend to increase as well.

6.4. Impact of NLO Corrections on the Parameter Space

We investigated the impact of NLO corrections on the allowed parameter space. In order
to achieve this, we linked our code EWsHDECAY with ScannerS to use the NLO decay widths
instead of the LO widths when checking for the implemented constraints described in Sec. 6.2.
Moreover, we also applied the resonant di-Higgs constraints with NLO branching ratios. We
used our generated parameter sample and rechecked for each point if it would be allowed with
this setup. For the choice of renormalization scheme, we used the ZEMproc2-OS scheme, as
it is one of the more stable schemes while also being applicable for the full parameter space
(in contrast to the OSproc schemes).

As a result, a small fraction of parameter points that were allowed using LO widths, are now
rejected at NLO. However, the overall shape of the parameter space did not change. We again
rejected large negative NLO corrections which would lead to negative decay widths, and used
then only the LO widths.

Next, we investigated the impact of NLO branching ratios on the di-Higgs constraints. If we
consider LO branching ratios, the benchmark point BP3, given by

BP3: mh1 = 125.09 GeV, mh2 = 260.96 GeV, mA = 257.36 GeV, vS = 87.61 GeV, α =
−0.312,

has the highest allowed resonant di-Higgs production cross section. The trilinear (κhhh) and
top-Yukawa (yt,hi

) couplings normalized to the SM couplings for this benchmark point are
given by

• κh1h1h1 = 0.781 , yt,h1 = 0.952 ,

• κh2h1h1 = 1.122 , yt,h2 = 0.307 .

The cross sections using the LO branching ratio or the NLO branching ratio in all schemes
that can be applied here are given by

• LO: σ(gg → h2 → h1h1) = 584.6 fb ,
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• ZEMproc1-OS: σ(gg → h2 → h1h1) = 559.8 fb (75.28 GeV ,−0.312) ,

• ZEMproc1-p∗: σ(gg → h2 → h1h1) = 559.9 fb (75.39 GeV ,−0.312) ,

• ZEMproc2-OS: σ(gg → h2 → h1h1) = 600.2 fb (87.61 GeV ,−0.312) ,

• ZEMproc2-p∗: σ(gg → h2 → h1h1) = 600.1 fb (87.60 GeV ,−0.312) ,

where we also give the values for vS and α in the respective scheme in brackets.

If we now consider NLO branching ratios to constrain our parameter space, a different bench-
mark point BP4, given by

BP4: mh1 = 125.09 GeV, mh2 = 262.25 GeV, mA = 337.43 GeV, vS = 101 GeV, α = −0.317,

has the highest cross section value. The trilinear and top-Yukawa couplings for this benchmark
point are given by

• κh1h1h1 = 0.783 , yt,h1 = 0.950 ,

• κh2h1h1 = 1.081 , yt,h2 = 0.312 .

The cross sections in all schemes are given by

• LO: σ(gg → h2 → h1h1) = 577.61 fb ,

• ZEMproc1-OS: σ(gg → h2 → h1h1) = 524 fb (85.59 GeV ,−0.317) ,

• ZEMproc1-p∗: σ(gg → h2 → h1h1) = 524.2 fb (85.72 GeV ,−0.318) ,

• ZEMproc2-OS: σ(gg → h2 → h1h1) = 579 fb (101.03 GeV ,−0.317) ,

• ZEMproc2-p∗: σ(gg → h2 → h1h1) = 578.8 fb (101.02 GeV ,−0.318) .

We see that BP3 has a higher cross section value in the ZEMproc2-OS scheme than BP4 (recall
that we use this scheme when we apply the constraints with NLO results), and therefore BP3

is excluded if we apply the constraints with NLO results.

Overall, we see that points can be allowed at LO but are above the experimental limits with
NLO branching ratios, and points can be rejected with LO branching ratios but be allowed
with NLO values. Moreover, we do not apply the constraints if the total width is too large
(as described in Sec. 2.3), but with the inclusion of the NLO corrections, a parameter point
can cross from one categorization to the other, meaning that the total width can decrease or
increase to be below or above our defined threshold, where we apply resonant constraints or
not.

To summarize, points with a resonant di-Higgs cross section close to experimental bounds
should be viewed with caution, as the inclusion of NLO corrections, a different choice of
renormalization schemes or how the experimental limits are applied, i.e. what we define as a
narrow width, might change the categorization of this parameter point, i.e. if it is still allowed
or rejected by experimental constraints.

Another scenario, which we investigated, was the large NLO corrections to the scalar Higgs
decay h2 → h1h1 in the case of a small LO amplitude due to a vanishing coupling λh2h1h1 .
We considered the benchmark point BP5 from our sample of valid parameter points, given by

BP5: mh1 = 46.11 GeV, mh2 = 125.09 GeV, mA = 60.88 GeV, vS = 818.10 GeV, α = 1.390.

Looking at the input parameters, we see that vS is large compared to the scalar masses.
Therefore, the scalar trilinear and quartic couplings are small. We thus do not expect large
EW corrections, except for the decay h2 → h1h1, since the quantities vS/v and tanα are of
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Figure 6.6.: The partial decay width Γ for the process h2 → h1h1 for benchmark point BP6

with varying α, at LO (blue), NLO (red), and approximate NNLO (green). Taken from [73].

the same order (vS/v = 3.32264 , tanα = 5.47069) and therefore the coupling λh2h1h1 is close
to its vanishing point. For this point we have δEW = 0.55 (in the ZEMproc2-OS scheme) for
the decay h2 → h1h1, whereas the EW corrections for the other decay channels are only up
to a few percent.

This point is valid when we use the LO decay widths, but when we use the NLO widths for
our constraints, it is rejected by HiggsSignals. Thus, we see that the NLO corrections can
indeed have a profound impact on certain areas of the parameter space, e.g. where the scalar
trilinear Higgs coupling vanishes.

6.5. Analysis of NLO2 Corrections

In this section we want to illustrate the NLO2 contribution to the decay h2 → h1h1. We use
as a benchmark point:

BP6: mh1 = 60 GeV, mh2 = 125 GeV, mA = 40 GeV, vS = 1 TeV.

We do not specify α but vary it to see the different effects of the contribution to the approxi-
mate NNLO decay width. We show the dependence of the decay width on α in Fig. 6.6 for the

LO, NLO and approximate NNLO result. For α = arctan
vS
v

≈ 1.33 the tree-level amplitude

and therefore the LO and NLO decay width vanish. Since we have a non-zero contribution
from the NLO amplitude, the NLO2 contribution is non-zero, and the approximate NNLO
width does not vanish at this point and is the exact leading result in the sense that also the
genuine two-loop contributions here vanish since they are multiplied with the LO amplitude
(cf. Sec. 5.4). If we, however, move away from this point by varying α, we have to include
genuine 2-loop contributions for a precise prediction.

We also see that for smaller angles the NLO width becomes negative and therefore unphysical,
and the LO and NNLO approximate results always remain non-negative as expected. If we
take the limit α → π/2 all contributions vanish since we then decouple the additional particles
in the theory from the SM.





CHAPTER 7

Conclusion

In this part, we discussed our project, which is a continuation of [178], of calculating and
analyzing electroweak corrections to Higgs decays in the CxSM. We first introduced the model
and set up our notation. In our realization of the model with two separate Z2 symmetries,
we have an additional Higgs boson and a stable DM candidate, leading to an interesting
phenomenology. We described the theoretical and experimental constraints that we applied
in order to obtain valid parameter points, which we then used as input.

We summarized the steps we took to renormalize the model in order to calculate higher-order
corrections. We used an OS prescription for our fields and masses and applied the alternative
tadpole scheme to obtain gauge-independent counterterms and results. We also specified
different schemes for our input parameters, the process-dependent and the ZEM scheme for
vS and the OS- and p∗-pinched scheme for α, and we illustrated how to change from one
renormalization scheme to another. Next, we described our calculation and the different
contributions to our decay widths, including counterterms and real corrections to obtain UV
and IR finite as well as gauge-independent results. Furthermore, we discussed the possibility
of vanishing tree level amplitudes and the subsequent inclusion of NLO2 contributions in the
decay channel h2 → h1h1.

We then moved on to the implementation of our calculation. We first described our code
EWsHDECAY which contains all of our NLO corrections, and we gave an example on how to
use it. In the code, it is possible to switch on or off the NLO corrections, to change from one
renormalization scheme to another, including the conversion of parameters and to include
the NLO2 contributions for the h2 → h1h1 decay. We then described our setup on how we
performed our calculation and how we obtained viable parameter points with ScannerS and
the additional constraints (i.e. direct detection and di-Higgs constraints), that we applied.
We then illustrated the parameter space and gave some insights on the constraints and their
impact on our sample. We found that our sample is sensitive to both direct detection and
collider constraints, but many parameter points are below the neutrino floor and therefore
difficult (if not impossible) to measure via direct detection. Thus, complementary search
strategies at colliders are important. Moreover, the SM-like trilinear coupling is already
constrained to be close to the SM value in our parameter sample, and we can also saturate
the DM relic density.
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We then discussed the typical sizes of the EW corrections to all Higgs decay channels in all
possible renormalization schemes we worked out. We found that they are usually of small to
moderate size (up to 25 %) but can become large if the scalar couplings are large and/or the
scalar masses are chosen in a way that we have threshold effects, or our counterterms in one of
the schemes become sizeable (in the ZEM scheme when the DM mass is large compared to the
other scalar masses). We also considered the theoretical renormalization scheme uncertainty,
i.e. the difference between two renormalization schemes, and concluded that it is well behaved
if also the EW corrections are small.

We furthermore examined the impact of the NLO corrections on our parameter space, i.e.
we rechecked our sample with constraints applied with NLO corrected widths and branching
ratios. We concluded that, although some points are excluded or no longer excluded with
the inclusion of NLO corrections, the overall shape of the allowed parameter regions does
not change significantly. There are, however, some subtle impacts which the higher-order
corrections can have on the constraints from di-Higgs searches and in the case of vanishing
λh2h1h1 trilinear coupling, since this coupling can be enhanced at NLO. It is also important
to note that with increasing experimental accuracy, the higher-order corrections from theory
become more important to map out the allowed parameter space. Finally, we discussed the
impact of the NLO2 contribution, which becomes important near the point where the tree
level amplitude vanishes.



Part II.

Higgs Pair Production in a Realization
of a Composite 2HDM





CHAPTER 8

Introduction

In this project, we investigated Higgs pair (or di-Higgs) production in a composite two-Higgs
doublet model (2HDM). Our goal was to analyze and quantify the impact of the new particles
and couplings from the composite sector of the theory on the overall cross section, as well as
on differential distributions and compare these results to other models.

As we already mentioned in Chapter 1 and in Sec. 2.2, composite Higgs models are theoret-
ically well motivated as they give a dynamical explanation of the Higgs mechanism and can
solve the hierarchy problem. Moreover, in order not to run into fine-tuning issues, the scale of
new physics of the composite sector cannot be too high, i.e. around a few TeV and therefore,
these models are sensitive to current and future experiments. In these models, the Higgs po-
tential is already determined by the composite sector, and we have a top-to-bottom approach
where we have a UV complete theory, which produces effects at lower energies that can be
observed. This is another approach compared to e.g. part I, where we expanded the scalar
sector without a specific UV complete realization and an undetermined scalar potential.

Composite models, or more broadly spoken, theories with additional strong sectors have been
discussed extensively in the literature (cf. e.g. [237–239], or for reviews, see [54, 86, 88, 95]) as
an alternative approach to electroweak symmetry breaking. They came into conflict, however,
with the electroweak precision measurements at the Large Electron-Positron Collider (LEP)
(cf. [54]). Thus, a new class of models emerged, namely composite Higgs models [45–53],
where a naturally lighter Higgs compared to a heavier composite sector can emerge with the
help of the Goldstone boson theorem (compare e.g. to pions, that can be seen as pseudo-
Nambu Goldstone bosons in chiral perturbation theory2 and have lighter masses compared
to the scale of Quantum Chromodynamics (QCD) or e.g. the proton mass, cf. [54]).

In this project, we furthermore focused on Higgs pair production. As already mentioned in
Sec. 2.3, di-Higgs production is an interesting process to consider, as it has not been measured
yet but can give key insights to the Higgs potential and is therefore very sensitive to physics
beyond the SM that extends the scalar sector. Thus, di-Higgs production is an excellent
tool to probe composite Higgs models and has been already discussed in the literature [152–
156], but mainly for models with a minimal SM-like scalar sector, i.e. one Higgs doublet.
In our project, we considered a composite Higgs model with a 2HDM-like extended scalar

2See e.g. [240] for an extensive review.
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Figure 8.1.: Simplified sketch of the group structure for a generic composite Higgs model with
a global symmetry G spontaneously broken to a subgroup H1 and a gauged subgroup H0 with
the intersection H = H1 ∩H0 (cf. [54]).

sector where we have additional heavy Higgs particles, heavy top partners and new effective
couplings that contribute to di-Higgs production.

We now present the content of this part. We will first give an introduction to composite Higgs
models and then the realization of a composite 2HDM that we used. We then summarize
the effective Lagrangian and the Feynman rules we used for our computation and describe
the calculation of the di-Higgs cross section, where we also mention NLO corrections. Next,
we highlight the implementation of our calculation and our setup to obtain viable parame-
ter points satisfying theoretical and experimental constraints, especially di-Higgs constraints.
Finally, we analyze the effects of our model for inclusive cross sections and differential distri-
butions and compare the composite 2HDM to the SM and other 2HDM realizations.

In this chapter, we briefly summarize composite Higgs models in Sec. 8.1 and our composite
2HDM (Sec. 8.2). We will only mention the important details. For more information on
composite Higgs models, we refer to [54, 86, 88] and for more information on the composite
2HDM see [69]. Furthermore, we introduce some notation for elementary 2HDMs in Sec. 8.3
and describe the theoretical and experimental constraints we applied on the composite 2HDM
(Sec. 8.4).

The described setup and evaluation parts follow our published results [74].

8.1. Introduction to Composite Higgs Models

For this introduction, we follow mainly the reviews [54, 86, 88] where more information can
be found.

In composite Higgs models, the Higgs boson is not an elementary field but emerges as a
bound state of a strongly interacting sector (usually called composite sector). Therefore, the
hierarchy problem is avoided, as the inner structure of the Higgs is resolved at a cutoff scale
if one goes to higher energies. Thus, naively we would expect the Higgs mass to be of the
order of this cutoff scale, where also the new physics from the composite sector emerges. In
order to have a separation between the Higgs and the composite sector (to remedy the fact
that we have not seen any other particles from the composite sector), the Higgs emerges as a
pseudo Nambu-Goldstone boson (pNGB) of an enlarged global symmetry. This mechanism
then leads to a naturally light Higgs, comparable to how pions in chiral pertubation theory
can be naturally lighter than the QCD scale (cf. [54]).
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In general terms, we have a global symmetry G that will be spontaneously broken to a
symmetry H1 at a scale f . Moreover, we have a symmetry group H0 ⊂ G that is gauged by
external vector bosons (see Fig. 8.1 for a sketch of the group structure). The spontaneous
symmetry breaking G → H1 then implies that we generate n = dim(G)−dim(H1) Goldstone
bosons. If H is the intersection of H1 and H0, H = H1 ∩H0, then n0 = dim(H0) − dim(H)
Goldstone bosons are absorbed by as many vector bosons to obtain masses. The remaining
n−n0 Goldstone bosons are the (so far massless) scalars that will become the Higgs fields in
our composite model.

The SM fields are in this setup defined as external to the new composite sector, and for
simplicity, one identifies H0 with the SM EW gauge group, i.e. H0 = GSM ≡ SU(2)L×U(1)Y
(the colour group SU(3)c plays no role here as it is unbroken and can be omitted).

Moreover, two more conditions need to hold. The SM gauge group GSM must be embeddable
in the unbroken subgroup H1, GSM ⊂ H1 as then GSM is unbroken at tree level. Furthermore,
the coset G/H1 must contain at least one SU(2) doublet that can then be identified as the
Higgs doublet.

In the setup we have thus far, the overall symmetry G is spontaneously broken but not
explicitly broken. Therefore, all the Goldstone bosons retain their shift symmetry (i.e. we can
shift the fields by a constant, which means that we only have derivative interactions). We do
not generate a scalar potential and our scalars are massless. Therefore, we want to explicitly
break the symmetry G in order to generate a scalar potential and masses dynamically. We
achieve this by coupling our strong sector to SM fields that do not transform under the global
symmetry G, by introducing mixing terms in the Lagrangian and thus explicitly breaking the
symmetry. This mechanism is called partial compositeness (first introduced in [241], see the
reviews [86, 88] for more details). Another attractive feature of this approach is that it can
generate the hierarchical flavour structure of the SM.

Another important mechanism is collective symmetry breaking [242–245]. It means that often
in composite models the global symmetry (in our case G) is copied, with a gauged subgroup
in only one of the copies. These symmetry copies are then collectively broken, i.e. only
with the inclusion of several interaction terms in the Lagrangian. Thus, the loop corrections
generated by these interactions that break this symmetry have to entail all of the symmetry-
breaking parts and therefore the generated corrections are less cutoff sensitive, i.e. instead of
a quadratic dependence on a UV cutoff scale, we only have a logarithmic dependence or even
a UV finite result (see [86, 88] for more details).

With the described setup, we now generate a Higgs potential at loop level with SM fields,
which in turn can break the electroweak symmetry and dynamically generate a VEV v. An
important quantity then is the ratio

ξ =
v2

f2
, (8.1)

i.e. the ratio of the dynamically generated quantity v and the scale of the new composite
sector f . With naive dimensional analysis we then expect

mh ∼ gSMv , mρ ∼ gρf , (8.2)

where gSM are typical SM couplings and ρ are fields in the composite sector with gauge
couplings gρ. In the limit f → ∞ (ξ → 0) we can now see that the composite sector decouples,
whereas the Higgs can remain light, and we recover the SM. The other limit (ξ → 1) would
lead us to Higgs masses of the order of the composite sector and to the regime of technicolour
models.
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Figure 8.2.: Pictorial representation of the symmetry group of the Composite 2HDM. Taken
from [69].

8.2. A Specific Realization of a Composite 2HDM

After a more general introduction to composite Higgs models, we will now discuss a spe-
cific realization [65–69]. In our setup we will furthermore have an extended Higgs sector,
resembling a 2-Higgs Doublet model (2HDM).

We start by establishing the symmetry of the new composite sector. In our case we have
G = SO(6), which is spontaneously (and then later explicitly) broken to H = SO(4)×SO(2).
Using the dimension of an SO(N) theory given by (N(N−1))/2, we obtain n = 15−(6+1) = 8
broken symmetries and therefore the number of Goldstone bosons. In a 2HDM we also have 8
real scalar fields (3 of them will give masses to the W and Z boson). Thus, in the composite
2HDM, the scalar fields that constitute the 2HDM structure are (pseudo) Nambu Goldstone
bosons.

To be more precise, the full coset structure is

G
H

=
SU(3)c × SO(6) × U(1)X

SU(3)c × SO(4) × SO(2) × U(1)X
, (8.3)

where we added the unbroken SU(3)c colour group and an additional U(1)X gauge group
that will contribute to the hypercharge (for more details on this additional gauge group, see
e.g. [86]). The next step is that we double this construction, i.e. we have a two-sided approach
(see also Fig. 8.2). We have two symmetry groups, G1, G2 = SO(6) × U(1)X , where G2 is
a gauged symmetry and describes spin-1 resonances through ρXµ and ρAµ (A ∈ Adj(SO(6))),
and G1 is a global symmetry with only SU(2)L×U(1)Y gauged, i.e. only the SM gauge fields
embedded. The Lagrangian of the gauge sector then reads

Lgauge
C2HDM =

f2
1

4
Tr |DµU1|2 +

f2
2

4
Tr |DµΣ2|2 −

1

4g2ρ
(ρA)µν(ρA)µν (8.4)

− 1

4g2ρX
(ρX)µν(ρX)µν − 1

4g2A
(AA)µν(AA)µν − 1

4g2X
XµνX

µν ,

where we introduced the fields U1 and Σ2 and the composite gauge coupling gρ. U1 is the link
field that transforms under both symmetries G1 and G2. It realizes spontaneous symmetry
breaking from G1 × G2 to a diagonal symmetry group G. The field Σ2 accounts for the
breaking to SO(4)×SO(2)×U(1)X . The SM EW gauge fields are embedded into the spurion
fields (AA)µ and Xµ with the gauge couplings gA and gX . The terms Xµν , (AA)µν , (ρA)µν
and (ρX)µν are the field strength tensors for the corresponding gauge fields Xµ, (AA)µ, (ρA)µ
and (ρX)µ. The constants f1 and f2 are combined to the composite scale f , via

f−2 = f−2
1 + f−2

2 . (8.5)



8.2. A Specific Realization of a Composite 2HDM 59

For a complete description of the covariant derivatives and the transformation properties of
these fields, see [69]. The Nambu Goldstone boson (NGB) fluctuations are described by U ,
which is constructed via

U = e
iΠ
f , Π ≡

√
2φâ

i T
â
i = −i

(
04×4 Φ

−ΦT 02×2

)
, (8.6)

with the 8 broken SO(6) generators T â
i (i = 1, 2, â = 1, .., 4), the real scalar fields φâ

i and
Φ ≡ (φâ

1, φ
â
2). These scalar fields can then be arranged into the doublets Φi,

Φi =
1√
2

(
φ2̂
i + iφ1̂

i

φ4̂
i − iφ3̂

i

)
. (8.7)

We furthermore have Σ2 = U2Σ0U
T
2 , with Σ0 = diag(04×4, iσ2) and σ2 being one of the Pauli

matrices. The Ui (i = 1, 2) are given by Ui = exp(i(fΠ/f2
i )) with the NGB matrix Π given

in Eq. (8.6). The VEVs of the scalar fields are given as 〈φ4̂
i 〉 = vi (i = 1, 2), and we define

v2 = v21 + v22 and tanβ ≡ v2/v1 similar to an elementary 2HDM. The quantity v can be
related to the SM VEV vSM via

v2SM = f2 sin2 v

f
, (8.8)

and in the f → ∞ limit they coincide.

Now, we turn to the description of the fermionic sector. In contrast to the Lagrangian in the
gauge sector, which is determined already by the imposed symmetries, the fermionic part is
not uniquely determined. In this realization of the model, the SM fermions are embedded into
the fundamental representation of SO(6) and two resonances ΨI (I = 1, 2) are introduced.
The fermionic Lagrangian is given by

Lfermion
C2HDM = (q̄6L)i /D(q6L) + (t̄6R)i /D(t6R) + Ψ̄Ii /DΨI (8.9)

− Ψ̄I
L(MΨ)IJΨJ

R − Ψ̄I
L

[
(Y1)

IJΣ2 + (Y2)
IJΣ2

2

]
ΨJ

R

+ (∆L)I(q̄6L)U1Ψ
I
R + (∆R)I(t̄6R)U1Ψ

I
L + h.c. .

The fields qL and tR are embeddings of the top quark (other fermions can be embedded sim-
ilarly) and ΨI are additional spin-1/2 resonances. The other input parameters appearing are
the fermion couplings to resonances, Y1, Y2, the parameters determining partial compositeness
∆L,∆R, and the composite fermion mass matrix MΨ. These parameters together with the
parameters in the gauge sector Lagrangian will determine the Higgs potential of the model.
With this formulation of the fermionic sector, we introduce several new fermionic resonances.
We have 8 additional top-like heavy fermions (that will be referred to as top partners) and
other more exotic resonances that do not play a role in di-Higgs production and are therefore
not discussed here (cf. [69, 74] for more details).

In this configuration, we have the parameters in the fermionic sector, which are Y1, Y2, ∆L,
∆R and MΨ. Moreover, we enforce the UV finiteness of the Higgs potential at one-loop order
by requiring the coefficients of the quadratic and logarithmic divergences to cancel. These
conditions can be used to eliminate e.g. the MΨ matrix as an input parameter in terms of
the other input parameters (cf. [69, 74]).

More details on the model can be found in [69], e.g. the flavour alignment in the Yukawa sector
similar to the flavour-aligned 2HDM, how the Higgs potential is obtained via the Coleman-
Weinberg formalism, how much tuning is required to obtain the correct values for electroweak
symmetry breaking, and many other aspects.
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To summarize the model, we have an additional strong sector with an SO(6) symmetry and
spontaneous breaking SO(6) → SO(4) × SO(2), that generates a 2HDM-like structure. We
then use partial compositeness of SM fields to explicitly break the symmetry, and generate
masses for the scalar sector. With this setup, the scalar potential is determined by composite
parameters. The top quark (and the other fermions) are incorporated into sextuplets, where
at the end, we have 8 additional top partners. The input parameters that characterize our
model are

Y IJ
1 , Y IJ

2 , ∆I
L, ∆I

R, gρ, f (I, J = 1, 2) . (8.10)

Our model thus resembles an elementary flavour-aligned 2HDM [246, 247], where we have
a SM-like Higgs h, the CP-even heavy Higgs H, a pseudoscalar A and a charged Higgs
H±, with additional top partners and effective couplings, where the couplings and the Higgs
potential are determined by the composite nature of the theory. In this setup, the mass of
the lighter Higgs h scales like mh ∼ v , whereas the other Higgs states are proportional to the
compositness scale f , i.e. mH ∼ mA ∼ mH± ∼ f , up to corrections induced by mixing [69].

Finally, as we already mentioned in Sec. 8.1, if we take the limit f → ∞ we decouple the
composite sector, i.e. the H, A, and H± Higgs scalars and top partners become heavy and
their couplings to SM particles go to zero. Furthermore, all the effective quartic scalar-scalar-
fermion-fermion couplings GhhTiTi

(for their description see Sec. 9.1) vanish. Thus, in this
decoupling limit we retain the SM.

8.3. The Elementary 2HDM Lagrangian

In the last section, we mentioned that the described composite model resembles a 2HDM.
Since we compare the composite 2HDM with other 2HDM realizations in Sec. 10.3.4 and in
order to setup some more notation, we give a brief introduction into elementary 2HDMs [248–
253] (see also [84] for a review), where the SM is extended by an additional Higgs doublet
without any additional composite sector or other UV completion. We therefore have two
complex SU(2)L Higgs doublets Φ1, Φ2 and the scalar Lagrangian LScalar is given by

LScalar = (DµΦ1)
† (DµΦ1) + (DµΦ2)

† (DµΦ2) − V2HDM , (8.11)

with the covariant derivative Dµ (see Eq. (2.2)) and the scalar potential in the 2HDM,

V2HDM =m2
11|Φ1|2 + m2

22|Φ2|2 − (m2
12Φ

†
1Φ2 + h.c.) +

λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 (8.12)

+ λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

(
λ5

2
(Φ†

1Φ2)
2 +

[
λ6(Φ

†
1Φ1) + λ7(Φ

†
2Φ2)

]
(Φ†

1Φ2) + h.c.

)
,

with the mass parameters m2
11, m2

12 and m2
22 and the scalar couplings λi (i = 1, .., 7). In

general, the parameters m2
12, λ5, λ6 and λ7 can be complex, the other parameters are real.

The two Higgs doublets can be expanded as

Φa =

 φ+
a

va + ρa + iηa√
2

 , a = 1, 2 , (8.13)
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with the real scalar fields ρa, ηa, the charged scalars φ+
a and the VEVs va. If we have CP

conservation, the two neutral CP-even fields ρa mix with a mixing angle α and we obtain the
CP-even mass eigenstates h,H,(

H

h

)
=

(
cosα sinα

− sinα cosα

)(
ρ1

ρ2

)
. (8.14)

Similarly, the fields ηa and φ+
a are rotated with a mixing angle β into the CP-odd mass

eigenstates G0, A and into G±,H±, respectively, via(
G0

A

)
=

(
cosβ sinβ

− sinβ cosβ

)(
η1

η2

)
, (8.15a)(

G+

H+

)
=

(
cosβ sinβ

− sinβ cosβ

)(
φ+
1

φ+
2

)
, (8.15b)

where the G0, G+ are the neutral and charged Goldstone bosons, respectively, that are ab-
sorbed by the W± and Z bosons to obtain mass, and we have as physical mass eigenstates
the pseudoscalar Higgs A and the charged Higgs H±. In total, we obtain 5 physical Higgs
fields. We have the following relation between the mixing angle β and the VEVs v1, v2,

tanβ =
v2
v1

, (8.16)

and the VEVs have to reproduce the SM VEV v, i.e.

v2 = v21 + v22 . (8.17)

Next, we consider the Yukawa Lagrangian. In analogy to the SM in Eq. (2.8) we now have
Yukawa matrices for the leptons and up- and down-quarks for both doublets, respectively,
that can in general be arbitrary 3 × 3 complex matrices in flavour space. We can use the
above defined mass eigenstates of the Higgs scalars and write the Yukawa Lagrangian in the
general form [251]

− LYukawa =∑
F=U,D,L

1√
2
F
(
κF sβ−α + ρF cβ−α

)
Fh +

1√
2
F
(
κF cβ−α − ρF sβ−α

)
FH +

i√
2
Fγ5ρ

FFA

+
[
U
(
V CKMρDPR − ρUV CKMPL

)
DH+ + νρLPRLH

+ + h.c.
]
. (8.18)

Here we sum over all fermion types F = U,D,L with F being a vector in flavour space of
the specified fermion species, U the up-type, D the down-type quark, L the lepton and ν the
neutrino fields. We introduced the abbreviations sβ−α = sin(β − α), cβ−α = cos(β − α). The
matrices κF are given by

κF ≡
√

2MF

v
, (8.19)

with the fermion mass matrices MF . The projection operators are given by PR/L = (1± γ5)/

2 and V CKM is the quark CKM mixing matrix. The generality of the Yukawa couplings is
now encoded in the, in principle, arbitrary complex matrices ρF . To avoid flavour-changing
neutral currents (FCNC) at tree-level, we can require the alignment of the Yukawa couplings
of the two scalar doublets, i.e. we demand that the matrices ρF are proportional to κF ,

ρF = ζFκ
F , (8.20)
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with a proportionality constant ζF . These are free parameters that can be different for each
fermion generation and type. With this construction, we obtain the flavour-aligned 2HDM
(A2HDM) [246, 247]. Another way of avoiding FCNCs is by imposing a discrete Z2 symmetry
[254], which gives rise to four 2HDM types. These types can also be understood as concrete
realizations of the A2HDM by specific choices for the ζF , e.g. setting ζF = cotβ for all fermion
species results in the type-I 2HDM and ζU = cotβ, ζD = ζL = tanβ in the type-II 2HDM.
The discrete Z2 symmetry also implies λ6 = λ7 = 0 and m2

12 = 0, where a non-zero value for
m2

12 softly breaks the Z2 symmetry.

This concludes the brief overview of elementary 2HDMs. The major difference compared to
the Composite 2HDM here is that (apart from the additional particles from the composite
sector and the new effective couplings, e.g. the quartic scalar-scalar-fermion-fermion coupling)
in the elementary 2HDM the parameters λi (i = 1, .., 7), m11 ,m12, m22 and the ζF (F =
U,D,L) are input parameters that can be chosen freely (the ζF only in the A2HDM), whereas
in the composite case they are derived from the composite input parameters.

8.4. Theoretical and Experimental Constraints

We now return to the composite 2HDM and we list in this section the theoretical and ex-
perimental constraints that we applied to our parameter scans in order to obtain a valid
parameter sample for the composite 2HDM. We only give a brief summary and refer to [69,
74] for more details.

The parameter points were checked against the following constraints:

• Reconstruction of SM Parameters:

The SM parameters, i.e. the SM VEV, the Higgs mass and the top quark mass, have
to be properly reconstructed. Thus, it was demanded to obtain the SM-like Higgs mass
within the interval [120 GeV, 130 GeV] and the top mass within [165 GeV, 175 GeV] [69].

• Perturbativity Constraints:

As already mentioned, the scalar potential and the scalar couplings are determined by
the composite parameters. We required that the quartic couplings λi from the scalar
potential (see Eq. (8.12)) have to obey the relation λi ≤

√
4π.

• Higgs Searches and Measurements:

The parameter points were checked against direct and indirect searches in the scalar
sector via the tools HiggsBounds [183–187] and HiggsSignals [188, 189]. The latter
checks for compatibility with current Higgs measurements and the former for compat-
ibility with the searches for new Higgs resonances that have not been found (yet) but
are present in our model. Moreover, these constraints indirectly lead to constraints on,
for e.g. the composite scale f since the masses of the heavier scalars (in our case, the
125 GeV Higgs is always the lighter scalar h) scale with f . Additionally, we applied
limits from di-Higgs searches that we will discuss in Sec. 10.2.

• Flavour Constraints:

Similarly to elementary 2HDM models (cf. [179]), the additional scalars in our theory
can contribute to flavour observables, e.g. the decays b → sγ and Bs → µµ. Since in our
theory we have a flavour-aligned structure, the constraints come from a rescaling of the
SM couplings. To safely evade these constraints, we apply the requirement ζb . 0.1ζt,
where the ζt and ζb are the coupling modifiers (see Eq. (8.20)) of the top and bottom
quarks to the heavy Higgs states H, A and H± (see [69] for more details).
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• Constraints on New Heavy Particles:

In the composite 2HDM, we have new heavy resonances in the composite sectors. The
new spin-1 gauge fields can naturally have masses in the multi-TeV range and have
been integrated out in our approach. The top partners, however, play an important
role in our di-Higgs calculation. Their masses are constrained by searches at the LHC
[255, 256]. One could in principle try to evade these constraints by taking into account
exotic decays, e.g. heavy top partner decays into Ht,At,H+b with the heavy scalar H,
the pseudoscalar A, the charged scalar H+ and the top and bottom quarks t and b.
We, however, still only considered benchmark points with mTi ≥ 1.3 TeV (i = 1, .., 8)
for the masses mTi of the heavy top partners.





CHAPTER 9

Calculation of Di-Higgs Production in the Composite 2HDM

In this chapter, we describe the steps we used to obtain from an effective Lagrangian approach
the cross section formulas that we used for the calculation of Higgs pair production in our
realization of a composite 2HDM. We present the effective Lagrangian in Sec. 9.1 together
with the Feynman rules we obtained from it. Then we set our notation and briefly summarize
how we obtained the LO cross section (Sec. 9.2.1) and also mention the NLO corrections in
the heavy top limit in Sec. 9.2.2.

The calculation presented here follows similar works in other composite models [152–154] and
our published results [74].

9.1. Effective Lagrangian and Feynman Rules for Higgs Pair Produc-
tion

After integrating out the heavy spin-1 composite states, we are left with an effective La-
grangian Leff, which we will use in our calculations (for more information on how to obtain
the effective Lagrangian and how the couplings depend on the input parameters, see [69]).
In the following, we only write out the part that is relevant for di-Higgs production. The
effective scalar Lagrangian can be written as

Leff
Scalar = − 1

3!
λhhhh

3 − 1

2
λhhHh2H − 1

2
λhHHhH2 − 1

3!
λHHHH3 (9.1)

− 1

2
λhAAhA

2 − 1

2
λHAAHA2

− λφ0hAφ
0hA− λφ0HAφ

0HA

+
v

3f2
(h2∂µh1 − h1∂µh2) ∂

µh2

+
v

3f2

(
2A∂µφ

0∂µh2 − φ0∂µA∂µh2 − h2∂µA∂µφ0
)
,

where h is the lighter and H the heavier Higgs boson, A the pseudoscalar Higgs, φ0 the
neutral Goldstone boson and λϕ1ϕ2ϕ3 the trilinear couplings (ϕi = h,H,A, φ0(i = 1, 3)) that
are derived from the fundamental composite parameters. The fields h1 and h2 are defined by(

h1

h2

)
=

(
cθ −sθ

sθ cθ

)(
h

H

)
, (9.2)
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with cθ = cos θ, sθ = sin θ and a mixing angle θ. Thus, we obtain

v

3f2
(h2∂µh1 − h1∂µh2)∂

µh2 =
v

3f2
(sθ ∂µh + cθ ∂µH)(H∂µh− h∂µH) . (9.3)

The first parts of Eq. (9.1) resemble an elementary 2HDM Lagrangian (compare with Sec. 8.3).
In the composite 2HDM we have derivative scalar couplings, coming from the Goldstone boson
nature of the Higgs (compare to the strongly interacting light Higgs (SILH) Lagrangian, e.g.
in [153, 257]), that are not present in an elementary 2HDM. We can read off the Feynman
rules relevant for di-Higgs production as

[h(p1)h(p2)h(p3)] = − iλhhh , (9.4a)

[h(p1)h(p2)H(p3)] = − iλhhH − iλ
(2)
hhH(p21 + p22 − 2p23) , (9.4b)

with λ
(2)
hhH defined as

λ
(2)
hhH = − v

3f2
sθ . (9.5)

Similarly, we have the effective Yukawa Lagrangian

Leff
Yuk =

(
−GhTiTj

T̄L,iTR,jh−GHTiTj T̄L,iTR,jH + iGATiTj T̄L,iTR,jA + h.c.
)

(9.6)

−GhhTiTj
T̄iTjh

2 −GHHTiTj T̄iTjH
2 −GAATiTj T̄iTjA

2

−GhHTiTj
T̄iTjhH + iGhATiTj

T̄iγ5TjhA

+ iGHATiTj T̄iγ5TjHA + iGφ0TiTj
T̄iγ5Tjφ

0 ,

with the Yukawa couplings GϕTiTj with Ti being the top quark and its partners (i, j = 1, .., 9)

and ϕ = h,H,A, φ0. We also have effective quartic couplings between two fermions and two
scalars, Gϕ1ϕ2TiTj , with a mass dimension of −1. Our convention for the notation here is that
the Ti quarks are mass ordered, with T1 being the heaviest and T9 = t the lightest particle,
i.e. the SM top quark.

We note here that we assumed negligible partial compositeness of the bottom quark (and
other light quarks), and therefore the bottom partners do not couple to the scalars h and H
and play no role in di-Higgs production.

The Feynman rule for the quartic coupling is given by

[T̄iTjhh] = − 2iGhhTiTj
. (9.7)

For the coupling with two fermions and one scalar we have

Leff
Yuk ⊂−GhTiTj

T̄L,iTR,jh + h.c. = −GhTiTj
T̄L,iTR,jh−GhTiTj

T̄R,jTL,ih (9.8)

= −GhTiTj
T̄L,iTR,jh−GhTjTi

T̄R,iTL,jh

= −GhTiTj
T̄iPRTjh−GhTjTi

T̄iPLTjh

= −T̄i

[
GhTiTj

PR + GhTjTi
PL

]
Tjh

= −T̄i

[
1

2

(
GhTiTj

+ GhTjTi

)
+

γ5
2

(
GhTiTj

−GhTjTi

)]
Tjh ,

We can introduce abbreviations for the couplings,

ghT̄iTj
=

1

2

(
GhT̄iTj

+ GhT̄jTi

)
, (9.9a)

ghT̄iTj ,5
=

1

2

(
GhT̄iTj

−GhT̄jTi

)
, (9.9b)
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Figure 9.1.: Generic Feynman diagrams contributing to di-Higgs production via gluon fusion
that appear in the composite 2HDM. The black dots indicate potentially new or deviating
couplings compared to the SM. The indices i, j run from 1 to 9. Taken from [74].

and then obtain as the Feynman rule (and analogously also for the heavy Higgs H)

[T̄iTjh] = − i(ghT̄iTj
+ γ5ghT̄iTj ,5

) . (9.10)

We also note that the top partners are coloured particles and thus couple to gluons in the
same way as the top quark.

To summarize, we have the Feynman rules

[h(p1)h(p2)h(p3)] = − iλhhh , (9.11a)

[h(p1)h(p2)H(p3)] = − iλ
(1)
hhH − iλ

(2)
hhH(p21 + p22 − 2p23) , (9.11b)

[T̄iTjhh] = − 2iGhhTiTj
, (9.11c)

[T̄iTjh] = − i(ghT̄iTj
+ γ5ghT̄iTj ,5

) , (9.11d)

[T̄iTjH] = − i(gHT̄iTj
+ γ5gHT̄iTj ,5

) . (9.11e)

These are all the interactions that occur in our calculation of di-Higgs production. The
derivation of these couplings with respect to the composite input parameters can be seen in
[69].

9.2. Cross Section Calculation

In this section, we describe the calculation of the di-Higgs cross section. First, we introduce
our notation and discuss the LO contribution, and then we also present the NLO corrections
in the heavy top-limit. This calculation has been performed for the SM [99–102] and adapted
for composite models in [152–154], which we will follow here.

9.2.1. Leading-Order Cross Section

Before we describe the calculation of the LO cross section, we set our notation. We introduce
the Mandelstam variables,

ŝ = (p1 + p2)
2, t̂ = (p1 + p3)

2, û = (p2 + p3)
2, (9.12)

where p1 and p2 are the gluon momenta and p3 and p4 are the Higgs momenta, and all
momenta are considered ingoing.
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We define a set of projection operators Aµν
i (i = 1, 2),

Aµν
1 = gµν − pν1p

µ
2

(p1 · p2)
, (9.13a)

Aµν
2 = gµν +

p23p
ν
1p

µ
2

p2T (p1 · p2)
− 2(p3 · p2)pν1p

µ
3

p2T (p1 · p2)
− 2(p3 · p1)pν3p

µ
2

p2T (p1 · p2)
+

2pµ3p
ν
3

p2T
, (9.13b)

p2T = 2
(p1 · p3)(p2 · p3)

(p1 · p2)
− p23 , (9.13c)

where we also defined the transverse momentum pT . These projection operators satisfy

A1 ·A2 = 0, A1 ·A1 = A2 ·A2 = 2 . (9.14)

Thus, we can express our amplitude for gluon fusion into Higgs pairs in terms of these
orthogonal operators and their coefficients.

We now describe the contribution to the LO di-Higgs cross section. The generic diagrams
that appear at LO in our composite 2HDM are depicted in Fig. 9.1. We see that compared
to the SM case described in Sec. 2.3 (compare with Fig. 2.1) we have additional diagrams.
In the quark loop we now also have the top partners, and in the case of the box diagram
we can have different top partners due to the non-diagonal couplings GhT̄iTj

in Eq. (9.6). In
the triangle diagram with a scalar propagator, we can additionally have a heavy Higgs H in
the propagator, which will potentially lead to resonant enhancement. Finally, we have an
additional triangle diagram without a scalar propagator due to the effective quartic scalar-
scalar-fermion-fermion couplings GhhTiTj

.

We obtain for the LO amplitude

A(gg → hh) = A4 + A� , (9.15)

where A� is the sum of all box diagrams and A4 the sum of all triangle diagrams from
Fig. 9.1. These contributions can be written as

A4 =
αs

4π
ŝAµν

1 εaµε
b
νδab

9∑
i=1

Chh
i,4F4(mi) , (9.16a)

A� =
αs

4π
ŝεaµε

b
νδab

9∑
i=1

9∑
j=1

[
Aµν

1

(
Chh
i,j,�F�(mi,mj) + Chh

i,j,�,5F�,5(mi,mj)
)

+ Aµν
2

(
Chh
i,j,�G�(mi,mj) + Chh

i,j,�,5G�,5(mi,mj)
)]

, (9.16b)

with the polarization vectors εaµ of the ingoing gluons. We introduced the coefficients

Chh
i,4 =

ghT̄iTi
λhhh

ŝ−m2
h

+
gHT̄iTi

λ
(1)
Hhh

ŝ−m2
H

+
gHT̄iTi

λ
(2)
hhH(2m2

h − 2ŝ)

ŝ−m2
H

+ 2GhhT̄iTi
, (9.17a)

Chh
ij,� = ghT̄iTj

ghT̄iTj
, (9.17b)

Chh
ij,�,5 = ghT̄iTj ,5

ghT̄jTi,5
= −ghT̄iTj ,5

ghT̄iTj ,5
. (9.17c)

The form factors F4, F�, F�,5, G�, G�,5 can be found in App. A. Next, we calculate the
differential cross section. The general formula for 2 → 2 scattering with massless ingoing
particles and identical outgoing particles is given by

dσ

dt̂
=

1

16πŝ2

∑
d.o.f.

|A|2 . (9.18)
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Combining this with our amplitudes we have for the differential cross section at LO

dσ̂(gg → hh)

dt̂
=

α2
s

512(2π)3
×

[∣∣∣∣∣
9∑

i=1

Chh
i,4F4(mi) (9.19)

+
9∑

i=1

9∑
j=1

(
Chh
ij,�F

hh
� (mi,mj) + Chh

ij,�,5F
hh
�,5(mi,mj

)∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
9∑

i=1

9∑
j=1

(
Chh
ij,�G

hh
� (mi,mj) + Chh

ij,�,5G
hh
�,5(mi,mj)

)∣∣∣∣∣∣
2 .

Here we averaged over the ingoing degrees of freedom (indicated by
∑
d.o.f.

in Eq. (9.18)), i.e.

the colour and the polarization of the incoming gluons.

In order to obtain the full partonic cross section we integrate over t̂,

σ̂(gg → hh) =

∫ t̂+

t̂−

dt̂
dσ̂(gg → hh)

dt̂
, t̂± = − ŝ

2

1 − 2
m2

h

ŝ
∓

√
1 −

4m2
h

ŝ

 , (9.20)

with the integration boundaries t̂±. For the full hadronic cross section, i.e. the cross section for
proton-proton collision into Higgs pairs, we have to take into account the particle distribution

function (pdf) fg of the gluon in the proton, i.e. we multiply with the gluon luminosity
dLgg

dτ
,

dLgg

dτ
=

∫ 1

τ

dx

x
fg(x, µF )fg(τ/x, µF ) , (9.21)

with the factorization scale µF , and integrate over the partonic centre-of-mass energy ŝ. The
final result is given by

σgg(pp → hh) =

∫ 1

τ0

dτ
dLgg

dτ
σ̂(ŝ = τs) , τ0 =

4m2
h

s
, (9.22)

where the subscript gg indicates that we only considered gluon fusion as a production mecha-
nism for the cross section, as there are also other production channels and s denotes the hadron
collider centre-of-mass energy squared. In the following, we will often write σ(gg → hh) (with-
out a hat) meaning also the full hadronic cross section with gluon fusion as the production
mechanism to simplify the notation.

9.2.2. Next-to-Leading-Order Cross Section in the Heavy Top Limit

After the description of the LO cross section, we will briefly mention the NLO QCD correc-
tions. They have been calculated in the heavy top limit [102] and then adapted for composite
models in [154]. We can follow the same approach here and thus only mention the important
details. More information can then be found in these works.

The NLO corrections are calculated in the heavy top limit, i.e. the quarks in the loops are
integrated out, and an effective coupling is used. The strong coupling is renormalized in the
modified minimal subtraction scheme (MS) with 5 light-quark flavours. The cross section can
be written as

σNLO(pp → hh + X) = σLO + ∆σvirt + ∆σgg + ∆σgq + ∆σqq̄︸ ︷︷ ︸
σLO factorizes out

, (9.23)
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Figure 9.2.: Generic NLO Feynman diagrams contributing to the virtual corrections ∆σvirt
in di-Higgs production in the heavy top limit (compare with [102, 154]). The circles indicate
the effective couplings.

where ∆σgg, ∆σgq and ∆σqq̄ are the gg, gq and the qq induced real corrections where the LO
cross section σLO (given by Eq. (9.22)) can be factorized. These corrections can be found in
[102, 154].

The virtual corrections ∆σvirt need closer inspection. They are given by the generic diagrams
in Fig. 9.2 and can be written as

∆σvirt =
αs(µR)

π

∫ 1

τ0

dτ
dLgg

dτ
σ̂LO(ŝ = τs)C , (9.24a)

C = π2 +
11

2
+

33 − 2NF

6
log

µ2
R

ŝ
(9.24b)

+ Re

∫ t̂+
t̂−

dt̂49(geffhgg)2
[
(FLO

4 + FLO
� ) − p2T

2t̂û
(ŝ− 2m2

h)GLO
�

]
∫ t̂+
t̂−

dt̂
[
|FLO

4 + FLO
� |2 + |GLO

� |2
] ,

p2T =
(t̂−m2

h)(û−m2
h)

ŝ
−m2

h , (9.24c)

with the renormalization scale µR and the number of active flavours NF = 5. We used the
LO form factors FLO

4 , FLO
� and GLO

� defined as

FLO
4 =

9∑
i=1

Chh
i,4F4(mi) , (9.25a)

FLO
� =
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i=1

9∑
j=1

Chh
i,j,�F�(mi,mj) + Chh

i,j,�,5F�,5(mi,mj) , (9.25b)

GLO
� =

9∑
i=1

9∑
j=1

Chh
i,j,�G�(mi,mj) + Chh

i,j,�,5G�,5(mi,mj) . (9.25c)

As already mentioned, the heavy quarks, including the top, are integrated out and we have
the effective couplings

geffhgg =

9∑
i=1

ghT̄iTi
v

mTi

, (9.26)

that appear in Eq. (9.24). Here, it is also important to note that the full LO form factors are
included after the heavy top limit was applied, i.e. we obtain the Born-improved NLO cross
section.



CHAPTER 10

Numerical Evaluation

After the description of the model and the calculation, we can move on to the implementation
and the illustration of our setup and analyze the obtained results. In this chapter, we first
describe the setup we used to calculate di-Higgs production in Sec. 10.1, where we used the
code HPAIR [258] and modified it to use it for the composite 2HDM. We also mention the
other codes and program packages we used in order to obtain our results. Next, we discuss
the parameter scan we performed to obtain viable parameter points, including the theoretical
and experimental constraints we applied (Sec. 10.2), particularly the di-Higgs constraints and
their impact on our parameter sample. Finally, we turn to the analysis of the obtained results
in Sec. 10.3, where we first show the results on the full inclusive cross section (Sec. 10.3.1)
and the interplay of different contributions from our model. Then, we discuss differential
distributions (Sec. 10.3.2) and the impact of the new interactions and particles compared to
the SM. At the end, we compare our model with other 2HDM-like models and how they can
be distinguished in Sec. 10.3.4.

10.1. Implementation

We begin with the description of the implementation of our results. We used the code
HPAIR 2.0 [258] and implemented our form factors and NLO corrections from Secs. 9.2.1
and 9.2.2 (similar approaches were already performed in [152–154]). The code HPAIR calcu-
lates the di-Higgs cross section in the SM and the minimal supersymmetric extension of the

Table 10.1.: Additional input parameters used for the computation in HIGLU and HPAIR. See
text for details. Taken from [74].

variable value

αs(mZ) 0.135
√
s 13/14 TeV

PDF MMHT2014lo68cl [259]

ren. and fac. scale mhh/2
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SM (MSSM) [62, 93, 94] and can also calculate the invariant mass distribution. Furthermore,
the NLO QCD corrections in the heavy top limit are included [102]. We modified the code by
inserting our expressions for the LO cross section and the NLO QCD corrections as described
in Secs. 9.2.1 and 9.2.2. We also implemented the possibility to calculate the pT distribution
(for details on the derivation see App. C). In order to evaluate the loop integrals that appear
in the form factors, we furthermore linked the code with the package LoopTools 2.15 [229,
230]. Since the top partners can be very heavy in some cases, we had to use quadruple pre-
cision in order to obtain numerically stable results. Additionally, the results were checked by
an independent calculation with QCDLoop [260].

For the calculation of the di-Higgs cross section, the total widths of the h and H Higgs bosons
are needed. Therefore, we implemented our model into the code HDECAY 6.6.1. [216, 217]
to obtain the relevant total widths. HDECAY already includes QCD corrections and off-shell
decays. Both can be taken over for our model. Furthermore, the heavy Higgs can decay into
a top quark and a top partner or into a pair of top quark partners, which we additionally
implemented at LO. Moreover, we needed the cross section for single Higgs production via
gluon fusion to calculate the resonant di-Higgs cross sections and compare with experimental
limits. For this purpose, we used the code HIGLU [261, 262], which calculates the single Higgs
production via gluon fusion, and we extended it to our model at LO.

The implementation in HPAIR allows us to calculate the di-Higgs cross section at NLO in the
heavy top limit. Due to the large computing time when calculating the NLO corrections for
all points in our parameter sample, we only calculated the cross section at LO and applied a
K-factor of

K ≡ σNLO

σLO
≈ 2 , (10.1)

which approximates the size of the NLO corrections for inclusive SM-like Higgs pair pro-
duction very well. We used some benchmark points to validate this assumption. Similar
K-factors are obtained for other models [150]. For differential distributions, however, the
calculation of NLO corrections would be required as they can alter the shape of the distri-
butions. This computation is again computation time-intensive, and we thus only used the
LO result. Moreover, finite top mass effects at NLO QCD, which are not available for this
model, can further distort the shape of the LO distributions [110, 111, 116, 126]. Since we
only want to show what kind of significant effects can arise in our model, this is reasonable
as a first approximation. We used the same K-factor also for the single Higgs production.

For the cross section calculation in HIGLU and HPAIR we use the additional input specified in
Tab. 10.1. Since we calculate the cross sections only at LO, we also only use a LO parton
distribution function (PDF) for our calculation, with the renormalization and factorization
scale µR, µF set to half of the invariant Higgs pair mass mhh. Furthermore, we calculated all
cross sections and the differential distributions at a centre-of-mass energy of 14 TeV. Since
the resonant constraints that we applied, however, are extracted from data with a centre-
of-mass energy of 13 TeV we calculated also the cross sections needed for the application of
these constraints at this energy.

10.2. Parameter Scan and Constraints

We now describe the generation of our parameter set. First of all, the parameters were
generated through a Markov Chain Montecarlo (MCMC) scan (cf. [69] for more details).
Thus, the following investigation can be seen as an exploration of the parameter space that
may not fully exhaust it. The fundamental parameters of the composite 2HDM are given by
the composite scale f , the gauge couplings gρ of the strong composite interaction, the Yukawa
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Table 10.2.: Scan ranges for the input parameters (cf. [74]).

Parameter Range

Lower Upper

f 700 GeV 3000 GeV

gρ 2 10

∆f
L,R −10f 10f

Y IJ
1,2 −10f 10f

Table 10.3.: A selection of parameters and their ranges in our dataset for the composite 2HDM
(with a cut on the mH mass at 3 TeV and the di-Higgs resonant constraints applied).

Parameter Min Max

mH 181 GeV 3000 GeV

mT8 1300 GeV 23 206 GeV

mT7 1306 GeV 23 921 GeV

mT6 1329 GeV 25 269 GeV

mT1 2979 GeV 80 000 GeV

λhhh/λhhh,SM 0.759 1.07

λHhh/λhhh,SM −5.967 0.13

ghtt/ghtt,SM 0.724 1.329

gHtt/ghtt,SM −2.68 1.61

Ghhtt −0.000 65 GeV−1 0.001 49 GeV−1

σ(gg → hh)/σSM(gg → hh) 0.46 10.23

coupling matrices Y1,2 and the partial compositeness matrices ∆L,R (see also Eq. (8.10)). Their
scan ranges are shown in Tab. 10.2, where we see that the upper and lower bounds for Y1,2
and ∆L,R depend on the chosen composite scale f .

We applied all the theoretical and experimental constraints described in Sec. 8.4. Additionally,
we applied a cut on the heavy Higgs mass and excluded points with a mass larger than 3 TeV.

Next, we describe the application of di-Higgs constraints on our parameter space. Experimen-
tally, the limits are divided into resonant and non-resonant limits that operate on different
underlying assumptions. Thus, we need to define how we apply these limits on our parameter
sample. We will follow the procedure outlined in Sec. 2.3 (cf. also with [150]). If for a given
parameter point the heavy Higgs mass mH is smaller than 2mh, there is no resonant enhance-
ment of the triangle diagram, and the point will be labelled non-resonant. Moreover, if the
heavy Higgs contribution is small compared to the full cross section (based on the inclusive
cross section), it would not be distinguishable from an experimental point of view. Thus we
define a point to be non-resonant if the single heavy Higgs production and decay into SM-like
Higgs pairs in the narrow width approximation is less than 10 % of the total di-Higgs cross
section, i.e.

σ(gg → H) × BR(H → hh)

σ(gg → hh)
≤ 10 % . (10.2)

We then apply non-resonant limits on the full cross section.
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Figure 10.1.: The resonant di-Higgs cross section (single Higgs production with a K-factor
approximating the NLO corrections from Eq. (10.1) times branching ratio) of all parameter
points plotted against the heavy Higgs mass mH . The black lines show the various experi-
mental limits [174–177], where we divided the limits by the respective final state SM Higgs
branching ratios. The plot left shows all parameter points before applying the limits, and the
plot right after the limits were applied. The indicated SM cross section is σhh = 2× 19.96 fb,
which was obtained from HPAIR for the SM at LO with our setup times the K-factor, K = 2.
Taken from [74].

The resonant limits are applied to all parameter points. Here we calculate the single heavy
Higgs (H) production cross section (obtained via our implementation in HIGLU) times branch-
ing ratios into a pair of SM-like Higgs times the branching ratios into the final state considered
in the various experimental analyses [165–177]. If the parameter point exceeds one of the ex-
perimental limits, it is rejected. The experimental searches, however, apply the narrow width
approximation. Their limits can only be safely employed if the total width of the heavy Higgs
is small. We therefore only apply the resonant limits to points with a total width that satisfies

ΓH

mH
≤ 5 % . (10.3)

Otherwise, resonant bounds will not be considered for this parameter point.

In Fig. 10.1 we see the various experimental limits from resonant searches and how they
impact our parameter sample. We only show the most stringent experimental limits [174–
177] in the plot. We see that the experiments are already sensitive to our parameter sample.
Moreover, there are still points above the experimental limits that are not rejected, because
they do not satisfy the condition in Eq. (10.3).

We also considered non-resonant constraints on our parameter points, which we labelled as
non-resonant according to our definition above. We found that the maximal cross section
obtained in our sample is about 2.3 times the SM value. A recent ATLAS analysis combining
several final states [164] obtains an upper bound on the non-resonant cross section of 2.4
times the SM. We thus see that by comparing these values, we cannot exclude any points
yet with non-resonant limits, but the experiments start to become sensitive to our model in
this regard. For a more sophisticated application of experimental non-resonant searches, a
thorough analysis including differential distributions would be required, which is beyond the
scope of this project.



10.3. Analysis 75

Figure 10.2.: The di-Higgs cross section normalized to the SM cross section of all parameter
points plotted against the heavy Higgs mass mH (left) and against the trilinear SM-like Higgs
coupling λhhh normalized to the SM value (right) with points that are rejected by resonant
constraints in blue crosses (left plot taken from [74]). All cross-section values are given at
LO.

After applying all constraints, our parameter sample contained around 17 000 still allowed
parameter points. In Tab. 10.3 we show the lower and upper limits of some of the masses
and couplings in our model as well as the total cross section for di-Higgs production. First of
all, we see our cuts made in the parameter space, i.e. that mH ≤ 3 TeV and mTi ≥ 1.3 TeV
(i = 1, .., 8) for the heavy Higgs mass mH and the heavy top partner masses mTi . Next, the
SM-like trilinear Higgs coupling λhhh can differ from the SM value by up to −24 %. The
SM-like top Yukawa coupling ghtt, however, can still deviate from −25 % to 33 % of the SM
value. Recent experimental limits [263] constrain the top Yukawa coupling to be closer to
the SM, but they derive their limits from Higgs boson production measurements and assume
no other contributions. Since the heavy top partners in our model also contribute to these
processes, the experimental bounds can be relaxed, whereas more model independent limits
on the top Yukawa coupling are currently less sensitive [264].

Next, the couplings λHhh, gHtt and Ghhtt can be positive or negative and therefore lead to
different interference patterns in differential distributions depending on their signs, as we will
see in the following sections. Finally, we see that the di-Higgs cross section can range from
about 0.5 up to 10 times the SM value, i.e. we can have sizeable deviations from the SM, as
we will discuss in more detail in the following.

10.3. Analysis

We will now move on to evaluate the results we obtained for our parameter sample and
discuss the full inclusive cross section results as well as the differential distributions, and we
compare the composite 2HDM with other models, namely an elementary type II 2HDM and
a flavour-aligned 2HDM (which has a similar scalar sector as the composite 2HDM, without
the additional top partners and effective quartic couplings).

10.3.1. Inclusive Results

We start with the results for the full inclusive cross section. In the left figure of Fig. 10.2 we
show the prediction of the total cross section values normalized to the SM cross section, for
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Figure 10.3.: The heavy Higgs top Yukawa coupling gHtt normalized to the SM top Yukawa
coupling (upper) and the λHhh trilinear Higgs coupling normalized to the SM trilinear Higgs
coupling (lower) plotted against the heavy Higgs mass mH with the full di-Higgs cross section
normalized to the SM value in colour code. All cross sections are given at LO.

our obtained parameter set plotted against the heavy Higgs mass mH . We obtain a maximum
cross section value of around 30 times the SM value. In the figure we also included the impact
of the di-Higgs resonant constraints, as all points depicted as blue crosses are excluded by
experimental limits, and the maximal value of the inclusive cross section after including
these constraints is around 10 times the SM value (see also Tab. 10.3). This underlines the
importance of including these resonant constraints.

Another important feature of the plot is the fact that with increasing mass mH we move
closer to the SM cross section value. This is to be expected since the heavy Higgs mass mH

scales with the composite scale f and in the limit of large f we decouple the composite sector
and retain the SM. Additionally, the resonance contribution decreases with increasing mH .

On the right side in Fig. 10.2 we show the di-Higgs cross section normalized to the SM value,
plotted against the trilinear coupling λhhh of the SM-like Higgs boson. The interesting point
here is that even in the case where the cross section is close to the SM value, we can still
deviate in the trilinear coupling by up to more than −20 % compared to the SM trilinear
coupling. Thus, even if the SM di-Higgs cross section is measured, we can still deviate in the
trilinear coupling in the composite 2HDM compared to the SM.

In Fig. 10.3 (upper), we show the heavy Higgs top Yukawa coupling gHtt normalized to the
SM Yukawa coupling, ghtt,SM, and in Fig. 10.3 (lower) the heavy Higgs trilinear coupling
λHhh normalized to the SM trilinear coupling, λhhh,SM, plotted against the heavy Higgs mass
mH , respectively. The total di-Higgs cross section at LO normalized to the SM cross section
is shown additionally in the colour code. We see in both plots that the total cross section
decreases with increasing Higgs mass (as is also visible in Fig. 10.2) since the resonance con-
tribution decreases with increasing Higgs mass and the SM limit is approached. Furthermore,
we can see a clear correlation between the total cross section and the Yukawa coupling as
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Figure 10.4.: The cross section including only the top quark contributions, divided by the
full di-Higgs cross section (upper) and the cross section where the quartic couplings GhhTiTi

(i = 1, .., 9) contributions are excluded normalized to the full cross section (lower) plotted
against the composite scale f with the full di-Higgs cross section normalized to the SM cross
section in colour code. All cross section values are given at LO.

expected, i.e. if we increase the (absolute) value of the coupling (for lighter mH masses where
the resonance contribution is more relevant), we increase the overall cross section. For the
trilinear coupling λHhh, we see a similar behaviour. Moreover, with increasing heavy Higgs
mass mH and therefore increasing composite scale f , we see that also the possible range of
the couplings gHtt and λHhh becomes larger.

Next, we turn to the other contributions to the di-Higgs cross section, from the additional
couplings and the particles from the composite sector. In the upper part in Fig. 10.4 we see
the impact of the additional heavy top partners. We show here the ratio of the cross section
obtained including only the top quark contributions, σhh

Top, i.e. all the Feynman diagrams
in Fig. 9.1 where only the top quark is considered in the loops, normalized to the full cross
section. Thus, if this ratio is close to 1, the top quark contributions already well approximate
the full result, and the heavy quarks do not play a large role for the total cross section.
If we deviate from 1 the heavy quark contributions become more significant, and we have
important interference effects. We notice that the corrections of the top partners can be both
positive or negative and significantly interfere constructively or destructively with the other
contributions for values of the composite scale f below about 2 TeV. We see that the cross
section with only top contributions can be more than 4 times larger than the total cross
section, implying a strong destructive interference, if the heavy top partners are included.
On the other hand, we see that the cross section with only top quarks can be significantly
smaller than the full result as well, i.e. we have a constructive interference of the heavy quarks.
Here, it is again important to note that the cross section σhh

Top includes diagrams involving
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the quartic coupling Ghhtt and the heavy Higgs H resonance contribution. The σhh
Top cross

section can therefore already significantly deviate from the SM-like contribution to the box
and triangle diagrams.

Moreover, we see that points with very large cross sections have a ratio of 1 in this plot, i.e.
the heavy tops do not play a major role for these parameter points. The large cross sections
here originate from resonant contributions with the heavy Higgs H in the propagator. Since
the heavy top partners are vector fermions, their Yukawa couplings do not scale with their
mass, and thus their resonant contributions are suppressed by their heavy masses. To be
more specific, in the SM, if we consider the heavy-top limit, the LO form factors approach a
constant value [101] for the triangle diagram. Here, however, the top Yukawa coupling that
scales with the top mass is included. Thus, if this limit is considered with Yukawa couplings
that do not scale with the mass, the contribution vanishes. Moreover, the top partners are
constrained to be heavier than 1.3 TeV. Therefore, the triangle diagrams with a heavy Higgs
propagator and heavy top partners in the loop only have a relatively small impact.

Finally, for large composite scale values f , the contribution of the heavy quarks decreases
again, as we approach the decoupling limit and the cross sections are already well approxi-
mated by only considering the top quark, i.e. the SM-like contributions (where also the quartic
coupling contribution Ghhtt vanishes in this limit).

A similar situation can be seen in the lower part in Fig. 10.4, where we show the ratio of the
cross section obtained without any quartic coupling GhhTiTi

(i = 1..9), denoted as σhh
noGhhff,

normalized to the full cross section. Here, we include all diagrams in Fig. 9.1, including the
top partner contributions, except the diagrams with a quartic coupling GhhTiTi

. Similarly to
the upper plot, if the ratio deviates from 1, the impact of these quartic couplings increases,
and we have more and more significant interference effects, in particular for scales f . 2 TeV.
Additionally, we notice a preference towards ratio values above 1, i.e. the inclusion of the
quartic couplings decreases the overall cross section, and we have destructive interference.
This preference is due to the fact that we have more points in our sample with a positive sign
in the quartic couplings, which then leads to a destructive interference.

Moreover, similar to the upper plot in Fig. 10.4 we see that for large overall cross section
values the ratio shown in the lower plot is close to 1, i.e. the quartic couplings do not play a
significant role for these (resonantly enhanced) points.

Finally, we see again the decoupling limit for large values of f , i.e. the size of the contributions
from the quartic couplings decreases.

10.3.2. Effects on Differential Distributions

After the discussion of the effects on the full cross section, we will now move to differential
distributions and discuss the effects of the additional couplings and particles in the composite
2HDM. For this purpose, we chose four benchmark points, whose input parameters are sum-
marized in App. B in Tab. B.1. We then calculated the invariant mass distribution (with the
invariant mass denoted by Q in the following) and also the pT distribution for these bench-
mark points. We analyzed the impact of the new composite interactions, i.e. we calculated
the differential distributions with different subsets of diagrams included, to see their influence,
namely the effects of the top partners and the effective quartic scalar-scalar-fermion-fermion
couplings. We will also always show the SM prediction we obtained from HPAIR at LO (in
blue). We then show the contributions obtained if we exclude the heavy quark contributions
and the quartic coupling contributions (denoted by only top, no GhhTiTi

, in red), i.e. only
diagrams with a top quark in the loop and no effective quartic couplings. This resembles an
elementary 2HDM, and can thus be used for a comparison accordingly. We also display the
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Figure 10.5.: The invariant mass distribution at LO for benchmark point BP1 (see Tab. B.1 in
App. B for the input values). Shown are the full result (in cyan), the result with only the top
quark contribution and no quartic coupling contributions (red line), the result with only the
top quark contribution and the Ghhtt coupling contribution (orange line) and the SM result
(blue line) for comparison. Additional information about the heavy Higgs mass mH , the top
partner masses mTi , the heavy Higgs width ΓH and the total cross section σtot (at LO) can
be found in the legend. Taken from [74].

distribution if the quartic coupling Ghhtt of the SM-like Higgs and the top quark is included
(in orange), and finally the full result including all contributions (in cyan).

We begin with BP1. In Fig. 10.5 we see the invariant mass distribution for this parameter
point, where we also showcase some of the relevant parameters of the benchmark point in
the legend of the plot. Here, we have a large heavy Higgs mass mH , and thus, the resonant
contribution is small.

Next, we see that for lower invariant mass values of Q the full result follows closely the SM
result, and also the full cross section is close to the SM result. At two times the mT8 mass
(i.e. the lightest top partner), we see the heavy top partner threshold, and the distribution
of the parameter point deviates from the SM result. Since the heavy top partners have to be
heavy due to the experimental constraints and the differential distribution rapidly decreases
with increasing Q, this threshold does not contribute significantly to the full cross section
and will be very hard to measure experimentally.

Another interesting feature of this benchmark point is the following. If we exclude the heavy
quark contributions and the quartic coupling contribution, we obtain the red line in the
plot, which resembles an elementary 2HDM, where we can have modified couplings and the
resonant triangle diagram with the heavy Higgs H. Here, this differential distribution is
enhanced compared to the SM and we can also see the Higgs resonance, which is very broad
here due to the large total width ΓH . If we then include the quartic coupling, the distribution
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Figure 10.6.: The invariant mass distribution at LO for benchmark point BP2 (see Tab. B.1
in App. B for the input values). The colour code is the same as in Fig. 10.5. Figure taken
from [74]

.

decreases and lies below the SM distribution. Finally, if we turn on all contributions, we
increase our result again. Thus, for this benchmark point, the deviation of SM couplings
increases the di-Higgs cross section (the resonant contribution plays no role here because
mH is quite heavy), whereas the quartic coupling contribution interferes destructively and
the heavy quarks interfere constructively. We see here the behaviour already mentioned in
the discussion of Fig. 10.4. All these contributions at the end lead to a SM-like result with
an overall cross section of 1.08 times the SM value. Thus, even if the prediction of the SM
is measured, we can have deviations from the SM couplings that will be compensated by
additional contributions and will be indistinguishable experimentally in this case by di-Higgs
production alone.

Another benchmark point with no clear resonance signal is BP2, which can be seen in Fig. 10.6.
In this case we see a clear distinction between the benchmark point and the SM result, and
the overall cross section is 2.34 times larger than the SM result. If we exclude the heavy quark
contribution and the quartic coupling contribution (red line), we see that this time we are
below the SM distribution until we come close to the Higgs resonance at the heavy Higgs mass
mH , which is very broad here due to the large total width ΓH . If we include the quartic cou-
plings (orange line), we see that they strongly interfere with the other contributions, resulting
in a peak-dip-peak structure at energies below 500 GeV. Furthermore, the distributions fall
off less rapidly with increasing Q. The reason here is that the quartic coupling contribution is
significant in this case (as can be seen in the interference structure), and the quartic coupling
contributions decrease more slowly with increasing Q, since the corresponding diagrams do
not have an additional propagator (which scales with Q−2) compared to the other triangle
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Figure 10.7.: The invariant mass distribution at LO for benchmark point BP3 (see Tab. B.1
in App. B for the input values). The colour code is the same as in Fig. 10.5. Figure taken
from [74].

contributions. Finally, if we include all contributions, we have an overall enhancement of the
cross section, compared to the SM result.

Thus, due to the contributions of the heavy quarks and the quartic couplings that can enhance
the overall cross section or interfere destructively, we can obtain different results in the non-
resonant case. We can have a clear deviation from the SM di-Higgs cross section value, or a
result close to the SM expectation even with deviations from the SM couplings,

Next, we turn to two benchmark points with a more visible resonant peak from the heavy
Higgs. In Fig. 10.7 we see the invariant mass distribution for BP3. If we look only at small
values for Q (less than 1 TeV), we see that the deviations from the couplings compared to
the SM values (i.e. if we only consider the red line with only top quark contribution and no
quartic couplings) result in an enhancement of the cross section, whereas the quartic coupling
here interferes destructively (orange line) and the heavy quark contributions again interfere
constructively (full result).

In the full result, we again see the heavy quark threshold limit starting at around 2.6 TeV. Ad-
ditionally, we now have a clear resonance peak from the heavy Higgs at Q = mH = 1182 GeV.
If we include or exclude certain contributions, the shape of the resonance peak changes, as the
different contributions can interfere with each other. In this case, if we first consider only the
top quark contributions without heavy quarks and quartic couplings (red line), we see that
we first have constructive interference before the resonance and then destructive interference
after the resonance (since the resonance contribution changes sign before and after the peak).
Including the quartic coupling contributions inverts this behaviour, and finally, if the full
result is considered, the interference structure becomes even more involved.
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Figure 10.8.: The invariant mass distribution at LO for benchmark point BP4 (see Tab. B.1
in App. B for the input values). The colour code is the same as in Fig. 10.5. Figure taken
from [74].

Therefore, precisely measuring the shape of a resonance would also give insights into addi-
tional contributions and can be helpful to distinguish between an elementary 2HDM or the
composite 2HDM realization. Another remark here is that although we have a visible reso-
nance peak in the distribution, the total cross section is only 1.5-times the SM result, and we
have a heavy Higgs width ΓH slightly above 5 % (normalized to the heavy Higgs mass mH),
i.e. we do not apply resonant constraints on this point due to its relatively large width.

A similar behaviour can also be seen for BP4 in Fig. 10.8. The difference here is that with
only the top quark contribution and no quartic couplings (red line), we are below the SM
expectation for small values of Q, and with the inclusion of the quartic coupling, the cross
section is enhanced (compare orange to red line). Moreover, we also then have an enhancement
before the resonance peak (which is here at Q = mH = 1476 GeV) and a suppression after
the peak. If all contributions are considered, we have an overall enhancement of the cross
section of about 30 % compared to the SM expectation.

For this benchmark point, we also show the pT distribution in Fig. 10.9. Here also a peak is
visible (which is not at the value of the heavy Higgs mass here), and a similar interference
structure emerges compared to the invariant mass distribution. Thus, the aforementioned
conclusions are also applicable to pT distributions and they can in principle be used as well
to disentangle various interference patterns.

10.3.3. Effects on Binned Distributions

Furthermore, we analyzed the expected number of events for a binned distribution. Here, we
used our differential distributions and calculated the number of events, given the bin size,
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Figure 10.9.: The pT distribution at LO for benchmark point BP4 (see Tab. B.1 in App. B for
the input values). The colour code is the same as in Fig. 10.5. Figure taken from [74].

luminosity and final state considered. We then constructed a simplified signal ratio S, given
by

S =
NBP

NSM
, (10.4)

where NBP and NSM are the events for a given bin for a selected benchmark point and the
SM as comparison. In our case we used an integrated luminosity of 3000 fb−1, a bin size of
40 GeV and the bbττ final state (thus we multiplied the SM with the SM branching ratios,
and our benchmark point with our calculated branching ratios). This approach clearly is a
naive simplification, since we do not consider both theoretical (e.g. higher-order corrections)
and experimental effects (e.g. acceptance and background, etc.), but it can be seen as a rough
first estimate.

In Fig. 10.10 (upper), we see the binned distribution obtained for BP3 and we also show the
ratio S for this benchmark point for each bin, in Fig. 10.10 (lower). We see that the signal
ratio S can become significant around the resonance peak region and at the threshold of
the heavy quarks (i.e. at 2mT8), but the latter will be difficult to measure due to the low
event rate. These results depend on the chosen benchmark point, but similar effects can be
expected for other benchmark scenarios.

10.3.4. Comparison with other 2HDM-like Models

In this section, we compare our realization of a composite 2HDM with other elementary
2HDMs. Since we have flavour-aligned Yukawa couplings in our composite 2HDM [69] it is
evident to compare our model with a flavour-aligned 2HDM (A2HDM) [246]. As another
model, we used a Type-II 2HDM, which resembles a supersymmetric model with potential



84 10. Numerical Evaluation

Figure 10.10.: Binned distribution of events for an integrated luminosity of L = 3000 fb−1

and considering the bbττ final state, plotted against the invariant mass Q for benchmark
point BP3 (red) and the SM as comparison (blue). The lower plot shows the signal to SM
background ratio S defined as in Eq. (10.4). All cross sections are calculated at LO. The
input values for BP3 are given in Tab. B.1 in App. B. Taken from [74].

parameters not constrainted by supersymmetric relations and without the additional super-
symmetric particles.

For the Type-II 2HDM we used the same dataset that was already used in [150] and therefore
refer to this publication for more details on the constraints that were applied on the dataset.

For the generation of parameter points for the A2HDM, we used the code 2HDMC [265]. We
applied the following constraints (compare to the constraints we used in Sec. 3.2 and in
Sec. 8.4). The code 2HDMC checks for positivity of the potential, i.e. boundedness from below,
and tree-level perturbative unitarity (cf. Sec. 3.2 and see also the manual of 2HDMC [265]).
Additionally, we used HiggsBounds and HiggsSignals again to check for compatibility with
current Higgs searches and measurements.

In order to comply with flavour constraints, we used the same approach as in the composite
2HDM (see Sec. 8.4), i.e. we enforced the relation ζb . 0.1ζt, where the ζb and ζt are the
coupling modifiers (see also Eq. (8.20)) of the top and bottom quark to the heavy Higgs
states H, A and H±.

To check the S, T, U parameters, which parametrize the deviations from the SM electroweak
precision observables [181, 182], we used the code ScannerS [42, 179] again. Although the
A2HDM is not implemented, we can still use ScannerS to check if the parameter points satisfy
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Figure 10.11.: The total heavy Higgs width divided by the heavy Higgs mass plotted against
the heavy Higgs mass with the di-Higgs cross section normalized to the SM value in colour
code. Shown are 3 plots for different models, the Composite 2HDM (upper), the Type-II
2HDM (middle) and the A2HDM (lower). The cross section values are given at LO. Taken
from [74].

these constraints, as the S, T, U parameters are calculated from gauge boson self-energies,
which are independent of the Yukawa-type of a given 2HDM model.3

Finally, we also included perturbativity constraints. We used the code SARAH [220–223] to
calculate via the renormalization group (RG) the running of the Yukawa couplings yFk (F =
U,D,L, k = 1, 2) given in the interaction basis (Φ1,Φ2) of the Higgs doublets and we required

|yFk (Λ)|2 ≤
√

4π , (10.5)

at a certain energy scale Λ. Here F denotes the fermion type, and k the index of the corre-
sponding doublet. We also neglected the Yukawa couplings for the first and second generations
of fermions and focused on the 3rd generation only. The 1-loop β functions are used for the
running of the couplings, and we used as a cutoff Λ ' 5 TeV.

The reason why we apply slightly different constraints for the A2HDM and the composite
2HDM is that we have different setups in mind. In the A2HDM we assume a weakly coupled
theory and thus apply perturbative unitarity constraints and make sure that the couplings
remain in the perturbative regime, whereas in the composite 2HDM we have a strongly
coupled UV complete theory at higher energies.

With the generation of the parameter sample discussed, we can now move on to the compar-
ison of the models. In Fig. 10.11 we show the total width of the heavy Higgs ΓH normalized

3One may think that tadpole contributions to the self-energies have to be considered, which would be Yukawa-
type dependent. They, however, cancel out exactly in the determination of the S, T, U parameters [266].
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Figure 10.12.: The branching ratios (BRs) plotted against the heavy Higgs mass mH for the
various final states, H → tt, H → hh, H → TiTj (i, j = 1, .., 9), with the top quark t and at
least one of the Ti, Tj being one of the heavy top partners. The branching ratios of all TiTj

final states are summed over. Taken from [74].

to the heavy Higgs mass mH and in colour code the total di-Higgs cross section for all three
models considered. The maximum cross sections, we then have in our sample, are around 2
times the SM value for the Type-II 2HDM, and around 6 times the SM value for the A2HDM.
The reason why we cannot have large cross sections in the Type-II 2HDM is that we do not
have heavy Higgs masses mH below around 500 GeV anymore. This is because, first, the
constraints on the S, T, U precision parameters force the mass differences between the scalars
mH , mA and mH± to be small, and, second, the flavour constraints force the charged Higgs
mass to be heavy [267–270] i.e. lighter mH masses are not allowed in the Type-II 2HDM.
Therefore, points with a large resonant contribution are not present in this type of 2HDM,
and we do not have large cross sections. In the A2HDM and the composite 2HDM, we have
more freedom in our Yukawa structures to then evade the flavour constraints. Thus, we find
points with lighter mH masses and therefore resonant enhancements.

The other interesting feature in Fig. 10.11 are the total widths that can be obtained. In
the Type-II 2HDM we have a maximum total width of 8.8 % (normalized to mH), in the
A2HDM we have 11.6 %, whereas in the composite 2HDM we can have up to 47 %. This
large difference has a twofold origin. First, we use an effective low scale description of the
composite 2HDM, a strongly coupled theory where the Yukawa couplings in this effective
approach can be larger than in the other models. We also see that the total width in the
composite 2HDM increases with larger Higgs masses mH . This is due to the fact that the
Yukawa coupling gHtt increases with mH (see also Fig. 10.3). Furthermore, in the composite
2HDM we have heavy top partners into which the heavy Higgs H can additionally decay, if
it is heavy enough. In Fig. 10.12 we show the branching ratios of the heavy Higgs H into tt̄,
hh and TiTj , where t is the top quark and where in the decay channel TiTj at least one of the
final state fermions is a top partner and not the top quark. In the plot, we add all branching
ratios from all possible heavy top partner final states. We see that at around 1.5 TeV the
H → TiTj becomes active. This is to be expected, since the heavy top partners have to be
heavier than 1.3 TeV and then the decay channel to the lightest heavy top partner and a top
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quark opens. We also see that this decay channel can become dominant. Thus, for Higgs
masses heavier than 1.5 TeV we can enhance the total width further.

To summarize, in our composite 2HDM we can have significantly larger total widths ΓH ,
which can interplay with the additional couplings and new particles that contribute to di-
Higgs production and lead to more intricate interference effects in the differential distributions,
compared to elementary 2HDM models.





CHAPTER 11

Conclusion

In this part, we discussed the calculation and evaluation of di-Higgs production in a composite
2HDM realization. We first gave a short introduction to composite Higgs models and to the
composite 2HDM that we investigated. We described the symmetries of the composite sector,
mentioned the gauge and fermion sector and summarized the important details needed for the
later calculation. Furthermore, we introduced the notation for the scalar sector of elementary
2HDMs. We then described the various experimental and theoretical constraints that we
applied on the composite 2HDM.

We summarized the Feynman rules obtained from the effective Lagrangian and described
the various contributions to di-Higgs production in this model, where we have additional
heavy top partners, a heavy Higgs boson H and effective quartic scalar-scalar-fermion-fermion
couplings that can contribute. We then calculated the LO di-Higgs cross section and briefly
mentioned the NLO corrections in the heavy top limit. We, however, used in the following a
multiplicative K-factor to account for NLO corrections.

We described our implementation of our analytical results into the code HPAIR, the setup of
our parameter scan and how we applied the theoretical and experimental constraints. We
implemented the composite 2HDM into the codes HDECAY and HIGLU to also obtain the total
widths, the branching ratios and the production cross sections via gluon fusion for the scalars
in our model. We then analyzed the impact of the various constraints that we applied, in
particular the resonant di-Higgs constraints that already constrain our parameter space. The
non-resonant constraints did not yet exclude any parameter points but will be sensitive to
our model as well in the near future.

We discussed the impact of the features of the model on di-Higgs production, on the inclusive
results as well as the differential distributions. We analyzed points with different features.
First, we discussed benchmark points with a SM-like cross section, where the resonant en-
hancement from the triangle diagram with a heavy Higgs propagator does not significantly
enhance the cross section. The additional contributions from heavy top partners and/or
effective quartic couplings then play a significant role, and interference effects between all
contributions become important. Similar effects can be seen in the differential distributions,
where, depending on the signs and sizes of the various contributions, intricate interference
patterns can emerge both with or without a heavy Higgs resonance in the spectrum. We can
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have points with a cross section close to the SM value, or we can have an enhancement of the
overall cross section. Moreover, we can have resonant enhancement, similar to elementary
2HDMs. These distributions can then also be used to differentiate between an elementary
2HDM or a composite 2HDM. We also discussed binned distributions with a signal ratio in a
simplified approach.

Finally, we compared the composite 2HDM with the type-II 2HDM and the flavour-aligned
A2HDM. We showed that the type-II 2HDM is more constrained due to a combination of
electroweak and flavour constraints, which can be more easily evaded in the A2HDM or com-
posite 2HDM because of their more general Yukawa structure. Thus, we do not have lighter
heavy Higgs masses mH in the type-II 2HDM and therefore no large resonantly enhanced
cross sections. Moreover, we see that in the composite 2HDM we can have significantly larger
total widths ΓH for the heavy Higgs H because of larger Yukawa couplings and additional
possible decay channels into heavy top partners (or top and top partner).

Thus, the interplay between large total widths ΓH and the additional contributions from heavy
top partners and additional effective couplings can lead to intricate interference patterns in
the differential distributions and can be used to distinguish between the composite 2HDM
and other models.
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CHAPTER 12

Introduction

In this project, we investigated supersymmetric particle decays in the complex, i.e. CP-
violating, next-to-minimal supersymmetric extension of the Standard Model (NMSSM) [70,
71]. Our goal was to extend the code SDECAY [75, 76], which calculates the supersymmetric
particle decays in the minimal supersymmetric extension of the Standard Model (MSSM) [62,
93, 94], to calculate the decays for the NMSSM. Furthermore, we linked this code with the
spectrum generator NMSSMCALC [77–82], which calculates the Higgs masses including loop
corrections and already has a version of HDECAY [216, 217] implemented to calculate the
Higgs decays in the NMSSM. Thus, we can use this program chain together with the program
BSMArt [271], including experimental and theoretical constraints, to obtain valid benchmark
parameter points.

Supersymmetry (SUSY), as previously mentioned in the introduction Chapter 1 and in
Sec. 2.2, is a theoretically well motivated theory that can solve the hierarchy problem. Similar
to the case of composite Higgs models (see part II), in order for SUSY to solve the hierarchy
problem, the scale of supersymmetry cannot be too high, i.e. these models can be tested
at current and future experiments. Furthermore, with the addition of the superpartners of
the SM particles, and a stable lightest supersymmetric particle (LSP) due to R-parity, su-
persymmetric models have a very interesting phenomenology and can give well motivated
explanations to unexplained phenomena, e.g. dark matter (DM). Moreover, SUSY may play
a role in the unification of the fundamental forces and is a necessary ingredient for string
theories, i.e. SUSY is also well motivated theoretically from a top-to-bottom (UV complete
theory to low energy) perspective (see e.g. [62, 64] for an extensive review on SUSY). As we
already mentioned in the introduction to the CxSM project in Chapter 3, supersymmetric
models naturally have extended scalar sectors and can also be seen as special cases to generic
multi-Higgs models, where in the supersymmetric case the scalar potential parameters are
constrained (and we have additional particles in the theory, compare e.g. to the composite
case in part II). Moreover, in supersymmetric extensions of the SM, we need at least an addi-
tional Higgs doublet to guarantee an anomaly-free theory and to obtain the correct Yukawa
structure for the quarks [62]. Thus, extended scalar sectors appear naturally in supersym-
metric theories. We will omit a detailed explanation of supersymmetry and instead refer to
the excellent reviews [62–64, 70, 71, 93, 94], where further information can be found.
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We now describe the content of this part of the thesis. We will first give a short introduction
to SUSY, the NMSSM and its particle content. We then describe the renormalization that is
needed for the QCD corrections to two-body decays. Moreover, we describe all the two- and
three-body as well as the radiative loop decays. Furthermore, we present the QCD corrections
for two-body decays to obtain precise results for the decay widths of the supersymmetric
particles. Finally, we discuss our setup to obtain viable parameter points in the NMSSM
parameter space to check our results and perform a first analysis.

In this chapter, we briefly summarize the features of SUSY in Sec. 12.1 and give an overview
over the NMSSM (Sec. 12.2). We describe the particle content, set our notation and list
the constraints we applied on our model to obtain viable parameter points, in Sec. 12.3.
Furthermore, we describe the renormalization necessary for the QCD corrections (Sec. 12.4),
where we define the field and mass renormalization in Sec. 12.4.2, the renormalization of the
strong coupling constant (Sec. 12.4.3), the SUSY restoring counterterms that we need in our
calculation, since we used dimensional regularization (Sec. 12.4.4) as well as the conversion
from DR to OS parameters in Sec. 12.4.5.

The described setup and preliminary results are part of an ongoing project and will soon be
published.

12.1. Introduction to Supersymmetry

In the following we give a brief introduction to SUSY, where we follow [272] and the reviews
[62, 64, 70, 71, 93, 94], where more information can be found.

In supersymmetry, we extend the group of spacetime symmetries, the Poincaré group, by
an additional symmetry with generator Q that relates fermions and bosons. The generator
Q must be an anti-commuting spinor and obey the following relations with the generators
Pµ,Mµν of the Poincaré group,

{Q,Q†} = 2γµPµ , (12.1a)

{Q,Q} = {Q†, Q†} = 0 , (12.1b)

[Pµ, Q] = [Pµ, Q†] = 0 , (12.1c)

[Mµν , Q] = −σµνQ , [Mµν , Q†] = −σµνQ† , (12.1d)

to uphold the Coleman-Mandula theorem [273] with the Haag- Lopuszański-Sohnius extension
[274]. Here, we have σµν = i/4[γµ, γν ] with the gamma matrices γµ, and we suppressed spinor
indices.

We have the symbolic relations

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 , (12.2)

i.e. Q can transform fermionic states into bosonic states and vice versa. It then quickly follows
that a consistent theory with this extended symmetry requires the same number of bosonic
and fermionic degrees of freedom, nB = nF , and identical masses for the related bosons and
fermions, mB = mF . Therefore, each particle in the theory (e.g. in the SM) has a so-called
superpartner with identical quantum numbers (e.g. mass, electrical charge, etc.), except for
the spin.

Now, if a supersymmetric theory is constructed, one can categorize the fermionic and bosonic
fields by constructing so-called superfields where fermionic and bosonic fields, which are re-
lated by the supersymmetry transformation, are combined. When we consider e.g. gauge
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bosons, Aa
µ, and their respective superpartners, the gauginos, λ̃a, they can be combined to

vector superfields Âa = (Aa
µ, λ̃

a). Similarly, we obtain chiral superfields Φ̂i = (Φ̃i,Ψi) for a

Weyl spinor Ψi and their superpartners consisting of a complex scalar field Φ̃i. The Weyl
spinors then result in the left- and right-handed parts of the Dirac fermions of the SM, and
the complex scalars result in their superpartners, the so-called sfermions. Here, we already
indicated with the tilde the supersymmetric partners to the already established SM particles.

Furthermore, another fundamental object in a supersymmetric theory is the superpotential
W, which is a holomorphic function of the superfields. The Lagrangian of the theory is thus
determined by the gauge group and the superpotential W.

Since we do not observe superpartners of the SM with identical masses, we know that in a su-
persymmetric extension of the SM supersymmetry has to be broken. Therefore, we introduce
additional soft-breaking terms summarized in the Lagrangian Lsoft that break SUSY softly,
i.e. supersymmetry is only broken by dimensionful parameters. By only introducing these
softly breaking terms into the theory, we break solely the requirement of equal masses for
particles and their superpartners, while retaining the other attractive features of supersym-
metric theories, as e.g. solving the hierarchy problem, the unification of the gauge couplings,
etc.. A supersymmetric theory is therefore given by the field content, the gauge group, the
superpotential W and the soft-breaking Lagrangian Lsoft.

We can write the general scalar potential of the theory as

VΦ = W∗
i W i +

1

2
g2a
(
Φ∗
iT

a
ijΦj

)2
+ soft-breaking terms , (12.3)

where we summed up all F-terms from the chiral superfields and the D-terms from the gauge
multiplets contributing to the potential (for more details see e.g. [62]). Here, Wi = ∂W/∂Φi,
with Φi being the scalars in the model, ga the gauge couplings and T a

ij being the generators
of the gauge group.

We see that the scalar potential is already determined by the superpotential (i.e. the Yukawa
couplings), the D-terms, that are obtained from the gauge interactions and the soft-breaking
terms.

12.2. The Next-to-Minimal Supersymmetric Standard Model

We now give a short overview over the NMSSM, where we will mainly follow the reviews [70,
71] and [272].

The NMSSM is obtained from the MSSM [62, 93, 94] by introducing an additional superfield
Ŝ, which is a singlet under the SM gauge groups. The superpotential WNMSSM of the NMSSM
is given by

WNMSSM = Yuû(Q̂TεĤu) −Yeê(L̂
TεĤd) −Ydd̂(Q̂TεĤd) + λŜ(ĤT

u εĤd) +
1

3
κŜ3 , (12.4)

where Yu, Ye, Yd are the 3 × 3 Yukawa matrices, and λ and κ are dimensionless couplings
between the Higgs (Ĥu, Ĥd) and the Singlet (Ŝ) superfields. The definition of the superfields
can be seen in Tab. 12.1. The main difference to the MSSM due to the inclusion of the singlet
superfield Ŝ are the additional terms proportional to λ and κ. Moreover, ε is defined as

ε =

(
0 1

−1 0

)
, (12.5)
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Table 12.1.: Field content of the NMSSM together with their quantum numbers [70]. The
indices L, R denote the left- and right-chiral parts of the fermions, while for the scalar fields
they indicate the chiral fermion they are related to. Here, Q denotes the quark doublet and
not the SUSY generator.

Superfield scalar fermion generations (U(1)Y, SU(2)L, SU(3)C)

quark-squark Q̂ Q̃ = (ũL, d̃L)T Q = (uL, dL)T 3 (
1

6
, 2, 3)

û ũ∗R u†R 3 (−2

3
, 1, 3)

d̂ d̃∗R d†R 3 (
1

3
, 1, 3)

lepton-slepton L̂ L̃ = (ṽ, l̃L)T L = (v, lL)T 3 (−1

2
, 2, 1)

l̂ l̃∗R l†R 3 (1, 1, 1)

Higgs-Higgsino Ĥu Hu = (H+
u ,H0

u)T H̃u = (H̃+
u , H̃0

u)T 1 (
1

2
, 2, 1)

Ĥd Hd = (H0
d ,H

−
d )T H̃d = (H̃0

d , H̃
−
d )T 1 (−1

2
, 2, 1)

Ŝ S S̃ 1 (0, 1, 1)

Vector boson fermion

B-Bino B̂ B B̃ 1 (0, 1, 1)

W-Wino Ŵ W W̃ 1 (0, 3, 1)

gluon-gluino Ĝ g g̃ 1 (0, 1, 8)

and determines the contraction of the Higgs doublet fields. Furthermore, a Z3 symmetry is
imposed to forbid other dimensionful terms (see e.g. [70] for more details).

The superpotential in Eq. (12.4) solves the so-called µ-problem of the MSSM, where the
supersymmetry respecting parameter µ has to be of the same order as the SUSY breaking
parameters in the soft-breaking Lagrangian Lsoft in order to obtain EW symmetry breaking
with a VEV v around the SM EW scale. The µ parameter and the soft breaking parameters,
however, have different origins in the MSSM, and thus a new hierarchy problem is introduced.
In the NMSSM, no dimensionful parameters remain in the superpotential, and the µ param-
eter is generated dynamically (then called µeff) by introducing a VEV for the scalar in the
singlet superfield. Thus, µeff and the SUSY breaking parameters can naturally be of the same
order.

After specifying the superpotential and the field content of the model, we also describe the
soft-breaking terms. The Lagrangian Lsoft

NMSSM is given by

Lsoft
NMSSM = −m2

Hd
H†

dHd −m2
Hu

H†
uHu −m2

Q̃
Q̃†Q̃−m2

L̃
L̃†L̃ (12.6)

−m2
ũR

ũ∗RũR −m2
d̃R
d̃∗Rd̃R −m2

l̃R
l̃∗R l̃R

−
(
−TlH

T
d εL̃l̃

∗
R − TdH

T
d εQ̃d̃∗R + TuH

T
u εQ̃ũ∗R

+
M1

2
B̃B̃ +

M2

2
W̃iW̃i +

M3

2
G̃G̃ + h.c.

)
−m2

S |S|2 +

(
TλSH

T
d εHu − 1

3
TκS

3 + h.c.

)
,
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where M1, M2 and M3 are the gaugino, mHd
and mHu the doublet Higgs, mQ̃, mL̃,mũR , md̃R

and ml̃R
the sfermion and mS the singlet field mass parameters. Then, we have the trilinear

couplings Te, Td, Tu, Tλ and Tκ, which in general can be complex, as well as the gaugino
masses. All parameters here are soft susy-breaking. We parametrize the soft susy-breaking
trilinear couplings as

Tκ ≡ κAκ , Tλ ≡ λAλ , (12.7a)

Ti ≡ YiAi (i = u, d, l) , (12.7b)

with Aκ, Aλ and the Ai as complex parameters. The soft sfermion masses mQ̃, mL̃, mũR ,
md̃R

, ml̃R
and the Ai can in general be matrices, but we assume them to be diagonal in flavour

space in order to avoid large flavour changing effects at tree-level [62]. Thus, we have minimal
flavour violation (MFV), where the only flavour violation occurs in the CKM matrix. We can
have, however, left-right mixing between the sfermions f̃L/R.

The scalar Higgs potential in the NMSSM is given by [70],

VNMSSM =VF + VD + Vsoft

=|λ|2|S|2
(
H†

uHu + H†
dHd

)
+
∣∣λ(HT

u εHd) + κS2
∣∣2 (12.8)

+
1

2
g22|H†

uHd|2 +
1

8
(g21 + g22)

(
H†

uHu −H†
dHd

)2
+ m2

Hu
H†

uHu + m2
Hd

H†
dHd + m2

S |S|2 +

(
λAλ(HT

u εHd)S +
1

3
κAκS

3 + c.c.

)
.

It consists of the F-terms, D-terms and the soft-breaking contributions as described in
Sec. 12.1. We can express the scalar doublets Hd, Hu and the singlet field S as

Hd =

 1√
2

(vd + hd + iad)

H−
d

 , Hu = eiϕu

 H+
u

1√
2

(vu + hu + iau)

 , (12.9)

S =
1√
2
eiϕs(vs + hs + ias) ,

with the phases ϕu and ϕs, the VEVs vu, vd, and vs, the real scalar fields hu, hd, hs, au, ad
and as and the charged fields H+

u and H−
d . We define tanβ as the fraction

tanβ ≡ vu
vd

, (12.10)

and obtain the SM VEV via the relation

v2 = v2u + v2d . (12.11)

The effective parameter µeff, which plays the same role as the µ-parameter in the MSSM, is
now generated by the VEV vs and given by,

µeff ≡ λvse
iϕs

√
2

. (12.12)

The MSSM can be obtained from the NMSSM in the limit λ, κ → 0 with λ/κ, the product
λvs (i.e. µeff) and the parameters Aλ and Aκ fixed. This limit corresponds to vs → ∞ and
therefore a decoupling of the singlet S, and we retain the MSSM particle content.
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We now formulate the tadpole (or minimization) conditions,

∂

∂φ
VNMSSM

∣∣∣∣
{φ}=0

= 0 , (12.13)

where we derivate the potential with respect to the scalar fields φ = hu, hd, hs, au, ad, as.
We obtain a set of equations that we can use to eliminate potential parameters for a chosen
set of input parameters. We choose the set of input parameters as:

tanβ, λ, vs, ϕs, κ, Aκ, MH±(Aλ), ϕu, Au, Ad ,Al ,M1, M2, M3, (12.14)

mQ̃, mL̃, mũR , md̃R
, ml̃R

.

Here, we have the freedom to either use MH± or Aλ as input. Additional parameters are
the SM parameters, i.e. the gauge boson masses MW ,MZ , the electric charge e, the strong
coupling constant αs, the quark and lepton masses and the CKM matrix elements.

In order to have real up-quark Yukawa couplings and therefore real quark masses in the
Lagrangian, we rotate the left- and right-handed up-quark fields qL/R [81],

qL → e−iϕu
2 qL , qR → e+iϕu

2 qR . (12.15)

Similarly, the gluino mass term M3 can have a complex phase ϕM3 , i.e.

M3 = eiϕM3 |M3| . (12.16)

Thus, we rotate the gluino field

g̃L → ei
ϕM3

2 g̃L , g̃R → e−i
ϕM3

2 g̃R , (12.17)

to obtain a real mass term [275]. The Feynman rules involving up-type quarks or gluinos
have to be adjusted accordingly.

Next, we briefly discuss the particle content in the NMSSM. All particles with identical
quantum numbers can in general mix, and we have to diagonalize the mass matrices to obtain
the physical mass eigenstates and the mixing angles. All the masses of the mass eigenstates
are sorted in ascending order. First of all, we have the neutral Higgs scalars, where in the
complex NMSSM we have CP-mixed states, i.e. the hu, hd, hs, au, ad and as can in general all
mix (one of the mixed states will be the neutral would-be Goldstone boson that is absorbed
by the Z boson). The Higgs mass matrix will be denoted by MH and the Higgs rotation
matrix RH and we have the relation

diag(m2
h1
,m2

h2
,m2

h3
,m2

h4
,m2

h5
) = RHMH(RH)T . (12.18)

Similarly, we have for the neutral higgsinos H̃0
u, H̃

0
d , S̃ and gauginos B̃, W̃ the mass matrix

Mχ̃0 and the rotation matrix Z. We denote the mass eigenstates, the neutralinos, with χ̃0
i

(i = 1, .., 5), and we obtain

diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
,mχ̃0

5
) = Z∗Mχ̃0Z† . (12.19)

We note that the neutralinos are Majorana fermions.

The charged higgsinos H̃+
u , H̃−

d mix with the charged gauginos W̃ and we have the mass
matrix Mχ̃± and the rotation matrices V and U . We label the mass eigenstates, the charginos,
as χ̃±

i (i = 1, 2), and we have

diag(mχ̃0
1
,mχ̃0

2
) = U∗Mχ̃±V† . (12.20)
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Finally, the scalar superpartners of the fermions also mix in general, and we have the mass

matrices Mf̃ and the rotation matrix W f̃ that diagonalizes the mass matrix,

diag(m2
f̃1
,m2

f̃2
) = W f̃Mf̃W

f̃† , (12.21)

leading to the mass eigenstates f̃1, f̃2 for each type of fermion f (lepton, up- and down
quark, the sneutrinos do not mix in our case). We here only considered left-right mixing and

no flavour mixing. In general, we can also denote the mixing matrix W f̃ as a 6 × 6 matrix
rotating the fields (f̃1,L, f̃1,R, f̃2,L, f̃2,R, f̃3,L, f̃3,R)T into the corresponding mass eigenstates
(with 1, 2, 3 here being the generation index).

The gluinos do not mix with other fields, and their mass is already determined by the soft
breaking mass parameter M3. Gluinos are also Majorana fermions.

We will omit the presentation of the mass matrices of the Higgs scalars, the charginos/neu-
tralinos and sfermions. They can be found in the literature [62, 70, 71]. We will, however,
give the squark mass matrices in more detail in Sec. 12.4.1, as they will become important
in the context of the QCD corrections to the two-body decays. This concludes the brief
introduction to the NMSSM.

12.3. Theoretical and Experimental Constraints

In the following we list the theoretical and experimental constraints that we applied to obtain
valid parameter points. We followed the approach in [276]. The following constraints were
used to check the parameter points:

• Higgs Searches and Measurements:

The parameter points where checked against current Higgs measurements and searches
via the tool HiggsTools [277], which is the combination of the codes HiggsSignals [188,
189] and HiggsBounds [183–187] . Thus, HiggsTools checks for both compatibility with
current Higgs measurements and compatibility with searches for new Higgs resonances.
We furthermore required in our setup that the SM-like Higgs boson in our spectrum
has a mass in the range [122 GeV, 128 GeV].

• SUSY searches:

The NMSSM is constrained by searches for supersymmetric particles that give limits
on the allowed mass ranges for the SUSY particles. We use the code SModels [278–282]
to check for compatibility with current SUSY searches.

• EDM Constraints:

In the NMSSM, we can have potentially complex couplings and masses that can lead
to CP-violation already at tree level. They can contribute to electric dipole moments
(EDMs), and therefore the constraints from experimental limits have to be considered.
The code NMSSMCALC calculates the EDMs [283, 284] and normalizes them to the ex-
perimental upper limits from [285–289]. The obtained ratio can then be used to check
if the considered parameter input is still allowed. In our scans, however, we did not
apply the EDM constraints for illustrative purposes as we wanted to see the impact of
the complex phases on the decay channels.

• Perturbative Unitarity:

We require the inequality

λ2 + κ2 ≤ 1 , (12.22)
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(a) One-loop contributions to the squark self-energy (s, t = 1, .., 6).
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(b) One-loop contributions to the quark self-energy (i, j = 1, .., 3).

g̃ g̃

g

g̃ g̃

q̃

q

(c) One-loop contributions to the gluino self-energy.

Figure 12.1.: One-loop QCD corrections to the squark, quark and gluino self-energies.

to be satisfied in order to relax the requirement for perturbative unitarity below the
scale of grand unification [276, 290].

12.4. Renormalization of the NMSSM for the QCD Corrections

In this section, we describe the renormalization of the squark, quark and gluino fields, their
masses and the strong coupling constant in order to calculate the QCD corrections to the
decays of supersymmetric particles, where we followed [200, 291, 292]. We performed our
calculation in the dimensional regularization scheme, i.e. we performed the integration of
the loop integrals in D = 4 − 2ε dimensions and also treated the gamma matrices in D
dimensions. This prescription breaks SUSY, and we have to introduce additional SUSY
restoring counterterms that we describe in Sec. 12.4.4. We also describe the conversion of the
input parameters that are given in the dimensional reduction (DR) scheme to the on-shell
(OS) scheme that we applied in Sec. 12.4.5.

12.4.1. Quark and Squark Mass and Rotation Matrices

We present in the following the squark mass and rotation matrices, as well as the quark
rotation matrices and the resulting CKM matrix, as they have to be renormalized for the
QCD corrections.

The squark mass matrix (in the following q = u, d for up- and down-type squarks and quarks)
can be written as

Mũ =

m2
Q̃

+ m2
u +

−g21 + 3g22
24

v2 cos(2β) mu

(
A∗

ue
−iϕu − µeff cotβ

)
mu

(
Aue

iϕu − µ∗
eff cotβ

)
m2

ũR
+ m2

u +
g21
6
v2 cos(2β)

 , (12.23a)

Md̃ =

m2
Q̃

+ m2
d +

−g21 − 3g22
24

v2 cos(2β) md

(
A∗

d − µeffe
iϕu tanβ

)
md

(
Ad − µ∗

effe
−iϕu tanβ

)
m2

d̃R
+ m2

d −
g21
12

v2 cos(2β)

 , (12.23b)
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where g1 and g2 are the U(1)Y and SU(2)Y gauge couplings, respectively, and the matrix is
given in the (q̃L, q̃R) basis. The squarks q̃ = (q̃L, q̃R)T are then rotated into mass eigenstates
q̃m = (q̃1, q̃2)

T via

q̃m = W q̃ q̃ , (12.24)

with the squark rotation matrix W q̃, which then diagonalizes the squark mass matrix,(
mq̃21

0

0 mq̃22

)
= W q̃Mq̃W

q̃† . (12.25)

We also introduce the quark rotation matrices U qL/R . The left- and right-chiral quarks qL/R
are rotated into the mass eigenstates qmL/R via

qmL/R = U qL/RqL/R , (12.26)

The CKM matrix V CKM in our notation is then defined as

V CKM = UuLUdL† . (12.27)

These conventions will come up again in the following section, where we renormalize the
quark and squark fields and mixing matrices to obtain QCD-corrected results at NLO.

12.4.2. Field and Mass Renormalization

Similar to the CxSM renormalization in Chapter 4, we write the bare squark, quark and
gluino fields and their masses as

q̃0 =

(
1 +

1

2
δZ q̃

)
q̃ , m2

q̃,0 = m2
q̃ + δm2

q̃ , (12.28a)

qL/R,0 =

(
1 +

1

2
δZqL/R

)
qL/R , mq,0 = mq + δmq , (12.28b)

g̃L/R,0 = (1 +
1

2
δZ g̃L/R)g̃L/R , mg̃,0 = mg̃ + δmg̃ , (12.28c)

where the label 0 indicates the bare fields and the δZ are the field renormalization constants.
Since the gluinos are Majorana, fermions we have δZ g̃L = δZ g̃R .

In principle, the complex phase of the gluino mass term, ϕM3 needs to be renormalized as
well. We can, however, choose δϕM3 = 0 [275].

We will again use the OS scheme as we did in Sec. 4.1.1. The fermion self-energy can be split
into several parts,

Σq
ij(p

2) = /pΣq,L
ij (p2)PL + /pΣq,R

ij (p2)PR + Σq,Ls
ij (p2)PL + Σq,Rs

ij (p2)PR , (12.29)

where we used a slightly different setup than in Eq. (4.26), to comply with the notation in
[291]. The contribution to the self-energies at one-loop order can be seen in Fig. 12.1. We skip
the derivation of the renormalization conditions (cf. Sec. 4.1.1 and [200, 291]) and only list
the results. For the field renormalization constants and the mass counterterm of the squarks
we obtain (s, t = 1, .., 6)
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δm2
q̃s = R̃eΣq̃

ss(m
2
q̃s) , (12.30a)

δZ q̃
st =


− R̃e

∂Σq̃
ss(p2)

∂p2

∣∣∣∣∣
p2=m2

q̃s

s = t

2

m2
q̃s
−m2

q̃t

R̃eΣq̃
st(p

2 = m2
q̃t) s 6= t

. (12.30b)

The field and mass counterterms for the fermions, i.e. the quarks and gluinos are given by
(i, j = 1, 2, 3)

δmqi =
1

2
R̃e
(
mqi(Σ

q,L
ii (m2

qi) + Σq,R
ii (m2

qi)) + Σq,Ls
ii (m2

qi) + Σq,Rs
ii (m2

qi)
)
, (12.31a)

δZqL
ij =

2

m2
qi −m2

qj

(
mqiR̃eΣq,Ls

ij (m2
qj ) + mqj R̃eΣq,Rs

ij (m2
qj ) (12.31b)

+m2
qj R̃eΣq,L

ij (m2
qj ) + mqimqj R̃eΣq,R

ij (m2
qj )
)

(i 6= j) ,

δZqR
ij =

2

m2
qi −m2

qj

(
mqj R̃eΣq,Ls

ij (m2
qj ) + mqiR̃eΣq,Rs

ij (m2
qj ) (12.31c)

+mqimqj R̃eΣq,L
ij (m2

qj ) + m2
qj R̃eΣq,R

ij (m2
qj )
)

(i 6= j) ,

δZ
qL/R

ii = −R̃eΣ
q,L/R
ii (m2

qi) (12.31d)

−mqi

∂

∂p2
R̃e
(
mqi(Σ

q,L
ii (p2) + Σq,R

ii (p2)) + Σq,Ls
ii (p2) + Σq,Rs

ii (p2)
)∣∣∣

p2=m2
qi

,

δZ g̃L/R = −R̃eΣg̃,L/R(m2
g̃) (12.31e)

−mg̃
∂

∂p2
R̃e
(
mg̃(Σg̃,L(p2) + Σg̃,R(p2)) + Σg̃,Ls(p2) + Σg̃,Rs(p2)

)∣∣
p2=m2

g̃
.

Since we consider squark and quark mixing, we also renormalize the mixing matrices. We
introduce counterterms via

U
qL/R

0 = (1 + δuqL/R)U qL/R , (12.32a)

W q̃
0 = (1 + δwq̃)W q̃ , (12.32b)

with the quark and squark mixing matrix counterterms δuqL/R , δwq̃, respectively. We again
use an OS scheme, and obtain for the counterterms the relations (cf. [200, 291]),

δuqL/R =
1

4

(
δZqL/R − δZqL/R†

)
, (12.33a)

δwq̃ =
1

4

(
δZ q̃ − δZ q̃†

)
. (12.33b)

In Eqs. (12.30) and (12.31) we see that for degenerate squark masses or vanishing quark
masses the off-diagonal δZ counterterms are ill-defined and diverge. In order to obtain finite
expressions, we have to apply the limits of vanishing quark or degenerate squark masses
carefully when we combine the field and the mixing matrix counterterms (which also depend
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on the δZ counterterms) that appear in the counterterm amplitudes. We used the limits
(cf. [291]),

δZ
qL/R†
ij

2
+ δu

qL/R

ij

mqi→mqj−−−−−−→ −1

2

[
R̃eΣ

q,L/R
ij (m2

qi)
]

(12.34)

− mqi

2

∂

∂p2
R̃e
[
mqi(Σ

q,L
ij (p2) + Σq,R

ij (p2)) + Σq,Ls
ij (p2)

+Σq,Rs
ij (p2)

]∣∣∣
p2=m2

qi

,

δZ
qL/R†
ij

2
mqj + δu

qR/L

ij mi

mqi→mqj−−−−−−→ 1

2
R̃e
[
mqiΣ

q,L/R
ij (m2

qi) + 2Σ
q,Rs/Ls
ij (m2

qi)
]

(12.35)

−
m2

qi

2

∂

∂p2
R̃e
[
mqi(Σ

q,L
ij (p2) + Σq,R

ij (p2)) + Σq,Ls
ij (p2)

+Σq,Rs
ij (p2)

]∣∣∣
p2=m2

qi

,

1

2
δZ q̃∗

st + δwq̃
ts

mq̃s→mq̃t−−−−−−→ −1

2
R̃e

∂

∂p2
Σq̃
st(p

2)

∣∣∣∣
p2=m2

q̃s

, (12.36)

mqiδu
qR
ij + mqjδu

qL†
ij

mqi→mqj−−−−−−→ 1

2
R̃e
(
mqi(Σ

q,L
ij (m2

qi) + Σq,R
ij (m2

qi)) (12.37)

+Σq,Ls
ij (m2

qi) + Σq,Rs
ij (m2

qi)
)
.

Here we used the relation (cf. [200, 291])

δZ†
ij = δZij(m

2
qi ↔ m2

qj ) . (12.38)

Thus, in the cases of degenerate squark masses or vanishing quark masses, the overall ex-
pressions for the counterterms are still finite and well defined. Be aware that here δZ†

ij =

(δZ†)ij = δZ∗
ji.

12.4.3. Renormalization of the Strong Coupling Constant

We now describe the renormalization of the strong coupling constant gs. We will only set up
the notation and mention the result. For more details, we refer to [293–296]. We split the
bare coupling into the renormalized coupling and counterterm as

g0s = gs + δgs . (12.39)

We use the MS scheme, for which the counterterm is given as

δgMS
s = −αs

8π
β0gs∆UV , (12.40)

with ∆UV defined as

∆UV =
1

ε
− γ + log 4π , (12.41)

and where β0 can be decomposed into a sum of contributions from light and heavy particles
(cf. [295]),

β0 =

[
11

3
N − 2

3
nf

]
+

[
−2

3
N − 2

3
− 1

3
(nf + 1)

]
≡ βL

0 + βH
0 , (12.42)
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with the number of colours N and the number of active flavours nf . We use the 5-flavour
scheme for the running of the coupling in order to be able to use experimental data as
input. Thus, we decouple the top quark and all heavy SUSY particles that would otherwise
contribute to the running of the strong coupling constant. We thus have the counterterm

δgMS,5
s = δgMS

s − αs

8π

[
2 log

m2
g̃

µ2
R

+
1

6

12∑
i=1

log
m2

q̃i

µ2
R

+
2

3
log

m2
t

µ2
R

]
gs , (12.43)

with the renormalization scale µR. The subtraction of the logarithmic terms ensures that
only the light quarks contribute to the running of αs, i.e.

µ2
R

d

dµ2
R

αs = −αsβ
L
0 . (12.44)

12.4.4. SUSY Restoring Counterterms in Dimensional Regularization

In the DR prescription, dimensional reduction is used as a regularization method, where the
loop momentum is defined in D = 4 − 2ε dimensions (with a small parameter ε), whereas
everything else (i.e. the gamma matrices and the other Lorentz structures) remains in 4
dimensions. In the MS scheme, however, dimensional regularization is used, where everything
is regularized in D dimension, thereby introducing a mismatch in the degrees of freedom
of gauge bosons and their superpartners and thus breaking supersymmetry. Dimensional
reduction preserves supersymmetry (at least at one-loop level [297]). In order to restore
supersymmetry when calculating loop integrals using dimensional regularization and to obtain
the same result as in the DR scheme, additional counterterm shifts have to be included. We
follow here [297–299]. We denote the terms in dimensional regularization with DReg and the
terms in dimensional reduction with DRed. The transition counterterm contributions will be
labelled as δZtrans.

Starting with the gaugino couplings ĝ we introduce the shifts

ĝDReg
s = ĝDRed

s

(
1 + δZtrans

ĝs

)
, δZtrans

ĝs =
g2s

32π2

5

3
, (12.45a)

ĝDReg
2 = ĝDRed

2

(
1 + δZtrans

ĝ2

)
, δZtrans

ĝ2 = − g2s
32π2

4

3
, (12.45b)

for the couplings gs and g2. Here, it is important to note that the gauge couplings gs, g2 and
the corresponding gaugino couplings indicated with the hat have to be distinguished when
using dimensional regularization.

Similarly, we have to shift the Yukawa couplings Ŷq appearing in the neutralino/chargino
couplings to squark-quark pairs. Here, the shift reads

Ŷ DReg
q = Ŷ DRed

q

(
1 + δZtrans

Ŷq

)
, δZtrans

Ŷq
= − g2s

32π2

4

3
. (12.46)

Here, also the Yukawa couplings between quarks and a Higgs or the corresponding Yukawa
couplings between a quark, squark and Higgsino, indicated with the hat, have to be distin-
guished in dimensional regularization.

Next, we shift the quark masses and field renormalization constants via

mDReg
q = mDRed

q

(
1 + δZtrans

mq

)
, δZtrans

mq
=

g2s
16π2

4

3
, (12.47a)

ZL/R,DReg
q = ZL/R,DRed

q

(
1 + δZtrans

q

)
, δZtrans

q =
g2s

16π2

4

3
. (12.47b)
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Finally, we also shift the mass and field renormalization constants for the gluino fields,

mDReg
g̃ = mDRed

g̃

(
1 + δZtrans

mg̃

)
, δZtrans

mg̃
=

g2s
16π2

3 , (12.48a)

Z
L/R,DReg
g̃ = Z

L/R,DRed
g̃

(
1 + δZtrans

g̃

)
, δZtrans

g̃ =
g2s

16π2
3 . (12.48b)

All these counterterms are added to the counterterms described in Sec. 12.4.2 or to the vertex
counterterms in the calculation. Here, one has to be careful to not include the shifts twice.
When we include the shifts for the mass and field renormalization constants of the gluino and
quark fields, we do not need to shift the Yukawa coupling and the gaugino coupling ĝ2. For
the gluino-squark-quark vertex we then only have to account for the difference in the vertex
correction between dimensional reduction and dimensional regularization.

Finally, the strong coupling constant gs is shifted via

gDReg
s = gDRed

s

(
1 + δZtrans

gs

)
, δZtrans

gs = − 3g2s
96π2

. (12.49)

12.4.5. Conversion of DR to OS Parameters

Another aspect we have to consider is that we apply an OS renormalization prescription,
but our input parameters are given in the DR scheme. Therefore, we have to convert them
properly (cf. [80, 300, 301]).

We start with deriving the necessary counterterms. We move the mixing matrices W q̃ to the
left side of Eq. (12.25) and expand the parameters by introducing counterterms. We obtain,

W q̃†(1 + δwq̃†)

(
m2

q̃1 + δm2
q̃1 0

0 m2
q̃2 + δm2

q̃2

)
(1 + δwq̃)W q̃ = (12.50)

W q̃†

(
m2

q̃1 + δm2
q̃1 δYq̃

δY ∗
q̃ m2

q̃2 + δm2
q̃2

)
W q̃ ,

with δYq̃ defined as

δYq̃ ≡ δwq̃
12(m

2
q̃1 −m2

q̃2) . (12.51)

Next, we introduce counterterms in the squark mass matrices of Eq. (12.23) and relate them to
the counterterms in Eq. (12.50). Here, we only use the counterterms needed for the one-loop
QCD corrections. We have

W ũ†

(
δm2

ũ1
δYũ

δY ∗
ũ δm2

ũ2

)
W ũ = (12.52a)(

δm2
Ũ

+ δm2
u δmu

(
A∗

ue
−iϕu − µeff cotβ

)
+ δA∗

umue
−iϕu

δmu

(
Aue

iϕu − µ∗
eff cotβ

)
+ δAumue

iϕu δm2
ũR

+ δm2
u

)
,

W d̃†

(
δm2

d̃1
δYd̃

δY ∗
d̃

δm2
d̃2

)
W d̃ = (12.52b)(

δm2
D̃

+ δm2
d δmd

(
A∗

d − µeffe
iϕu tanβ

)
+ δA∗

dmd

δmd

(
Ad − µ∗

effe
−iϕu tanβ

)
+ δAdmd δm2

d̃R
+ δm2

d

)
,

where we considered up-type squarks ũ and down-type squarks d̃ separately and introduced
two counterterms δm2

Ũ
, δm2

D̃
for m2

Q̃
. In the DR scheme, we only have the input parameter
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m2
Q̃

that plays a role in both the up- and down-squark matrices. If we now move to the OS

scheme, we can obtain a relation to transform the parameter to an OS parameter from both
matrices, and the relations do not coincide. Thus, we have to introduce two parameters m2,OS

Ũ

and m2,OS

D̃
.

We obtain counterterms for Aq̃, m
2
Ũ

, m2
D̃

and m2
q̃R

given by

δAu =
e−iϕu

mu

(
W ũ

11W
ũ∗
12 δm

2
ũ1

+ W ũ∗
22 W

ũ
21δm

2
ũ2

+ W ũ∗
12 W

ũ
21δYu + W ũ∗

22 W
ũ
11δY

∗
u (12.53a)

−δmu

(
Aue

iϕu − µ∗
eff cotβ

))
,

δAd =
1

md

(
W d̃

11W
d̃∗
12 δm

2
d̃1

+ W d̃∗
22W

d̃
21δm

2
d̃2

+ W d̃∗
12W

d̃
21δYd + W d̃∗

22W
d̃
11δY

∗
d (12.53b)

−δmd

(
Ad − µ∗

effe
−iϕu tanβ

))
,

δm2
Q̃

= |W q̃
11|

2δm2
q̃1 + |W q̃

21|
2δm2

q̃2 + W q̃∗
11W

q̃
21δYq̃ + W q̃∗

21W
q̃
11δY

∗
q̃ − 2mqδmq , (12.53c)

δm2
qR

= |W q̃
12|

2δm2
q̃1 + |W q̃

22|
2δm2

q̃2 + W q̃∗
12W

q̃
22δYq̃ + W q̃∗

22W
q̃
12δY

∗
q̃ − 2mqδmq , (12.53d)

where Q = U,D is chosen accordingly to q = u, d.

We now relate the DR and OS parameters using that the bare parameters (indicated with 0)
have to be independent of the renormalization scheme. Therefore, for a given parameter B
we have

BDR + δBDR = B0 = BOS + δBOS (12.54)

⇒ BOS = BDR − δBfin ,

where δBfin are the finite terms of the OS counterterm. We thus translate the DR parameters
to OS parameters via

AOS
q = ADR

q − δAfin
q , (12.55a)

m2,OS

Ũ
= m2,DR

Q̃
− δm2,fin

Ũ
, (12.55b)

m2,OS

D̃
= m2,DR

Q̃
− δm2,fin

D̃
, (12.55c)

m2,OS
q̃R

= m2,DR
q̃R

− δm2,fin
q̃R

. (12.55d)

As already mentioned, in the DR scheme the input parameter m2
Q̃

is the same for up and

down type squarks, but in the OS scheme we have two quantities m2,OS

Ũ
,m2,OS

D̃
that have to

be used in the corresponding squark mass matrices.

Similarly, we also shift the gluino mass, which is given by the M3 parameter at leading order.
We obtain

mOS
g̃ = |MDR

3 | − δmfin
g̃ , (12.56)

where we have to include an additional shift to the mass counterterm, as described in
Sec. 12.4.4, since we use dimensional regularization in our calculation.4

In principle, the self-energies defining the counterterms depend on the OS parameters we
want to calculate. Therefore, we use an iterative approach. We use the DR parameters as an
initial input, calculate the sfermion and gluino masses and mixing angles and calculate the

4The squark masses and their respective counterterms do not obtain an additional shift as the squark self-
energies are equal for dimensional reduction and dimensional regularization [298].
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counterterms to shift the parameters to approximate OS values. Next, we use the obtained
approximate values to again repeat this procedure until the obtained OS values converge. If
no convergence is reached after a finite number of steps, we abort the iteration and only use
the above transformation to OS parameters once.

Moreover, the bottom and charm quark masses are given in the MS scheme, and we use the
routines from HDECAY [216, 217] to convert them to OS masses.





CHAPTER 13

Calculation of Two- and Three-Body Decays of Supersymmetric Particles

In this chapter we describe the calculations, which we performed to obtain analytic results
for all two-body (Sec. 13.1.1), three-body (Sec. 13.1.2), radiative loop decays (Sec. 13.2) and
QCD corrections to two-body decays (Sec. 13.3) of the NMSSM SUSY particles. We specify
all the decay channels that we considered, give some technical details on the computation
and also mention the absorptive QCD corrections in Sec. 13.3.2. We only present here the
calculation, the description of the implementation will be given in Sec. 14.1.

13.1. Leading-Order Decay Widths in the NMSSM

In this section, we describe the LO decay widths. We first discuss the two-body and then the
three-body decay channels of the SUSY particle decays. We will suppress generation indices
for fermions and sfermions.

13.1.1. Two-Body Decays

We start with the discussion of the two-body decay widths of the SUSY particles in the
NMSSM. First, we list all decay channels of all supersymmetric particles into their final
states:

• Slepton (l̃) decays: l̃ → χ̃0
i l, χ̃

−
k ν, H−ν̃, W−ν̃, Φl̃, Zl̃

• Sneutrino (ν̃) decays: ν̃ → χ̃0
i ν, χ̃+

k l, H
+ l̃, W+ l̃

• Neutralino (χ̃0) decays: χ̃0
i → W±χ̃∓

k , H±χ̃∓
k , Zχ̃0

j , Φχ̃0
j , f̃ f̄ , f̃∗f

• Chargino (χ̃+) decays: χ̃+
k → W+χ̃0

i , H
+χ̃0

i , Zχ̃+
1 , Φχ̃+

1 , f̃f ′

• Gluino (g̃) decays: g̃ → q̃∗q, q̃q̄

• Squark (q̃) decays: q̃ → χ̃0
i q̃

′, χ̃±
k q̃

′, g̃q̃′, H±q̃′, W±q̃′, Φq̃′, Zq̃′

Here, Φ are the five neutral Higgs scalars, f , f ′ are generic fermions, and q, q′ generic quarks,
where the tilde indicates the corresponding superpartners (where we have six sleptons, six up-
type and six down-type squarks, respectively), χ̃0

i are the neutralinos (i = 1, .., 5 , j = 1, .., 4),
χ̃±
k are the charginos (k = 1, 2), and we suppressed generation indices for the fermions and

sfermions. These are the possible decay channels we considered, but many of them can be
kinematically closed.
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We already gave a general introduction to two-body decays in Sec. 5.1 and thus use the
expression for the LO width given in Eq. (5.1a). We summarize the results needed for the
above mentioned decay channels. For this purpose we use a generic notation, where we label
both neutralinos and charginos with χ̃ (χ̃ = χ̃0, χ̃±), the vector bosons as V (V = W,Z)
and generic scalars with S that can be both neutral or charged Higgs scalars (S = Φ,H±).
Furthermore, we suppress generation indices and indicate potentially different particles with
a prime symbol. The LO widths are then given by

ΓLO
χ̃→χ̃′S =

λ(m2
χ̃,m

2
χ̃′ ,m2

S)

16πm3
χ̃

Nc

2

(
(|CL

χ̃χ̃′S |2 + |CR
χ̃χ̃′S |2)(m2

χ̃ + m2
χ̃′ −m2

S) (13.1a)

+4mχ̃mχ̃′Re
[
CL
χ̃χ̃′S(CR

χ̃χ̃′S)∗
])

,

ΓLO
χ̃→χ̃′V =

λ(m2
χ̃,m

2
χ̃′ ,m2

V )

16πm3
χ̃

Nc

2

(
−12mχ̃mχ̃′Re

[
CL
χ̃χ̃′V (CR

χ̃χ̃′V )∗
]

(13.1b)

+(|CL
χ̃χ̃′V |2 + |CR

χ̃χ̃′V |2)

(
(m2

χ̃ −m2
χ̃′)2

m2
V

+ m2
χ̃ + m2

χ̃′ − 2m2
V

))
,

ΓLO
χ̃→f ′f̃

=
λ(m2

χ̃,m
2
f ′ ,m2

f̃
)

16πm3
χ̃

Nc

2

(
(|CL

χ̃f ′f̃
|2 + |CR

χ̃f ′f̃
|2)(m2

χ̃ + m2
f ′ −m2

f̃
) (13.1c)

+4mχ̃mf ′Re
[
CL
χ̃f ′f̃

(CR
χ̃f ′f̃

)∗
])

,

ΓLO
f̃→f ′χ̃

=
λ(m2

f̃
,m2

f ′ ,m2
χ̃)

16πm3
f̃

Nc

(
(|CL

χ̃f ′f̃
|2 + |CR

χ̃f ′f̃
|2)(m2

f̃
−m2

f ′ −m2
χ̃) (13.1d)

−4mf ′mχ̃Re
[
CL
χ̃f ′f̃

(CR
χ̃f ′f̃

)∗
])

,

ΓLO
f̃→f̃ ′V

=
λ(m2

f̃
,m2

f̃ ′ ,m
2
V )

16πm3
f̃

Nc|Cf̃ f̃ ′V |
2
λ(m2

f̃
,m2

f̃ ′ ,m
2
V )2

m2
V

, (13.1e)

ΓLO
f̃→f̃ ′S

=
λ(m2

f̃
,m2

f̃ ′ ,m
2
S)

16πm3
f̃

Nc|Cf̃ f̃ ′S |
2 . (13.1f)

Here CL
χ̃χ̃′S , CR

χ̃χ̃′S , CL
χ̃χ̃′V and CR

χ̃χ̃′V are the left- and right-chiral couplings of a pair of
neutralinos, charginos (or one neutralino and one chargino) to a scalar S or a vector boson
V , respectively. Next, CL

χ̃f ′f̃
and CR

χ̃f ′f̃
are the left- and right-chiral couplings of a neutralino

or chargino to a fermion f ′ and sfermion f̃ . Then, Cf̃ f̃ ′V and Cf̃ f̃ ′S are the couplings of two

sfermions, f̃ and f̃ ′, to a scalar S or a vector boson V , respectively. Nc denotes the colour
factor and λ the Källén function from Eq. (5.2). The gluino decay into a squark-quark pair
at LO is obtained from Eq. (13.1c), interchanging neutralino/chargino masses and couplings
with the gluino masses and couplings and adjusting the colour factor. Similarly, the squark
to quark gluino decays can be obtained from Eq. (13.1e). Thus, given the couplings (they
can be found e.g. in [63] or [302]) the two-body decays are calculated for all given decay
channels.

The colour factor Nc for the slepton and sneutrino decays is 1, the colour factor for neutralino
and chargino decays into a squark-quark pair is 3 and otherwise 1. The colour factor for the
gluino decays into a squark-quark pair is 1/2. The colour factor of a squark decaying into a
quark or squark and an uncoloured particle is 1, and the colour factor of a squark decaying
into a quark and a gluino is 4/3.
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(c) three-body decay topologies to the decays q̃ → q̃′f ′f̄ , q̃ → qf̄ ′f̃ and q̃ → q′χ̃0
i /g̃ H

±/W± (i =
1, .., 5, k = 1, 2).

Figure 13.1.: The different Feynman diagram topologies depicting the three-body decays with
generic fermions denoted by f , quarks q, q′ and corresponding superpartners. Here, S denotes
a generic neutral or charged Higgs scalar.

13.1.2. Three-Body Decays

We now move on to the description of the three-body decays in the NMSSM. They can become
important if the two-body decays are kinematically closed, i.e. if the masses of the initial and
final state supersymmetric particles are nearly degenerate. We then have to include the three-
body decays in order to obtain valid and precise results for the total widths and the branching
ratios.

For example, we can consider the second-lightest neutralino χ̃0
2 and its decay modes into the

lightest neutralino χ̃0
1. If their masses are too close to each other, all the two-body decay

channels described in Sec. 13.1.1 are kinematically closed. We thus have to consider three-
body decays. As can be seen in Fig. 13.1a, we can mediate these three-body processes with
a virtual sfermion f̃ , e.g. we then have the decay chain χ̃0

2 → ff̃∗ → ff̄ χ̃0
1, where the star

here indicates that the sfermion is a virtual particle. If, however, any of the two-body decay
channels χ̃0

2 → ff̃ are already kinematically allowed (considering each possible sfermion-
fermion pair), i.e. we can produce the fermion-sfermion pair on-shell, we do not consider
the three-body decay χ̃0

2 → χ̃0
1ff̄ . Similarly, we can consider as another example the gluino

decays. Regarding the two-body decays, the gluino only decays into a squark-quark pair. If
now the squarks are all heavier than the gluino, no two-body decays are possible. Thus, we
have to include three-body decays. In this case we can have a virtual squark that then decays
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Figure 13.2.: The Feynman diagrams appearing in the radiative neutralino decay [305], χ̃0
i →

γχ̃0
j (i = 2, .., 5, j = 1, .., 4) with generic electrically charged fermions f , their superpartners

f̃ , charginos χ̃+
k (k = 1, 2), the charged Higgs boson H±, the W boson and the charged

Goldstone boson G±. The diagrams with inverted arrows also have to be considered.

into e.g. a quark and a neutralino. Thus, we have the three-body decay g̃ → qq̄χ̃0 with a
virtual squark. Therefore, in order to check if we need to calculate a given three-body decay,
we check if none of the two-body decays that can be seen as a subprocess of the considered
three-body decay is allowed. If this is the case, we include the corresponding three-body
process. Otherwise, we only include the two-body decays.

The three-body decay channels we included are the following:

• Neutralino (χ̃0) decays: χ̃0
i → ff̄ χ̃0

j , ff̄
′χ̃±

k , qq̄g̃

• Chargino (χ̃+) decays: χ̃+
k → ff̄ χ̃+

1 , ff̄ ′χ̃0
i , qq̄

′g̃

• Gluino (g̃) decays: g̃ → qq̄χ̃0
i , qq̄

′χ̃±
k , q′q̃H±/W±

• Squark (q̃) decays: q̃ → q′χ̃0
iW

±/H±, q′g̃W±/H±, q′f̄ ′f̃ , q̃′f ′f̄

Here, q, q′ denote again generic quarks, f, f ′ generic fermions, and we suppressed generation
indices (i = 1, .., 5, j = 1, .., 4, k = 1, 2). We did not implement any three-body decays for
sleptons and sneutrinos. In App. D, we derive the partial width for three-body decays. Thus,
we can use Eq. (D.26) to obtain the results for the three-body decay widths, of the SUSY
particles.

Another aspect to consider is the fact that in our theory we have Majorana fermions. In
order to calculate Feynman diagrams including them, we use the approach described in [303,
304], as also briefly summarized in App. E.

Due to the large number of decay channels and because the formulas can become quite
involved, we refrain from listing them here, but instead refer to our code where they can be
found (see Sec. 14.1 for the description of the implementation).

13.2. Radiative Loop Decays

We furthermore include the decays of a heavier neutralino into a lighter neutralino and a
photon, χ̃0

i → γχ̃0
j (i = 2, .., 5, j = 1, .., 4). This process may become important if the

neutralinos are nearly mass-degenerate and the previously mentioned two-body decays are
kinematically closed, whereas this decay channel is always kinematically allowed.

Since neutralinos do not couple to photons directly, this process is not present at tree level but
mediated via loops. The contributions at one-loop order can be seen in Fig. 13.2. They are
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(c) NLO QCD vertex corrections to the decays q̃ → q̃′V .
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(d) NLO QCD vertex corrections to the decays q̃ → q̃′Φ.

Figure 13.3.: Feynman diagrams for the contributions to the QCD vertex corrections of dif-
ferent decay channels. Here, we suppressed indices for the quarks and squarks, S denotes a
generic neutral or charged Higgs scalar and V a massive vector boson, V = W,Z.

UV finite, since there is no corresponding tree-level coupling and therefore no counterterm.
This decay was already calculated in [305] for the MSSM, where also an analytic formula for
generic complex couplings was given. We rederived this expression and compared our results
analytically. Our calculation is presented in App. G in Sec. G.2.

Additionally, we calculated the loop-induced decay g̃ → gχ̃0
i (i = 1, .., 5), i.e. a gluino decaying

into a gluon and neutralino, which is obtained from Fig. 13.2 by replacing the initial neutralino
by a gluino and using only the quark/squark diagrams with an outgoing gluon and including
the corresponding colour factors.

13.3. Next-to-Leading-Order QCD Corrections to Two-Body Decays

We now discuss the QCD corrections to the two-body decays involving quarks, squarks or
gluinos. Similarly to Sec. 5.3, the total amplitude ANLO consists of virtual vertex correc-
tions AVC and the counterterm contributions ACT (compare with Fig. 5.1). Since we again
renormalize the fields and masses on-shell, the leg contributions and leg counterterms cancel
each other (although we have to take into account possible contributions from the imaginary
part of the self-energies, as discussed below in Sec. 13.3.2). We also have to include real
corrections, see Sec. 13.3.1.

First, we mention all decay channels receiving QCD corrections. This includes all processes
involving squarks, quarks or gluinos (i.e. the coloured particles in our theory). Thus, we con-
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Figure 13.4.: Real corrections to NLO QCD corrections. Here, as an example the squark to
quark and gluino decay.

sidered the neutralino/chargino/gluino decays into squark-quark pairs and all squark decays.
The Feynman diagrams contributing to the virtual corrections AVC for all decay channels
can be seen in Fig. 13.3. The counterterm couplings for the amplitude ACT are derived in
App. F. Finally, all the contributions are combined and we can use Eq. (5.1b) to obtain the
NLO-corrected decay widths. We checked numerically that our results are UV finite and
gauge-independent, where we used the generic Rξ gauge and checked if the result is inde-
pendent of the gauge parameter. Moreover, we compared analytically our result with the
literature [291–294, 300, 306–310].

In the model that we considered, the complex NMSSM, we have in general complex couplings
potentially leading to CP violation, i.e. particle and antiparticle decays might differ. There-
fore, we also calculated all the QCD corrections for the antiparticle decays. We used again
the techniques described in [303, 304] to obtain the anti-particle amplitudes, given the results
for particles. Thus, the anti-particle amplitudes are obtained from the particle amplitudes
by using the complex-conjugated couplings, interchanging the left- and right-chiral couplings
and inserting an additional minus sign for fermion-fermion-vector and scalar-scalar-vector
vertices. We summarize our approach in App. E.

Another important remark is that we used dimensional regularization to regularize our in-
tegrals and thus have to introduce additional shifts to restore supersymmetry [298], as we
described in Sec. 12.4.4.

We present the analytic results of the vertex corrections in App. G in Sec. G.1.2. They can
also be found in our code (see Sec. 14.1 for the description of the implementation).

13.3.1. IR and Collinear Divergences

For the QCD corrected decay widths, we included diagrams with real gluon emission from
coloured in- or outgoing particles, see e.g. Fig. 13.4. The inclusion of these corrections is
required to obtain IR finite results, since at 1-loop IR divergences appear due to massless
particles (in this case gluons) in the loop. In contrast to our procedure in Sec. 5.3.1, where we
introduced an energy cutoff ∆E, we calculated here the full inclusive decay, i.e. we integrated
over the full real-emission three-body phase space. The same approach was implemented in
SDECAY [75, 76] and in [291–294, 300, 306–310]. We re-derived the results and compared them
analytically.

To regularize the IR divergences, we introduced a small finite mass λ for the gluon. We
checked that numerically our final result does not depend on this parameter. We used the
integrals given in [200] that are evaluated for the full phase space. The analytic results can
be found in App. G in Sec. G.1.3.

In the case of small quark masses, we also have to regularize collinear divergences. Here, we
introduced a small quark mass regulator mq,col and checked that numerically our final result
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Figure 13.5.: Self-energy contributions to the squark to squark and scalar decay that may not
be fully cancelled by our implemented OS scheme due to imaginary branch cuts (similar for
other decay channels involving squarks).

does not depend on this parameter. In the combination of the virtual and real corrections,
we have to carefully apply the limit of vanishing quark and gluon masses, i.e. we have to
consistently apply the limit for all parts of the calculation. Therefore, we first expanded
in λ and then in mq,col and kept only divergent parts in both expansions. At the end, the
full result is free of infrared and collinear divergences, but each part of the calculation can
separately be divergent. Thus, in order to have a consistent result, for each part the limit
has to be performed in the same manner. We compared our results for the real corrections
analytically with [307, 310].

13.3.2. Absorptive Corrections

In our definition of the OS scheme, we only absorb the real parts of the loop integrals ap-
pearing in the self-energy into the counterterms. These integrals can, however, obtain an
imaginary part if the decay into the intermediate particles is kinematically allowed. Thus,
self-energy contributions with loop integrals with a non-vanishing imaginary part, where the
in- and outgoing states in the self-energy differ,5 can contribute (compare also with Sec. 5.4
and [311, 312]). Since the gluino does not mix with other particles and the quarks are always
lighter than their squark partners, only the squark self-energies with a gluino-quark loop can
lead to so-called absorptive corrections. An example of these contributions can be seen in
Fig. 13.5. Therefore, for each decay channel involving squarks, the corresponding diagrams
have to be included (both for ingoing and outgoing squarks if present), i.e. we included these
contributions where we only took into account the imaginary part of the loop integrals.

5If the incoming and outgoing particles are identical, this contribution results in the total decay width via the
optical theorem [85] and does not lead to an imaginary part that contributes to the decay process considered.





CHAPTER 14

Numerical Evaluation

After the introduction to the NMSSM and the presentation of the setup and the calculation
we performed, we can now discuss the implementation of the SUSY particle decays into our
code and analyze the results.

In this chapter we first describe how we extended the program SDECAY [75, 76] to now calculate
the supersymmetric particle decays in the NMSSM and how this code is linked to NMSSMCALC

[77–82] (Sec. 14.1). We then describe our setup to obtain viable parameter points and the
constraints that we applied in Sec. 14.2 and then turn to the numerical evaluation, where we
discuss some benchmark point scenarios.

14.1. Implementation

We start with the description of the implementation. As already mentioned, we used the
code SDECAY as a starting point and extended and adjusted the code to be able to calculate
the supersymmetric particle decay widths in the complex NMSSM. The program package
SDECAY calculates the supersymmetric particle decays in the NMSSM, where the two-body
and, if kinematically closed, the three-body decays, as well as the radiative loop decays and
NLO QCD corrections to the two-body decays including coloured initial or final states are
implemented. It was therefore used as a basis for the development of our implementation of
the decays in the NMSSM, as well as to compare analytic and numerical results. We linked
our now extended version of SDECAY to the program NMSSMCALC. This code is a spectrum
generator for the CP-conserving and CP-violating NMSSM and calculates the Higgs masses,
including one-loop and several two-loop corrections, as well as the Higgs decay widths [77–82].
Furthermore, it computes the loop-corrected effective Higgs self-couplings [158, 161, 313], the
muon anomalous magnetic moment, the electric dipole moments, and it can give a W mass
prediction [283, 284, 314].

We now mention the computational details needed for our implementation. The couplings
required for the calculation where taken from the appendix in [63] as well as [302] and adjusted
for the NMSSM and to our notation. The scalar Higgs couplings were already implemented
in NMSSMCALC. The calculation was performed with the help of FeynCalc 9.3.1 [225–228].
The implementation of the loop integrals was taken over from NMSSMCALC and from QCDloop

[315]. The integrals needed for the real corrections were taken from [200].
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The calculated results were compared analytically with the results in the literature [291–294,
300, 305–310]. Moreover, we used the MSSM-limit of the NMSSM (see Sec. 12.2) and thus
generated a parameter point we could use in our implementation and in the code SDECAY to
then compare results numerically.

As input, the code uses a spectrum file generated from NMSSMCALC that is also used for the
Higgs decay calculation. It is given in SLHA format [316, 317]. The SUSY input parameters
are given in the DR scheme, and thus we need to convert them in order to use the OS scheme
for the NLO QCD corrections (see also Sec. 12.4.5). Furthermore, in the input file, the Higgs
masses and the Higgs rotation matrix are already given with the loop corrections calculated
by NMSSMCALC. We thus use them as input when we calculate the Higgs scalar couplings.
Moreover, we took over the implementation from HDECAY [216, 217] to convert the MS quark
masses of the bottom and charm quark to OS masses. We also took over the running of αS

from HDECAY and we set the masses of the first generation of quarks and the strange quark
mass to zero.

In the code, we then implemented all the two-body decays, the necessary three-body decays
(if the two-body decays are kinematically not allowed), the radiative decays and the NLO
QCD corrections to two-body decays including coloured final or initial states. We furthermore
implemented numerical checks to confirm that our results are free of UV, IR and collinear
divergences. Similarly, we implemented checks for gauge independence. We also included the
anti-particle decays.

The usage of the code is straightforward. As it is an extension of NMSSMCALC it is used in
the same manner. Thus, we refer to the manual of NMSSMCALC [318] for details of how to use
the code. The results of our program, i.e. the total widths and the branching ratios of the
supersymmetric particles into all considered decay channels, are appended to the output file
from NMSSMCALC given again in the SLHA format. This can then be used for further analyses.

The code is available at: https://www.itp.kit.edu/~maggie/NMSSMCALC/B_SDECAY/

More information regarding the usage of the code can be found there.

14.2. Parameter Scan and Analysis

Next, we describe the setup to obtain viable parameter points. We used the code BSMArt

[271] to perform parameter scans. The program BSMArt uses as default SPheno [319, 320]
as a spectrum generator. We adjusted it so that we can use NMSSMCALC with our extended
version of SDECAY instead. Next, several other program packages can be linked to BSMArt to
apply constraints on the generated parameter points. We used the code HiggsTools [277] to
check for the compatibility with current measurements of the detected 125 GeV Higgs boson
and searches for additional scalars. For this purpose, NMSSMCALC already gives out effective
couplings in the output file that can be used by HiggsTools. Next, we used the program
package Smodels [278–282] to check for SUSY searches and collider limits. For the additional
input needed for Smodels, a private implementation was used to calculate the production cross
sections for all pairs of electroweakinos at LO [314]. Additionally, NMSSMCALC can calculate
the EDMs that can then be used to constrain the complex phases that can be present in the
model, as described in Sec. 12.3. In our sample scans, we, however, did not apply the EDM
limits for illustrative purposes, to see the impact of the complex phases on the decays.

We now mention the additional input parameters that we used. The SM input parameters
are given as a block in SLHA format. They were taken over from NMSSMCALC and are given
by

https://www.itp.kit.edu/~maggie/NMSSMCALC/B_SDECAY/
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1 Block SMINPUTS

2 1 1.27955000E+02 # alpha_em ^(-1)

3 2 1.16637000E-05 # G_F

4 3 1.18100000E-01 # alpha_s

5 4 9.11876000E+01 # Mz

6 5 4.18000000E+00 # m_b^MS(mb)

7 6 1.72740000E+02 # m_t

8 7 1.77682000E+00 # m_tau

9 9 8.03790000E+01 # Mw

10 11 5.10998910E-04 # m_e

11 13 1.05658367E-01 # m_mu

12 21 4.70000000E-03 # m_d

13 22 2.20000000E-03 # m_u

14 23 0.95000000E-01 # m_s

15 24 1.27400000E+00 # m_c

16 #

Here, all quark masses expect for the top quark mass are given as MS values, with the u-,d-
,s-quark masses taken at the scale µ = 2 GeV, and the c- and b-quark masses at their MS
mass. In the code, we then set the up, down, and strange mass to zero. Additionally, the
values for the CKM matrix were taken from [321]. Moreover, we used the following input for
NMSSMCALC:

1 Block MODSEL

2 3 1 # NMSSM

3 5 2 # 0: CP -conserving; 2: general CP -violation

4 6 4 # loop level 1: one 2: two O(alpha_t alpha_s) 3: two O(alpha_t

alpha_s + alpha_t ^2) 4: two O(alpha_t alpha_s + (alpha_t+alpha_lambda+

alpha_kappa)^2)

5 7 3 # for top/stop sector: 1: DRbar scheme no gauge running; 2: DRbar w/

gauge running 3: OS scheme

6 8 0 # 0: MHpm as Input , 1: Alambda as Input

7 10 1 # 0: no EDMs calculated (default), 1: EDMs calculated , 2: detailed

output

8 11 0 # 0: no AMMs calculated (default), 1: AMMs calculated , 2: detailed

output

9 12 0 # 0: no effective HHH couplings calculated , 1: effective HHH

couplings calculated

10 13 0 # 0: no loop -corrected W-mass calculated , 1: loop -corrected W-mass

calculated

11 #

12 Block REGFACTOR

13 1 1 # regulator factor R to define regulator mass MG^2=R*10^( -3) MUR^2,

MUR renormaliation scale , used in O(( alpha_t+lambda+kappa)^2) correction

14 #

We used our setup to scan the parameter space for viable parameter points. As a first scan,
we scanned the input parameters in the following ranges:

M1 ∈ [400, 1000]GeV, M2 ∈ [400, 1000]GeV, M3 = 2000 GeV,
At ∈ [−3000, 3000]GeV, Ab ∈ [−2000, 2000]GeV, Aτ ∈ [−2000, 2000]GeV,
tanβ ∈ [1, 10.0], mH± ∈ [500, 1000]GeV, λ ∈ [0.01, 0.5], ξ ∈ [0.01, 1.5],
Aκ ∈ [−2000, 2000]GeV, µeff ∈ [100, 1000]GeV, mQ̃,3 ∈ [400, 3000]GeV,
mL̃ = ml̃R

= mQ̃,1 = mQ̃,2 = mũR = md̃R
= 3000 GeV.

In this first scan, we set all imaginary phases to zero. It should also be noted that in NMSSMCALC

we have At = Ac = Au and Ab = As = Ad. With mQ̃,i (i = 1, 2, 3), the diagonal entries
of the matrix mQ̃ are denoted. For the other mass matrices, we use the same values for all
fermion generations. Moreover, we choose µeff as an input parameter here in accordance with
the SLHA input format. It can then be translated into the input parameters vs and ϕs via
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Eq. (12.12). Furthermore, the auxiliary parameter ξ is related to κ via κ = λξ. With this
setup, we obey the unitarity constraints described in Sec. 12.3. We performed a second scan,
where we scanned in addition to the real parameters (in the same ranges as in the first scan)
the imaginary parts:

Im(M1) ∈ [0, 1.5]GeV, Im(M2) ∈ [0, 1.5]GeV, Im(M3) ∈ [0, 1.5]GeV,
Im(At) ∈ [0, 1.5]GeV, Im(ϕu) ∈ [0, 1.5]

The other phases are set to zero.

We now discuss some benchmark point scenarios, which we obtained in our scans to showcase
the code and its output. If not specified otherwise, the widths and branching ratios stated
are always given including the NLO QCD corrections. We obtained these benchmark points
with the above mentioned setup. We start with benchmark point BP1. Its input parameters
are given by

1 BLOCK EXTPAR #

2 1 5.54993515E+02 # M1

3 2 6.26336011E+02 # M2

4 3 2.00000000E+03 # M3

5 11 1.94326772E+03 # At

6 12 1.23624370E+03 # Ab

7 13 -1.76370552E+03 # Atau

8 25 4.45125902E+00 # tanbeta

9 27 9.67215098E+02 # H_pm

10 61 3.89167627E-01 # lambda

11 62 4.91116579E-01 # kappa

12 64 -8.10865823E+02 # Akappa

13 65 2.14896705E+02 # mu_eff

14 32 3.00000000E+03 # mL_2

15 33 3.00000000E+03 # mL_3

16 35 3.00000000E+03 # mlr_2

17 36 3.00000000E+03 # mlr_3

18 42 3.00000000E+03 # mQ_2

19 43 1.54598767E+03 # mQ_3

20 45 3.00000000E+03 # mur_2

21 46 3.00000000E+03 # mur_3

22 48 3.00000000E+03 # mdr_2

23 49 3.00000000E+03 # mdr_3

For this benchmark point all imaginary phases are zero. The masses of the supersymmetric
particles and the Higgs particles are

• Gluino: mg̃ = 2175.67 GeV

• Neutralinos: mχ̃0
i

= (196.81 GeV, 221.92 GeV, 549.79 GeV, 558.99 GeV, 640.04 GeV)

• Charginos: mχ̃±
i

= (206.17 GeV, 639.45 GeV)

• Sneutrinos: mν̃ = (2999.37 GeV, 2999.37 GeV, 2999.37 GeV)

• Sleptons: ml̃ = (3000.27 GeV, 3000.35 GeV, 3000.25 GeV, 3000.37 GeV, 2999.51 GeV,
3001.12 GeV)

• Up squarks: mũ = (3046.51 GeV, 3046.76 GeV, 3046.33 GeV, 3046.94 GeV, 1637.52 GeV,
3051.84 GeV)

• Down squarks: md̃ = (3047.03 GeV, 3047.47 GeV, 3046.33 GeV, 3047.46 GeV, 1635.90 GeV,
3047.03 GeV)

• Neutral Higgs: mh = (122.46 GeV, 267.5 GeV, 802.65 GeV, 966.08 GeV, 969.64 GeV)
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• Charged Higgs: mH± = 967.215 GeV

Here, we give the squark and slepton masses in the basis (f̃i,1, f̃i,2), where i is the generation
index and f̃ denotes the given sfermion.

In the following, we discuss some features of this benchmark point. Considering the given
masses, we already see that the two lightest neutralinos and the lightest chargino have similar
masses, and they are the lightest particles in the spectrum. Thus, the only decay channels
for the second lightest neutralino and the lightest chargino are three-body decays into the
lightest neutralino. The second-lightest neutralino thus decays into a fermion-antifermion
pair and the lightest neutralino. The branching ratios for the decays into these channels are
in the range of a few percent, with the largest value being 13 % for the process χ̃0

2 → dd̄χ̃0
1

for this benchmark point. The radiative neutralino decay χ̃0
2 → χ̃0

1γ plays no role here, as
its branching ratio is only 0.014 %. The total width of the second-lightest neutralino is also
small, as only three-body decays and the radiative decay are kinematically allowed. The total
width amounts to 1.15 × 10−5 GeV. The other heavier neutralinos, in contrast, have total
widths of the order of a few GeV.

Similarly, the lightest chargino has a total width of only 9.2 × 10−8 GeV (compared to e.g.
the total width of the heavier chargino given by 6.3 GeV) as also here only three-body decays
are kinematically allowed. In this case the most dominant decay process is χ̃±

2 → ud̄χ̃0
1 with

a branching ratio of about 35 %.

The sneutrinos dominantly decay into neutrinos and neutralinos, or charged leptons and
charginos. Similarly, the sleptons decay into charged leptons and neutralinos, or neutrinos
and charginos. They have a total width of the order of a few tens of GeV.

Next, we discuss the sizes of the NLO QCD corrections. In the following we will investigate
the relative NLO correction to the total width of a given particle, which we define by

δΓP ≡
ΓNLO
P − ΓLO

P

ΓLO
P

, (14.1)

where ΓLO
P and ΓNLO

P are the LO and NLO QCD total widths, respectively, for a given
particle P . We start with the gluino, which decays predominantly into a squark-quark pair
(the radiative decay into a gluon and neutralino is negligible, its branching ratio is below 1 %).
The total width of the gluino at LO is given by 24.1 GeV, and at NLO by 24.2 GeV. We thus
have a correction δΓg̃ of 0.4 % when we include the NLO corrections to the total width.

The neutralinos and charginos are all lighter than the squarks for this benchmark point.
Therefore, they do not have decay channels that receive QCD corrections.

We move on to the squark decays. The up squarks decay predominantly into gluino and up-
quark with a branching ratio of 71 % for ũ1 and 93 % for ũ2. Since we neglect the up-quark
mass, the squark mass matrix in Eq. (12.23a) is already diagonal, and we can identify the
mass eigenstates with the left- and right-handed squarks. In this case we have ũ1 = ũL and
ũ2 = ũR (the order can in principle also be switched for other benchmark scenarios since
the squark mass eigenstates are mass ordered). The left-handed squarks can also decay into
charginos with a large wino component, and therefore we have the second largest branching
ratio for ũL being 19 % for the decay into χ̃+

2 and a down quark. Moreover, the total width
for the left-handed squark is 94.7 GeV at LO and 118.3 GeV at NLO, and have a relative
NLO correction δΓũL

of 24.9 %. For the right-handed squark, we have a total width of 64 GeV

at LO and 90 GeV at NLO, i.e. a relative correction δΓũR
of 40 %. A similar picture can be

seen for the other squark superpartners of the lighter quarks, i.e. the d̃, s̃ and c̃ squarks have
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similar total widths and the left-handed squark has a larger total width and larger branching
ratios of decays into charginos, compared to the right-handed squark.

Next, we turn to the stop decays. The lighter stop is too light to decay into a gluino and
a top quark. Thus, it only decays into a neutralino/chargino and a quark with the largest
branching ratio of 31 % into χ̃+

2 and a bottom quark. The total width is given by 49 GeV at
LO and 31.7 GeV at NLO, i.e. we have a relative NLO correction δΓ

t̃1
of −35 %. Similarly, the

lighter sbottom is too light to decay into a gluino and a bottom quark. It also only decays

into a neutralino/chargino and a quark with the largest branching ratio of 49 % into χ̃−
1 t. The

total width is given by 48.9 GeV at LO and 31.7 GeV at NLO, with a relative NLO correction
δΓ
b̃1

of −35 %.

The heavier stop can, compared to the lighter stop, additionally decay into a gluino and a
top, into a neutral Higgs or Z boson and the lighter stop, or into a charged Higgs or W boson
and the lighter sbottom. The largest branching ratio is 48 % for the decay into a gluino and a
top quark. The total width at LO is 214.3 GeV and 175.4 GeV at NLO, i.e. we have a relative
correction δΓ

t̃2
of −18 %. We have a similar picture for the heavier sbottom decays. It can also

decay into a gluino and a bottom, into a neutral Higgs or Z boson and the lighter sbottom,
or into a charged Higgs or W boson and the lighter stop. The heavier sbottom, however,
predominantly decays into a gluino and a bottom with a branching ratio of 96 %. The total
width at LO is given by 61.3 GeV and at NLO by 86.98 GeV. We therefore have a relative
correction δΓ

b̃2
of 42 %.

We then considered the benchmark point BP2 with the following input parameters:

1 BLOCK EXTPAR #

2 1 4.13344789E+02 # M1

3 2 4.70522103E+02 # M2

4 3 2.00000000E+03 # M3

5 11 -2.88424200E+03 # At

6 12 1.20428969E+03 # Ab

7 13 1.58373777E+03 # Atau

8 25 6.04218125E+00 # tanbeta

9 27 9.53319661E+02 # H_pm

10 61 3.01781136E-01 # lambda

11 62 2.20395222E-01 # abskappa

12 64 -1.84002587E+02 # Akappa

13 65 2.23336675E+02 # mu_eff

14 32 3.00000000E+03 # ml_2

15 33 3.00000000E+03 # ml_3

16 35 3.00000000E+03 # mer_2

17 36 3.00000000E+03 # mer_3

18 42 3.00000000E+03 # mq_2

19 43 1.88733051E+03 # mq_3

20 45 3.00000000E+03 # mur_2

21 46 3.00000000E+03 # mur_3

22 48 3.00000000E+03 # mdr_2

23 49 3.00000000E+03 # mdr_3

24 BLOCK IMEXTPAR #

25 1 7.58497104E-01 # M1

26 2 7.79157182E-01 # M2

27 3 8.42651944E-01 # M3

28 11 1.38029453E+00 # At

29 12 0.00000000E+00 # Ab

30 13 0.00000000E+00 # Atau

31 61 0.00000000E+00 # lambda

32 62 0.00000000E+00 # abskappa

33 65 0.00000000E+00 # mu_eff

34 BLOCK CMPLX #

35 3 4.36408413E-01 # phiu
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We here now also have complex phases. It should be noted that this benchmark point results
in EDM values that are excluded by the current experimental limits. Nonetheless, we use this
point for illustrative purposes to showcase the influence of the complex phases. The masses
of the supersymmetric particles and the Higgs particles are

• Gluino: mg̃ = 2192.63 GeV

• Neutralinos: mχ̃0
i

= (195.65 GeV, 230.57 GeV, 336.2 GeV, 418.27 GeV, 490.88 GeV)

• Charginos: mχ̃±
i

= (210.76 GeV, 489.66 GeV)

• Sneutrinos: mν̃ = (2999.34 GeV, 2999.34 GeV, 2999.34 GeV)

• Sleptons: ml̃ = (3000.29 GeV, 3000.36 GeV, 3000.29 GeV, 3000.36 GeV, 3000.13 GeV,
3000.53 GeV)

• Up squarks: mũ = (3051.66 GeV, 3051.92 GeV, 3051.29 GeV, 3052.29 GeV, 1970.4 GeV,
3061.28 GeV)

• Down squarks: md̃ = (3052.21 GeV, 3052.66 GeV, 3052.21 GeV, 3052.66 GeV, 1975.66 GeV,
3052.21 GeV)

• Neutral Higgs: mh = (122 GeV, 275.6 GeV, 304.1 GeV, 951.18 GeV, 952.53 GeV)

• Charged Higgs: mH± = 953.32 GeV

For this benchmark point, we again see that the lightest chargino and the two lightest neutrali-
nos have masses that are close to each other. Thus, the three-body decays are again important
here, and the total widths of the lightest chargino and the second-lightest neutralino are small.
Furthermore, the branching ratio of the decay channel χ̃0

2 → χ̃0
1γ is 5 × 10−5 and therefore

again small.

Since we now have complex couplings and potentially CP violation, the branching ratios of
a particle decaying into a specific final state and the anti-particle decay decaying into the
anti-particle final state can differ. We thus consider the difference in the branching ratios,
defined as

δBR ≡ BR − BR

BR
, (14.2)

where BR denotes the branching ratio of the considered decay and BR the anti-particle
branching ratio, respectively.

Considering the gluino decays, the total width is given by 3.72 GeV at LO and 3.8 GeV
at NLO, i.e. we have a relative NLO correction δΓg̃ of 2.7 %. Since we now have complex
couplings, the decay of the gluino into an antisquark-quark pair can be different from the
decay into a squark-antiquark pair. The relative difference δBR for the decay into a t̃∗1t/t̃1t̄
pair is −1.8 × 10−6, and the relative difference for the decay into a b̃∗1b/b̃1b̄ pair is −6.5 × 10−8.
Thus, the difference in the branching ratios is tiny.

Similarly, we can consider the decay of the up-squark ũL. The total width is given by 94.8 GeV
at LO and 117.2 GeV at NLO, i.e. we have a relative correction δΓũL

of 23.6 %. When we
consider the decay ũL → χ̃+

2 d and the anti particle decay ũ∗L → χ̃−
2 d̄, we have a relative

difference δBR between the branching ratios of −1.4 × 10−6, which is again small. The total
widths of the other supersymmetric particles and their relative NLO QCD corrections are in
similar ranges as in BP1.

This concludes this first investigation of benchmark points obtained by the described program
chain.





CHAPTER 15

Conclusion

In this part, we discussed the calculation of supersymmetric particle decays in the NMSSM
and the implementation into an extended version of the program SDECAY, which was then
linked to NMSSMCALC in order to obtain benchmark points and perform a numerical analysis.
We started with a brief introduction to SUSY and the NMSSM, where we also set up the
necessary notation for the calculation and described the constraints that we applied in order
to obtain valid benchmark points. Next, we discussed the renormalization of the model
needed for the QCD corrections of the two-body decays, where we renormalized the squarks,
quarks and gluino fields and masses as well as the mixing matrices of the squarks and quarks.
Furthermore, we introduced the counterterm for the strong coupling constant, where we
decoupled the top quark and the heavy supersymmetric particles from the running of αs.
Additionally, we mentioned the shifts that we had to introduce in order to restore SUSY,
since we used dimensional regularization in our calculation. We also described how to shift the
DR input parameters into OS parameters to be consistent with our applied renormalization
conditions.

Next, we calculated all the supersymmetric particle decays in the NMSSM. We first discussed
the LO two-body decays, where we mentioned all the possible decay channels. In the case
of kinematically closed two-body decays, we also have to consider three-body decays, which
we subsequently described. Moreover, we included radiative loop decays of neutralinos into
photons and lighter neutralinos as well as gluinos into gluons and neutralinos. Finally, we
discussed the NLO QCD corrections to the two-body decays involving coloured particles in the
final or initial state. We furthermore described the real corrections, collinear divergences and
the absorptive corrections, i.e. imaginary self-energy contributions that have to be considered
as well.

After the calculation, we presented the implementation of our results into an extension of the
program SDECAY. We described how our code is linked to NMSSMCALC and how it is used. Next,
we introduced our setup to obtain viable parameter points. We used the program package
BSMArt and linked it to NMSSMCALC to generate parameter points. Furthermore, we used the
tools HiggsTools and SModels to check that our parameter points fulfil experimental con-
straints from Higgs searches and measurements as well as from searches and exclusion limits
for supersymmetric particles. Finally, we used this setup to create a sample of benchmark
points to showcase our code and some results. We saw that we can have scenarios where the
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three-body decays become important. Moreover, in the benchmark scenarios we considered,
the NLO QCD corrections (where applicable) can change the total widths by up to about
42 %.



CHAPTER 16

Final Conclusion and Outlook

With now over 12 years since the Higgs discovery, the particle physics community continues
to perform precision measurements combined with precise theory predictions, both for the
SM and BSM theories, to vigorously test the SM and search for new physics. Additionally,
the determination of the Higgs self-couplings through Higgs pair production is pursued as it
will give key insights on the nature of electroweak symmetry breaking and the Higgs sector
in general. Our goal in this thesis was to contribute to these efforts.

In the context of this thesis, we worked on several projects where we discussed BSM theo-
ries and performed precision calculations to carry out phenomenological studies. In the first
project, we studied the CxSM and calculated the NLO EW corrections to Higgs decays. We
renormalized the model, where we introduced several renormalization schemes. We performed
an exhaustive parameter scan, including theoretical and experimental constraints. We used
the obtained parameter sample to examine the typical sizes of the NLO corrections, which
are typically of moderate sizes (up to 25 %) and discussed the origins of potentially large
corrections. Furthermore, we investigated the impact of these corrections on the viable pa-
rameter space, which does not change the overall shape of the allowed parameter regions so
far, but might become important with increasing experimental accuracy. We also discussed
the impact of the NLO corrections on di-Higgs production and in the case of vanishing LO
widths in the h2 → h1h1 decay channel, where the NLO corrections can be important.

In the next project, we worked with a composite 2HDM, where we analyzed the impact on
di-Higgs production compared to the SM and other 2HDM models. We first introduced the
composite 2HDM and then derived from an effective Lagrangian the LO cross section for
di-Higgs production. In this context, we also discussed the NLO QCD corrections in the
heavy quark limit. We then described our setup to obtain viable parameter points, including
theoretical and experimental constraints, particularly constraints from resonant and non-
resonant searches for di-Higgs production. Furthermore, we analyzed the results on inclusive
cross sections and differential distributions of Higgs pair production, where we examined the
impact of the heavy top partners, the resonant enhancement from the heavy Higgs scalar
H and the effective quartic scalar-scalar-fermion-fermion couplings present in our effective
Lagrangian approach. In the composite 2HDM, we thus can obtain significant deviations
from the SM result for di-Higgs production, but also parameter points with SM-like cross
sections, due to interference effects between the various contributions. Moreover, we can
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have resonant enhancements similar to elementary 2HDM models. Finally, we compared the
composite 2HDM with a type-II 2HDM and a flavour-aligned 2HDM, where in the composite
2HDM we can have larger total widths ΓH due to larger Yukawa couplings and additional
possible decay channels into heavy top partners. These large total widths combined with the
additional contributions from heavy top partners and additional effective couplings can lead
to interesting interference patterns that can be used to distinguish the composite 2HDM from
other 2HDM realizations.

In the final project, we computed the supersymmetric particle decays in the CP-violating
NMSSM and implemented the analytic results into an extended version of SDECAY, which
was then combined with the spectrum generator NMSSMCALC to perform phenomenological
studies. First, we introduced the NMSSM and set our notation, where we also described the
renormalization needed for the QCD corrections of the two-body decays. We then presented
the calculation of the supersymmetric particle decays. These comprise the two-body and, if
kinematically closed, the three-body decays, as well as radiatively induced two-body decays.
Furthermore, the NLO QCD corrections to two-body decays involving coloured particles were
considered. We described the implementation of the calculated decay widths into an extended
version of the code SDECAY, which was then linked to the program NMSSMCALC to perform
phenomenological studies. We explained our setup to obtain viable parameter points and
discussed some benchmark point scenarios. We saw that the three-body decays can become
important if the two-body decays are kinematically closed and the QCD corrections can alter
the total widths up to 42 % in the benchmark points we considered.

After 12 years of precise investigations of the discovered Higgs boson, there is still room for
new physics to be explored, which in turn can be used to explain the shortcomings of the SM.
Therefore, the precision calculations for the SM and predictions for the BSM models from the
theoretical side, which this thesis is a part of, are further developed. At the same time, the
experimental precision for measurements of the SM expectations is increased, and searches
for new physics continue. The interplay of both sides has to be advanced in order to unveil
the fundamental nature of the scalar sector and the Higgs boson.



APPENDIX A

Form Factors in the Di-Higgs Leading-Order Cross Section

For the form factors in Sec. 9.2.1, we obtain (cf. [74, 101, 153])
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ŝ
[2 + (4m2

i − ŝ)C12] , (A.1)

F hh
� (mi,mj) =

1

ŝ
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i (û + t̂)](D123 + D213 + D132)

−2

ŝ
[t̂û−m4
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i −m2

j )
2)

(D123 + D213 + D132) + 2(m2
i −m2

j )[−(ŝ + m2
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− 2û(mi + mj)
2) + (−ŝû− û2 −m4

h)((mi + mj)
2 −m2

h)

+ m2
h(û−m2

h)2]D123 + 2(m2
i −m2

j )[−(ŝ + m2
h)(m4

h + t̂2 − 2t̂(mi + mj)
2)

+(−ŝt̂− t̂2 −m4
h)((mi + mj)

2 −m2
h) + m2

h(t̂−m2
h)2]D213

]
.

Next, the form factors F hh
�,5(mi,mj) and Ghh

�,5(mi,mj) can be expressed via

F hh
�,5(mi,mj) = −F hh

� (mi,−mj) , (A.4)

Ghh
�,5(mi,mj) = −Ghh

� (mi,−mj) . (A.5)
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The Cij and Dijk integrals are defined as

Cij(m
2
1,m

2
2,m

2
3) =

∫
d4q

iπ2

1

(q2 −m2
1)((q + pi)2 −m2

2)((q + pi + pj)2 −m2
3)

, (A.6)

Dijk(m2
1,m

2
2,m

2
3,m

2
4) =∫

d4q

iπ2

1

(q2 −m2
1)((q + pi)2 −m2

2)((q + pi + pj)2 −m2
3)((q + pi + pj + pk)2 −m2

4)
, (A.7)

and we use the abbreviations

C12 ≡ C12(m
2
i ,m

2
i ,m

2
i ) , (A.8)

C13 ≡ C13(m
2
i ,m

2
i ,m

2
j ) ,

C14 ≡ C14(m
2
i ,m

2
i ,m

2
j ) ,

C23 ≡ C23(m
2
i ,m

2
i ,m

2
j ) ,

C24 ≡ C24(m
2
i ,m

2
i ,m

2
j ) ,

C34 ≡ C34(m
2
i ,m

2
j ,m

2
i ) ,

D123 ≡ D123(m
2
i ,m

2
i ,m

2
i ,m

2
j ) ,

D213 ≡ D213(m
2
i ,m

2
i ,m

2
i ,m

2
j ) ,

D132 ≡ D132(m
2
i ,m

2
i ,m

2
j ,m

2
j ) .

For the Mandelstam variables, we used the definition in Eq. (9.12).



APPENDIX B

Benchmark Points in the Composite 2HDM

In Tab. B.1, we give the input values for the benchmark points used in the analysis in
Sec. 10.3.2. These points were also used in [74].

Table B.1.: Input parameters of the benchmark points used for the analysis. Taken from [74].

BP f [GeV] ∆L [GeV] ∆R [GeV] Y1 [GeV] Y2 [GeV] gρ

BP1 1139.21

(
649.392

−1787.9

) (
−7244.85

4633.51

) (
−406.903 421.383

−910.863 −1651.99

) (
3996.82 2846.41

2265.86 518.944

)
7.02515

BP2 821.74

(
5172.74

−3835.24

) (
−2850.8

−759.562

) (
3194.11 2467.64

2748.76 1489.54

) (
457.272 −1135.19

5946.7 −3126.3

)
7.87477

BP3 795.639

(
−168.309

1137.24

) (
−2548.98

−2181.22

) (
−1808.81 −695.861

3507.5 −320.533

) (
4348.75 399.558

−4182.72 −1915.42

)
6.7523

BP4 750.293

(
−1007.88

−1351.26

) (
1844.02

1713.76

) (
709.119 −884.948

−5689.43 3420.92

) (
2833.62 −2811.59

5092.76 3134.5

)
8.6289





APPENDIX C

Derivation of the Differential pT Distribution in Di-Higgs Production

In this section, we derive the differential pT distribution for, in general, different final state
scalar particles φ, φ′ (cf. [74]). The two ingoing gluons have momenta p1 and p2 and the
outgoing scalars have momenta p3, and p4, with masses m3 and m4 and we have momentum
conservation (all momenta are considered as incoming),

p1 + p2 + p3 + p4 = 0 . (C.1)

We also introduce the Källén function λ,

λ(a, b, c) ≡
√
a2 + b2 + c2 − 2ab− 2ac− 2bc . (C.2)

The formula for the full hadronic cross section into the final state particles φ, φ′ is given by
(compare with Eq. (9.22)),

σpp→φφ′ =

∫ 1

τ0

dτ
dLgg

dτ
σ̂gg→φφ′(ŝ = τs)

=

∫ 1

τ0

dτ
dLgg

dτ

∫ t+

t−

dt̂

(
dσ̂gg→φφ′

dt̂

)
ŝ=τs

, (C.3)

with

τ0 =
(m3 + m4)

2

s
, (C.4a)

t̂± =
1

2

(
m2

3 + m2
4 − ŝ± λ(ŝ,m2

3,m
2
4)
)
. (C.4b)

The differential distribution is obtained by omitting the τ integration. To obtain the differen-
tial cross section with respect to the transverse momentum pT , we first change the integration
variable from t̂ to p2T and then switch the τ and the pT integrations.
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We start with the Mandelstam variables from Eq. (9.12) to obtain expressions for the absolute
momenta |~pi| and the energies Ei (i = 1, .., 4),

ŝ = (p1 + p2)
2 = (E1 + E2)

2

⇒ E1 = E2 =

√
s

2
(C.5a)

ŝ = (p3 + p4)
2 = (E3 + E4)

2 = (
√
m2

3 + |~p|2 +
√
m2

4 + |~p|2)2

⇒ p2 ≡ |~p|2 =
1

4ŝ
λ2(ŝ,m2

3,m
2
4) . (C.5b)

To obtain the transverse momentum pT , we project ~p3 to the transverse plane,

p2T = sin2 θ|~p3|2 = (1 − cos2 θ)|~p3|2 . (C.6)

Here, θ is the angle between ~p1 and ~p3. We can use the definition of the Mandelstam variable
t̂ to obtain a relation for cos θ,

t̂ = (p1 + p3)
2 = m2

3 − 2E1E3 + 2|~p1||~p3| cos θ (C.7)

⇒ cos θ =
t̂−m2

3 + 2E1E3

2|~p1||~p3|
. (C.8)

Now using |~p1| = E1 and |~p3| = p we obtain for the transverse momentum,

p2T =
(m2

4 − ŝ− t̂)t̂ + m2
3(t̂−m2

4)

ŝ
. (C.9)

This coincides with Eq. (9.13c). Thus, to express t̂ in terms of pT we solve Eq. (C.9) for t̂
and obtain two solutions,

t̂1,2 =
1

2

(
m2

3 + m2
4 − ŝ±

√
λ2(ŝ,m2

3,m
2
4) − 4p2T ŝ

)
. (C.10)

When solving this quadratic equation, one has to take the square root of (t̂+ (ŝ−m2
3−m2

4)/
2)2. Thus, one has to split up the t̂ integration from t̂− to t̂m and from t̂m to t̂+, where t̂m
is the point where (t̂ + (ŝ−m2

3 −m2
4)/2)2 vanishes,

t̂m =
m2

3 + m2
4 − ŝ

2
. (C.11)

We now derive the integration boundaries for the p2T integration. We obtain

p2T (t̂±) = 0 , (C.12)

dp2T
dt̂

=
m2

3 + m2
4 − ŝ− 2t̂

ŝ

!
= 0 ⇒ t̂max = t̂m , (C.13)

d2p2T
dt̂2

= −2

ŝ
< 0 → Maximum , (C.14)

p2T (t̂m) =
λ2(ŝ,m2

3,m
2
4)

4ŝ
≡ p2T,max . (C.15)

The transverse momentum vanishes at the boundaries of the t̂ integration (t̂±) and has its
maximum at t̂m, i.e. we integrate p2T from 0 to p2T,max but we have to split up the integration.
We also need the substitution rule

dt̂ = dp2T
ŝ

m2
3 + m2

4 − ŝ− 2t̂
. (C.16)
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We change the t̂ integration to∫ t̂+

t̂−

dt̂
dσ̂

dt̂
=

∫ t̂m

t̂−

dt̂
dσ̂

dt̂
+

∫ t̂+

t̂m

dt̂
dσ̂

dt̂
(C.17)

=

∫ p2T,max

0

(
dp2T

ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂2

+

∫ 0

p2T,max

(
dp2T

ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂1

=

∫ p2T,max

0
dp2T

[(
ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂2(p2T )

−
(

ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂1(p2T )

]
. (C.18)

We now integrate over p2T ∈ [0, p2T,max] and τ ∈ [τ0, 1] with τ0 given in Eq. (C.4a). To
interchange the integrations we need to solve the inequality,

p2T ≤ p2T,max =
λ2(τs,m2

3,m
2
4)

4τs
, (C.19)

for τ . After some simplification, we obtain the relation

4(p2T + m2
3)(p

2
T + m2

4) ≤ (τs− 2p2T −m2
3 −m2

4)
2 , (C.20)

where we have to check if the term in brackets on the right hand side is always positive. This
is the case, since

τs− 2p2T −m2
3 −m2

4 ≥ τs− 2p2T,max −m2
3 −m2

4 =
τ2s2 − (m2

3 + m2
4)

2

2τs
(C.21)

≥ τ20 s
2 − (m2

3 + m2
4)

2

2τs
=

4m3m4(m
2
3 + m2

4)

τs
≥ 0 . (C.22)

Thus, the square root can be taken and we obtain the inequality

τ ≥ 1

s

(
2
√

(p2T + m2
3)(p

2
T + m2

4) + 2p2T + m2
3 + m2

4

)
≡ τmin . (C.23)

The new integration boundaries therefore are given by

p2T ∈ [0,
λ2(s,m2

3,m
2
4)

4s
], τ ∈ [τmin, 1] . (C.24)

Finally, we obtain the full hadronic cross section

σpp→φφ′ =

∫ p2T,max

0
dp2T

(
dσ̂

dp2T

)
, (C.25)

where

dσ̂

dp2T
=

∫ 1

τmin

dτ
dLgg

dτ

×

[(
ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂2(p2T )

−
(

ŝ

m2
3 + m2

4 − ŝ− 2t̂

dσ̂

dt̂

)
t̂=t̂1(p2T )

]
. (C.26)





APPENDIXD

Generic Formulas for Three-Body Decays

In the following, we derive the kinematics and the formula for the partial width for three-body
decays (cf. [322]). First of all, we use the notation

P = p1 + p2 + p3 , (D.1)

where P = (M, 0)T is the momentum of the decaying particle in the rest frame of the particle,
and p1, p2 and p3 are the momenta of the final state particles with masses m1, m2 and m3.
Furthermore, we will work with two different reference frames, the rest frame of the initial
state, the centre-of-mass (COM) frame, and the frame where p2 and p3 have opposite momenta
with the same size (i.e. ~p2 = −~p3, in the following labelled S23). Next, we define the following
variables,

ai =
2mi

M
, i = 1, 2, 3 , (D.2a)

s1 = (P − p1)
2 = (p2 + p3)

2 , (D.2b)

s2 = (P − p2)
2 = (p1 + p3)

2 , (D.2c)

λ(a, b, c) =
√
a2 + b2 + c2 − 2ab− 2ac− 2bc , (D.2d)

xi =
2Ppi
s

. (D.2e)

When we go into the COM frame, we see that

s1 = (P − p1)
2 = M2 + m2

1 − 2ME1 ≤ (M −m1)
2 , (D.3)

where E1 is the energy of particle 1 in this reference frame, and we used the lower bound
E1 ≥ m1. When we go to the frame S23, we can derive a lower bound for s1,

s1 = (p2 + p3)
2 = (E2 + E3)

2 ≥ (m2 + m3)
2 . (D.4)

Next, we want to derive the bounds for s2. Here we go to the frame S23 and first obtain
expressions for |~p1| and |~p3| (in this frame we have ~P = ~p1),

s1 = (P − p1)
2 =

(√
M2 + |~p1|2 −

√
m2

1 + |~p1|2
)2

(D.5)

⇒ |~p1|2 =
1

4s1
λ2(s1,M

2,m2
1) . (D.6)
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Similarly we have

s1 = (p2 + p3)
2 =

(√
m2

2 + |~p3|2 +
√
m2

3 + |~p3|2
)2

(D.7)

⇒ |~p3|2 =
1

4s1
λ2(s1,m

2
2,m

2
3) . (D.8)

For s2 we then obtain

s2 = (p1 + p3)
2 = m2

1 + m2
3 + 2p1p3

= m2
1 + m2

3 +
1

2s1

(
(M2 − s1 −m2

1)(s1 + m2
3 −m2

2) (D.9)

−λ(s1,M
2,m2

1)λ(s1,m
2
2,m

2
3) cos θ

)
,

where θ is the angle between ~p1 and ~p3. Moreover, we know that

s1 = (P − p1)
2 = M2 + m2

1 −M2x1 , (D.10a)

s2 = (P − p2)
2 = M2 + m2

2 −M2x2 . (D.10b)

We can solve the above equation for x2 and we obtain the upper and lower boundaries

x2,± =

((
1

8 − 8x1 + 2a21

) (
(x1 − 2)(4x1 − 4 − a22 + a23 − a21) (D.11)

±
√

(a21 − x21)(4a
2
2a

2
3 − (4x1 − 4 + a23 + a22 − a21)

2)

))
.

For x1 we obtain

2m1

M
≤ x1 ≤ 1 +

m2
1 − (m2 + m3)

2

M2
. (D.12)

Next, we calculate the three-body phase space. We start with

dΦ3 = δ(4)(P − p1 − p2 − p3)
3∏

i=1

d3pi
(2π)32Ei

. (D.13)

Since p3 is fixed by the momentum conservation, the only angle that is important is β12,
which is defined between ~p1 and ~p2, the other three angle integrations, i.e. the integrations
over α, φ and cos θ, will be trivial. Thus, we obtain

dΦ3 = δ(M − E1 − E2 − E3)
1

(2π)923
d||~p1|d(cos θ)dφd|~p2|d(cosβ12)dα

|~p1|2|~p2|2

E1E2E3
. (D.14)

Next we use

E =
√
m2 + p2 ⇒ pdp = EdE , (D.15)

to simplify the phase space to

dΦ3 = δ(M − E1 − E2 − E3)
1

8(2π)9
dE1d(cos θ)dφdE2d(cosβ12)dα

|~p1||~p2|
E3

. (D.16)

We use the COM frame and the relations (i = 1, 2, 3)

xi =
2Ppi
M2

=
2Ei

M
⇒ dEi =

M

2
dxi , (D.17)

|~pi| =
√
E2

i −m2
i =

M

2
xiβi , βi ≡

√
1 −

4m2
i

M2x2i
, (D.18)

δ(M − E1 − E2 − E3) = δ(
M

2
(2 − x1 − x2 − x3)) =

2

M
δ(2 − x1 − x2 − x3) , (D.19)
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to obtain

dΦ3 = δ(2 − x1 − x2 − x3)
1

8(2π)9
dx1dx2d(cos θ)dφd(cosβ12)dα

|~p1||~p2|
x3

(D.20)

= δ(2 − x1 − x2 − x3)
1

8(2π)9
dx1dx2d(cos θ)dφd(cosβ12)dα

M2

4

x1β1x2β2
x3

. (D.21)

Next, we use the relations

x23 =
4

M2
(m2

3 + |~p1 + ~p2|2)

=
4

M2
(m2

3 +
M2

4
x12 −m2

1 +
M2

4
x22 −m2

2 +
2M2

4
x1x2β1β2 cosβ12)

=
4(m2

3 −m2
1 −m2

2)

M2
+ x21 + x22 + 2x1x2β1β2 cosβ12 (D.22)

⇒ 2x3dx3 = 2x1x2β1β2d(cosβ12)

⇒ d(cosβ12) =
x3dx3

x1x2β1β2
. (D.23)

Thus, we obtain the differential phase space

dΦ3 = δ(2 − x1 − x2 − x3)
M2

32(2π)9
dx1dx2dx3d(cos θ)dφdα (D.24)

=
M2

32(2π)9
dx1dx2d(cos θ)dφdα

∣∣∣∣
x1+x2+x3=2

.

In a three-body decay, all angle integrations are trivial, and we obtain

dΦ3 =
M2

16(2π)7
dx1dx2

∣∣∣∣
x1+x2+x3=2

. (D.25)

The differential three-body decay width can then be written as

dΓ =
(2π)4

2M
|A|2dΦ3 =

M

32(2π)3
|A|2dx1dx2

∣∣∣∣
x1+x2+x3=2

, (D.26)

with the integration boundaries for x1 and x2 given in Eqs. (D.11) and (D.12). With A the
sum of all amplitudes contributing to the decay width is denoted, and |A|2 symbolizes the
square of the amplitude, including the sum and the average of the degrees of freedom of the
initial and final state particles.





APPENDIX E

Matrix Element Calculation including Majorana Fermions

We give a brief summary of how Feynman diagrams involving Majorana fermions are calcu-
lated and how we used this formalism to calculate decay widths of antiparticles, given the
decay amplitudes. We follow here [303, 304].

We start with an interaction Lagrangian LInt, given by

LInt = XΓX = hiabcXaΓiXbΦc , (E.1)

with a fermion field X, a vector or scalar field Φ, a coupling constant hiabc and a Lorentz struc-
ture Γi = 1, γ5, γµγ5, σµν . We can also write the Lagrangian in terms of charge-conjugated

fields, X̃ = CX
T

, with the charge conjugation matrix C, i.e. we have

LInt = X̃Γ′X̃ , (E.2)

with Γ′
i = CΓTC† = ηΓi. The coefficients η for each Lorentz structure are given by

η =

{
1 ,Γi = 1, γ5, γµγ5

−1 ,Γi = γµ, σµν
. (E.3)

The main idea of the derivation of Feynman rules involving Majorana fermions is now to select
a custom chosen fermion flow, that does not have to coincide with the fermion flow indicated
by the arrows on fermion propagators. After we selected a flow for each fermion chain, we
can then read the amplitude from the Feynman diagrams. Here, we have to closely inspect
each vertex including fermions. If our chosen fermion flow coincides with the fermion flow
indicated by the Dirac fermions, we use the vertex given by Γ, and if they do not coincide, we
use Γ′. If we only have Majorana fermions at the vertex without an arrow, we have Γ = Γ′

and only have one expression.

Similarly, we have to be careful with fermion propagators and spinors for external fermion
lines, they also will depend on our chosen fermion flow. The algorithm also works if we
have already charge-conjugated fields in the Lagrangian. Finally, the relative sign between
different amplitudes can also be determined. See [303, 304] for more information.
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Next, we want to calculate the antiparticle amplitudes and decay widths, given the particle
amplitudes. First of all, this means that given an amplitude, we have to invert all Dirac
fermion and charged scalar arrows, and at each vertex we have to use the hermitian conjugated
coupling. We have for scalar-fermion-fermion interactions

Xa(APL + BPR)XbΦc → Xb(B
∗PL + A∗PR)XaΦc , (E.4)

i.e. we have to use the conjugated couplings and we have to interchange the left- and right-
chiral parts (with A,B being generic complex couplings, X fermion and Φ scalar fields,
respectively).

For vector-fermion-fermion interactions we have

Xaγµ(APL + BPR)XbV
µ → Xbγµ(A∗PL + B∗PR)XaV

µ∗ , (E.5)

i.e. we only use the conjugated couplings and do not have to interchange left- and right-chiral
couplings so far (due to the additional γµ). Here V µ denotes a generic vector boson.

If we want to keep our structure of the particle amplitude for the antiparticle amplitude, we
also keep our chosen fermion flow and now have to reconsider all vertices appearing in the
Feynman diagram since the Dirac arrows were inverted. As can be seen from Eq. (E.3),
vertices involving only scalars (Γi = 1), or fermion-fermion-scalar interactions ((Γi = 1, γ5)
do not receive an additional sign. Fermion-fermion-vector interactions are, however, more
subtle as they contain Γi = γµ, γµγ5, which transform differently under charge conjugation.
As a result, we obtain an overall sign for terms proportional to γµ and no sign for terms
proportional to γµγ5. This leads to a switch of left- and right-chiral couplings for these
vertices and an overall minus sign.

If we have scalar-scalar-vector interactions, they do not contain any Dirac matrices, but they
contain a factor (pi + pf )µ where pi is the ingoing and pj is the outgoing momentum of the
scalars, and by reversing the arrow on the charged scalars we also reverse the momenta. Thus,
we obtain an additional minus sign, similar to the fermion-fermion-vector interaction.

Finally, one more interaction that we need to consider is the gluino-gluino-gluon vertex.
The gluino is a Majorana fermion, thus one would maybe expect no sign change here when
considering the charge-conjugated vertex. But the Feynman rule reads gsf

abcγµ, with the
strong coupling constant gs, f

abc the structure constants of SU(3), with a being the ingoing
gluino colour index, c the outgoing gluino colour index and b the colour index of the gluon.
Thus, we also have to interchange ingoing and outgoing colour indices and pick up a minus
sign again. One could consider more vertices, we here focused only on the Feynman rules
that appeared in our calculation.

To give an example, we can consider the NLO corrections to the decay χ̃0 → qq̃∗ of a neutralino
into a quark and an anti-squark, given by Fig. 13.3a. Similarly, we can have the decay χ̃0 → q̄q̃
into an anti-quark and a squark, where the arrows in Fig. 13.3a would be reversed. Given
the decay amplitude for the first process, we can use the same result for the decay into the
anti-particles, but now we have to use the complex conjugated couplings and interchange
the left- and right-chiral couplings at each neutralino-squark-quark and gluino-squark-quark
interaction. Additionally, we obtain a minus sign at the gluon-quark-quark vertex and the
gluon-squark-squark vertex. Since we have then two minus signs, they cancel each other.

To conclude and summarize, given a particle amplitude, we can keep our chosen fermion flow
and amplitude structure. We then have to interchange left- and right-chiral couplings, use the
conjugated coupling at each vertex, and at each scalar-scalar-vector or fermion-fermion-vector
vertex we pick up an additional minus sign.
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Counterterms for the QCD Corrections in the NMSSM

In the following, we derive the counterterms needed for the renormalization of the NLO QCD
corrections. The Feynman rules were taken from [63]. If dimensional regularization is used
in the calculation, the additional contributions described in Sec. 12.4.4 have to be included
as well.

In Fig. F.1, we summarized all the couplings that are required in the NLO QCD calculation.
The couplings mentioned in the figure are given by

Cq̃tq̃sZ =
g2
cW

(
3∑

i=1

T q̃
3LW

q̃
s,2i−1W

q̃∗
t,2i−1 − s2WQq̃δst

)
, (F.1a)

Cq̃tq̃′sW =
g2√

2

(
3∑

i=1

W q̃′

s,2i−1W
q̃∗
t,2i−1

)
, (F.1b)

for the couplings of squarks to gauge bosons (s, t = 1, .., 6),

CL
isk = Uk2

3∑
j,n=1

V CKM
in YdnU

dR
nj W

d̃∗
s,2j − g2Uk1

3∑
j=1

UuL
ij W d̃∗

s,2j−1 ≡ c1,Lisk + c2,Lisk (F.2a)

c3,Lisknp ≡ Uk2

3∑
j=1

V CKM
ip

√
2

v cosβ
UdR
nj W

d̃∗
s,2j (F.2b)

DL
isk = Vk2

3∑
j,n=1

V CKM∗
ni YunU

uR
nj W

ũ∗
s,2j − g2Vk1

3∑
j=1

UdL
ij W ũ∗

s,2j−1 ≡ d1,Lisk + d2,Lisk (F.2c)

d3,Lisknp ≡ Vk2

3∑
j=1

V CKM∗
pi

√
2

v sinβ
UuR
nj W

ũ∗
s,2j (F.2d)

ER
isk = Uk2Ydi

3∑
j=1

UdL∗
ij W ũ

s,2j−1 ≡ mdie
R
isk , (F.2e)

FR
isk = Vk2Yui

3∑
j=1

UuL∗
ij W d̃

s,2j−1 ≡ muif
R
isk , (F.2f)
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for the squark-quark-chargino couplings (s = 1, .., 6, i, n, p = 1, 2, 3, k = 1, 2),

GuL
isl = −

√
2g2

(
1

2
Z∗
l2 +

1

6
tan θWZ∗

l1

) 3∑
j=1

W ũ
s,2j−1U

uL∗
ij − YuiZ

∗
l4

3∑
j=1

W ũ
s,2jU

uR∗
ij (F.3a)

≡ g1,uL

isl + muig
2,uL

isl ,

GuR
isl =

2
√

2

3
g2 tan θWZl1

3∑
j=1

W ũ
s,2jU

uR∗
ij − YuiZl4

3∑
j=1

W ũ
s,2j−1U

uL∗
ij , (F.3b)

≡ g1,uR

isl + muig
2,uR

isl ,

GdL
isl =

√
2g2

(
1

2
Z∗
l2 −

1

6
tan θWZ∗

l1

) 3∑
j=1

W d̃
s,2j−1U

dL∗
ij − YdiZ

∗
l3

3∑
j=1

W d̃
s,2jU

dR∗
ij (F.3c)

≡ g1,dLisl + mdig
2,dL
isl ,

GdR
isl = −

√
2

3
g2 tan θWZl1

3∑
j=1

W d̃
s,2jU

dR∗
ij − YdiZl3

3∑
j=1

W d̃
s,2j−1U

dL∗
ij , (F.3d)

≡ g1,dRisl + mdig
2,dR
isl ,

for the squark-quark-neutralino couplings (s = 1, .., 6, i = 1, 2, 3, l = 1, .., 5) and

C g̃,qL
si =

√
2gs

3∑
j=1

U qR
ij W q̃∗

s,2j , C g̃,qR
si = −

√
2gs

3∑
j=1

U qL
ij W

q̃∗
s,2j−1 , (F.4)

for the squark-quark-gluino couplings (s = 1, .., 6, i = 1, 2, 3). We omit the scalar couplings
as they are rather involved, they can be extracted from the code NMSSMCALC [77–82]. In the
couplings we have the gauge couplings g2, gs, the sine sW, cosine cW and tangent of the weak
mixing angle θW, the weak isospin T q̃

3L and fractional charge Qq̃ of the squarks, the Kronecker
delta δst, the squark rotation matrices W q̃, the CKM matrix V CKM, the chargino rotation
matrices U ,V, the quark rotation matrices U qL , U qR (q = u, d), the neutralino rotation matrix
Z and the Yukawa couplings Yui , Ydi (i = 1, .., 3) defined by

Yui =
mui

√
2

v sinβ
, Ydi =

mdi

√
2

v cosβ
, (F.5)

with the VEV v, the mixing angle β and the up-type and down-type quark masses mui , mdi ,
respectively. We also introduced abbreviations for parts of the couplings that we will use in
the following. We then insert the counterterms for the rotation matrices, the masses and the
field renormalization constants. We obtain for the squark-squark-V vertices (V = W,Z)

δCq̃tq̃′sV = Cq̃w q̃′sV ((δwq̃
tw)∗ +

δZ q̃
wt

2
) + Cq̃tq̃′wV (δwq̃′

sw +
(δZ q̃′

ws)∗

2
) , (F.6)

where the squarks q̃, q̃′ can be of different flavour if the W boson vertex is considered and we
implicitly sum over the index w = 1, .., 6. Next, the counterterms for the squark-squark-scalar
couplings read

δCq̃tq̃sΦ =Cq̃tq̃wΦ(δwq̃
sw +

(δZ q̃
ws)∗

2
) + Cq̃w q̃sΦ((δwq̃

tw)∗ +
δZ q̃

wt

2
) (F.7a)

+
∂Cq̃tq̃sΦ

∂mq
δmq +

∂Cq̃tq̃sΦ

∂Aq
δAq

δCq̃tq̃′sH
± =Cq̃tq̃′wH±(δwq̃′

sw +
(δZ q̃′

ws)∗

2
) + Cq̃w q̃′sH

±((δwq̃
tw)∗ +

δZ q̃
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2
) (F.7b)

+
∂Cq̃tq̃′sH

±

∂mq
δmq +

∂Cq̃tq̃′sH
±

∂mq′
δmq′ +

∂Cq̃tq̃′sH
±

∂Aq
δAq +

∂Cq̃tq̃′sH
±

∂Aq′
δAq′ ,
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where also the quark mass counterterm and the Aq counterterm are inserted, since the cou-
pling can also depend on these input parameters and we again sum over the index w. The
labels q, q′ here indicate the corresponding quark flavour to the considered squarks and Φ
denotes the five neutral scalars.

Next, we have the squark-quark-neutralino counterterms,

δGqL
isl = g2,qLisl δmqi + GqL

iwl(δw
q̃
sw +

(δZ q̃
ws)∗

2
) (F.8a)

+ g1,qLmsl ((δuqLim)∗ +
δZqL

mi

2
) + g2,qLmsl (mqi(δu

qR
im)∗ + mqm

δZqL
mi

2
)

δGqR
isl = g2,qRisl δmqi + GqR

iwl(δw
q̃
sw +

(δZ q̃
ws)∗

2
) (F.8b)

+ g1,qRmsl ((δuqRim)∗ +
δZqR

mi

2
) + g2,qRmsl (mqi(δu

qL
im)∗ + mqm

δZqR
mi

2
) ,

and the squark-quark-gluino counterterms,

δC g̃,qL
si = C g̃,qL

si

δZ g̃L

2
+ C g̃,qL

wi ((δwq̃
sw)∗ +

δZ q̃
ws

2
) (F.9a)

+ C g̃,qL
sm (δuqRim +

(δZqR
mi)

∗

2
) +

δgs
gs

C g̃,qL
si ,

δC g̃,qR
si = C g̃,qR

si

δZ g̃R

2
+ C g̃,qR

wi ((δwq̃
sw)∗ +

δZ q̃
ws

2
) (F.9b)

+ C g̃,qR
sm (δuqLim +

(δZqL
mi)

∗

2
) +

δgs
gs

C g̃,qR
si ,

where we sum over the indices m = 1, 2, 3 and w = 1, .., 6. Finally, the squark-quark-chargino
counterterms read

δER
isk = eRiskδmdi + ER

iwk((δwũ
sw)∗ +

δZ ũ
ws

2
) + eRmsk(mdi(δu

dL
im)∗ +

δZdR
mi

2
) , (F.10a)

δDL
isk = DL

iwk((δwũ
sw)∗ +

δZ ũ
ws

2
) + d3,Liskmmδmum + DL

mwk(δudLim +
(δZdL

mi)
∗

2
) (F.10b)

+ d3,Liskmp(mum(δuuL
mp)

∗ + mupδu
uR
pm) ,

δFR
isk = fR

iskδmui + FR
iwk((δwd̃

sw)∗ +
δZ d̃

ws

2
) + fR

msk(mui(δu
uL
im)∗ +

δZuR
mi

2
) , (F.10c)

δCL
isk = CL

iwk((δwd̃
sw)∗ +

δZ d̃
ws

2
) + c3,Liskmmδmdm + CL

mwk(δuuL
im +

(δZuL
mi)

∗

2
) (F.10d)

+ c3,Liskmp(mdm(δudLmp)
∗ + mdpδu

dR
pm) ,

where we sum over m, p = 1, 2, 3 and w = 1, .., 6. In this notation, we can see how we can
apply the limits described in Sec. 12.4.2 in the case of vanishing quark masses or degenerate
squark masses.
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q̃t

q̃′s

S = iCq̃tq̃′sS

(a) Feynman rule for the squark-squark-scalar interaction with coupling Cq̃tq̃′sS
(t, s = 1, .., 6), where

S can be a neutral or charged scalar.

q̃t

q̃′s

V, µ

pi

pf

= −i(pi + pf )µCq̃tq̃′sV

(b) Feynman rule for the squark-squark-boson interaction with coupling Cq̃tq̃′sV
(t, s = 1, .., 6) and

V = W,Z.

ũs

di

X̃±
k

= i
[
DL

iskPR + (ER
isk)∗PL

]

d̃s

ui

X̃±
k

= i
[
CL
iskPR + (FR

isk)∗PL

]

(c) Feynman rule for the squark-quark-chargino interaction with couplings DL
isk, ER

isk, CL
isk, FR

isk

(s = 1, .., 6, i = 1, 2, 3, k = 1, 2) and up-type and down-type quarks (squarks) denoted with u (ũ) and
d (d̃), respectively. We omit here the charge conjugation matrices and instead use the approach in
[304].

qi

q̃s

X̃0
l

= i
[
GqR

islPR + GqL
islPL

]

q̃s

qi

g̃ = iT a
[
C g̃,qR
si PR + C g̃,qL

si PL

]

(d) Feynman rules for the quark-squark-neutralino and quark-squark-gluino interaction with couplings

GqR
isl, G

qL
isl, C

g̃,qR
si ,C g̃,qL

si (s = 1, .., 6, i = 1, 2, 3, l = 1, .., 5). The T a are the generators of the SU(3)c
group.

Figure F.1.: Feynman rules of all couplings that have to be renormalized for the QCD correc-
tions. The definitions of all couplings are given in the Eqs. (F.1), (F.2), (F.3) and (F). Taken
from [63].



APPENDIXG

Analytic Expressions for the NLO QCD Corrections and the Radiative
Decays in the NMSSM

In the following, we give analytic expressions for the counterterms, the NLO vertex cor-
rections, the real corrections and the radiative two-body decays described in Chapter 13.
The expressions were derived using dimensional regularization and can be translated to the
expressions obtained in dimensional reduction with the help of the transition counterterms
described in Sec. 12.4.4.

G.1. Analytic Expressions for the NLO QCD Corrections

G.1.1. Counterterms

We start with the description of the counterterms. The squark-quark-gluino couplings are
denoted as C g̃,qL/qR for the left- and right-chiral parts (see also Fig. F.1), αs is the strong
coupling constant, λ is the gluon mass introduced to regulate the IR divergences, and ξg is the
gauge parameter of the gluon in the Rξ-gauge. The definitions of the counterterms are given
in Eqs. (12.30) and (12.31). We also use the Passarino-Veltman decomposition of one-loop

integrals [200, 210, 211]. The symbol R̃e indicates that we only take the real part of the loop
integrals and not the couplings. All the couplings needed for the calculation were taken from
[63] and [302].

We start with the counterterms for the quarks. We will always split up the expression into
the several contributions from the self-energy diagrams, indicated with a label in brackets.
Thus, the quark mass and wave function renormalization counterterms can be written as

δmqi = δm(g)
qi + δm(g̃)

qi , (G.1a)

δZ
q,L/R
ii = δZ

q,L/R(g)
ii + δZ

q,L/R(g̃)
ii , (G.1b)

δZ
q,L/R
ij = δZ

q,L/R(g)
ij + δZ

q,L/R(g̃)
ij (i 6= j) , (G.1c)

with i, j = 1, 2, 3 and (g) denoting the self-energy diagram with the gluon loop and g̃ the
self-energy diagram with the gluino in the loop (compare with Fig. 12.1b).
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The contributions to the quark mass counterterm are given by

δm(g)
qi = R̃e

[
−αs

π

(
A0(m

2
qi))

mqi

+
mqi

3

)]
, (G.2a)

δm(g̃)
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[
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12mqiπ
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2
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2
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2
qi ,m

2
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2
q̃l

)
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q̃l
+ m2

g̃)

+4mg̃mqiRe
(
C g̃,qL
li (C g̃,qR

li )∗
)))]

,

where we sum over the squarks q̃l in the loop. The wave function renormalization counterterms
are given by

δZ
q,L(g)
ii = R̃e

[
αs

3π

(
−
A0(m

2
qi)

m2
qi

+ B0(0, λ
2, λ2)(1 − ξg) (G.3a)

+4m2
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2
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)]
,
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−
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,

δZ
q,R(g)
ii = δZ

q,L(g)
ii , (G.3c)

δZ
q,R(g̃)
ii = δZ

q,L(g̃)
ii (C g̃,qL ↔ C g̃,qR) , (G.3d)

for the diagonal part, where we obtain the δZ
q,R(g̃)
ii by interchanging the left- and right-chiral

couplings in δZ
q,L(g̃)
ii . The off-diagonal contributions are given by

δZ
q,L(g)
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q,R(g)
ij = 0 , (G.4a)
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+(C g̃,qR
li )∗(mqiC

g̃,qR
lj (m2

qj −m2
q̃l

+ m2
g̃) + 2mg̃m

2
qjC

g̃,qL
lj )

))]
.

Next, we have the gluino counterterms, that can be split up into

δmg̃ = δm
(g)
g̃ + δm

(q̃)
g̃ , (G.5a)

δZ g̃,L/R = δZ g̃,L/R(g) + δZ g̃,L/R(q̃) , (G.5b)

where we have the gluon contribution indicated by (g) and the squark-quark loop by (q̃)
(compare with Fig. 12.1c). Since the gluino is a Majorana fermion we furthermore have

δZ g̃,L = δZ g̃,R . (G.6)

The individual contributions for the mass counterterm are given by

δm
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g̃ = R̃e

[
αs

4π

(
−
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,

where we sum over the up- and down-type quarks and squarks. The contributions to the
wave function renormalization counterterm are given by
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.

Finally, the squark counterterms can be split up into

δm2
q̃s = δm

2 (g)
q̃s

+ δm
2 (g̃)
q̃s

+ δm
2 (q̃)
q̃s

, (G.9a)

δZ q̃
ss = δZ q̃(g)

ss + δZ q̃(g̃)
ss + δZ q̃(q̃)

ss , (G.9b)

δZ q̃
st = δZ

q̃(g)
st + δZ

q̃(g̃)
st + δZ

q̃(q̃)
st (s 6= t) , (G.9c)

with s, t = 1, .., 6 and we have the gluon (g), the gluino (g̃) and the squark (q̃) contribution
(compare with Fig. 12.1a). The contributions to the squark mass counterterm read

δm
2 (g)
q̃s

= R̃e

[
αs

π

(
−A0(m

2
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4m2
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)]
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)Cq̃sq̃lq̃sq̃l , (G.10c)

where we have the quartic squark couplings Cq̃sq̃lq̃sq̃l that we took from [63]. The contributions
to the diagonal wave function renormalization counterterms read

δZ q̃,(g)
ss = R̃e

[
αs

3π

(
2A0(m

2
q̃s

)

m2
q̃s

+ B0(0, λ
2, λ2)(1 − ξg) (G.11a)

+4m2
q̃sDB0(m

2
q̃s , λ

2,m2
q̃s) + 2

)]
,

δZ q̃,(g̃)
ss = R̃e

[
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m=1
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2
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2
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2
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sm |2) (G.11b)
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2
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2
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sm |2)(m2
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+4mg̃mqmRe
(
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sm (C g̃,qR

sm )∗
)))]

,

δZ q̃,(q̃)
ss = 0 . (G.11c)

The off-diagonal contributions are given by

δZ
q̃,(g)
st = 0 , (G.12a)

δZ
q̃,(g̃)
st = R̃e

[
3∑
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2
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(
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,
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[
αs
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1
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q̃s
−m2

q̃t

6∑
l=1

A0(m
2
q̃l

)Cq̃sq̃lq̃tq̃l

]
. (G.12c)

G.1.2. Vertex Corrections

We now give the analytic expressions of the vertex corrections of the NLO QCD corrections
to the decay widths. First, we give a brief description of the absorptive corrections presented
in Sec. 13.3.2. They consist of the off-diagonal squark self-energy contribution, where we only
take the imaginary part of the loop integrals, times the LO amplitude of the process, times
the squark propagator, where we then have to be careful with the squark indices (compare
with Fig. 13.5). The necessary squark self-energy contribution reads

ĨmΣq̃
sl(p

2) =

3∑
m=1

− g2s
12π2

[
Im
(
B0(p

2,m2
g̃,m

2
qm)
)

(G.13)(
C g̃,qL
sm ((C g̃,qL

lm )∗(m2
qm + m2

g̃ − p2) + 2mg̃mqm(C g̃,qR
lm )∗)

+C g̃,qR
sm ((C g̃,qR

lm )∗(m2
qm + m2

g̃ − p2) + 2mg̃mqm(C g̃,qL
lm )∗)

)]
,
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where we have s, l = 1, .., 6, m = 1, .., 3 and s 6= l for an ingoing squark s and an outgoing
squark l and the momentum p. For a given decay process, we then have to add this contribu-
tion for ingoing and outgoing squarks and set the momentum on-shell to the corresponding
squark mass, and we have to sum over the intermediate squarks.

We now describe the vertex corrections. We start with the neutralino/chargino vertex cor-
rections, that are depicted in Fig. 13.3a. We use here again the generic notation χ̃ that
can denote a neutralino or chargino (χ̃ = χ̃0, χ̃±) and we thus have the generic couplings

C
χ̃,qL/qR
nti for the left- and right-chiral couplings between a squark q̃′t, a quark qn and a neu-

tralino/chargino χ̃i, where t = 1, .., 6, n = 1, 2, 3 and i = 1, .., 5 for neutralinos or i = 1, 2 for
charginos that we took from [63].

Comparing with Eq. (5.1b), the NLO correction to the decay width can be written as

∆ΓNLO
χ̃i→q′nq̃

∗
t

= λ(m2
χ̃i
,m2

q′n
,m2

q̃t)
1

16πm3
χ̃i

1

2

∑
spin,colour

2Re
[(

ALO
χ̃i→q′nq̃

∗
t

)∗
ANLO

χ̃i→q′nq̃
∗
t

]
, (G.14)

where we average and sum over the spin and the colour factor and λ is the Källén function.
With ALO we denote the LO amplitude and with ANLO the sum of all NLO amplitudes. We
then define the quantity

Dχ̃i→q′nq̃
∗
t
≡

∑
spin,colour

[(
ALO

χ̃i→q′nq̃
∗
t

)∗
ANLO

χ̃i→q′nq̃
∗
t

]
, (G.15)

that we split up into the several contributions,

Dχ̃i→q′nq̃
∗
t

= D(g)
χ̃i→q′nq̃

∗
t

+ D(g̃)
χ̃i→q′nq̃

∗
t

+ D(abs)
χ̃i→q′nq̃

∗
t
, (G.16)

with the gluon contribution (g), the gluino contribution (g̃) and the absorptive corrections
(abs) that were already discussed above. The gluon contribution can be written as

D(g)
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∗
t

=
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[ (G.17)
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.

The gluino contribution is given by

D(g̃)
χ̃i→q′nq̃

∗
t

=
3g2s

12π2

[
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l=1
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m=1

(G.18)
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+C g̃,qR
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.

Next, we discuss the vertex correction of the gluino to squark-quark decay. The contributing
Feynman diagrams are given in Fig. 13.3b. The NLO correction to the decay width can be
written as

∆ΓNLO
g̃→qnq̃∗t

= λ(m2
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2
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1

16πm3
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∑
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]
, (G.19)

where we average and sum over the spin and the colour degrees of freedom. We again define
the quantity

Dg̃→qnq̃∗t
≡

∑
spin,colour
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]
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that we split up into the several contributions,

Dg̃→qnq̃∗t
= D(g)

g̃→qnq̃∗t
+ D(g̃)
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+ D(abs)
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The gluon contribution is given by
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+
1

12
mg̃B0(m

2
g̃,m

2
qn ,m

2
q̃t)
(
mg̃(|C g̃,qL

tn |2 + |C g̃,qR
tn |2) + 2mqnRe

(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
3

4
B0(m

2
q̃t ,m

2
g̃,m

2
qn)
(

(m2
g̃ + m2

qn)(|C g̃,qL
tn |2 + |C g̃,qR

tn |2) + 4mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
2

3
B0(m

2
qn , 0,m

2
qn)
(

(m2
g̃ −m2

q̃t)(|C
g̃,qL
tn |2 + |C g̃,qR

tn |2) + 2mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
3

2
B0(m

2
g̃, 0,m

2
g̃)
(

(m2
qn −m2

q̃t)(|C
g̃,qL
tn |2 + |C g̃,qR

tn |2) + 2mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

− 3

4

(
(m2

g̃ + m2
qn −m2

q̃t)(|C
g̃,qL
tn |2 + |C g̃,qR

tn |2) + 4mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
1

3
B0(m

2
q̃t , 0,m

2
q̃t)
(

(m2
g̃ + m2

qn + m2
q̃t)(|C

g̃,qL
tn |2 + |C g̃,qR

tn |2) + 4mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
17(ξg − 1)

24
B0(0, λ

2, λ2)
(

(m2
g̃ + m2

qn −m2
q̃t)(|C

g̃,qL
tn |2 + |C g̃,qR

tn |2)+

4mg̃mqnRe
(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
3

4
(m2

g̃ −m2
qn + m2

q̃t)C0(m
2
g̃,m

2
qn ,m

2
q̃t , λ

2,m2
g̃,m

2
q̃t)
(

(m2
g̃ + m2

qn −m2
q̃t)(|C

g̃,qL
tn |2

+|C g̃,qR
tn |2) + 4mg̃mqnRe

(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
1

12
(m2

g̃ −m2
qn −m2

q̃t)C0(m
2
qn ,m

2
g̃,m

2
q̃t , λ

2,m2
qn ,m

2
q̃t)
(

(m2
g̃ + m2

qn −m2
q̃t)(|C

g̃,qL
tn |2

+|C g̃,qR
tn |2) + 4mg̃mqnRe

(
C g̃,qL
tn (C g̃,qR

tn )∗
))

+
3

4
(m2

g̃ + m2
qn −m2

q̃t)C0(m
2
qn ,m

2
q̃t ,m

2
g̃, λ

2,m2
qn ,m

2
g̃)
(

(m2
g̃ + m2

qn −m2
q̃t)(|C

g̃,qL
tn |2

+|C g̃,qR
tn |2) + 4mg̃mqnRe

(
C g̃,qL
tn (C g̃,qR

tn )∗
))]

.

The gluino contribution reads
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.

We omit the vertex corrections of the squark to quark and neutralino/chargino/gluino decays.
They are obtained from the same diagrams as the above decays, where one has to interchange
the kinematics accordingly.

We now give the analytic results for the squark to squark and vector boson decay. Here,
we denote vector bosons generically by V , where V = W,Z. We thus have the generic
squark-squark-V couplings Cq̃sq̃′tV

(s, t = 1, .., 6) and the left- and right-chiral couplings of

the quark-quark-V coupling, C
qL/qR
qnq′mV (m,n = 1, 2, 3). The diagrams contributing to the vertex

corrections are given in Fig. 13.3c.

We use the same notation as above, i.e. the NLO correction to the decay width can be written
as

∆ΓNLO
q̃s→q̃′tV

= λ(m2
q̃s ,m

2
q̃′t
,m2

V )
1

16πm3
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1

3

∑
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2Re
[(
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)∗
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]
, (G.24)

where we average and sum over the polarization of the vector boson V and the colour of the
squarks. We then define the quantity

Dq̃s→q̃′tV
≡

∑
polarization,colour

[(
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]
, (G.25)

that we split up into the contributions,

Dq̃s→q̃′tV
= D(g)
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+ D(g̃)
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q̃s→q̃′tV
. (G.26)

The gluon contribution is given by

D(g)
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=
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.

The gluino contribution reads

D(g̃)
q̃s→q̃′tV

=
3g2s(Cq̃sq̃′tV

)∗

π2

 3∑
m,n=1

(G.28)
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.

Finally, we have the squark to squark and scalar decay. Here, we use the generic notation S for
either a neutral Higgs scalar Φ or the charged Higgs H±. We have the generic squark-squark-

scalar couplings Cq̃sq̃′tS
and the left- and right-chiral quark-quark-scalar couplings C

qL/qR
qq′S .

These couplings are already implemented in NMSSMCALC and were taken over from there. The
diagrams contributing to the vertex corrections are given in Fig. 13.3d.

The NLO correction to the decay width can be written as
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, (G.29)

where we average and sum over the colour of the squarks. We define the quantity
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≡
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, (G.30)

that we split up into the contributions,
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, (G.31)

where we now also have an additional diagram with the quartic squark coupling. The gluon
contribution is given by
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The gluino contribution reads
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.

The contribution including the quartic squark coupling is given by
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Here, in the case of a neutral scalar Φ in the final state, only the squark loop with the same
flavour in the loop as the initial and final squark contributes. In the case of a charged scalar,
H±, in the final state, we have different squark flavours in the loop.

G.1.3. Real Corrections

We now present the real corrections to the supersymmetric particle decays, described in
Sec. 13.3.1. In Fig. 13.4 we show the real corrections for the squark to quark and gluino
decay. Similarly, we have diagrams for the real corrections to the other decay channels. With
Areal we denote the sum of all amplitudes contributing to the real corrections. We will also
follow the notation in [200] where the definitions for the integrals I and the overall prefactor
were taken from. For the couplings, we use the same notation as in Sec. G.1.2 for the vertex
corrections.

We start with the neutralino/chargino decays. The real corrections can be written as
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where we average and sum over the spin and colour of the neutralino/chargino, the quark
and the squark. Additionally, we sum over the polarization of the emitted gluon. We then
obtain ∑
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Next, we have the gluino to squark-quark decay. The real corrections can be written as
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where we average and sum over the spin, colour and polarization of the gluino, the quark,
the squark and the gluon. The squared amplitude then reads∑
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In the case of massless quarks in the final state one has to properly perform the limit of
vanishing quark masses in the above expressions as we discussed in Sec. 13.3.1. The results
can be found in our code or in [307, 310]. We will also again omit the expressions for the
squark to quark neutralino/chargino decay and the squark to quark and gluino decay. They
can be derived similarly to the above expressions where one has to interchange the kinematics
accordingly.

The real corrections for the squark to squark and vector boson decay can be written as

Γreal
q̃s→q̃′tV

=
1

(2π)5
1

2mq̃s

π2 1

3

∑
polarization,colour

|Areal
q̃s→q̃′tV

|2 , (G.39)

where we average and sum over the colour and polarization of the squarks and the emitted
gluon. We then have∑

polarization,colour

|Areal
q̃s→q̃′tV

|2 =
16g2s
m2

V

|Cq̃sq̃′tV
|2 [ (G.40)

2m2
V I −m4

q̃′t
(I0 + m2

q̃s(I00 − I01 − 2I11) + m2
V (−(3I01 + 2I11)) + I1)

+m2
q̃′t

(2m2
q̃s(I0 + m2

V (I00 + I01 + I11) + I1) + 2m2
V (I0 + I1) + m4

q̃s(2I00 + I01 − I11)

+m4
V (−(3I01 + I11))) + m2

V m
2
q̃s(2(I0 + I1) −m2

V (I00 + 3I01))

−m4
q̃s(I0 + m2

V (−(2I00 + 3I01)) + I1) −m4
V (I0 + I1) − (I00 + I01)m

6
q̃s

−(I01 + I11)m
6
q̃′t

+ I01m
6
V

]
Finally, we have the real correction for the squark to squark and scalar decay. They can be
written as

Γreal
q̃s→q̃′tS

=
1

(2π)5
1

2mq̃s

π2 1

3

∑
polarization,colour

|Areal
q̃s→q̃′tS

|2 , (G.41)

where we average and sum over the colour and polarization of the squarks and the emitted
gluon. We then have∑

polarization,colour

|Areal
q̃s→q̃′tS

|2 = −16g2s |Cq̃sq̃′tS
|2 (G.42)

(
I0 + (I00 + I01)m

2
q̃s + (I01 + I11)m

2
q̃′t
− I01m

2
S + I1

)
.

G.2. Analytic Expressions for the Radiative Two-Body Decay

We give the analytic results for the radiative neutralino decay, χ̃0
i → γχ̃0

j (i = 2, .., 5, j =

1, .., 4), discussed in Sec. 13.2. We denote by p1 the momentum of the ingoing neutralino, χ̃0
i ,

by p2 the momentum of the outgoing neutralino, χ̃0
j , and by p3 the momentum of the photon,

with polarization vector εµ(p3). Next, we split the amplitude into several parts,

Aχ̃0
i→γχ̃0

j
= ū(p2,mχ̃0

j
) (A/ε(p3)PR + B/ε(p3)PL (G.43)

+C(p1 · ε(p3))PR + D(p1 · ε(p3))PL)u(p1,mχ̃0
i
) ,
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with the spinors u, the projection operators PL/R and the coefficients A, B, C, D. These
coefficents obtain contributions from the various Feynman diagrams depicted in Fig. 13.2,
where we denote the diagrams with sfermions by (f̃), the diagrams with charginos and W
bosons by (W ) and the diagrams with charginos and charged Higgs scalars by (H±). We thus
have

A = A(f̃) + A(W ) + A(H±) , (G.44)

for the coefficient A and similarly for the other coefficients. In the following we need

the neutralino-sfermion-fermion couplings, denoted by G
fL/fR
mli , with an ingoing fermion fm,

sfermion f̃l and neutralino χ̃0
i (m = 1, 2, 3, l = 1, .., 6, i = 1, .., 5). We also require the

neutralino-chargino-H± couplings C
L/R

χ̃0
i χ̃

±
mH± and neutralino-chargino-W couplings C

L/R

χ̃0
i χ̃

±
mW

(i = 1, .., 5, m = 1, 2) with an ingoing chargino. They were taken from [63].

The contributions from the sfermions read

A(f̃) =
∑

f=U,D,L

6∑
l=1

3∑
m=1

eQf

16π2
[ (G.45a)
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∗)
]
,

B(f̃) = A(f̃)(GfL ↔ GfR) , (G.45b)

C(f̃) =
∑

f=U,D,L

6∑
l=1

3∑
m=1

eQf

8π2(m2
χ̃0
i
−m2

χ̃0
j
)

[ (G.45c)
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+
(
mχ̃0

i
GfL

mli(G
fL
mlj)

∗ + mχ̃0
j
GfL

mlj(G
fL
mli)

∗ −mχ̃0
i
GfR

mlj(G
fR
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j
GfR

mli(G
fR
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∗
)]

,

D(f̃) = C(f̃)(GfL ↔ GfR) , (G.45d)

where we sum over up-type (U) and down-type (D) quarks as well as charged leptons (L)

with fractional charges Qf . The B(f̃) and D(f̃) coefficients are obtained from the A(f̃) and

C(f̃) coefficients by interchanging the left- and right-chiral couplings GfL/fR .

The contribution involving the charged Higgs, H±, can be obtained from the sfermion con-
tributions by using the replacements

A(H±) = A(f̃)(mf → mχ̃± , mf̃ → mH± , GfL/R → C
L/R
χ̃0χ̃±H±) , (G.46)

i.e. replacing the fermion mass with the chargino mass, the sfermion mass with the charged
Higgs mass and the fermion-sfermion-neutralino couplings with the chargino-neutralino-H±

couplings. This is true for all coefficients A, B, C and D. Additionally, the sums over the
running indices in the loop have to be adjusted accordingly.

The coefficients for the contributions involving charginos and W bosons are given by

A(W ) =
e

8π2
[ (G.47a)
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,

B(W ) = A(W )(CL ↔ CR) , (G.47b)
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,

D(W ) = C(W )(CL ↔ CR) . (G.47d)

The B(W ) and D(W ) coefficients are obtained from the A(W ) and C(W ) coefficients by inter-
changing the left- and right-chiral couplings CL/R. As another remark, one has to be careful
with the Goldstone boson (G±) contributions. We refer to [305] for more details.

To obtain the decay width, the amplitude in Eq. (G.43) has to be squared and then Eq. (5.1a)
to be used.
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[80] Margarete Mühlleitner et al. “Two-loop contributions of the order O (αtαs) to the
masses of the Higgs bosons in the CP-violating NMSSM”. In: JHEP 05 (2015), p. 128.
doi: 10.1007/JHEP05(2015)128. arXiv: 1412.0918 [hep-ph].

[81] Thi Nhung Dao et al. “Two-loop O(α2
t ) corrections to the neutral Higgs boson masses

in the CP-violating NMSSM”. In: Journal of High Energy Physics 2019.8 (Aug. 2019).
issn: 1029-8479. doi: 10.1007/jhep08(2019)114.

[82] Thi Nhung Dao et al. “Two-loop O((αt + αλ + ακ)2) corrections to the Higgs boson
masses in the CP-violating NMSSM”. In: JHEP 09 (2021), p. 193. doi: 10.1007/
JHEP09(2021)193. arXiv: 2106.06990 [hep-ph].
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