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A B S T R A C T   

Predicting the environmental impact of climate change in extremely sensitive areas, like western Iberia, requires 
an understanding of the long-term interactions between climate and vegetation. Here we present a novel high- 
temporal resolution multiproxy analysis, including plant-wax n-alkane isotope data, pollen analysis, macro-
charcoal identification, chironomid and diatom records of sediments from a mountain lake in central Portugal. 
We examined the evolution of the Atlantic and Mediterranean climate influences over the last two millennia, 
exploring their connection with major atmospheric patterns and impacts on the climatic signal and vegetation 
dynamics in this understudied region. During the Roman Period (RP; ca. -200 – 500 AD), the study area was 
characterized by grass dominance, with high temperatures indicated by chironomid composition and micro-
charcoal content. The increase in plant-wax δ2H values during this period suggests a shift from wet to dry 
conditions. The Early Middle Ages (EMA; ca. 500–900 AD) were characterized by colder and a transition to 
wetter conditions, as indicated by the vegetation and plant-wax n-alkane isotope data. The Medieval Climate 
Anomaly (MCA; ca. 900–1300 AD) was generally warm, with a short initial lake level drop. This period exhibits 
the maximum expansion of the Mediterranean forest over the last 2 ka and possibly proximal moisture sources. 
During the Little Ice Age (LIA; 1300–1850 AD), a reduction of the Mediterranean forest and a strong depletion of 
plant-wax δ2H values suggest cold and wet conditions with strong influence of remote Atlantic moisture, with the 
coldest and wettest phase of the last 2 ka detected between 1550 and 1900 AD. The post-LIA period, from 1900 
AD onwards, shows a change to the present warmer and drier conditions, in a highly anthropized landscape. We 
also demonstrate that major changes in climate have influenced vegetation patterns, with these changes mainly 
controlled by large-scale atmospheric dynamics. This underscores the sensitivity of western Iberian ecosystems to 
climate shifts, enriches the current regional understanding of climate-vegetation interplay, and offers valuable 
insights for future climate change projections.  
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1. Introduction 

The Iberian Peninsula (IP) is a region of particular interest for 
studying present and past climate dynamics (Lionello, 2012). Located at 
the convergence of temperate and tropical climate systems, the regional 
climate is characterized by a complex orography and the influence of the 
North Atlantic Ocean and Mediterranean Sea. Winter rainfall, largely 
controlled by Hadley Circulation dynamics (i.e., tropical atmospheric 
circulation with air rising near the equator, descending in the subtropics, 
and returning equatorward near the surface) and the associated Azores 
High —the southern node of the North Atlantic Oscillation (NAO; Hur-
rell, 1995; Trigo et al., 2004)— plays a critical role in the regional 
ecological and economic well-being. Future climate projections indicate 
an amplification of the Hadley Circulation cell, leading to the expansion 
of the Azores High and the northward displacement of mid-latitude 
storm tracks and the associated jet stream. These changes are expected 
to result in a projected 10–20 % decline in winter precipitation by the 
end of the twenty-first century (Cresswell-Clay et al., 2022), making the 
IP one of the most vulnerable regions in Europe to ongoing global 
warming (Bindi and Olesen, 2011; Lionello, 2012). However, instru-
mental datasets are too short to include decadal-to-centennial trends 
and cycles, making difficult predictions at these timescales. Conse-
quently, proxy-based reconstructions emerge as the most plausible so-
lution to overcome this issue, being the common era (i.e., past 2 ka) a 
well-known period. Numerous studies have identified five significant 
climatic periods spanning the past two millennia in Europe: the Roman 
Period (RP; ca. -200 – 500 AD), the Early Middle Ages (EMA; ca. 
500–900 AD), the Medieval Climate Anomaly (MCA; ca. 900–1300 AD), 
the Little Ice Age (LIA; ca. 1300–1850 AD), and the Industrial Era until 
today (1850 AD – Present) (e.g., Abrantes et al., 2017; Büntgen et al., 
2021; Sánchez-López et al., 2016). The study of these periods offers 
invaluable insights into the sensitivity of Iberian ecosystems to changes 
in temperature, precipitation patterns, and atmospheric circulation dy-
namics. A number of previous studies have attributed climate variability 
primarily to fluctuations in the NAO and its impact (Morellón et al., 
2011; Moreno et al., 2012), but more recent studies also suggest that 
other climate modes, such as the East Atlantic (EA) and Scandinavian 
(SCA) patterns also significantly influence climate variables in the IP 
(Abrantes et al., 2017; Mellado-Cano et al., 2019; Sánchez-López et al., 
2016; Toney et al., 2020). However, our understanding of the major 
climate changes over the past 2 ka in the Atlantic region of the IP re-
mains limited (Thatcher et al., 2020), particularly within the zone where 
the Eurosiberian and Mediterranean bioclimatic regions transition. 
Therefore, Serra da Estrela Mountain can provide valuable insights into 
the extent of Atlantic influence in the past climate, in both regional 
vegetation dynamics and continental climate. 

To address this gap, we reconstruct major vegetation and climate 
changes over the last ca. 2 ka at decadal-to-centennial timescales in the 
western IP. This reconstruction employed a multiproxy approach, 
including the relative abundance and compound-specific stable isotope 
composition of plant-wax n-alkanes (δ13Cn-alk and δ2Hn-alk values), along 
with pollen, macrocharcoal, chironomid and diatom analyses of Lake 
Peixão, an alpine lake in central Portugal. Our results offer a more in- 
depth understanding of climatic shifts in the western IP, providing 
new insights into the adaptive responses of alpine ecosystems to climatic 
variability in a region influenced by Mediterranean and Atlantic 
interactions. 

2. Study site 

2.1. Serra da Estrela 

Serra da Estrela Mountain is located in the westernmost part of the 
Iberian Central Range and is the highest mountain in continental 
Portugal (ca. 1993 m above sea level). The mountain hosts different and 
unique glacial features dating back to the Last Glacial Maximum (van 

der Knaap and van Leeuwen, 1997; Vieira, 2008; Vieira and Nieu-
wendam, 2020) and has recently been recognized as Estrela UNESCO 
Global Geopark. 

Stretching in a southwest-northeast direction, Serra da Estrela acts as 
an important condensation barrier to the moisture-rich westerly winds, 
resulting in a complex interplay between Atlantic and Mediterranean 
climate influences (Marques et al., 2013). Due to the orographic effect 
and slope orientation, precipitation is higher and more frequent on the 
northwest slopes − influenced by the Atlantic − compared to the drier 
south and southeast façades, which experience a more continental and 
typical hot Mediterranean climate (Espinha Marques et al., 2011; Vieira, 
2008). According to the vegetation-based Köppen-Geiger climate clas-
sification, the southeast side of Serra da Estela Mountain is characterized 
by a hot-summer Mediterranean (Csa) type, whereas the northwest side 
features a mild-summer Mediterranean (Csb) climate (for further details 
on the climate classification see Cui et al., 2021) (Fig. 1 A). 

The precipitation regime in the region displays the typical bi- 
seasonal or interannual pattern of the western IP, where the rainy sea-
son usually lasts from October to April. This winter precipitation is 
mostly Atlantic-sourced (Carreira et al., 2009; Cortesi et al., 2013; 
Serrano et al., 1999) and highly influenced by the NAO (Ulbrich et al., 
1999; Trigo et al., 2004). Historical climate data for the region 
(1971–2000) [see http://portaldoclima.pt/en (Accessed March 29, 
2022)] reveals distinct seasonal variations. The warmest and driest 
months are July and August, with average temperatures around 20 ◦C 
and just 17 mm of rainfall. Conversely, December and January are the 
coldest and wettest months, with average temperatures of approxi-
mately 5 ◦C and significantly higher precipitation (150 mm) (Carreira 
et al., 2009, 2011). In recent decades, precipitation in Serra da Estrela 
mostly falls in the form of rain during autumn and spring, with snow 
often restricted to high altitudes during the colder winter months, when 
mean air temperatures typically hover around or below 0 ◦C (Mora, 
2010). Mean annual air temperatures in the area usually remain below 
7 ◦C, with even lower temperatures in the vicinity of the summit 
(Espinha Marques et al., 2011). 

The combination of its climatic and geographic characteristics makes 
Serra da Estrela an exceptional and highly diverse region in both fauna 
and flora. It represents the largest natural conservation area in Portugal 
(Serra da Estrela Natural Park) and is recognized as an important Eu-
ropean biodiversity hotspot (Jansen, 2011). 

2.2. Lake settings 

Lake Peixão (40◦20′35″ N, 7◦36′19″ W) is a small (0.015 km2), sub-
circular alpine lake (176 m long and up to 138 m wide; 1677 m a.s.l.) 
located near the highest plateau of Serra da Estrela Mountain (Fig. 1 A). 
The origin of Lake Peixão results from the retreat of glaciers from the 
Serra da Estrela plateaus that occurred ca. 14.7 ± 0.32 cal ka BP 
(Hernández et al., 2023; Moreno et al., 2023). 

Today, the lake is characterized by monomictic, oligotrophic, and 
slightly acidic waters (pH ~ 5.8) with a maximum depth of 5 m (Boavida 
and Gliwicz, 1996; Hernández et al., 2023). The catchment of the lake is 
constrained by steep granitic rocks, covering an area of 0.30 km2. A 
drainage network composed of a few small ephemeral streams drains 
into the lake, and the lake outlet points to the south, allowing water to 
drain to the Candieira valley (Fig. 1 B) (Santos et al., 2022). 

The lake surroundings are characterized by scarce and poorly 
developed soils, featuring an oro-Mediterranean vegetation cover 
composed of heathlands and grasslands. This vegetation includes shrub 
forms dominated by species of Erica, Juniperus, Genista, Cytisus, and 
Calluna vulgaris along with grasses like Agrostis delicatula and Nardus 
stricta (Connor et al., 2021; Sánchez-Mata et al., 2017; Santos et al., 
2022). Other herb species such as Potentilla erecta, Pedicularis sylvatica s. 
l., Festuca rubra s.l., Carex echinata and Viola palustris subsp. palustris are 
also present in the area (Molina, 2017). The lake margins exhibit a ring 
of a narrow littoral zone (2–3 m) and a shallow platform to the 
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northwest (Fig. 1 B), with aquatic vegetation like Antinoria-Ranunculus, 
Junco-Sphagnetum, Carex nigra (L.), and Juncus effusus (L.) (Boavida and 
Gliwicz, 1996). 

The contemporary fire regime is predominantly influenced by 
human activities, although sporadic instances of lightning-induced 
natural fires are occasionally observed in Portuguese mountain ranges 
(Tedim et al., 2013; Benali et al., 2023). Over the past decade, wildfires 
in the Iberian Peninsula have evolved into increasingly complex phe-
nomena to manage. In many instances, they manifest as 6th generation 
fires, characterized by uncontrollable behavior that surpasses human 
suppression efforts and generates distinct atmospheric climate patterns 
(Benali et al., 2023; Campos et al., 2023). The major drivers for this 

change in fire regime are fuel accumulation under an increasingly 
warming dry season, especially in areas where human activities are 
frequent and therefore may trigger very large fires. 

2.3. Local and regional climate drivers 

The rainy season in the western IP is primarily influenced by the 
NAO during the winter season. The NAO is a large-scale atmospheric 
pattern characterized by an atmospheric pressure gradient between the 
Icelandic Low and the Azores High, impacting the strength and direction 
of moisture-rich westerly winds and storm tracks in Western Europe (e. 
g., Mellado-Cano et al., 2019; Trigo et al., 2004). The NAO index is 

Fig. 1. Study area. A: The red star marks the location of Lake Peixão in Serra da Estrela, Portugal (adapted from Santos et al., 2022); shaded areas indicate the 
Köppen climate classification (csa, csb, cfb). Yellow circles mark the location of marine records used for reconstructing the Sea Surface Anomaly (Abrantes et al., 
2017). The yellow star represents the location of the Cimera lacustrine record used to reconstruct the North Atlantic Oscillation index from the central Iberian 
Peninsula (NAOIP) (Hernández et al., 2020). B: Lake Peixão (modern setting 2019). The solid white line represents the limits of the watershed; and the dashed light 
red line outlines the shallow floodable area in a delta-like structure; the red star represents the location of the sediment coring site of PEX19-01. Sources: The 
bathymetric metadata in Fig. 1A is courtesy of the EMODnet Bathymetry portal. The digital elevation model and satellite imagery from Google Earth Pro. 
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derived from the difference in normalized sea level pressure between 
these two regions. For negative phases (NAO–), the atmospheric pressure 
gradients are less pronounced than for positive phases (NAO+). During a 
NAO– phase, storminess from the western Atlantic crosses the IP and 
western Mediterranean region, whereas during a NAO+ phase, the 
storminess is deflected further north, affecting central and northern 
Europe (Hurrell, 1995; Trigo et al., 2002; Wanner et al., 2001). 

However, the NAO is not the only large-scale pattern influencing 
climate in western and central Iberia. Other modes, such as the EA or the 
SCA patterns also play an important role in the climate of the IP 
(Hernández et al., 2015; Trigo et al., 2008). The NAO modulation by the 
EA can cause relevant regional weather anomalies in precipitation and 
in the speed and direction of the wind (e.g., Comas-Bru and Hernández, 
2018; Mellado-Cano et al., 2019). Hernández et al. (2015) also high-
lighted that positive EA phases enhance winter precipitation and tem-
perature, and positive SCA phases intensifying precipitation and 
negative SCA phases strengthening temperature. 

3. Material and methods 

3.1. Sediment record and chronology 

We used the uppermost 149 cm of sediments from core PEX19-01, 
recovered from the maximum water depth area of the lake (ca. 5 m) 
in 2019, employing a UWITEC® Piston Corer with 60 mm wide PVC 
tubes. The whole sediment core is 8.5 m long and consists of homoge-
nous dark-brown sediment with varying amounts of silt and dispersed 
sand grains. 

The selected sedimentary section was sub-sampled for multiple an-
alyses, including plant-wax n-alkanes, pollen, macrocharcoal, chirono-
mids, and diatoms, using an adapted syringe of one cubic centimeter. 
Each sub-sample had a thickness of 1 cm and was labelled based on its 
top depth. 

The age-depth model is based on a Bayesian-based model approach 
(Bacon v. 2.5.7; Blaauw et al., 2018), incorporating four Accelerator 
Mass Spectrometry 14C measurements of pollen concentrate and the 
137Cs and 210Pb profiles extracted from the upper 10 cm of the sediments 
(Hernández et al., 2023 and Supplementary Material Table 1). Accord-
ing to this age-depth model, the studied section covers the last 2.2 ka and 
based on mean sedimentation rate, it can be divided into four sections. 
From 149 to 122 cm depth, the mean sedimentation rate is 1.4 mm/year; 
from 121 to 78 cm depth there is a decrease to 0.89 mm/year; from 77 to 
12 cm the record shows the lowest sedimentation rate (0.48 mm/year); 
and the uppermost part (11 cm) displays a return to higher rates, with a 
mean value of 0.87 mm/year. 

3.2. Plant-wax n-alkanes extraction and analyses 

Sedimentary plant waxes were used to infer past vegetation and 
climate changes in the study area for the last 2 ka. We sub-sampled a 
cubic centimeter sample every 2 cm, resulting in 60 sediment samples, 
each weighing between 0.4 and 0.6 g (dry weight). These samples were 
then homogenized, and 10 μl of an internal standard solution 
(comprising hexatriacontane, tetracontane, and nonadecanol-1-ol) was 
added. Samples were subjected to ultrasonic bath extraction (15 min) 
three times using 8 ml of dichloromethane (≥99.8%) at room temper-
ature (21 ◦C) at the BioGeoChemistry Lab, IPMA in Lisbon, Portugal (see 
Santos, 2021). The resulting total lipid extract (TLE) was hydrolyzed 
with potassium hydroxide in methanol (KOH/MeOH 6 %, at room 
temperature overnight). The resulting neutral fraction was extracted 
using n-hexane (≥98.0%) and subsequently cleaned with ultrapure 
water. The apolar fraction was obtained by eluting 1 ml of the TLE over 
5 cm of activated (120 ◦C) silica gel (0.040–0.063 mesh) in a 2 ml 
Pasteur pipette and purified with ca. 1.2 g of AgNO3-silica gel using 
n-hexane as eluent. The n-alkane concentrations were analyzed with a 
Varian gas chromatograph Model 3800 (GC-FID) equipped with a 

septum programmable injector and a flame ionization detector. The 
concentrations of each compound were determined using hexa-
triacontane as internal standard (Villanueva et al., 1997). 

We calculated commonly applied n-alkane indices to characterize the 
n-alkane distributions, including the average chain length (ACL, Poynter 
et al., 1989), the carbon preference index (CPI, Bray and Evans, 1961; 
Marzi et al., 1993), and the proportion of aquatic plants (Paq, Ficken 
et al., 2000). These indices are used to infer general vegetation sources, 
degradation status, and aquatic inputs, respectively (see Supplementary 
Fig. 1). 

Compound-specific isotope analyses of plant-wax n-alkanes (δ13Cn-alk 
and δ2Hn-alk) were conducted using gas chromatography-isotope ratio 
mass spectrometry (GC-IRMS) at MARUM - Center for Marine Environ-
mental Science, University of Bremen (Germany). The δ13Cn-alk analysis 
were measured with a Thermo Trace GC Ultra coupled to a Finnigan 
MAT 252 mass spectrometer. The n-alkane extracts were injected in 
splitless mode before being oxidized to CO2 by a combustion reactor at 
1000 ◦C. The instrument was equipped with an HP-5ms capillary col-
umn (30 m × 0.25 mm × 0.25 μm film coating); helium was the carrier 
gas (purity 99.999%) at a constant flow of 1.5 ml/min. The produced 
CO2 was then injected into the mass spectrometer for analysis. The 
injector temperature was maintained at a constant 250 ◦C, while the GC 
oven temperature program involved an initial hold at 120 ◦C for 3 min, 
followed by a ramp to 320 ◦C at a rate of 5 ◦C/min and a final hold for 15 
min. Calibration of δ13C values for individual compounds was achieved 
by injecting pulses of CO2 from an external reference gas at the begin-
ning and end of each analysis. The reported δ13C values are expressed in 
per mil (‰) relative to the Vienna Pee Dee Belemnite (VPDB) standard 
and represent the average of duplicate runs whenever the amount of n- 
alkane allowed for multiple analyses. A standard deviation of less than 
0.5 ‰ was maintained for these duplicate measurements. 

For δ2Hn-alk, a Thermo Trace GC was employed, coupled to a Thermo 
Fisher MAT 253 IRMS via a pyrolysis reactor operating at 1420 ◦C. This 
setup utilized an HP-5ms column with 30 m × 0.25 mm x 0.10 μm film 
coating. The GC oven program employed for δ2H analysis followed the 
conditions used for δ13C analysis. To ensure measurement accuracy, 
standards of known isotope composition were injected after every six 
samples, and the H3+ factor was determined daily using H2 reference 
gas (99.999% H2 as carrier gas). Calibration of δ2H values was achieved 
against an external H2 reference gas, with the results reported in per mil 
(‰) relative to the Vienna Standard Mean Ocean Water (VSMOW) 
standard. Duplicate runs were performed whenever n-alkane quantities 
permitted, and the reported values represent the mean with a standard 
deviation of less than 3‰. 

3.3. Pollen analyses 

To obtain a comprehensive understanding of local-to-regional past 
vegetation changes and support our plant-wax signal, we analyzed pollen 
samples at lower resolution for the last 2.2 ka, resulting in a total of 10 
pollen samples. Sample preparation, conducted at Bordeaux University 
(France), followed the standard protocol for marine samples detailed by 
Oliveira et al. (2017). The pollen extraction involved coarse sieving (150 
μm mesh), consecutive treatments with cold HCl and cold HF of 
increasing strength, micro sieving (10 μm mesh), and slide preparation in 
a glycerol mobile medium. Known quantities of Lycopodium spores in 
tablet form were added to permit the estimation of pollen concentrations. 
Pollen analysis was carried out under a Nikon light microscope at ×500 
and ×1000 (oil immersion) magnification, and identification followed 
European pollen atlases (Moore et al., 1991; Reille, 1992). Each pollen 
sample comprised 29 to 39 pollen morphotypes and reached a minimum 
of 350 pollen grains, excluding Cedrus, aquatics, and spores, to ensure a 
reliable representation of the vegetation community. Pollen percentages 
were calculated against the main sum of terrestrial grains, while aquatic 
pollen and spores’ percentages were estimated using the total sum (pollen 
+ spores + indeterminable + unknowns). 
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3.4. Macrocharcoal 

Sedimentary macrocharcoal particles (charcoal particles >150 μm) 
were used as fire burnt biomass proxy (Clark and Royall, 1996; Marlon 
et al., 2012). The macrocharcoal has been proven to reflect local fire 
activity, i.e., at the basin scale (Higuera et al., 2010), and therefore 
might be related to biomass burning close to the lake. Over the last few 
years, innovative modelling approaches have defied the 150 μm 
assumption local representation (Adolf et al., 2018), however the same 
study conclude that it can still be used as a biomass burning proxy, 
especially in fuel-limited environments as mountains. The charcoal 
extraction of 37 samples in this study involved a chemical implied 
treatment of 1 cm3 of sample. We deflocculated charcoal samples in 
oxygen peroxide (30 % H2O2) for 24h, sieved at 150 μm mesh and 
retrieved particles were counted on a binocular microscope ( × 40). 
Charcoal particle identification was accomplished according to existing 
literature, counting opaque, angular particles (Clark and Royall, 1996; 
Finsinger and Tinner, 2005; Tinner and Hu, 2003; Turner et al., 2004). 
Counted particles were transformed to influx (particles cm− 2 yr− 1) using 
the existing chronology (Hernández et al., 2023) and referred to as 
charcoal accumulation rate or CHAR. 

3.5. Chironomids 

For the chironomid analyses, we used 39 samples initially treated 
with 10 % KOH, heated to 70 ◦C for 5 min, sieved, and separated into 
two size fractions (90 and 212 μm). Head capsules were then sorted and 
viewed under a stereomicroscope (40× magnification – Zeiss Stemi) and 
mounted with Entellan® mounting medium for identification at 100x – 
400× magnification (LEICA DM2500). Identification was mainly based 
on mentum characteristics of species morphotypes, at the lowest taxo-
nomic resolution, using the taxonomic nomenclature of Brooks et al. 
(2007). The relative abundance of each taxon was presented as a per-
centage of the total abundance in each sample. The structure of 
chironomid assemblage and similarities between samples were analyzed 
using Principal Coordinates Ordination (PCO) with Bray-Curtis simi-
larity. Only the PCO component related to summer temperature (PCO2) 
is shown here (see Moreno et al., 2023). 

3.6. Diatoms frustules 

We used 38 samples to determine the ratio of planktonic vs benthic 
diatoms to infer possible changes in lake water level, water stratification 
patterns, and/or eutrophic conditions. These analyses were performed 
at the Faculty of Sciences of the University of A Coruña, where ca. 0.3 g 
of dry sediment were cleaned with 30 % hydrogen peroxide (H2O2) and 
rinsed with distilled water. At least 300 diatom frustules were counted 
under 100× magnification to determine the relative percentage of 
planktonic vs. benthic diatoms. 

3.7. Data analyses 

We employed a Bayesian framework for a multi-source mixing 
model, following the methodology by Yang and Bowen (2022). This 
framework incorporates the BUGS language (Bayesian inference Using 
Gibbs Sampling) (Lunn et al., 2012), in conjunction with “rjags” package 
for R software and the standalone JAGS (Just Another Gibbs Sampler) 
encoder (Plummer, 2012). This approach uses priors (prior knowledge) 
that include user-defined source groups and their associated parametric 
relative distributions and δ13C of dominant n-alkanes chains. The mixing 
process involves newly defined mixing fractions, such as fractional leaf 
mass contribution (FLMC) that allowed us to estimate past local dy-
namics of two domain vegetation groups or endmembers (grasses vs. 
shrubs). This reconstruction was based (prior knowledge) on the most 
abundant plant waxes of modern grasses and shrubs in Lake Peixão 
catchment (Santos et al., 2022). For that, our vegetation endmember 

sources relied on the abundance of the dominant n-C27, n-C29, and n-C31 
n-alkanes and their carbon respective isotope values in Lake Peixão 
sediments. 

We used Generalized Additive Models (GAMs) splines of n-alkane 
isotope records to assess long-term trends (centennial timescale) and to 
identify important changes over time (Simpson, 2018). For this, we used 
restricted maximum likelihood estimations (RMLE) and computed the 
first derivatives using the method of finite differences. Fitted values of 
the first derivative trend were obtained from each model for a grid of 
200 equally spaced time points over time (last 2 ka), and we identified 
the periods along the fitted trend where the slope, the rate of change in 
the trend, was statistically significantly different from 0 (see Curtis and 
Simpson, 2014 for methods details). This analysis was computed using 
the mgcv (version 1.8–41; Wood, 2017) and gratia packages (version 
0.8.1.11; Simpson, 2024) from the R software. 

4. Results and interpretation 

4.1. Plant-wax n-alkanes 

Lipid analyses of the sediments, with a mean resolution of 30 ± 10 
years between successive samples, revealed a pronounced odd-over- 
even carbon predominance in long-chain n-alkanes, specifically within 
the range of n-C27 to n-C35. The abundance of these odd long-chain n- 
alkanes ranged from 60 to 150 μg/g of dry sediment) (Supplementary 
Fig. 1 a). These results point to a terrestrial vegetation origin, with 
aquatic vegetation playing a minor role. 

The enclosed morphology of Lake Peixão, its oligotrophic nature, 
and the sparse vegetation around it make it clear that plant waxes are 
derived from the local vegetation cover (Santos et al., 2022). The 
ACL27-33 and CPI27-33 values remain relatively stable and elevated, 
ranging from 30 to 30.5 and 7.5 to 14.5, respectively (Supplementary 
Fig. 2 b and c). CPI27-33 values exhibit a marked decline from the 
maximum to minimum values, between ca. 1740 ± 80 AD and the 
present, which could indicate increased soil degradation resulting from 
a combination of anthropogenic impact (e.g., cattle farming and land 
use), increased wetness and higher temperatures in the post-LIA (Pan-
cost and Boot, 2004). Increased bacterial activity and pollution from 
these activities can lead to a decrease in CPI values in the uppermost 
sediments (Ortiz et al., 2013; Xie et al., 2004). While this observation 
might suggest human influence such as grazing and other land use 
changes, due to the current data and the nature of CPI we have 
considered that CPI is not robust enough to draw conclusions about 
anthropogenic impacts on the catchment area. The Paq record displays 
generally low values ranging from ca. 0.1 to 0.2 (Supplementary Fig. 1 
d), suggesting low contributions of waxes from aquatic plants. 

The δ13C values of n-C29 (δ13Cn-C29) in lake Lake Peixão sediments 
(Fig. 2 a; Supplementary Fig. 1 e) reinforce terrestrial vegetation as a 
main source of n-alkane plant waxes. This long-chain n-alkane, typically 
present in modern plant waxes, is abundantly produced by both shrubs 
and grasses in the study area (Santos et al., 2022). Besides, n-C29 pro-
vides a more holistic overview of the n-alkane composition of the 
terrestrial vegetation cover in the Lake Peixão sediments compared to 
n-C31, which may be biased towards specific species like Erica. In this 
context, higher δ13Cn-C29 values in Lake Peixão sediments are generally 
associated with shrub forms in Lake Peixão catchment, while lower 
δ13Cn-C29 values are associated with the grass-dominant source in Serra 
da Estrela (Santos et al., 2022). Nonetheless, from a vegetation source 
perspective we acknowledge that low δ13Cn-C29 record during a wet 
phase could be attributed to two potential, non-mutually exclusive, 
mechanisms. First, a shift towards shrub (heathland) communities, 
which tend to exhibit higher δ13C values, while grasses show lower δ13C 
values. Second, it could be linked to a decrease in water use efficiency of 
plants. Increased stomatal opening associated with wetter conditions 
can lead to higher 13C fractionation, resulting in a decrease in the δ13C 
values of plant-wax n-alkanes (Farquhar et al., 1989; Hou et al., 2007). 
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Importantly, grasses also yield lower δ2Hn-C29 values than shrubs at 
this site (Fig. 2 b), adding another layer of differentiation between these 
vegetation types in their terrestrial vegetation source to the lake sedi-
ments (Santos et al., 2022). While FLMC analysis (Fig. 3 c) is not entirely 
independent from δ13Cn-alk data, it combines the isotope signatures and 
n-alkane abundances of dominant plant-wax chains (Fig. 2 a) providing 

a semi-quantitative estimate of high grass-to-shrub ratio during periods 
predominantly characterized by low δ13Cn-C29 (Fig. 2 a). 

The δ13Cn-alk records show a notable dissimilarity between mid- and 
long-chain n-alkanes (Supplementary Fig. 1 e). The δ13C values of n-C25 
(δ13Cn-C25) range between − 33.9 ‰ and − 31.1 ‰, with an average value 
of − 32.4 ± 0.6 ‰, while δ13Cn-C29 values are lower and more stable, 

Fig. 2. – Multi-proxy data from the upper 149 cm of Pex19-01 sediment record covering the last 2.2 ka. a) δ13C of n-C25 and n-C27; b) δ2H of n-C25 and n-C27 covering 
the last 2 ka; c) Pollen relative percentages, MF –Mediterranean forest including pioneer trees, principally Betula (birch), Pinus (50% of the total pollen counts); d) 
microcharcoal; e) Second component of Principle Coordinates Ordination (PCO2) of chironomid assemblage, f) Ratio between planktonic and benthic (P/B) diatoms 
frustules, g) Sedimentation rate (SR) based on PEX19-01 depth-age model by Hernández et al. (2023). Dashed lines represent mean values. RP – Roman Period; EMA 
– Early Middle Ages; MCA – Medieval Climate Anomaly; LIA – Little Ice Age. 
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ranging from − 33.6 ‰ to − 32.7 ‰ (mean = − 33.1 ± 0.3 ‰) (Figs. 2 a 
and Fig. 3 b). There are two main intervals with evident offsets of 1 ‰ 
and 2 ‰ between δ13Cn-C25 and δ13Cn-C29 values, occurring between 550 
± 90 AD to 830 ± 140 AD and 1030 ± 160 AD to 1700 ± 100 AD, 
respectively (Fig. 3 a). High δ13C values in mid-chain n-alkanes are 

commonly linked to aquatic plants (e.g., Aichner et al., 2018, 2010). In 
the catchment of Lake Peixão, Juncus type and terrestrial plants, 
including Cytisus and Agrostis, can also produce significant amounts of 
n-C25 (Santos et al., 2022). We thus interpret a larger offset between 
n-C25 and n-C29 δ13C values as indicative of an increased contribution of 

Fig. 3. Data comparison. Multidecadal trends in the upper 121 cm Pex19-01 sediment record and regional studies covering the last 2 ka; a) and b) GAM splines of 
δ13C and δ2H of n-alkane records, where the dashed lines correspond to pointwise 95% confidence intervals on the fitted smoothers, and thick sections indicate 
significant changes in the time series; arrows display the two main offsets between n-C25 and n-C27; c) Estimates of fractional leaf mass contribution (FLMC) (grasses 
vs. shrubs) based on leaf n-alkanes data (relative abundances and δ13C values) of dominant vegetation cover in modern settings (Santos et al., 2022); solid lines 
represent the maximum a posteriori estimation and dashed lines represent the 89% highest density interval of the posterior distributions; d) Conceptual model of past 
climate viability in Lake Peixão based on multiproxy analysis (this study); e) Composite δ18O record of Buraca Gloriosa (BG) speleothem (from Thatcher et al., 2020), 
thick curve represents a loess smoothing curve with a span degree of 0.2; f) North Atlantic Oscillation index reconstruction from the central Iberian Peninsula (NAOIP) 
(Hernández et al., 2020); g) Western Iberia Sea Surface Temperature (STT) stack (Abrantes et al., 2017), thick curve represents a loess smoothing curve with a span 
degree of 0.2. RP – Roman Period; EMA – Early Middle Ages; MCA – Medieval Climate Anomaly; LIA – Little Ice Age. 
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n-C25 from aquatic plants during these periods, with n-C29 in Lake Peixão 
sediments mainly sourced from terrestrial plants, and n-C25 representing 
a mixed signal from terrestrial and aquatic plants. 

The δ2H records show some intervals with differences between n- 
alkane homologues (Fig. 2 a, b, and Supplementary Fig. 1 f). The δ2H 
values of n-C25 (δ2Hn-C25) remain mostly constant, ranging from − 168 ‰ 
to − 153 ‰ (mean = − 161 ± 3 ‰), whereas δ2H values of nC29 (δ2Hn- 

C29) values are lower, ranging from − 185 to − 163 ‰ (mean = − 173 ± 7 
‰) (Fig. 2 b). The δ2Hn-C29 values increase from ca. 0 ± 50 AD to 300 ±
70 AD and then remain rather stable until the interval encompassing 
1450 ± 120 AD to 1740 ± 80 AD, where they decrease. Under a 
consistent vegetation source, changes in δ2Hn-C29 values are usually 
associated with variations in local precipitation δ2H values (Sachse 
et al., 2012), which are mainly dependent on rainfall amount/intensity, 
condensation temperature, and isotope signatures of moisture sources 
(Bowen et al., 2019; Cheddadi et al., 2021; García-Alix et al., 2021). In 
the study area low (high) δ2H values can be linked to a combination of 
high (low) precipitation amount and remote (local) atmospheric mois-
ture sources (see Santos et al., 2022). An additional secondary influence 
on δ2Hn-C29 values can be due to vegetation changes, with grasses in the 
catchment area having significantly lower values than shrubs (Santos 
et al., 2022), consistent with global observations (Kahmen et al., 2013; 
Liu and An, 2019). However, the FLMC analyses indicate relatively 
stable inputs of n-alkanes from grasses relative to shrubs throughout 
most of the Lake Peixão record, including the large decline in δ2Hn-C29 
values (ca. 20 ‰) during the LIA, and we thus interpret these changes as 
shifts in precipitation δ2H values. 

4.2. Pollen record and macrocharcoal 

The pollen record has a time resolution of 260 ± 84 years between 
samples, while the macrocharcoal record (biomass burning) has an 
average of 60 ± 20 years resolution. Pollen analyses revealed a consis-
tent presence of oro-Mediterranean vegetation, dominated by Poaceae 
(grasses), heathlands (Ericaceae and Calluna-type) and Mediterranean 
forest (MF) (Fig. 2 c). The MF is mainly composed of Betula and Quercus 
deciduous, but also includes some thermomediterranean to supra-
mediterranean taxa such as Acer, Alnus, Corylus, Cupressaceae, Fraxinus 
excelsior type, Ulmus, Quercus evergreen type, Quercus suber type, Cistus, 
Coriaria, Myrtifolia, Olea, Phillyrea, and Pistacia. This vegetation cover 
usually expands in the IP when the climate is warm/temperate and 
humid (e.g., Chabaud et al., 2014; Naughton et al., 2019) The heath-
lands are represented by both Ericaceae and Calluna and usually develop 
under moist conditions, albeit relatively drier than those of MF expan-
sion (e.g., Chabaud et al., 2014; Fagúndez and Pontevedra-Pombal, 
2022). In contrast, grasses typically expand under relatively dry condi-
tions (e.g., Carrión et al., 2010, 2001; Jalut et al., 2000; Naughton et al., 
2016). Although human activities have been evident in the nearby 
Charco da Candieira lake for the last 2 ka, as indicated by the presence of 
Castanea (chestnut) in the pollen record, they do not mask the natural 
vegetation signal (Connor et al., 2012). 

The comparison between the Lake Peixão pollen record and macro-
charcoal concentrations profile from the same core allow us to distin-
guish several intervals: From − 180 ± 70 AD to 0 ± 50 AD the vegetation 
cover in Lake Peixão suggest an evenly distribution of heathlands, MF 
and grasses, while showing highest macrocharcoal concentrations of 38 
± 11 particles/cm2yr. The burning pattern between ca − 200 and 100 AD 
seems to be connected to the existence of heathlands that have evi-
denced in other mountain areas of the world to have long-term clear 
resilient responses to fire through post fire strategies as resprouting 
(Gil-Romera et al., 2019; Schwörer et al, nd). The burning biomass at 
that time would then be more linked to woody vegetation wildfires that, 
under a fire conducive climate, i.e., a dry, warm season, would trigger 
larger, more intense fires. From 0 ± 50 AD to 450 ± 50 AD, grasses 
expanded (ca. 55%), and the relatively low abundances of heathlands 
and MF, suggesting a dry climate (Fig. 2 c). This period is distinguished 

by progressively lower fire activity (macrocharcoal concentrations of 20 
± 6 particles/cm2yr, Fig. 2d), probably due to a collapsing woody plant 
community that, therefore, would prevent large wildfires to happen, 
despite climate conditions may have facilitated burning to spread. The 
landscape change observed ca. 100 AD supports certain degree of sea-
sonality as fire activity is still present, while the forest tends to decline. 
We cannot discard that local human action would have facilitated the 
observed fires between − 200 and 450 AD, however there is no addi-
tional clear indicator of human activity on the vegetation assemblages 
supporting this alternative. 

From 450 ± 50 AD to 1460 ± 150 AD, MF witnessed a relative 
expansion in the region (increasing to 40%), primarily at the expense of 
grassland areas. This change suggests a shift towards relatively 
temperate/warm and moist environmental conditions. Although MF 
remained prevalent from 1460 ± 150 AD to the present, there was a 
notable decline in Betula, coupled with a progressive increase in 
heathlands (reaching up to 30%) (Fig. 2 c). This increase in heathlands 
suggest that climate remained relatively moist throughout the year 
(Fagúndez and Pontevedra-Pombal, 2022). The CHAR record consis-
tently showed low values, approximately 8 particles/cm2yr. However, 
an increase to around 18 particles/cm2yr was observed between 1880 ±
30 AD and the present day. This increase is likely linked to a significant 
expansion of Pinus, promoting biomass available for burning, and 
human-induced changes on landscape that can promote fire-prone 
conditions. 

4.3. Chironomid-based spring-summer temperatures 

The chironomid record has a temporal resolution of 60 ± 20 years 
and evidence of a total of 36 taxa belonging to four subfamilies, with the 
dominant Chironomus plumosus type constantly present throughout the 
record. However, the second-most dominant type, Chironomus anthra-
cinus type was mainly constrained between 1540 ± 130 AD to 700 ±
120 AD interval. The overall chironomid assemblage suggests that the 
lake persisted as relatively shallow and oligo-to mesotrophic throughout 
the studied interval, with PCO2 mainly explaining spring-summer tem-
perature-related variance (Fig. 2 e) (Moreno et al., 2023). The PCO2 
curve shows two main intervals where the values are generally below or 
very close to the record average of the studied section, the first ranging 
from 620 ± 100 AD to 1000 ± 155 AD (Fig. 2 e) and the second from 
1455 ± 130 AD to 1710 ± 90 AD. 

4.4. Planktonic vs. benthic diatoms (P/B) 

The diatom record of the studied section has a temporal resolution of 
60 ± 20 years. The diatom flora is dominated by planktonic forms, with 
the Aulacoseira being the most abundant genus. In contrast, benthic di-
atoms show higher diversity and are primarily represented by Eunotia, 
Pinnularia, and Gomphonema. Throughout most of the record, planktonic 
forms dominated, with P/B values ranging from 33 to 87% (Fig. 2 f). 
Between − 200 ± 80 AD to 400 ± 60 AD, the P/B value is ca. 60%, with 
short intervals of lower values around − 100 AD and 300 AD. After 400 
AD the P/B ratio increased to values around 65% that lasted until 700 ±
120 AD. This is followed by an interval where P/B values slightly drop 
and remain relatively constant around 60% until 1300 AD, followed by a 
short increase in P/B values. From 1290 ± 160 AD to 1630 ± 120 AD, 
the diatom values show a decrease in planktonic taxa, with P/B values 
dropping below 50%. The lowest value was recorded at 1630 ± 120 AD, 
however, from this time to the present, there was a pronounced increase 
in P/B values, reaching the highest value (ca. 85%) (Fig. 2 f). 

The P/B record of lake sediments can reflect a range of environ-
mental factors (e.g., Leira et al., 2009; Leira and Sabater, 2005; Pienitz 
et al., 1995; Scussolini et al., 2011). We consider the small size and 
shallow depth of the lake as critical factors. These characteristics make 
the lake more sensitive to climate changes due to reduced water volume 
and depth, which would otherwise buffer against temperature and 
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precipitation changes (Gerten and Adrian, 2001; Råman Vinnå et al., 
2021). As a result, the P/B ratio in a small lake such as Lake Peixão is 
likely to be responsive to climatic changes, with high (low) values 
usually linked with high (low) lake levels. This sensitivity is evidenced 
by the P/B responses to observed productivity and warming trends, 
stratification, and high sedimentation rates. In this study, we compare 
the P/B ratio with other proxy records to support the interpretations of 
the Lake Peixão dynamics (see Fig. 2). 

5. Discussion 

5.1. Vegetation and climate reconstruction over the last 2 ka 

5.1.1. ‘Roman Period’ (RP, ca. − 200 to 500 AD) 
The concurrent low δ13C values of n-C29 and n-C25 in Lake Peixão 

sediments point to a considerable contribution from grasses, or low 
water use efficiency (see Santos et al., 2022), to the n-alkane pool during 
the RP. This aligns with the high grass-to-shrub ratio in the FLMC and 
pollen data (Figs. 2 c and 3 c). Despite previous studies have associated 
the expansion of grasses in the IP with more arid conditions (e.g. Carrión 
et al., 2010, 2001; Jalut et al., 2000; Naughton et al., 2016), grasses and 
wet conditions also matches with the nowadays ecology in that partic-
ular area (Santos et al., 2022). Nonetheless, we acknowledge that plant 
waxes in the lake sediments can result not solely directly from vegeta-
tion but also pass through the soil layer with soil erosion and input into 
the lake a secondary source (Wiesenberg et al., 2004). This can lead to a 
smoothing effect in the recorded climatic signal. Therefore, the 
above-mentioned increase in the abundance of grasses from 0 ± 50 AD 
and increasing trend in δ2Hn-C29 values during this period might indicate 
a shift towards a drier RP climate with a declining influence of the 
remote Atlantic moisture source. Nonetheless, the timing of this change 
could be slightly delayed by the influence of reworked soil organic 
matter due to high run-off events, evidenced by high sedimentation rates 
(Fig. 2 g). 

The progressively declining forest would have resulted in a reducing 
intensity of wildfires compared to the previous period (− 200 to 100 AD) 
implying either smaller or less intense fires during this period (Fig. 2 b, 
d). These burning patterns, in possibly a mosaic landscape with reducing 
woody plant communities and expanding grasslands, would support 
drying condition, at least seasonally. The prevalence of these conditions 
is supported by the composite δ18O speleothem record of Buraca Glo-
riosa from central Portugal (Fig. 3 e) (Thatcher et al., 2020). Arid con-
ditions are reconstructed from several NW marine and continental 
records (e.g., Bernárdez et al., 2008; Jambrina-Enríquez et al., 2014), 
whereas moist conditions or fluctuating wet/dry cycles, are reported in 
other IP studies (Bartolomé et al., 2024; Corella et al., 2013; Gázquez 
et al., 2020; López-Avilés et al., 2021; Sánchez-López et al., 2016). 

Warm conditions during the RWP at Lake Peixão are evident from 
chironomid data, indicating positive spring-summer temperature 
anomalies (Fig. 2 e). Similar warm conditions have been reported in the 
alkenone-based Sea Surface Temperature (SST) Stack record of the 
western Iberian margin (Fig. 3 g) and various IP records (Desprat et al., 
2003; Fletcher et al., 2012; Martín-Chivelet et al., 2011; Thatcher et al., 
2020). 

The warm and increasingly drier climate of the RP contributed to a 
declining woody vegetation that combined with frequent and/or intense 
wildfires, may have promoted open vegetation landscapes, soil erosion, 
and intense runoff events likely due to snow melting in a warmer 
climate. This can support a strong climate contrast between wet and dry 
seasons during this period (Fig. 2 g). Furthermore, these climatic con-
ditions likely led to a decrease in the lake level shown by the P/B ratio. 

5.1.2. Early Medieval ages (EMA, ca. 500–900 AD) 
During this interval, the δ13Cn-C29 values slightly increase, reflecting 

the relative reduction of grasses in the vegetation cover or increase in 
the water use efficiency of plants in the catchment (Fig. 2 c; 3 a, c). The 

contraction of grasses is further supported by the decrease in the grass- 
to-shrub ratio and Poaceae percentages in the pollen diagram of Lake 
Peixão (Figs. 3 c and Fig. 2 c). The offset between the δ13Cn-C25 and 
δ13Cn-C29, detected during the EMA interval, with its maximum at the 
mid-EMA (ca. 650 AD), indicates the expansion of aquatic plants in the 
Lake Peixão (Fig. 3 a). The observed relative expansion of MF (Fig. 2 c) 
and the concurrent reduction in grasslands around Lake Peixão suggest 
precipitation distributed throughout the year (i.e., less seasonal). The 
substantial change in the forest cover in the region is consistent with 
findings from the Charco da Candieira (van der Knaap and Van Leeu-
wen, 1995; Connor et al., 2012). Additionally, a simultaneous change 
(decrease) in the wildfire regime (Fig. 3 d). 

Evidence of changes in precipitation patterns during this period is 
also found in the δ18O of Buraca Gloriosa speleothem record, in central 
Portugal (Fig. 3 e) (Thatcher et al., 2020). The increase in δ2Hn-C29 
values from the RP to the EMA is likely indicative of the significant shift 
in the hydroclimate with a change in the hydrological regime, a more 
proximal moisture source and possibly link to the expansion of shrub 
and nearshore aquatic plants (see Santos et al., 2022). This overall 
increased moisture availability from RP to EMA at Lake Peixão is similar 
to other records of the northwestern IP (e.g., Jambrina-Enríquez et al., 
2014; Álvarez et al., 2005; Desprat et al., 2003). 

Chironomid data indicate complex summer temperature patterns, 
with an initial rapid increase followed by a gradual cooling, reaching its 
lowest value around 800 AD (Fig. 2 e). Despite a slight decrease in 
temperatures post-mid EMA, forest cover did not significantly decline. 
The SST stack curve indicates only a modest mean decrease of 1 ◦C 
(Fig. 3 g) (Abrantes et al., 2017), insufficient to trigger a noticeable 
reduction in forest cover (Connor et al., 2012; Naughton et al., 2007). 
This pattern is consistent with other northwestern and central IP re-
cords, which also indicate a relatively homogenous pattern of colder 
conditions during the EMA (Álvarez et al., 2005; Desprat et al., 2003; Gil 
García et al., 2007; Jambrina-Enríquez et al., 2014; López-Merino et al., 
2009). 

5.1.3. Medieval climate anomaly (MCA, 900–1300 AD) 
The onset of the MCA (900–1000 AD) is characterized by a very low 

offset between δ13Cn-C25 and δ13Cn-C29 (Figs. 2 and 3 a). This indicates 
that during the transition between EMA and MCA, aquatic plants 
reduced significantly, while shrubs dominated over grasses (Figs. 2 and 
3 a). However, forested vegetation in the region is still dominated by 
MF, reflecting sufficient moisture availability. The δ2Hn-C29 record 
shows minimal variation during the MCA, suggesting low precipitation 
and stable hydroclimate seasonal patterns, proximal moisture sources 
and a strong resilience of terrestrial vegetation. 

An increase in chironomid-based summer temperatures marks the 
beginning of the MCA (Fig. 2 e), corroborated by similar trends in the 
western Iberian margin SST-Stack (Fig. 3 f). The elevated MF (Fig. 2 c) 
and the warming pattern, noted in several IP records (e.g., Martín-Chi-
velet et al., 2011; Moreno et al., 2012; Sánchez-López et al., 2016), 
further support warm temperatures. 

After the onset of the MCA, δ13Cn-C25 values start to increase, while 
δ13Cn-C29 values remain constant until the end of the MCA, resulting in 
an increase of the offset between these values (Figs. 2 a, and 3 a). This 
increase in the offset suggests a potential reemergence of aquatic plants, 
which can be linked with changes in lake level. However, we acknowl-
edge that interpreting the link between aquatic inputs and lake level 
changes can be questionable under such low Paq values (Supplementary 
Fig. 1 d) and low δ13C offsets (ca. 1.5–2 ‰). 

Chironomid-based temperature data show a continued rise, peaking 
at ca. 1100 AD, followed by a slight decline towards the late MCA (Fig. 2 
e). In other IP records, particularly from the south, the MCA is also 
typically associated with dry and warm conditions (e.g., García-Alix 
et al., 2020; López-Avilés et al., 2021; Martín-Puertas et al., 2008; 
Moreno et al., 2012; Sánchez-López et al., 2016). Moreover, Buraca 
Gloriosa speleothem also recorded low precipitation through most of the 
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MCA (Fig. 3 e), whereas wet conditions were recorded in northwestern 
IP (Álvarez et al., 2005; Desprat et al., 2003). Documentary sources 
report a high flood frequency in major Iberian rivers after 1200 AD at the 
end of MCA (Benito et al., 2003). 

5.1.4. Little Ice Age (LIA, 1300–1850 AD) 
The beginning of the LIA is characterized by a pronounced offset in 

the δ13C values between n-C25 and n-C29 values, coupled with an in-
crease in Betula abundance (Figs. 2 and 3 a). Concurrently, there is a 
notable decline in Chironomid-based temperature data and a sustained 
decrease in the P/B ratio (also indicating less stratified lake waters) 
(Fig. 2 f). These patterns are likely indicative of a colder climate period 
as suggested by Lei et al. (2021) and Rühland et al. (2008, 2003). 
Additionally, the SST stack of western Iberia exhibits a significant 
decline (Fig. 3 g), further corroborating the evidence of a major cooling 
trend during this period. 

After 1500 AD, a significant decrease in temperatures prompted a 
clear reduction in aquatic plants and P/B ratio (Figs. 2 and 3 a), possibly 
linked to prolonged freezing conditions in the lake. Given that the local 
terrestrial vegetation remained relatively consistent (Figs. 2 and 3 c), the 
largest decline in the δ2Hn-C29 values through the studied record 
occurred, showing that the LIA climate changes had more pronounced 
effects than the variability associated with earlier periods in the past 
2ka. This depletion of δ2Hn-C29 values was likely primarily driven by an 
increase in: i) rainfall, ii) seasonality, and iii) remote Atlantic moisture 
sources (Fig. 3 b). The decreasing presence of MF and Betula, along with 
a 10 % rise in heathlands (Fig. 2 c), further emphasizes the prolonged 
cold and wet conditions experienced during the LIA in western Iberia. 

This increase in rainfall is also recorded in the δ18O of Buraca Glo-
riosa speleothem (Fig. 3 e) and is consistent with other regional studies 
reporting intensified river outflows (e.g., Abrantes et al., 2017). The 
transition from mild and wet to cold and wet conditions during the LIA 
agrees with numerous records across the IP, highlighting the significant 
regional impact of the LIA (e.g., García-Alix et al., 2020; Moreno et al., 
2012; Oliva et al., 2018; Sánchez-López et al., 2016; Thatcher et al., 
2023). 

5.1.5. Post-LIA to modern (ca. 1850 AD – present) 
In the uppermost sediments of Lake Peixão, there is a pronounced 

environmental shift post-LIA. The plant-wax δ13C records show 
increasing values (Figs. 2 and 3 a), suggesting a change in lake levels or a 
eutrophication process due to cattle grazing in the lake catchment. This 
period is characterized by a substantial rise in SRs due to changes in 
rainfall patterns (e.g. larger differences between winter and summer) or, 
more likely, an impact of grazing and erosion by cattle and human 
induced land-use changes that also influenced the development of 
grasses (Figs. 2 g and 3 c). 

Additionally, warmer post-LIA conditions could have promoted 
water column stratification, thereby favoring the increase of planktonic 
diatoms, consistent with the observed increase in the P/B ratio after the 
LIA (see Fig. 2 f). However, changes in the diatom and chironomid re-
cords during this phase may reflect not only environmental alterations 
but also the impact of human activities, such as changes in the trophic 
level of the lake (Vázquez-Loureiro et al., 2023). The dramatic increase 
in SR (Fig. 2 g), alongside palynological and macrocharcoal records, 
further suggests both warming and a rise in human activities at a 
regional level. This is supported by the intensification of wildfires (i.e., 
increase in macrocharcoal), possible as a result in more available 
biomass or continuous deforestation of the natural deciduous forests, 
and an increase in pine due to human intervention (Fig. 2 c, d). Indeed, 
the substantial human impact, including agropastoral practices like 
grazing, fire management, and afforestation with species such as pines, 
olive trees, and Cerealia, is well-documented in the region (Connor et al., 
2012; van der Knaap and van Leeuwen, 1995). 

The post-LIA period also records a slight rise in δ2Hn-C29 values, 
suggesting a drying trend linked with the decline in lake levels until 

today. This warming and drying trend aligns with the current observa-
tions and projections for the region for this period (Sousa et al., 2020). 

Overall, the post-LIA conditions at Lake Peixão are characterized by 
the increase in temperature, aridity, and significant human-driven 
changes. These findings are in line with other records from the IP for 
this time interval, highlighting widespread environmental and anthro-
pogenic influences (López-Avilés et al., 2022; Sánchez-López et al., 
2016; Thatcher et al., 2020). 

5.2. Climate regime shifts and impact of large-scale atmospheric patterns 

The climate evolution of the central western IP over the past 2 ka is 
less well-known in comparison to other regions of the IP. Climate 
changes and the resulting variation in vegetation in this region are most 
likely triggered by the decadal-to-centennial changes in the Atlantic 
moisture sources influenced by changes in seasonality and the relative 
contributions of remote versus proximal moisture sources via large-scale 
atmospheric patterns. 

During the RP, the prevailing NAO + conditions (Fig. 3 f) support 
evidence of local warm and a transition from wet to arid conditions 
(Fig. 3 d), likely influenced by a change from more Atlantic climate 
conditions to a higher influence of Mediterranean climate (Csa) condi-
tions on regional scale. The NAO values remained mostly positive 
throughout the EMA (ca. 500–900 AD). These conditions gradually 
shifted towards a more neutral NAO (index ranging from ca. − 0.5 to 0.5) 
and even negative values at the beginning of MCA (Fig. 3 f). We suggest 
a change to wetter conditions from the end of the RP and the onset of the 
EMA towards the EMA-MCA transition (Fig. 3 d). This hydroclimate 
transition may be associated with less extreme NAO phases (Fig. 3 f) and 
modulated by a shift from positive to negative EA phases (Mellado-Cano 
et al., 2019). This could also explain the contrasting climate conditions 
between the northern/western and southern/eastern Iberian regions 
during most of the EMA (Sánchez-López et al., 2016). Specifically, the 
northern/western regions, which were predominantly cold and wet, 
experienced a more pronounced Atlantic influence (Csb), whereas the 
southern/eastern regions experienced generally warm and dry condi-
tions. The MCA (900–1300 AD) in the study area started with a short 
lake level change event, changing to wetter conditions after 1000 AD. 
These two MCA stages (Fig. 3 d) with a change from dry to wet condi-
tions are also reflected on the NAO evolution, which showed positive 
and negative phases, respectively (Fig, 3 f). Apparently, a larger 
persistence of the Mediterranean climate (Csa) conditions in the Lake 
Peixão region would define the MCA, resulting in maximum expansion 
of the MF. 

During the early LIA, consistently negative NAO values induced wet 
conditions (Fig. 3). The transition from the early LIA (ca. 1350–1450 
AD) to the late LIA (1450 AD to 1900 AD) represents a change to colder 
conditions (Figs. 2 b, 3 b d) reflecting a strong change in the local 
climate. This transition is likely related to a shift from EA+ to EA− , even 
under strong negative NAO conditions (Mellado-Cano et al., 2019; 
Zubiate et al., 2017). These findings suggest that the cold and wet 
conditions during the latter part of the LIA (Fig. 3 d) can be associated 
with the southward position of the jet stream under a weakened polar 
vortex (Mellado-Cano et al., 2019). This resulted in strong Atlantic 
climate conditions and a contraction of some vegetation, like MF, in 
comparison with the MCA. This shift enhanced the impact of moisture 
sources with lower isotope values in the region (Taylor et al., 2018), 
imprinting the decrease in δ2Hn-alk values observed in Lake Peixão sed-
iments (Fig. 2). 

Finally, following the LIA (from 1900 AD to the present), despite the 
human overprint in the proxy-based climate signal (Sánchez-López 
et al., 2016), a transition to warmer and drier conditions is observed 
(Fig. 3 d), accompanied by a global trend of wind stilling (McVicar et al., 
2012; Tian et al., 2019). Correspondingly, NAO values changed from 
mostly negative to mostly positive (Fig. 3 f), the EA from negative to 
positive (Comas-Bru and Hernández, 2018; Comas-Bru and McDermott, 
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2014; Mellado-Cano et al., 2019) and the SCA from positive to negative 
(Comas-Bru and Hernández, 2018; Hernández et al., 2015). These 
changes likely resulted in an increase in the persistence of the hot 
Mediterranean climate (Csa) conditions that persist until today. 

Hence, our results support the primary influence of the NAO and the 
secondary influence of other two main modes of climate variability in 
this region (i.e., EA and SCA) on the vegetation and organic geochem-
istry of alpine ecosystems in the IP, as observed in previous works (e.g., 
García-Alix et al., 2017; Jiménez-Moreno et al., 2013; López-Avilés 
et al., 2021). However, our findings highlight that the NAO-driven 
changes in Lake Peixão are mainly evident during strong NAO phases 
over centennial timescales. This indicates that the relationship between 
hydroclimate and vegetation dynamics in central western IP can be 
intricate and regionally constrained. Thus, we support earlier studies 
emphasizing the importance of large-scale atmospheric patterns and 
their regional teleconnections, such as the NAO, EA, and SCA, in un-
derstanding the complexity of Iberian climate (e.g., Abrantes et al., 
2017; Hernández et al., 2015; Trigo et al., 2008). 

6. Conclusions 

Our study revealed pronounced climate and environmental changes 
in Lake Peixão over the past 2 ka. The multi-proxy approach recon-
struction applied highlighted the potential to overcome the limitations 
of the individual proxies and reveal the main shifts in vegetation and 
hydroclimate dynamics in the region. These results suggest that during 
the RP (ca. -200 – 500 AD), grasses were an important component of the 
vegetation cover in Serra da Estrela which experienced intense fires. The 
climate was warm following a trend from wet (− 200 – 0 AD) to dry 
conditions (0–500 AD) under prevailing NAO+ and more Mediterranean 
influenced climate. During the EMA (ca. 500–900 AD), proxy-based data 
suggest a progressive decrease in Mediterranean climate influence, 
potentially due to the influence of positive to neutral NAO phases 
modulated by the EA, resulting in a transition to wet conditions, a 
dominance of shrubs forms in the vegetation cover and a decrease in fire 
regime. The MCA (ca. 900–1300 AD) shows an initial lake level drop and 
the largest expansion of MF and variability in aquatic production in the 
lake, as well as an oscillating NAO behaviour, along with the persistence 
of warm Mediterranean climate conditions. The LIA was a general cold 
and wet period, under a persistent negative NAO phase. After an early 
mild phase (1350–1550 AD), the late LIA and the onset of the Industrial 
period (1550–1900 AD), was the coldest period of the last 2 ka, as the 
result of a shift from EA + to EA-under strong negative NAO conditions. 
These conditions likely triggered a decline in the MF under a more 
Atlantic influence. Following the LIA, from 1900 AD to the present, 
increasing human impact is detected with a transition to warmer and 
drier climate, such as increase in biomass burning and increase in 
grasses, resulting in changes in the aquatic inputs or lake trophic level. 
The NAO values shifted from mostly negative to positive modulated by 
the EA and SCA patterns, under the influence of the current hot Medi-
terranean climate. 

This study provides new insights into the centennial-scale trends of 
vegetation and climate dynamics in the western IP. Over these time-
scales, the NAO exerted a primary influence on these dynamics, while 
the EA and SCA played secondary roles. Our findings underscore the 
complexity of the IP climate during the last 2 ka, particularly notable in 
periods beyond the 2 ka where existing reconstructions are fewer and 
yield more variable results. Thus, new studies to improve our under-
standing of the western IP climate and vegetation evolution beyond the 
last millennium will be highly valuable. 
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2008. Late Holocene history of the rainfall in the NW Iberian peninsula—evidence 
from a marine record. J. Mar. Syst., Oceanography of the Bay of Biscay 72, 366–382. 
https://doi.org/10.1016/j.jmarsys.2007.03.009. 

Bindi, M., Olesen, J.E., 2011. The responses of agriculture in Europe to climate change. 
Reg. Environ. Change 11, 151–158. https://doi.org/10.1007/s10113-010-0173-x. 

Blaauw, M., Christen, J.A., Bennett, K.D., Reimer, P.J., 2018. Double the dates and go for 
Bayes — impacts of model choice, dating density and quality on chronologies. Quat. 
Sci. Rev. 188, 58–66. https://doi.org/10.1016/j.quascirev.2018.03.032. 

Boavida, M., Gliwicz, Z., 1996. Limnological and biological characteristics of the alpine 
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(1979–2013) and future (2020–2100) Köppen–Geiger climate classification and 
bioclimatic variables. Earth Syst. Sci. Data 13, 5087–5114. https://doi.org/10.5194/ 
essd-13-5087-2021. 

Curtis, C.J., Simpson, G.L., 2014. Trends in bulk deposition of acidity in the UK, 
1988–2007, assessed using additive models. Ecol. Indic. 37, 274–286. https://doi. 
org/10.1016/j.ecolind.2012.10.023. Threats to upland waters.  
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Fernández, J.M., Jiménez-Espejo, F.J., 2021. Latest Holocene paleoenvironmental 
and paleoclimate reconstruction from an alpine bog in the Western Mediterranean 
region: The Borreguil de los Lavaderos de la Reina record (Sierra Nevada). 
Palaeogeogr. Palaeoclimatol. Palaeoecol. 573, 110434 https://doi.org/10.1016/j. 
palaeo.2021.110434. 
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Vázquez-Loureiro, D., Sáez, A., Gonçalves, V., Buchaca, T., Hernández, A., Raposeiro, P. 
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