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Abstract
The objective of the cyclotron radiation emission spectroscopy (CRES) technology is to build
precise particle energy spectra. This is achieved by identifying the start frequencies of charged
particle trajectories which, when exposed to an external magnetic field, leave semi-linear profiles
(called tracks) in the time–frequency plane. Due to the need for excellent instrumental energy
resolution in application, highly efficient and accurate track reconstruction methods are desired.
Deep learning convolutional neural networks (CNNs) - particularly suited to deal with
information-sparse data and which offer precise foreground localization—may be utilized to
extract track properties from measured CRES signals (called events) with relative computational
ease. In this work, we develop a novel machine learning based model which operates a CNN and a
support vector machine in tandem to perform this reconstruction. A primary application of our
method is shown on simulated CRES signals which mimic those of the Project 8 experiment—a
novel effort to extract the unknown absolute neutrino mass value from a precise measurement of
tritium β−-decay energy spectrum. When compared to a point-clustering based technique used as
a baseline, we show a relative gain of 24.1% in event reconstruction efficiency and comparable
performance in accuracy of track parameter reconstruction.

1. Introduction

Over the past ten years the use of convolutional neural networks (CNNs) as a machine learning (ML)
method has gained considerable attention in the high energy physics community for tasks such as particle
identification, event reconstruction, and anomaly detection [1–3]. Due to reduction in number of
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Figure 1. A CRES signal as seen in a spectrogram from the Project 8 experiment. Here, a single internal conversion electron from
83mKr makes an event consisting of multiple tracks scattered in frequency due to rapid energy losses from inelastic collisions with
residual gases. Radio-frequency thermal noise is shown as yellow-colored pixels of relatively low power. This figure was filtered to
make the event features more visible as foreground.

fully-connected layers and featuring translational and rotational equivariance, CNNs originally designed to
mimic a simplified version of the animal visual cortex have become the preferred choice for tackling various
computer vision problems [4]. Of particular interest to this work is their application to the semantic
segmentation of images: assigning a classification label to every pixel via learned inference for the purposes of
object reconstruction. In a CNN, a convolutional step aids in highlighting and detecting specific aspects of the
image, e.g. corners or edges, which become more abstract with sequential applications of filters throughout
many layers. The task of finding the optimal set of filters which most accurately performs the segmentation is
relegated to a supervised learning optimization task. With this approach, hand-engineering of features and
hand-tuning of model parameters become obsolete.

In cyclotron radiation emission spectroscopy (CRES) experiments [5–7], the goal is to reconstruct the
trajectories of charged particles, which are referred to as tracks. These tracks profile as narrow traces over the
frequency and time plane and are all contained in images called spectrograms—see figure 1. The CRES
procedure is to accurately identify the track start frequencies and, using the cyclotron motion relationship
given in equation (1), precisely reconstruct the energy spectrum of the underlying physical process. For
example, the spectrum of interest could be that of tritium β−-decay electrons for absolute neutrino mass
measurements [8] or of β±-particles in nuclear decays of 6He and 19Ne to study chirality-flipping in the
weak sector [7]. In the example spectrogram from the Project 8 experiment11 shown in figure 1, a single
tritium β−-decay electron is manifested as a collection of multiple tracks within an event, inter-spread in
frequency by rapid energy losses due to scattering collisions with residual gases in the apparatus [9].
Traditionally, CRES tracks are reconstructed by first filtering a spectrogram for bins of high signal-to-noise
ratio12 (SNR) and subsequently applying point-clustering techniques which look for pre-configured patterns
in the data. The resulting reconstruction model is made robust by tuning a large number of parameters by
hand [10]. When we consider that the experimental sensitivity to neutrino mass depends on the number of
events observed (and therefore reconstructed) [11] and that the statistical variance on the extracted mass is
related to the total number of events in the observation window by σ2stat ∼ Ntot [12], the need for a
reconstruction technique which is both efficient and accurate becomes prominent.

In this work, we present an alternative approach to CRES signal reconstruction which utilizes the power
of ML-based modules, principally the CNN, to rid the need for pre-engineering of features and parameters
in the analysis. Additionally, we provide a methodology with demonstrated state-of-the-art performance in
segmentation tasks over a large number of applications [13]. Nevertheless, despite the relatively simple
geometric features of CRES tracks, segmentation becomes challenging in the presence of radio-frequency
(RF) thermal noise which serves as a background covering more than 99.99% of all pixels in a single
spectrogram on average. The immense class-imbalance problem requires a comprehensive model which is
not only accurate but also efficiently rejects false positives. The latter problem becomes highly prominent in

11 www.project8.org/.
12 The SNR is defined as the deposited power divided by the average power of all noise bins in the image.
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the presence of very short CRES tracks of low SNR, which may be easily mistaken for random correlated
noise fluctuations of high SNR and vice versa.

The novel reconstruction model presented in this work is based on a CNN, acting as a track-pixel
segmentation step, and a support vector machine (SVM), acting as a track-object false-positive veto, working
in tandem. This marks the first step towards a fully ML-based reconstruction approach for CRES-type
experiments. In particular, we focus our application to CRES signal profiles as observed in the Project 8
experiment and perform a validation comparison to the existing baseline reconstruction algorithm over
simulated data. We proceed by first discussing the signal acquisition and baseline event reconstruction used
in the Project 8 experiment in section 2. Section 3 describes the new ML-based reconstruction method
developed for CRES events and section 4 outlines the generation of simulated data for training and
validation. The optimization performed on both reconstruction methods is described in section 5. Section 6
summarizes the results from both techniques and the improvements in efficiency achieved by the ML
approach.

2. CRES event reconstruction

CRES works by reconstructing energies from the cyclotron radiation emitted by charged particles when
subjected to an external magnetic field [5]. For example, in the case of tritium β−-decay (T→ 3He+ + e−

+νe), the semi-relativistic daughter electrons carry kinetic energy Ekin and emit cyclotron radiation with
frequency

fc =
1

2π

|e|B
me + Ekin/c2

(1)

whereme and e are the electron’s mass and charge respectively, and B is the magnitude of the applied
magnetic field. This relationship allows for reconstruction of Ekin via frequency sampling once the magnetic
field is known [5]. Due to conservation of energy and momentum, the mass of the daughter neutrino is
extracted by precision analysis of the spectrum near the tritium endpoint (Q≃ 18.6 keV), where the effect of
the massive neutrino on the spectral shape is maximal [12].

For purposes of neutrino mass measurement, the Project 8 experiment sources electrons via β−-decay
from molecular tritium and via internal conversion from 83mKr; the latter only used for energy calibration.
Both the source and electrons are confined in a cylindrical waveguide and subjected to an axial∼1 T field
produced by an nuclear magnetic resonance (NMR) magnet. Additional current-carrying coils are wound
around the waveguide to produce magnetic field gradients ofO(mT) which serve as ‘walls’ for axial magnetic
trapping. The resulting emitted cyclotron radiation is directed into a radio-frequency (RF) antenna receiver
chain made up of low-noise amplifiers among additional components [10]. A picture of the experiment
alongside a schematic of the detector can be seen in figure 2.

For an electron emitted near the tritium β−-decay endpoint, the cyclotron radiation has a frequency of
approximately 26 GHz. The raw signal received by the antenna chain is down-mixed, filtered, and sampled
by a ROACH2 [14] digitizer which performs a Fourier transform to extract frequency information [15]. The
data acquisition software is triggered in the presence of high power bins in the frequency-domain and the
original raw time series is subsequently saved to disk for offline event reconstruction.

The time series data from the antennas consists of a CRES signal superimposed onto an RF noise
background. In order to extract the signal information from this, a series of offline short-time fast Fourier
transform (FFT) are performed which, when stacked, result in a spectrogram describing the evolution of the
frequency profile over time (see figure 1). A generic CRES event consists of one or multiple tracks separated
by jumps in frequency, due to energy losses from scattering off residual gas molecules13, while the noise
background appears as a random distribution of power spectral density. In the absence of pile-up and
Doppler-shifted sidebands [9, 16], the energy of the event is directly extracted from the reconstructed start
frequency of the first track in time. It is for this type of CRES image to which the application of our new
technique is developed.

2.1. Project 8 baseline reconstruction
In Project 8, reconstruction of CRES events from spectrograms has thus far relied on point-clustering based
approaches such as extensions of DB-SCAN [17]. A robust clustering technique dubbed the sequential track
finder [18, 19] has been developed to reconstruct both 83mKr and tritium events and has been successfully

13 The sampled frequency is an average over many axial trajectories within the magnetic trap, so at an instant collision, the spectrogram
shows an energy loss as a discontinuous jump in frequency.
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Figure 2. In Phase II of the Project 8 experiment, a cylindrical waveguide, which confines both source gas and daughter electrons,
is placed inside the bore of an NMR magnet that produces a background∼1 T field necessary to elicit cyclotron motion.
Additional electron trapping coils are wound around the waveguide which aid in creating custom-profile magnetic traps. The
emitted cyclotron radiation travels through the upper waveguide window into a chain of low-noise amplifiers (among other
components) to be sampled and reconstructed. Schematic and photographs provided by the Project 8 experiment.

used to build the first CRES tritium spectrum and extract a neutrino mass upper limit [8]. In the following
we briefly summarize the baseline track and event reconstruction strategy leaving additional details to [8, 10].

The first step in reconstruction is to scale and normalize the power deposited in each frequency–time bin
by subtracting the average noise amplitude and dividing the result by the variance of the noise in that
frequency slice over all time bins. The outcome is a frequency-independent intensity measure (termed the
normalized power spectral density) which is used as a filter, allowing only those above a configured
minimum threshold to remain. The resulting filtered spectrogram is scanned over increasing time slices and
track objects are created as lines for all groupings of bins that meet proximity-based configured constraints.
Track candidates are finally either kept or discarded if they respectively obey or fail further frequency- and
time-gap tolerances set by the user.

Every surviving track has its start and/or endpoint sequentially discarded until the respective bin SNR
exceeds a minimum ‘trimming’ threshold; for this analysis, the threshold was pre-configured to SNR= 6. To
fix actual tracks which have been erroneously identified by the algorithm into multiple sub-tracks, a
clustering technique is further employed at the track-level to merge two or more of them only if certain
mutual conditions are met e.g. similarity in track slope or overlaps frequency and time. Finally, a straight line
is fitted to each remaining candidate in the spectrogram and multiple of these are grouped into an event
following a head-to-tail matching in time between frequency scatters. The resulting first track in time
designated as the start of the event.

In order to control the false positive reconstruction rate, a further cut on normalized power spectral
density is applied at the event level: a minimum threshold is set to dynamically vary depending on the
number of tracks in the event and the number of bins in the event’s first track. Threshold values are lessened
when the first track consists of more bins and is followed by many scattered tracks, effectively giving higher
true positive confidence to a reconstructed event if there is evidence that it is more spatially dense (both
locally and globally). As will be described later, control over the false positive event rate via these thresholds
allows us to tune the baseline algorithm and perform a direct comparison to the ML model.

In total, the baseline reconstruction consists of 29 configurable parameters whose values are manually set
and optimally inferred from analysis of: the distributions of average power in events’ first tracks, the total
number of false events reconstructed from noise-only data, and a ‘target’ false event rate among others.

4
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Figure 3. A modular illustration of the proposed ML-based model for CRES event reconstruction (right dashed blue box) versus
the existing baseline approach (left dashed green box) as applied in the Project 8 experiment.

3. Machine learning model for event reconstruction

In this section we describe a new event reconstruction model whose backbone is the application of a CNN
for track segmentation and an SVM which serves as a false positive veto. The motivation to employ a
CNN-based deep learning approach described in section 1, plus the demonstrated achievements such class of
models offer including highly-accurate localization of foreground images, robustness against noise, and
relative ease of optimization given commercially available hardware [13], make the ML technique a strong
potential candidate for CRES signal reconstruction. An illustration of the complete proposed model chain is
shown in figure 3 and its submodules described in the following text. Discussion of the generation and
properties of the simulated data to be used for training and validation will be left to section 4.

3.1. Spectrogram segmentation
A typical CRES event in the Project 8 Phase II experimental setup roughly occupies a frequency span of 24
MHz and is fully contained within a 21 ms window of time. In this space, pixels belonging to track signals
constitute less than 0.01% of the spectrogram image on average14, revealing a strong class-imbalanced
classification problem with respect to the noise-filled background. To accurately segment these data-sparse
images, we employ a deeper variant of the CNN U-Net architecture, first proposed in 2015 for biomedical
imaging of neuronal structures in stacks of electron microscopy images [20]; see our model schematic in
figure 4. The U-Net architecture has been previously shown to produce very accurate segmentation with
detailed spatial resolution in class-imbalanced problems [21–24]. The key to success in achieving high spatial
resolution is the novel sharing of ‘skip connections’ from its encoder side (convolutional feature extraction)
to its decoder side (spatial amplification with transpose convolutions).

In our application, the U-Net inputs are unpadded single-channel simulated CRES images of size 512 by
512 pixels (or 12.5 MHz by 21 ms) where the intensity of a pixel is the normalized power spectral density
deposited in each frequency–time bin. Each input is accompanied by an equally-sized single-channel array of

14 This ratio could be even lower depending on the size of the acquisition window, which could span a space significantly larger than a
single CRES event.
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Figure 4. An illustration of the deeper U-Net variant used for CRES signal segmentation. Blocks in black represent input layers
(either images or feature maps) while those in white their respective concatenated versions. Input spatial dimensions are specified
by vertically aligned integers (squared) while layer dimensions by horizontally aligned integers. The group of operations on the
left side of the ‘U’ defines the encoder while the group on the right defines the decoder.

ground truth labels where 0 labels background and 1 labels track pixels. The pixel intensities are transformed
to follow a standard normal distribution (standard scaled). It is important to note that the utilization of a
CNN for track reconstruction advantageously offers an architecture that remains unaffected by the
geometrical form of the input CRES signal (spectrograms with single or multiple-events, semi-linear or even
curved tracks15) or the dimensionality of the input image (2- or 3-dimensional). The only model parameters
which would require any alteration are the values of internal operations which are customized to produce a
desired output shape and size. This is an advantage not present in the baseline approach whose
reconstruction steps and parameters assume a very specific signal form.

In the U-Net architecture, the encoding arm makes use of the same basic operation many times over:

Encoder Unit(N filters)≡
Convolution×N︷ ︸︸ ︷
3× 3, stride 1▶

Convolution×N︷ ︸︸ ︷
3× 3, stride 1▶

Max-Pooling︷ ︸︸ ︷
2× 2, stride 2, where

▶≡ ReLU→ Batch Norm.→ Dropout.

(2)

Similarly, the decoding arm uses:

Decoder Unit(N filters)≡
Transpose Conv.×N︷ ︸︸ ︷
2× 2, stride 2 ▶ Concat.▶

Convolution×N︷ ︸︸ ︷
3× 3, stride 1▶

Convolution×N︷ ︸︸ ︷
3× 3, stride 1. (3)

Readers unfamiliar with ML operations may refer to textbooks such as [25] for terminology. In our
implementation, both arms meet after the application of six encoder units at a spatial resolution of 8 by 8
pixels with 1024 feature maps. This ‘middle’ portion furthermore consists of two more convolutions of the
same type as equation (2) without the max-pooling step. All filter weights are He initialized [26] in order to

15 CRES tracks featuring a prominent degree of geometric curvature may appear when charged particles emit cyclotron radiation at a
resonant frequency of the confinement apparatus (such as in a cavity). This results in a significant loss of power over a prolonged period
of time which changes the frequency of the signal continuously over time within a small window.
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constrain the hidden-layer variance to unity following the ReLU activation. While CRES tracks are essentially
‘featureless’ when compared to neuronal structures, they are also confined to a very small area of the entire
image. Therefore, we use additional encoding units to achieve a higher receptive field of our small-range
pixel structures at the expense of extracting some number of redundant filters. The depth of the network
(number of layers) will be treated as an architectural hyperparameter in section 5.1.

During training, we found it necessary to apply batch normalization after the ReLU activation in▶ (as in
equations (2) and (3)) in order for the losses to suitably converge. The addition of dropout layers allowed us
to introduce regularization which improved generalization and avoided overfitting; optimization results will
be discussed in section 5.1. In the final steps of this module, feature maps are put through a convolution with
two segmenting filters: one for track and one for background pixels, making the prediction of the network a
2-channel image of size 512 by 512 pixels with logits as intensities. To produce the desired segmentation
mask, we apply a softmax function followed by an argmax function that selects one class per pixel following
the highest probability. The resulting 1-channel mask may be directly compared to the respective ground
truth mask for accuracy.

3.2. Building a loss function for segmentation
Within confinement in the waveguide and magnetic trap, CRES electrons kept at a nominal pressure of
1.6− 2.6× 10−6 mbar often scatter off residual H2 molecules, the leading source of background gas in the
experiment; for further details on full experimental gas composition see [10]. This process incurs a minimum
electron energy loss of approximately 11 eV (0.60 MHz), resulting in a wide inter-track separation of 23
pixels. Because of the large gap between foreground objects, we discard the border definition and weighting
scheme of the original architecture [20]. Instead, due to the large class imbalance, we use a pixel weight

w(ri) =
1

percentage of C (ri) ∈ Image
(4)

for the loss where C(ri) is the ground truth class label of pixel i at position r in the image. The weight is added
to the pixel-wise softmax cross entropy loss in order to suppress penalty bias from the statistically boosted
background.

A further class imbalance is present in CRES spectrograms which is due to varying track topology within
events. Recall that a given spectrogram may contain an event consisting of a single track or one made up of
multiple scattered tracks. Generally, longer tracks are easier to reconstruct than short ones due to the
consistency of the narrow signal profile over time, regardless of SNR. Conversely, segmentation is more
challenging for short tracks which may resemble clumps of randomly adjacent noise pixels in the other
extreme. In light of this prominent feature variation within events/spectrograms, efficient training demands
that the loss account for penalizing misclassification of hard-to-classify pixels more severely than
easy-to-classify pixels. Thus, we introduce a focal modulation term [27] to define a compound total
pixel-loss over two classes per each image:

Loss =−
∑

ri∈Image
(1− p)γ w(ri) log(p)+ pγw(ri) log(1− p) (5)

where p is the class probability for track pixels (foreground), w(ri) is defined in equation (4), and the sum is
over all pixels i at location r in the image. The new hyperparameter γ controls the shift in penalty due to the
imbalance, with higher values suppressing the loss for confident predictions (p≫ 1) and boosting it for
uncertain ones (p≪ 1).

3.3. Track instance segmentation and trimming
We produce track objects from the predicted segmentation masks with the use of scikit-image [28].
Specifically, we employ the morphological operations of the measure submodule to group connected pixel
areas (nearest neighbor pixels in all directions) into track instances, obtain their coordinates, and fit a line to
each using a least squares estimation. In order to account for over-coverage segmentation of foreground in
the direction parallel to the track (from which the start time is drawn), we introduce the same trimming
procedure and trimming threshold as the baseline approach for both ends (see section 2.1). The result is a
reduction of start time over-coverage from approximately 3.5 pixels to less than 0.1 pixel. The start frequency
of each track is then calculated using the intersection of the fitted line with the start time bin.

3.4. False positive veto and event reconstruction
A false positive is a model inference which erroneously labels and groups adjacent background pixels as a
track. The mispredictions encountered largely encompass the short track regime where occasional patches of
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noise with relatively high SNR resemble true short tracks. Physically, the length of a track is constrained by
the gas pressure within the confining waveguide: higher pressure leads to frequent particle scattering and,
thus, shorter signal duration. The converse occurs for lower pressures, resulting in longer tracks. In Project 8
Phase II, the gas pressure was optimized to balance both the number of detected decay events and the
scattering rate controlling the number of electron-residual gas collisions [10]. Under this scheme, the
shortest tracks allowed could be as small as 3 pixels in length. In our simulation of training images (described
in section 4), we also allowed for events with equally short tracks. In light of this inclusion, the number of
false positive tracks predicted by the semantic+ instance segmentation modules averaged to about 1 false
track every 13 images.

To lower the false track prediction rate, we introduce a radial-basis kernel SVM trained to serve as a false
positive veto. The input to the SVM are single track objects represented by a 4-dimensional vector composed
of: track slope, track SNR, track length, and start time. In general, the use of SNR and track length as
discriminating features greatly improves the classification accuracy for long tracks with sharp profiles. The
slope also acts as a powerful discriminatory feature for those segmented tracks which do not follow physical
constraints: a true CRES track must have a positive slope while a false track may be flat, vertical, or have a
negative incline. Additional use of the start time allows for removal of false positives found near or at the
vertical edges of the image with all such regions strictly excluded during simulation. The SVM veto module is
able to greatly reduce the false positive track rate to 1 false track every 233 images16. Full events are then
reconstructed from remaining tracks using the same head-to-tail matching constraints as the baseline
approach described in section 2.1. The first track in time is taken as the start of the event.

4. Simulation of CRES events for optimization

A significant advantage of using the simulated data described below for training and testing a model is the
confident knowledge of ground truth properties. To avoid simulating CRES events with traditional
particle-tracking calculations which demand great computational power and processing times, we developed
a simpler and more efficient parametric-based Monte Carlo approach within the Locust software package
[29]. The Locust software models the response of an antenna and receiver chain to time-varying
electromagnetic fields with the use of internal classes called ‘generators’. For our application, the newly
developed LMCFakeTrackSignalGenerator produces a CRES event of desired structure and duration by
sampling individual track parameters from a number of different probability density functions (PDFs) at run
time. For example, lengths of tracks within an event are drawn as samples from an exponential distribution
with configured mean. A thermal noise floor may also be added to the simulation by drawing random
voltages from a normal distribution of configured mean power. The combined signal plus background are
processed through a simulated Project 8-like antenna module, RF receiver, and data acquisition chain to
produce a raw time series and then a spectrogram. Tens of thousands of simulated spectrograms may be
produced within just a few CPU hours.

4.1. Validation of simulated data
To obtain a physically realistic SNR distribution from which we simulate signal intensity, we first perform a
one-shot particle-tracking simulation with Kassiopeia [30] of 17.8 keV 83mKr electrons in a harmonic
magnetic trap of 1.4 mT depth, a relatively deep magnetic field trap configuration which increases effective
volume for electron trapping [8]. Electrons are given random starting positions along detector boundaries
and pitch angles of θ ⩾ 89◦ to remain consistent with trapping limitations17. Particle-tracking occurs over a
duration of 40.96 µs (the exact length of one spectrogram time bin) from which the incident electromagnetic
fields are mixed and sampled using Locust. A fixed gain scales the resulting power, and the SNR distribution
with approximate mean SNR= 3 is finally retrieved relative to the noise floor. Note that this SNR
distribution is only used to configure the power of first tracks in Locust-simulated events.

For subsequent tracks, LMCFakeTrackSignalGenerator internally draws pitch angles from the
electron-H2 inelastic scattering differential distribution of Rudd [31] and the scattered track power is
calculated using the power-pitch angle relation given by the phenomenological CRES model [9]. As the
condition for trapping relies on a minimum pitch angle value, the scattering distribution also implicitly
controls the total number of tracks per event through the scattering scale parameter G3, a fitting parameter of
the cross section model [31] to be inferred from the data. The size of the frequency jump between scatters is

16 Further improvement in false positive rate is seen with the addition of the event-builder module which completes the reconstruction
sequence (see table 4).
17 The pitch angle is the angle between the electron’s momentum and the magnetic field direction at the bottom of the trap and directly
constraints magnetic trapping.
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Table 1. Simulated event properties’ constraints including source PDFs where applicable. Values were chosen in order to simulate data
which matches real Project 8 Phase II CRES events.

Parameter PDF Value(s)

Start frequency Uniform Between 25.9060 and 25.9065 GHz
First track power Exponential Drawn from Kassiopeia simulation
Scattering pitch angle (1+ cos2(dθ)/G23)

−1 [31] G3 = 0.0064
Start time Uniform Between 50 µs and 13 ms
Track length Exponential λ−1 = 0.18 ms
Track slope Normal µ= 0.3523 MHzms−1

σ= 0.0545 MHzms−1

No. of events per simulation Fixed 1
Magnetic field Fixed B= 0.9578 T
Thermal noise power spectral density Normal µ= 3.0× 10−14 WHz−1

σ= 1 WHz−1

Figure 5. Comparison of average SNR (left) and max SNR (right) between simulated and real tracks showing the equivalence
between simulation and reality [18]. Accompanying p-values for the Shapiro–Wilkes test on residuals, p(SW), are shown in the
lower legends.

dictated by losses in energy taken from oscillator strength data [32] together with a Bethe inelastic-scattering
theoretical model for low energies (<50 eV). Extrapolation to arbitrarily high energy losses (>50 eV) is done
using the model from Aseev [33].

We tune the remaining simulation parameters to match realistic events by studying the track and event
properties of 6300 real Phase II 17.8 keV 83mKr electrons events born within a 1.4 mT-deep
quadrupole-harmonic trap [18]. Using the standard baseline method, reconstructed track properties such as
slope and length were fit to their respective statistical distributions and the relevant moments were extracted
for use in simulation (see table 1). One important point to note is that the resulting reconstructed mean
number of tracks per event is not expected to reflect the true underlying physical value since very
short/low-SNR tracks are often missed during reconstruction. To find the true underlying number, multiple
sets of tracks were simulated while varying the scattering scale parameter G3. The number of reconstructed
tracks per event was then compared to the reference, real, data until the value of G3 = 0.0064 was found to be
optimal in matching both. With this, the simulated average number of tracks per event is 5.1.

Equivalence between simulated and real events is shown by comparing a set of 92 400 generated fake
events to 6257 real events taken from 17.8 keV 83mKr electron data. Most relevant to the use of spatially small
convolutional filters in the ML-based approach is the validation of realistic SNR fluctuations along a
simulated track. In figure 5 we show a comparison of the average SNR and maximum SNR of all tracks in
reconstructed real and simulated events. Applying the Shapiro-Wilkes test [34] to the residuals, we cannot
rule out the equivalence between simulated and real data at 95% significance (p≫ 0.05, see figure legend).

4.2. Creation and selection of training and test data
With the simulated module vetted, we create a training set for model optimization by running two
concurrent Locust simulations per event: one including noise and one without any noise. Besides the absence
of noise in the latter, the two simulated events remain identical as long as the same random seed is configured
at run time. Spectrograms are produced from Locust voltage time series using the Katydid software [35] with
each spectrogram measuring 4096 by 512 pixels (100 MHz by 21 ms) with physical dimensions of 24.41 kHz
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Figure 6. An example of a training image (simulated spectrogram) including its original mask labels, training label, and weight
map. The original labels serve as ground-truth for comparisons with predicted segmentations and track objects while the training
labels and weight maps are used only during model optimization. The scales of x- and y-axes are (in) pixels.

by 40.96 µs per pixel. As the U-Net architecture expects square inputs18, we vertically split each spectrogram
into eight 512× 512 pixel square sections. Although the vast majority of events are confined to a single
image, we keep track of the ordered image index (0–7) in order to correctly identify the true start of the event
after classification. We are ensured that the first track in the event is not split in two by confining the
simulated event start frequency to a range of∼0.5 MHZ (or∼20 pixels) within the first square19. Images
without at least a single track are discarded for segmentation training purposes.

The noiseless versions of simulated events are used only to create segmentation ground truth labels by
assigning a value of 0 (background pixel) or 1 (track pixel) to those which fall below or are above a minimum
intensity threshold respectively; a limit of 10% the maximum pixel intensity in the image was found to be
suitable for labeling. However, we found that allowing the ML model to train on pixels from very short tracks
of equally low SNR introduced a strong bias that favored acceptance of false positives and false negatives. To
account for this, we only select pixels from tracks with overall relatively strong signal profiles for training.
Considering that the average bin noise power spectral density follows a gamma distribution for N bins such
that Xnoise ∼ Γ(x;N,1/N) for random variable x, in order to see less than one false track in the entire set of
training images we must have SF(Γ(x;N,1/N))< 1/Ntot where SF is the survival function and
Ntot = (Locust event-simulation time)× (Number of frequency bins)× (Number of training images). This
implies that x> SF−1(Γ(1/Ntot,N,1/N)), giving us a useful SNR vs. track length relationship to use as a
minimum dynamic threshold when selecting training points.

With the above parameters in place, we finally simulate 40 194 training images (51 401 tracks), 10 413
validation images (13 196 tracks), and 10 575 test images (13 522 tracks). This constitutes an approximate
80%/20% split between train and validation (together) and test sets. An example of a training image is shown
in figure 6 where in the ground truth mask white represents track pixels and black represents background
pixels. For the pixel weight map, only the relative values between classes are important and not the absolute
scale (see equation (4)). The spectrograms, masks, and maps are stored as 2-dimensional arrays in HDF5
files for ease of interfacing with U-Net code. The pre-training-thresholding ‘original label’ pixel masks are
kept in order to compare the predicted track objects (not segmentation) to the simulated ground-truth.

5. Optimization of reconstructionmodels

In this section we describe training of the ML model and the strategy to tune the baseline model for
comparison.

5.1. Machine learning optimization
The implementation of the architecture in figure 4 was written in Python with the Tensorflow library [36]
using AdaDelta as the optimizer. All optimization was conducted on two NVIDIA Tesla P100 GPUs running
in parallel and done separately for the U-Net and SVM. Optimal hyperparameters for the U-Net were found
via a randomized grid-search using MLflow [37] with the following strategy: define an instance of the for
each tuple of sampled hyperparameters, optimize over the entire training set, and quantify its success over
the validation set using the pixel-wise F1 score. Starting with 50 U-Net instances, the number was halved

18 Arbitrarily large inputs are allowed at the cost of additional computational power for which tiling or clipping strategies are usually
employed [20, 24].
19 This effect does not alter the efficiency calculation in section 6.3 but may have an effect on the track property errors. As will be seen in
the results of section 6.2, no significant bias was detected.
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Table 2. Optimal hyperparameters for U-Net and SVMmodules including range of values explored and/or statistical moments defining
the sampling distributions.

Hyperparameter Module Range Explored/Stat. Moment Optimal Value

Kernel size U-Net {3,5,7} 3
γ (modulation factor) U-Net {1,2,3} 2
Dropout rate U-Net {0.0,0.1,0.2} 0.0
Network depth U-Net {4,5,6,7} 6
C SVM Exponential, λ= 0.01 130.8
γ (radial-basis) SVM Exponential, λ= 10 0.054

Figure 7. Development of the training (orange) and validation (blue) losses (left) and validation F1 score (right) over the
optimization procedure. An exponentially weighted moving average (smoothed with α= 0.9) is also displayed.

after every epoch by keeping only those with highest F1 scores. The final, optimal, hyperparameters are listed
in table 2.

In the average simulated track regime (0.18 ms in length and 0.35 MHzms−1 in slope), a track crosses a
width of about 3 pixels in height by 5 pixels in length. Here, the small kernel size (3) and large number of
encoder units (6) use low-resolution feature maps to find the smallest possible signals which would
otherwise be overtly- or multiply-contained by maps with much bigger receptive fields. A dropout rate of
zero makes sense given the high class-imbalance as variance amplification is not expected to improve
accuracy when there is>99% background-pixel abundance. Perhaps more telling of the nature of CRES
events, a modulation factor of γ= 2 tells us that a steep penalty-shift strategy is a necessity in order to
overcome the large differences in track-composition between different events.

With the optimal hyperparameters fixed, model training was performed with a mini-batch of two images
and took five epochs to complete utilizing approximately 79 h of wall-time with 45.06 GB of memory. The
development of the training and validation losses, as well as the validation F1 score can be seen in figure 7
where we employ an exponentially-moving average to track the overall behavior in light of the small batch
size. In the figure, we see rapid progress in loss optimization and F1 score during the first epoch, with
subsequent epochs only featuring fractional gains. This is indicative of the ease with which the U-Net learns
to classify background pixels as a result of their abundance, while very slowly succeeding in classifying the
few track pixels present in the images. As a measure of robustness, we build a ROC curve and extract the area
under the curve (AUC) as well. The final validation metrics after optimization are: F1 score= 0.9996 and
AUC= 0.9996, representing a model with excellent classification accuracy and stability. For the test set of
10 575 images, segmentation took approximately 38 h, i.e less than 0.22 s per image. Mirroring the strong
validation result, the test F1 score was 0.9986.

The SVM false track veto module was implemented in Python with the scikit-learn library [38], trained
with 9468 tracks, and tested using 4059 tracks. The SVM hyperparameters C and γ were obtained using a
2-fold cross-validation strategy with a randomized grid search and optimally found to be C= 130.8 and
γ= 0.054 with F1 score= 0.9689, see table 2. At testing, the final SVMmodel reached an F1 score of 0.9680
and an AUC of 0.9868. The hyperparameters values represent a model which features a balanced variance
(C≫ 1) and smooth classification boundary (γ ≪ 1).
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5.2. Baseline tuning
Since the ML-based method is not yet able to reach the zero false event rate reported in the Project 8 Phase II
neutrino mass analysis [8], we tune the baseline parameters so that its false positive event rate matches that
resulting from the ML-method. As shown in section 6.3, this allows us to measure efficiency by comparing
the accompanying true positive event rates.

All baseline parameter configurations related to pixel clustering and track identification were fixed to be
the same as in Phase II track and event reconstruction [39]. For the remaining configuration, the minimum
power thresholds for different number of tracks and first-track number of bins need to be determined so that
the number of false positive events is adjusted to the desired value. For this, false positives events are divided
in groups based on the number of pixels in the first track and the total number of tracks per event. First, test
data was processed with the ML method to find the number of false events reconstructed. Then, we manually
tuned the the baseline power thresholds per group until we achieved the same false event in the same set of
data.

Because there was just one false event detected using each method (see next section), the false event rates
shown here are only approximately equivalent. Since this study serves as a proof of concept comparison
between the ML and baseline models, we did not pursue more intensive tuning of the baseline method that
would have allowed for a more reobust comparison.

6. Results and comparison to baseline approach

Since the event building procedure is equivalent in both reconstruction approaches, we first investigate the
results of the track reconstruction modules on the test set of images, comparing both to the ground truth and
to each other. Then, we move on to compare event reconstruction results on the same test set and focus on
efficiencies as a final measure of performance. As a visual reference for the ML model results, we display four
reconstructed events from the test set in figure 8.

6.1. True and false positive tracks
Since the track object prediction from the ML model is a region of connected pixels, we define a true positive
as a track whose pixel area has a Jaccard index [40] greater than 0 with respect to the same pixel area in the
ground truth mask. Conversely, a false positive is a track whose Jaccard index is exactly zero. However, in
order to discern morphological discrepancy between under- and over-coverage cases, we introduce the
mismatch index between images (or sets of pixels) A and B:

M(A,B)≡


1− |A∩B|/|A| if B under-covers A

0 if A and B perfectly match

|A∩B|/|B| if B over-covers A

(6)

with range (−1,1), giving under-coverage a negative score, a perfect match a score of zero, and over-coverage
a positive score. Within the set of true positives the majority (approximately 62%) have a positive mismatch
index with average 0.49 and the rest a negative mismatch index with average−0.32. This tells us that most
ML track predictions tend to be larger than the ground truth with further investigation revealing that the
over-coverage is in the direction normal to the track slope. In general, predictions hold an average width
about 1.5 times larger than the truth (see figure 9 as example). The under-coverage cases are almost all
completely due to trimming the track ends (see next section), which uses the same pre-configured parameter
as the baseline. In the future, the over-coverage seen here could possibly be improved by the inclusion of a
Lagrange multiplier constraint for track width in a track-object based loss.

Tracks resulting from the baseline reconstruction are one-dimensional lines fitted to individual pixels.
Thus, we define a rectangular bounding box with the reconstructed track as its diagonal and compare this
region to the same area in the truth mask. If there is any overlap in the box region with a ground truth track
(also with its own bounding box), the reconstructed track is labeled a true positive. A false positive results
when there is no overlap between masks. Due to the same trimming procedure, the baseline tracks also tend
to be shorter in the direction parallel to the track slope.

6.2. Absolute track property errors
We quantify the accuracy and precision of both reconstruction methods by inspecting the differences in
reconstructed track property Pi (e.g. track slope, start time) between true positive track prediction and
ground truth with the directional error

ϵPi = Pi,prediction− Pi,ground truth, (7)
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Figure 8. Four simulated CRES events (one per row) alongside their ML model reconstruction. Reconstruction is performed on
single and multi track events (first and second examples) with precise localization. In the third example, the true event start is
correctly reconstructed although the last track in the event is missed. The last example shows the reconstruction of an event start
(first track) that is shorter than ground truth. In general, all reconstructed tracks are slightly wider than ground truth. The scales
of x- and y-axes are (in) pixels.

keeping the sign in order to capture over- or under-estimation. Table 3 shows the mean error for all track
properties of importance, alongside their sample standard deviation.

Recall that the track start and end times are directly defined by the first and last (horizontal) pixel bins,
each bin with a physical-equivalent size of 40.96 µs. Therefore, to one standard deviation, the start time error
from the ML reconstruction can be as much as 2 pixels, whereas the baseline error can vary up to 4 pixels. To
the same precision, the ML end time error can be as much as 2 pixels while the baseline error can be as much
as 6 pixels. Taking the sign of the errors into account, we conclude that both reconstructions produce tracks
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Figure 9. An example comparison between a ML reconstructed track (right) and its respective ground truth mask (left). Most ML
track predictions tend to over-cover the truth mask in the direction normal to the track, resulting in ‘wider’ tracks. On the other
hand, the trimming procedure tends to over-cut tracks in the parallel direction, making them shorter; see section 6.2 for
quantitiative comparison. The scales of x- and y-axes are (in) pixels.

Table 3. Reconstructed mean track parameter errors± one sample standard deviation, comparing the ML to baseline reconstruction
results.

Track parameter U-Net+SVM Error Baseline Error

Start time 0.003± 0.082 ms 0.057± 0.093 ms
End time −0.002± 0.078 ms −0.101± 0.157 ms
Track length −0.005± 0.113 ms −0.158± 0.179 ms
Track slope −0.013± 0.079 MHzms−1 0.002± 0.066 MHzms−1
Start frequency 0.003± 0.031 MHz 0.020± 0.034 MHz
End frequency −0.002± 0.027 MHz −0.037± 0.058 MHz

which start too late and end too early, resulting in a negative mean track length error. However, the baseline
track length errors remain larger (up to about 8 pixels) than those of the ML method (up to about 3 pixels).

For the track slope, table 3 shows that the baseline makes a better estimate. First, we can attribute this to
over-coverage of tracks in the direction normal to their profile by the ML model, which results in a thicker
track width. This latter degree of freedom is not present in the 1-dimensional reconstruction approach of the
baseline method. Note that the start and end frequencies, which are directly determined from intersections of
the slope with the respective start and end time bins, have errors which represent a mixture of both time and
slope quantities. Second, the baseline analysis makes explicit use of the pixel SNR as a weight for slope
regression while the ML approach does not; this adjustment minimizes the error by boosting the importance
of true-positive-like pixels over true-negative-pixels in the fit.

Although the mean slope error is significantly lower in the baseline method, the much smaller mean
error on the start and end times in the ML-analysis are enough to produce more accurate estimates of the
track frequencies. For start frequencies, the mean errors (alongside standard errors of the mean) are
µML = (0.003± 0.002)MHz and µBaseline = (0.020± 0.002)MHz, showing an almost order of magnitude
improvement in accuracy. For precision, however, we look at the standard deviations (and their standard
errors): σML = (0.031± 0.001)MHz and σBaseline = (0.034± 0.001)MHz. Recalling that a frequency bin is
about 24 kHz across, these results constitute an average offset of 1.3 (ML) to 1.4 pixels (baseline), indicating
that both methods tend to reconstruct tracks further along the vertical in the image rather than earlier (i.e at
higher frequencies).

Ultimately, the mean start frequency error results in a magnetic field miscalibration which affects both
83mKr and tritium data. This effect incurs an energy shift of approximately 0.06 eV (ML) to 0.42 eV
(baseline) on the either spectrum, showing a favor towards higher accuracy in the former. On the other hand,
the energy resolution (and therefore spectrum smearing and neutrino mass value) is impacted by the spread
of the errors (i.e precision) which are σML = (0.655± 0.021) eV and σBaseline = (0.718± 0.021) eV when
converted to energy. From this, we conclude that both methods show comparable sub-eV resolution and
stand as viable candidates for high-resolution CRES spectroscopy.
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Table 4. Statistics for reconstructed events including efficiency for ML-based and baseline methods.

Quantity of interest U-Net+SVM Baseline

No. of reconstructed events 355 286
True positives 354 285
False positives 1 1
Absolute efficiency 18.1% 14.6%

6.3. Efficiencies
A straightforward measure of efficiency is to compute the fraction of all simulated events which were
correctly reconstructed by each method, where the comparison to ground truth is made with first tracks in
events. However, Doppler shifting of the cyclotron signal at the antenna results in a total radiated power
which is shared between main carrier and sidebands of different frequencies [9]. The relative strength of the
sideband signals depends on the pitch angle of the electron, which in turn is minimally bound by the shape
of the magnetic trap [9]. If conditions are such that the pitch angle is significantly different from 90◦, the
main carrier power may be low enough to be undetectable.

In Project 8 Phase II real data, reconstructed events were observed to feature SNR values varying between
4 and 20, consistent with events of pitch angles greater than 89.33◦. In our simulated data, the track power
was sampled only for pitch angles larger than 89◦. Taking the ratio of the effective trapping volumes between
minimum pitch angles 89.33◦ and 89◦, we expect only about 44% of all simulated events to be visible
(detectable) after trapping conditions are satisfied. Furthermore, following theoretical modeling of CRES
signals with the Viterbi algorithm [41], the minimal reconstructable track length given Phase II conditions is
approximately 3 pixels, diminishing the percentage of visible electrons by 59%. Finally, making a cut at the
minimal Phase II reconstructable SNR of 4 as a realistic approximation, we keep only 76% of this fraction of
events. Thus, we expect that in total only about 20% out of all simulated events are actually reconstructable
by either method.

To compare efficiencies between reconstruction methods, we follow the strategy described in section 5.2
to tune baseline parameters over the test set. In all of the 9805 simulated events, the ML model reconstructed
355 true positive events and only 1 false positive event. The baseline method was manually tuned to match 1
false positive event and subsequently found 285 true positive events. We list this comparison in table 4
alongside a measure of absolute efficiency defined as the percentage (no. of true positives/no. reconstructable
events)×100 where the denominator is valued as 20% of 9805 simulated events. In terms of this measure, the
ML model achieves an increase of 3.5% in absolute efficiency over the baseline method in this study. In terms
of total number of reconstructed events alone, the ML-method achieves a relative gain of 24.1% over the
traditional method at the same number of reconstructed false positives.

As discussed in section 5.2, the low-precision matching of baseline and ML false event rates precludes a
more precise comparison of true underlying efficiency between models in this study. With higher-statistics
simulations producing larger numbers of false events, the baseline false event rate could again be tuned to
match the ML false event rate with higher precision, enabling a more direct efficiency comparison in the
future. Given that statistical sensitivity is expected to dominate neutrino mass uncertainty in Project 8 (until
very large source volumes are employed), and that the statistical variance on the extracted mass scales with
the number of reconstructed events as σstat ∼

√
Ntot [11], an increase in reconstructed event statistics such as

the one shown in this analysis could offer a significant advantage for spectrum reconstruction.

7. Conclusion and outlook

Over the past years, results from the novel CRES technique have shown advances in the field of spectroscopy
by exploiting the basic relationship between frequency and energy equation (1) of semi-relativistic particles
[6–8]. As represented in the frequency–time plane of a spectrogram, a single CRES event may be
multi-faceted, displaying a number of tracks separated by jumps whose starting frequencies must be
accurately and precisely extracted in order to faithfully build an energy spectrum. Of particular motivation
and application is the goal of the Project 8 experiment: to extract the absolute neutrino mass value with final
target sensitivity of 0.04 eV/c2 using the tritium endpoint method. To reach this goal, the experiment must
significantly increase its statistics, which is only possible by performing CRES detection over volumes a few
orders of magnitude larger than those demonstrated in Phase II [11]. Accordingly, a considerable
improvement in event reconstruction efficiency is necessary.
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In this work we have presented a ML-based reconstruction method for CRES signals which uses a U-Net
CNN architecture in tandem with a SVM to segment and robustly select and build events in the presence of a
great abundance of RF noise acting as a background. Besides its relative ease of optimization (training) and
featuring a signal-profile agnostic architecture, the ML-method has shown comparable performance in
reconstruction accuracy of track parameters and a gain in both absolute (+3.5%) and relative efficiency
(+24.1%) in a proof of concept comparison to the baseline approach. The tests of performance of both ML
and baseline models were carried out on data produced with an expanded Locust software package,
upgraded to simulate realistic CRES-like signals and spectrograms with little computational cost. Future
development of this ML-based reconstruction analysis will focus on replacing pre-configured parameters
(such as track trimming and first-track selection) for trainable ML submodules and increasing test statistics
to provide a precise comparison of true underlying efficiency versus the baseline. The model presented here
lays a groundwork for future ML-based analyses in CRES, with the goal of providing a powerful and direct
bridge from antenna signal to reconstructed energy spectrum.
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