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Abstract 

Background  Measurements, nowcasts, or forecasts ideally should correctly reflect changes in the values of inter-
est. In this article, we focus on how to assess the ability of measurements, nowcasts, or forecasts to correctly predict 
the direction of changes in values - which we refer to as the ability to track changes (ATC).

Methods  We review and develop visual techniques and quantitative measures to assess ATC. Extensions for noisy 
data and estimation uncertainty are implemented using bootstrap confidence intervals and exclusion areas.

Results  We exemplarily illustrate the proposed methods to assess the ability to track changes for nowcasting dur-
ing the COVID-19 pandemic, patient admissions to an emergency department, and non-invasive blood pressure 
measurements. The proposed methods effectively evaluate ATC across different applications.

Conclusions  The developed ATC assessment methods offer a comprehensive toolkit for evaluating the ATC of meas-
urements, nowcasts, and forecasts. These techniques provide valuable insights into model performance, comple-
menting traditional accuracy measures and enabling more informed decision-making in various fields, including pub-
lic health, healthcare management, and medical diagnostics.

Introduction
Measurements, nowcasts, or forecasts ideally should cor-
rectly reflect changes in the values of interest. It is thus 
important to meticulously assess the ability of measure-
ments, nowcasts, or forecasts to correctly predict the 
direction of changes in values - which we refer to as the 
ability to track changes (ATC). Although measurements, 
nowcasts, and forecasts fundamentally differ as they 

either measure or predict a value, similar methods can be 
used to assess their ATC.

Forecasting methods predict the future based on his-
torical data, patterns, or exogenous factors. A forecast 
is computed based on the current value of interest and 
an estimate of its future development. In medicine and 
healthcare, forecasting - for example - is used to predict 
patient volumes in emergency departments [1, 2] or the 
demand of emergency medical services [3].

Methodologically evolved from forecasting  [4], now-
casting methods focus on predictions for the present, the 
immediate future, and the recent past  [5, 6]. Nowcast-
ing methods use high-frequency indicators or prelimi-
nary measurements related to the value of interest and 
focus on updating predictions using currently available 
information [7]. Nowcasting, for example, can assess the 
current situation during an ongoing epidemic, consider-
ing the main pathogenic, epidemiological, clinical, and 
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socio-behavioral factors  [8] or provide daily numbers of 
COVID-19 cases for events that have occurred but have 
not yet been reported [9, 10].

Measurements aim to obtain accurate and precise 
values of a measurable quantity (measurand; [11, 12]). 
Repeated measurements can be used to track changes in 
a value over time. When introducing new measurement 
methods, they are evaluated against current reference 
methods, often called the “gold standard”, by simultane-
ously measuring the same quantity with the new method 
and the reference method - often in various individuals 
or different clinical settings.

In forecasting and nowcasting the evaluation of per-
formance or goodness is usually based on statisti-
cal methods quantifying the accuracy such as the root 
mean square error (RMSE), probabilistic scoring rules, 
and calibration measures  [9, 10, 13], see also Steyer-
berg et  al. [14] for an overview in the medical context 
together with less known measures. However, although 
techniques like ROC curves for binary direction models 
or more general concordance measures (see, e.g., [15]) 
are used, there is no general measure directly framed to 
assess the method’s ATC. In a forecasting competition 
on armed conflicts, the assessment of the ATC recently 
gained attention as Vesco et al. [16] proposed the novel 
targeted absolute deviation with direction augmenta-
tion (TADDA) score with an additive tracking-changes-
component for evaluation. However, the score poses an 
unintuitive incentive to forecasters and is thus theoreti-
cally problematic [17]. When evaluating the performance 
or goodness of a measurement method like in classical 
method comparison studies, comparative statistics such 
as Bland-Altman analysis  [18] and the percentage error 
[19] are commonly used. In this strand of literature, the 
best way to assess the ATC of measurement methods is a 
field of active ongoing research [20–24].

In this article, we focus on how to assess the ability of 
measurements, nowcasts, or forecasts to track changes. 
We formalize the concept of ATC and present visual 
techniques and quantitative measures to assess it - con-
sidering both noiseless data and data with noise and small 
non-informative changes. We introduce the conditional 
ATC plot, a new graphical method for assessing the local 
ability, and review bootstrap methods for calculating con-
fidence intervals. We extend the concept of assessment 
to probabilistic predictions. We exemplarily illustrate the 
proposed methods to assess the ATC for nowcasting dur-
ing the COVID-19 pandemic, patient admissions to an 
emergency department, and non-invasive blood pressure 
measurements - and thus provide blueprints for future 
assessments. We discuss practical implementation and 
interpretation of the measures, thus providing the basis 
for communicating model limitations to forecasters, 

nowcasters, and public health officials. Ready-to-use code 
is available on https://​github.​com/​jo-​rie/​aatc.

Assessment of the ability to track changes (ATC)
Computing changes and notation
We base the assessment of ATC on the measured/
observed/true and the predicted changes in a value of 
interest over a time horizon l. The true change is straight-
forward to compute for all types of measurement, now-
cast, or forecast. Let y = (yt)

T
t=0 denote the actual values 

for nowcasting or forecasting, or gold standard meas-
urements up to time T. The sequence of changes is then 
given by the differences of values in y with horizon l, that 
is,

The definition of the predicted change depends on the 
context; Table  1 summarizes the notation for measure-
ments, nowcasts, or forecasts and the computation of 
the predicted change. While the computation for meas-
urements is straightforward and well-established, we 
develop the framework for nowcasts and forecasts in the 
following sections. For nowcasting, let xt|τ denote the 
nowcast for time t computed with the knowledge of time 
τ . We call t the target time and τ the issue time. The pre-
dicted change is computed by

When computing the predicted change of a nowcast 
for a time t, we use the best knowledge available at that 
time t, and the true value might not be known yet. If the 
true value yt−l is known at time t, the predicted change 
is computed by the difference between the nowcast and 
the true value, as yt−l is also known by the nowcaster and 
incorporated into the nowcast. Through the computation 
in Eq.  (2), the predicted change can be computed with 
the knowledge of the nowcaster at time t.

(1)y�,l
t = (yt − yt−l) for t = l, . . . ,T .

(2)x�,l = (xt|t − xt−l|t )Tt=l if yt−l is not known at time t,

(xt|t − yt−l)
T
t=l otherwise.

Table 1  Computation of the predicted change in the different 
applications. For nowcasting and forecasting, xt|τ refer to values 
issued at τ with a target time t. For measurement, xt denotes the 
test device measurement at time t 

Application Predicted change computation

Measurement (xt − xt−l)
T
t=l

Nowcasting
x
�,l =

{

(xt|t − xt−l|t )Tt=l
, if yt−l is not known at time t ,

(xt|t − yt−l )
T
t=l

, otherwise.

Forecasting x
�,l = (xt|t−l − yt−l)

T
t=l

https://github.com/jo-rie/aatc
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The notation is similar for forecasting: Let xt|τ denote 
the forecast for target time t and issue time τ . The pre-
dicted change is computed by

with the same structure as in the nowcasting case and 
consistent indices with y�,l . If the true value yt−l is not 
known at time t − l , a similar modification can be made 
as in Eq. (2).

The distinction between forecast and issue time is 
unnecessary in measurement analysis, as the measure-
ment is typically available with a very short time lag. 
Thus, xt denotes the test method measurement for time 
t. The computation

yields the change by the test method. It is computed 
purely by the test method without the gold standard yt 
to analyze whether the gold standard and test method 
changes are consistent. Accordingly, yt−l is not used in 
the computation even if known at time t in contrast to 
forecasting and nowcasting.

In applications, data are often not available for all time 
steps, for example, due to technical problems or delays 
in data transfer (see the examples in Nowcasting during 
the COVID-19 pandemic and Forecasting patient admis-
sions to an emergency department  sections). We refer 
to time steps for which either measurement, nowcast, 
or forecast or true values are unavailable as missing val-
ues. Systematical missing values could lead to a biased 
assessment, and missing data should be inspected for any 
underlying patterns. If the missing values are not system-
atic, random, and occur scarcely, data pairs with miss-
ing values can be excluded from the data to calculate the 
measures (see [25], Section 1.3). Note that in the case of 
measurement data, one missing value in the time series 
leads to two undefined differences in the change series; 
that is if xt is missing, x�t  and x�t+l are undefined; if an 
observation yt is missing, y�t  and y�t+l are undefined. The 
data pair is excluded even if the corresponding nowcast 
or forecast is available.

The four‑quadrant plot
Formally, the assessment of ATC is the same for meas-
urements, nowcasts, and forecasts, given the notation 
for the respective application of Computing changes and 
notation  section. In the following, we omit the horizon 
l for ease of notation; x� and y� refer to x�,l and y�,l 
for a common horizon l. The ATC is maximal if all pre-
dicted change directions are correct; that is, the sign of 
all elements of x� and y� coincide. Consequently, when 
assessing the ATC, we examine the statistical consistency 

(3)x�,l = (xt|t−l − yt−l)
T
t=l

(4)(xt − xt−l)
T
t=l

of sign(x�) and sign(y�) . A simple yet insightful method 
is the four-quadrant plot, which is well-established in 
measurement analysis and can be extended to nowcasts 
and forecasts (see, e.g., [22, 26]). In a four-quadrant plot, 
the occured changes and the predicted changes are plot-
ted together, that is, (y�t , x�t ) for t = l, . . . ,T  . Thus, the 
x-axis of a four-quadrant plot shows the true value dif-
ferences, whereas the y-axis displays the prediction data 
differences. Points in the green upper right and lower 
left quadrants reflect a correct change direction for the 
respective time step, whereas points in the remaining red 
quadrants show incorrectly predicted changes. Figure 1a 
displays a basic four-quadrant plot, and Fig.  2a shows a 
four-quadrant graph for simulated data with T = 1461 , 
for example, four years of daily data (for the data genera-
tion, see Appendix A: Data generation for Assessment of 
the ability to track changes (ATC) section).

The four-quadrant plot can be extended by includ-
ing information on the time index in the point color to 
reveal effects over time. In Fig. 2b, the point colors turn 
from blue to green for higher time indices t, that is, 
more recent values; (y�l , x

�
l ) is blue and turns green until 

(y�T , x
�
T ) . However, four-quadrant plots become crowded 

for larger datasets, and sequential information on the dif-
ferences is complex to assess thoroughly.

The four-quadrant plot is intuitive to interpret, and the 
magnitude and direction of change are shown simultane-
ously. Other visualization techniques, such as polar plots, 
lack the four-quadrant plot’s clarity and intuition without 
adding more information on the ATC [22].

The ATC ratio and other measures
Analyzing the number of points in the green versus red 
quadrants is a standard approach in the ATC assessment of 
measurement data [20, 22], which we extend here to fore-
casts and nowcasts. With that, we estimate the probability 
of a correctly predicted change direction, P(X�Y� > 0) , 
where Y� and X� denote random variables for future 
incremental changes. Since z1z2 > 0 imposes the same 
condition as sign(z1) = sign(z2) ( z1, z2 ∈ R \ {0} ), the 
standard estimator for P(X�Y� > 0) is

Here, the numerator counts the number of same-
sign-changes, while the denominator is the number of 
considered pairs (y�t , x�t ) . Thus, µ is the proportion of 
concordant changes on all changes. We refer to this 
estimator as the ATC ratio of the prediction and set 
T = {l, . . . ,T } . Visually, the measure computes the frac-
tion of points in the upper right or lower left quadrant. 
Similar evaluations are used in other scientific areas, 

(5)µ(x�, y�):=
∑

t∈T 1{x�t y�t > 0}
|T | .
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for example, with contingency tables in dichotomous 
forecasting or with confusion matrices in classifica-
tion analysis (see, e.g., the introductions in [27], Ch. 4, 
and [28], Ch. 3). Many other measures can be adapted 
from those fields to deepen the analysis. Two simple 
measures that focus on a positive or negative predicted 

change are the positive and negative ATC ratios µ+ and 
µ− , respectively. They are defined as

(6)

µ+(x�, y�):=
∑

t∈T 1{x�t y�t > 0}1{x�t > 0}
∑

t∈T 1{x�t > 0}
, and

Fig. 1  Illustrations of the four-quadrant plot with sample points and with and without exclusion areas. The rectangular exclusion area in Fig. 1b 
excludes only points where both components are likely to be noise-driven, while the exclusion areas in Fig. 1c and d exclude points where at least 
one component is noise-driven

Fig. 2  Visualizations for data with a time-varying ATC ratio. We defer information on the data generation process to the Appendix A (see Data 
generation for Assessment of the ability to track changes (ATC) section). The ATC ratio for the entire data set is µ = 0.7577 . The strong seasonality 
of the ATC ratio becomes visible in Fig. 2c. The green curve kt shows the theoretical probability that x�t  has the same sign as y�t  for each time step. 
The ATC ratio has a pronounced sinus-shaped seasonality with a peak after a quarter of a year and a low point after three quarters. The rolling 
estimates detect the yearly course of the ATC ration. Naturally, they are shifted to the right compared to kt as the windows look backward
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They estimate the probability of a correct prediction of 
the direction of change, given that the predicted direc-
tion is positive or negative, that is, P(X�Y� > 0|X� > 0) 
and P(X�Y� > 0|X� < 0).

Rolling estimates of the above measures detect changes 
in performance over time and can give a sharper estimate 
of the current ATC. For the ATC ratio, a rolling estimate 
with a backward-looking window of length w at time t is 
given by

Backward-looking windows estimate the ATC ratio at 
a time t considering the w time steps before time t. The 
window length w controls the smoothing of the estimate; 
a larger w gives smoother results, while a small w focuses 
on local variations. Plotting the rolling estimates for 
t = w − 1, . . . ,T  yields an estimate of the ATC ratio over 
time. Figure 2c depicts a rolling window estimate of the 
ATC ratio for the simulated data of Fig. 2a and b. While 
colored four-quadrant plots, as in Fig. 2b, illustrate ongo-
ing overall drifts in the ATC, seasonal aspects are only 
revealed in rolling window estimates.

Accounting for noise and non‑informative small changes 
and bootstrapping confidence intervals
The above measures can be extended to account for 
information on the point’s location within the quadrant. 
For example, points close to the zero point may have less 
explanatory power or may be less reliable than points far 
away from zero on one of the diagonals. Suppose noise 
or non-systematic effects are present in the true values or 
predictions. In that case, noise can drive a point’s assign-
ment to a quadrant instead of a systematic ATC. This is 
more likely for points with at least one small coordinate.

Using an exclusion area around the zero point, as fur-
ther defined below, is a straightforward and highly inter-
pretable extension of the measures of The ATC ratio and 
other measures  section accounting for such effects  (see, 
e.g., [20, 22]). Points within that area are omitted in the 
calculation of the measures. In particular, the measure-
ment, nowcast, or forecast is likely to have a noise com-
ponent; thus, x� should be subject to an exclusion area. 
The measures of Eqs. (5), (6) and (7) without points in the 
exclusion area E are

(7)µ−(x�, y�):=
∑

t∈T 1{x�t y�t > 0}1{x�t < 0}
∑

t∈T 1{x�t < 0}
.

µt;w(x
�, y�):=

∑t
t⋆=t−w+1 1{x�t⋆y�t⋆ > 0}

w
.

(8)

µe(x
�
, y�,E):=

∑

t∈T 1{x�y� > 0}1{(y�t , x�t ) /∈ E}
∑

t∈T 1{(y�t , x�t ) /∈ E}
,

The measures are then estimators for the probability 
of predicting the correct direction, given that the point’s 
location is not driven by noise or non-informative 
changes.

The estimators accept various shapes of the exclu-
sion area (see Fig.  1). A rectangular exclusion area, 
E = {(y, x) ∈ R

2 : (−εx � x � εx) ∧ (−εy � y � εy)} for 
εx, εy > 0 , leaves out points that are small in both com-
ponents. An exclusion area along one axis, for example, 
E = {(y, x) ∈ R

2 : (−εx � x � εx)} for εx > 0 , removes 
points in which one of the components could change sign 
by a small amount of noise. A cross-shaped exclusion area, 
E = {(y, x) ∈ R

2 : (−εx � x � εx) ∨ (−εy � y � εy)} for 
εx, εy > 0 , along both axes accounts for the sign reversal 
in both components.

In most applications, the shape and size of the exclu-
sion area can be chosen based on domain knowledge 
or expert opinions. The size determination can also be 
based on a proportion of the total variance or the total 
range of the data; for example, the 10% smallest abso-
lute values in each component determine the exclusion 
area size. A third approach is to visualize the ATC ratio 
for different sizes of E and thus inspect the effects of 
the exclusion area size on the estimates. For examples 
of such plots, see Nowcasting during the COVID-19 
pandemic section.

Confidence intervals can account for the estimation 
uncertainty of the measures above, an approach not yet 
applied in the literature. Bootstrap confidence intervals 
are based on resampling and not on parametric assump-
tions as classical confidence intervals are (for introduc-
tions see [29, 30]). Many new samples are drawn with 
replacement from the dataset, and the statistic of inter-
est is computed for each sample, yielding an estimate for 
the distribution of the statistic of interest. Based on the 
derived “new” samples of the statistic, the confidence 
intervals can be derived through different bootstrap-
ping methods. We use the bias-corrected and accelerated 
(BCa) approach for bootstrapping in the following, as it 
holds the confidence level for small and large samples 
and has a moderate computation time (see the simulation 
study in Appendix A: Simulation study on bootstrapping 
confidence intervals).

The conditional ATC plot
The estimators described above provide informa-
tion on the probabilities P(X�Y� > 0|X�Y� /∈ E) , 

(9)µ+
e (x

�
, y� ,E):=

∑

t∈T 1{x�t y�t > 0}1{x�t > 0, (y�t , x
�
t ) /∈ E}

∑

t∈T 1{x�t > 0, (y�t , x
�
t ) /∈ E}

, and

(10)µ−
e (x

�
, y� ,E):=

∑

t∈T 1{x�t y�t > 0}1{x�t < 0, (y�t , x
�
t ) /∈ E}

∑

t∈T 1{x�t < 0, (y�t , x
�
t ) /∈ E}

.
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P(X�
Y
� > 0|X� > 0,X�

Y
� /∈ E) , and P(X�

Y
� > 0|X� < 0,X�

Y
� /∈ E) . 

Notably, the visual analysis of these probabilities 
has not yet been addressed in the literature. A still 
finer analysis might be gained by considering the 
conditional distribution P(X�Y� > 0|X� = χ) to 
assess the ATC of a prediction for a specific change 
X� = χ of the measurement, nowcast, or forecast. 
Thereby, P(X�Y� > 0|X� = χ) denotes the probabil-
ity of a correct direction given a predicted change 
of χ . Thus, if a change of χ is observed in practice, 
one can directly assess its credibility regarding 
the direction. Multivariate kernel density estima-
tion (KDE) facilitates the continuous estimation of 
P(X�Y� > 0|X� = χ) by estimating the components 
fX�,Y� and fX� of

for χ  = 0 through a KDE. Gramacki [31] provides a 
comprehensive introduction to multivariate KDE, and 
implementations are available in many programming lan-
guages, for example, in the |statsmodels| in Python [32]. 
The KDE yields estimates for P(X�Y� > 0|X� = χ) for 
all values of χ ∈ R . Multivariate KDE takes a kernel and 
bandwidth selector as modeling parameters. We advise 
using a Gaussian kernel and the cross-validation maxi-
mum likelihood as bandwidth selector (see Appendix A: 
Visualization of different bandwidth selectors in multi-
variate KDE).

Assessing P(X�Y� > 0|X� = χ) graphically by draw-
ing P(X�Y� > 0|X� = χ) against χ eases the simulta-
neous evaluation of various χ . Furthermore, the graph 
facilitates the comparison of various methods in a single 
graph, and asymmetries of P(X�Y� > 0|x� = χ) with 
respect to χ in the ATC can be detected. We refer to the 
plot as a conditional ATC plot.

Probabilistic evaluation
In nowcasting and forecasting, probabilistic predictions 
have become more prevalent in recent years (see Now-
casting during the COVID-19 pandemic and Forecasting 
patient admissions to an emergency department  sec-
tions). In this section, we develop ATC assessments for 
probabilistic measurements and nowcasts, an approach 
not yet explored in the literature. Probabilistic predic-
tions issue a probability distribution for the quantity of 
interest based on their available information and, thus, 
include a point estimate and information on the predic-
tion uncertainty and quantiles simultaneously. Proba-
bilistic predictions thus also contain a probability of a 
positive or negative change. For ATC assessment, we 

P(X�Y� > 0|X� = χ) =







� 0

−∞
f
X� ,Y� (χ ,y)

f
X�

(χ)
d y if χ < 0,

�∞
0

f
X� ,Y� (χ ,y)

f
X�

(χ)
d y if χ > 0,

compare the predicted probability of positive change, 
denoted by pt , with the occurrence of positive changes.

Probabilistic predictions can be a cumulative distribu-
tion function (CDF), probability density function (PDF), 
or quantiles. The CDF is the most general and can be 
used to derive the others, given that they exist. Let us 
first assume that the prediction is a CDF, and that yt−l is 
known at time t (see Table 1). Appendix A: Probabilistic 
ATC evaluation extends the analysis to quantile predic-
tions or unknown true values.

Let for a forecast Ft|t−l(x) denote the predicted CDF 
for target time t and issue time t − l , where the index is 
analogous to the point notation of Computing changes 
and notation  section. The CDF Ft|t−l(x) specifies the 
forecasted probability that the quantity of interest is at 
most x. A positive change occurs for any value at t larger 
than the true value yt−l and the CDF Ft|t−l(yt−l) yields 
the predicted probability of any value at most yt−l , and, 
thus, a negative change. Accordingly, the forecasted 
probability of a positive change is

The computation differs slightly for nowcasts, that is,

with analogous derivations as above. Let zt denote the 
indicator that the observed change at time t is positive, 
that is,

The predictive power of p = (pt)
T
t=l for z = (zt)

T
t=l can 

be assessed using probabilistic dichotomous forecast 
evaluation methods. Dichotomous forecasts predict a 
binary outcome, such as a positive or negative change, 
and are evaluated numerically using scoring rules or visu-
ally through reliability diagrams.

The Brier score (BS) is a widely used scoring rule for 
dichotomous probabilistic forecasts [33]. In our context, 
it is

Lower values indicate the considered method’s higher 
probabilistic ATC. The BS assesses the calibration and 
sharpness of the forecast and the observation simulta-
neously [34, 35]. Calibration refers to the statistical con-
sistency of forecasts and observations; that is, the event 
occurs with the issued probability and is considered the 
more fundamental quality  [13]. Sharpness refers to the 
spread of the forecast; probabilities close to zero and one 
are preferable as they convey a higher certainty.

pt = 1− Ft|t−l(yt−l) t = l, . . . ,T .

pt = 1− Ft|t(yt−l) t = l, . . . ,T ,

zt = 1{y�t > 0} t = l, . . . ,T .

BS(p, z) = 1

T − l + 1

T
∑

t=l

(pt − zt)
2.
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Graphical methods are a standard tool for evaluat-
ing the calibration of probabilistic forecasts in detail. 
In dichotomous forecasting, the reliability diagram is 
frequently used  [34]. The reliability diagram plots the 
observed frequency of the positive outcome against the 
(binned) predicted probability. For example, it shows 
the proportion of observed increases, given that the 
predicted probability of increase was approximately 0.7. 
Ideally, the predicted probability equals the observed 
frequency, and the reliability diagram is a 45-degree 
line. Local deviations from the 45-degree line indicate a 
miscalibration for specific forecast probabilities. Thus, 
the reliability visualizes the local and overall calibration 
simultaneously. For an example of a reliability diagram, 
see Forecasting patient admissions to an emergency 
department section.

Application to medical/healthcare nowcasting, 
forecasting, and measurement data
Nowcasting during the COVID‑19 pandemic
In Germany, the seven-day hospitalization rate was 
established as a central steering measure in November 
2021 during the COVID-19 pandemic, and the impo-
sition of severe public restrictions was based on it  [36]. 
However, the publication of the definite hospitalization 
rate was substantially delayed and partially flawed for two 
main reasons. First, the reporting process was delayed 
because - among other reasons - different authorities 
were involved in passing the data to the RKI [37]. Second, 
the seven-day hospitalization rate allocated all COVID-
19-related hospitalizations to the date of the first positive 
test (for a detailed description, see [10]). The COVID-
19-Nowcasting-Hub  [38] collected various nowcasts 
in a predefined setup, including the mean, median and 
other quantiles of the predicted seven-day hospitaliza-
tion rate  (for further information see  [10] and Table  9 
in Appendix B for the abbreviations used). In addition 
to those nowcasts, Wolffram et  al. [10] construct two 
ensemble methods using the ensembles’ mean or median. 
We denote them by ENS-MEAN and ENS-MED. In line 
with the initial study design, we consider the period from 
November 22, 2021, to April 29, 2022, as the evaluation 
period. We use the data from February 8, 2024, for the 
true values and focus on nowcasts for all inhabitants of 
Germany. Figure 12 in Appendix B displays the true and 
nowcast data for the evaluation period. The time com-
prises the fourth wave’s end in December 2021 and nearly 
the entire fifth wave of the pandemic in Germany, lasting 
until May 28, 2022 [39].

Traditional methods often focus on point or distribu-
tional accuracy of hospitalization rates, but understand-
ing the direction and reliability of changes is crucial for 
effective decision-making. The ATC assessment offers 

easy-to-interpret insights and helps determine not only if 
rates are rising or falling, but also how confidently we can 
make this determination. For instance, if hospitalization 
rates are rising, public health measures may need to be 
tightened. Conversely, falling rates might justify loosen-
ing restrictions. The ATC assessment’s ability to reveal 
asymmetries is especially valuable, as it can show whether 
certain models are more adept at recognizing decreases 
than increases, or vice versa. This information, which is 
not readily apparent from traditional methods, can sig-
nificantly impact the interpretation of nowcasts and sub-
sequent policy decisions for public health officials.

Results
Table  2 summarizes the non-ATC-aware point evalua-
tion measures for the issued mean of the different mod-
els. The best-performing models in terms of RMSE and 
MAE are the ILM and RKI models. The ensemble meth-
ods ENS-MED and ENS-MEAN perform worse than the 
best models regarding the mean location. The perfor-
mance of the models is diverse, with more than twice as 
high RMSE values for the worst models compared to the 
best models.

In the following, we apply the ATC assessment for the 
short-term horizons one and medium-term horizons 
seven and 14 days. The horizons seven and 14 reflect a 
typical period until new policy changes are taken. We 
start by providing background information on the mar-
ginal distributions of the actual value and nowcast 
changes for the different horizons in Table 10 in Appen-
dix  B such as standard deviation and quantiles of the 
nowcasts and true values. The variability and general level 
of changes grow with the horizon: The standard deviation 
increases from roughly 300 for horizon one to 1,200 for 

Table 2  Point evaluation measures for the issued mean of the 
different models in COVID-19 nowcasting

“RMSE” and “MAE” are accuracy measures, while “Count” lists the number 
of non-missing values. The RMSE orders the models. The evaluation period 
comprises 159 days, and only a few nowcasts are missing (for explanations of 
the missing values, see [10], Tables A2, A3, and A4). Note that the high values for 
the EPI model could be driven by an exceptionally far-off value at the end of the 
evaluation period (see Fig. 12 in Appendix B)

Model RMSE MAE Count

ILM 648 504 153

RKI 810 670 156

RIVM 820 674 159

ENS-MED 832 675 158

ENS-MEAN 841 666 158

LMU 979 810 159

SZ 1,048 834 159

SU 1,127 899 159

KIT 1,161 912 159

EPI 1,513 1,006 159
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horizon seven and 2,000 for horizon 14 days. Similarly, 
the 10%-quantile of changes, the basis for the exclusion 
area size, increases. The exclusion area is rectangular; 
a point falls within it if both y� and x� are below the 
respective 10%-quantile of the absolute changes. Thus, 
points are still included in the ATC assessment if they are 
large in one dimension but not in the other, thus ensuring 
that substantial changes in, for example, y� are to be rec-
ognized by the nowcast and vice versa.

Table  3 lists the ATC ratios for all models without 
and with exclusion areas for the horizon of seven days. 
The ATC ratios without exclusion area range from 0.72 
to 0.85 for the horizon of seven days. The negative ATC 
ratios are higher than the positive ATC ratios for all mod-
els. The confidence intervals for the positive and negative 
ATC ratios do not overlap for all models, indicating that 
the ATC ratios are indeed different. The 10%-quantile 
exclusion areas have, at most, an influence of 0.03 on the 
ratios. The model with the highest ATC ratio is the ILM 

model, and the model with the lowest is the RKI model. 
The confidence intervals between all models without 
and with exclusion areas overlap. The positive ATC ratio 
implies a similar ranking of the models than the overall 
ATC, while the negative ratio provides a different rank-
ing, for example, for the RKI model. For the horizons of 
one and 14 days, we refer to Table 11 in Appendix B.

Figure 3 shows the conditional ATC plots and the ATC 
ratio over the exclusion area for the horizon seven days; 
the respective plots for the horizons one day and 14 days 
are shown in Fig. 14 in Appendix B. Here, only the best 
models in point evaluation measures, ILM, RKI, RIVM, 
and ENS-MED, are shown to keep the plots easily read-
able. If RKI or ILM issues a fall in the hospitalization rate, 
the probability of a fall is higher than if RIVM or ENS-
MED issues a fall. The opposite is the case for a now-
casted hospitalization rate increase, and the difference 
between the models’ performance is more prominent 
than for a fall. Similar observations can be made for the 

Table 3  The ATC ratio µ7 , positive ATC ratio µ+,7 , and negative ATC ratio µ−,7 for the models without and with exclusion areas for the 
horizon seven days in COVID-19 nowcasting. The exclusion areas are rectangles centered on the zero points with a width and height of 
twice the 10%-quantile of the absolute values of nowcast and true values. The subscript q0.1 denotes the measures with exclusion area. 
There are 66 positive and 93 negative actual changes in the considered time period

µ7 µ+,7 µ−,7 µ7
q0.1

µ+,7
q0.1

µ−,7
q0.1

EPI 0.77 (0.71, 0.82) 0.67 (0.58, 0.75) 0.87 (0.79, 0.92) 0.78 (0.72, 0.83) 0.68 (0.59, 0.77) 0.88 (0.81, 0.93)

ILM 0.85 (0.80, 0.89) 0.73 (0.64, 0.80) 0.99 (0.94, 1.00) 0.85 (0.80, 0.90) 0.74 (0.65, 0.81) 0.99 (0.94, 1.00)

KIT 0.74 (0.69, 0.79) 0.64 (0.55, 0.72) 0.87 (0.80, 0.93) 0.75 (0.69, 0.80) 0.64 (0.55, 0.72) 0.88 (0.81, 0.94)

LMU 0.80 (0.74, 0.85) 0.70 (0.62, 0.79) 0.91 (0.84, 0.95) 0.81 (0.75, 0.86) 0.72 (0.63, 0.79) 0.92 (0.85, 0.96)

ENS-MEAN 0.82 (0.76, 0.86) 0.71 (0.63, 0.79) 0.94 (0.89, 0.99) 0.82 (0.76, 0.87) 0.71 (0.63, 0.78) 0.96 (0.90, 0.99)

ENS-MED 0.82 (0.76, 0.87) 0.70 (0.62, 0.78) 0.96 (0.90, 0.99) 0.83 (0.77, 0.87) 0.72 (0.63, 0.79) 0.96 (0.90, 0.99)

RIVM 0.83 (0.77, 0.87) 0.74 (0.65, 0.81) 0.92 (0.86, 0.96) 0.83 (0.78, 0.88) 0.74 (0.65, 0.81) 0.93 (0.87, 0.97)

RKI 0.72 (0.65, 0.77) 0.60 (0.51, 0.67) 0.98 (0.92, 1.00) 0.73 (0.67, 0.78) 0.61 (0.52, 0.68) 0.98 (0.92, 1.00)

SU 0.81 (0.75, 0.86) 0.71 (0.62, 0.78) 0.92 (0.85, 0.96) 0.81 (0.75, 0.85) 0.71 (0.63, 0.79) 0.92 (0.85, 0.96)

SZ 0.78 (0.72, 0.83) 0.67 (0.58, 0.75) 0.91 (0.84, 0.96) 0.78 (0.72, 0.83) 0.67 (0.58, 0.75) 0.92 (0.85, 0.97)

Fig. 3  Conditional ATC plot and ATC ratio over exclusion area for the nowcasts of the seven-day hospitalization rate ILM, RKI, RIVM, and ENS-MED 
for the horizon seven days in COVID-19 nowcasting
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horizon of 14 days in Fig. 14b in Appendix B. For a hori-
zon of one day, the models’ conditional ATC difference 
is less pronounced (see Fig. 14a in Appendix B). The RKI 
model is still less conclusive when issuing an increase in 
the hospitalization rate, while RIVM is most informative 
in that case. The curves cross for an issued fall, with ENS-
MED being on top for issued falls above 250.

The ATC ratios for various exclusion areas are shown 
in Fig. 3b. The ATC ratio generally increases with larger 
exclusion areas. While the RIVM and ENS-MED ATC 
ratios evolve similarly, the RKI and ILM ATC ratios get 
closer. For the horizon of one day, the RKI ATC ratio 
decreases with increasing exclusion area size while the 
other models rise (see Fig.  14c in Appendix B). For the 
horizon of 14 days, all ATC ratio curves increase with the 
exclusion area size (see Fig. 14d in Appendix B).

Figure  4 shows the Brier score (BS) and reliability 
diagrams for the same subset of models, the ILM, RKI, 
RIVM, and ENS-MED. The probabilities of increase for 
the different models are computed using the nowcast 
quantiles. For each horizon l, 10, 000 samples of the fore-
cast date t and the forecast date t − l based on the now-
casts of issue date t are generated, and the proportion of 
positive changes is computed (see Appendix  A: Proba-
bilistic ATC evaluation). Remember that a low BS and a 
reliability diagram along the diagonal are signs of a high 
ATC. The BS is the lowest for the RIVM model for a one-
day-horizon, while the ENS-MED model has the best 
BS for the horizon of seven and 14 days. The RKI model 
yields the highest BS for all horizons. Note that the BS 
is 0.25 for random guessing; thus, all models perform 
better than random guessing. The reliability diagrams 

show that the models are not well calibrated for the hori-
zon of one day. While for predicted probabilities below 
0.5, the observed ratio of increases is smaller, it is higher 
than predicted for probabilities above 0.5. Figure 15c in 
Appendix B shows the observed predicted increase prob-
abilities for all horizons. For the horizons of seven and 14 
days, the nowcasters issue only a few moderate probabili-
ties, and most probabilities are near zero and one.

Discussion
For all horizons, the influence of the exclusion area on 
the 10%-quantile level is negligible. For example, the 
ATC ratio changes at most by 0.03 for the EPI model 
with µ−,14 . The exclusion areas are thus not crucial for 
the ATC assessment in the case of the nowcasts of the 
seven-day hospitalization rate. The lower bound of con-
fidence intervals is at least 0.68 for all models, indicating 
that they perform better than random guessing the trend.

ATC assessment evaluates the models differently from 
point evaluation measures. RKI is among the best in 
point evaluation measures but performs worse in ATC 
assessment. The assessment of asymmetry in the con-
ditional ATC plots is crucial for interpreting the ATC 
ratios, with the RKI model being the most prominent 
example.

Figure 3b shows that larger exclusion areas increase the 
ATC ratio, indicating that the predicted direction is more 
accurate for large predicted changes.

The probabilistic ATC assessment shows that the mod-
els are better than random guessing. The reliability dia-
gram cannot provide information if specific probabilities 
are issued scarcely. Thus, the reliability diagrams for the 

Fig. 4  Brier scores and reliability diagrams for the COVID-19 nowcasting models ILM, RKI, RIVM, and ENS-MED. The reliability diagram bins are 
chosen according to the empirical quantiles of the predicted probabilities. In the computation of BS and reliability diagram, missing values are 
excluded. The reliability diagram for the horizons seven and 14 days is in the appendix (see Fig. 15 in Appendix B)



Page 10 of 21Rieger et al. BMC Medical Research Methodology          (2024) 24:275 

horizons of seven and 14 days do not contain information 
on moderate probabilities. The BS values, however, work 
well for those examples and provide a good measure for 
the ATC of the models.

A more extensive data size would be beneficial for 
assessing the models’ performance. For the evaluation 
period of 159 days, the ATC ratio confidence intervals 
overlap; thus, no conclusions can be drawn from the ATC 
assessment comparing the models.

Forecasting patient admissions to an emergency 
department
In a second example, we consider forecasting patient 
admissions to an emergency department per hour with 
data and models by Rostami-Tabar, Browell, and Svetun-
kov [2]. Every 12 hours, the models issue hourly forecasts 
for the next 48 hours.

Rostami-Tabar, Browell, and Svetunkov [2] publish 
means and probabilistic quantile forecasts for various 
models and input data. We use the published mean as a 
point forecast for the ATC assessment and evaluate the 
probabilistic ATC based on the quantile forecasts sub-
sequently. Considering only the forecasts of at least 36 
hours ahead, we restrict the evaluation period to March 
2, 2018, at noon, to February 28, 2019, at 23:00, compris-
ing 8,724 hours.

While traditional methods provide point estimates, 
ATC assessment offers a simple, intuitive way to evalu-
ate model performance and directional accuracy. This 
approach is particularly valuable for management, as it 
facilitates easy comparisons between expected workload 
and recent shifts. For instance, if staff was near capacity 
during the last shift, ATC assessment can clearly indicate 
whether an increase in patient admissions is likely, allow-
ing management to proactively adjust resources. This 
directional insight, often hidden in conventional meth-
ods, enables more informed and timely decision-making.

The number of patient admissions has a strong weekly 
and daily pattern. Thus, we consider the horizons of 72 
hours, the last already observed shift of the same hour of 
day, and seven days, the previous shift of the same hour 
and day, in ATC assessment.

Results
Table  4 lists the point evaluation measures and the 
count of available forecasts. The best-performing models 
regarding RMSE and MAE are the NBI-2 and Poisson-2 
models. More than 8,600 forecasts are available for all 
models, with changes in the number due to missing val-
ues on four afternoons in 2018.

We start by analyzing the marginal distributions for 
the predicted and observed changes for the three- and 

seven-day horizons in Table 5, again. The computed dif-
ference aligns with Computing changes and notation sec-
tion, that is, the difference between the forecasted mean 
and true value of three and seven days before, as the 
actual value is available when issuing the forecast. The 
positive change fraction varies between 0.39 and 0.63 
for the horizon of three days and between 0.37 and 0.63 
for the horizon of seven days. The variability of changes 
decreases for the larger horizon for most models; only for 
the ETS model does it increase. The 10%-quantile of the 
changes is between zero and one for all models and hori-
zons. Thus, we use an exclusion area of size 1. The result-
ing fraction of included values in the computation is also 
listed in Table 5 and is at least 79% of the values.

Table 6 lists the ATC ratios for all models for three and 
seven-day horizons. The ATC ratios range from 0.68 to 
0.84 for a horizon of three days and from 0.68 to 0.82 
for seven days. The negative and positive ATC ratios dif-
fer for all models and horizons. For some models, for 
example, the GBM-2 model, the positive ATC ratio is 
higher than the negative ATC ratio, and for some mod-
els, for example, the tbats model, vice versa. The confi-
dence interval width is at most 0.02 for the ATC ratios 
and at most 0.03 for the positive and negative ATC ratios. 
The models GBM-2, qreg-1, and Benchmark-1 have the 
highest positive ATC ratio for the three and seven-day 
horizons, while Poisson-2 and NBI-2 have the highest 
negative ATC ratio.

Table 4  Point evaluation measures for the forecasting models 
for patient admissions to an emergency department

The smaller count for some models stems from missing forecasts scattered 
throughout the evaluation period. Note that the reported values for the RMSE 
differ from those in Rostami-Tabar, Browell, and Svetunkov [2] due to differences 
in the evaluation period

Model RMSE MAE Count

NBI-2 8.883 3.200 8688

Poisson-2 8.884 3.200 8688

Poisson-1 9.164 3.238 8688

Benchmark-2 9.246 3.236 8688

Ttr-2 9.394 3.266 8688

NOtr-1 9.413 3.276 8688

NOtr-2 9.413 3.276 8688

Poisson-2-I 9.458 3.276 8688

Benchmark-1 10.065 3.331 8688

GBM-2 11.663 3.542 8688

tbats 12.905 3.912 8724

Prophet 13.078 3.877 8724

qreg-1 13.337 3.758 8688

Regression-Poisson 21.162 4.818 8724

ADAM-iETSX 28.000 5.561 8724

ETS 29.358 5.742 8724
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Figure  5 shows the conditional ATC plots for the 
models Benchmark-1, GBM-2, NBI-2, Poisson-2, and 
qreg-1 for the horizons three and seven days and thus 
inspects the local ATC of the models with highest posi-
tive and negative ATC ratio. The conditional ATC plots 
show similar courses for the two horizons, though the 
curves are shifted downwards for the horizon of seven 
days. The model’s relative ATC evolves consistently for 
the two horizons, with the NBI-2 and Poisson-2 models 
being indistinguishable. The GBM-2 model outperforms 
the qreg-1 model for all predicted changes. The mod-
els NBI-2 and Poisson-2 have the highest ATC for all 

negative predicted changes and the lowest for all positive 
predicted changes. Benchmark-1 lies between the other 
models for all predicted changes.

Figure  6 visualizes the probabilistic ATC assessment 
for the same subset of models. The Brier scores (BSs) 
are shown in Fig. 6a, and the reliability diagrams for the 
horizons three and seven days in Fig. 6b and c. The BSs 
are smallest for NBI-2 and Poisson-2 for both horizons, 
while the BSs for the other models are larger and differ 
more. The qreg-1 model has both horizons’ highest BS. 
The reliability diagrams of GBM-2 and NBI-2 are also 
close and show a too-small fraction of increases for the 

Table 5  Marginal analysis of the forecast and true changes in patient admissions to an emergency department

The column (1) shows the fraction of values greater than zero for horizon l, σx�,l the standard deviation, and q0.1(x�,l) the 10% quantile of the changes’ absolute 
values. Column (2) shows the fraction of values not in the exclusion area of size one

(1), l=3 σ x�,3 q0.1(x
�,3) (2), l=3 (1), l=7 σ x�,7 q0.1(x

�,7) (2), l=7

ADAM-iETSX 0.57 7.76 0.83 0.88 0.57 7.49 0.78 0.87

Benchmark-1 0.45 5.05 0.50 0.80 0.44 4.43 0.47 0.78

Benchmark-2 0.51 5.11 0.52 0.80 0.50 4.29 0.45 0.78

ETS 0.58 7.49 0.78 0.87 0.58 7.68 0.84 0.88

GBM-2 0.39 4.93 0.51 0.80 0.37 4.61 0.49 0.79

NBI-2 0.53 5.04 0.52 0.81 0.53 4.41 0.48 0.79

NOtr-1 0.52 5.03 0.51 0.81 0.51 4.41 0.49 0.79

NOtr-2 0.52 5.03 0.51 0.81 0.51 4.41 0.49 0.79

Poisson-1 0.53 5.04 0.51 0.81 0.52 4.38 0.48 0.79

Poisson-2 0.53 5.05 0.52 0.80 0.53 4.42 0.48 0.78

Poisson-2-I 0.51 5.03 0.51 0.81 0.50 4.42 0.49 0.79

Prophet 0.62 5.27 1.00 0.91 0.62 5.15 1.00 0.91

Regression-Poisson 0.51 6.65 0.67 0.85 0.51 6.49 0.67 0.85

Ttr-2 0.51 5.03 0.50 0.81 0.50 4.41 0.49 0.79

qreg-1 0.39 5.01 0.49 0.81 0.39 4.84 0.51 0.80

tbats 0.63 5.35 1.00 0.92 0.63 5.04 1.00 0.92

True 0.54 6.61 1.00 0.93 0.55 5.90 1.00 0.92

Fig. 5  Conditional ATC plots for the horizons three and seven days and the models with the best positive or negative ATC in forecasting the patient 
admissions to an emergency department. The plots of NBI-2 and Poisson-2 are indistinguishable
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predicted probability overall. For the other models, the 
reliability diagrams show a fraction of increases that are 
too large for the corresponding predicted probability.

Discussion
The ATC is consistent for the two horizons, with the 
models’ relative ATC evolving similarly for the two 
horizons. The models’ ATC is generally higher for the 

smaller horizon, but the changes are minor, and confi-
dence intervals overlap.

The positive and negative ATC ratios differ for all mod-
els. While some models, such as GBM-2 and qreg-1, have 
the highest positive ATC ratio, others, such as Poisson-2 
and NBI-2, have the highest negative ATC ratio. Thus, 
the uncertainty of the model’s predicted change has to be 
assessed differently based on the direction.

Table 6  ATC ratio µ+ , positive ATC ratio µ+
+ , and negative ATC ratio µ−

+ for the models for the horizons 72 hours and seven days in the 
forecasting of patient admissions to an emergency department with an exclusion zone equal to the axis indicated by the subscript +

There are 4030 positive changes and 4051 negative changes for the horizon of 72 hours and 4042 and 3961 for the horizon of 7 days

µ3
+ µ

+,3

+
µ
−,3

+
µ7
+ µ

+,7

+
µ
−,7

+

ADAM-iETSX 0.70 (0.69, 0.71) 0.68 (0.67, 0.69) 0.72 (0.71, 0.73) 0.68 (0.67, 0.69) 0.67 (0.66, 0.69) 0.69 (0.67, 0.70)

Benchmark-1 0.83 (0.82, 0.84) 0.86 (0.85, 0.87) 0.81 (0.79, 0.82) 0.81 (0.80, 0.82) 0.86 (0.85, 0.87) 0.78 (0.76, 0.79)

Benchmark-2 0.84 (0.83, 0.84) 0.83 (0.82, 0.85) 0.84 (0.83, 0.85) 0.82 (0.81, 0.83) 0.83 (0.82, 0.84) 0.80 (0.79, 0.82)

ETS 0.68 (0.67, 0.69) 0.66 (0.65, 0.67) 0.70 (0.69, 0.72) 0.67 (0.66, 0.68) 0.66 (0.64, 0.67) 0.68 (0.66, 0.69)

GBM-2 0.82 (0.81, 0.82) 0.90 (0.89, 0.91) 0.77 (0.76, 0.78) 0.78 (0.77, 0.79) 0.88 (0.87, 0.90) 0.73 (0.72, 0.74)

NBI-2 0.84 (0.83, 0.85) 0.83 (0.82, 0.84) 0.85 (0.84, 0.86) 0.82 (0.81, 0.83) 0.82 (0.81, 0.83) 0.82 (0.81, 0.83)

NOtr-1 0.83 (0.83, 0.84) 0.83 (0.82, 0.84) 0.84 (0.82, 0.85) 0.81 (0.80, 0.82) 0.82 (0.81, 0.83) 0.80 (0.79, 0.81)

NOtr-2 0.83 (0.83, 0.84) 0.83 (0.82, 0.84) 0.84 (0.82, 0.85) 0.81 (0.80, 0.82) 0.82 (0.81, 0.83) 0.80 (0.79, 0.81)

Poisson-1 0.84 (0.83, 0.84) 0.82 (0.81, 0.83) 0.85 (0.84, 0.86) 0.82 (0.81, 0.82) 0.82 (0.81, 0.83) 0.81 (0.80, 0.82)

Poisson-2 0.84 (0.83, 0.85) 0.83 (0.82, 0.84) 0.85 (0.84, 0.86) 0.82 (0.81, 0.82) 0.82 (0.81, 0.83) 0.82 (0.80, 0.83)

Poisson-2-I 0.83 (0.83, 0.84) 0.84 (0.83, 0.85) 0.83 (0.82, 0.84) 0.81 (0.80, 0.82) 0.83 (0.81, 0.84) 0.80 (0.79, 0.81)

Prophet 0.75 (0.74, 0.76) 0.72 (0.71, 0.73) 0.79 (0.77, 0.80) 0.74 (0.73, 0.74) 0.72 (0.70, 0.73) 0.76 (0.75, 0.77)

Regression-Poisson 0.72 (0.71, 0.73) 0.73 (0.71, 0.74) 0.72 (0.70, 0.73) 0.70 (0.69, 0.71) 0.71 (0.70, 0.73) 0.69 (0.67, 0.70)

Ttr-2 0.84 (0.83, 0.84) 0.84 (0.83, 0.85) 0.83 (0.82, 0.85) 0.81 (0.80, 0.82) 0.83 (0.82, 0.84) 0.80 (0.79, 0.81)

qreg-1 0.80 (0.79, 0.80) 0.88 (0.87, 0.89) 0.75 (0.74, 0.76) 0.77 (0.76, 0.78) 0.86 (0.85, 0.88) 0.71 (0.70, 0.72)

tbats 0.75 (0.74, 0.76) 0.72 (0.71, 0.73) 0.80 (0.78, 0.81) 0.73 (0.72, 0.74) 0.71 (0.69, 0.72) 0.76 (0.74, 0.77)

Fig. 6  Probabilistic ATC assessment for the models Benchmark-1, GBM-2, NBI-2, Poisson-2, and qreg-1 for the horizons three and seven days 
in forecasting patient admissions to an emergency department. The Brier score in Fig. 6a evaluates the calibration and sharpness of the probabilistic 
ATC simultaneously, while the two plots on the right assess solely the calibration, that is, whether the predicted probability of increase occurs 
empirically. Probabilistic ATC by the BS is best for the models NBI-2 and Poisson-2 for both lags
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The probabilistic ATC assessment results endorse 
the point ATC assessment and assign the best scores to 
NBI-2 and Poisson-2. The reliability diagrams show that 
they underestimate the fraction of increases slightly.

Overall, the example provides performance assess-
ments that are different from standard point evalua-
tion measures and thus provide further insights into the 
strengths and weaknesses of the models. While the mod-
els with the lowest RMSE, NBI-2, and Poisson-2, also 
have a high ATC, three models with below-average point 
evaluation measures, Benchmark-1, GBM-2, and qreg-1, 
have a high positive ATC.

Non‑invasive blood pressure monitoring
We here consider the ATC of non-invasive blood pres-
sure measurements from the MIMIC-III database that 
includes data of critically ill patients treated in intensive 
care units of the Beth Israel Deaconess Medical Center in 
Boston (Massachusetts, USA, [40, 41]; available through 
[42]). We focus on arterial blood pressure (ABP) and 
non-invasive blood pressure (NBP) measurements and 
thus limit our analysis to datasets containing simultane-
ous measurements of ABP and NBP simultaneously. 2,548 
datasets include at least one measurement of systolic ABP 
and NBP, and 1,327 include at least one pair of simulta-
neously measured systolic ABP and NBP; for the mean 
ABP and NBP, the numbers are 2,605 and 1,516, respec-
tively. We assess the ATC of non-invasive blood pressure 
measurements (test method) compared to intraarterial 
blood pressure measurements (reference method, gold 

standard). We consider the horizons of one minute, five 
minutes, and 15 minutes for the ATC assessment, as those 
are typical intervals of NBP measurements.

While ATC assessment is well-established in measure-
ment analysis, our new methods extend its application, 
revealing insights such as asymmetries. This extension 
enhances the utility of ATC assessment beyond its con-
ventional use, offering a more comprehensive evaluation 
of model performance.

Results
Again, we exclude the smallest 10% of absolute changes 
in ATC assessment. The resulting four-quadrant plots 
of the mean and systolic blood pressure measurements 
for the different horizons are shown in Fig. 7. The num-
ber of points in the four-quadrant plot is smaller due to 
the restriction to data records with measurements of 
mean or systolic ABP and NBP simultaneously for two 
consecutive times with the specified horizons. Thus, we 
use the NBP measurements as the test method and the 
ABP measurements as the gold standard. For the systolic 
measurements, 290, 332, and 442 points are available for 
the horizons of one, five, and 15 minutes; for the mean 
measurements, 406, 430, and 542.

The ATC ratios, including confidence intervals for the 
different horizons, are listed in Table  7. The confidence 
intervals have lower bounds of 0.5 or slightly above for the 
measurements with a horizon of one minute. For larger 
horizons, the ATC ratio increases. The difference between 

Fig. 7  Four-quadrant plots for the different horizons l and the systolic and mean blood pressure measurements. The upper row contains systolic 
measurements, and the lower row contains mean measurements. The columns contain the horizons one, five, and 15 minutes
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positive and negative ATC ratios is small for all types and 
horizons, with overlapping confidence intervals.

Figure  8 shows the conditional ATC plots for the dif-
ferent horizons and the systolic and mean blood pres-
sure measurements. It becomes apparent that the systolic 
measurements have a higher ATC than the mean meas-
urements, except for small negative predicted changes.

Discussion
The four-quadrant plots contain a considerable number 
of extreme points. Whether these points are due to meas-
urement errors or extreme values is not distinguishable. 
Some authors argue to exclude the measurements below 
the 10%-quantile of the absolute changes and the points 
above the 90%-quantile (see [20]). We do not follow this 
approach here, as the extreme values are not necessarily 
measurement errors and could be particularly relevant.

The difference between positive and negative ATC 
ratios is small in this example. The positive and negative 
ATC ratios have overlapping confidence intervals, the 
conditional ATC plots do not contain prominent devia-
tions in the course, and the four-quadrant plots do not 
display asymmetries.

The bootstrap confidence intervals are wide. The width is 
around 0.1 for the ATC ratio, while it gets up to 0.16 for the 

negative ATC ratio for systolic measurement and the hori-
zon of one minute. Thus, the confidence intervals cover 0.5 
for systolic measurement and the horizon of one minute, 
and the equality to random guessing cannot be excluded.

Discussion and conclusion
In this paper, we examine various methods to assess the 
ability to track changes (ATC) for measurements, now-
casts, or forecasts, that is, whether they correctly predict 
the direction of changes in values. While the computation 
of predicted change varies between the application areas 
of measurement, nowcasting, and forecasting, the assess-
ment can be based on the same methods. The ATC assess-
ment can accompany other evaluation techniques, such as 
measures of deviation or probabilistic scoring rules.

Four-quadrant plots facilitate the visual inspection of 
the ATC for a measurement, nowcast, or forecast (see The 
four-quadrant plot  section). The ATC ratio, the ratio of 
change directions predicted correctly over the total num-
ber of changes, numerically evaluates ATC. Visually, it is 
the proportion of concordant points in a four-quadrant 
plot (see The ATC ratio and other measures section). The 
positive and negative ATC ratios analyze the ATC ratio 
given whether the predicted change is positive or nega-
tive, respectively. Thus, they quantify the credibility of the 
respective predictions. The applications of Non-invasive 
blood pressure monitoring  section show that models, in 
general, indeed have different positive and negative ATC 
and that they add valuable information to the ATC ratio. 
In the applications, the bootstrap confidence intervals of 
The ATC ratio and other measures  section are used to 
quantify the estimation uncertainty of the ATC measures. 
The width of the confidence intervals is around 0.1 for 
around 100 samples, while it is around 0.01 for 8000 sam-
ples. For models with reasonably high ATC, 100 samples 
are thus sufficient to differentiate from random guessing 
or to assess models with high ATC differences.

Table 7  ATC ratios for the different horizons l and the systolic 
and mean blood pressure measurements

Type l µl µ+,l µ−,l

Systolic 1 0.55 (0.50, 0.60) 0.59 (0.52, 0.65) 0.58 (0.50, 0.66)

Systolic 5 0.63 (0.59, 0.68) 0.70 (0.64, 0.75) 0.62 (0.56, 0.69)

Systolic 15 0.69 (0.65, 0.73) 0.72 (0.66, 0.76) 0.74 (0.69, 0.79)

Mean 1 0.55 (0.51, 0.59) 0.62 (0.56, 0.68) 0.56 (0.50, 0.62)

Mean 5 0.59 (0.55, 0.64) 0.65 (0.59, 0.71) 0.62 (0.56, 0.68)

Mean 15 0.62 (0.58, 0.65) 0.65 (0.60, 0.70) 0.66 (0.61, 0.71)

Fig. 8  Conditional ATC plot for the systolic and mean blood pressure measurements and the horizons one, five, and 15 minutes
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A conditional ATC plot visualizes the probability of 
correct change direction prediction over the predicted 
change of the measurement, nowcast, or forecast (see 
The conditional ATC plot section). It is based on a mul-
tivariate kernel density estimation (KDE) of predicted 
and observed change. In the application, the condi-
tional ATC plot gives reasonable insights into the local 
effects of the ATC. Probabilistic evaluation  section 
adapts measures of probabilistic forecast evaluation 
to the ATC assessment of probabilistic forecasts and 
nowcasts. The Brier score (BS) as numerical assessment 
of probabilistic ATC is introduced, and reliability dia-
grams are used to visualize the local ATC of probabil-
istic forecasts.

The methods of ATC assessment are applied to COVID-
19-nowcasting, forecasting the patient admissions to an 
emergency department, and invasive and non-invasive 
blood pressure measurements in Application to medical/
healthcare nowcasting, forecasting, and measurement 
data  section. While ATC assessment should not be the 
only aspect, it is a valuable addition to evaluating now-
casts, forecasts, and measurements. Models with highly 
different accuracies are usually scored similarly in ATC 
assessment, but ATC assessment can differentiate between 
models with similar accuracies. As in the application in 
Nowcasting during the COVID-19 pandemic  section, 
models with medial point forecast evaluation measures 
can have the most meaningful positive ATC.

For public health officials and forecasters analyz-
ing methods, we recommend presenting four-quadrant 
plots, ATC ratios and the conditional ATC plots as a fun-
damental approach. This presentation makes a model’s 
ATC easily interpretable and and reveals performance 
asymmetries. An exclusion area can be incorporated to 
address for non-relevant changes.

We did not expand on two modeling aspects through-
out this paper, which we leave for further research. In 
the estimation, we did not consider sequential cor-
relation. The computation of differences is a standard 
procedure in time series analysis to remove sequential 
dependence, but, in general, some could remain, and 
the estimators could account for it. Similarly, the boot-
strap confidence intervals could be adapted to con-
sider sequential correlation using time-series bootstrap 
methods [43, 44].

The estimators of The ATC ratio and other measures sec-
tion do not account for imbalances in the number of 
observed positive and negative changes (for theoretical anal-
ysis, see [28], Chapter 3). Significant differences in the num-
ber of observed positive and negative changes are unlikely 
in the ATC setting, as y� is obtained from differencing time 

series data and occur, for example, if the true value con-
tains a few high jumps in one direction and many smaller 
jumps in the other. However, if the number of positive and 
negative observed changes differs widely, unbalanced-data-
aware measures should be considered. There are various 
adapted measures for unbalanced outcomes, for example, 
Cohen’s κ [45] or those listed in Jolliffe and Stephenson 
([28], Table 3.3).

Appendix A: Additional material on Assessment of 
the ability to track changes (ATC) section
Data generation for Assessment of the ability to track 
changes (ATC) section
The first dataset is generated by sequentially generating x� 
and y� . First, the x�t  are sampled as a sum of a standard 
normal random number and a uniform random number 
on (−10, 10):

Subsequently, the y� are simulated for a constant ATC 
ratio k by

where nt is a truncated normal distribution with mean 
one and standard deviation 0.5, truncated at 0, and bt is 
a symmetric Bernoulli random variable with parameter k. 
For a time-varying ATC ratio, the parameter k is modi-
fied to have a wave-shape function over time, that is,

For the asymmetric ATC ratio, k is a function of x�t ,

In the second approach, y�t  and x�t  are modeled to be 
multivariate normal with mean 0 and covariance matrix

Thus, the conditional probability of correct direction 
prediction can be calculated by a conditional normal dis-
tribution to

where � is a standard normal CDF.
The four-quadrant plots for the sample realizations of 

the data generation schemes are shown in Fig. 9.

x�t ∼ N (0, 1)+U(−10, 10) t = 1, . . . ,T .

y�t = x�t · nt · bt ,

kt = 0.75+ sin(t/365.25 · 2π)/4.

k(x) = 0.5+min
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Fig. 9  Four-quadrant plots for sample realizations of the data 
generation schemes of Appendix A: Data generation for Assessment 
of the ability to track changes (ATC) section. Although the first 
and second plots differ over time, their difference is not discernible 
in the plots. The third data set’s asymmetry is visible in the plot, 
but the decrease in the ATC near 0 is not visible

Simulation study on bootstrapping confidence intervals
We examine three methods for bootstrapping for comput-
ing confidence intervals for the ATC ratio: the intuitive per-
centile and the more sophisticated basic and BCa method. 
In the percentile approach, the confidence interval for the 
level α is built directly from the empirical distribution of 
the bootstrap estimators. The basic approach computes the 
confidence interval based on the non-bootstrap estimate 
using the bootstrapped quantile deviations  [46]. The BCa 
method modifies the quantiles of the empirical bootstrap 
distribution by a bias and an acceleration parameter  [47]. 
Typically, the percentile approach requires larger data-
sets and provides an easy and fast estimate, while the BCa, 
though computationally expensive, can produce reason-
able confidence intervals with smaller datasets. The basic 
approach balances these two objectives. We compare the 
approaches in a small synthetic data study on their small-
dataset behavior and computation time.

We vary the number of time steps T to take typical time-
series values, such as 30 for daily data in a month, 52 for weekly 
data, 168, 365, 720, and 1024. The considered datasets are the 
first dataset with asymmetric dependence and the second 
dataset outlined in Appendix A: Data generation for Assess-
ment of the ability to track changes (ATC) section. In the cal-
culations, the |scipy| package’s implementation of bootstrap 
confidence intervals is used  [48]. The prescribed confidence 
level is 90 %, and the number of bootstrap samples is 10, 000. 
The share of confidence intervals covering the true values per 

method and T are shown in Table 8. The true values of the 
accuracy are computed based on a dataset of size 108 , yield-
ing 0.7501 and 0.7700 for the two datasets. The computation 
times per method and dataset are shown in Fig. 10. For the 
small sample sizes up to T = 168 , only the BCa method keeps 
the confidence interval size and yields slightly wider confidence 
intervals. The method’s results are similar for the larger sam-
ple sizes. The computation time for the BCa method is slightly 
larger than for the other methods, but all methods have a mod-
erate computation time. BCa is the only method that maintains 
the confidence level for small datasets while increasing the 
computation time only moderately for larger datasets. There-
fore, we use the BCa method for confidence intervals in the 
applications in Application to medical/healthcare nowcasting, 
forecasting, and measurement data section.

Table 8  Proportion of bootstrap confidence intervals covering 
the true value of ATC ratio per method and sample size T 

(a) First dataset. (b) Second dataset.

percentile basic BCa percentile basic BCa

30 0.84 
(0.249)

0.86 
(0.250)

0.91 
(0.257)

30 0.87 (0.243) 0.88 
(0.242)

0.92 
(0.249)

52 0.89 
(0.194)

0.89 
(0.193)

0.89 
(0.198)

52 0.87 (0.188) 0.89 
(0.188)

0.90 
(0.192)

168 0.91 
(0.109)

0.90 
(0.109)

0.90 
(0.110)

168 0.89 (0.106) 0.90 
(0.106)

0.90 
(0.107)

365 0.90 
(0.074)

0.90 
(0.074)

0.90 
(0.074)

365 0.90 (0.072) 0.90 
(0.072)

0.90 
(0.072)

720 0.90 
(0.053)

0.90 
(0.053)

0.90 
(0.053)

720 0.90 (0.052) 0.90 
(0.052)

0.90 
(0.052)

1024 0.90 
(0.044)

0.90 
(0.044)

0.89 
(0.044)

1024 0.89 (0.043) 0.90 
(0.043)

0.90 
(0.043)

The average width of the confidence interval is listed in brackets

Fig. 10  Boxplot of the computation time for different bootstrapping 
methods and data set sizes T. The computation time refers 
to bootstrapping one confidence interval based upon 10,000 values. 
Each boxplot reflects 10,000 samples. The BCa method takes slightly 
longer than the other two, but the difference is negligible

Visualization of different bandwidth selectors in multivari‑
ate KDE
We examine the resulting conditional ATC plots for the 
three well-known KDE bandwidth selectors, rule-of-thumb, 
cross-validation maximum likelihood, and cross-validation 
least squares using the |statsmodels| Python package [32] 
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in Fig.  11. While the rule-of-thumb is based only on the 
covariance matrix, the other two numerically optimize the 
bandwidth with a hold-one-out least squares or likelihood 
objective function. The dashed line shows the theoretical 
P(Y�X� > 0|X� = χ) . The second method, cross-valida-
tion least squares, requires long computation times while 
yielding small or no bandwidth results, even for two rela-
tively small datasets. The rule-of-thumb and cross-valida-
tion maximum likelihood methods yield reasonable results 
at moderate computation times.

Fig. 11  Conditional ATC plot for different bandwidth selection processes. 
Cross-validation least squares takes a considerably larger computation 
time. It converges neither for the first nor the second data set 
with an exclusion area and yields a bandwidth too small for the second 
data set. The rule of thumb is the fastest method but tends to oversmooth. 
The cross-validation maximum likelihood method yields a more 
reasonable bandwidth with moderate computation time. ε specifies 
an exclusion area E = {(x , y) ∈ R

2 : (−ε � x � ε)} in x�-direction

Probabilistic ATC evaluation
Probabilistic evaluation  section outlines the assessment of 
probabilistic ATC for nowcasts and forecasts and speci-
fies the computation for predictions in terms of a CDF and 
known true values. Here, we outline the computation for 
quantile forecasts and yet unknown, probabilistic true values.

If forecasts or nowcasts are given as quantiles, pt can be 
determined by interpolations among the quantiles. Let qp 
denote the quantiles for target time t + l for even-spaced 
probabilities p ∈ {1/p̂, . . . , (p− 1)/p̂} ( p̂ ∈ N \ {1, 2} ) and 
yt the true value at time t. The quantiles qp generally dif-
fer for each time step, but we omit an index here for ease 
of notation. The probability pct of a negative change is 
between p⋆ and p⋆ + 1/p̂ for

Quantiles do not determine the location within the 
interval [p⋆, p⋆ + 1/p̂] . Under the assumption of a uni-
form distribution within the quantile interval, the prob-
ability of a negative change is

The approach does not yet assign probabilities for yt 
smaller than the smallest quantile q1/p or greater than the 
largest quantile. As a simple extension, we assume that 

p⋆ = max{p ∈ {1/p̂, . . . , (p̂− 1)/p̂} : qp � yt }, if q1/p̂ � yt � q1−1/p̂ .

pct =
yt − qp⋆

p̂(qp⋆+1 − qp⋆ )
+ p⋆.

the probability mass is uniformly distributed on an inter-
val of the same length as the nearest interval specified by 
the quantiles. This yields

The probability of positive change is pt = 1− pct.
If the true value is given as a distribution because it is still 

unknown, the probabilities pt can be computed by inte-
gration. Let for two nowcasts the distributions be given by 
PDFs ft+l|t+l and ft|t+l with CDFs Ft+l|t+l and Ft|t+l . Then, 
the probability of a negative change can be computed by

Thereby, the distributions are assumed to be independ-
ent. If the nowcasts have the form of a multivariate dis-
tribution, including the dependence of the two PDFs, 
ft+l|t+l(x2) has to be replaced by the PDF conditional on 
x1 . As a Monte Carlo approximation of Eq. (11), the prob-
ability can also be calculated by sampling from ft+l|t+l and 
ft|t+l and calculating the fraction of negative changes. For 
forecasts, the indexes have to be shifted. If no PDFs are 
available, they can be estimated from the CDF or quantiles, 
or the CDF or quantiles can be used to generate samples for 
the Monte Carlo approximation. This approach is applied 
in Nowcasting during the COVID-19 pandemic section, as 
the true values are published with a delay of more than 80 
days, and the nowcasts are given as quantiles.

Appendix B: Additional results for Nowcasting 
during the COVID‑19 pandemic section

Fig. 12  True and nowcast data of the seven-day-hospitalization in Germany 
from November 22, 2021, to April 29, 2022 [38]. The outliers in the RKI model 
of values above 108 are removed before the following analysis

pct =



















max{ 1
p̂
− qp⋆−yt

p̂(qp2/p̂−q1/p̂)
, 0} , if yt < q1/p,

min{ 1
p̂
− yt−q(p̂−1)/p̂

p̂(q(p̂−1)/p̂−q(p̂−2)/p̂)
, 1} , if yt > q1−1/p,

yt−qp⋆

p̂(qp⋆+1−qp⋆ )
+ p⋆ , otherwise.

(11)

pct =
∫

x1, x2 ∈ R :
x2 < x1

ft|t+l(x1)ft+l|t+l(x2) d (x1, x2)

=
∫

x1∈R

∫ x1

−∞
ft|t+l(x1)ft+l|t+l(x2) d x2 d x1

=
∫

x1∈R
ft|t+l(x1)Ft+l|t+l(x1) d x2 d x1.



Page 18 of 21Rieger et al. BMC Medical Research Methodology          (2024) 24:275 

Table 9  Matching the abbreviation to the key in the COVID-19 
nowcasting hub

Abbreviation Nowcasting hub key

EPI Epiforecasts-independent

ILM ILM-prop

KIT KIT-simple_nowcast

LMU LMU_StaBLab-GAM_nowcast

RIVM RIVM-KEW

RKI RKI-weekly_report

SU SU-hier_bayes

SZ SZ-hosp_nowcast

ENS-MEAN NowcastHub-MeanEnsemble

ENS-MED NowcastHub-MedianEnsemble

Information on the models and references are listed in Wolffram et al. ([10], 
Table 1)

Table 10  Marginal analysis of the COVID-19 nowcast and true changes for the horizons one, seven, and 14 days

(1), l=1 σ x�,1 q0.1(x
�,1) (1), l=7 σ x�,7 q0.1(x

�,7) (1), l=14 σ x�,14 q0.1(x
�,14)

EPI 86 520 44 83 1411 78 80 1976 144

ILM 86 281 26 81 1457 102 82 2356 140

KIT 84 354 50 89 1306 171 83 1964 265

LMU 65 285 26 84 1180 124 78 1946 167

ENS-MEAN 85 267 23 86 1213 98 83 1955 235

ENS-MED 88 259 23 88 1206 101 81 1955 186

RIVM 77 241 32 81 1264 123 77 2034 190

RKI 99 362 34 106 1194 145 99 1832 325

SU 91 376 47 85 1390 180 80 2126 263

SZ 92 201 26 89 1154 184 87 1889 241

True 75 262 27 66 1237 126 73 2193 284

The column (1), l = l shows the number of values greater than zero for horizon l, σx�,l the standard deviation, and q0.1(x�,l) the 10% quantile of the changes’ 
absolute values

Table 11  ATC ratio µ , positive ATC ratio µ+ , and negative ATC ratio µ− for the models without and with exclusion areas for the horizon 
one and 14 days in COVID-19 nowcasting

(a) One day. (b) 14 days.

µ1 µ+,1 µ−,1 µ1
q0.1

µ+,1
q0.1

µ−,1
q0.1

µ14 µ+,14 µ−,14 µ14
q0.1

µ+,14
q0.1

µ−,14
q0.1

EPI 0.68 (0.62, 
0.74)

0.64 (0.55, 
0.72)

0.73 (0.63, 
0.81)

0.69 (0.63, 
0.75)

0.64 (0.56, 
0.73)

0.75 (0.65, 
0.82)

EPI 0.83 (0.77, 
0.87)

0.79 (0.70, 
0.85)

0.87 (0.80, 
0.92)

0.85 (0.80, 
0.90)

0.81 (0.73, 
0.87)

0.90 (0.83, 
0.95)

ILM 0.73 (0.67, 
0.79)

0.67 (0.58, 
0.76)

0.82 (0.73, 
0.89)

0.74 (0.68, 
0.79)

0.68 (0.60, 
0.76)

0.82 (0.72, 
0.89)

ILM 0.86 (0.81, 
0.90)

0.78 (0.70, 
0.85)

0.96 (0.90, 
0.99)

0.87 (0.82, 
0.91)

0.80 (0.71, 
0.86)

0.96 (0.90, 
0.99)

KIT 0.62 (0.55, 
0.68)

0.58 (0.49, 
0.67)

0.65 (0.56, 
0.75)

0.62 (0.56, 
0.69)

0.59 (0.51, 
0.67)

0.66 (0.57, 
0.74)

KIT 0.81 (0.75, 
0.86)

0.76 (0.67, 
0.83)

0.87 (0.79, 
0.92)

0.82 (0.76, 
0.86)

0.76 (0.68, 
0.84)

0.88 (0.81, 
0.93)

LMU 0.66 (0.60, 
0.72)

0.66 (0.57, 
0.75)

0.66 (0.57, 
0.73)

0.66 (0.59, 
0.72)

0.66 (0.55, 
0.75)

0.66 (0.57, 
0.73)

LMU 0.88 (0.83, 
0.92)

0.85 (0.77, 
0.91)

0.91 (0.85, 
0.95)

0.89 (0.85, 
0.93)

0.87 (0.79, 
0.92)

0.91 (0.85, 
0.95)

ENS-MEAN 0.81 (0.75, 
0.85)

0.76 (0.68, 
0.84)

0.88 (0.81, 
0.93)

0.81 (0.75, 
0.86)

0.76 (0.68, 
0.83)

0.88 (0.81, 
0.94)

ENS-MEAN 0.83 (0.77, 
0.87)

0.77 (0.69, 
0.84)

0.89 (0.83, 
0.95)

0.84 (0.78, 
0.88)

0.78 (0.70, 
0.85)

0.91 (0.84, 
0.95)

ENS-MED 0.75 (0.68, 
0.80)

0.69 (0.60, 
0.77)

0.81 (0.73, 
0.89)

0.75 (0.69, 
0.80)

0.69 (0.61, 
0.77)

0.83 (0.74, 
0.90)

ENS-MED 0.84 (0.79, 
0.89)

0.79 (0.70, 
0.85)

0.90 (0.83, 
0.95)

0.85 (0.80, 
0.90)

0.80 (0.72, 
0.86)

0.91 (0.84, 
0.96)

RIVM 0.77 (0.72, 
0.82)

0.75 (0.66, 
0.83)

0.79 (0.71, 
0.85)

0.78 (0.72, 
0.83)

0.75 (0.66, 
0.83)

0.81 (0.73, 
0.87)

RIVM 0.85 (0.80, 
0.89)

0.82 (0.74, 
0.88)

0.88 (0.80, 
0.93)

0.85 (0.80, 
0.90)

0.83 (0.75, 
0.89)

0.88 (0.80, 
0.93)

RKI 0.74 (0.68, 
0.80)

0.67 (0.59, 
0.75)

0.88 (0.79, 
0.93)

0.74 (0.67, 
0.79)

0.66 (0.58, 
0.73)

0.87 (0.78, 
0.93)

RKI 0.81 (0.75, 
0.86)

0.71 (0.63, 
0.77)

0.98 (0.93, 
1.00)

0.81 (0.75, 
0.86)

0.71 (0.63, 
0.78)

1.00 (nan, 
nan)

SU 0.71 (0.65, 
0.77)

0.66 (0.57, 
0.74)

0.78 (0.69, 
0.85)

0.72 (0.66, 
0.78)

0.67 (0.58, 
0.75)

0.79 (0.70, 
0.87)

SU 0.88 (0.83, 
0.92)

0.84 (0.76, 
0.90)

0.92 (0.86, 
0.96)

0.89 (0.84, 
0.93)

0.85 (0.77, 
0.91)

0.94 (0.87, 
0.97)

SZ 0.74 (0.69, 
0.80)

0.68 (0.60, 
0.76)

0.82 (0.73, 
0.88)

0.74 (0.69, 
0.80)

0.68 (0.60, 
0.76)

0.82 (0.73, 
0.88)

SZ 0.82 (0.77, 
0.87)

0.76 (0.68, 
0.83)

0.90 (0.83, 
0.94)

0.83 (0.78, 
0.88)

0.78 (0.69, 
0.85)

0.90 (0.83, 
0.94)

The exclusion areas are rectangles centered on the zero points with a width and height to exclude the 10%-quantile of the absolute values of nowcast or true values. 
There are 75 positive and 84 negative actual changes in the considered time period for horizon one day and 73 and 86 for the horizon of 14 days
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Fig. 13  Four-quadrant plots for the COVID-19 nowcast models ILM, 
RIVM, RKI, and ENS-MEAN and the horizons of one, seven, and 14 days. 
The spread in both directions increases with the horizon

Fig. 14  Conditional ATC plot and ATC ratio over exclusion area 
for the COVID-19 nowcast models ILM, RKI, RIVM, and ENS-MED 
for the horizon seven days. Note the different axis scalings of the ATC 
ratios for the two horizons. While the ENS-MED model has a rather low 
ATC ratio for small exclusion areas, it is increasing fast for larger exclusion 
areas. The RKI model is among the worst, except for the small negative 
predicted changes

Fig. 15  The reliability diagram for the COVID-19 nowcasting models ILM, 
RIVM, RKI, and ENS-MED for the horizon seven and 14 days. Additionally, 
the count of predicted probabilities for the horizons is shown. The 
reliability diagram bins are chosen according to the empirical quantiles 
of the predicted probabilities. As the models issue small or large 
probabilities of increase for the higher horizons, little information 
on the accuracy of moderate probability predictions is available
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