
Original Article

Thermal stratification prediction in reactor system based on CFD
simulations accelerated by a data-driven coarse-grid turbulence model

Zijing Liu a,b, Pengcheng Zhao a,*, Badea Aurelian Florin b, Xu Cheng b

a School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
b Institute of Applied Thermofluidics, Karlsruhe Institute of Technology, Karlsruhe, 76131, Germany

A R T I C L E I N F O

Keywords:
Thermal stratification
Data-driven turbulence model
Machine learning
OpenFOAM
TensorFlow

A B S T R A C T

Thermal stratification in large enclosures is an integral phenomenon to nuclear reactor system safety. Currently,
the effective model for thermal stratification utilizes a multi-scale method that integrates 1-D system-level and 3-
D CFD code, which offers thermal stratification details while supplying system-level data across various domains.
Nonetheless, harmonizing two codes that operate on different spatial and temporal scales presents a significant
challenge, with high-resolution CFD simulations requiring substantial computational resources. This study
introduced a data-driven coarse-grid turbulence model based on local flow characteristics at a significantly
coarser scale, targeting improved efficiency and accuracy in reactor safety analysis concerning thermal strati-
fication. A machine learning framework has been introduced to expedite the RANS-solving process by coupling
OpenFOAM and TensorFlow, which entails training a deep neural network with fine-grid CFD-generated data to
predict turbulent eddy viscosity. The feasibility of the developed data-driven turbulence model was proven
through the SUPERCAVNA experimental facility problem validation.

Nomenclature

ML Machine Learning ANN Artificial Neural
Network

OLHS Orthogonal Latin Hypercube
Sampling

FG Fine Grid

DNN Deep Neural Network CG Coarse Grid
FNN Feedforward Neural Network DD Data-Driven
CNN Convolutional Neural Network kNN k-Nearest-Neighbor
RANS Reynolds-averaged N-S equation LSTM Long Short Term

Memory

1. Introduction

Thermal stratification in expansive pools or enclosures represents a
critical phenomenon essential to nuclear reactor safety [1]. In advanced
light-water reactors, thermal stratification can occur within the passive
containment, thereby obstructing natural circulation [2]. In pool-type
reactors, thermal stratification can cause reactor physics and
thermal-hydraulic instabilities, leading to thermal fatigue that could
damage the reactor vessel and in-vessel components, and further impede

natural circulation [1,3,4]. Accurate prediction of pool temperature and
density distribution is imperative for these reactor systems’ safety ana-
lyses and design optimization.

Generally, methods for analyzing thermal stratification can be
categorized into two main groups. The first category encompasses
system-level methods offering rapid yet approximate computations,
whereas the second category includes CFD methods providing high-
resolution computations at considerable computational cost [1].
System-level codes utilize lumped-volume-based 0-D models or coarse
1-D models for thermal mixing, which struggle to accurately calculate
sudden temperature changes during transients due to complex 3-D ef-
fects or buoyancy phenomena, particularly at the start of natural con-
vection [5]. The feasibility of CFD modeling for the 3-D effects of
thermal stratification has been confirmed when a fine grid (FG) is
employed to resolve the substructure. The choice of the turbulence
model and the spatial mesh configuration around the thermal stratifi-
cation interface in the direction of gravity are crucial for CFD modeling
of thermal stratification. Moreover, the flow pattern within a large
enclosure influences the thermal stratification interface [6]. To effec-
tively model thermal stratification phenomena, a multi-scale method
has been proposed. This approach integrates 1-D system-level code and

* Corresponding author.
E-mail address: pengcheng.zhao@usc.edu.cn (P. Zhao).

Contents lists available at ScienceDirect

Nuclear Engineering and Technology

journal homepage: www.elsevier.com/locate/net

https://doi.org/10.1016/j.net.2024.10.050
Received 14 April 2024; Received in revised form 20 October 2024; Accepted 28 October 2024

Nuclear Engineering and Technology xxx (xxxx) xxx

Available online 3 November 2024
1738-5733/© 2024 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article as: Zijing Liu et al., Nuclear Engineering and Technology, https://doi.org/10.1016/j.net.2024.10.050

mailto:pengcheng.zhao@usc.edu.cn
www.sciencedirect.com/science/journal/17385733
https://www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2024.10.050
https://doi.org/10.1016/j.net.2024.10.050
http://creativecommons.org/licenses/by-nc-nd/4.0/

3-D CFD code, offering detailed thermal stratification insights while also
supplying system-level data in other areas. However, coupling two codes
operating at different spatial and temporal scales that can differ by or-
ders of magnitude remains a very challenging task, and the
high-resolution CFD simulation is computationally intensive [7].

Recent advances have explored super-resolution reconstruction as a
means to accelerate CFD computations. Fukami et al. proposed using
convolutional neural networks (CNNs) to enhance the spatial resolution
of low-resolution CFD data. This approach allows the reconstruction of
high-resolution flow fields from coarse input data, significantly reducing
computational costs while maintaining accuracy [8]. However, this
method requires extensive training data and may struggle with gener-
alization when applied to conditions different from the training dataset.
Another promising approach is hybrid computing, which integrates
machine learning with traditional CFD methods to accelerate the overall
simulation process. Jeon et al. developed a method that combines the
finite volume method with neural networks to reduce computation time
for unsteady CFD simulations while preserving accuracy [9]. This
method, however, can be complex to implement and may require sig-
nificant tuning depending on the specific flow conditions. In the context
of incompressible flow simulations, Ajuria Illarramendi et al. introduced
a pressure projection method that combines deep learning with tradi-
tional CFD solvers to accelerate the pressure correction step. This
method aims to reduce the computational load associated with solving
the pressure-velocity coupling, which is often the bottleneck in incom-
pressible flow simulations [10]. While this approach can significantly
speed up computations, its effectiveness depends on the quality of the
training data, and it may face challenges in robustness when applied to
scenarios outside the training range.

Data-driven turbulence models represent a growing area of research
focused on reducing the computational burden of CFD simulations by
leveraging machine learning techniques to predict turbulence parame-
ters, such as turbulent eddy viscosity, from coarse grid data. Tracey et al.
assessed the feasibility of creating a Feed-forward Neural Network
(FNN) based turbulence model designed to replicate the Spalart-
Allmaras model. The trained FNN model demonstrated proficiency in
simulating a broad range of flow conditions, from 2D flat plate boundary
layers to 3D transonic wings, even successfully handling flow scenarios
that were not encountered during training [11,12]. Sun et al. and Zhu
et al. further explored the use of FNNs as surrogate models for the
Spalart-Allmaras turbulence model. They employed the optimal brain
surgeon technique to identify the relevance of input features, effectively
performing a sensitivity analysis on the input neurons’ weights [13–15].
This approach allows the neural network to focus on the most impactful
features, improving model efficiency and accuracy. Chang et al. intro-
duced an empirical strategy using feature coverage mapping rooted in
t-distributed Stochastic Neighbor Embedding (t-SNE) to quantify data
coverage in machine learning-based closures. Through the application
to a backward-facing step flow, the study demonstrated that neural
networks could decipher inherent correlations in fluid data and be in-
tegrated into the RANS (Reynolds-Averaged Navier-Stokes) solving
mechanism to forecast flow attributes without compromising numerical
stability [16]. In their approach, training data derived exclusively from
RANS simulations utilizing the k-ε model and the machine learning
model aimed to estimate Reynolds stress, sourced from the spatial de-
rivatives of input velocity fields. During the conservation
equation-solving process, closure relations were continually extracted
from the machine learning model. Zhu et al. developed a turbulence
eddy viscosity model based on FNNs to address 3D thermal stratification
issues using a coarse-grid (CG) CFD code. The authors also tackled the
issue of imbalanced training datasets, suggesting over-sampling and
under-sampling techniques as potential solutions [17]. Iskhakov et al.
employed an invariant neural network architecture to model Reynolds
stress and turbulent heat flux in forced convection flows, making it
suitable for simulating flow in reactor downcomers. Their data-driven
model, validated under various fluid conditions relevant to advanced

reactors, showed promise without needing to adjust the turbulent
Prandtl number [18].

Maulik et al. introduced a turbulent eddy-viscosity surrogate
modeling framework for RANS simulations. By training neural networks
to predict steady-state turbulent eddy viscosity fields, this model
significantly reduced computational time while maintaining high ac-
curacy. Their framework, tested on various turbulence closure models
and validated on a 2D backward-facing step flow problem, demon-
strated robust performance across different grid refinements and ge-
ometries [19]. Liu et al. proposed a data-driven coarse mesh turbulence
model based on convolutional recurrent neural network (CNN) and long
short term memory (LSTM) model to predict turbulent eddy viscosity
distribution under transient conditions for transient analysis of thermal
mixing and stratification in sodium-cooled fast reactor [20]. In this
approach, the CNN functions as an encoder-decoder, compressing
high-dimensional turbulent eddy viscosity data into a
lower-dimensional feature space and then reconstruction. This reduces
the computational burden on the LSTM while preserving key physical
features. The LSTM captures the temporal evolution of turbulent eddy
viscosity. However, the CNN-LSTM model faces challenges in prediction
accuracy and generalization. The CNN’s use of convolutional kernels
often results in overly smooth predictions, limiting its ability to capture
sharp changes in turbulent eddy viscosity. Additionally, the encoding
and decoding process can lead to the loss of important local flow fea-
tures. Meanwhile, the LSTM’s memory effect can accumulate errors over
long-term predictions, and its tendency to smooth transitions can
introduce significant inaccuracies when dealing with the rapid changes
typical of turbulent flows.

This research presents a data-driven coarse-grid (CG) turbulence
model for thermal stratification designed to enhance the efficiency and
precision of reactor system safety analysis. The 3-D fluid conservation
equations are solved using a data-driven (DD) turbulence model, which
is based on local flow characteristics at a significantly coarser scale. This
approach ensures that the mesh configuration in the CFD code is
consistently aligned with the 1-D system-level code. To expedite the
RANSsolving process, a machine learning (ML) framework was devel-
oped, wherein an Artificial Neural Network (ANN) was trained using
substantial fine-grid CFD-generated data to predict turbulent eddy vis-
cosity. OpenFOAM was selected as the simulation framework, with
TensorFlow integrated as the ML framework, and the TensorFlow C API
was utilized to couple OpenFOAM with TensorFlow, enabling the
implementation of the DD turbulence model. The coupling is imple-
mented via a surrogate model prediction task for the turbulence eddy
viscosity in the context of the SUPERCAVNA experimental facility [21]
problem. Inspired by Liu’s approach of using CNN-LSTM to develop a
turbulent eddy viscosity surrogate model [20], we further enhanced
prediction accuracy, generalization ability, and training efficiency by
dividing the surrogate model into steady-state and transient. The
steady-state surrogate model was efficiently trained using deep neural
networks (DNN) and high-fidelity CFD data with various initial and
boundary conditions, enabling rapid and accurate prediction of turbu-
lent eddy viscosity with better generalization ability. For the transient
surrogate model, an improved LSTM architecture, accelerated by the
CUDA Deep Neural Network library (CuDNN), was adopted. This ar-
chitecture incorporates a Self-Attention mechanism and Bi-directional
LSTM (Bi-LSTM). The Self-Attention mechanism mitigates prediction
bias caused by residual memory effects in LSTM. At the same time,
Bi-LSTM enhances the model’s ability to capture sharp changes in tur-
bulent eddy viscosity by processing both forward and backward infor-
mation flows simultaneously. This paper focuses on the framework of
the data-driven turbulence model and the development of the
steady-state turbulent eddy viscosity surrogate model.

2. Methods

This section summarizes the theoretical basis and framework of the

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

2

DD turbulence model for thermal stratification analysis in the reactor
system. In subsection 2.1 we describe the RANS equation and the prin-
ciples of computational speed-up and CG setup in CFD code. In sub-
section 2.2 we discuss the key procedures and components of
construction of the DD turbulence model.

2.1. RANS equation

The Reynolds-averaged Navier-Stokes (RANS) equations represent a
time-averaged variant of the Navier-Stokes motion equations for fluid
flow. Stemming from the Reynolds decomposition principle, these
equations partition the instantaneous quantity into its time-averaged

and fluctuating segments. These equations are utilized to characterize
the behavior of turbulent flows [22]. The RANS equation is presented in
the following form.

∂ui

∂xi
=0 (1)

∂ui

∂t
+ uj

∂ui

∂xj
= f i −

1
ρ

∂p
∂xi

+ ν ∂2ui

∂xj∂xj
−

∂uʹ
iuʹ

j

∂xj
(2)

Where ui represents the filtered/averaged velocity, p denotes the
filtered/averaged pressure, and the overbar − signifies the filtering/
averaging operation.

Reynolds stress − uíuj́ represents a nonlinear term that necessitates an
additional model to close the RANS equation. Most methods address this
tensor with an explicit model, employing additional algebraic or dif-
ferential equations. According to Boussinesq’s turbulent eddy viscosity
theory, the mathematical relationship between Reynolds stress and the
strain rate is as follows:

− uʹ
iuʹ

j = νt

(
∂ui

∂xj
+

∂uj

∂xi

)

−
2
3

kδij (3)

Where νt is turbulent eddy viscosity, ui
’ is the fluctuating component of

velocity, k = 1
2uíuí is turbulence kinetic energy, δij is Kronecker delta.

This study aims to formulate a surrogate model for turbulent eddy
viscosity, thereby eliminating the requirement for solving supplemen-
tary closure equations. In the k-ε turbulence framework, νt (k,ε) char-
acterizes the turbulent eddy viscosity as a function of kinetic energy and
dissipation rate. Conversely, within the DD turbulence framework, the
turbulent eddy viscosity is expressed in terms of local system variables,
denoted as νt (V, T, p, …). By excluding k and ε from the conservation
equation, the computationally demanding challenges inherent in tradi-
tional CFD can be tackled using a coarser grid setup.

2.2. CFD simulation of thermal stratification

In this study, we demonstrate the applicability of the proposed RANS
simulation with an embedded DD turbulence model in a case study of
thermal stratification. The CEA’s SUPERCAVNA facility has served as
the experimental site for the analysis of sodium flow and thermal
stratification interaction. The facility includes a rectangular cavity with
heated sidewalls. The flow is driven by a cold jet located at the cavity’s
base, restricted by the wall. Experimental data on temperature distri-
bution inside the cavity are available for both steady-state and transient
flow scenarios. Fig. 1 depicts the 3-D computational domain of the

Fig. 1. SUPERCAVNA test section and experimental representation.

Table 1
Geometry parameters of the test section in SUPERCAVNA.

Symbol Parameter Value

H Height of cavity 3.2 m
L Length of cavity 1.6 m
D Depth of cavity 0.8 m
E Thickness of channel 0.03 m
Li Length of inlet channel 1.52 m
Lo Length of outlet channel 1.52 m

Table 2
SUPERCAVNA flow conditions.

Symbol Parameter Value

Tc Maximum temperature in the cavity 294.4 ◦C
T0 Global initial temperature 250 ◦C
Vfi Cavity mean inlet velocity 0.69 m/s
Tfi Cavity mean inlet temperature 250 ◦C
Th Heated wall mean temperature 303.1 ◦C

Table 3
Physical properties of sodium.

Parameter Correlation

Density, ρ, kg/m3 Р = 1015.03–0.23393 T - 0.305×10− 5T2

Thermal conductivity, λ, W/m/
K

λ = 110–0.0648 T + 1.16 × 10− 5T2

Dynamic viscosity, μ, Pa × s μ = 8.85141 × 10− 4 - 9.4 × 10− 7T
Thermal expansion coefficient,

β, 1/K
β = 2.523 × 10− 4 (T-523.15)

Specific heat capacity, cp, J/kg/
K

Cp = 1.63624845 × 103 - 0.8363338 T + 4.64113
× 10− 4T2

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

3

SUPERCAVNA test section [21]. The geometry parameters of the test
section in SUPERCAVNA facility are shown in Table 1. The flow con-
ditions are summarized in Table 2.

Simulations of the SUPERCAVNA test section are conducted using
the open-source CFD software, OpenFOAM. It serves as a reference tool
for estimating the accuracy of flow field predictions through CFD and
generating data for the development of a DD turbulence model.

In the 3-D steady-state modeling, the physical properties of sodium,
including density ρ, thermal conductivity λ, dynamic viscosity μ, ther-
mal expansion coefficient β and Specific heat capacity cp were utilized
according to the correlations listed in Table 3 [23]. A mesh comprising
approximately 1,163,200 trimmed hexahedral cells was generated using
blockMesh. A pressure outlet was implemented at the outlet channel of
the cavity, with all walls assumed to be adiabatic, except for the heating
wall. A constant turbulent Prandtl number, Prt = 0.9 [24], was utilized.
The buoyantFoam heat transfer solver was employed for flow and en-
ergy equations, with the standard k-ε model, utilized to depict system
turbulence. This model was employed alongside the
thermal-stratification model to account for the buoyancy production of
dissipation.

BuoyantFoam is a pressure-based solver designed for steady-state
and transient simulations of compressible and incompressible flows. It
handles laminar and turbulent, single-phase flows with temperature and
density variations. In incompressible flows modeling, the solver use the
Boussinesq approximation, which simplifies the computations related to
buoyancy by linearly relating the density changes in the fluid to tem-
perature changes, based on a reference temperature. The solver is
particularly accurate and efficient when the changes in density
compared to a reference density are small. The solver uses the SIMPLE
(Semi-Implicit Method for Pressure-Linked Equations) algorithm for
pressure-momentum coupling, augmented by under-relaxation tech-
niques to enhance convergence. It supports Multiple Reference Frames
(MRF) and porosity modeling and allows easy integration of passive
scalar transport equations and source terms.

The standard k-ε turbulence model strikes a balance between preci-
sion and robustness. It has demonstrated reasonable accuracy in past
simulations, especially those involving buoyant jets and the erosion of
stratified layers [25]. In the SUPERCAVNA facility, the standard k-ε
model was used to simulate thermal stratification, and the results
showed good agreement with experimental measurements. This

indicates that the standard k-ε model can provide reasonable predictions
in specific applications [18]. Additionally, non-linear eddy viscosity
modeling might further improve the quality of the simulation. For
transient scenarios, high-fidelity CFD simulations utilizing unsteady
Reynolds-Averaged Navier-Stokes (uRANS) were necessary for the
development of DD turbulence models.

2.3. Framework of data-driven turbulence model

Due to its nonparametric modeling nature, a DNN allows for the
adaptive assimilation of very complex data. Based on DNN techniques, a
surrogate model of turbulent eddy viscosity can be developed and in-
tegrated into OpenFOAM by incorporating the data-driven (DD) closure
into the physics-based solving process, i.e., the proposed framework of
the DD turbulence model. This framework builds upon the method
proposed by Maulik et al., who focused on constructing a surrogate
model for turbulent eddy viscosity using flow field characteristics for a
2D backward-facing step flow problem. This research extends this
approach to 3D natural convection thermal stratification problems.
Specifically, we construct the surrogate model for turbulent eddy vis-
cosity in the standard k-ε two-equation model, utilizing both flow and
temperature field characteristics. To further enhance the model’s
applicability, the k-Nearest Neighbor (kNN) algorithm has been
employed to transform high-fidelity data, enabling the turbulent eddy
viscosity surrogate model to be applied to coarse grid CFD calculations.
This method ensures that the surrogate model maintains high accuracy
even at a coarser setup, thereby significantly enhancing computational
efficiency. The key procedures and components of the framework,
including database construction, surrogate model training, coupling
OpenFOAM and TensorFlow software, testing, and evaluation, are dis-
cussed in detail. Fig. 2 presents the framework of the DD turbulence
model.

2.3.1. Database construction
The first step in developing a DD turbulence model is to build a

database for training and validation. This includes sampling inlet and
initial conditions, selecting flow features, performing high-fidelity CFD
simulations, and processing data.

For the generalization ability of the trained surrogate model of tur-
bulent eddy viscosity νt, the database should contain data for a variety of

Fig. 2. The framework of the data-driven turbulence model.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

4

operating conditions and the range of initial conditions should be wide.
We choose to keep the temperature of the heating wall as a fixed value,
and extract 22 groups of data from the velocity V and temperature T of
the inlet channel in each range [V: 0.4–1] m/s, [T: 453.15–553.15] K by
orthogonal Latin hypercube sampling (OLHS) method. The OLHS allows
for a random, uniform sampling of data points that represent almost the
entire design area. For given values of V and T, turbulent energy k and
dissipation rate ε, Reynolds number Re and Grashof number Gr are
calculated by Eqs. (4)–(7).

k=
3
2
(VI)2 (4)

ε=
C0.75

μ k1.5

l
(5)

Here, V represents the mean flow velocity, while I denotes the turbu-
lence intensity. The Cμ refers to a turbulence model constant, typically

assigned a value of 0.09, and l signifies the turbulent length scale.

Re=
ρUL

μ (6)

ρ denotes the fluid density, μ represents the dynamic viscosity, while U
and L correspond to the characteristic velocity and characteristic length
of the flow field, respectively.

Gr=
gβΔTL3

γ2 (7)

Here, g represents the gravitational acceleration due to Earth, β denotes
the coefficient of volume expansion, L signifies the vertical length, γ is
the kinematic viscosity, and ΔT represents the temperature differential
between the surface and the bulk medium.

The 17 sets of initial conditions by OLHS and 1 set of baseline con-
ditions constitute the training cases, which are shown in Table 4. The
remaining 4 sets of initial conditions by OLHS constitute the test cases,
as shown in Table 7. Based on the data in OpenFOAM simulations of
SUPERCAVNA with FG were conducted to generate the accurate data
sets of the database.

One of the important parts of the ML algorithm is the selection of
input and output features. The objective of this study is to establish a CG
closure for isotropic turbulent eddy viscosity, aimed at supporting
steady-state CFD simulations of reactor systems with a range of inlet and
boundary conditions. The ideal DNN model should enable a field-to-field
mapping that can be smoothly integrated into OpenFOAM. For this
research, we have adopted a field-to-field mapping method that uses
local flow features as input. The input and output features identify the
region in CFD simulation domain space through mesh-centered co-
ordinates and the initial conditions. Thus, 3 velocity components (Vx,
Vy, Vz), and temperature T from the initial phase of CFD simulation, as
well as the mesh-centered coordinates (Cx, Cy, Cz), were selected as
input features. The turbulent eddy viscosity vt from the steady-state of
CFD simulation was selected as the output feature. The buoyantFoam
heat transfer solver was employed to resolve the RANS equations. The
pressure effects are indirectly captured through the velocity field due to
the inherent coupling in the buoyantFoam solver. In thermal stratifica-
tion phenomena, buoyancy effects resulting from temperature gradients
are the dominant forces driving the flow. These effects are primarily
captured by the temperature and velocity fields. Since pressure varia-
tions in such scenarios are often secondary to the thermal buoyancy
effects, the pressure term can be omitted from the training input fea-
tures. This omission helps to reduce the computational complexity in
surrogate modeling and improve training efficiency.

Data processing is an important part of building ML databases,
mainly including data transformation and scaling. High-resolution
nonuniform mesh-defined physical quantity fields are unsuitable for
training the proposed ML-based model due to 2 main challenges. Firstly,
the unequal data weighting from nonuniform mesh grids complicates
neural network training, which typically attributes equal importance to
each data point. Secondly, the high-resolution configuration clashes
with the aim of establishing a consistent relationship for a CG 3-D CFD

Table 4
Inlet and initial conditions of SUPERCAVNA for training cases.

Training
case

V [m/
s]

T [K] k ε Re Gr

0 (baseline) 0.69 523.15 1.79E-
03

1.55E-
04

2.38
EE+06

2.50
E+12

1 0.42 520.89 6.72E-
04

3.58E-
05

1.45
E+06

2.59
E+12

2 0.45 484.37 7.60E-
04

4.31E-
05

1.43
E+06

3.81
E+12

3 0.49 534.14 8.86E-
04

5.41E-
05

1.71
E+06

2.03
E+12

4 0.54 499.38 1.10E-
03

7.53E-
05

1.78
E+06

3.36
E+12

5 0.57 532.74 1.23E-
03

8.82E-
05

2.01
E+06

2.10
E+12

6 0.58 524.83 1.27E-
03

9.29E-
05

2.01
E+06

2.44
E+12

7 0.62 458.33 1.43E-
03

1.11E-
04

1.87
E+06

4.44
E+12

8 0.67 453.37 1.68E-
03

1.42E-
04

2.02
E+06

4.55
E+12

9 0.72 473.34 1.95E-
03

1.76E-
04

2.25
E+06

4.10
E+12

10 0.75 481.01 2.13E-
03

2.02E-
04

2.39
E+06

3.90
E+12

11 0.78 552.63 2.27E-
03

2.22E-
04

2.86
E+06

1.12
E+12

12 0.81 463.79 2.47E-
03

2.52E-
04

2.49
E+06

4.32
E+12

13 0.83 495.94 2.58E-
03

2.69E-
04

2.70
E+06

3.47
E+12

14 0.89 512.46 3.00E-
03

3.38E-
04

3.01
E+06

2.91
E+12

15 0.92 506.78 3.16E-
03

3.65E-
04

3.06
E+06

3.11
E+12

16 0.99 539.53 3.69E-
03

4.61E-
04

3.54
E+06

1.78
E+12

17 0.92 541.79 3.19E-
03

3.70E-
04

3.31
E+06

1.68
E+12

Table 5
KS test results for different coarse grid numbers.

Dataset Grid number T
KS statistic

T p-value Vz KS statistic Vz p-value vt KS statistic vt

p-value

Channel-1 68,896 0.027972 0.828674 0.108891 0.000014 0.177822 0.030774
Channel-2 137,792 0.014985 0.999875 0.100899 0.000074 0.076472 0.341717
Channel-3 275,584 0.008697 0.999945 0.086723 0.001277 0.041958 0.412983
Channel-4 551,168 0.005994 1.000000 0.079920 0.003332 0.034965 0.573537
Cavity-1 68,896 0.011554 0.983459 0.066922 0.011129 0.113892 0.014489
Cavity-2 137,792 0.009972 0.995139 0.055775 0.046159 0.050796 0.071435
Cavity-3 275,584 0.009184 0.998069 0.044538 0.195781 0.038835 0.252781
Cavity-4 551,168 0.008279 0.999385 0.037824 0.309272 0.031175 0.512714

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

5

code integrated with the system code. To address these challenges, the k-
Nearest-Neighbor (kNN) algorithm from the scikit-learn ML library [26]
is employed to translate the original CFD outcomes into uniform CG
data. During this transformation, for a specific point A in the uniform CG
structure, the kNN algorithm identifies a set number of nearest points
from the nonuniform FG to point A. Subsequently, it forecasts point A’s
value using a distance-weighted average derived from these neighboring
points’ values. Fig. 3 shows the transition from a nonuniform FG to a

uniform CG.
As preparation for the DNN model training, the local flow features

(velocity components Vx, Vy, Vz, temperature T, pressure p, turbulent
eddy viscosity vt) of SUPERCAVNA domain with 1,163,200 cells were
converted to the CG uniform data with 68,896 cells by using a kNN al-
gorithm. The CG uniform data, comprising both input and output fea-
tures, was normalized to have a unit mean and zero variance for every
flow feature, facilitating smoother training.

We verified our data preprocessing approach’s effectiveness by
conducting qualitative and quantitative comparisons between the orig-
inal CFD outputs and the processed kNN results. To analyze the con-
sistency between the transformed coarse grid data and the fine grid data,
we adopted the Kolmogorov-Smirnov (KS) test, the results of the KS test
are presented in Table 5. The KS statistic is the maximum absolute dif-
ference between the two cumulative distribution functions (CDFs). The
smaller the KS statistic, the more similar the distributions of the two
samples. The p-value is calculated based on the KS statistic, representing
the probability of observing the current or more extreme KS statistic
under the null hypothesis. The larger the p-value, the more substantial
the evidence supporting the null hypothesis, indicating that the two
sample distributions may be the same.

Table 5 shows that a higher coarse grid number results in greater
consistency with the channel and cavity fine grid data. This is evidenced
by the lower KS Statistics and higher p-values in datasets with higher
grid number. Increasing the grid number improves the detail and ac-
curacy of data transformation by the kNN algorithm, leading to distri-
butions that are more aligned with the high-resolution channel and
cavity fine grid data.

Fig. 4 illustrates CG uniform data with 68,896 cells of 3 pivotal
physical parameters: the velocity component Vz, temperature T, and

Fig. 3. Conversion between nonuniform fine grid and uniform coarse grid.

Fig. 4. Flow features comparison of original CFD solution and kNN algorithm b) Surrogate model training.

Table 6
Deep neural network parameters.

Parameter Value

Hidden layer number 6
Neurons number 80
Batch_size 1024
Epochs number 500
Optimizer Adam
Learning rate 0.001
Validation split 0.1
Activation function ReLU
Loss function mean squared error

Table 7
Comparison of calculation time of 2 turbulence models.

Parameters Standard k-ε model Data-driven turbulence model

Mesh quantity 1,163,200 68,896
CPU type Intel Core-i7 Intel Core-i7
Iteration number 200 25
Calculation time 896 core-hours 2 core-hours

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

6

turbulent eddy viscosity vt. The data obtained from the kNN algorithm
on the CG aligns well with the high-resolution CFD data along the
cavity’s centerline. But the velocity at the entrance of the channel and
the vt at the bottom of the cavity is slightly different from the FG CFD
data because the data at these locations are more discrete. This

observation substantiates that data fidelity is maintained during the
transition from a FG nonuniform configuration to a CG uniform one.

In this study, we detailed our input and output features. The DD
turbulence model identifies deployment regions using inputs such as
finite-volume cell-centered coordinates and initial conditions. This
study focuses on training a ML surrogate model, as described below.

M1 : Vx(x),Vy(x),Vz(x),T(x),Cx(x),Cy(x),Cz(x)→νt(x) (8)

Here x is the mesh point, Vx(x),Vy(x), Vz(x),T(x) indicate the velocity
components derived from the initial conditions, and Cx(x),Cy(x),Cz(x)
denote the mesh-centered coordinates within the domain. The output,
νt(x), signifies the steady-state turbulent eddy viscosity, obtainable from
different RANS closure methods.

TensorFlow [27], a renowned ML library, facilitates the development
of intricate data-driven techniques, including fully connected neural
networks and convolutional neural networks. We utilized it to train our
surrogate model. The architecture of the DNN was automatically
determined using RandomizedSearchCV [28], which explored various
configurations to identify the optimal structure. The final DNN consists
of 6 hidden layers, each containing 80 neurons, the structural parame-
ters of the DNN model are shown in Table 6. The activation function
used is rectified linear units (ReLU), and the loss function is Mean
Squared Error (MSE) as defined by Eq. (9). In addition to MSE, the
performance of the optimized model is assessed using the R2 value,
computed as per Eq. (10), where an R2 value approaching 1 indicates a
strong regression fit of the model. We trained the DNN model using the
entire dataset for 500 epochs with a batch size of 1024. The parameters

Fig. 5. Convergence while training the DNN model.

Fig. 6. Turbulent eddy viscosity predicted by the standard k-ε model, CNN,
linear regression and polynomial regression at X = 2.32 m.

Fig. 7. Temperature field with k-ε model (left) and data-driven turbulence model (right).

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

7

of the DNN, including weights and biases, were optimized using the
Adam optimizer [29], which was initialized with a learning rate of
0.001. Adam is an adaptive learning rate optimization algorithm that
effectively combines the benefits of both AdaGrad and RMSProp. By
maintaining per-parameter learning rates and leveraging estimates of
the first and second moments of the gradients, Adam ensures efficient
and robust optimization throughout the training process. Of the total
dataset, 90 % was allocated for training, while the remaining 10 % was
reserved for validation.

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (9)

R2 =1 −

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (10)

Where n is the number of predictions, yi denotes the actual value of the
data, ŷi signifies the value predicted by the model, yi is the average true
value across the data.

In the DNN training process, an early-stopping criterion was
employed, ceasing the training once the observed metric exhibited no
further improvement. This approach aims to minimize the loss function,
ensuring the derivation of an optimal model. Upon determining and
training the optimal model, its exportation to non-Python environments
necessitates the utilization of a function to stabilize the model weights,
thereby fixing all trainable parameters and operations inherent to the
DNN architecture. Consequently, the finalized optimal DNN model was
preserved in an h5 file format.

2.3.2. Coupling OpenFOAM and Tensorflow
The coupling of OpenFOAM and TensorFlow should be implemented

to successfully invoke the surrogate model to predict turbulent viscosity
based on flow features. The coupling mechanism is described below.

Fig. 8. Velocity field with k-ε model (left) and data-driven turbulence model (right).

Fig. 9. T comparison of experimental and CFD.

Fig. 10. V comparison of CFD results with k-ε model results (case 0) and data-
driven turbulence model (case 0).

Table 8
Inlet and initial conditions of SUPERCAVNA for test cases.

test
case

U [m/
s]

T [K] k ε Re Gr

1 0.52 515.02 9.95E-
04

6.44E-
05

1.74
E+06

2.82
E+12

2 0.65 472.67 1.59E-
03

1.30E-
04

2.03
E+06

4.11
E+12

3 0.87 492.27 2.82E-
03

3.07E-
04

2.80
E+06

3.58
E+12

4 0.95 546.28 3.41E-
03

4.10E-
04

3.46
E+06

1.45
E+12

5 0.44 480.31 7.17E-
04

3.94E-
05

1.38
E+06

3.92
E+12

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

8

The procedure to couple OpenFOAM with TensorFlow leverages the
TensorFlow C API. Initially, the trained DNN model was converted from
the h5 format to the protobuffer (pb) format to facilitate its export to a
C++ environment. Subsequently, the pb file was loaded and integrated
with OpenFOAM data structures during the solution process. Next, using
the TensorFlow C API, a graph can be loaded and inferences executed
within standard C++ code. The DNN model, formatted in pb, is
importable to OpenFOAM. Then, a new turbulence model was modified
and compiled, linking to TensorFlow C dynamic libraries, which can
predict turbulence eddy viscosity, replacing the k and ε equation solu-
tions. Lastly, a new buoyantFoam solver was modified and compiled to
match the turbulence model and call for a ML prediction within
OpenFOAM.

3. Results and discussion

In the subsequent section, we delineate the efficacy of our ML
approach using a priori analyses and then discuss the results stemming
from its application as a DD turbulence model.

3.1. Machine learning

We delineated the efficacy of our ML approach using statistical
performance metrics. The convergence trajectory for the ML frameworks
is depicted in Fig. 5. After 64 epochs, a satisfactory parameterization of
the input-output relationship was achieved, prompting the termination
of the training via the early-stopping criteria. For the surrogate model of

Fig. 11. Re and Gr of training and test cases.

Fig. 12. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 1.

Fig. 13. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 1.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

9

turbulence eddy viscosity, the fully trained DNN achieves the mean
squared error MSE = 0.0026 and a coefficient of determination of R2 =

0.997 for training data sets, the MSE = 0.0045 and R2 = 0.996 for
validation data sets, indicating a successful parameterization.

To further explore efficient and accurate methods for predicting
turbulent eddy viscosity, we employed DNN, linear regression, and
polynomial regression to establish a mapping between the flow field and

temperature field features and the turbulent eddy viscosity distribution.
The predictions generated by these three methods were compared with
the turbulent eddy viscosity obtained using the standard k-ε model with
fine-grid CFD, as illustrated in Fig. 6. The results indicate that the DNN
model effectively captures the complex variation trends of turbulent
eddy viscosity, particularly in regions with low turbulent eddy viscosity,
where the DNN’s predictions closely align with those of the standard k-ε
model. In regions with greater height, there is some deviation between
the DNN prediction curve and the reference curve. Overall, the DNN
model demonstrates strong learning capabilities, effectively handling
the nonlinear relationships inherent in turbulent eddy viscosity. In
contrast, the linear regression model fails to adequately capture the
nonlinear characteristics of turbulent eddy viscosity, particularly in re-
gions with high turbulent eddy viscosity, where its predictions are
significantly lower than the reference results obtained from the standard
k-ε model. This indicates that linear regression is unsuitable for pre-
dicting complex turbulent characteristics. The polynomial regression
model of order 5, while performing better than linear regression in
capturing local variations in turbulent eddy viscosity, exhibits over-
fitting in regions with low turbulent eddy viscosity, resulting in a sig-
nificant deviation from the reference results. The above results indicate
that the νt magnitude can be captured accurately by the predictions of
the DNN surrogate model.

3.2. Data-driven turbulence model evaluation

Since the aim of this framework was to develop a DD turbulence
model to replace the twoequation model and implement CG CFD
simulation, it was a natural choice to validate the DD turbulence model
by comparing temperature and velocity field propagated from DNN
model and that of standard k-ε model.

In assessing the ML model’s performance, CFD results were extracted
for both qualitative and quantitative analyses against the model’s pre-
dictions. For this study, data from two planes were analyzed qualita-
tively, whereas data from two specific lines (including a vertical line
aligned with the domain’s center) were used for quantitative analyses.

The OpenFOAM simulation results with the standard k-ε model and
with 1,163,200 cells and those of the DD turbulence model with 68,896
cells of baseline case (case 0) can be seen in Figs. 7 and 8, respectively.
These figures showcase both the velocity magnitude and temperature
distributions. Within the SUPERCAVNA test section, when liquid sodium
is introduced into the cavity, a vertically spreading wall-bounded jet
forms. A portion of this jet leaves the cavity via the outlet channel, while
the remaining portion impacts the right wall, creating a recirculation
zone. The size of this zone varies based on the sodium injection rate at
the inlet and the intensity of thermally stratified layers forming at the
cavity’s top due to the temperature gradient established by the heating
wall.

Fig. 14. T & V comparison in test case 1.

Fig. 15. vt comparison in test case 1.

Fig. 16. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 2.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

10

The temperature and velocity distributions in training case 0 (refer to
Table 4), both on fine and CGs, are approximately in the same range. For
training case 0, both the predictions from the standard k-ε model and the
DD turbulence model show the formation of thermally stratified layers
in the cavity’s upper region, indicating significant buoyancy effects due
to temperature gradients from the heated wall. In both scenarios, the jets

tend to ascend within the cavity as they approach the right wall, a
pronounced thermal barrier prevents further intrusion into the upper
cavity. Moreover, as depicted by the profiles and temperature distribu-
tion fields, temperatures remain approximately constant horizontally
across various vertical positions, post the recirculation zone. Such a
trend signifies pronounced thermal stratification layers, effectively
captured in the CG OpenFOAM simulation utilizing the DD turbulence
model.

A comparison between the standard k-ε model, the DD turbulence
model, and the experimental temperature profiles at locations X = 1.62
m is given in Fig. 9. For case 0, the FG CFD simulations with the standard
k-ε model are in good agreement with the experimental data. The CG
CFD with DD turbulence model predicts the temperature profiles along
the height of the cavity; some differences appear between FG CFD with
the standard k-ε model and experimental results; the most significant
difference occurs above the thermal stratification layer, while the flow
in the lower side of the cavity is well predicted. The CG CFD data profiles
differ by up to 7 ◦C from the experimental data, while they differ by up to
5 ◦C from the FG CFD data.

There are 4 main sources of the above errors: ① CG setup when
solving the conservation equations, ② conversion from FG data to CG
data by kNN algorithm, ③ training errors in the DNN model, ④ errors of
the data based on solving the RANS equations. In follow-up research, we
will consider reducing the error of the simulation results of the DD
turbulence model by the following approaches. ① increasing the num-
ber of CG appropriately, ② improving the training accuracy of the DNN
model, ③ adding some of the available experimental data in the training
procedure.

Fig. 10 presents a comparison of the velocity component profiles
between the standard k-ε model and the DD turbulence model at X =
1.62 m. The results from CG CFD simulations using the DD turbulence
model and FG CFD simulations with the standard k-ε model show good
agreement. There is only a slight difference in the velocity component in
the middle of the cavity. This indicates that the CG CFD with the DD
turbulence model has a good prediction accuracy for the velocity
component.

3.3. Speedup from data-driven turbulence model

The presented framework offers a significant advantage by elimi-
nating the need for an extra partial differential equation in computing νt.
Upon training the DNN model, the steady-state turbulent eddy viscosity
predictor can be immediately employed at the onset of the simulation,
taking into account the initial conditions. As a result, only the equations
pertaining to pressure and velocity require iterative resolution for
convergence. Additionally, adopting a CG configuration enhances the
computational efficiency of the CFD simulation.

All numerical experiments were conducted using OpenFOAM in

Fig. 17. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 2.

Fig. 18. T & V comparison in test case 2.

Fig. 19. vt comparison in test case 2.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

11

parallel on an Intel Core-i7 processor. For a 1,163,200-cell mesh, the
CFD simulations using the standard k-ε model took about 896 core-
hours, converging in 200 iterations with the steady-state solver. For a
68,896-cell mesh, the CFD simulations using the DD turbulence model
took roughly 2 core-hours, reaching convergence in just 25 iterations.

3.4. Generalization ability of data-driven turbulence model

The generalization ability is the key to determining whether the DD

turbulence model could adapt properly to new data and be applied to
various conditions in CFD simulations. In this work, the generalization
ability of the DD turbulence model is evaluated with 5 steady-state test
cases, with inlet and initial conditions as shown in Table 8. The fluid
velocity and temperature of the inlet channel in these 5 test cases (from
Table 8), further to be denoted as cases 1–5, are different from those 18
training cases (from Table 4). The Reynolds numbers and Grashof
numbers of the 18 training cases and 5 test cases basically present a

Fig. 20. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 3.

Fig. 21. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 3.

Fig. 22. T & V comparison in test case 3.

Fig. 23. vt comparison in test case 3.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

12

linear distribution, as shown in Fig. 11. The 5 test cases are evenly
selected according to the Reynolds number and the Grashof number to
evaluate the prediction performance of the DD turbulence model for
different fluid flow patterns.

Following the approach used for the baseline case evaluation, we
obtained the temperature, horizontal velocity component, and turbulent
viscosity field for cases 1–5. Steady-state snapshots from both prediction
methods are utilized for comparison. Figs. 12–31 illustrate the qualita-
tive and quantitative comparisons.

Figs. 15, 19, 23, 27 and 31 show the turbulent eddy viscosity vt
comparisons for test cases 1–5 at the horizontal location X = 2.32m.
From the figures, we note that the turbulent eddy viscosity field pre-
dicted by the DD turbulence model aligns well with the trends and
distributions of the standard k-ε model for cases 1–3, despite minor
acceptable discrepancies. However, in case 4, the predicted turbulent
eddy viscosity is inconsistent with the calculation results of the standard
k-ε model, especially at the location around the height of 2.0 m; the

Fig. 24. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 4.

Fig. 25. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 4.

Fig. 26. T & V comparison in test case 3.
Fig. 27. vt comparison in test case 3.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

13

prediction seriously underestimated the turbulent eddy viscosity. The
reason is that the fluid flow pattern of test case 4 is significantly different
from the previous 3 cases, and only 2 training cases have flow patterns
similar to case 4. The imbalance of training data leads to a large pre-
diction deviation of turbulent eddy viscosity in case 4. In order to test the
extrapolation ability of the DD turbulence model, case 5 with Reynolds
number outside the training set was simulated. In case 5, the turbulent
eddy viscosity predicted by the DD turbulence model and calculated by
the standard k-ε model exhibit similar overall trends, but with notable

differences in the middle height regions (0.5–1.5m) of the cavity, the
former displays higher oscillations compared to later. The above results
indicate that under the condition of sufficient and balanced training
data, the DD turbulence model has the ability to cope with moderately
perturbed inlet and initial conditions. Despite local fluctuations and
differences, the overall trend consistency and the gradual convergence
in various regions indicate that the DD turbulence model possesses a
certain degree of extrapolation capability to predict the turbulent eddy

Fig. 28. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 5.

Fig. 29. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 5.

Fig. 30. T & V comparison in test case 5.

Fig. 31. vt comparison in test case 5.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

14

viscosity.
Figs. 14, 18, 22, 26 and 30 display for the cases 1–5 corresponding

line plots for the horizontal velocity component and temperature mag-
nitudes at the location X = 2.32 m. We can observe a good agreement of
the horizontal velocity component between the DD turbulence model
and the standard k-ε model in all test cases, because the velocity and
pressure solvers remain intact and the convergence fields maintain their
respective symmetries during CFD simulations with the DD turbulence
model.

The figures show that the temperature field modeled with the DD
turbulence model is generally consistent with the standard k-ε model in
terms of trend and distribution across all five test cases. In cases 1–3, the
maximum temperature difference consistently occurs above the thermal
stratification interface, reaching 7.2 K, 14.4 K, and 10.5 K, respectively.
In case 4, the thermal stratification phenomenon is absent, and the
maximum temperature difference of 1.2 K is observed in the lower part
of the cavity. In case 5, the location of the maximum temperature dif-
ference aligns with the position of the largest fluctuation in turbulent
eddy viscosity, which is in the middle height region of the cavity. The
maximum temperature difference in case 5 is 11.9 K.

The evaluation results demonstrate that the DD turbulence model
can generalize to inlet and initial conditions. When the training data is
sufficient and balanced, the DNN model’s generalization ability is high
enough to make predictions for any untrained case at the level of
training cases.

4. Conclusion

In this research, we proposed a DD modeling approach based on deep
neural networks to develop data-driven closure to support CG multi-
dimensional modeling in CFD code and system code. We developed a
framework of a DD turbulence model, which includes database con-
struction, surrogate model training, coupling OpenFOAM and Tensor-
flow, testing and evaluation. We demonstrated the feasibility of this
approach with a DD turbulence model applied during steady-state sim-
ulations that involve thermal mixing and stratification phenomena in
the SUPERCAVNA test section. The proposed DD turbulence model uses
a CG setup for computational efficiency and is trained on FG CFD data to
maintain high accuracy. The DD turbulence model has a certain gener-
alization ability to adapt to different inlet and initial conditions for
steady-state OpenFOAM simulation. We will further investigate DD
turbulence models suitable for transient conditions, focusing on pre-
dicting the temporal evolution and dependencies of turbulent eddy
viscosity distributions. To achieve this, the temporal sequence predic-
tion algorithms will be incorporated to train surrogate models. Addi-
tionally, to improve the generalization capability of data-driven
turbulence models across different geometries, the following strategies
will be investigated: ① non-dimensionalization of input features:
Transform physical quantities into dimensionless numbers to stan-
dardize data from various geometries and flow conditions, ensuring
accuracy and robustness. ② geometric parameterization: include geo-
metric parameters as input features to help the model adapt to different
geometries, enhancing flexibility without extensive retraining. ③
transfer learning: use a pre-trained model on a specific geometry and
fine-tune it with a smaller dataset from a new geometry to reduce the
need for extensive training data and computational resources, enabling
quick adaptation to different geometries.

CRediT authorship contribution statement

Zijing Liu: Writing – original draft. Pengcheng Zhao: Funding
acquisition, Conceptualization. Badea Aurelian Florin: Resources,
Investigation. Xu Cheng: Writing – review & editing, Resources.

Acknowledgement

This work is supported by the Joint Fund of the Ministry of Education
for Equipment Pre-research (Grant No. 8091B032243), China Scholar-
ship Council (grant no. 202008430068).

References

[1] Zeyun Wu, et al., A status review on the thermal stratification modeling methods
for Sodium-cooled Fast Reactors, Prog. Nucl. Energy 125 (2020) 103369.

[2] N. Aksan, J.H. Choi, Y.J. Chung, et al., Passive Safety Systems and Natural
Circulation in Water Cooled Nuclear Power Plants, International Atomic Energy
Agency (IAEA), 2009, p. 159. IAEA-TECDOC-1624.

[3] Zhao Haihua, Per F. Peterson, An Overview of Modeling Methods for Thermal
Mixing and Stratification in Large Enclosures for Reactor Safety Analysis, 2010.

[4] Sarah Morgan, et al., Thermal stratification modeling for sodium-cooled fast
reactors: a status update[C], in: International Conference on Nuclear Engineering,
vol. 51531, American Society of Mechanical Engineers, 2018 V009T16A078.

[5] T.H. Fanning, et al., The sas4a/SASSYS-1 safety analysis code system, ANL/NE-16/
19, in: Nuclear Engineering Division, Argonne National Laboratory, 2017 (ANL).

[6] Shibahara Makoto, Takashi Takata, Akira Yamaguchi, Numerical study on thermal
stratification phenomena in upper plenum of LMFBR “MONJU”, Nucl. Eng. Des.
258 (2013) 226–234.

[7] David Pialla, et al., Overview of the system alone and system/CFD coupled
calculations of the PHENIX Natural Circulation Test within the THINS project,
Nucl. Eng. Des. 290 (2015) 78–86.

[8] K. Fukami, K. Fukagata, K. Taira, Super-resolution reconstruction of turbulent
flows with machine learning, J. Fluid Mech. 870 (2019) 106–120.

[9] J. Jeon, J. Lee, S.J. Kim, Finite volume method network for the acceleration of
unsteady computational fluid dynamics: non-reacting and reacting flows, Int. J.
Energy Res. 46 (8) (2022) 10770–10795.

[10] E. Ajuria Illarramendi, A. Alguacil, M. Bauerheim, et al., Towards an hybrid
computational strategy based on deep learning for incompressible flows[C], AIAA
Aviation 2020 Forum (2020) 3058.

[11] S.R. Allmaras, F.T. Johnson, Modifications and Clarifications for the
Implementation of the Spalart-Allmaras Turbulence model[C]//Seventh
International Conference on Computational Fluid Dynamics (ICCFD7), 2012,
p. 1902.

[12] Brendan D. Tracey, Karthikeyan Duraisamy, Juan J. Alonso, A Machine Learning
Strategy to Assist Turbulence Model development[C], 53rd AIAA aerospace
sciences meeting, 2015, p. 1287.

[13] Liang Sun, A.N. Wei, L.I.U. Xuejun, et al., On developing data-driven turbulence
model for DG solution of RANS, Chin. J. Aeronaut. 32 (8) (2019) 1869–1884.

[14] Linyang Zhu, et al., Machine learning methods for turbulence modeling in subsonic
flows around airfoils, Phys. Fluids 31 (1) (2019) 015105.

[15] Jinhua Xu, Daniel WC. Ho, A node pruning algorithm based on optimal brain
surgeon for feedforward neural networks[C]//Advances in Neural Networks-ISNN
2006, in: Third International Symposium on Neural Networks, Chengdu, China,
May 28-June 1, 2006, Proceedings, Part I 3, Springer Berlin Heidelberg, 2006,
pp. 524–529.

[16] Chang Chih-Wei, Jun Fang, T. Dinh Nam, Reynolds-averaged turbulence modeling
using deep learning with local flow features: an empirical approach, Nucl. Sci. Eng.
194 (8–9) (2020) 650–664.

[17] Y. Zhu, R. Hu, et al., Development of a data-driven turbulence model for 3d
thermal stratification simulation during reactor transients, NURETH-18, American
Nuclear Society, 2019, pp. 2223–2234.

[18] A.S. Iskhakov, C.K. Tai, I.A. Bolotnov, et al., Data-driven RANS turbulence closures
for forced convection flow in reactor downcomer geometry, Nucl. Technol. 210 (7)
(2024) 1167–1184.

[19] R. Maulik, H. Sharma, S. Patel, B. Lusch, E. Jennings, A turbulent eddy-viscosity
surrogate modeling framework for Reynolds-averaged Navier-Stokes simulations,
Comput. Fluid 227 (2021) 104777.

[20] Y. Liu, R. Hu, A. Kraus, et al., Data-driven modeling of coarse mesh turbulence for
reactor transient analysis using convolutional recurrent neural networks, Nucl.
Eng. Des. 390 (2022) 111716.

[21] U. Bieder, G. Ziskind, A. Rashkovan, CFD analysis and experimental validation of
steady state mixed convection sodium flow, Nucl. Eng. Des. 326 (2018) 333–343.

[22] Reynolds O.IV. On the dynamical theory of incompressible viscous fluids and the
determination of the criterion[J]. Phil. Trans. Roy. Soc. Lond., 1895 (186): 123-
164.].

[23] Werner Pfrang, Dankward Struwe, Assessment of Correlations for Heat Transfer to
the Coolant for Heavy Liquid Metal Cooled Core designs[M], FZKA, Karlsruhe, BW,
2007.

[24] Ling Zou, Daniel Nunez, Rui Hu, Development and Validation of SAM Multi-
Dimensional Flow Model for Thermal Mixing and Stratification Modeling[R],
Argonne National Lab.(ANL), Argonne, IL (United States), 2020.

[25] A. Kraus, S. Aithal, A. Obabko, et al., Erosion of a large-scale gaseous stratified
layer by a turbulent jet-simulations with URANS and LES approaches[C]//16th
international topical meeting on nuclear reactor thermal hydraulics. NURETH
2015, American Nuclear Society, 2015, pp. 1448–1461.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: machine learning in
Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

15

http://refhub.elsevier.com/S1738-5733(24)00538-2/sref1
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref1
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref2
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref2
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref2
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref3
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref3
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref4
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref4
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref4
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref5
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref5
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref6
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref6
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref6
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref7
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref7
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref7
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref8
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref8
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref9
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref9
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref9
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref10
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref10
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref10
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref11
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref11
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref11
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref11
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref12
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref12
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref12
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref13
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref13
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref14
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref14
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref15
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref15
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref15
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref15
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref15
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref16
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref16
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref16
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref17
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref17
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref17
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref18
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref18
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref18
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref19
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref19
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref19
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref20
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref20
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref20
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref21
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref21
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref23
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref23
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref23
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref24
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref24
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref24
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref25
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref25
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref25
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref25
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref26
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref26

[27] M. Abadi, A. Agarwal, P. Barham, et al., Tensorflow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems, 2016 arXiv preprint arXiv:1603.04467.

[28] P. Probst, M.N. Wright, A.L. Boulesteix, Hyperparameters and tuning strategies for
random forest, Wiley Interdisciplinary Reviews: Data Min. Knowl. Discov. 9 (3)
(2019) e1301.

[29] Diederik P. Kingma, Jimmy Ba. Adam: a method for stochastic optimization, arXiv
preprint arXiv:1412. (2014) 6980.

Z. Liu et al. Nuclear Engineering and Technology xxx (xxxx) xxx

16

http://refhub.elsevier.com/S1738-5733(24)00538-2/sref27
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref27
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref28
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref28
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref28
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref29
http://refhub.elsevier.com/S1738-5733(24)00538-2/sref29

	Thermal stratification prediction in reactor system based on CFD simulations accelerated by a data-driven coarse-grid turbu ...
	1 Introduction
	2 Methods
	2.1 RANS equation
	2.2 CFD simulation of thermal stratification
	2.3 Framework of data-driven turbulence model
	2.3.1 Database construction
	2.3.2 Coupling OpenFOAM and Tensorflow

	3 Results and discussion
	3.1 Machine learning
	3.2 Data-driven turbulence model evaluation
	3.3 Speedup from data-driven turbulence model
	3.4 Generalization ability of data-driven turbulence model

	4 Conclusion
	CRediT authorship contribution statement
	Acknowledgement
	References

