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A B S T R A C T

Thermal stratification in large enclosures is an integral phenomenon to nuclear reactor system safety. Currently, 
the effective model for thermal stratification utilizes a multi-scale method that integrates 1-D system-level and 3- 
D CFD code, which offers thermal stratification details while supplying system-level data across various domains. 
Nonetheless, harmonizing two codes that operate on different spatial and temporal scales presents a significant 
challenge, with high-resolution CFD simulations requiring substantial computational resources. This study 
introduced a data-driven coarse-grid turbulence model based on local flow characteristics at a significantly 
coarser scale, targeting improved efficiency and accuracy in reactor safety analysis concerning thermal strati
fication. A machine learning framework has been introduced to expedite the RANS-solving process by coupling 
OpenFOAM and TensorFlow, which entails training a deep neural network with fine-grid CFD-generated data to 
predict turbulent eddy viscosity. The feasibility of the developed data-driven turbulence model was proven 
through the SUPERCAVNA experimental facility problem validation.

Nomenclature

ML Machine Learning ANN Artificial Neural 
Network

OLHS Orthogonal Latin Hypercube 
Sampling

FG Fine Grid

DNN Deep Neural Network CG Coarse Grid
FNN Feedforward Neural Network DD Data-Driven
CNN Convolutional Neural Network kNN k-Nearest-Neighbor
RANS Reynolds-averaged N-S equation LSTM Long Short Term 

Memory

1. Introduction

Thermal stratification in expansive pools or enclosures represents a 
critical phenomenon essential to nuclear reactor safety [1]. In advanced 
light-water reactors, thermal stratification can occur within the passive 
containment, thereby obstructing natural circulation [2]. In pool-type 
reactors, thermal stratification can cause reactor physics and 
thermal-hydraulic instabilities, leading to thermal fatigue that could 
damage the reactor vessel and in-vessel components, and further impede 

natural circulation [1,3,4]. Accurate prediction of pool temperature and 
density distribution is imperative for these reactor systems’ safety ana
lyses and design optimization.

Generally, methods for analyzing thermal stratification can be 
categorized into two main groups. The first category encompasses 
system-level methods offering rapid yet approximate computations, 
whereas the second category includes CFD methods providing high- 
resolution computations at considerable computational cost [1]. 
System-level codes utilize lumped-volume-based 0-D models or coarse 
1-D models for thermal mixing, which struggle to accurately calculate 
sudden temperature changes during transients due to complex 3-D ef
fects or buoyancy phenomena, particularly at the start of natural con
vection [5]. The feasibility of CFD modeling for the 3-D effects of 
thermal stratification has been confirmed when a fine grid (FG) is 
employed to resolve the substructure. The choice of the turbulence 
model and the spatial mesh configuration around the thermal stratifi
cation interface in the direction of gravity are crucial for CFD modeling 
of thermal stratification. Moreover, the flow pattern within a large 
enclosure influences the thermal stratification interface [6]. To effec
tively model thermal stratification phenomena, a multi-scale method 
has been proposed. This approach integrates 1-D system-level code and 
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3-D CFD code, offering detailed thermal stratification insights while also 
supplying system-level data in other areas. However, coupling two codes 
operating at different spatial and temporal scales that can differ by or
ders of magnitude remains a very challenging task, and the 
high-resolution CFD simulation is computationally intensive [7].

Recent advances have explored super-resolution reconstruction as a 
means to accelerate CFD computations. Fukami et al. proposed using 
convolutional neural networks (CNNs) to enhance the spatial resolution 
of low-resolution CFD data. This approach allows the reconstruction of 
high-resolution flow fields from coarse input data, significantly reducing 
computational costs while maintaining accuracy [8]. However, this 
method requires extensive training data and may struggle with gener
alization when applied to conditions different from the training dataset. 
Another promising approach is hybrid computing, which integrates 
machine learning with traditional CFD methods to accelerate the overall 
simulation process. Jeon et al. developed a method that combines the 
finite volume method with neural networks to reduce computation time 
for unsteady CFD simulations while preserving accuracy [9]. This 
method, however, can be complex to implement and may require sig
nificant tuning depending on the specific flow conditions. In the context 
of incompressible flow simulations, Ajuria Illarramendi et al. introduced 
a pressure projection method that combines deep learning with tradi
tional CFD solvers to accelerate the pressure correction step. This 
method aims to reduce the computational load associated with solving 
the pressure-velocity coupling, which is often the bottleneck in incom
pressible flow simulations [10]. While this approach can significantly 
speed up computations, its effectiveness depends on the quality of the 
training data, and it may face challenges in robustness when applied to 
scenarios outside the training range.

Data-driven turbulence models represent a growing area of research 
focused on reducing the computational burden of CFD simulations by 
leveraging machine learning techniques to predict turbulence parame
ters, such as turbulent eddy viscosity, from coarse grid data. Tracey et al. 
assessed the feasibility of creating a Feed-forward Neural Network 
(FNN) based turbulence model designed to replicate the Spalart- 
Allmaras model. The trained FNN model demonstrated proficiency in 
simulating a broad range of flow conditions, from 2D flat plate boundary 
layers to 3D transonic wings, even successfully handling flow scenarios 
that were not encountered during training [11,12]. Sun et al. and Zhu 
et al. further explored the use of FNNs as surrogate models for the 
Spalart-Allmaras turbulence model. They employed the optimal brain 
surgeon technique to identify the relevance of input features, effectively 
performing a sensitivity analysis on the input neurons’ weights [13–15]. 
This approach allows the neural network to focus on the most impactful 
features, improving model efficiency and accuracy. Chang et al. intro
duced an empirical strategy using feature coverage mapping rooted in 
t-distributed Stochastic Neighbor Embedding (t-SNE) to quantify data 
coverage in machine learning-based closures. Through the application 
to a backward-facing step flow, the study demonstrated that neural 
networks could decipher inherent correlations in fluid data and be in
tegrated into the RANS (Reynolds-Averaged Navier-Stokes) solving 
mechanism to forecast flow attributes without compromising numerical 
stability [16]. In their approach, training data derived exclusively from 
RANS simulations utilizing the k-ε model and the machine learning 
model aimed to estimate Reynolds stress, sourced from the spatial de
rivatives of input velocity fields. During the conservation 
equation-solving process, closure relations were continually extracted 
from the machine learning model. Zhu et al. developed a turbulence 
eddy viscosity model based on FNNs to address 3D thermal stratification 
issues using a coarse-grid (CG) CFD code. The authors also tackled the 
issue of imbalanced training datasets, suggesting over-sampling and 
under-sampling techniques as potential solutions [17]. Iskhakov et al. 
employed an invariant neural network architecture to model Reynolds 
stress and turbulent heat flux in forced convection flows, making it 
suitable for simulating flow in reactor downcomers. Their data-driven 
model, validated under various fluid conditions relevant to advanced 

reactors, showed promise without needing to adjust the turbulent 
Prandtl number [18].

Maulik et al. introduced a turbulent eddy-viscosity surrogate 
modeling framework for RANS simulations. By training neural networks 
to predict steady-state turbulent eddy viscosity fields, this model 
significantly reduced computational time while maintaining high ac
curacy. Their framework, tested on various turbulence closure models 
and validated on a 2D backward-facing step flow problem, demon
strated robust performance across different grid refinements and ge
ometries [19]. Liu et al. proposed a data-driven coarse mesh turbulence 
model based on convolutional recurrent neural network (CNN) and long 
short term memory (LSTM) model to predict turbulent eddy viscosity 
distribution under transient conditions for transient analysis of thermal 
mixing and stratification in sodium-cooled fast reactor [20]. In this 
approach, the CNN functions as an encoder-decoder, compressing 
high-dimensional turbulent eddy viscosity data into a 
lower-dimensional feature space and then reconstruction. This reduces 
the computational burden on the LSTM while preserving key physical 
features. The LSTM captures the temporal evolution of turbulent eddy 
viscosity. However, the CNN-LSTM model faces challenges in prediction 
accuracy and generalization. The CNN’s use of convolutional kernels 
often results in overly smooth predictions, limiting its ability to capture 
sharp changes in turbulent eddy viscosity. Additionally, the encoding 
and decoding process can lead to the loss of important local flow fea
tures. Meanwhile, the LSTM’s memory effect can accumulate errors over 
long-term predictions, and its tendency to smooth transitions can 
introduce significant inaccuracies when dealing with the rapid changes 
typical of turbulent flows.

This research presents a data-driven coarse-grid (CG) turbulence 
model for thermal stratification designed to enhance the efficiency and 
precision of reactor system safety analysis. The 3-D fluid conservation 
equations are solved using a data-driven (DD) turbulence model, which 
is based on local flow characteristics at a significantly coarser scale. This 
approach ensures that the mesh configuration in the CFD code is 
consistently aligned with the 1-D system-level code. To expedite the 
RANSsolving process, a machine learning (ML) framework was devel
oped, wherein an Artificial Neural Network (ANN) was trained using 
substantial fine-grid CFD-generated data to predict turbulent eddy vis
cosity. OpenFOAM was selected as the simulation framework, with 
TensorFlow integrated as the ML framework, and the TensorFlow C API 
was utilized to couple OpenFOAM with TensorFlow, enabling the 
implementation of the DD turbulence model. The coupling is imple
mented via a surrogate model prediction task for the turbulence eddy 
viscosity in the context of the SUPERCAVNA experimental facility [21] 
problem. Inspired by Liu’s approach of using CNN-LSTM to develop a 
turbulent eddy viscosity surrogate model [20], we further enhanced 
prediction accuracy, generalization ability, and training efficiency by 
dividing the surrogate model into steady-state and transient. The 
steady-state surrogate model was efficiently trained using deep neural 
networks (DNN) and high-fidelity CFD data with various initial and 
boundary conditions, enabling rapid and accurate prediction of turbu
lent eddy viscosity with better generalization ability. For the transient 
surrogate model, an improved LSTM architecture, accelerated by the 
CUDA Deep Neural Network library (CuDNN), was adopted. This ar
chitecture incorporates a Self-Attention mechanism and Bi-directional 
LSTM (Bi-LSTM). The Self-Attention mechanism mitigates prediction 
bias caused by residual memory effects in LSTM. At the same time, 
Bi-LSTM enhances the model’s ability to capture sharp changes in tur
bulent eddy viscosity by processing both forward and backward infor
mation flows simultaneously. This paper focuses on the framework of 
the data-driven turbulence model and the development of the 
steady-state turbulent eddy viscosity surrogate model.

2. Methods

This section summarizes the theoretical basis and framework of the 
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DD turbulence model for thermal stratification analysis in the reactor 
system. In subsection 2.1 we describe the RANS equation and the prin
ciples of computational speed-up and CG setup in CFD code. In sub
section 2.2 we discuss the key procedures and components of 
construction of the DD turbulence model.

2.1. RANS equation

The Reynolds-averaged Navier-Stokes (RANS) equations represent a 
time-averaged variant of the Navier-Stokes motion equations for fluid 
flow. Stemming from the Reynolds decomposition principle, these 
equations partition the instantaneous quantity into its time-averaged 

and fluctuating segments. These equations are utilized to characterize 
the behavior of turbulent flows [22]. The RANS equation is presented in 
the following form. 

∂ui

∂xi
=0 (1) 

∂ui

∂t
+ uj

∂ui

∂xj
= f i −
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Where ui represents the filtered/averaged velocity, p denotes the 
filtered/averaged pressure, and the overbar − signifies the filtering/ 
averaging operation.

Reynolds stress − uíuj́ represents a nonlinear term that necessitates an 
additional model to close the RANS equation. Most methods address this 
tensor with an explicit model, employing additional algebraic or dif
ferential equations. According to Boussinesq’s turbulent eddy viscosity 
theory, the mathematical relationship between Reynolds stress and the 
strain rate is as follows: 
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Where νt is turbulent eddy viscosity, ui
’ is the fluctuating component of 

velocity, k = 1
2uíuí is turbulence kinetic energy, δij is Kronecker delta.

This study aims to formulate a surrogate model for turbulent eddy 
viscosity, thereby eliminating the requirement for solving supplemen
tary closure equations. In the k-ε turbulence framework, νt (k,ε) char
acterizes the turbulent eddy viscosity as a function of kinetic energy and 
dissipation rate. Conversely, within the DD turbulence framework, the 
turbulent eddy viscosity is expressed in terms of local system variables, 
denoted as νt (V, T, p, …). By excluding k and ε from the conservation 
equation, the computationally demanding challenges inherent in tradi
tional CFD can be tackled using a coarser grid setup.

2.2. CFD simulation of thermal stratification

In this study, we demonstrate the applicability of the proposed RANS 
simulation with an embedded DD turbulence model in a case study of 
thermal stratification. The CEA’s SUPERCAVNA facility has served as 
the experimental site for the analysis of sodium flow and thermal 
stratification interaction. The facility includes a rectangular cavity with 
heated sidewalls. The flow is driven by a cold jet located at the cavity’s 
base, restricted by the wall. Experimental data on temperature distri
bution inside the cavity are available for both steady-state and transient 
flow scenarios. Fig. 1 depicts the 3-D computational domain of the 

Fig. 1. SUPERCAVNA test section and experimental representation.

Table 1 
Geometry parameters of the test section in SUPERCAVNA.

Symbol Parameter Value

H Height of cavity 3.2 m
L Length of cavity 1.6 m
D Depth of cavity 0.8 m
E Thickness of channel 0.03 m
Li Length of inlet channel 1.52 m
Lo Length of outlet channel 1.52 m

Table 2 
SUPERCAVNA flow conditions.

Symbol Parameter Value

Tc Maximum temperature in the cavity 294.4 ◦C
T0 Global initial temperature 250 ◦C
Vfi Cavity mean inlet velocity 0.69 m/s
Tfi Cavity mean inlet temperature 250 ◦C
Th Heated wall mean temperature 303.1 ◦C

Table 3 
Physical properties of sodium.

Parameter Correlation

Density, ρ, kg/m3 Р = 1015.03–0.23393 T - 0.305×10− 5T2

Thermal conductivity, λ, W/m/ 
K

λ = 110–0.0648 T + 1.16 × 10− 5T2

Dynamic viscosity, μ, Pa × s μ = 8.85141 × 10− 4 - 9.4 × 10− 7T
Thermal expansion coefficient, 

β, 1/K
β = 2.523 × 10− 4 (T-523.15)

Specific heat capacity, cp, J/kg/ 
K

Cp = 1.63624845 × 103 - 0.8363338 T + 4.64113 
× 10− 4T2
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SUPERCAVNA test section [21]. The geometry parameters of the test 
section in SUPERCAVNA facility are shown in Table 1. The flow con
ditions are summarized in Table 2.

Simulations of the SUPERCAVNA test section are conducted using 
the open-source CFD software, OpenFOAM. It serves as a reference tool 
for estimating the accuracy of flow field predictions through CFD and 
generating data for the development of a DD turbulence model.

In the 3-D steady-state modeling, the physical properties of sodium, 
including density ρ, thermal conductivity λ, dynamic viscosity μ, ther
mal expansion coefficient β and Specific heat capacity cp were utilized 
according to the correlations listed in Table 3 [23]. A mesh comprising 
approximately 1,163,200 trimmed hexahedral cells was generated using 
blockMesh. A pressure outlet was implemented at the outlet channel of 
the cavity, with all walls assumed to be adiabatic, except for the heating 
wall. A constant turbulent Prandtl number, Prt = 0.9 [24], was utilized. 
The buoyantFoam heat transfer solver was employed for flow and en
ergy equations, with the standard k-ε model, utilized to depict system 
turbulence. This model was employed alongside the 
thermal-stratification model to account for the buoyancy production of 
dissipation.

BuoyantFoam is a pressure-based solver designed for steady-state 
and transient simulations of compressible and incompressible flows. It 
handles laminar and turbulent, single-phase flows with temperature and 
density variations. In incompressible flows modeling, the solver use the 
Boussinesq approximation, which simplifies the computations related to 
buoyancy by linearly relating the density changes in the fluid to tem
perature changes, based on a reference temperature. The solver is 
particularly accurate and efficient when the changes in density 
compared to a reference density are small. The solver uses the SIMPLE 
(Semi-Implicit Method for Pressure-Linked Equations) algorithm for 
pressure-momentum coupling, augmented by under-relaxation tech
niques to enhance convergence. It supports Multiple Reference Frames 
(MRF) and porosity modeling and allows easy integration of passive 
scalar transport equations and source terms.

The standard k-ε turbulence model strikes a balance between preci
sion and robustness. It has demonstrated reasonable accuracy in past 
simulations, especially those involving buoyant jets and the erosion of 
stratified layers [25]. In the SUPERCAVNA facility, the standard k-ε 
model was used to simulate thermal stratification, and the results 
showed good agreement with experimental measurements. This 

indicates that the standard k-ε model can provide reasonable predictions 
in specific applications [18]. Additionally, non-linear eddy viscosity 
modeling might further improve the quality of the simulation. For 
transient scenarios, high-fidelity CFD simulations utilizing unsteady 
Reynolds-Averaged Navier-Stokes (uRANS) were necessary for the 
development of DD turbulence models.

2.3. Framework of data-driven turbulence model

Due to its nonparametric modeling nature, a DNN allows for the 
adaptive assimilation of very complex data. Based on DNN techniques, a 
surrogate model of turbulent eddy viscosity can be developed and in
tegrated into OpenFOAM by incorporating the data-driven (DD) closure 
into the physics-based solving process, i.e., the proposed framework of 
the DD turbulence model. This framework builds upon the method 
proposed by Maulik et al., who focused on constructing a surrogate 
model for turbulent eddy viscosity using flow field characteristics for a 
2D backward-facing step flow problem. This research extends this 
approach to 3D natural convection thermal stratification problems. 
Specifically, we construct the surrogate model for turbulent eddy vis
cosity in the standard k-ε two-equation model, utilizing both flow and 
temperature field characteristics. To further enhance the model’s 
applicability, the k-Nearest Neighbor (kNN) algorithm has been 
employed to transform high-fidelity data, enabling the turbulent eddy 
viscosity surrogate model to be applied to coarse grid CFD calculations. 
This method ensures that the surrogate model maintains high accuracy 
even at a coarser setup, thereby significantly enhancing computational 
efficiency. The key procedures and components of the framework, 
including database construction, surrogate model training, coupling 
OpenFOAM and TensorFlow software, testing, and evaluation, are dis
cussed in detail. Fig. 2 presents the framework of the DD turbulence 
model.

2.3.1. Database construction
The first step in developing a DD turbulence model is to build a 

database for training and validation. This includes sampling inlet and 
initial conditions, selecting flow features, performing high-fidelity CFD 
simulations, and processing data.

For the generalization ability of the trained surrogate model of tur
bulent eddy viscosity νt, the database should contain data for a variety of 

Fig. 2. The framework of the data-driven turbulence model.
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operating conditions and the range of initial conditions should be wide. 
We choose to keep the temperature of the heating wall as a fixed value, 
and extract 22 groups of data from the velocity V and temperature T of 
the inlet channel in each range [V: 0.4–1] m/s, [T: 453.15–553.15] K by 
orthogonal Latin hypercube sampling (OLHS) method. The OLHS allows 
for a random, uniform sampling of data points that represent almost the 
entire design area. For given values of V and T, turbulent energy k and 
dissipation rate ε, Reynolds number Re and Grashof number Gr are 
calculated by Eqs. (4)–(7). 

k=
3
2
(VI)2 (4) 

ε=
C0.75

μ k1.5

l
(5) 

Here, V represents the mean flow velocity, while I denotes the turbu
lence intensity. The Cμ refers to a turbulence model constant, typically 

assigned a value of 0.09, and l signifies the turbulent length scale. 

Re=
ρUL

μ (6) 

ρ denotes the fluid density, μ represents the dynamic viscosity, while U 
and L correspond to the characteristic velocity and characteristic length 
of the flow field, respectively. 

Gr=
gβΔTL3

γ2 (7) 

Here, g represents the gravitational acceleration due to Earth, β denotes 
the coefficient of volume expansion, L signifies the vertical length, γ is 
the kinematic viscosity, and ΔT represents the temperature differential 
between the surface and the bulk medium.

The 17 sets of initial conditions by OLHS and 1 set of baseline con
ditions constitute the training cases, which are shown in Table 4. The 
remaining 4 sets of initial conditions by OLHS constitute the test cases, 
as shown in Table 7. Based on the data in OpenFOAM simulations of 
SUPERCAVNA with FG were conducted to generate the accurate data 
sets of the database.

One of the important parts of the ML algorithm is the selection of 
input and output features. The objective of this study is to establish a CG 
closure for isotropic turbulent eddy viscosity, aimed at supporting 
steady-state CFD simulations of reactor systems with a range of inlet and 
boundary conditions. The ideal DNN model should enable a field-to-field 
mapping that can be smoothly integrated into OpenFOAM. For this 
research, we have adopted a field-to-field mapping method that uses 
local flow features as input. The input and output features identify the 
region in CFD simulation domain space through mesh-centered co
ordinates and the initial conditions. Thus, 3 velocity components (Vx, 
Vy, Vz), and temperature T from the initial phase of CFD simulation, as 
well as the mesh-centered coordinates (Cx, Cy, Cz), were selected as 
input features. The turbulent eddy viscosity vt from the steady-state of 
CFD simulation was selected as the output feature. The buoyantFoam 
heat transfer solver was employed to resolve the RANS equations. The 
pressure effects are indirectly captured through the velocity field due to 
the inherent coupling in the buoyantFoam solver. In thermal stratifica
tion phenomena, buoyancy effects resulting from temperature gradients 
are the dominant forces driving the flow. These effects are primarily 
captured by the temperature and velocity fields. Since pressure varia
tions in such scenarios are often secondary to the thermal buoyancy 
effects, the pressure term can be omitted from the training input fea
tures. This omission helps to reduce the computational complexity in 
surrogate modeling and improve training efficiency.

Data processing is an important part of building ML databases, 
mainly including data transformation and scaling. High-resolution 
nonuniform mesh-defined physical quantity fields are unsuitable for 
training the proposed ML-based model due to 2 main challenges. Firstly, 
the unequal data weighting from nonuniform mesh grids complicates 
neural network training, which typically attributes equal importance to 
each data point. Secondly, the high-resolution configuration clashes 
with the aim of establishing a consistent relationship for a CG 3-D CFD 

Table 4 
Inlet and initial conditions of SUPERCAVNA for training cases.

Training 
case

V [m/ 
s]

T [K] k ε Re Gr

0 (baseline) 0.69 523.15 1.79E- 
03

1.55E- 
04

2.38 
EE+06

2.50 
E+12

1 0.42 520.89 6.72E- 
04

3.58E- 
05

1.45 
E+06

2.59 
E+12

2 0.45 484.37 7.60E- 
04

4.31E- 
05

1.43 
E+06

3.81 
E+12

3 0.49 534.14 8.86E- 
04

5.41E- 
05

1.71 
E+06

2.03 
E+12

4 0.54 499.38 1.10E- 
03

7.53E- 
05

1.78 
E+06

3.36 
E+12

5 0.57 532.74 1.23E- 
03

8.82E- 
05

2.01 
E+06

2.10 
E+12

6 0.58 524.83 1.27E- 
03

9.29E- 
05

2.01 
E+06

2.44 
E+12

7 0.62 458.33 1.43E- 
03

1.11E- 
04

1.87 
E+06

4.44 
E+12

8 0.67 453.37 1.68E- 
03

1.42E- 
04

2.02 
E+06

4.55 
E+12

9 0.72 473.34 1.95E- 
03

1.76E- 
04

2.25 
E+06

4.10 
E+12

10 0.75 481.01 2.13E- 
03

2.02E- 
04

2.39 
E+06

3.90 
E+12

11 0.78 552.63 2.27E- 
03

2.22E- 
04

2.86 
E+06

1.12 
E+12

12 0.81 463.79 2.47E- 
03

2.52E- 
04

2.49 
E+06

4.32 
E+12

13 0.83 495.94 2.58E- 
03

2.69E- 
04

2.70 
E+06

3.47 
E+12

14 0.89 512.46 3.00E- 
03

3.38E- 
04

3.01 
E+06

2.91 
E+12

15 0.92 506.78 3.16E- 
03

3.65E- 
04

3.06 
E+06

3.11 
E+12

16 0.99 539.53 3.69E- 
03

4.61E- 
04

3.54 
E+06

1.78 
E+12

17 0.92 541.79 3.19E- 
03

3.70E- 
04

3.31 
E+06

1.68 
E+12

Table 5 
KS test results for different coarse grid numbers.

Dataset Grid number T 
KS statistic

T p-value Vz KS statistic Vz p-value vt KS statistic vt 

p-value

Channel-1 68,896 0.027972 0.828674 0.108891 0.000014 0.177822 0.030774
Channel-2 137,792 0.014985 0.999875 0.100899 0.000074 0.076472 0.341717
Channel-3 275,584 0.008697 0.999945 0.086723 0.001277 0.041958 0.412983
Channel-4 551,168 0.005994 1.000000 0.079920 0.003332 0.034965 0.573537
Cavity-1 68,896 0.011554 0.983459 0.066922 0.011129 0.113892 0.014489
Cavity-2 137,792 0.009972 0.995139 0.055775 0.046159 0.050796 0.071435
Cavity-3 275,584 0.009184 0.998069 0.044538 0.195781 0.038835 0.252781
Cavity-4 551,168 0.008279 0.999385 0.037824 0.309272 0.031175 0.512714
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code integrated with the system code. To address these challenges, the k- 
Nearest-Neighbor (kNN) algorithm from the scikit-learn ML library [26] 
is employed to translate the original CFD outcomes into uniform CG 
data. During this transformation, for a specific point A in the uniform CG 
structure, the kNN algorithm identifies a set number of nearest points 
from the nonuniform FG to point A. Subsequently, it forecasts point A’s 
value using a distance-weighted average derived from these neighboring 
points’ values. Fig. 3 shows the transition from a nonuniform FG to a 

uniform CG.
As preparation for the DNN model training, the local flow features 

(velocity components Vx, Vy, Vz, temperature T, pressure p, turbulent 
eddy viscosity vt) of SUPERCAVNA domain with 1,163,200 cells were 
converted to the CG uniform data with 68,896 cells by using a kNN al
gorithm. The CG uniform data, comprising both input and output fea
tures, was normalized to have a unit mean and zero variance for every 
flow feature, facilitating smoother training.

We verified our data preprocessing approach’s effectiveness by 
conducting qualitative and quantitative comparisons between the orig
inal CFD outputs and the processed kNN results. To analyze the con
sistency between the transformed coarse grid data and the fine grid data, 
we adopted the Kolmogorov-Smirnov (KS) test, the results of the KS test 
are presented in Table 5. The KS statistic is the maximum absolute dif
ference between the two cumulative distribution functions (CDFs). The 
smaller the KS statistic, the more similar the distributions of the two 
samples. The p-value is calculated based on the KS statistic, representing 
the probability of observing the current or more extreme KS statistic 
under the null hypothesis. The larger the p-value, the more substantial 
the evidence supporting the null hypothesis, indicating that the two 
sample distributions may be the same.

Table 5 shows that a higher coarse grid number results in greater 
consistency with the channel and cavity fine grid data. This is evidenced 
by the lower KS Statistics and higher p-values in datasets with higher 
grid number. Increasing the grid number improves the detail and ac
curacy of data transformation by the kNN algorithm, leading to distri
butions that are more aligned with the high-resolution channel and 
cavity fine grid data.

Fig. 4 illustrates CG uniform data with 68,896 cells of 3 pivotal 
physical parameters: the velocity component Vz, temperature T, and 

Fig. 3. Conversion between nonuniform fine grid and uniform coarse grid.

Fig. 4. Flow features comparison of original CFD solution and kNN algorithm b) Surrogate model training.

Table 6 
Deep neural network parameters.

Parameter Value

Hidden layer number 6
Neurons number 80
Batch_size 1024
Epochs number 500
Optimizer Adam
Learning rate 0.001
Validation split 0.1
Activation function ReLU
Loss function mean squared error

Table 7 
Comparison of calculation time of 2 turbulence models.

Parameters Standard k-ε model Data-driven turbulence model

Mesh quantity 1,163,200 68,896
CPU type Intel Core-i7 Intel Core-i7
Iteration number 200 25
Calculation time 896 core-hours 2 core-hours
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turbulent eddy viscosity vt. The data obtained from the kNN algorithm 
on the CG aligns well with the high-resolution CFD data along the 
cavity’s centerline. But the velocity at the entrance of the channel and 
the vt at the bottom of the cavity is slightly different from the FG CFD 
data because the data at these locations are more discrete. This 

observation substantiates that data fidelity is maintained during the 
transition from a FG nonuniform configuration to a CG uniform one.

In this study, we detailed our input and output features. The DD 
turbulence model identifies deployment regions using inputs such as 
finite-volume cell-centered coordinates and initial conditions. This 
study focuses on training a ML surrogate model, as described below. 

M1 : Vx(x),Vy(x),Vz(x),T(x),Cx(x),Cy(x),Cz(x)→νt(x) (8) 

Here x is the mesh point, Vx(x),Vy(x), Vz(x),T(x) indicate the velocity 
components derived from the initial conditions, and Cx(x),Cy(x),Cz(x)
denote the mesh-centered coordinates within the domain. The output, 
νt(x), signifies the steady-state turbulent eddy viscosity, obtainable from 
different RANS closure methods.

TensorFlow [27], a renowned ML library, facilitates the development 
of intricate data-driven techniques, including fully connected neural 
networks and convolutional neural networks. We utilized it to train our 
surrogate model. The architecture of the DNN was automatically 
determined using RandomizedSearchCV [28], which explored various 
configurations to identify the optimal structure. The final DNN consists 
of 6 hidden layers, each containing 80 neurons, the structural parame
ters of the DNN model are shown in Table 6. The activation function 
used is rectified linear units (ReLU), and the loss function is Mean 
Squared Error (MSE) as defined by Eq. (9). In addition to MSE, the 
performance of the optimized model is assessed using the R2 value, 
computed as per Eq. (10), where an R2 value approaching 1 indicates a 
strong regression fit of the model. We trained the DNN model using the 
entire dataset for 500 epochs with a batch size of 1024. The parameters 

Fig. 5. Convergence while training the DNN model.

Fig. 6. Turbulent eddy viscosity predicted by the standard k-ε model, CNN, 
linear regression and polynomial regression at X = 2.32 m.

Fig. 7. Temperature field with k-ε model (left) and data-driven turbulence model (right).
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of the DNN, including weights and biases, were optimized using the 
Adam optimizer [29], which was initialized with a learning rate of 
0.001. Adam is an adaptive learning rate optimization algorithm that 
effectively combines the benefits of both AdaGrad and RMSProp. By 
maintaining per-parameter learning rates and leveraging estimates of 
the first and second moments of the gradients, Adam ensures efficient 
and robust optimization throughout the training process. Of the total 
dataset, 90 % was allocated for training, while the remaining 10 % was 
reserved for validation. 

MSE=
1
n
∑n

i=1
(yi − ŷi)

2 (9) 

R2 =1 −

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 (10) 

Where n is the number of predictions, yi denotes the actual value of the 
data, ŷi signifies the value predicted by the model, yi is the average true 
value across the data.

In the DNN training process, an early-stopping criterion was 
employed, ceasing the training once the observed metric exhibited no 
further improvement. This approach aims to minimize the loss function, 
ensuring the derivation of an optimal model. Upon determining and 
training the optimal model, its exportation to non-Python environments 
necessitates the utilization of a function to stabilize the model weights, 
thereby fixing all trainable parameters and operations inherent to the 
DNN architecture. Consequently, the finalized optimal DNN model was 
preserved in an h5 file format.

2.3.2. Coupling OpenFOAM and Tensorflow
The coupling of OpenFOAM and TensorFlow should be implemented 

to successfully invoke the surrogate model to predict turbulent viscosity 
based on flow features. The coupling mechanism is described below.

Fig. 8. Velocity field with k-ε model (left) and data-driven turbulence model (right).

Fig. 9. T comparison of experimental and CFD.

Fig. 10. V comparison of CFD results with k-ε model results (case 0) and data- 
driven turbulence model (case 0).

Table 8 
Inlet and initial conditions of SUPERCAVNA for test cases.

test 
case

U [m/ 
s]

T [K] k ε Re Gr

1 0.52 515.02 9.95E- 
04

6.44E- 
05

1.74 
E+06

2.82 
E+12

2 0.65 472.67 1.59E- 
03

1.30E- 
04

2.03 
E+06

4.11 
E+12

3 0.87 492.27 2.82E- 
03

3.07E- 
04

2.80 
E+06

3.58 
E+12

4 0.95 546.28 3.41E- 
03

4.10E- 
04

3.46 
E+06

1.45 
E+12

5 0.44 480.31 7.17E- 
04

3.94E- 
05

1.38 
E+06

3.92 
E+12
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The procedure to couple OpenFOAM with TensorFlow leverages the 
TensorFlow C API. Initially, the trained DNN model was converted from 
the h5 format to the protobuffer (pb) format to facilitate its export to a 
C++ environment. Subsequently, the pb file was loaded and integrated 
with OpenFOAM data structures during the solution process. Next, using 
the TensorFlow C API, a graph can be loaded and inferences executed 
within standard C++ code. The DNN model, formatted in pb, is 
importable to OpenFOAM. Then, a new turbulence model was modified 
and compiled, linking to TensorFlow C dynamic libraries, which can 
predict turbulence eddy viscosity, replacing the k and ε equation solu
tions. Lastly, a new buoyantFoam solver was modified and compiled to 
match the turbulence model and call for a ML prediction within 
OpenFOAM.

3. Results and discussion

In the subsequent section, we delineate the efficacy of our ML 
approach using a priori analyses and then discuss the results stemming 
from its application as a DD turbulence model.

3.1. Machine learning

We delineated the efficacy of our ML approach using statistical 
performance metrics. The convergence trajectory for the ML frameworks 
is depicted in Fig. 5. After 64 epochs, a satisfactory parameterization of 
the input-output relationship was achieved, prompting the termination 
of the training via the early-stopping criteria. For the surrogate model of 

Fig. 11. Re and Gr of training and test cases.

Fig. 12. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 1.

Fig. 13. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 1.
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turbulence eddy viscosity, the fully trained DNN achieves the mean 
squared error MSE = 0.0026 and a coefficient of determination of R2 =

0.997 for training data sets, the MSE = 0.0045 and R2 = 0.996 for 
validation data sets, indicating a successful parameterization.

To further explore efficient and accurate methods for predicting 
turbulent eddy viscosity, we employed DNN, linear regression, and 
polynomial regression to establish a mapping between the flow field and 

temperature field features and the turbulent eddy viscosity distribution. 
The predictions generated by these three methods were compared with 
the turbulent eddy viscosity obtained using the standard k-ε model with 
fine-grid CFD, as illustrated in Fig. 6. The results indicate that the DNN 
model effectively captures the complex variation trends of turbulent 
eddy viscosity, particularly in regions with low turbulent eddy viscosity, 
where the DNN’s predictions closely align with those of the standard k-ε 
model. In regions with greater height, there is some deviation between 
the DNN prediction curve and the reference curve. Overall, the DNN 
model demonstrates strong learning capabilities, effectively handling 
the nonlinear relationships inherent in turbulent eddy viscosity. In 
contrast, the linear regression model fails to adequately capture the 
nonlinear characteristics of turbulent eddy viscosity, particularly in re
gions with high turbulent eddy viscosity, where its predictions are 
significantly lower than the reference results obtained from the standard 
k-ε model. This indicates that linear regression is unsuitable for pre
dicting complex turbulent characteristics. The polynomial regression 
model of order 5, while performing better than linear regression in 
capturing local variations in turbulent eddy viscosity, exhibits over
fitting in regions with low turbulent eddy viscosity, resulting in a sig
nificant deviation from the reference results. The above results indicate 
that the νt magnitude can be captured accurately by the predictions of 
the DNN surrogate model.

3.2. Data-driven turbulence model evaluation

Since the aim of this framework was to develop a DD turbulence 
model to replace the twoequation model and implement CG CFD 
simulation, it was a natural choice to validate the DD turbulence model 
by comparing temperature and velocity field propagated from DNN 
model and that of standard k-ε model.

In assessing the ML model’s performance, CFD results were extracted 
for both qualitative and quantitative analyses against the model’s pre
dictions. For this study, data from two planes were analyzed qualita
tively, whereas data from two specific lines (including a vertical line 
aligned with the domain’s center) were used for quantitative analyses.

The OpenFOAM simulation results with the standard k-ε model and 
with 1,163,200 cells and those of the DD turbulence model with 68,896 
cells of baseline case (case 0) can be seen in Figs. 7 and 8, respectively. 
These figures showcase both the velocity magnitude and temperature 
distributions. Within the SUPERCAVNA test section, when liquid sodium 
is introduced into the cavity, a vertically spreading wall-bounded jet 
forms. A portion of this jet leaves the cavity via the outlet channel, while 
the remaining portion impacts the right wall, creating a recirculation 
zone. The size of this zone varies based on the sodium injection rate at 
the inlet and the intensity of thermally stratified layers forming at the 
cavity’s top due to the temperature gradient established by the heating 
wall.

Fig. 14. T & V comparison in test case 1.

Fig. 15. vt comparison in test case 1.

Fig. 16. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 2.
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The temperature and velocity distributions in training case 0 (refer to 
Table 4), both on fine and CGs, are approximately in the same range. For 
training case 0, both the predictions from the standard k-ε model and the 
DD turbulence model show the formation of thermally stratified layers 
in the cavity’s upper region, indicating significant buoyancy effects due 
to temperature gradients from the heated wall. In both scenarios, the jets 

tend to ascend within the cavity as they approach the right wall, a 
pronounced thermal barrier prevents further intrusion into the upper 
cavity. Moreover, as depicted by the profiles and temperature distribu
tion fields, temperatures remain approximately constant horizontally 
across various vertical positions, post the recirculation zone. Such a 
trend signifies pronounced thermal stratification layers, effectively 
captured in the CG OpenFOAM simulation utilizing the DD turbulence 
model.

A comparison between the standard k-ε model, the DD turbulence 
model, and the experimental temperature profiles at locations X = 1.62 
m is given in Fig. 9. For case 0, the FG CFD simulations with the standard 
k-ε model are in good agreement with the experimental data. The CG 
CFD with DD turbulence model predicts the temperature profiles along 
the height of the cavity; some differences appear between FG CFD with 
the standard k-ε model and experimental results; the most significant 
difference occurs above the thermal stratification layer, while the flow 
in the lower side of the cavity is well predicted. The CG CFD data profiles 
differ by up to 7 ◦C from the experimental data, while they differ by up to 
5 ◦C from the FG CFD data.

There are 4 main sources of the above errors: ① CG setup when 
solving the conservation equations, ② conversion from FG data to CG 
data by kNN algorithm, ③ training errors in the DNN model, ④ errors of 
the data based on solving the RANS equations. In follow-up research, we 
will consider reducing the error of the simulation results of the DD 
turbulence model by the following approaches. ① increasing the num
ber of CG appropriately, ② improving the training accuracy of the DNN 
model, ③ adding some of the available experimental data in the training 
procedure.

Fig. 10 presents a comparison of the velocity component profiles 
between the standard k-ε model and the DD turbulence model at X =
1.62 m. The results from CG CFD simulations using the DD turbulence 
model and FG CFD simulations with the standard k-ε model show good 
agreement. There is only a slight difference in the velocity component in 
the middle of the cavity. This indicates that the CG CFD with the DD 
turbulence model has a good prediction accuracy for the velocity 
component.

3.3. Speedup from data-driven turbulence model

The presented framework offers a significant advantage by elimi
nating the need for an extra partial differential equation in computing νt. 
Upon training the DNN model, the steady-state turbulent eddy viscosity 
predictor can be immediately employed at the onset of the simulation, 
taking into account the initial conditions. As a result, only the equations 
pertaining to pressure and velocity require iterative resolution for 
convergence. Additionally, adopting a CG configuration enhances the 
computational efficiency of the CFD simulation.

All numerical experiments were conducted using OpenFOAM in 

Fig. 17. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 2.

Fig. 18. T & V comparison in test case 2.

Fig. 19. vt comparison in test case 2.
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parallel on an Intel Core-i7 processor. For a 1,163,200-cell mesh, the 
CFD simulations using the standard k-ε model took about 896 core- 
hours, converging in 200 iterations with the steady-state solver. For a 
68,896-cell mesh, the CFD simulations using the DD turbulence model 
took roughly 2 core-hours, reaching convergence in just 25 iterations.

3.4. Generalization ability of data-driven turbulence model

The generalization ability is the key to determining whether the DD 

turbulence model could adapt properly to new data and be applied to 
various conditions in CFD simulations. In this work, the generalization 
ability of the DD turbulence model is evaluated with 5 steady-state test 
cases, with inlet and initial conditions as shown in Table 8. The fluid 
velocity and temperature of the inlet channel in these 5 test cases (from 
Table 8), further to be denoted as cases 1–5, are different from those 18 
training cases (from Table 4). The Reynolds numbers and Grashof 
numbers of the 18 training cases and 5 test cases basically present a 

Fig. 20. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 3.

Fig. 21. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 3.

Fig. 22. T & V comparison in test case 3.

Fig. 23. vt comparison in test case 3.
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linear distribution, as shown in Fig. 11. The 5 test cases are evenly 
selected according to the Reynolds number and the Grashof number to 
evaluate the prediction performance of the DD turbulence model for 
different fluid flow patterns.

Following the approach used for the baseline case evaluation, we 
obtained the temperature, horizontal velocity component, and turbulent 
viscosity field for cases 1–5. Steady-state snapshots from both prediction 
methods are utilized for comparison. Figs. 12–31 illustrate the qualita
tive and quantitative comparisons.

Figs. 15, 19, 23, 27 and 31 show the turbulent eddy viscosity vt 
comparisons for test cases 1–5 at the horizontal location X = 2.32m. 
From the figures, we note that the turbulent eddy viscosity field pre
dicted by the DD turbulence model aligns well with the trends and 
distributions of the standard k-ε model for cases 1–3, despite minor 
acceptable discrepancies. However, in case 4, the predicted turbulent 
eddy viscosity is inconsistent with the calculation results of the standard 
k-ε model, especially at the location around the height of 2.0 m; the 

Fig. 24. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 4.

Fig. 25. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 4.

Fig. 26. T & V comparison in test case 3.
Fig. 27. vt comparison in test case 3.
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prediction seriously underestimated the turbulent eddy viscosity. The 
reason is that the fluid flow pattern of test case 4 is significantly different 
from the previous 3 cases, and only 2 training cases have flow patterns 
similar to case 4. The imbalance of training data leads to a large pre
diction deviation of turbulent eddy viscosity in case 4. In order to test the 
extrapolation ability of the DD turbulence model, case 5 with Reynolds 
number outside the training set was simulated. In case 5, the turbulent 
eddy viscosity predicted by the DD turbulence model and calculated by 
the standard k-ε model exhibit similar overall trends, but with notable 

differences in the middle height regions (0.5–1.5m) of the cavity, the 
former displays higher oscillations compared to later. The above results 
indicate that under the condition of sufficient and balanced training 
data, the DD turbulence model has the ability to cope with moderately 
perturbed inlet and initial conditions. Despite local fluctuations and 
differences, the overall trend consistency and the gradual convergence 
in various regions indicate that the DD turbulence model possesses a 
certain degree of extrapolation capability to predict the turbulent eddy 

Fig. 28. Temperature field with k-ε model (left) & data-driven turbulence model (right) in test case 5.

Fig. 29. Velocity field with k-ε model (left) & data-driven turbulence model (right) in test case 5.

Fig. 30. T & V comparison in test case 5.

Fig. 31. vt comparison in test case 5.

Z. Liu et al.                                                                                                                                                                                                                                       Nuclear Engineering and Technology xxx (xxxx) xxx 

14 



viscosity.
Figs. 14, 18, 22, 26 and 30 display for the cases 1–5 corresponding 

line plots for the horizontal velocity component and temperature mag
nitudes at the location X = 2.32 m. We can observe a good agreement of 
the horizontal velocity component between the DD turbulence model 
and the standard k-ε model in all test cases, because the velocity and 
pressure solvers remain intact and the convergence fields maintain their 
respective symmetries during CFD simulations with the DD turbulence 
model.

The figures show that the temperature field modeled with the DD 
turbulence model is generally consistent with the standard k-ε model in 
terms of trend and distribution across all five test cases. In cases 1–3, the 
maximum temperature difference consistently occurs above the thermal 
stratification interface, reaching 7.2 K, 14.4 K, and 10.5 K, respectively. 
In case 4, the thermal stratification phenomenon is absent, and the 
maximum temperature difference of 1.2 K is observed in the lower part 
of the cavity. In case 5, the location of the maximum temperature dif
ference aligns with the position of the largest fluctuation in turbulent 
eddy viscosity, which is in the middle height region of the cavity. The 
maximum temperature difference in case 5 is 11.9 K.

The evaluation results demonstrate that the DD turbulence model 
can generalize to inlet and initial conditions. When the training data is 
sufficient and balanced, the DNN model’s generalization ability is high 
enough to make predictions for any untrained case at the level of 
training cases.

4. Conclusion

In this research, we proposed a DD modeling approach based on deep 
neural networks to develop data-driven closure to support CG multi- 
dimensional modeling in CFD code and system code. We developed a 
framework of a DD turbulence model, which includes database con
struction, surrogate model training, coupling OpenFOAM and Tensor
flow, testing and evaluation. We demonstrated the feasibility of this 
approach with a DD turbulence model applied during steady-state sim
ulations that involve thermal mixing and stratification phenomena in 
the SUPERCAVNA test section. The proposed DD turbulence model uses 
a CG setup for computational efficiency and is trained on FG CFD data to 
maintain high accuracy. The DD turbulence model has a certain gener
alization ability to adapt to different inlet and initial conditions for 
steady-state OpenFOAM simulation. We will further investigate DD 
turbulence models suitable for transient conditions, focusing on pre
dicting the temporal evolution and dependencies of turbulent eddy 
viscosity distributions. To achieve this, the temporal sequence predic
tion algorithms will be incorporated to train surrogate models. Addi
tionally, to improve the generalization capability of data-driven 
turbulence models across different geometries, the following strategies 
will be investigated: ① non-dimensionalization of input features: 
Transform physical quantities into dimensionless numbers to stan
dardize data from various geometries and flow conditions, ensuring 
accuracy and robustness. ② geometric parameterization: include geo
metric parameters as input features to help the model adapt to different 
geometries, enhancing flexibility without extensive retraining. ③ 
transfer learning: use a pre-trained model on a specific geometry and 
fine-tune it with a smaller dataset from a new geometry to reduce the 
need for extensive training data and computational resources, enabling 
quick adaptation to different geometries.
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