KIT | KIT-Bibliothek | Impressum | Datenschutz

Exploration of contact angle hysteresis mechanisms: From microscopic to macroscopic

Zhang, Hongmin 1; Zhang, Haodong 1,2; Wang, Fei ORCID iD icon 1,2; Nestler, Britta 1,2
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS), Karlsruher Institut für Technologie (KIT)

Abstract:

Variations from equilibrium Young’s angle, known as contact angle hysteresis (CAH), are frequently observed upon droplet deposition on a solid surface. This ubiquitous phenomenon indicates the presence of multiple local surface energy minima for the sessile droplet. Previous research primarily explains CAH via considering macroscopic roughness, such as topographical defects, which alter the effective interfacial energy between the fluid phase and the solid phase, thereby shifting the global surface energy minimum. One typical example is the classic Cassie–Baxter–Wenzel theory. Here, we propose an alternative microscopic mechanism that emphasizes the complexity of molecular rearrangements at the fluid–solid interface, treating their interfacial tensions as variables, which results in multiple local surface energy minima. Our theoretical framework demonstrates that CAH can occur even on chemically homogeneous and mechanically smooth-flat substrates, aligning with previously unexplained experimental observations. In addition, we explore the interplay between macroscopic and microscopic roughness in influencing CAH and clarify the contrasting wetting behaviors—the lotus effect and the rose petal effect—on hierarchical roughness from a thermodynamic perspective. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000177153
Veröffentlicht am 17.12.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Nanotechnologie (INT)
Institut für Angewandte Materialien – Mikrostruktur-Modellierung und Simulation (IAM-MMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 21.11.2024
Sprache Englisch
Identifikator ISSN: 0021-9606, 1520-9032, 1089-7690
KITopen-ID: 1000177153
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in The Journal of Chemical Physics
Verlag American Institute of Physics (AIP)
Band 161
Heft 19
Seiten Art.-Nr.: 194705
Vorab online veröffentlicht am 18.11.2024
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page