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A B S T R A C T

Hyperpolarization can boost the sensitivity of nuclear magnetic resonance. Other things being equal, a
polarization increase by one order of magnitude leads to a time saving by two orders of magnitude. However,
other things are rarely equal, and in this tutorial article we calculate how side effects of hyperpolarization,
namely changes in duty cycle, dilution, and resolution, influence the net sensitivity and time savings of the
(hyperpolarized) NMR experiment. The signal-to-noise ratio is calculated both in time- and frequency-domain
for a sample at thermal equilibrium using the principle of reciprocity. The hyperpolarized time gain (HYTIGA)
is calculated separately for concentration- and mass-limited samples. The article includes a detailed appendix
on the measurement of the coil’s 𝑄-factor.
1. Introduction

Put simply, the objective of hyperpolarization is to gather informa-
tion of a quality or quantity that cannot easily be collected without
hyperpolarization.

The most widely used hyperpolarization methods increase the nor-
mally available thermal polarization by using low temperatures, larger
interactions than the nuclear spin interactions, or a combination of
these two means. In brute-force hyperpolarization, a hyperpolarized
nuclear spin state is attained at ambient temperature by first equi-
librating the nuclear spins at high field and low temperature [1,2].
In Overhauser-dynamic nuclear polarization (DNP), the larger electron
Zeeman interaction gives rise to a strong electron spin polarization. If
a suitable electron–nuclear cross-relaxation mechanism is active, this
polarization may be transferred to nuclear spins by saturating the elec-
tron spin transition [3–6]. In magic angle spinning (MAS) DNP, as well
as in dissolution-DNP, the electron spin polarization is boosted further
by polarizing the electron spins at low temperature. The polarization
transfer to the nuclei occurs either by strong microwave irradiation of a
forbidden electron–nuclear transition (the solid effect), or by saturating
parts of the EPR spectrum in such a way that ensuing electron–electron–
nuclear triple-spin–flips drive the nuclear spin polarization towards a
negative minimum or a positive maximum. Similarly, in parahydrogen-
induced polarization, one uses a combination of a large interaction (the
rotational splitting of dihydrogen) and low temperatures to create a
highly ordered spin state from which hyperpolarization can be derived.

∗ Corresponding author at: Institute of Biological Interfaces 4, Karlsruhe Institute of Technology, Herrmann-von-Helmholz-Platz 1, 76344 Eggenstein-
Leopoldshafen, Germany.

E-mail address: benno.meier@kit.edu (B. Meier).

Non-equilibrium spin hyperpolarization may also be derived from
other techniques, such as spin-selective chemical reactions [7], polar-
ized light [8], or light-induced radical pairs [9–12]. A comprehen-
sive review of spin hyperpolarization techniques has recently been
presented by Eills, Koptyug and co-workers [13].

The departure from thermal equilibrium may be rewarded with a
high polarization, but the gain in sensitivity is often much smaller
than the gain in polarization. In this tutorial, we describe how nuclear
spins, either at thermal equilibrium or hyperpolarized, give rise to a
nuclear magnetization. The precession of this magnetization induces a
voltage in the NMR coil. The coupling of the magnetization to the NMR
coil is discussed in terms of the principle of reciprocity. In addition to
the induced voltage, the random motion of electrons in the coil wire
produces a noise voltage. A Fourier transform of the time-dependent
voltage produces the NMR spectrum, and the signal-to-noise ratio is
the maximum of the spectral line due to the precessing magnetization,
divided by the root mean square of the noise in the spectrum.

The sensitivity of an NMR experiment is the attainable signal-to-
noise ratio for a specified concentration or mass of nuclear spins and
a specified time. We introduce the hyperpolarized time gain (HYTIGA),
which measures how much time can be saved (or wasted) using hy-
perpolarization. The application of hyperpolarization is useful when
HYTIGA ≫ 1, and this is typically the case when observing short-lived
intermediates, or systems where the analyte concentration is dictated
by the application and not by the hyperpolarization process. For mass-
limited samples on the other hand the time gain is highly sensitive to
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Fig. 1. (A) The Zeeman interaction gives rise to a splitting between the nuclear spin states of an ensemble of spins 1∕2. (B) The splitting is typically weak compared to the
available thermal energy, and so the spin states are populated almost equally. (C) and (D) show ensembles with a large positive and a large negative polarization, respectively.
the detector volume and 𝑄-factor, and may be smaller than 1 even
for highly polarized spins. Separate HYTIGA expressions are given for
mass- and concentration-limited samples. A detailed appendix derives
procedures for the measurement of circuit 𝑄.

2. Polarization

The interaction of the nuclear magnetic moment 𝝁 with an applied
magnetic field 𝑩 is the Zeeman interaction:

𝐸 = −𝝁 ⋅ 𝐁. (1)

The magnetic moment is parallel to the nuclear angular momentum
𝑱 ,

𝝁 = 𝛾𝑱 = 𝛾 ℏ ⟨𝑰⟩ (2)

where 𝛾 is the gyromagnetic ratio of the given nucleus, 𝑰 = (𝐼𝑥, 𝐼𝑦, 𝐼𝑧) is
a dimensionless angular momentum or spin operator, and ⟨…⟩ denote
the expectation value of the respective operator.

We choose to apply our magnetic field along the 𝑧 axis, i.e. 𝑩 =
(0, 0, 𝐵0)𝑇 and obtain

𝐸 = −𝛾 ℏ⟨𝐼𝑧
⟩

𝐵0 (3)

Typically, the Zeeman interaction dominates all other interactions.
The eigenvalues of 𝐼𝑧 are then good quantum numbers in the sense that
they describe the stationary states of the spins. The eigenvalues of 𝐼𝑧
are 𝑚𝑧 = −𝐼 ,−𝐼 + 1,… , 𝐼 , where 𝐼 is the spin of the nucleus under
consideration, and one obtains the energy structure shown in Fig. 1.

Much like earth’s magnetic field aligns the magnetic moment of a
compass needle, a magnetic field tends to align nuclear spins. Using
Slichter’s analogy [14], without friction a compass needle would oscil-
late about the earth’s field indefinitely. The friction processes that lead
to alignment in NMR are 𝑇1 processes. It is by these processes, that
after a time of the order of 𝑇1, a thermal equilibrium is established.
The thermal equilibrium is described by a Boltzmann distribution.

2.1. Polarization for an ensemble of spins 1/2

For spins 1/2, like 1H, 13C and the electron, the two eigenvalues
of 𝐼𝑧 are 𝑚𝑧 = ±1∕2. We use the symbol |𝛼⟩ for the 𝑚𝑧 = 1∕2 ground
state, and the symbol |𝛽⟩ for the higher energy state with 𝑚𝑧 = −1∕2,
and denote the populations of these two states with 𝑝

|𝛼⟩ and 𝑝
|𝛽⟩,

respectively. The sum of the populations is equal to one: 𝑝
|𝛼⟩ + 𝑝

|𝛽⟩ = 1.
The polarization is then defined as the difference of the populations

of the two states:
𝑃 = 𝑝
|𝛼⟩ − 𝑝

|𝛽⟩ = 1 − 2𝑝
|𝛽⟩. (4)

2 
After thermal equilibrium is established, i.e. after 3 − 5𝑇1, the ratio
of the two populations is described by the Boltzmann distribution.
𝑝
|𝛽⟩

𝑝
|𝛼⟩

= exp
(

−
ℏ𝛾 𝐵0
𝑘𝑇

)

=∶  (5)

where 𝑇 is the lattice (e.g. sample) temperature, and where we have
introduced the Boltzmann ratio . Solving the above equation for 𝑝

|𝛽⟩
gives

𝑝
|𝛽⟩ = (1 − 𝑝

|𝛽⟩) (6)

= 
1 + 

= 1
1 + −1

(7)

and, with 𝑥 = ℏ𝛾 𝐵∕(𝑘𝑇 ), we obtain the well-known result

𝑃 = 1 − 2𝑝
|𝛽⟩ = 1 − 2

1 + −1
= −1 − 1

−1 + 1 (8)

=
exp

(

2𝑥
2

)

− 1

exp
(

2𝑥
2

)

+ 1
= tanh

(𝑥
2

)

= tanh
(

ℏ𝛾 𝐵
2𝑘𝑇

)

, (9)

Using this result, we show the polarization for 1H, 13C and the electron
as a function of temperature at a field of 6.7 T in Fig. 2.

2.2. Polarization for an ensemble of spins > 1/2

In general, the nuclear spin may be > 1∕2. The general definition of
the spin polarization is
𝑃 = 1

𝐼
⟨

𝐼𝑧
⟩

. (10)

In thermal equilibrium,
⟨

𝐼𝑧
⟩

=
𝐼
∑

𝑚𝐼=−𝐼
𝑚𝐼𝑝𝑚𝐼

(11)

Now we shift indices and make use of the fact that the ratio of the
populations of two adjacent levels is given by .
⟨

𝐼𝑧
⟩

=
2𝐼
∑

𝑗=0
𝑚𝐼−𝑗𝑝𝑗 =

2𝐼
∑

𝑗=0
𝑚𝐼−𝑗𝑝𝐺𝑗 (12)

Herein, the symbol 𝑝𝐺 denotes the population of the ground state.
Again, the sum of all populations is equal to one:

𝑝𝐺(0 + 1 + 2 +⋯ + 2𝐼 ) = 1 ⇒ 𝑝𝐺 = 1∕
2𝐼
∑

𝑗=0
𝑗 . (13)

Combining this result with (10) and (12) gives

𝑃 = 1
𝐼

∑2𝐼
𝑗=0 𝑚𝐼−𝑗𝑗

∑2𝐼 𝑗
(14)
𝑗=0 
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Fig. 2. Polarization for a free electron spin, protons and carbons at 6.7 T and for
emperatures between 0.5 and 400 K. For the nuclear spins, the high-temperature
pproximation is valid across the shown temperature range. The electron has near
nity polarization at 1 K.

= 2𝐼 + 1
2𝐼

cot h
( 2𝐼 + 1

2
𝑥
)

− 1
2
cot h

( 1
2
𝑥
)

= 𝐵𝐼 (𝐼 𝑥) (15)

The function 𝐵𝐼 is called the Brillouin function, the derivation is given
in Appendix A. Eq. (14) is the general expression for the polarization
of any spin at any temperature, provided that it is quantized along
the applied magnetic field. The Brillouin function is the appropriate
xpression for paramagnetic ions such as Gd3+ at low temperatures

and high magnetic fields [15], but also for quadrupolar nuclei with
near unity polarization. The only spin systems where this formula
cannot be applied are nuclei with a quadrupolar interaction that is
significant compared to the Zeeman interaction and electron spins with
𝑔-anisotropy of the order of unity [16]. We note that the same result
for the polarization is obtained using the thermal equilibrium density

atrix 𝜌𝑡ℎ, and the expectation value
⟨

𝐼𝑧
⟩

= Tr{𝜌𝐼𝑧}.

2.3. The high-temperature approximation

When 𝑥 = ℏ𝛾 𝐵0∕𝑘𝑇 ≪ 1, we can approximate  ≈ 1 − 𝑥. For
he powers of  we furthermore have 𝑗 ≈ (1 − 𝑥)𝑗 ≈ 1 − 𝑗 𝑥. With
𝐼−𝑗 = 𝐼 − 𝑗, the expression for the polarization then becomes

𝑃 ≈ 1
𝐼

∑2𝐼
𝑗=0(𝐼 − 𝑗)(1 − 𝑗 𝑥)
∑2𝐼

𝑗=0(1 + 𝑗 𝑥)
. (16)

The sum over (𝐼 − 𝑗)1 in the numerator vanishes, so that only the sum
ver (𝐼 − 𝑗)𝑗 𝑥 contributes. In the denominator we ignore the small
ontribution from 𝑗 𝑥, and the remaining sum over 1 gives 2𝐼 + 1. We
hen get

𝑃 ≈
𝑥(𝐼 + 1)

3
=

ℏ𝛾 𝐵0(𝐼 + 1)
3𝑘𝑇

(17)

This is the high-temperature approximation.

2.4. Spin temperature

The thermal equilibrium spin polarization is a monotonic function
of temperature. For spins 1∕2, we can therefore describe any spin
polarization 𝑃0 using a spin temperature. Following a perturbation,
e.g. by an RF pulse, a spin system cannot be described by a spin tem-
perature. Then it is often sufficient to wait for 𝑇2 relaxation processes
to complete before the spin temperature is well-defined. In terms of
the density matrix this statement is equivalent to saying that any off-
diagonal elements or coherences need to vanish for a spin temperature
to be defined. The 𝑇1 processes on the other hand describe how the
spin temperature returns to its thermal equilibrium value, or, in other
words, the lattice temperature.

If the spin polarization differs from the thermal equilibrium polar-
ization, the spin temperature will differ from the lattice temperature.
To find the spin temperature, for spins 1∕2 we can always choose 𝑇
3 
such that 𝑃 (𝑇 ) = 𝑃0. It turns out that this spin temperature has a
physical significance. In solid samples, the nuclear spins of one species
form a thermal reservoir that can exchange heat with nuclear spins of
a different species. The coupling between the two reservoirs depends
reatly on the field strength, as well as whether radicals are present in
he sample. If the coupling is strong (as is the case in the presence of
ideline nitroxide radicals), different nuclei will tend to attain the same

pin temperature [1,17–20]. Note that the polarization of the different
uclei will not be the same due to the appearance of 𝛾 in the conversion
etween spin temperature and polarization.

2.5. Polarization and order

A highly polarized spin system has a high degree of spin order,
ut a highly ordered spin system does not necessarily have a high
olarization. Consider an ensemble of spin 1 nuclei where all nuclei
re in the 𝑚 = 0 state. This is a highly ordered spin system, yet
he expectation value of 𝐼𝑧, and therefore the polarization are 0. A
imilar example is pure parahydrogen which is also highly ordered and
ikewise has a vanishing polarization. A quantitative measure of the
rder of a spin system is its entropy, and it has recently been suggested
o use entropy as a measure of spin order [21].

Alternatively, the order of nuclear spins with 𝐼 ≥ 1 may be
escribed using polarization tensors. This approach is presented briefly
n Appendix B.

Here, we prefer to use the conventional definition of polarization,
which ensures that the magnetization is proportional to the polariza-
tion.

3. Magnetization

The NMR signal is induced in the NMR coil by the precessing
nuclear spin magnetization. The magnetization is defined as magnetic
moment per unit volume, with units of A/m. The magnetic moment is
he expectation value of 𝝁. We denote the spin density, i.e. (the number

of spins  per volume 𝑉 ) with 𝑛 = ∕𝑉 . Of course, 𝑛 is related to the
molar concentration 𝑐 by 𝑛 = 𝑐 𝑁𝐴1000L∕m3. After complete relaxation,
the magnetization will only be non-zero along the 𝑧 axis:

𝑀𝑧 = 𝑛𝛾 ℏ⟨𝐼𝑧
⟩

= 𝑛𝛾 ℏ𝐼 𝑃 (18)

where 𝑃 is given by Eq. (14).
In the case of an arbitrary spin in the high-temperature limit we use

(17), and have

𝑀𝑧 = 𝑛𝛾 ℏ𝐼 ℏ𝛾 𝐵0(𝐼 + 1)
3𝑘𝑇

. (19)

This equation is known as the Curie law.

4. The NMR signal

A radio-frequency (RF) pulse is now required to generate the trans-
verse magnetization that gives rise to the NMR signal. We assume
that the RF pulse is a perfect 90 degree pulse, so that the transverse
magnetization 𝑀𝑥 after the pulse will be equal to the longitudinal
magnetization 𝑀𝑧 before the pulse. The magnetization will precess
bout the magnetic field with the Larmor frequency 𝜔. Faraday’s law
f induction states that the voltage 𝑉 induced in a coil with 𝑁𝑡 turns
y a changing flux 𝛷 is

𝑉 = −𝑁𝑡
d𝛷
d𝑡 . (20)

The flux 𝛷 is given as the magnetic field 𝐵 flowing through the coil,
ultiplied with its cross-section 𝐴. The magnetic field in turn is given

y 𝐵 = 𝜇0𝑀 . If we assume 𝑀 to precess according to 𝑀𝑥 = 𝑀𝑧 cos(𝜔𝑡),
e have
𝑉 = 𝑁𝑡𝐴𝜇0𝜔𝑀𝑧 sin(𝜔𝑡) (21)
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Fig. 3. The principle of reciprocity. (A) A current 𝑖 flowing along a segment of coil
wire d𝒍 generates a magnetic field d𝑩1 at a distance 𝒓 from the coil segment. (B) A
magnetic moment 𝒎 at this point generates a vector potential 𝑨 at the point of the
oil segment, with 𝒓′ = −𝒓.

For a sample with thermal equilibrium polarization, the induced volt-
age scales as 𝛾3𝐵2

0𝐼(𝐼 + 1).
Before we turn to the time dependence of the NMR signal, we

consider the influence of the coil geometry on the attainable signal
mplitude. The first puzzle piece is the famous principle of reciprocity,
ntroduced into the NMR community by Hoult and Richards [22].

Consider a current 𝑖 running through a coil as shown in Fig. 3 A.
The magnetic field d𝑩1 generated by the length element d𝒍 at a point
𝒓 away from d𝒍 is given by Biot–Savart’s law as

d𝑩1(𝒓) =
𝜇0
4𝜋

𝑖d𝒍 × 𝒓
𝑟3

(22)

If we take the integral along the entire wire 𝑊 , we get

𝑩1(𝒓) =
𝜇0
4𝜋 ∫𝑊

𝑖d𝒍 × 𝒓
𝑟3

= −𝑖 𝜇0
4𝜋 ∫𝑊

𝒓 × d𝒍
𝑟3

(23)

On the other hand, as shown in Fig. 3 B, if we have a magnetic
dipole placed at the point 𝒓, then this will generate a vector potential
at the point of d𝒍 given by

𝑨(𝒓′) = 𝜇0
4𝜋

𝒎 × 𝒓′

𝑟′3
= − 𝜇0

4𝜋
𝒎 × 𝒓
𝑟3

, (24)

where we have made use of 𝒓′ = −𝒓. The magnetic field due to the
vector potential 𝑨 is given by

𝑩𝑠 = rot𝑨, (25)

where we have used the subscript 𝑠 to indicate that this field originates
rom the sample. We can calculate the induced voltage using Faraday’s
aw of induction

𝑉 = −d𝛷
d𝑡 = − d

d𝑡 ∬Area
𝑩𝑠 ⋅ d𝒂, (26)

where d𝒂 is the surface element. Now we insert Eq. (25), use Stokes’
heorem, insert expression (24) for 𝑨, and rearrange using the cyclic
elation (𝒂 × 𝒃) ⋅ 𝒄 = (𝒃 × 𝒄) ⋅ 𝒂:

𝑉 = − d
d𝑡 ∬Area

rot𝑨 ⋅ d𝒂 = − d
d𝑡 ∫𝐶

𝑨 ⋅ d𝒍 (27)

= d
d𝑡

𝜇0
4𝜋 ∫𝐶

𝒎 × 𝒓
𝑟3

⋅ d𝒍 = d
d𝑡

𝜇0
4𝜋 ∫𝐶

𝒓 × d𝒍
𝑟3

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
=−𝑩1∕𝑖

⋅𝒎 (28)

= − d
d𝑡

1
𝑖
𝑩1 ⋅𝒎 (29)

Now recall that magnetization is defined as magnetic moment per
unit volume. Thus, to get the voltage for all magnetic moments, we
replace the magnetic moment with the magnetization, and integrate
over the volume.

𝑉 = − d
d𝑡

1
𝑖 ∭

𝑩1 ⋅𝑴d𝑉 (30)

This is the principle of reciprocity: The voltage induced in the coil by a
precessing magnetic moment increases with increasing field generated
by the coil at the place of the precessing magnetic moment.
4 
Now we assume that the product of magnetization and magnetic
field is constant across the sample volume 𝑉𝑆 and vanishes outside the
oil. If the magnetization precesses in the transverse plane according
o 𝑀𝑥 = 𝑀0 cos(𝜔𝑡), we get

𝑉 =
𝐵1
𝑖
𝜔𝑀0𝑉𝑆 sin(𝜔𝑡), (31)

The signal amplitude in time is therefore

𝑉 =
𝐵1
𝑖
𝜔𝑀0𝑉𝑆 (32)

Since a good detector will have a homogeneous 𝐵1 across the
sample, it can be seen that the signal scales exactly as magnetic field
per current.

Now we follow Slichter [14] and estimate the amplitude of 𝐵1 for
a solenoid and a given radio-frequency power. An inductor carrying a
urrent 𝑖 stores an energy
1
2
𝐿𝑖2. (33)

But this energy is really the energy of the field that is produced by the
urrent, so we may write
1
2
𝐿𝑖2 = 1

2 ∭ 𝑴 𝑩d𝑉 = 1
2𝜇0

𝐵2𝑉𝑐 (34)

where we assume that the field is homogeneous and contained in the
oil with volume 𝑉𝑐 . This assumption is valid for an infinite solenoid.

Short solenoids generate significant field strength outside of the coil
and additionally exhibit 𝐵1 inhomogeneity. We found that for coils with
few turns 𝐵1 may be a factor two smaller than the estimate of Eq. (34).

In steady state, the power dissipated in the coil’s resistance 𝑟𝑐 equals
the power provided by the RF amplifier. We therefore have
1
2
𝑟𝑐 𝑖

2 = 𝑃 . (35)

Substituting this into Eq. (34), we get
1
2
𝐿 2𝑃

𝑟𝑐
= 1

2 𝜇0
𝐵2𝑉𝑐 . (36)

Now we introduce the coil’s 𝑄 factor, 𝑄 = 𝜔𝐿∕𝑟𝑐 , and solve for 𝐵:

𝐵 =

√

2𝑄𝑃 𝜇0
𝜔𝑉𝑐

. (37)

The field generated by the coil is linearly polarized, and has to be
decomposed into two counter-rotating circularly polarized fields, e.g.

𝐵 cos(𝜔𝑡) = 𝐵1 exp(𝑗 𝜔𝑡) + 𝐵1 exp(−𝑗 𝜔𝑡). (38)

Therefore

𝐵1 = 𝐵∕2 =
√

𝜇0𝑄𝑃
2𝜔𝑉𝑐

. (39)

As we describe in detail in Appendix C, 𝑄 is readily measured by the
idth of the return loss spectrum (i.e. the 𝑆11 trace on a network
nalyzer) 3 dB or 7 dB below the baseline [23]. Experimentally, the 𝐵1

amplitude can of course be determined using a nutation experiment.
If the duration of a 𝜋∕2 pulse is 𝜏, then |𝜔1|𝜏 = 𝜋∕2. Rearranging
1 = −𝛾 𝐵1, we get 𝐵1 = 𝜋∕(2𝛾 𝜏). It is common in the NMR community

o drop 𝛾 from the denominator and specify the strength of 𝐵1 in kHz.
ote that the above equation may be rearranged as

𝐵1
√

𝑃
=

√

𝜇0𝑄
2𝜔𝑉𝑐

, (40)

a probe that achieves a stronger 𝐵1 for a given power and volume will
have a higher 𝑄 and therefore higher sensitivity [24].

If we insert (39) into the expression for the signal amplitude (32),
nd define the filling factor 𝜂 = 𝑉𝑠∕𝑉𝑐 , we obtain

𝑉 =

√

𝜇0𝑄𝑃
2𝜔𝑉𝑐

𝜔𝑀0𝑉𝑠
𝑖

=
√

𝜇0𝑄𝜔𝑉𝑐𝑟𝑐
2

𝜂 𝑀0 (41)
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5. The noise

The noise in the coil is Johnson Noise [25], with an amplitude

𝑉𝑛 =
√

4𝑟𝑐𝑘𝑇𝑐𝛥𝑓 , (42)

where 𝛥𝑓 is the bandwidth, 𝑇𝑐 is the coil temperature, and 𝑟𝑐 is the
(frequency-dependent) resistance of the coil. We note that saline solu-
ions effectively increase the coil’s resistance at high frequencies [26].

6. The signal-to-noise ratio in the time domain

The signal-to-noise ratio in the time domain is simply the ratio of
Eqs. (41) and (42). If we also insert the expression for the magnetization
(18), we get

SNR𝑡 =
𝑉
𝑉𝑛

=

√

𝜇0𝑄𝜔𝑉𝑐
8𝑘𝑇𝑐𝛥𝑓

𝜂 𝑛𝛾 ℏ𝐼 𝑃 . (43)

The bandwidth 𝛥𝑓 is given by the required bandwidth needed to detect
all signals in the spectrum. The 𝑄 factor should be as high as possible
given the expected bandwidth of the NMR signal. As an example, 13C
as a chemical shift range of 200 ppm, corresponding to 20 kHz in
 9.4 T magnet. To avoid non-linearities due to the circuit, we might

choose a lower circuit bandwidth limit of 200 kHz, resulting in a 𝑄 ∼
100 MHz∕200 kHz = 500. A second limitation is imposed by the onset of
circuit non-linearity in the form of radiation damping where the signal
induced by the precessing magnetization is so strong that it acts back on
he magnetization [27]. Radiation-damping causes linebroadening and

is readily observed on samples that exhibit a large magnetization either
because they contain high-𝛾 nuclei in high concentration (aqueous
samples) or because the spins are hyperpolarized. We note that high 𝑄
circuits may not only give rise to radiation damping but also to rasing,
a technique that can increase the sensitivity of detecting signals in a
narrow bandwidth [28–32].

It should be noted that the signal-to-noise ratio can only degrade as
he signal is amplified by the preamplifier, and processed and digitized
y the NMR receiver. For a detailed discussion of the NMR receiver,
e refer to the works by Hoult [33] and more recently, by Takeda and
ichal [34,35].

7. The signal-to-noise ratio in the frequency domain

Clearly, the signal-to-noise ratio in time is not the same as the
ignal-to-noise ratio in the frequency domain. We shall calculate the
atter using the discrete Fourier transform. The noise in the frequency
omain is readily obtained from Parseval’s Theorem, which relates the

RMS amplitudes in the two domains. We follow the convention of using
𝑚 for samples in the time domain, and 𝑋𝑘 for samples in the frequency
omain. Parseval’s Theorem states that

𝑁−1
∑

𝑚=0
|𝑥𝑚|

2 = 1
𝑁

𝑁−1
∑

𝑘=0
|𝑋𝑘|

2. (44)

where 𝑁 is the number of points in either domain. Therefore, if the
RMS noise is 𝑉𝑁 in the time domain, than the RMS noise is

√

𝑁𝑉𝑁 in
he frequency domain. Other things being equal, doubling the number

of samples in the time-domain leads to an increase of the RMS noise in
the frequency domain by

√

2.
The 𝑋𝑘 are the Fourier coefficients, defined as

𝑋𝑘 =
𝑁−1
∑

𝑚=0
𝑥𝑚 exp(−i2𝜋 𝑘𝑚∕𝑁). (45)

We now assume our signal to appear on resonance, i.e. at 𝑘 = 0, and to
ecay exponentially with a transverse relaxation rate constant 𝑅2, i.e.
𝑥𝑚 = 𝑆0 exp(−𝑅2 𝑚𝑇𝐴∕𝑁) = 𝑆0 exp(−𝑅2𝑇𝐴∕𝑁)𝑚 (46) a

5 
where 𝑇𝐴 is the total acquisition time, so that 𝑇𝐴∕𝑁 is the dwell time.
Then the maximum in the frequency domain appears at 𝑘 = 0, with

𝑋0 = 𝑆0

𝑁−1
∑

𝑚=0
exp(−𝑅2𝑇𝐴∕𝑁)𝑚 ≈ 𝑆0

∞
∑

𝑚=0
exp(−𝑅2𝑇𝐴∕𝑁)𝑚 (47)

where we have assumed that our signal has decayed at the end of
the acquisition time, such that we can approximate the finite series

ith an infinite geometric series. Since, the series is convergent with
∞ 𝑞𝑛 = 1∕(1 − 𝑞), we have

𝑋0 =
𝑆0

1 − exp(−𝑅2𝑇𝐴∕𝑁)
≈

𝑆0𝑁
𝑅2𝑇𝐴

, (48)

where we have made use of 𝑁 ≫ 𝑅2𝑇𝐴 to expand the exponential. The
ignal-to-noise ratio in the frequency domain can now be written as

SNR𝜔 =
𝑆0𝑁∕(𝑅2𝑇𝐴)

𝑉𝑛
√

𝑁
= SNR𝑡

√

𝑁
𝑅2𝑇𝐴

=

√

𝜇0𝑄𝜔𝑉𝐶
8𝑘𝑇𝑐

𝜂 𝑀0

𝑅2
√

𝑇𝐴
. (49)

We have used the fact that the bandwidth 𝛥𝑓 is the inverse of the dwell
time, i.e., 𝛥𝑓 = 𝑁∕𝑇𝐴.

Often in NMR we choose to set the acquisition time sufficiently long,
such that the NMR signal has decayed completely, and we then use
apodization to improve the signal-to-noise ratio. Let 𝑅𝐴 be the rate
constant of the exponential apodization. Since both the signal and the
noise are subjected to apodization, they both decrease. Apodization
rescales the signal in the frequency domain by a factor 𝑅2∕(𝑅2 + 𝑅𝐴).
The noise in the frequency domain on the other hand is scaled by a
factor

√

(

1 − exp (−𝑅𝐴𝑇𝐴
))

∕
(

𝑅𝐴𝑇𝐴
)

. The signal-to-noise ratio then is

SNR𝑎𝑝
𝜔 =

√

𝜇0𝑄𝜔𝑉𝐶
8𝑘𝑇𝑐

𝜂 𝑀0

(𝑅2 + 𝑅𝐴)
√

𝑇𝐴

√

𝑅𝐴𝑇𝐴
1 − exp(−𝑅𝐴𝑇𝐴)

(50)

A typical choice for apodization is the linewidth itself, i.e. 𝑅𝐴 = 𝑅2.
Then, if the apodization is sufficiently strong such that 𝑅𝐴𝑇𝐴 ≫ 1, we
have 1 − exp (−𝑅𝐴𝑇𝐴

)

≈ 1 and the signal-to-noise ratio becomes

SNR𝑎𝑝
𝜔 =

√

𝜇0𝑄𝜔𝑉𝐶
8𝑘𝑇𝑐

𝜂 𝑀0

2
√

𝑅2
. (51)

We can improve the SNR by repeating our experiment. We assume
that also for hyperpolarized signals, the signal adds linearly with every
xperiment, whereas the noise again grows only with the square root
f the number of repetitions. If we give ourselves a total time 𝑇tot which
s an arbitrary multiple of the time required to do the experiment 𝑇exp,
hen we have

SNR𝑎𝑝,𝑎𝑣
𝜔 = SNR𝜔

√

𝑇tot

𝑇exp
=

√

𝜇0𝑄𝜔𝑉𝐶
8𝑘𝑇𝑐

𝜂 𝑀0

2
√

𝑅2

√

𝑇tot

𝑇exp
(52)

Experimentally, the signal-to-noise ratio is determined by dividing
the amplitude of a given signal by the RMS of the noise.1

8. Sensitivity and hyperpolarized time gain

In NMR we typically distinguish concentration sensitivity and mass
ensitivity. We will get to these terms in a minute. However before do-
ng so, we note that what we really mean with sensitivity is information

gain per time. The cost of operating an instrument is linear in time as
well, so we could also say that we are interested in information gain per
buck. The total time required to achieve a given SNR scales, of course,
with the square of the single scan signal-to-noise ratio. If we want to
achieve a signal-to-noise ratio of 𝑋, then we have

𝑇tot = 𝑋2 8𝑘𝑇𝑐
𝜇0𝑄𝜔𝑉𝑐

4𝑅2

𝜂2𝑀2
0

𝑇exp (53)

1 The TopSpin SINO macro does essentially this, however it first performs
a linear regression of the selected noise data in order to remove baseline
rtefacts to first order.
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We define the HYperpolarized TIme GAin HYTIGA 𝐺 as

𝐺 =
𝑇 th

tot

𝑇 hyp
tot

(54)

If we can reduce the required time by using hyperpolarization (𝐺 >
1), than doing so will have merit. Sometimes, the argument is made
that high magnetic fields are expensive, and that hyperpolarization can
save money. The monetary saving is the gain weighted by the cost of
running experiments with and without hyperpolarization:

𝐶 =
𝑇 th

tot

𝑇 hyp
tot

$th

$hyp
(55)

where $th/hyp is the cost of thermally polarized and hyperpolarized
xperiments per unit time. We note that, at an annual depreciation of

10%, even a 10 M$ instrument has an hourly depreciation cost of the
order of $ 100. A benchtop instrument on the other hand would be
100 times cheaper, so that it comes in at $ 1/h. Whenever hyperpo-
larization requires additional staff, with costs of the order of $ 100/h,
the implication is that the cost gain is almost always smaller than the
time gain. Without stringent automation, staff costs are of course also
applicable to otherwise affordable hyperpolarization techniques such
as parahydrogen-induced polarization.

The time and cost gain depend critically on whether we need to
ork with a fixed concentration or with a fixed sample volume or mass.

We now discuss the time gain for these two cases.

9. Concentration sensitivity

Sometimes, we are forced to work with limited concentrations, for
instance if we want to work at or near physiological concentrations,
if we want to determine ligand affinity, or if we are limited by solu-
bility or stability of a protein. Without hyperpolarization, the cost is
inversely proportional to the sample volume or coil volume, as long
as we get a good filling factor (i.e. 𝜂 ∼ 1). With hyperpolarization,
three things change. The polarization changes by the enhancement
𝜖, the time for the experiment changes from 𝑇1 to the time constant
of the hyperpolarization experiment 𝑇hyp, and 𝑅2 may increase due
to poorer resolution in the hyperpolarized experiment. The gain from
using hyperpolarization then is

𝐺 =
𝑇 th

tot

𝑇 hyp
tot

=
𝑅th
2 𝜖

2

𝑅hyp
2

𝑇1
𝑇hyp

(56)

If a hyperpolarization experiment can be carried out at the same rate
or even a faster rate than 𝑇1 than one only needs a very modest
enhancement or even no enhancement to obtain 𝐺 > 1. This con-
dition is often fulfilled to good approximation in MAS-DNP [36]. It
may also be achieved in certain applications of SABRE [37,38] and

verhauser-DNP [39].
On the other hand, in a D-DNP experiment, the effective hyperpo-

arization time can easily be 10,000 times larger than the liquid state
1. After all, a hyperpolarization time of 10,000 s corresponds to > 8
xperiments/day. Then, if 𝑇1 is of the order of a second, even if 𝑅hyp

2 ∼
𝑅th
2 , one requires enhancements of > 100 to justify hyperpolarization.
ecent deuterium-based metabolic imaging studies make stringent use
f the short 𝑇1 of 2H and illustrate this fact succinctly [40,41].

10. Mass sensitivity

If we are interested in mass sensitivity, that is, we want to obtain a
ignal from a small amount of sample, the analysis is rather different. It
s well known that for small samples one needs to adapt the coil volume
o the available sample. As was shown already in the 90s [42], and in

the early 2000s for MAS [43] doing so rigorously enables a detection of
a few nL or tens of nanograms of material within minutes without hy-
perpolarization. Microcoils are required to detect such minute amounts
6 
of sample without hyperpolarization and we refer to Refs. [44–46] for
further reading on this fascinating field.

If we have a limited mass, than we will also have a limited volume,
nd – for the most sensitive acquisition – we choose our coil volume

to match the sample volume. The normal sensitivity is then given by
(53).

Now, if we hyperpolarize and dissolve the material, we get a di-
ution factor 𝐷, a possibly different 𝑅hyp

2 and a different coil volume
hyp
𝑐 . If we produce more solvent than needed to fill the available coil

volume, we can take that into account using a penalty factor 𝑝 <= 1.
The gain then is

𝐺 =
𝑇 th

tot

𝑇 hyp
tot

= 𝑝
𝑉 hyp
𝑐
𝑉 th
𝑐

𝑅th
2

𝑅hyp
2

𝜖2

𝐷2
𝑇1
𝑇hyp

(57)

If we have a mass-limited sample with a volume in the low nL range,
than the dilution factor will easily be 10,000. An enhancement of
10,000 would therefore be canceled by the dilution. There would still
be a gain from the volume factor, however that gain is readily offset
y the time factor. Dissolution-DNP is therefore at present not a viable
ool for sensitivity enhancements of samples with volumes in the low nL
ange.

In more favorable cases the available mass and volume are larger,
o that the dilution is only 10–100 fold. In bullet-DNP [24,47–51] one

may achieve only 10-fold dilution for samples down to 30 μL. Using
organic solvents, the volume can be chosen to only marginally exceed
the coil volume, i.e. 𝑝 = 0.8. Allowing for a deterioration in linewidth
by a factor 2, and a hyperpolarization time of 2 h, we get

𝐺𝑏 = 0.8 × 10 1
2

𝜖2

102
17200 = 𝜖2

180000
(58)

We then need 𝜖 > 450 to break even. If the dilution is larger, as may
be the case in bullet-DNP experiments involving aqueous solutions, or
in dissolution-DNP experiments, where a solvent volume of 1 mL is on
he lower end of what has been achieved, we would have 𝐷 = 30 and
𝑝 = 0.4. Then we have

𝐺𝑏 = 0.4 × 30 1
2

𝜖2

302
17200 = 𝜖2

1080000
(59)

and we need an enhancement of 1000. Such an enhancement is readily
attained for low-𝛾 nuclei such as carbon, but more challenging to
achieve on rapidly relaxing high-𝛾 nuclei.

We note that the arguments presented here also apply to SABRE and
PHIP. These experiments often work best at concentrations below those
which one would use when working at thermal equilibrium.

Of course, many labs do not have a microfluidic detector for every
onceivable sample volume, and many of the assumptions that we made

can be questioned. After correcting for sample volume, a cryoprobe has
 superior performance or 𝑄 than a microcoil, and small coils bring
bout their own challenges with respect to loading, shimming, and so

on. For the time being, however, the scaling that we describe here is
also observed in experiment, where nanograms can be detected using
either small coils [42] or hyperpolarization. The sensitivity of NMR will
extend into the picogram range when near unity polarization with little
or no dilution becomes available at the nL to low μL scale.
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Appendix A. The Brillouin function

The general definition of the spin polarization is:
𝑃 = 1

𝐼
⟨

𝐼𝑧
⟩

(A.1)

where
⟨

𝐼𝑧
⟩

=
𝐼
∑

𝑚=−𝐼
𝑚𝑝𝑚 (A.2)

The probability of the 𝑚th Zeeman level being occupied is given by

𝑝𝑚 = 1
𝑍

𝐼
∑

𝑚=−𝐼
𝑚 exp

(

−
𝐸𝑚
𝑘𝑇

)

. (A.3)

Here, 𝑍 is the partition sum, which, with 𝐸𝑚 = −𝑚ℏ𝛾 𝐵0 and 𝑥 = ℏ𝛾 𝐵0
𝑘𝑇

is

𝑍 =
𝐼
∑

𝑚=−𝐼
exp

(

−
𝐸𝑚
𝑘𝑇

)

=
𝐼
∑

𝑚=−𝐼
exp (𝑚𝑥) . (A.4)

Evaluation of this finite sum using the geometric series (and index
shifting) gives

𝑍 = 𝑒−𝐼 𝑥 − 𝑒(𝐼+1)𝑥

1 − 𝑒𝑥
, (A.5)

which we rewrite as

𝑍 =
sinh((𝐼 + 1

2 )𝑥)

sinh( 12𝑥)
(A.6)

Note that the expectation value of 𝐼𝑧, (A.2) is the derivative of ln𝑍:
⟨

𝐼𝑧
⟩

= 1
𝑍

𝐼
∑

𝑚=−𝐼
𝑚 exp(𝑚𝑥) = d

d𝑥 ln𝑍 (A.7)

Inserting the result for 𝑍, (A.6), we obtain:
d ln𝑍

d𝑥 = 1
𝑍

d𝑍
d𝑥

=
sinh( 12𝑥)

sinh( 2𝐼+12 𝑥)

2𝐼+1
2 cosh( 2𝐼+12 𝑥) sinh( 12𝑥) −

1
2 sinh(

2𝐼+1
2 𝑥) cosh( 12𝑥)

sinh2
(

1
2𝑥

)

= 2𝐼 + 1
2

cot h
( 2𝐼 + 1

2
𝑥
)

− 1
2
cot h

( 1
2
𝑥
)

(A.8)

Finally we arrive at the following expression for the polarization:

𝑃 = 2𝐼 + 1
2𝐼

cot h
( 2𝐼 + 1

2
𝑥
)

− 1
2𝐼

cot h
( 1
2
𝑥
)

= 𝐵𝐼 (𝐼 𝑥). (A.9)

Here, 𝐵𝐼 is known as the Brillouin function:

𝐵𝐼 (𝑦) ∶= 2𝐼 + 1
2𝐼

cot h
( 2𝐼 + 1

2𝐼
𝑦
)

− 1
2𝐼

cot h
( 1
2𝐼

𝑦
)

. (A.10)

Expanding 𝑥, we get

𝑃 = 𝐵𝐼

(

𝐼 ℏ𝛾 𝐵0
𝑘𝑇

)

. (A.11)
7 
Fig. C.4. The RF coil is a lossy inductor that we model as a series circuit of an ideal
inductor 𝐿 and a resistor 𝑟.

For the case of 𝐼 = 1∕2 the Brillouin function simplifies to the t anh
expression:
𝐵1∕2(𝑦) = 2 cot h(2𝑦) − cot h(𝑦)

= 2 cosh 2𝑦
sinh 2𝑦 −

cosh 𝑦
sinh 𝑦

= 2 2 cosh2 𝑦 − 1
2 sinh 𝑦 cosh 𝑦 −

cosh 𝑦
sinh 𝑦

=
cosh2 𝑦 − 1
sinh 𝑦 cosh 𝑦

= t anh 𝑦 = t anh(𝐼 𝑥) = t anh
(

ℏ𝛾 𝐵0
2𝑘𝑇

)

(A.12)

By expanding the Brillouin function using the approximation
ot h 𝑥 ≈ 1

𝑥 + 𝑥
3 and using 𝑀𝑧 = 𝑛𝛾 ℏ𝐼 𝑃 , one again obtains the Curie

law Eq. (19).

Appendix B. Polarization tensors for spins ≥ 1

One can define spin polarization operators [52,53] �̂�𝐿𝑀 (𝐼) with
ank 𝐿 = 0, 1,… , 2𝐼 and 𝑀 = −𝐿,−𝐿 + 1,… , 𝐿. The rank 0 operator

is a scalar which conveys no useful information, the rank 1 operator is
he familiar polarization vector. The higher rank polarization tensors
re necessary for nuclei with spin 𝐼 > 1∕2.

Consider the case of spin 𝐼 = 1 nuclei in a magnetic field parallel
to the 𝑧 axis and denote the relative populations of the three Zeeman
levels (𝑚𝐼 = −1, 0, 1) as 𝑝𝑚𝐼

. Since 𝑝−1+𝑝0+𝑝1 = 1 there are two degrees
of freedom and we can describe the order using two numbers [54,55]:
vector polarization 𝑃 and tensor polarization 𝑃𝑧𝑧:

𝑃 = 𝑝1 − 𝑝−1 (B.1)

𝑃𝑧𝑧 = 1 − 3𝑝0 (B.2)

Appendix C. Coil Q and return loss

We discuss a simple resonant circuit as it is used in NMR and
calculate its return loss. We then derive expressions for the coil 𝑄
from the return loss of an equivalent series 𝑅𝐶 𝐿 circuit. The return
oss is readily measured with a vector network analyzer (VNA). There
re several historical articles in the literature that describe how 𝑄
an be measured without a VNA, however thanks to the advent of
ery affordable VNAs like the NanoVNA, today every lab can afford
uantitative measurements of the return loss. Throughout this section
e give general formulas, but we also evaluate them for a specific coil

o that readers can validate their own implementation of the equations.
here are many ways to tune a coil, and we refer to Refs. [56–60] for

further reading on this subject.
The RF coil is a lossy inductor which we model as a series circuit of

an ideal inductor 𝐿 and a resistor 𝑟. For our specific example we choose
𝑟 = 1 Ω and 𝐿 = 100 nH. The impedance of the coil is

𝑍1 = 𝑗 𝜔𝐿 + 𝑟. (C.1)
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Fig. C.5. The RF coil and the tuning capacitor. The tuning capacitor is chosen such
that the real part of the input impedance is ℜ(𝑍2(𝜔0)) = 50 Ω.

We also choose our resonance frequency to be 100 MHz, so 𝜔0 =
2𝜋100MHz. The impedance of the lossy coil at 100 MHz is then (1 +𝑗63)
Ω. Our model of the coil is shown in Fig. C.4. In practice one often does
not have good a priori knowledge of 𝐿 and 𝑟. One can then use a parallel
capacitor of known value and a sniffer loop to determine 𝐿 [58]. The
esistance (at the desired frequency) can be determined from the return
oss as we will now show.

To transfer energy in and out of the coil, we need to match its
mpedance to the system impedance of the spectrometer, which is
𝑍0 = 50 Ω. In a sense, this is the principle of reciprocity again, however
this time we are dealing with source and load impedances. Power
ransfer into- and out of the load is maximal when the source and
oad impedances are matched [61]. As a side note, the available ‘‘signal

power’’ of a matched NMR circuit is dissipated in equal amounts by the
coil loss and the input impedance of the receiver. Doubling the losses in
he circuit halves the 𝑄 - the loaded 𝑄 (when connected to the receiver)

is half the unloaded 𝑄 [57]. Now in order to match the impedance, we
will first add a shunt capacitor, whose job it is to change the real part
f the impedance to 50 Ω.

Let 𝐶𝑇 be the capacitance of the shunt tuning capacitor. Its
impedance is then 𝑍𝑇 = 1∕(𝑗 𝜔𝐶𝑇 ). The impedance looking at the coil
via the shunt capacitor is (see Fig. C.5)

𝑍2 =
𝑍𝑇𝑍1

𝑍𝑇 +𝑍1
. (C.2)

By inserting the expressions for 𝑍𝑇 and 𝑍1, and extending with the
complex conjugate we get the following expression for the real part of

2:

ℜ𝑍2 =
𝑟𝐿∕𝐶𝑇 − 𝑟𝑏∕(𝜔0𝐶𝑇 )

𝑟2 + 𝑏2
, (C.3)

with 𝑏 = 𝜔0𝐿− 1∕(𝜔0𝐶𝑇 ). We now solve the quadratic equation ℜ𝑍2 =
0 for 𝐶𝑇 and obtain, after some simplification

𝐶𝑇 = 1
𝑟2 + (𝜔0𝐿)2

(

𝐿 ±

√

𝑟𝜔0𝐿2 −𝑍0𝑟2 + 𝑟3

𝜔2
0𝑍0

)

(C.4)

We chose the smaller value for 𝐶𝑇 , i.e. to subtract the square root. For
experts, this choice means that we will move a shorter distance on the
Smith chart, and retain a positive reactance, i.e. one that we can cancel

ith a series matching capacitor. For our example, we get 𝐶𝑇 = 21.8
pF. Now we need to cancel the remaining reactance with a matching
apacitor 𝐶𝑀 , i.e.
1

𝑗 𝜔𝐶𝑀
+ 𝑗ℑ𝑍2 = 0 ⇔ 𝐶𝑀 = 1

𝜔0ℑ𝑍2
(C.5)

For our example we get 𝐶𝑀 = 3.6 pF.
Now we have completed our RF circuit, as shown in C.6. Since we

know the values for all components, we can calculate its impedance at
ny frequency 𝜔 as

𝑍 = 1
𝑗 𝜔𝐶 +

(𝑗 𝜔𝐿 + 𝑟) 1
𝑗 𝜔𝐶𝑇

𝑗 𝜔𝐿 + 𝑟 + 1∕(𝑗 𝜔𝐶𝑇 )
. (C.6)

From the impedance we can calculate the reflection coefficient

𝛤 =
𝑍 −𝑍0 (C.7)

𝑍 +𝑍0

8 
Fig. C.6. The tuned and matched coil with impedance 𝑍.

and the return loss (RL, in dB) as

RL = −20 log |𝛤 | = −20 log ||
|

|

𝑍 −𝑍0
𝑍 +𝑍0

|

|

|

|

(C.8)

To see how the return loss depends on 𝑄, we follow Doty et al. [23]
and model our four-component tuned-and matched circuit with an
equivalent three-component series 𝑅𝐿𝐶 circuit as depicted in Fig. C.7.

On resonance, the reactances of a series 𝑅𝐿𝐶 circuit’s coil and
capacitor cancel, and the impedance is purely resistive, i.e. 𝑍𝑒(𝜔0) =
𝑅𝑒. Therefore, we have to chose 𝑅𝑒 = 𝑍0 = 50 Ω.

In order to chose the value for the inductance 𝐿𝑒, we note that the
circuit 𝑄 factor is defined as [62]:

𝑄 = 𝜔
𝑊𝑚 +𝑊𝑒

𝑃𝑙
, (C.9)

where 𝑊𝑚 and 𝑊𝑒 are the average energies stored in the inductor
and capacitor respectively. For a current with effective amplitude 𝑖 on
resonance 𝑊𝑚 = 1

2𝐿𝑒𝑖2, and 𝑊𝑚 = 𝑊𝑒. The losses are 𝑃𝑙 = 𝑅𝑒𝑖2 and we
obtain on resonance

𝑄 = 𝜔0
𝐿𝑒𝑖2

𝑅𝑖2
=

𝜔𝐿𝑒
𝑅𝑒

= 𝜔𝐿
𝑟

⇒ 𝐿𝑒 =
𝑅𝑒
𝑟
𝐿. (C.10)

where we have used the fact that 𝑄 = 𝜔𝐿
𝑟 applies for the NMR circuit

with impedance 𝑍. For our example, 𝐿𝑒 = 50𝐿 = 5 μH. With 𝜔0 =
1

√

𝐿𝑒𝐶𝑒
we obtain 𝐶𝑒, in our example 0.51 pF.

Now we again know all the component values of the equivalent
circuit, and we can compute 𝑍𝑒 at any frequency 𝜔:

𝑍𝑒 = 𝑅𝑒 + 𝑗 𝜔𝐿𝑒 +
1

𝑗 𝜔𝐶𝑒
. (C.11)

The return losses of the exemplary NMR circuit and the equivalent
eries circuit are shown in Fig. C.8 A. Notebooks with implementations

of the return loss calculations in bare Python and using scikit-rf [63] are
available online (see Data availability). While the return loss of both the

MR circuit and the equivalent circuit are almost identical, the same is
ot at all true for the impedances, shown for both circuits in Fig. C.8 B.

However, since power transfer is all we care about, the equivalent series
s an excellent model of the NMR circuit. Furthermore, as can be seen
n Fig. C.8 B, the real part of 𝑍𝑒 is constant, and the complex part is

linear to a very good approximation.
We can therefore expand Eq. (C.11) into a series at 𝜔 = 𝜔0 [62].

Clearly, for the zero order term 𝑍𝑒(𝜔0) = 𝑅𝑒 = 𝑍0. For the first order
erm we obtain
𝜕 𝑍𝑒
𝜕 𝜔

|

|

|

|𝜔0

(𝜔 − 𝜔0) = 𝑗 𝐿𝑒(𝜔 − 𝜔0) − 1
𝑗 𝜔2

0𝐶𝑒
(𝜔 − 𝜔0) = 𝑗2𝐿𝑒(𝜔 − 𝜔0), (C.12)

where we have used 𝜔2
0𝐿𝑒𝐶𝑒 = 1. Our approximation is therefore

𝑍𝑒 ≈ 𝑍0 + 𝑗2𝐿𝑒(𝜔 − 𝜔0) = 𝑍0 + 𝑗2𝐿𝑒𝜖 , (C.13)

where we have introduced 𝜖 = 𝜔 − 𝜔0.
From this expression one can derive two ways to measure 𝑄, and

e now show that they are equivalent.
The ‘‘3 dB technique’’ uses the width of the return line at 3 dB. We

then have
2 1
3 = −20 log |𝛤 | ⇔ |𝛤 | =

2
. (C.14)
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Fig. C.7. The NMR circuit (left) and its equivalent series 𝑅𝐿𝐶 circuit with components 𝑅𝑒, 𝐿𝑒 and 𝐶𝑒.
Fig. C.8. (A) Return loss of the NMR circuit (blue), and its equivalent series 𝑅𝐶 𝐿 circuit (dashed, black). As can be seen, the correspondence is excellent. (B) Real and imaginary
art of the impedance of the NMR circuit (blue solid and blue dotted line respectively), and real and imaginary part of the impedance of the equivalent 𝑅𝐶 𝐿 circuit (orange solid
nd orange dotted line respectively). The impedance of the equivalent circuit 𝑍𝑒 is readily described using a first order expansion.
But we also have

|𝛤 |

2 =
|

|

|

|

𝑍 −𝑍0
𝑍 +𝑍0

|

|

|

|

2
≈
|

|

|

|

𝑍𝑒 −𝑍0
𝑍𝑒 +𝑍0

|

|

|

|

2
=
|

|

|

|

𝑗2𝐿𝑒𝜖
2𝑍0 + 𝑗2𝐿𝑒𝜖

|

|

|

|

2
=

(𝜖 𝐿𝑒)2

𝑍2
0 + (𝜖 𝐿𝑒)2

= 1
2

(C.15)

This equation is fulfilled when 𝜖 𝐿𝑒 = 𝑍0. The 3 dB bandwidth is 𝛥𝜔3dB =
2(𝜔 − 𝜔0) = 2𝜖, so that we get
𝛥𝜔3dB

2
=

𝑍0
𝐿𝑒

𝜔0
𝜔0

=
𝜔0
𝑄

⇒ 𝑄 =
2𝜔0
𝛥𝜔3dB

. (C.16)

The alternative ‘‘7 dB technique’’, described by Doty et al. [23],
chooses 𝜖 such that 2𝐿𝑒𝜖 = ±𝑍0 = ±𝑅𝑒. For these two values of 𝜖, the
real and imaginary parts are equal in magnitude, i.e. 𝑍𝑒 = 𝑍0(1 ± 𝑗),
nd their phase differs by 90 degree. We have

|𝛤 |

2 =
|

|

|

|

𝑍 −𝑍0
𝑍 +𝑍0

|

|

|

|

2
≈
|

|

|

|

±𝑗
2 ± 𝑗

|

|

|

|

2
= 1

5
(C.17)

and the return loss is
RL = −20 log |𝛤 | = −10 log |𝛤 |

2 = −10 log(0.2) = 6.99dB ≈ 7dB. (C.18)

Again, the 7 dB bandwidth equals 2𝜖, so that

𝛥𝜔7dB = 2𝜖 = 𝑅𝑒
𝐿𝑒

= 𝜔0
𝑅𝑒

𝜔0𝐿𝑒
=

𝜔0
𝑄

⇒ 𝑄 =
𝜔0

𝛥𝜔7dB
(C.19)

We usually work with the 7 dB technique since it evaluates the return
loss closer to resonance.

Data availability

Notebooks with implementations of the return loss calculations
n bare Python and using scikit-rf [63] (Arsenovic et al., 2022) are

available in KITopen at https://doi.org/10.35097/st1kjwpvsce77dhw.
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