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ABSTRACT

Super-resolution reconstruction of turbulent flows using deep learning has gained significant attention, yet challenges remain in accurately
capturing physical small-scale structures. This study introduces the Conditional Enhanced Super-Resolution Generative Adversarial Network
(CESRGAN) for reconstructing high-resolution turbulent velocity fields from low-resolution inputs. CESRGAN consists of a conditional dis-
criminator and a conditional generator, the latter being called CoGEN. CoGEN incorporates subgrid-scale (SGS) turbulence kinetic energy as
conditional information, improving the recovery of small-scale turbulent structures with the desired level of energy. By being aware of SGS
turbulence kinetic energy, CoGEN is relatively insensitive to the degree of detail in the input. As shown in the paper, its advantages become
more pronounced when the model is applied to heavily filtered input. We evaluate the model using direct numerical simulation (DNS) data
of forced homogeneous isotropic turbulence. The analysis of Q-criterion isosurfaces, energy spectra, and probability density functions shows
that the proposed CoGEN reconstructs fine-scale vortical structures more precisely and captures turbulent intermittency better compared to
the traditional generator. Particle-pair dispersion simulations validate the physical fidelity of CoGEN-reconstructed fields, closely matching
DNS results across various Stokes numbers and filtering levels. This paper demonstrates how incorporating available physical information
enhances super-resolution models for turbulent flows.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0235192

I. INTRODUCTION

Turbulent flows, characterized by their chaotic and multi-scale
nature, play a crucial role in numerous engineering and scientific
applications. The accurate representation of these flows across all
scales, from the large energy-containing eddies to the small dissipative
structures, is essential for understanding and predicting various phe-
nomena such as particle dispersion, heat transfer, and mixing pro-
cesses. Large-scale structures dominate the transport of momentum
and energy, while small-scale structures are critical for processes like
dissipation, fine-scale mixing, and dispersion. However, resolving all
scales of turbulent motion poses significant computational challenges.
While direct numerical simulation (DNS) provides the most accurate
results by resolving all scales, its computational cost becomes prohibi-
tive for many practical applications. Large-eddy simulation (LES)
offers a compromise by resolving large-scale motions while filtering

out small-scale structures, approximating their effects through
subgrid-scale (SGS) models. This limitation is particularly problematic
in particle-laden flows, where small-scale turbulent structures signifi-
cantly influence particle behavior.1,2

Lagrangian stochastic models have been widely employed to
account for subgrid-scale turbulence effects on particle dispersion.3–6

However, these models often struggle to accurately predict pair statis-
tics. This limitation arises because they generate velocity fluctuations
independently for each particle, thus neglecting the spatial correlations
inherent in turbulent flows. To address these challenges, researchers
have developed various innovative methods to reconstruct high-
resolution turbulent flow fields from lower-resolution data. For exam-
ple, in the approximate deconvolution method (ADM),7,8 the velocity
field is enriched with small-scale structures by applying an inverse fil-
tering operation to the resolved large-scale field. However, this method
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only reconstructs scales near the filter cutoff, neglecting smaller subgrid
motions. Building on these approaches, Bassenne et al.9 introduced the
spectrally enriched differential filter (SDF) model. This method com-
bines ADMwith a dynamic procedure to reconstruct velocity fields con-
taining scales smaller than the LES grid resolution. The main problem
of this model is that the generated velocity field is not inherently
divergence-free, thus requiring a computationally expensive divergence-
free projection step. Fractal interpolation (FI) is another sub-filter scale
reconstruction method, based on turbulence fractality assumption.10,11

The effectiveness of FI relies on accurate determination of fractal dimen-
sions, which vary across flow regimes. Moreover, a major limitation
emerges in 3D reconstructions, where FI generates uncorrelated velocity
components. Kinematic simulation (KS) is another reconstruction
model that generates SGS velocity field by superposing several random
orthogonal Fourier modes.12,13 However, these global Fourier basis func-
tions have infinite support in physical space, restricting KS’s application
primarily to homogeneous turbulence. In contrast, the Gabor mode
reconstruction method provides a more localized approach by employ-
ing spectrally localized Gabor modes.14,15 The SGS velocity field can also
be reconstructed by utilizing wavelet-based methods. Hausmann et al.16

proposed a wavelet enrichment model that discretizes the SGS velocity
using a divergence-free wavelet vector basis, enabling the generation of
inhomogeneous and anisotropic subgrid-scale velocity fields. Although
these methods can predict certain turbulence statistics, they often gener-
ate velocity fields that deviate significantly from DNS results and intro-
duce numerical artifacts. These limitations have motivated researchers
to explore data-driven approaches for turbulence reconstruction.

Concurrently, the computer vision community has developed
deep-learning based methods for super-resolution tasks, a process
of enhancing low-resolution images to high resolution. Dong et al.17

pioneered the application of deep convolutional neural networks
(CNNs) to super-resolution by introducing the Super-Resolution
Convolutional Neural Network (SRCNN) architecture. SRCNN com-
prised only three convolutional layers but demonstrated remarkable
improvements over traditional super-resolution methods. Since then,
there have been many advancements in CNNs-based super-resolution
to improve the reconstruction accuracy and training efficiency.18–22

Despite these advancements, a common limitation of many super-
resolution methods is their focus on minimizing pixel-wise loss
functions, which results in overly smooth textures that lack the high-
frequency details. To address this issue, Ledig et al.23 introduced
Super-Resolution GAN (SRGAN), applying the concept of Generative
Adversarial Networks (GANs) to super-resolution tasks. SRGAN
builds upon the GAN framework originally proposed by Goodfellow
et al.,24 utilizing a generator network to produce high-resolution
images and a discriminator network to distinguish between real and
generated images. This adversarial approach enables SRGAN to recon-
struct images with more realistic textures and sharper details. Since
then, several modifications have been made to SRGAN to improve
output quality.25 In this paper, we use Enhanced SRGAN (ESRGAN)26

as the base model for our development. ESRGAN, which is an
improved version of SRGAN’s architecture, incorporates residual-in-
residual dense blocks and a relativistic adversarial loss27 for enhancing
perceptual quality and stable training.

Recently, researchers have begun applying deep learning SR tech-
niques in turbulent flow reconstruction. Fukami et al.28 pioneered the
application of deep learning for the reconstruction of turbulent flows.

They developed two CNN-based SR models including a simple CNN
inspired by Dong et al.17 and a customized CNN model called hybrid
downsampled skip-connection/multi-scale (DSC/MS). Their approach
accurately reconstructed 2D isotropic turbulence, outperforming tradi-
tional interpolation methods in capturing small-scale structures. They
further extended the application of the hybrid DSC/MS model to 3D
turbulent channel flow.29 Liu et al.30 also applied CNNs to reconstruct
2D slices of 3D turbulent flows, showing effective performance in both
isotropic (forced turbulence) and anisotropic (channel flow) cases.
Zhou et al.31 further advanced CNN approach by developing a turbu-
lence volumetric super-resolution (TVSR) model that directly pro-
cesses 3D flow field data using a patchwise training strategy. This
approach demonstrated good generalization capability across different
Reynolds numbers. Subramaniam et al.32 have developed a physics-
informed SRGAN that incorporate the continuity equation in the loss
function as a physical constraint. They compared their SRGAN model
with a CNN-based model, showing that the SRGAN outperformed the
CNN-based model in minimizing the physics loss. Kim et al.33 intro-
duced an unsupervised CycleGANmodel that successfully reconstructs
high-resolution 2D turbulent fields from unpaired data, broadening
the applicability of super-resolution turbulent flow reconstruction.
Among the diverse versions of GAN-based approaches for super-
resolution, ESRGAN is extensively employed for reconstructing turbu-
lent flow fields due to its accuracy in capturing small-scale struc-
tures.34–41 Bode et al.34 developed a Physics-Informed ESRGAN
(PIESRGAN) based on the ESRGAN architecture, applying it to com-
plex turbulent reactive flows.36,39,41 They demonstrated that their
PIESRGAN-LES approach achieved approximately a 9.6 times
speedup for the inference step compared to DNS.41 PIESRGAN
has also been tested for interfacial flows, accurately reconstructing vol-
ume-of-fluid fields in multiphase simulations.42 Nista et al.40 com-
pared a supervised deep-CNN with a semisupervised/unsupervised
PIESRGAN, showing that the PIESRGAN outperformed the CNN-
based model, particularly in reconstructing small-scale structures and
generalizing to out-of-sample conditions. Specifically, they demon-
strate that their ESRGAN model effectively extrapolates to out-of-
sample flows, particularly at higher Reynolds numbers. Deng
et al.35 demonstrated ESRGAN’s superior turbulence reconstruc-
tion performance over SRGAN in both instantaneous and mean
flow fields. ESRGAN architecture was also used by Yousif et al.43 in
their multi-scale model (MS-ESRGAN) for 2D turbulent channel
flows at different Reynolds numbers. Yu et al.37 extended the MS-
ESRGAN to three dimensions, developing a D-ESRGAN model
that incorporates transfer learning techniques and physics-based
loss functions. ESRGAN has also shown promise in industrial
applications. Recent work by Trinh et al.44 demonstrated successful
application of super-resolution models to vehicle aerodynamics,
enabling enrichment of flow fields around vehicle geometries.

In this work, we propose a novel conditional super-resolution
model for turbulent flows based on the ESRGAN architecture. Our
Conditional-ESRGAN (CESRGAN) consists of a conditional generator
(CoGEN) and a conditional discriminator. Unlike existing super-
resolution methods that typically do not utilize SGS information due
to their origins in computer vision tasks, our CoGEN is conditioned
on SGS turbulence kinetic energy (kSGS). This kSGS information, avail-
able in most scale-resolving simulations, enables CoGEN to recon-
struct high-resolution turbulent velocity fields with the desired level of
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turbulence kinetic energy. By incorporating kSGS, our CoGEN can
effectively handle inputs with different degrees of smoothness, address-
ing a common challenge in turbulent flow reconstruction. Our results
demonstrate that CoGEN outperforms traditional generators
(TradGEN), particularly in capturing small-scale turbulent structures
crucial for particle-laden flow simulations. To show the model’s appli-
cation in particle-laden flow simulations, we integrate the trained gen-
erators with a CFD solver to simulate particle-pair dispersion in
turbulent flows. Our CESRGAN not only improves the accuracy of
turbulence reconstruction but also enhances GAN training stability by
incorporating a conditional discriminator.

The remainder of this paper is organized as follows: Sec. II
describes the methodology, including the details of our CESRGAN
architecture, data preparation, and training process. Section III
presents the results and discussion, focusing on the reconstruction of
vortex structures, turbulent flow statistics, and dispersed-phase statis-
tics. Finally, Sec. IV concludes the paper.

II. METHODOLOGY
A. Deep learning model for super-resolution

In this study, our model builds upon the ESRGAN architecture,26

which has shown promising results in reconstructing small-scale struc-
tures in turbulent flows.40,41 The ESRGAN is a GAN-type architecture
that consists of two adversarial neural networks: a generator (G) and a
discriminator (D). In a standard GAN, the generator typically produ-
ces synthetic data samples, while the discriminator evaluates the
authenticity of these samples compared to real data.24 For super-
resolution tasks, this framework is adapted so that the generator specif-
ically learns to produce high-resolution data from low-resolution
inputs.23 The network G and D are trained in a two-player min–max
game process with the objectives formulated as follows:

min
G

max
D

n
E

Yr�PYr
log DRa Yr ;Ygð Þð Þ� �

þ E
Yg�PYg

log 1� DRa Yg ;Yrð Þð Þ� �o
; (1)

where E denotes the expectation operator. Yr refers to a sample set
drawn from the real high-resolution (HR) data distribution (PYr )
and Yg ¼ GðXÞ denotes a sample set obtained from the generated
high-resolution data distribution (PYg ), where X is a sample set of low-
resolution (LR) inputs. In Eq. (1), DRa represents the relativistic dis-
criminator,27 which is defined as

DRa Y1;Y2ð Þ ¼ r
�
D Y1ð Þ � E

Y2�PY2
D Y2ð Þ½ �

�
; (2)

where r represents the sigmoid function and DðYÞ is the output of the
discriminator. DRaðY1;Y2Þ provides a score ranging from 0 to 1, indi-
cating the relative authenticity of sample set Y1 compared to sample set
Y2. In Eq. (2), Y1 can be a sample set from either PYr or PYg , with Y2

then representing a sample set from the other distribution. The choice
of which distribution is assigned to Y1 depends on whether we are evalu-
ating real or generated data. Specifically, DRaðYg ;YrÞ returns a score
indicating how much more realistic Yg is compared to Yr , while
DRaðYr ;YgÞ provides a score showing how much more realistic Yr is
compared to Yg . Throughout the training process, the trainable parame-
ters of G are updated to minimize Eq. (1). This optimization leads to an
increase in the relativistic score of the generated data, i.e., DRaðYg ;YrÞ,

signifying an improvement in its capability to upscale low-resolution
data to realistic high-resolution data. Simultaneously, the parameters of
D are adjusted to maximize Eq. (1), enabling it to assign lower scores to
generated data and higher scores to real data, represented, respectively,
as lower DRaðYg ;YrÞ and higher DRaðYr;YgÞ. The purpose of this
adversarial framework is to improve both networks through competi-
tion. At the end of training, G produces the reconstructed high-
resolution data, closely resembling real data.

1. Architecture

Here, we propose a novel conditional variant of ESRGAN
(CESRGAN) tailored specifically for the task of learning the mapping
function from LR to HR turbulent velocity fields. The key difference
between CESRGAN and the traditional ESRGAN lies in its conditional
inputs. In CESRGAN, the generator is conditioned on the kSGS, while
the discriminator is conditioned on the LR velocity field. Further
details on these conditional inputs are provided in Sec. II A 2.

The detailed structure of CESRGAN is sketched in Figs. 1 and 2.
Both the generator and discriminator mainly consist of convolutional
layers, employing a kernel size of 33 for their convolutional operations.
The backbone of generator is Residual in Residual Dense Block
(RRDB),26 a deep CNN unit comprising multiple Residual Dense
Blocks (RDB)45 linked together via the residual scaling factor of
b ¼ 0:2. Here, the generator is structured with four stacked RRDBs,
with each RRDB containing three embedded RDBs as shown in Fig. 1.
Each RDB is composed of convolutional layers paired with leaky recti-
fied linear unit (LReLU) activation functions and incorporates dense
skip connections. These connections facilitate the flow of information
across different layers, aiding in the extraction and preservation of fine
details during the super-resolution process and avoiding the gradient
vanishing or exploding.23,46 Following the RRDBs, upsampling is done
through two interpolation blocks with scaling factor of 2, resulting in a
total increase in resolution by a factor of 4 in each direction.

The architecture of the discriminator, as depicted in Fig. 2, com-
prises multiple stacked layers of CNNs, Leaky Rectified Linear Unit
(LReLU) activation functions, and Batch Normalization (BN). Toward
the end of this architecture, a Flattening operation is executed to tran-
sition from Convolutional Layers to Fully Connected Layers. This step
is done as it transforms the multidimensional output of the convolu-
tional layers into the single scalar output. Furthermore, a dropout
block is integrated into the architecture based on recommendations
from Bode et al.36 for preventing the discriminator from overfitting.

2. Proposed conditional networks

Super-resolution is an ill-posed problem, which means a low-
resolution input lacks sufficient information to uniquely determine a
corresponding ground truth high-resolution output.47 This uncertainty
is increased when the smoothness level of low-resolution data varies
across different data samples.48 In LES, the smoothness level is corre-
lated with the kSGS, which either is directly available in the turbulence
model or can be estimated. In this study, this extra information is used
to alleviate the ill-posedness nature of super-resolution. As illustrated
in Fig. 1, the generator is conditioned on kSGS by concatenating it with
the LR velocity field, forming the input for the network. The condi-
tional generator’s output can be expressed mathematically as
Yg ¼ GðXjkSGSÞ. In the proposed conditional model, the generator is
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forced to learn the correlation between kSGS and the smoothness level of X
velocity field to avoid retraining whenever the level of smoothing changes.
As a result, the generator can effectively handle LR data with varying
smoothness levels, thereby enhancing the model’s generalizability.

In addition to utilizing a conditional generator, a conditional dis-
criminator is also employed. The traditional discriminator merely
judges whether the HR data conforms to the real distribution, neglect-
ing to assess its fidelity to the original LR input. While the pixel-wise
content loss aims to increase fidelity to the ground truth data, the
adversarial loss drives the generator to create any plausible realistic
output, which may not necessarily align with the ground truth data.
This inconsistency between pixel-wise content loss and adversarial loss
often leads to the emergence of artifacts in the reconstructed data23

and contributes to training instability.49

To address these problems, we employ a conditional discrimina-
tor, inspired by the approach introduced by Zhang et al.49 In this
method both LR and HR data are provided to the discriminator net-
work, with LR data acting as the conditioning information. As illus-
trated in Fig. 2, the LR data are upsampled through nearest neighbors
interpolation to align with the size of HR data and then concatenated
with it before being fed to the discriminator. By conditioning the dis-
criminator on the LR input, we ensure that the discriminator incorpo-
rates LR data into its assessment. We extend this conditional
framework by modifying the discriminator’s objective function based
on the suggestion from Yin.50 He suggests to penalize the discrimina-
tor when it assigns a high score to HR data that lacks correlation with

the corresponding LR data, even if the HR data are sampled from the
ground truth dataset. To formulate the new objective function in con-
ditional mode, we modify Eq. (1) as follows:

min
G

max
D

�
E

Yr�PYr
log DRa Yr ;Yg jX

� �� �� �
þ E

Yg�PYg
log 1� DRa Yg ;Yr jX

� �� �� �
þ E

Y 0
g�PYg

log 1� DRa Y 0
r;Yg jX

� �� �� �	
; (3)

where Y 0
r is a shuffled version of Yr , intended to mismatch with the X.

The last term of Eq. (3) forces discriminator to give a low score to the
mismatched inputs. Incorporating this term additionally facilitates the
alignment of adversarial loss with pixel-wise content loss, leading to a
more stable training. The conditional relativistic discriminator is then
defined as follows:

DRa Y1;Y2jXð Þ ¼ r
�
D Y1jXð Þ � E

Y2�PYI2
D Y2jXð Þ½ �

�
: (4)

Here, DðYjXÞ represents a conditional discriminator network, with
the condition of X.

3. Loss functions

The training of our CESRGAN model involves optimizing sepa-
rate loss functions for the generator and discriminator networks.

FIG. 1. Detailed architecture of the proposed conditional generator (CoGEN). The generator takes filtered DNS (FDNS) velocity components ðu; v;wÞ and kSGS as inputs to
produce super-resolution (SR) velocity fields. The� symbol denotes element-wise summation, while filled half-circle symbol represents concatenation operations.

FIG. 2. Detailed architecture of the pro-
posed conditional discriminator. The net-
work takes both filtered DNS (FDNS) and
either DNS or super-resolution (SR) veloc-
ity fields as inputs. It classifies the input
as real (DNS) or fake (SR). The filled half-
circle symbol represents concatenation
operations.
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a. Discriminator loss. The discriminator loss is derived from Eq.
(3) and consists only of the adversarial component:

LD ¼ �EYr�PYr log ðDRaðYr ;Yg jXÞÞ
� �

�EYg�PYg log ð1� DRaðYg ;Yr jXÞÞ
� �

�EY 0
r�PYr log ð1� DRaðY 0

r ;Yg jXÞÞ
� �

: (5)

b. Generator loss. Similar to Bode et al.,36 we train the generator
with a loss function that combines adversarial, content, and physics-
based components

LG ¼ kadvLadv þ kvelLvel þ kgradLgrad þ kphysLphys; (6)

where: Ladv ¼ �EYg�PYg ½log ðDRaðYg ;Yr jXÞÞ� is the adversarial loss

derived from Eq. (3), Lvel ¼ 1
N

PN
i¼1 jYi

g � Yi
rj22 is the velocity field

pixel-wise loss, Lgrad ¼ 1
N

PN
i¼1 jrYi

g �rYi
r j22 is the velocity gradient

field pixel-wise loss, and Lphys ¼ 1
N

PN
i¼1 jr � Yi

g j22 is the physical con-
sistency loss based on the divergence-free condition for incompressible
flows.

The choice of weighting parameters in the loss function affects
the relative importance of different criteria and thereby influences the
model’s outcome. Since finding optimal hyperparameters requires
extensive computational resources, we adopted most weighting param-
eters from Bode et al.36 The selected values fall within a range shown
to provide effective network performance for turbulence reconstruc-
tion tasks.36 To further optimize training, we increased kadv to 10�4,
which accelerated convergence without adversely affecting the final
content loss. The final values used in this work are kadv ¼ 10�4,
kvel ¼ 0:89, kgrad ¼ 0:085, and kphys ¼ 0:025, which balance the con-
tribution of each loss component.

B. Data preparation

1. Direct numerical simulation

In the context of super-resolution reconstruction for turbulent
flow, a pair of DNS and filtered DNS (FDNS) data usually serves as the
training dataset for the networks. In this study, the three-dimensional
velocity field of a forced, homogeneous, isotropic turbulent flow is cho-
sen as the basis for training and testing. This particular case has been
extensively employed both for assessing super-resolution methods and
for investigating the particle-turbulence interactions, rendering it well-
suited for this study. The flow field data are generated using a DNS
simulation implemented in the open-source OpenFOAMVR v2112
packages by solving the following incompressible Navier–Stokes
equations:

r � u ¼ 0; (7)

@u
@t

þ u � ru ¼ �rp
q

þ �r2uþ fðx; tÞ: (8)

Here, u, t, p, q, �, and fðx; tÞ represent the velocity vector, time,
pressure, fluid density, fluid kinematic viscosity, and stochastic forcing
term, respectively. The computational domain is a periodic cubic box
with an edge length of 2pðmÞ, discretized using Cartesian uniform
grids with a resolution of 643. To minimize numerical dissipation,
careful consideration must be given to the selection of discretization

schemes in DNS simulations. In this study, the diffusion and convec-
tion terms are discretized using the standard second-order and fourth-
order central differencing schemes, respectively. For handling velocity-
pressure coupling, the Pressure Implicit with Splitting of Operators
(PISO) algorithm is employed. The Second-Order Upwind Euler
(SOUE) scheme is utilized for discretizing time derivatives, while the
maximum Courant–Friedrichs–Lewy number (CFL) is maintained
below 0.2 during the simulation for numerical stability.

The Uhlenbeck-Ornstein (UO) random process-based forcing
term fðx; tÞ in Eq. (8) is utilized to sustain statistically stationary tur-
bulence within the computational domain.51 This is achieved by con-
tinuously injecting kinetic energy solely into the low-wavenumber
modes in the Fourier space. Since the force term operates primarily on
the large scales, an auxiliary coarser mesh is enough to generate the
force field, following a similar approach outlined in Ref. 52.
Consequently, parallel Fast Fourier Transform (FFT) is unnecessary
on the main fine mesh, and instead, the force field is generated on the
auxiliary mesh with a resolution of 163 using serial FFT calculations.
This inexpensive calculation is processed solely on the master CPU
core, and upon generating the force field on the auxiliary mesh, differ-
ent parts of the field are communicated to the associated worker CPU
cores using the message passing interface (MPI). Subsequently, each
CPU core interpolates its respective portion of the force field onto the
main fine mesh. The flow statistics at the stationary state are listed in
Table I.

2. Filtering and downsampling

To prepare the LR data for the super-resolution training, we gen-
erate the FDNS data by applying a discrete Gaussian filter to the origi-
nal DNS data. The Gaussian filter kernel is defined in three
dimensions as follows:

GðiD; jD; kDÞ ¼ 1

ð2pr2Þ3=2
exp � i2 þ j2 þ k2

2 r=Dð Þ2
 !

; (9)

where i, j, and k are integer indices representing the number of grid
cells away from the center of the Gaussian filter in each direction, D is
the cell size of DNS grid, and r is the standard deviation of the
Gaussian distribution, determining the extent of the filter’s spread and
the degree of smoothing applied to the data. In our implementation,
we use a filter kernel with a size of 13� 13� 13 cells resulting i, j, and
k ranging from �6 to 6. To ensure that the total sum of the
discrete Gaussian kernel over all space equals 1, we normalize the filter
weights as

TABLE I. Statistics of the stationary turbulence.

Kolmogorov length scale ðgÞ 0.0646 (m)
Kolmogorov time scale ðsgÞ 0.208 (s)
Integral length scale ðlÞ 2.415 (m)
Large eddy turnover time ðtlÞ 2.925 (s)
Taylor microscale ðkÞ 0.704 (m)
Taylor Reynolds number (Rek) 36.457 ð�Þ
Turbulence kinetic energy (TKE) 1.138 (m2/s2)
Dissipation rate ðeÞ 0.458 (m2/s3)
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G0ðiD; jD; kDÞ ¼ GðiD; jD; kDÞX6
i¼�6

X6
j¼�6

X6
k¼�6

GðiD; jD; kDÞ
: (10)

The filtered velocity field ~uðx; y; zÞ is then obtained by convolving the
DNS velocity field uðx; y; zÞ with the normalized discrete Gaussian
filter,

~uðx; y; zÞ ¼
X6
i¼�6

X6
j¼�6

X6
k¼�6

G0ðiD; jD; kDÞuðx þ iD; y þ jD; z þ kDÞ:

(11)

The filtered field is then downsampled using a stride of 4, reducing the
resolution from 643 to 163. This two-step approach, filtering followed
by downsampling, separates the smoothing process (controlled by r)
from the resolution reduction (achieved by the stride). It simulates the
effect of a coarse-grid simulation while allowing for more flexibility in
generating training data with various levels of detail loss. After filtering
and downsampling, we calculate the kSGS for each filtered sample using
the difference between the DNS velocity field and the FDNS velocity
field. This kSGS value serves as the conditioning information for the
conditional generator, providing crucial information about the level of
detail lost during the filtering process.

To demonstrate the extent to which the filtering process removes
small-scale details from the original DNS field, the FDNS data are
compared with associated DNS data and reconstructed field in Fig. 3.
Here, r ¼ 4D is selected for demonstration. However, to enhance the
network’s ability to handle different levels of filtering, we employ a var-
iable standard deviation r to generate the data for training. The value
of r is randomly generated between D and 5D for each training sam-
ple, creating a diverse set of filtered inputs. This approach allows the
network to learn to reconstruct high-resolution fields from a wide
range of smoothing intensities.

3. Training

The dataset for training the neural networks is created by pairing
the FDNS data (input) with the corresponding DNS data (target out-
put). We extract 6000 snapshots from the statistically stationary state
of the simulation, with a time interval of 2tl between consecutive snap-
shots. To prevent the overfitting, we apply random rotations and
reflections to the velocity field as a data augmentation technique. Prior
to feeding the data into the networks, we normalize each FDNS-DNS

pair using the root mean square (RMS) of the FDNS snapshot’s veloc-
ity fluctuations. This snapshot-specific normalization approach differs
from common normalization method,3,6,8 where FDNS and DNS data
are normalized separately based on their respective global quantities.
We chose this strategy for its practicality in real-world applications,
where only a low-resolution snapshot is available at each time step
during a new simulation, without access to global information from
the entire simulation.

The deep neural networks were implemented using PyTorch. For
training, we utilized the Adam optimizer with a fixed learning rate of
10�4 and a batch size of 40. Unlike previous studies,32,33,40 our model
does not need adaptive learning rates or pre-training phases to achieve
stable GAN training. This stability is achieved through the use of our
conditional discriminator, which aligns the adversarial loss with the
pixel-wise content loss, as detailed in Sec. II A 2. This conditional
approach decreases training instabilities commonly encountered in
GAN-based super-resolution models.

The computational resources for this study consisted of one node
of the HoreKa supercomputer at the Karlsruhe Institute of Technology
(KIT). Each node is equipped with four NVIDIA A100 GPUs. The
total training time for the model was approximately 8 hours on this
hardware configuration.

4. Testing

To evaluate the trained generator, we integrate it with
OpenFOAM using the Cþþ API of PyTorch. This integration allows
for real-time super-resolution reconstruction during the simulation
process. At each time step, the DNS field and its corresponding FDNS
field are obtained directly from OpenFOAM. The generator then uses
the FDNS field to reconstruct a super-resolution (SR) velocity field on-
the-fly. For testing purposes, we focus on two specific filtering levels:
r ¼ 2D and r ¼ 4D, representing moderate and strong filtering inten-
sities, respectively. This allows us to evaluate the model’s performance
across different levels of detail loss. Table II details the testing configu-
rations and naming conventions used in our study.

III. RESULTS AND DISCUSSION
A. Vortex structures reconstruction

To evaluate the effect of the conditional information, ksgs, on the
recovery of vortex structures, we computed the vortex criterion Q. The
Q-criterion is the second invariant of the velocity gradient tensor and
defined as

FIG. 3. Illustration of the filtering process and reconstruction. Left: Original DNS velocity magnitude field showing detailed turbulent structures. Center: FDNS field with r ¼ 4D,
demonstrating the removal of small-scale details due to filtering. Right: Reconstructed high-resolution field from the FDNS input.
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Q ¼ 1
2

ðtrðruÞÞ2 � trðru � ruÞ
� �

; (12)

where ru is the velocity gradient tensor, and tr denotes the trace of a
matrix.

To visualize and compare the vortex structures across different
reconstructed fields, we plotted isosurfaces of Q ¼ 0:86s2g in Fig. 4.
Figure 4(a) displays the Q isosurfaces obtained from DNS, shown in
yellow. Figures 4(b) and 4(c) display the Q isosurfaces from the recon-
structed velocity fields by the TradGEN and CoGEN, respectively, for
r ¼ 2D. Figures 4(d) and 4(e) show the same for r ¼ 4D. In these fig-
ures, the reconstructed vortex structures that match the DNS results
are in yellow, those not recovered by the models and omitted are in
blue, and those generated by the models but differing from the DNS
structures are in green.

It is evident that both the conditional and traditional generators
accurately reconstruct large vortex structures, regardless of the

smoothness level in the FDNS input. When it comes to small-scale
structures, the conditional generator shows two advantages over the
traditional generator.

First, the conditional generator demonstrates superior perfor-
mance in fine structure recovery. A comparison of Figs. 4(b) and 4(c)
reveals that although both TradGEN-2 and CoGEN-2 are generated
with the same input (FDNS-2), the CoGEN was able to recover very
fine structures, whereas the TradGEN missed several of these fine
structures, which are shown in blue. A similar pattern can be observed
by comparing Figs. 4(d) and 4(e), which are generated with the more
heavily filtered input (FDNS-4). In both cases, the CoGEN preserves
more of the original fine-scale vortical structures than the TradGEN.
This discrepancy in the small-scale structures is a consequence of the
ill-posed nature of the super-resolution reconstruction process, where
multiple high-resolution reconstructions can exist for a given low-
resolution input. In the CoGEN, this ill-posedness is alleviated by using

TABLE II. SR testing configurations and naming conventions for filtered DNS (FDNS), traditional generator (TradGEN), and conditional generator (CoGEN) outputs at different fil-
ter levels.

Filter level Description Data type Name

r ¼ 2D Moderate filtering (typical coarse simulation) Filtered DNS (FDNS) FDNS-2
TradGEN output TradGEN-2
CoGEN output CoGEN-2

r ¼ 4D Strong filtering (challenges reconstruction capabilities) Filtered DNS (FDNS) FDNS-4
TradGEN output TradGEN-4
CoGEN output CoGEN-4

FIG. 4. Isosurfaces of the Q-criterion
obtained from (a) DNS, (b) TradGEN-2,
(c) CoGEN-2, (d) TradGEN-4, and (e)
CoGEN-4 (as defined in Table II). Yellow
structures are accurately reconstructed
from the DNS, blue structures are omitted
by the super-resolution models, and green
structures are generated by the models
but differ from the DNS.
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kSGS as additional information, constraining the range of plausible sol-
utions. The TradGEN, lacking this constraint, encounters a wider
range of plausible solutions. As a result, the pixel-wise loss guides the
network toward learning an average of potential reconstructions,
resulting in an overly smooth velocity field devoid of fine structures.53

Second, the CoGEN shows an ability to compensate for omitted
structures by generating new vortical structures, shown in green in
Figs. 4(c) and 4(e). This capability is particularly evident in Fig. 4(e),
where the input is more heavily filtered (CoGEN-4). When the FDNS
velocity field lacks sufficient details to reconstruct all vortices exactly as
they appear in the DNS, the CoGEN generates these new structures.
While these newly generated vortical structures differ from those in
the DNS, they serve to compensate for the lost vortical structures. This
compensatory effect is less pronounced in the TradGEN results, as
seen in Figs. 4(b) and 4(d), where fewer green structures are visible.
The CoGEN’s ability to generate these compensatory structures sug-
gests that it maintains a more realistic distribution of SGS vortical
structures in the reconstructed flow field, even when working with
more heavily filtered inputs. This improved performance stems from
the CoGEN’s awareness of the kSGS.

In Secs. III B and IIIC, we will examine the statistical equivalence
between the generated data and the ground truth DNS data to assess
the physical accuracy of these generated turbulent structures.

B. Turbulent flow statistics

To quantitatively examine the statistical properties of coherent
structures in the reconstructed turbulent flow, we analyze the probabil-
ity density functions (PDFs) of the Q-criterion. Figure 5 shows the
PDFs of Q normalized by the square of the Kolmogorov time scale s2g
for various cases. Figure 5(a) compares the PDFs for the DNS data
with those of the reconstructed fields using CoGEN and TradGEN net-
works at filtering levels r ¼ 4D. Figure 5(b) presents the same for fil-
tering levels r ¼ 2D. Additionally, the figure includes the PDFs for the
FDNS fields, FDNS-2 and FDNS-4, for reference.

It is evident from the figure that the filtering process attenuates
extreme events characteristic of turbulent intermittency, where intense
rotation (positive Q) and strain (negative Q) occur. Consequently, the
distribution narrows for both positive and negative Q values, with
FDNS-4 exhibiting a more pronounced effect than FDNS-2, consistent
with its stronger filtering.

Examining the performance of TradGEN, we observe that
TradGEN-2 exhibits remarkable fidelity, closely replicating the DNS
distribution across the range of Q values shown in the diagram. This
suggests that for moderate filtering (r ¼ 2D), the TradGEN effectively
recovers the statistical properties of coherent structures, including
intermittent events in both rotation-dominated and strain-dominated
regions. In contrast, TradGEN-4 only partially reconstructs the inter-
mittent events, significantly underestimating the probability of extreme
Q values in the tails of the PDF. This reveals the TradGEN’s limitation
in recovering structures associated with intense rotational and strain
events from heavily filtered inputs (r ¼ 4D).

The results of CoGEN reveal that both CoGEN-2 and CoGEN-4
closely match the DNS distribution across the range of Q values,
except for a marginal overprediction by CoGEN-2 in the negative Q
region. The CoGEN effectively recovers the statistical properties of
coherent structures, including intense intermittent events, with
reduced sensitivity to the filtering level. This suggests that the condi-
tional information (kSGS) enables robust recovery of fine-scale struc-
tures and extreme events, even from heavily filtered inputs (r ¼ 4D).
Overall, these results demonstrate the superior performance of the
CoGEN over TradGEN in reconstructing the statistics of coherent
structures from heavily filtered turbulent flow data.

Turbulence kinetic energy spectra provide a quantitative measure
of how kinetic energy is distributed across different spatial scales in
turbulent flows. Figure 6 shows the turbulence kinetic energy spectra
of the reconstructed velocity fields with that of the ground truth DNS
velocity field. The reconstruction performance of two types of genera-
tors, the CoGEN and the TradGEN, is compared. Additionally, the fig-
ure includes the energy spectra of the FDNS velocity fields, FDNS-2
and FDNS-4, for reference.

As expected, the FDNS energy spectra deviate from the DNS
spectra due to the filtering process, with FDNS-4 exhibiting a more
pronounced deviation than FDNS-2, especially at high wavenumbers.
It is seen from Fig. 6 that the energy spectra from both TradGEN and
CoGEN models, using different FDNS inputs, closely match the DNS
results in low wave numbers. This observation is consistent with the
vortex structure visualization in Fig. 4, where both TradGEN and
CoGEN successfully reconstruct the large-scale structures, which are
associated with low wavenumbers. However, at high wavenumbers,
the TradGEN significantly under-predicts the turbulence kinetic
energy compared to the DNS for both FDNS inputs. This under-
prediction becomes more pronounced, both in magnitude and range,

FIG. 5. PDF of the normalized second
invariant of the velocity gradient tensor
(Qs2g). (a) Comparison of DNS with FDNS-
4, CoGEN-4, and TradGEN-4 reconstruc-
tions (r ¼ 4D). (b) Comparison of DNS
with FDNS-2, CoGEN-2, and TradGEN-2
reconstructions (r ¼ 2D).
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for TradGEN-4. The reason for this behavior is that as r increases, the
FDNS velocity field becomes smoother, losing more grid-scale infor-
mation near the filter cutoff. Consequently, the TradGEN fails to
recover many small-scale structures, as evident from the increased
number of omitted structures (blue vortices) in Fig. 4(d) compared to
Fig. 4(e). In contrast, the CoGEN, being aware of ksgs, provides a more
accurate prediction of the energy spectra at high wavenumbers for
both levels of smoothness in FDNS input. When r increases, ksgs
increases as well, allowing the CoGEN to accurately determine how
much energy should be recovered. This enables the CoGEN to gener-
ate additional compensating structures [green vortices in Fig. 4(e)] to
maintain the overall energy balance.

To assess how well our reconstructed fields capture the
multi-scale characteristics of turbulence, we calculate the PDF of
the dissipation multiplier.54 The dissipation multiplier, defined as
M ¼ �ðDÞ=�ð2DÞ, represents the ratio of dissipation (�) in boxes of
size D3 and ð2DÞ3. A PDF that closely matches that of the DNS indi-
cates that the reconstructed field accurately reproduces the intermit-
tent spatial distribution of dissipation.

Figure 7 shows the PDFs of the dissipation multiplierM for DNS
data and reconstructed fields using conditional and traditional genera-
tors at filtering levels r ¼ 4D (a) and r ¼ 2D (b). The distributions
center aroundM � 1=8, reflecting the geometric division in 3D turbu-
lence where each ð2DÞ3 box splits into 8 ðDÞ3 boxes. In the case of a
uniform � distribution, the PDF would be just a delta function at
M ¼ 1=8.

Since the total integral of the PDF distribution is equal to one,
overestimating the PDF peak at M ¼ 1=8 means underestimating the
PDF at small and large M, i.e., the underestimation of the dissipation
rate intermittence. Insets reveal that both CoGEN and TradGEN over-
estimate peak probabilities compared to DNS, with TradGEN showing

more pronounced overestimation, especially for r ¼ 4D. The
TradGEN distribution is narrower with a higher, sharper peak, sug-
gesting it underestimates the variability in dissipation ratios between
scales and, thus, the intensity of intermittent events. CoGEN’s closer
match to DNS demonstrates that conditional information (kSGS)
improves reconstruction of multi-scale dissipation patterns. This
aligns with our earlier findings on energy spectra and small-scale
structures.

C. Dispersed-phase statistics

In the present section, we assess the fidelity of our reconstructed
velocity fields for turbulent particle dispersion. Particle dispersion
stems from the random nature of small-scale turbulent eddies. Thus, a
pair of particles that are initially close to each other can soon experi-
ence different velocity fluctuations, which lead to divergent trajectory
paths. By comparing the statistics of particle pair dispersion, one can
assess the extent to which the reconstructed fields are reliable for parti-
cle tracking.

Assuming drag force dominance, the governing equations for
each particle’s position and velocity are

dxp
dt

¼ up; (13)

dup
dt

¼ ur
sp=fd

: (14)

Here, ur ¼ us � up denotes the relative velocity, where us is the
fluid velocity experienced by the particle, obtained through interpola-
tion of the carrier velocity field at the particle’s location. The term
sp ¼ qpd

2
p=18l represents the particle relaxation time scale, and the

FIG. 6. Turbulent energy spectra of recon-
structed velocity fields compared to DNS.
(a) Results using FDNS-4 input. (b)
Results using FDNS-2 input.

FIG. 7. PDFs of dissipation multiplier M
for DNS and reconstructed fields using
CoGEN and TradGEN. (a) r ¼ 4D and
(b) r ¼ 2D. Insets show magnified views
of peak regions, highlighting differences in
distribution shapes among DNS, CoGEN,
and TradGEN models.
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drag coefficient, fd , is calculated using the Schiller and Naumann corre-
lation55 for spherical particles:

fd ¼

1 for Rep � 1;

1þ 0:15Re0:687p for 1 < Rep � 1000;

0:44Rep
24

for Rep > 1000;

8>>>><
>>>>:

(15)

where Rep ¼ jur jdp=� is the particle Reynolds number.
To calculate the expected dispersion of particle pairs, we initially

inject 4096 pairs with a separation distance of 0:5g. These particle pairs
are randomly distributed throughout the domain and tracked in the
carrier velocity field using the Lagrangian solver of OpenFOAM. We
investigate three different particle inertia levels, characterized by
Stokes numbers Stk ¼ 0:125; 1; and 8. The corresponding particle
diameters, non-dimensionalized by g, are dp=g ¼ 0:029; 0:081; and
0.23, respectively. The Stokes number, defined as Stk ¼ sp=sg, repre-
sents the ratio of the particle relaxation time to the characteristic tur-
bulent time scale of the flow, which in this case is the Kolmogorov
time scale. During the simulation, the ensemble averaged distance
between paired particles, denoted as hdi, is calculated for each time
step. This particle tracking process is performed for different carrier
velocity fields, including the DNS, FDNS, TradGEN, and CoGEN
velocity fields with the both levels of filtering (r ¼ 2D and 4D).

Figure 8 shows the temporal evolution of particle pair dispersion,
represented by hdi=g over t=sg. The FDNS significantly underpredicts
particle dispersion across all cases, with the effect more pronounced
for the stronger filter (r ¼ 4D) as expected. For the moderate filtering
(r ¼ 2D), both the conditional and traditional generators perform

remarkably well, closely matching the DNS dispersion curves for all
Stokes numbers. This aligns with our previous observations of accurate
reconstruction of vortical structures for this filter size. The success in
reproducing particle dispersion further validates the physical fidelity of
the reconstructed fields, as particle motion integrates the effects of
multi-scale turbulent structures over time. The advantages of the con-
ditional generator become apparent only with the stronger filter
(r ¼ 4D). In this case, the CoGENmaintains excellent agreement with
DNS across all Stokes numbers, while the TradGEN shows noticeable
deviations for smaller Stokes numbers. This performance difference
aligns with our vortex reconstruction results (Fig. 4), where CoGEN
more effectively recovered fine-scale structures for r ¼ 4D. The
CoGEN’s superior performance stems from its use of SGS kinetic
energy information, enabling more accurate reconstruction of small-
scale fluctuations critical for particle dispersion with lower Stokes
numbers.

IV. CONCLUSION

This study introduces CESRGAN—a conditional deep learning
model—for reconstructing high-resolution turbulent velocity fields
from low-resolution inputs. CESRGAN consists of a conditional dis-
criminator and a conditional generator, the latter being called CoGEN.

By incorporating subgrid-scale turbulence kinetic energy as a
condition for CoGEN, our approach significantly improves the recov-
ery of small-scale turbulence structures compared to traditional super-
resolution methods. Being aware of kSGS, CoGEN reconstructs the
fine-scale structures according to the desired turbulence intensity,
enabling the model to upscale inputs with different degrees of smooth-
ness to achieve the target turbulence kinetic energy level.

FIG. 8. Evolution of particle pair dispersion. Panels show hdi=g against t=sg for Stk ¼ 0:125 (a) and (d), 1 (b) and (e), and 8 (c) and (f), with filter widths r ¼ 2D (top) and
4D (bottom). Pairs initially separated by 0:5g.
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The analysis of Q-criterion isosurfaces showed that the present
CoGEN more effectively reconstructed fine-scale vortical structures
than the traditional TradGEN, particularly for heavily filtered inputs.
This improved small-scale reconstruction was reflected in the energy
spectra, where CoGEN-reconstructed fields showed better agreement
with DNS at high wavenumbers.

The CoGEN also more accurately captured the intermittent nature
of turbulent flows, as evidenced by the Q-criterion PDFs. These PDFs
revealed better reproduction of extreme events in both rotation-
dominated and strain-dominated regions across different filtering levels.
Similarly, the dissipation multiplier PDFs demonstrated CoGEN’s supe-
rior ability to reproduce the multi-scale characteristics of turbulence.

Particle dispersion simulations further validated the physical
fidelity of the CoGEN-reconstructed fields. The results from CoGEN
closely matched DNS across various Stokes numbers and filtering lev-
els, highlighting the potential application of super-resolution models
in particle-laden flows.

Our findings emphasize the value of incorporating physical infor-
mation, such as kSGS, into super-resolution models for turbulent flows.
This approach not only improves reconstruction accuracy but also
enhances the model’s robustness in dealing with different levels of
input filtering. This opens the way for reconstructing fine-scale turbu-
lence from LES, which can have various resolutions and simulta-
neously allows for obtaining kSGS.

While CESRGAN demonstrates promising results, it is con-
strained by its reliance on structured, uniform grids—a limitation
inherent to CNN-based methods. This restricts its applicability in
complex geometries. Future research directions include adapting the
model for unstructured grids, potentially through the use of graph con-
volutional networks. Such advancements could significantly expand
CESRGAN’s utility in a broader range of turbulent flow simulations
and practical engineering applications.
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