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WHY A SYSTEM OF THREE BOSONS ON SEPARATE LINES CAN NOT EXHIBIT
THE CONFINEMENT INDUCED EFIMOV EFFECT

DIRK HUNDERTMARK, MARVIN R. SCHULZ, SEMJON VUGALTER

Abstract. We study a system of three bosons interacting with short–range potentials which
can move along three different lines. Two of these lines are parallel to each other within one
plane. The third line is constrained to a plane perpendicular to the first one. Recently it was
predicted in physics literature [NE17] that such a system exhibits the so–called confinement
induced Efimov effect. We prove that this prediction is not correct by showing that this
system has at most finitely many bound–states.
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1. Introduction

1.1. The physical system. We study a system consisting of three quantum particles (bosons)
with short–range interactions confined to move on separate lines within R3, see Figure 2 in
section 2. Two of these lines, 𝐿2 and 𝐿3, are parallel to each other within a plane 𝑃 , while the
first line, 𝐿1, is constrained to a plane perpendicular to 𝑃 which does not intersect 𝐿2 or 𝐿3.
That is, the intersection of the plane on which 𝐿1 lies with the plane 𝑃 forms a line parallel
to 𝐿2 and 𝐿3. The line 𝐿1 intersects 𝑃 at an angle 𝜁 ∈ (0, 𝜋/2]. Without loss of generality, we
can fix the point of intersection of the line 𝐿1 and the plane 𝑃 as the origin.
Recently the physicists Nishida and Tan predicted that this system might exhibit the

so–called confinement induced Efimov effect. This in particular means, that it should have
an infinite number of negative eigenvalues, if two–particle subsystems do not have bound
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states, but have resonances at the bottom of the essential spectrum. the possible existence of
Efimov type effects in such geometrically constrained quantum systems, see [NT08],[NT11]).
Our main result, see Theorem 2.1, shows that this prediction is not correct. We prove

that the geometrically constrained three–particle system discussed above can have at most
finitely many bound–states for a large class of short–range potentials.

1.2. The Efimov effect. It is well known that an one-particle Schrödinger operator −Δ+𝑉 (𝑥)
on 𝐿2(R𝑑) with relatively bounded potential decaying faster than |𝑥 |−2−𝛿 , 𝛿 > 0may have only
a finite number of eingenvalues. It was proven by Zhislin [Zis74] and Yafaev [Jaf74] using
two different methods that 𝑁 -particle Schrödinger operators, under the same conditions on
the potentials, posess only a finite number of eigenvalues if at least one of the subsystems
has a bound state below zero.
It was very surprising, when physicist Efimov found in 1970 [Efi70] that a system of

three particles in R3 with short–range pairwise interactions may have an infinite number
of eigenvalues when the two–particle subsystems do not have bound–states, but have
resonances at the bottom of the spectrum.
Beyond the infinite accumulation of bound–states, the Efimov effect exhibits several

remarkable properties, one of the most significant being its universality. This means that the
discrete spectrum’s asymptotic behavior remains the same, regardless of the microscopic
specifics of the underlying pair–potentials. In particular, the number of bound–states 𝑁 (𝐸)
below 𝐸 < 0 satisfies the universal asymptotic behavior

lim
𝐸→0−

𝑁 (𝐸) = 𝐶0 |ln( |𝐸 |) | + 𝑜 (1) (1.1)

for some constant 𝐶0 > 0, which depends solely on the particle masses and not on the
interaction potentials.
Both in mathematics and physics, it became a highly recognized challenge to study the

Efimov effect. After Efimov’s initial description the first rigorous mathematical proof was
provided by Yafaev in 1970 [Jaf74], followed by a variational proof by Ovchinnikov and
Sigal in 1979 [OS79] and Tamura in [Tam91]. The asymptotic behavior of the number of
bound–states, which was already predicted by Efimov, was later confirmed mathematically
by Sobolev in 1993 [Sob93]. Until the end of the 1990s, several significant physical and
mathematical findings had emerged on this topic (see, e.g., [TVS93], [KS79], [Pin95], [Pin96],
[VZ83] and [VZ84])

Despite its universality property, the Efimov effect is an exceptionally rare phenomenon,
primarily due to the necessary presence of virtual levels in two–particle subsystems. In
experiments, it is difficult to create conditions where two–particle subsystems have zero–
energy resonances. Moreover, the Efimov bound–states have a large size and are very weakly
bound. This makes the Efimov effect exceedingly challenging to observe.
However, technological advancements in the 1990s, such as improved laser cooling tech-

niques, enabled the study of resonant systems through the application of magnetic fields
and so–called Feshbach resonances (see, e.g., [TVS93], [IAA+98], and [CFH+98]). The first
experimental observation of the Efimov effect was achieved in 2002 in an ultracold gas
of cesium atoms, which was published in 2006 [KMW+06]. Later, in experiments with
potassium atoms, two consecutive Efimov states have been observed [ZDD+09], obtaining
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data consistent with the universal scaling property in (1.1). By the late 2000s, evidence of the
Efimov effect was found for various other particles, including cases beyond systems of three
identical bosons (see, e.g., [GSKK09a], [GSKK09b], [PDH09], [BWR+09] and [XVdGC+20]).
For a more detailed review of the experimental results on the Efimov effect see [FG10] and
the references therein. The experimental verification of the Efimov effect generated renewed
and significant academic interest. For a comprehensive review, see [NE17] (published in
2017), which includes over 400 references, most of them from after 2009.

Recently, both experimental and theoretical studies have explored the existence of effects
similar to the Efimov effect. A natural question is: does the Efimov effect extend to𝑁–particle
systems for 𝑁 > 3 when the (𝑁 − 1)–particle subsystems possess a virtual level? It is known
that in systems with 𝑁 ≥ 4 bosons in three dimensions, the effect is absent [AG73], [BBV20],
[Gri13].
Another question is whether the effect can exist in spatial dimensions other than three,

which occur, for example in configurations involving graphene or by confinement of particles
via optical lattices. In systems of 𝑁 bosons, the absence of the Efimov effect in dimension
one has been established in [BBV20]. In the same work, it was proved that for 𝑁 two–
dimensional bosons the Effimov effect is absent, except in the case 𝑁 = 4. Physicists predict
that for 𝑁 = 4 the Efimove effect exists only if the system interacts solely via three-particle
forces. Mathematically this is still an open problem.
For 𝑁 = 3 in dimensions greater than five, virtual levels correspond to bound–states of

two–particle subsystems, resulting in the non–existence of the Efimov effect. The situation
in dimension four is more complex since virtual levels in this case are resonances but not
bound–states, however, the decay rate is so high, that the resonance barely misses to be 𝐿2.
The non–existence of the Efimov effect for three bosons in dimension four was demonstrated
by the use of so–called Faddeev equations in [BB19]. This completes the picture for the
existence or non–existence of the Efimov effect for (bosonic) three–particle systems in all
dimensions.

Recent advancements in experiments with ultracold gases have enabled the confinement
of particles to lower–dimensional subspaces using strong optical lattices (see, e.g., [GVL+01],
[TVA+08]). This development enables the study of systems withmixed dimensionality, where
different species of particles are confined to distinct subspaces of dimension less than three.
The physicists Nishida and Tan discussed the possible existence of Efimov type effects in
such geometrically constrained systems (see [NT08],[NT11]). In [NT09], they examined the
possibility of this effect occurring in a mixture of 40K and 6Li isotopes, where the conventional
Efimov effect is known to be absent. They argued that confining 40K particles to a one–
dimensional subspace is a promising system for the so–called confinement induced Efimov
effect. However, a rigorous mathematical description of these scenarios remains an open
question. In [NE17] the predictions on the Efimov effect among various configurations of
three particles with mixed dimensionality have been summarized. We present the table
[NE17, page 44, Table 1] and these predictions in Figure 1 below. In this work, we examine
one of the cases. Namely the case (1D-1D x 1D) on the bottom right.
We prove that, contrary to the predictions made, this system can support only a finite

number of bound–states, even if there are virtual levels in the two–particle subsystems.
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Figure 1. Predictions on the confinement induced Effimov effect. Graphic
taken from [NE17, page 44, Table 1]. For each case, it is indicated whether the
Efimov effect is predicted to occur (✓) or not (𝑥).

This configuration is particularly intriguing because it is a truly mixed dimensional system,
consisting of one one–dimensional and two two–dimensional subsystems.
Our approach is based on methods developed by Vugalter and Zhislin (see, e.g., [Zis74],

[VZ83], [VZ84] and [VZ92]), which were recently applied in [BBV21] to establish the absence
of the Efimov effect in unconstrained 𝑁–particle systems in dimensions one and two. As
usual, an important part of the work is the study of the decay properties of resonances which
may occur at the bottom of the spectrum of subsystems. To the best of our knowledge, the
decay of resonances has only been studied in the case of rotational symmetric potentials.
However, for this mixed dimensional system, the subsystems are not necessarily rotational
invariant which tremendously complicates the analysis of the decay properties of zero–
energy solutions. Although this solutions are not functions in 𝐿2(R2) using a modification
of techniques from [HJL21], [HJL23], [BBV20], [BBV21] and [BHHV22], which extend the
method of [Agm83], we show that the projection of these solutions onto the subspace
orthogonal to radially symmetric functions are in 𝐿2(R2).
The paper is structured as follows. In Section 2, we give main definitions and state our

main result and addresses the (lack of) symmetries within the two–particle subsystems. In



ABSENCE OF THE EFIMOV EFFECT FOR CONFINED PARTICLES 5

Section 3, we state four lemmas and show how they lead to a proof of our main theorem
regarding the finiteness of the discrete spectrum.
As preparation for proving these lemmas, Section 4 examines the decay properties of

the zero–energy solutions within a given symmetry subspace. It turns out that the part of
a resonance in angular momentum subspaces different from zero angular momentum has
faster decay than the part in the zero angular momentum subspace (the s channel in physics
language). We finish the proof of the main theorem by proving the remaining lemmas from
Section 3 in Section 5.
Acknowledgements: This research has been partially funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – Project-ID 258734477 – SFB 1173.

2. Definitions and Main Result

Let 𝑦𝑖 ∈ R be the distance of the 𝑖-th particle from the origin along the line 𝐿𝑖 , and let
r𝑖 ∈ R3 be the three–dimensional position vector of this particle. Then

r1 =
©­«
𝑦1 cos(𝜁 )

0
𝑦1 sin(𝜁 )

ª®¬ , r2 = ©­«
𝑦2
𝑎2
0

ª®¬ , r3 = ©­«
𝑦3
𝑎3
0

ª®¬ , (2.1)

where 𝑎2, 𝑎3 ∈ R denote the distances between the lines as indicated in Figure 2.
Denote by r𝑖 𝑗 = 𝑟𝑖 −𝑟 𝑗 the distance between the particles 𝑖 and 𝑗 . The Schrödinger operator

of the system, expressed in this coordinate system, is given by

𝐻 = −
3∑︁
𝑖=1

1
𝑚𝑖

𝜕2

𝜕𝑦2
𝑖

+
∑︁
𝛼∈𝐼

𝑉𝛼 ( |r𝛼 |) (2.2)

where 𝑉𝛼 : R→ R is the interaction potential between the particle pairs, indexed by 𝛼 ∈ 𝐼 ,
with 𝐼 B {(12), (13), (23)} and𝑚1,𝑚2,𝑚3 > 0 are the masses of the particles. We study the

𝐿3

𝐿2

r2

𝐿1

𝜁

𝑒1

𝑒3

𝑒2

r3

r1

cos(𝜁 )𝑦1𝑦2

𝑦3

sin(𝜁 )𝑦1

𝑎3

𝑎2

Figure 2. Geometrically constrained configuration space of particles.
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system of three bosons given by the operator 𝐻 in (2.2). Regarding the potentials we assume
that 𝑉1 𝑗 ∈ 𝐿2loc(R

2) and 𝑉23 ∈ 𝐿2loc(R) and there exist constants 𝐶, 𝛿 > 0 and 𝐴 > 0 such that
for |r𝛼 | > 𝐴.

|𝑉𝛼 ( |r𝛼 |) | ≤ 𝐶 (1 + |r𝛼 |)−𝜈𝛼 , (2.3)

where 𝜈23 B 2 + 𝛿 and 𝜈12 B 𝜈13 B 3 + 𝛿 . Note that by short–range one typically refers to
potentials which decay as |·|−2−𝛿 at infinity. To ensure the applicability of specific decay
estimates on the so–called zero–energy resonances of two–particle subsystems, we assume
a stronger decay condition on the interaction potentials 𝑉12 and 𝑉13.
In addition, the particles always maintain a minimum distance, making the presence or

absence of singularities in the potentials at very small distances irrelevant, except in the
special cases where 𝑎2 = 0 or 𝑎3 = 0, when the particles 1 and 2, respectively, 1 and 3, can
come arbitrarily close to each other. Denote by 𝜎ess(𝐻 ) the essential and by 𝜎disc(𝐻 ) the
discrete spectrum of 𝐻 . Our main result is

Theorem 2.1. Let 𝐻 be the operator defined in equation (2.2) with 𝑉𝛼 fulfilling (2.3) for any
𝛼 ∈ 𝐼 = {(12), (13), (23)}. Assume that 𝜎ess(𝐻 ) = [0,∞). Then 𝜎disc(𝐻 ) is at most finite.
Contrary to the prediction made in [NE17], this system does not exhibit a confinement induced
Efimov effect.

Remarks 2.2. The statement of Theorem 2.1 does not impose any conditions on the existence
or absence of resonances in two–particle subsystems.

For each 𝛼 = (𝑖 𝑗) ∈ 𝐼 we denote by ℎ𝛼 the corresponding two–body Hamiltonian:

ℎ𝛼 B − 1
𝑚𝑖

𝜕2

𝜕𝑦2
𝑖

− 1
𝑚 𝑗

𝜕2

𝜕𝑦2
𝑗

+𝑉𝛼 ( |r𝛼 |) . (2.4)

Let Σ𝑖 𝑗 B inf 𝜎 (ℎ𝑖 𝑗 ) be the bottom of the spectrum of ℎ𝑖 𝑗 and let Σ B min{Σ𝛼 : 𝛼 ∈
𝐼 }. Analogously to the HVZ theorem for systems without geometrical constraints [SR78,
Theorem XIII.17], we have 𝜎ess(𝐻 ) = [Σ,∞). Under the conditions of Theorem 2.1, Σ = 0 and
consequently ℎ𝛼 ≥ 0.

By appropriate rescaling, we can remove the dependence on the masses from the kinetic
part of the Hamiltonian 𝐻 . Let 𝑥 = (𝑥1, 𝑥2, 𝑥3) with

𝑥𝑖 =
√
𝑚𝑖𝑦𝑖 for 𝑖 ∈ {1, 2, 3} (2.5)

and |𝑥 | B (𝑥21 + 𝑥22 + 𝑥23)1/2, then

𝐻 = −
3∑︁
𝑖=1

𝜕2

𝜕𝑥2
𝑖

+
∑︁
𝛼∈𝐼

𝑉𝛼 ( |r𝛼 |) = −Δ𝑥 +
∑︁
𝛼∈𝐼

𝑉𝛼 ( |r𝛼 |) (2.6)

and

ℎ𝑖 𝑗 = − 𝜕2

𝜕𝑥2
𝑖

− 𝜕2

𝜕𝑥2
𝑗

+𝑉𝑖 𝑗 (
��r𝑖 𝑗 ��) . (2.7)
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In abuse of notation, we denote the transformed operator by the same letter. In this new set
of coordinates the distances |r𝛼 | are��r1 𝑗 �� = (

𝑥21
𝑚1

+
𝑥2𝑗

𝑚 𝑗

− 2 cos(𝜁 )√
𝑚1𝑚 𝑗

𝑥1𝑥 𝑗 + 𝑎2𝑗

)1/2
,

|r23 | =
((

𝑥2√
𝑚2

− 𝑥3√
𝑚3

)2
+ (𝑎2 − 𝑎3)2

)1/2
.

(2.8)

Note that
��r1 𝑗 �� remains unchanged under reflection (𝑥1, 𝑥 𝑗 ) ↦→ (−𝑥1,−𝑥 𝑗 ). This symmetry of

the potentials will play an important role in our analysis.

3. Proof of Theorem 2.1: Absence of the Efimov Effect

By themin–max principle, it is sufficient to find a finite–dimensional subspaceM ⊂ 𝐿2(R3)
such that for any𝜓 ∈ 𝐿2(R3) orthogonal toM

⟨𝜓,𝐻𝜓 ⟩ ≥ 0 . (3.1)
Such a spaceM exists, see for example the work by Zhislin [Zis74], if there are constants
𝑏, 𝜏 > 0 such that

𝐿[𝜓 ] B
∫
R3

( 3∑︁
𝑖=1

��𝜕𝑥𝑖𝜓 ��2 + ∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓 |2
)
𝑑𝑥 −

∫
|𝑥 |∈[𝑏,2𝑏]

|𝜓 |2

|𝑥 |2+𝜏
𝑑𝑥 ≥ 0 (3.2)

for any 𝜓 ∈ 𝐶1
0 (R3) with supp𝜓 ⊂ {𝑥 ∈ R3 : |𝑥 | > 𝑏}. We emphasize that no smallness

condition of the parameter 𝜏 > 0 is needed. Everywhere below we assume that 𝑏 > 0 is
sufficiently large and 𝜏 > 0 is a fixed number which is less than 𝛿 , where 𝛿 > 0 is the
parameter in the decay condition on the interaction potentials in (2.3). Let

𝐾1 𝑗 (𝛾) B {𝑥 ∈ R3 :
(
𝑥21 + 𝑥2𝑗

)1/2
≤ 𝛾 |𝑥 |}, 𝑗 ∈ {2, 3} ,

𝐾23(𝛾) B
{
𝑥 ∈ R3 :

���� 𝑥2√
𝑚2

− 𝑥3√
𝑚3

���� ≤ 𝛾 |𝑥 |} ,
Ω(𝛾) B R3 \ {𝐾12(𝛾) ∪ 𝐾13(𝛾) ∪ 𝐾23(𝛾)} .

(3.3)

In the following we denote by 𝜕𝐾𝛼 (𝛾) the boundary of 𝐾𝛼 (𝛾). The sets 𝐾𝛼 (𝛾) describe parts
of the configuration space where the particles 𝑖 and 𝑗 in 𝛼 = (𝑖 𝑗) are close to each other
compared to their distance from the third particle 𝑘 ≠ {𝑖, 𝑗}. In Lemma B.1 in the Appendix,
we show that the sets 𝐾𝛼 (𝛾) do not intersect, except for 𝑥 = 0, for sufficiently small 𝛾 > 0.

Let 1𝐴 be the indicator function of the set 𝐴 ⊂ R3 and define 𝜓𝛼 B 𝜓1𝐾𝛼 (𝛾) and
𝜓0 B 𝜓1Ω(𝛾) . We prove (3.2) by estimating for all 𝛼 ∈ 𝐼 the local energies

𝐿𝛼 [𝜓𝛼 ] B
∫
𝐾𝛼 (𝛾)

©­«|∇𝜓𝛼 |2 +
∑︁
𝛽∈𝐼

𝑉𝛽 |𝜓𝛼 |2
ª®¬𝑑𝑥 −

∫
𝐾𝛼 (𝛾)

|𝜓𝛼 |2

|𝑥 |2+𝜏
𝑑𝑥 ,

𝐿0 [𝜓0] B
∫
Ω(𝛾)

(
|∇𝜓0 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓0 |2
)
𝑑𝑥 −

∫
Ω(𝛾)

|𝜓0 |2

|𝑥 |2+𝜏
𝑑𝑥 ,

(3.4)
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and noting

𝐿[𝜓 ] = 𝐿0 [𝜓0] +
∑︁
𝛼∈𝐼

𝐿𝛼 [𝜓𝛼 ] . (3.5)

Note that we use a hard cut–off in the definition of the local energies 𝐿𝛼 and 𝐿0. The analysis
of these local energies will involve boundary terms on 𝜕𝐾𝛼 (𝛾) and 𝜕Ω(𝛾). The analysis will
proceed in several steps. As a first step, we show that the functionals 𝐿𝛼 for 𝛼 ∈ 𝐼 can be
bounded in terms of boundary integrals over 𝜕𝐾𝛼 (𝛾). This is done in the following two
lemmas.

Lemma 3.1. Fix 𝛼 ∈ {(12), (13)} and let 𝑃0 [𝛼] be the projection in 𝐿2(R3) onto functions that
are invariant under rotations of the coordinates (𝑥1, 𝑥 𝑗 ) describing the position of the particle
pair 𝛼 = (𝑖 𝑗). Under the conditions of Theorem 2.1 there exists a constant 𝑐 > 0, independent of
𝜓 , such that

𝐿𝛼 [𝜓𝛼 ] ≥ −𝑐
∫
𝜕𝐾𝛼 (𝛾)

|𝑃0 [𝛼]𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 . (3.6)

The statement of Lemma 3.1 is similar to [BBV21, Lemma 6.7], whereas its proof is sig-
nificantly more complex. It is based on a detailed analysis of properties of zero–energy
resonances of two–dimensional systems which will be done in Section 4.
For the functional 𝐿23 [𝜓23] we prove the following bound whose proof is similar to the

proof of [BBV21, Theorem 6.1].

Lemma 3.2. Under the conditions of Theorem 2.1, there exists a constant 𝑐 > 0 such that

𝐿23 [𝜓23] ≥ −𝑐
∫
𝜕𝐾23 (𝛾)

|𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 . (3.7)

As the second step, applying the one–dimensional Trace Theorem (see, [Eva10, Theorem
1, p. 272]) and Hardy Inequality we show that the right–hand sides of (3.6) and (3.7) can be
controlled by a small part of the kinetic energy term on the set Ω(𝛾). This is done in the
following two lemmas.

Lemma 3.3. For 𝛾1 ∈ (𝛾, 1) and 𝛼 ∈ {(12), (13)}, we define 𝐾𝛼 (𝛾,𝛾1) B 𝐾𝛼 (𝛾1) \ 𝐾𝛼 (𝛾). For
any 𝜀 > 0, for sufficiently large 𝑏 > 0 holds∫

𝜕𝐾𝛼 (𝛾)

|𝑃0 [𝛼]𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 ≤ 𝜀

∫
𝐾𝛼 (𝛾,𝛾1)

|∇𝜓 |2 𝑑𝑥 . (3.8)

Lemma 3.4. Let 𝛾1 ∈ (𝛾, 1) and define 𝐾23(𝛾,𝛾1) B 𝐾23(𝛾1) \ 𝐾23(𝛾). For any 𝜀 > 0 we have∫
𝜕𝐾23 (𝛾)

|𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 ≤ 𝜀

∫
𝐾23 (𝛾,𝛾1)

|∇𝜓 |2 𝑑𝑥 . (3.9)

for all sufficiently large 𝑏 > 0.

Assuming the Lemmas 3.1, 3.2, 3.3 and 3.4 for the moment, we give the
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Proof of Theorem 2.1: Using the bounds of Lemma 3.3 and 3.4 in (3.5) and assuming that𝛾1 > 𝛾
is close enough to 𝛾 so that the regions 𝐾𝛼 (𝛾,𝛾1) = 𝐾𝛼 (𝛾1) \ 𝐾𝛼 (𝛾) for 𝛼 ∈ 𝐼 do not overlap,
we arrive at

𝐿[𝜓 ] ≥ 𝐿0 [𝜓0] − 𝜀
∑︁

𝛼∈{(12),(13)}

∫
𝐾𝛼 (𝛾,𝛾1)

|∇𝜓 |2 𝑑𝑥 − 𝜀
∫
𝐾23 (𝛾,𝛾1)

|∇𝜓 |2 𝑑𝑥

≥ 𝐿0 [𝜓0] − 3𝜀
∫
Ω(𝛾)

|∇𝜓 |2 𝑑𝑥 .
(3.10)

where 𝜀 > 0 is arbitrary small and 𝑏 > 0 large. Choosing 𝑏 > 0 large enough, Lemma B.2
shows that each of the potentials satisfies |𝑉𝛼 | ≤ 𝐶 |𝑥 |−𝜈𝛼 for some constant 𝐶 > 0 on
Ω(𝛾) ∩ {𝑥 : |𝑥 | > 𝑏}. Thus, for fixed 𝜀 > 0 we have |𝑉𝛼 | ≤ 𝜀 |𝑥 |−2 for 𝑥 ∈ Ω(𝛾) with |𝑥 | > 𝑏
and all sufficiently large 𝑏 > 0. Hence,

𝐿0 [𝜓0] − 3𝜀
∫
Ω(𝛾)

|∇𝜓 |2 𝑑𝑥 ≥ (1 − 3𝜀)
∫
Ω(𝛾)

|∇𝜓 |2 𝑑𝑥 − 𝜀
∫
Ω(𝛾)

|𝜓 |2

|𝑥 |2
𝑑𝑥 . (3.11)

The set Ω(𝛾) ⊂ R3 is conical and applying the radial Hardy Inequality for the last term on
the right–hand side of (3.11) (see A.3) yields

𝐿0 [𝜓0] − 3𝜀
∫
Ω(𝛾)

|∇𝜓 |2 𝑑𝑥 ≥ (1 − 7𝜀)
∫
Ω(𝛾)

|∇𝜓 |2 𝑑𝑥 . (3.12)

This completes the proof of Theorem 2.1.

4. Zero–Energy Resonances

To prove Lemma 3.1 we will need some properties of zero–energy resonances of two–
particle Schrödinger Operators in dimension two. The most important of them are the
estimates on the decay of such resonances, which will be given in Lemma 4.3.

Let
ℎ = −Δ +𝑉 on 𝐿2(R2) (4.1)

with𝑉 satisfying (2.3) with parameter 𝜈𝛼 = 3+𝛿 for some 𝛿 > 0 and𝑉 (𝑥) = 𝑉 (−𝑥). Following
[Jaf75] we say that ℎ has a virtual level (zero–energy resonance) if ℎ ≥ 0 and for any 𝜀 > 0,
ℎ + 𝜀Δ has an eigenvalue below zero.

Let ¤𝐻 1(R2) be the homogeneous Sobolev space defined as
¤𝐻 1(R2) B {𝑢 ∈ 𝐿2loc(R

2) : ∇𝑢 ∈ 𝐿2(R2)}, (4.2)

equipped with the norm

∥𝑢∥ ¤𝐻 1 (R2) B

(∫
R2

|∇𝑢 |2 𝑑𝑥 +
∫
|𝑥 |≤1

|𝑢 |2 𝑑𝑥
)1/2

. (4.3)

We will use the following result of [BBV21, Theorem 2.2]

Lemma 4.1. Assume that ℎ has a virtual level. Then
(1) there exists a unique non–negative 𝜑0 ∈ ¤𝐻 1(R2) with ∥𝜑0∥ ¤𝐻 1 (R2) = 1 such that for any

𝜓 ∈ ¤𝐻 1(R2)
⟨∇𝜓,∇𝜑0⟩ + ⟨𝜓,𝑉𝜑0⟩ = 0 . (4.4)
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(2) there exists 𝜇 > 0 such that for any𝜓 ∈ 𝐻 1(R2) with ⟨∇𝜓,∇𝜑0⟩ = 0

⟨𝜓,ℎ𝜓 ⟩ ≥ 𝜇 ∥∇𝜓 ∥2 . (4.5)

Remark 4.2. Note that, in general, 𝜑0 ∉ 𝐿2(R2). Moreover, if the potential 𝑉 is radially
symmetric and compactly supported, it is easy to see that 𝜑0 is also a radially symmetric
function that does not decay at infinity. If𝑉 is not radially symmetric, then 𝜑0 is not radially
symmetric either. For this case, we prove, that if 𝑉 is symmetric under reflection, then the
projection of 𝜑0 onto the subspace orthogonal to radially symmetric functions is in 𝐿2(R2).
The proof is given in the next lemma.

Let 𝑃0 the projection onto radially symmetric functions in 𝐿2(R2) and 𝑃⊥ B 1 − 𝑃0 the pro-
jection onto its orthogonal complement. The next result shows that even though 𝜑0 ∉ 𝐿2(R2)
its projection 𝑃⊥𝜑0 is in a weighted 𝐿2–space.

Lemma 4.3. Let 𝜑0 be a virtual level of ℎ, then there exists 𝑙 (𝛿) > 0 such that

(1 + |·|)𝑙𝑃⊥𝜑0 ∈ 𝐿2(R2) . (4.6)

4.1. Proof of Lemma 4.3. Let 𝑓 B 𝑃0𝜑0 and 𝑔 B 𝑃⊥𝜑0. Since 𝑉 (𝑥) = 𝑉 (−𝑥), a virtual level
𝜑0 can be either an even or odd function with respect to reflection. However, by Lemma 4.1,
𝜑0 is non–negative, which implies that it must be an even function. Consequently, for almost
all |𝑥 |, ∫ 2𝜋

0
𝑒±𝑖𝜃𝑔( |𝑥 | , 𝜃 )𝑑𝜃 = 0 . (4.7)

Note that for all functions 𝐹 ( |𝑥 | , 𝜃 ) ∈ ¤𝐻 1(R2) orthogonal to radially symmetric functions
with ∫ 2𝜋

0
𝑒±𝑖𝜃𝐹 ( |𝑥 | , 𝜃 )𝑑𝜃 = 0 (4.8)

the following inequality holds:∫
R2

|∇𝐹 |2 𝑑𝑥 ≥ 4
∫
R2

𝐹 (𝑥)2

|𝑥 |2
𝑑𝑥 . (4.9)

In particular (4.9) holds for 𝐹 = 𝑔. To prove (4.6) it suffices now to show that

∇
(
(1 + |·|)𝑙+1𝑔

)
∈ 𝐿2(R2) . (4.10)

Choose 𝜉 ∈ 𝐶∞( [0,∞)) with 𝜉 (𝑡) = 0 for 𝑡 ≤ 1 and 𝜉 (𝑡) = 1 for 𝑡 ≥ 2, such that 𝜉 (𝑡) ≤ 1 and
𝜉′(𝑡) ≤ 2 for any 𝑡 ∈ [0,∞). For any 𝜔,𝜅, 𝛽 > 0 we define

𝐺 ( |𝑥 |) B |𝑥 |𝜅

1 + 𝜔 |𝑥 |𝜅 𝜉 ( |𝑥 | /𝛽) . (4.11)

Inserting𝜓 = 𝐺2𝑔 into (4.4) and writing 𝜑0 = 𝑓 + 𝑔 yields
0 = ⟨𝐺2𝑔, ℎ𝑓 ⟩ + ⟨𝐺2𝑔, ℎ𝑔⟩ . (4.12)

Since 𝑃0 and 𝑃⊥ commute with −Δ, it holds
⟨𝐺2𝑔, ℎ𝑓 ⟩ = ⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩ . (4.13)
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Observe that

⟨𝐺2𝑔, ℎ𝑔⟩ = ⟨𝐺𝑔,ℎ𝐺𝑔⟩ −
〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
= ∥∇(𝐺𝑔)∥2 + ⟨𝐺𝑔,𝑉𝐺𝑔⟩ −

〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
.

(4.14)

Combining (4.12), (4.13) and (4.14) we arrive at

∥∇(𝐺𝑔)∥2 + ⟨𝐺𝑔,𝑉𝐺𝑔⟩ −
〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
+ ⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩ = 0 . (4.15)

We claim, there exists some 𝜀 > 0 and a constant 𝑐 (𝛽) > 0 that both are independent of 𝜔
such that

⟨𝐺𝑔,𝑉𝐺𝑔⟩ −
〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
+ ⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩ ≥ −(1 − 𝜀) ∥∇(𝐺𝑔)∥2 − 𝑐 (𝛽) ∥𝜑0∥2¤𝐻 1 . (4.16)

Assuming this claim for the moment, we complete the proof of Lemma 4.3. Combining (4.15)
with (4.16) yields

𝜀 ∥∇(𝐺𝑔)∥2 ≤ 𝑐 (𝛽) ∥𝜑0∥2¤𝐻 1 (4.17)
and consequently ∥∇(𝐺𝑔)∥2 is bounded uniformly in 𝜔 , which proves (4.10) with 𝜅 = 𝑙 + 1.
Then taking the limit 𝜔 → 0 concludes the proof of Lemma 4.3.

We prove the remaining statement in (4.16) by estimating each of the terms on the left–hand
side of (4.16) separately.

4.2. First Term in (4.16). The function𝐺 vanishes for |𝑥 | < 𝛽 and𝑉 fulfills (2.3) and therefore
there exists 𝐶 > 0 such that

|⟨𝐺𝑔,𝑉𝐺𝑔⟩| ≤ 𝐶

(1 + 𝛽)1+𝛿

∫
|𝑥 |>𝛽

|𝐺𝑔 |2

|𝑥 |2
𝑑𝑥 ≤ 4𝐶

(1 + 𝛽)1+𝛿
∥∇(𝐺𝑔)∥2 . (4.18)

4.3. Second Term in (4.16). In Lemma C.1 in the appendix we show for |𝑥 | > 2𝛽 that
|∇𝐺 (𝑥) | ≤ 𝜅 |𝑥 |−1𝐺 (𝑥) for |𝑥 | > 2𝛽 (4.19)

and
|∇𝐺 (𝑥) |2 ≤ 𝛽𝜅−1

(
2𝜅+1 + 𝜅2𝜅−1

)
C 𝑐1(𝛽) for |𝑥 | ∈ [𝛽, 2𝛽] . (4.20)

Recall that the function 𝐺𝑔 is orthogonal to radially symmetric functions and in addition
satisfies (4.8), consequently (4.19) together with (4.9) yields∫

|𝑥 |≥2𝛽

|∇𝐺 |2

𝐺2 |𝐺𝑔 |2 𝑑𝑥 ≤ 𝜅2
∫
|𝑥 |≥2𝛽

|𝑥 |−2 |𝐺𝑔 |2 𝑑𝑥 ≤ 𝜅2

4 ∥∇(𝐺𝑔)∥2 . (4.21)

By combining (4.20) and (4.21), we obtain〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
≤

∫
𝛽≤|𝑥 |≤2𝛽

|∇𝐺 |2 |𝑔 |2 𝑑𝑥 +
∫
|𝑥 |≥2𝛽

|∇𝐺 |2 |𝑔 |2 𝑑𝑥

≤ 𝑐1(𝛽)
∫
𝛽≤|𝑥 |≤2𝛽

|𝑔 |2 𝑑𝑥 + 𝜅
2

4 ∥∇(𝐺𝑔)∥2 .
(4.22)



12 DIRK HUNDERTMARK, MARVIN R. SCHULZ, SEMJON VUGALTER

Applying (4.9) gives ∫
𝛽≤|𝑥 |≤2𝛽

|𝑔 |2 𝑑𝑥 ≤ (2𝛽)2
∫
𝛽≤|𝑥 |≤2𝛽

|𝑥 |−2 |𝑔 |2 𝑑𝑥

≤ 4(2𝛽)2
∫
R2

|∇𝑔|2 𝑑𝑥

≤ 4(2𝛽)2 ∥𝜑0∥2¤𝐻 1 .

(4.23)

Inserting (4.23) into (4.22) yields〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
≤ 𝜅2

4 ∥∇(𝐺𝑔)∥2 + 𝑐2(𝛽) ∥𝜑0∥2¤𝐻 1 (4.24)

where 𝑐2(𝛽) = 4(2𝛽)2𝑐1(𝛽).

4.4. Third Term in (4.16). Let 𝜀 > 0. By (2.3) and Schwarz Inequality, we obtain

|⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩| ≤ 𝐶
∫
|𝑥 |>𝛽

|𝐺𝑔 |
|𝑥 |1+𝛿/2

|𝐺𝑓 |
|𝑥 |2+𝛿/2

𝑑𝑥

≤ 𝐶𝜀
∫
|𝑥 |>𝛽

|𝐺 |2

|𝑥 |2+𝛿
|𝑔 |2 𝑑𝑥 + 𝐶

𝜀

∫
|𝑥 |>𝛽

|𝐺 |2

|𝑥 |4+𝛿
|𝑓 |2 𝑑𝑥 .

(4.25)

Using (4.9) for 𝐺𝑔 in the first term on the right–hand side of (4.25) we get

𝐶𝜀

∫
|𝑥 |>𝛽

|𝐺 |2

|𝑥 |2+𝛿
|𝑔 |2 𝑑𝑥 ≤ 𝐶𝜀

4 ∥∇(𝐺𝑔)∥2 . (4.26)

To estimate the second term on the right–hand side of (4.25) we choose 𝜅 in the definition of
𝐺 in (4.11) as 1 + 𝛿/4, then for every |𝑥 | > 𝛽

|𝐺 (𝑥) |2

|𝑥 |4+𝛿
≤ |𝑥 |2𝜅−4−𝛿 |𝜉 ( |𝑥 | /𝛽) |2 ≤ |𝑥 |−2−𝛿/2 |𝜉 ( |𝑥 | /𝛽) |2 . (4.27)

Applying (4.27) yields∫
|𝑥 |>𝛽

|𝐺 |2

|𝑥 |4+𝛿
|𝑓 |2 𝑑𝑥 ≤

∫
R2

|𝑥 |−2−𝛿/2 |𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥) |2 𝑑𝑥 . (4.28)

Note that the function 𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥) vanishes for |𝑥 | = 𝛽 and consequently for 𝛽 > 0 large
enough we can apply the two–dimensional Hardy Inequality (see Lemma A.2) and get∫

R2
|𝑥 |−2−𝛿/2 |𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥) |2 𝑑𝑥 ≤

∫
R2

|∇(𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥)) |2 𝑑𝑥 . (4.29)

Since∇𝜉 ( |·| /𝛽) is supported in 𝛽 ≤ |𝑥 | ≤ 2𝛽 and |∇𝜉 ( |·| /𝛽) | ≤ 2/𝛽 we get for the right–hand
side of (4.29)∫

R2
|∇(𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥)) |2 𝑑𝑥 ≤ 8

𝛽2

∫
𝛽< |𝑥 |<2𝛽

|𝑓 |2 𝑑𝑥 + 2
∫
|𝑥 |>𝛽

|∇𝑓 |2 𝑑𝑥 (4.30)
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where we have used that (𝑎 + 𝑏)2 < 𝑎2 + 𝑏2. The function 𝜑0 ∈ 𝐿2loc(R
2) is normalized with

respect to ¤𝐻 1(R2). Then, due to the orthogonality of 𝑓 and 𝑔 for fixed |𝑥 |, there exists a
constant 𝑐3(2𝛽) > 0 such that

∥ 𝑓 ∥2|𝑥 |<2𝛽 ≤ ∥𝜑0∥2|𝑥 |<2𝛽 ≤ 𝑐3(2𝛽) ∥𝜑0∥2¤𝐻 1 (R2) . (4.31)

Combining (4.30) and (4.31) shows there exits a constant 𝑐4(𝛽) > 0, such that∫
R2

|∇(𝜉 ( |𝑥 | /𝛽) 𝑓 (𝑥)) |2 𝑑𝑥 ≤ 𝑐4(𝛽) ∥𝜑0∥2¤𝐻 1 (R2) . (4.32)

Relations (4.28), (4.29) and (4.32) imply∫
|𝑥 |>𝛽

|𝐺 |2

|𝑥 |4+𝛿
|𝑓 |2 𝑑𝑥 ≤ 𝑐4(𝛽) ∥𝜑0∥2¤𝐻 1 . (4.33)

Substituting (4.26) and (4.33) into (4.25) gives

|⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩| ≤ 𝐶𝜀

4 ∥∇(𝐺𝑔)∥2 + 𝑐5(𝛽, 𝜀) ∥𝜑0∥2¤𝐻 1 , (4.34)

where

𝑐5(𝛽, 𝜀) B
𝐶

𝜀
· 𝑐4(𝛽) (4.35)

is a constant depending on 𝛽 and 𝜀. Note that𝐶 > 0 is a constant depending on the potential
𝑉 only and the parameter 𝜀 > 0 can be chosen small.

4.5. Completing the Proof of (4.16). Combining the inequalities (4.18), (4.24) and (4.34)
yields for a constant 𝑐 (𝛽, 𝜀) > 0 that depends on 𝛽 and 𝜀 but is independent of𝜓

⟨𝐺𝑔,𝑉𝐺𝑔⟩ −
〈
𝐺𝑔,

|∇𝐺 |2

𝐺2 𝐺𝑔

〉
+ ⟨𝐺𝑔,𝑉𝐺 𝑓 ⟩

≥ −
(
𝜅2

4 + 4𝐶
(1 + 𝛽)1+𝛿

+ 𝐶𝜀4

)
∥∇(𝐺𝑔)∥2 − 𝑐 (𝛽, 𝜀) ∥𝜑0∥2¤𝐻1

.

(4.36)

Since we can always assume 𝛿 < 1 and since 𝜅 = 1 + 𝛿/4 we have 𝜅2/4 < 1. Consequently
for 𝛽 > 0 sufficiently large and by assuming that 𝜀 > 0 in (4.25) is chosen to be small we can
have (

𝜅2

4 + 4𝐶
(1 + 𝛽)1+𝛿

+ 𝐶𝜀4

)
< 1 − 𝜀 . (4.37)

The constant 𝑐 (𝛽, 𝜀) for fixed 𝛽 and 𝜀 may be large but is finite and independent on 𝜔 . As
explained earlier taking the limit 𝜔 → 0 completes the proof of Lemma 4.3.

5. Proofs of the Lemmas for the Main Theorem

In this section, we prove the lemmas stated in Section 3.
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5.1. Proof of Lemma 3.1. We show the statement for 𝐿𝛼 [𝜓𝛼 ] with 𝛼 = (12). The proof for
𝛼 = (13) is similar. We drop the index 𝛼 whenever possible.

Remark 5.1. The proof of Lemma 3.1 is organized as follows. First, we introduce several new
functions and state three lemmas that correspond to the main steps in the proof, showing
how they conclude Lemma 3.1. The proofs of these three lemmas are then provided in Section
5.2.

Due to [VZ83, Lemma 5.1] for given 𝜀 > 0 and fixed 𝛾 > 0 there exists a 𝛾 ∈ (0, 𝛾) and a
piecewise continuously differentiable function 𝑢 : R3 → [0, 1] with

𝑢 (𝑥) =
{
1 𝑥 ∈ 𝐾12(𝛾)
0 𝑥 ∉ 𝐾12(𝛾)

(5.1)

such that for 𝑣 B
(
1 − 𝑢2

)1/2
|∇𝑢 |2 + |∇𝑣 |2 ≤ 𝜀

(
𝑣2

|𝑥 |2
+ 𝑢2

| (𝑥1, 𝑥2) |2

)
(5.2)

for every 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ R3.
Let

𝜓1 B (𝑃⊥𝜓12)𝑣,
𝜓2 B (𝑃⊥𝜓12)𝑢 + 𝑃0𝜓12 .

(5.3)

Note that we use smooth localization for the function 𝑃⊥𝜓12 which allows us to apply the
IMS–Localization formula. For reasons that will be explained later, we can not do such a
smooth localization for the function 𝑃0𝜓12.
As the first step, we show that 𝐿12 [𝜓12] can be estimated in terms of integrals involving

𝜓2 only. Namely, we prove the following:

Lemma 5.2. Let 𝐾12(𝛾,𝛾) B 𝐾12(𝛾) \ 𝐾12(𝛾) and 𝑏 > 0 large enough. Then

𝐿12 [𝜓12] =
∫
𝐾12 (𝛾)

(
|∇𝜓12 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓12 |2
)
𝑑𝑥 −

∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓12 |2

|𝑥 |2+𝜏
𝑑𝑥 ≥ 𝐿̃12 [𝜓2] (5.4)

where

𝐿̃12 [𝜓2] B
∫
𝐾12 (𝛾)

(
|∇𝜓2 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓2 |2 1𝐾𝛼 (𝛾) − 2 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥

− 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.5)

As the next step we extend 𝜓2 for fixed 𝑥3 outside of 𝐾12(𝛾). Note that 𝜓2 = 𝑃0𝜓12 on
𝜕𝐾12(𝛾) and thus is constant for fixed 𝑥3 ∈ R on 𝜕𝐾12(𝛾). This allows us to continuously
extend𝜓2 to R3 by a function which does not depend on (𝑥1, 𝑥2) outside of 𝐾12(𝛾). Let𝜓2 be
this new function, then since𝜓 ∈ 𝐶1

0 (R3) it follows that

𝜓2(·, 𝑥3) ∈ ¤𝐻 1(R2), 𝜓2(𝑥1, 𝑥2, ·) ∈ 𝐻 1(R) and 𝜓2 ∈ ¤𝐻 1(R3) . (5.6)
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Denote by ∇12 = (𝜕𝑥1, 𝜕𝑥2) the gradient in the (𝑥1, 𝑥2)–plane. If ℎ12 has a virtual level let
𝜑0 ∈ ¤𝐻 1(R2) be the corresponding solution of ℎ12𝜑0 = 0. We normalize 𝜑0 with respect to
the seminorm corresponding to the sesquilinearform

⟨∇12𝑓 ,∇12 𝑔⟩∗ =
∫
R2

(∇12𝑓 · ∇12𝑔) 𝑑 (𝑥1, 𝑥2), 𝑓 , 𝑔 ∈ 𝐻 1(R2) (5.7)

such that
∥𝜑0∥2∗ =

∫
R2

|∇𝜑0 |2 𝑑 (𝑥1, 𝑥2) = 1 . (5.8)

For every 𝑥3 ∈ R let
Φ(𝑥3) B ⟨∇12𝜑0,∇12𝜓2⟩𝐿2 (R2) . (5.9)

We show that the function Φ is in 𝐿2(R). Since ∇12𝜓2 vanishes outside of supp𝜓12 and
consequently outside of supp𝜓 , applying Schwarz Inequality yields for some constant𝐶 > 0

∥Φ∥2
𝐿2 (R) =

∫ ����∬ (
∇12𝜑01supp(𝜓 ) · ∇12𝜓2

)
𝑑 (𝑥1, 𝑥2)

����2 𝑑𝑥3
≤

∫
R



∇12𝜑01supp(𝜓 )



𝐿2 (R2) ·




∇12𝜓2(·, 𝑥3)




𝐿2 (R2)

𝑑𝑥3

≤ 1
2

∫
R

(

∇12𝜑01supp(𝜓 )


2
𝐿2 (R2) +




∇12𝜓2(·, 𝑥3)



2
𝐿2 (R2)

)
𝑑𝑥3

≤ 𝐶 ∥∇12𝜑0∥∗ +
1
2




𝜓2




 ¤𝐻 1 (R3)
.

(5.10)

In the last line of 5.10 we have used, that𝜓 is compactly supported.
Let 𝐹 (𝑥1, 𝑥2, 𝑥3) be defined by

𝜓2(𝑥1, 𝑥2, 𝑥3) = 𝜑0(𝑥1, 𝑥2)Φ(𝑥3) + 𝐹 (𝑥1, 𝑥2, 𝑥3) . (5.11)
For almost all 𝑥3 ∈ R the function 𝐹 satisfies

⟨∇12𝜑0,∇12𝐹 ⟩𝐿2 (R2) = 0 . (5.12)

If the virtual level 𝜑0 does not exist we assume Φ(𝑥3) ≡ 0 and consequently 𝐹 = 𝜓2.

Remark 5.3. For fixed 𝑥3 ∈ R, the expression (5.11) is a projection of 𝜓2 onto the virtual
level 𝜑0 within ¤𝐻 1(R2). Note that, unlike 𝜓2(·, 𝑥3), the function 𝜓2(·, 𝑥3) is not in ¤𝐻 1(R2)
and therefore such a projection would not be possible. That is the reason why we needed to
extend𝜓2 introducing𝜓2.

With these definitions in (5.9) and (5.11), we can state the following:

Lemma 5.4. For the functional 𝐿̃12 we have the estimate

𝐿̃12 [𝜓2] ≥𝜇 ∥∇12𝐹 ∥2 +
1
2

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

−𝐶
∫
𝜕𝐾12 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎

(5.13)
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where 𝜇 > 0 is the parameter in assertion (2) of Lemma 4.1 and𝐶 > 0 a constant independent of
𝜓 .

Remark 5.5. By comparing the statement of Lemma 3.1 with Lemma 5.4 we see that the
assertion of Lemma 3.1 follows immediately if we can show that the sum of the first three
terms on the right–hand side of (5.13) are positive. We give this in the following lemma
which is the last step in the proof of Lemma 3.1.

Lemma 5.6. For 𝜀 ∈ (0, 𝜇/8) and 𝑏 > 0 large enough we have

𝜇 ∥∇12𝐹 ∥2 +
1
2

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 ≥ 0 . (5.14)

Remark 5.7. Recall that for any fixed 𝛾 > 0 we can make 𝜀 > 0 arbitrarily small by choosing
𝛾 ∈ (0, 𝛾) small. In particular, we can always assume 𝜀 < 𝜇/8.

5.2. Proofs of Lemmas 5.2, 5.4 and 5.6.

5.2.1. Proof of Lemma 5.2. We aim to decompose the expression

𝐿12 [𝜓12] =
∫
𝐾12 (𝛾)

(
|∇𝜓12 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓12 |2
)
𝑑𝑥 −

∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓12 |2

|𝑥 |2+𝜏
𝑑𝑥 (5.15)

into terms that involve either𝜓1 or𝜓2 defined in (5.3). In the region 𝐾12(𝛾,𝛾), the potentials
𝑉𝛼 satisfy |𝑉𝛼 | ≤ 𝐶 |𝑥 |−2−𝛿 for some constant 𝐶 > 0, assuming 𝛾 > 0 is sufficiently small and
𝑏 > 0 is sufficiently large (see Lemma B.2). Since 𝜏 < 𝛿 we have∫

𝐾12 (𝛾,𝛾)

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓12 |2 𝑑𝑥 ≥ −
∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓12 |2

|𝑥 |2+𝜏
𝑑𝑥 (5.16)

and consequently

𝐿12 [𝜓12] ≥
∫
𝐾12 (𝛾)

(
|∇𝜓12 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓12 |2 1𝐾12 (𝛾)

)
𝑑𝑥 − 2

∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓12 |2

|𝑥 |2+𝜏
𝑑𝑥 . (5.17)

Due to the orthogonality of 𝑃0𝜓12 and 𝑃⊥𝜓12∫
𝐾12 (𝛾)

|∇𝜓12 |2 𝑑𝑥 =

∫
𝐾12 (𝛾)

|∇(𝑃⊥𝜓12) |2 𝑑𝑥 +
∫
𝐾12 (𝛾)

|∇(𝑃0𝜓12) |2 𝑑𝑥 . (5.18)

With the bounds on the localization estimates in (5.2) we have∫
𝐾12 (𝛾)

|∇(𝑃⊥𝜓12) |2 𝑑𝑥 ≥
∫
𝐾12 (𝛾)

|∇(𝑃⊥𝜓12𝑢) |2 𝑑𝑥 − 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓12 |2
𝑢2

| (𝑥1, 𝑥2) |2
𝑑𝑥

+
∫
𝐾12 (𝛾)

|∇(𝑃⊥𝜓12𝑣) |2 𝑑𝑥 − 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓12 |2
𝑣2

|𝑥 |2
𝑑𝑥,

(5.19)

where 𝑢, 𝑣 are functions defined by (5.1). Due to the definition of functions𝜓1 and𝜓2 in (5.3)
we have ∫

𝐾12 (𝛾)
|∇(𝑃⊥𝜓12𝑢) |2 𝑑𝑥 +

∫
𝐾12 (𝛾)

|∇(𝑃0𝜓12) |2 𝑑𝑥 =

∫
𝐾12 (𝛾)

|∇𝜓2 |2 𝑑𝑥 (5.20)
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and since𝜓1 vanishes on 𝐾12(𝛾) it follows∫
𝐾12 (𝛾)

|∇(𝑃⊥𝜓12𝑣) |2 𝑑𝑥 =

∫
𝐾12 (𝛾,𝛾)

|∇𝜓1 |2 𝑑𝑥 . (5.21)

Inserting (5.19) into (5.18) and applying the relations in (5.20) and (5.21) we arrive at∫
𝐾12 (𝛾)

|∇𝜓12 |2 𝑑𝑥 ≥
∫
𝐾12 (𝛾,𝛾)

|∇𝜓1 |2 𝑑𝑥 − 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝜓1 |2

|𝑥 |2
𝑑𝑥

+
∫
𝐾12 (𝛾)

|∇𝜓2 |2 𝑑𝑥 − 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.22)

The functions𝜓1,𝜓2 satisfy
𝑃0𝜓1 = 0 and |𝑃⊥𝜓1 |2 + |𝑃⊥𝜓2 |2 = |𝑃⊥𝜓12 |2 . (5.23)

Dividing by |𝑥 |2+𝜏 does not change the symmetry of the functions and consequently, together
with (5.23) we get∫

𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓12 |2

|𝑥 |2+𝜏
𝑑𝑥 =

∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓1 |2

|𝑥 |2+𝜏
𝑑𝑥 +

∫
𝐾12 (𝛾)\𝑆 (0,𝑏)

|𝜓2 |2

|𝑥 |2+𝜏
𝑑𝑥 . (5.24)

Inserting (5.22) and (5.24) into (5.17) yields

𝐿12 [𝜓12] ≥ 𝐿̃12 [𝜓2] +
∫
𝐾12 (𝛾)

(
|∇𝜓1 |2 − 2 |𝜓1 |2

|𝑥 |2+𝜏
− 𝜀 |𝜓1 |2

|𝑥 |2

)
𝑑𝑥 (5.25)

where 𝐿̃12 [𝜓2] is given in (5.5). Since supp𝜓1 ⊂ {𝑥 ∈ R3 : |𝑥 | ≥ 𝑏} we can apply the radial
Hardy Inequality and for 𝜀 > 0 small and 𝑏 > 0 large enough we obtain∫

𝐾12 (𝛾)

(
|∇𝜓1 |2 − 2 |𝜓1 |2

|𝑥 |2+𝜏
− 𝜀 |𝜓1 |2

|𝑥 |2

)
𝑑𝑥 ≥ 0 . (5.26)

This completes the proof of Lemma 5.2.

5.2.2. Proof of Lemma 5.4. We aim to estimate

𝐿̃12 [𝜓2] =
∫
𝐾12 (𝛾)

(
|∇𝜓2 |2 +

∑︁
𝛼∈𝐼

𝑉𝛼 |𝜓2 |2 1𝐾12 (𝛾) − 2 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥

− 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.27)

Due to Lemma B.2 there exists a constant 𝐶 > 0 such that on on 𝐾12(𝛾) \ 𝑆 (0, 𝑏)
|𝑉13 +𝑉23 | ≤ 𝐶 |𝑥 |−2−𝛿 . (5.28)

Then, using (5.28) together with 𝜏 < 𝛿 yields

𝐿̃12 [𝜓2] ≥
∫
𝐾12 (𝛾)

(
|∇𝜓2 |2 +𝑉12 |𝜓2 |2 1𝐾12 (𝛾) − 3 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥

− 𝜀
∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.29)
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We rewrite (5.29) as

𝐿̃12 [𝜓2] ≥
∫
𝐾12 (𝛾)

(
|∇12𝜓2 |2 +𝑉12 |𝜓2 |2 1𝐾12 (𝛾)

)
𝑑𝑥

+
∫
𝐾12 (𝛾)

��𝜕𝑥3𝜓2
��2 𝑑𝑥 − 3

∫
𝐾12 (𝛾)

|𝜓2 |2

|𝑥 |2+𝜏
𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.30)

We start with the first integral on the right–hand side of (5.30). With the definition of𝜓2 in
Section 5.1 we have ∫

𝐾12 (𝛾)
|∇12𝜓2 |2 𝑑𝑥 =

∫
R3

���∇12𝜓2

���2 𝑑𝑥 . (5.31)

The function𝜓2 and𝜓2 coincide inside of 𝐾12(𝛾) and consequently for the term involving
𝑉12 in (5.30) we have∫

𝐾12 (𝛾)
𝑉12 |𝜓2 |2 1𝐾12 (𝛾)𝑑𝑥

=

∫
R3
𝑉12

���𝜓2

���2 𝑑𝑥 −
∫
𝐾12 (𝛾,𝛾)

𝑉12 |𝜓2 |2 𝑑𝑥 −
∫
R3\𝐾12 (𝛾)

𝑉12

���𝜓2

���2 𝑑𝑥 . (5.32)

Outside of 𝐾12(𝛾) holds |𝑉12 | ≤ 𝐶 |𝑥 |−3−𝛿 for some 𝐶 > 0. Consequently for 𝑏 > 0 large
enough ����∫

𝐾12 (𝛾,𝛾)
𝑉12 |𝜓2 |2 𝑑𝑥

���� ≤ ∫
𝐾12 (𝛾,𝛾)

|𝜓2(𝑥) |2 |𝑥 |−2−𝜏 𝑑𝑥 (5.33)

and ����∫
R3\𝐾12 (𝛾)

𝑉12

���𝜓2

���2 𝑑𝑥 ���� ≤ ∫
R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2 |𝑥 |−2−𝜏 𝑑𝑥 . (5.34)

Combining (5.31), (5.32), (5.33) and (5.34) we find∫
𝐾12 (𝛾)

|∇12𝜓2 |2 +𝑉12 |𝜓2 |2 𝑑𝑥 ≥
∫
R3

(���∇12𝜓2

���2 +𝑉12 ���𝜓2

���2) 𝑑𝑥
−

∫
R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2

|𝑥 |2+𝜏
𝑑𝑥 −

∫
𝐾12 (𝛾,𝛾)

|𝜓2 |2

|𝑥 |2+𝜏
𝑑𝑥 .

(5.35)

By expressing 𝜓2 in terms of Φ𝜑0 and 𝐹 (see (5.11)), using ℎ12𝜑0 = 0 and assertion (2) of
Lemma 4.1 yields ∫

R3

(���∇12𝜓2

���2 +𝑉12 ���𝜓2

���2) 𝑑𝑥 ≥ 𝜇 ∥∇12𝐹 ∥2 . (5.36)

Inserting (5.36) into (5.35) gives∫
𝐾12 (𝛾)

|∇12𝜓2 |2 +𝑉12 |𝜓2 |2 𝑑𝑥

≥ 𝜇 ∥∇12𝐹 ∥2 −
∫
R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2 |𝑥 |−2−𝜏 𝑑𝑥 −

∫
𝐾12 (𝛾,𝛾)

|𝜓2 |2 |𝑥 |−2−𝜏 𝑑𝑥 .
(5.37)



ABSENCE OF THE EFIMOV EFFECT FOR CONFINED PARTICLES 19

Next, we show that ∫
R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2 |𝑥 |−2−𝜏 𝑑𝑥 (5.38)

can be estimated by an integral over the surface 𝜕𝐾12(𝛾). We introduce polar coordinates
𝑥1 = 𝜌 sin(𝜑),
𝑥2 = 𝜌 cos(𝜑)

(5.39)

with 𝜑 ∈ [0, 2𝜋) and 𝜌 ∈ [0,∞). In this choice of coordinates the set 𝐾12(𝛾) is determined by
𝜌 ≤ 𝜅 |𝑥3 | for some 𝜅 > 0 depending on 𝛾 (see Figure 3). Then∫

R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2

|𝑥 |2+𝜏
𝑑𝑥 =

∫ ∞

−∞

∫ ∞

𝜅 |𝑥3 |

∫ 2𝜋
0

���𝜓2(𝜌, 𝜑, 𝑥3)
���2 𝑑𝜑

𝜌2+𝜏
𝜌𝑑𝜌𝑑𝑥3 .

(5.40)

Outside of the conical set 𝐾12(𝛾) the function𝜓2 is equal to its value on the boundary and
consequently substituting𝜓2(𝜌, 𝜑, 𝑥3) with𝜓2(𝜅 |𝑥3 | , 𝜑, 𝑥3) in (5.41) and solving the integral
over 𝜌 yields∫

R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2

|𝑥 |2+𝜏
𝑑𝑥 =

∫ ∞

−∞

∫ ∞

𝜅 |𝑥3 |

∫ 2𝜋
0

���𝜓2(𝜅 |𝑥3 | , 𝜑, 𝑥3)
���2 𝑑𝜑

𝜌2+𝜏
𝜌𝑑𝜌𝑑𝑥3

= (𝜅𝜏𝜏)−1
∫ ∞

−∞

∫ 2𝜋
0

���𝜓2(𝜅 |𝑥3 | , 𝜑, 𝑥3)
���2 𝑑𝜑

|𝑥3 |1+𝜏
|𝑥3 | 𝑑𝑥3 .

(5.41)

Regarding the set 𝜕𝐾23(𝛾) the surface measure 𝑑𝜎 equals |𝑥3 | 𝑑𝑥3𝑑𝜑 up to a constant
depending on 𝛾 and the function 𝑃⊥𝜓2 = 0 such that 𝜓2 = 𝑃0𝜓 on this surface. For
(𝑥1, 𝑥2, 𝑥3) ∈ 𝜕𝐾12(𝛾) we have |𝑥3 | = (1 − 𝛾2)1/2 |𝑥 | and therefore there exists some 𝐶1 > 0
that depends on 𝛾 and 𝛿 but is independent of𝜓 such that∫

R3\𝐾12 (𝛾)

���𝜓2(𝑥)
���2

|𝑥 |2+𝜏
𝑑𝑥 ≤ 𝐶1

∫
𝜕𝐾12 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 . (5.42)

Combining (5.42) and (5.37) we arrive at∫
𝐾12 (𝛾)

|∇12𝜓2 |2 +𝑉12 |𝜓2 |2 𝑑𝑥 ≥ 𝜇 ∥∇12𝐹 ∥2 −𝐶1

∫
𝜕𝐾12 (𝛾)

| (𝑃0𝜓 ) (𝑥) |2

|𝑥 |1+𝜏
𝑑𝜎

−
∫
𝐾12 (𝛾,𝛾)

|𝜓2 |2

|𝑥 |2+𝜏
𝑑𝑥 .

(5.43)

Substituting (5.43) into (5.30) yields

𝐿̃12 [𝜓2] ≥𝜇 ∥∇12𝐹 ∥2 −𝐶1

∫
𝜕𝐾12 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎

+
∫
𝐾12 (𝛾)

(��𝜕𝑥3𝜓2
��2 − 4 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.44)
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𝐾12(𝛾) \ 𝐾12(𝛾)

𝑥3

| (𝑥1, 𝑥2) |𝑏

𝐾12(𝛾)

𝐾12(𝛾)

𝜃0

𝜃1

𝑥3

| (𝑥1, 𝑥2) |𝑏

𝐾12(𝛾)

𝐾12(𝛾)

Figure 3. Left–hand side: sketch of the sets 𝐾12(𝛾) and 𝐾12(𝛾) used in the
proof of Lemma 3.1.
Right–hand side: sketch of the sets 𝐾12(𝛾) and 𝐾12(𝛾1) where the angles 𝜃0
and 𝜃1 are defined as 𝜃0 = arcsin(𝛾) and 𝜃1 = arcsin(𝛾1) and used in
Lemma 3.3.

We proceed by studying the term∫
𝐾12 (𝛾)

(��𝜕𝑥3𝜓2
��2 𝑑𝑥 − 4 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥 =

∫
𝐾12 (𝛾)

(��𝜕𝑥3 (𝑃0𝜓2)
��2 − 4 |𝑃0𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥

+
∫
𝐾12 (𝛾)

(
1
2
��𝜕𝑥3 (𝑃⊥𝜓2)

��2 − 4 |𝑃⊥𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥

+
∫
𝐾12 (𝛾)

1
2
��𝜕𝑥3 (𝑃⊥𝜓2)

��2 𝑑𝑥
(5.45)

Using 𝑃⊥𝜓2 = 0 on 𝜕𝐾12(𝛾) and decreasing the integral by replacing |𝑥 | with |𝑥3 | together
with the one–dimensional Hardy Inequality (see Lemma A.1) yields for 𝑏 > 0 large enough∫

𝐾12 (𝛾)

(
1
2
��𝜕𝑥3 (𝑃⊥𝜓2)

��2 − 4 |𝑃⊥𝜓2 |2

|𝑥3 |2+𝜏

)
𝑑𝑥 ≥ 0 . (5.46)

Combining (5.45) and (5.46) yields∫
𝐾12 (𝛾)

(��𝜕𝑥3𝜓2
��2 𝑑𝑥 − 4 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥 ≥

∫
𝐾12 (𝛾)

(��𝜕𝑥3 (𝑃0𝜓2)
��2 − 4 |𝑃0𝜓2(𝑥) |2

|𝑥3 |2+𝜏

)
𝑑𝑥

+ 1
2

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 . (5.47)

Next, we estimate the integral involving 𝑃0𝜓2 in (5.47). The one–dimensional Hardy Inequality
can not be applied directly, as 𝑃0𝜓2 does not vanish on the boundary 𝜕𝐾12(𝛾). So, we use the
following construction instead.
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Let 𝐺 be defined as a continuous function in 𝐾12(𝛾) \ 𝑆 (0, 𝑏) that coincides with 𝑃0𝜓2 on
the boundary 𝜕𝐾12(𝛾) and is independent of 𝑥3 within 𝐾12(𝛾). We define Γ in 𝐾12(𝛾) \ 𝑆 (0, 𝑏)
as

Γ B 𝑃0𝜓2 −𝐺 (5.48)

such that Γ vanishes on 𝜕𝐾12(𝛾). Then∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃0𝜓2)
��2 𝑑𝑥 =

∫
𝐾12 (𝛾)

��𝜕𝑥3Γ��2 𝑑𝑥 (5.49)

and ∫
𝐾12 (𝛾)

|𝑃0𝜓2 |2

|𝑥3 |2+𝜏
𝑑𝑥 =

∫
𝐾12 (𝛾)

|Γ +𝐺 |2

|𝑥3 |2+𝜏
𝑑𝑥

≤ 2
∫
𝐾12 (𝛾)

|Γ |2

|𝑥3 |2+𝜏
𝑑𝑥 + 2

∫
𝐾12 (𝛾)

|𝐺 |2

|𝑥3 |2+𝜏
𝑑𝑥 .

(5.50)

Combining (5.49) and (5.50) we find∫
𝐾12 (𝛾)

(��𝜕𝑥3 (𝑃0𝜓2)
��2 − 4 |𝑃0𝜓2(𝑥) |2

|𝑥3 |2+𝜏

)
𝑑𝑥 ≥

∫
𝐾12 (𝛾)

(��𝜕𝑥3Γ��2 − 8 |Γ |2

|𝑥3 |2+𝜏

)
𝑑𝑥

−
∫
𝐾12 (𝛾)

8 |𝐺 |2

|𝑥3 |2+𝜏
𝑑𝑥

(5.51)

Since𝜓 and consequently Γ vanishes for |𝑥3 | < 𝑏/2 we can apply the one–dimensional Hardy
inequality (see Lemma A.1), which yields for 𝜏 > 0 and 𝑏 > 0 large enough∫

𝐾12 (𝛾)

��𝜕𝑥3Γ��2 𝑑𝑥 − 8
∫
𝐾12 (𝛾)

|Γ |2

|𝑥3 |2+𝜏
𝑑𝑥 ≥ 0 . (5.52)

This yields ∫
𝐾12 (𝛾)

(��𝜕𝑥3 (𝑃0𝜓2)
��2 𝑑𝑥 − 4 |𝑃0𝜓2(𝑥) |2

|𝑥 |2+𝜏

)
𝑑𝑥 ≥ −8

∫
𝐾12 (𝛾)

|𝐺 |2

|𝑥3 |2+𝜏
𝑑𝑥 . (5.53)

Next, we show that the integral on the right–hand side of equation (5.53) can be estimated
by an integral over 𝜕𝐾12(𝛾). The function 𝐺 is independent of 𝑥3 in 𝐾12(𝛾), therefore using
polar coordinates as in (5.39) we find∫

𝐾12 (𝛾)

|𝐺 (𝑥) |2

|𝑥3 |2+𝜏
𝑑𝑥 =

∫ ∞

0

∫
|𝑥3 |≥𝜅−1𝜌

∫ 2𝜋
0 |𝐺 (𝜌, 𝜑, 𝑥3) |2 𝑑𝜑

|𝑥3 |2+𝜏
𝑑𝑥3𝜌𝑑𝜌

=

∫ ∞

0

∫
|𝑥3 |≥𝜅−1𝜌

∫ 2𝜋
0

��𝐺 (𝜌, 𝜑, 𝜅−1𝜌)
��2 𝑑𝜑

|𝑥3 |2+𝜏
𝑑𝑥3𝜌𝑑𝜌

= (𝜅1+𝜏 (1 + 𝜏))−1
∫ ∞

0

∫ 2𝜋
0

��𝐺 (𝜌, 𝜑, 𝜅−1𝜌)
��2 𝑑𝜑

𝜌1+𝜏
𝜌𝑑𝜌

(5.54)
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Due to the definition of 𝐺 and since 𝜌 = 𝛾 |𝑥 | on 𝜕𝐾12(𝑥) there exists a constant 𝐶2 > 0 that
depends on 𝛾 and 𝛿 but is independent of𝜓 such that∫

𝐾12 (𝛾)

|𝐺 |2

|𝑥3 |2+𝜏
𝑑𝑥 = 𝐶2

∫
𝜕𝐾12 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎 . (5.55)

Substituting the relation (5.55) into (5.53) it follows from (5.47) that∫
𝐾12 (𝛾)

(��𝜕𝑥3𝜓2
��2 𝑑𝑥 − 4 |𝜓2 |2

|𝑥 |2+𝜏

)
𝑑𝑥 ≥ − 8𝐶2

∫
𝜕𝐾12 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎

+ 1
2

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 . (5.56)

We insert (5.56) into (5.44) and define 𝐶 B 𝐶1 + 8𝐶2, such that

𝐿̃12 [𝜓2] ≥𝜇 ∥∇12𝐹 ∥2 +
1
2

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

−𝐶
∫
𝜕𝐾𝛼 (𝛾)

|𝑃0𝜓 |2

|𝑥 |1+𝜏
𝑑𝜎,

(5.57)

which completes the proof of Lemma 5.4.

5.2.3. Proof of Lemma 5.6. To prove the lemma it suffices to show that for any 𝜇 > 0 and
𝜀 ∈ (0, 𝜇/8) there exists a 𝜆 ∈ (0, 1/2) such that for all 𝑏 > 0 (depending on 𝜇, 𝜀, 𝜆) large
enough, the following inequality holds:

𝜇 ∥∇12𝐹 ∥2 + 𝜆
∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 ≥ 0 . (5.58)

We start with the second term on the left–hand side of (5.58). The function 𝑃⊥𝜓2 vanishes
for |𝑥3 | = 0 and therefore by the one–dimensional Hardy Inequality (Lemma A.1)∫

𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 ≥ 1

4

∫
𝐾12 (𝛾)

|𝑃⊥𝜓2 |2

|𝑥3 |2
𝑑𝑥 . (5.59)

Since𝜓2 = Φ𝜑0 + 𝐹 on 𝐾12(𝛾) and (𝑎 + 𝑏)2 ≥ 𝑎2/2 − 𝑏2 we can estimate the right–hand side
of (5.59) by ∫

𝐾12 (𝛾)

|𝑃⊥𝜓2 |2

|𝑥3 |2
𝑑𝑥 ≥ 1

2

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 −

∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

|𝑥3 |2
𝑑𝑥 . (5.60)

Using that

| (𝑥1, 𝑥2) |2 ≤
𝛾2

1 − 𝛾2 𝑥
2
3, ∀𝑥 ∈ 𝐾12(𝛾). (5.61)

and substituting this into the right–hand side of (5.60) we find∫
𝐾12 (𝛾)

|𝑃⊥𝜓2 |2

|𝑥3 |2
𝑑𝑥 ≥ 1

2

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 − 𝛾2

1 − 𝛾2
∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 . (5.62)
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Combining (5.59) and (5.62) and assuming

𝜆 <
1 − 𝛾2
2𝛾2 𝜇 (5.63)

we arrive at

𝜆

∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 ≥𝜆8

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 − 𝜆

4
𝛾2

1 − 𝛾2
∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

≥ 𝜆

8

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 − 𝜇

8

∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

(5.64)

Using 𝜀 ∈ (0, 𝜇/8) we find that last term on the left–hand side of (5.58) can be estimated as

𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 ≤ 2𝜀

∫
𝐾12 (𝛾,𝛾)

|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 + 2𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

≤ 2𝜀
∫
𝐾12 (𝛾,𝛾)

|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 + 𝜇4

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.65)

Inserting (5.64) and (5.65) into (5.58) we find

𝜇 ∥∇12𝐹 ∥2 + 𝜆
∫
𝐾12 (𝛾)

��𝜕𝑥3 (𝑃⊥𝜓2)
��2 𝑑𝑥 − 𝜀

∫
𝐾12 (𝛾,𝛾)

|𝑃⊥𝜓2 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

≥ 𝜆

8

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 − 2𝜀

∫
𝐾12 (𝛾,𝛾)

|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

+ 𝜇 ∥∇12𝐹 ∥2 −
3
8𝜇

∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 .

(5.66)

Furthermore, due to the symmetry of 𝑃⊥𝐹 (see (4.9)) we have

∥∇12𝐹 ∥2 = ∥∇12(𝑃0𝐹 )∥2 + ∥∇12(𝑃⊥𝐹 )∥2 ≥ ∥∇12(𝑃⊥𝐹 )∥2 ≥ 4
∫
R3

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 . (5.67)

Consequently for the terms in that last line of (5.66) we find

𝜇 ∥∇12𝐹 ∥2 −
3
8𝜇

∫
𝐾12 (𝛾)

|𝑃⊥𝐹 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 ≥ 0 . (5.68)

To complete the proof of the lemma it remains to show for fixed 𝜆 and 𝜀 we can choose 𝑏 > 0
large enough such that

𝜆

8

∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 − 2𝜀

∫
𝐾12 (𝛾,𝛾)

|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥 ≥ 0 . (5.69)

The first integral in (5.69) is taken over the region 𝐾12(𝛾), while the second integral, which
is negative, is taken over 𝐾12(𝛾,𝛾), a subset of 𝐾12(𝛾). We will show that (5.69) follows from
this observation and the decay properties of 𝑃⊥𝜑0 proved in Lemma 4.3.

It holds
𝛾2

1 − 𝛾2 𝑥
2
3 ≤ |(𝑥1, 𝑥2) |2 , ∀𝑥 ∈ 𝐾12(𝛾,𝛾), (5.70)
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and
𝛾𝑏/2 ≤ 𝛾 |𝑥 | ≤ |(𝑥1, 𝑥2) | , ∀𝑥 ∈ 𝐾12(𝛾,𝛾) ∩ supp(𝜓 ) . (5.71)

Using (5.70) and (5.71) and applying Lemma 4.3 there exists some 𝜈 > 0 and a constant
𝑐 (𝛾, 𝜈) > 0 such that for the second integral in (5.69)∫

𝐾12 (𝛾,𝛾)
|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
𝑑𝑥

=

∫
𝐾12 (𝛾,𝛾)

|Φ|2 |𝑃⊥𝜑0 |2

| (𝑥1, 𝑥2) |2
(1 + |(𝑥1, 𝑥2) |)𝜈

(1 + |(𝑥1, 𝑥2) |)𝜈
𝑑𝑥

≤ 1
(1 + 𝛾𝑏/2)𝜈

1 − 𝛾2
𝛾2

∫
𝐾12 (𝛾,𝛾)

|Φ|2

|𝑥3 |2
(1 + |(𝑥1, 𝑥2) |)𝜈 |𝑃⊥𝜑0 |2 𝑑 (𝑥1, 𝑥2)𝑑𝑥3

=
𝑐 (𝛾, 𝜈)
𝑏𝜈

∫ ∞

𝑏/2

|Φ|2

|𝑥3 |2
𝑑𝑥3 .

(5.72)

On the other hand for the first term in (5.69) we have for 𝑏 > 0 large enough∫
𝐾12 (𝛾)

|Φ|2 |𝑃⊥𝜑0 |
2

|𝑥3 |2
𝑑𝑥 ≥

∥𝑃⊥𝜑0∥2𝐿2 (R2)
2

∫ ∞

𝑏/2

|Φ|2

|𝑥3 |2
𝑑𝑥3 . (5.73)

Combining (5.72) and (5.73) proves (5.69), which completes the proof of Lemma 5.6 and as
discussed in 5.1 this completes also the proof of Lemma 3.1.

5.3. Proof of Lemma 3.2. We aim to estimate

𝐿23 [𝜓23] =
∫
𝐾23 (𝛾)

©­«|∇𝜓23 |2 +
∑︁
𝛽∈𝐼

𝑉𝛽 |𝜓23 |2
ª®¬𝑑𝑥 −

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

|𝑥 |2+𝜏
𝑑𝑥 . (5.74)

The potentials 𝑉1 𝑗 satisfy
��𝑉1 𝑗 �� ≤ 𝐶 |𝑥 |−3−𝛿 for 𝑗 ∈ {2, 3} and some 𝐶 > 0 on 𝐾23(𝛾) due to

Lemma B.2. Consequently, for 𝑏 > 0 sufficiently large

𝐿23 [𝜓23] ≥
∫
𝐾23 (𝛾)

(
|∇𝜓23 |2 +𝑉23 |𝜓23 |2

)
𝑑𝑥 − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

|𝑥 |2+𝜏
𝑑𝑥, (5.75)

which is equivalent to

𝐿23 [𝜓23] ≥
∫
𝐾23 (𝛾)

(��𝜕𝑥2𝜓23
��2 + ��𝜕𝑥3𝜓23

��2 +𝑉23 |𝜓23 |2
)
𝑑𝑥

+
∫
𝐾23 (𝛾)

��𝜕𝑥1𝜓23
��2 − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

|𝑥 |2+𝜏
𝑑𝑥 .

(5.76)

Next, we estimate the first term on the right–hand side of equation (5.76), which corresponds
to a part of the quadratic form of the operator ℎ23 defined in (2.4). Note that the operator
ℎ23 is translation invariant. We introduce new coordinates (𝑞, 𝜉) which correspond to the
relative distance and position of the center of mass of the subsystem (23) with

𝑞 B
1

√
𝑀23

(√𝑚3𝑥2 −
√
𝑚2𝑥3) , (5.77)
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𝜉 B
1

√
𝑀23

(√𝑚2𝑥2 +
√
𝑚3𝑥3), (5.78)

where 𝑀23 B 𝑚2 +𝑚3. Note that 𝑞2 + 𝜉2 = 𝑥22 + 𝑥23 . Direct computations show that in
(𝑞, 𝜉)–coordinates the operator ℎ23 takes the form

ℎ23 = −𝜕2𝑞 − 𝜕2𝜉 +𝑉23

((
|𝑞 |2

𝜇23
+ (𝑎2 − 𝑎3)2

)1/2)
(5.79)

where the reduced mass 𝜇23 of particles (23) is given by

𝜇23 B
𝑚2𝑚3
𝑀23

. (5.80)

The set 𝐾23(𝛾) in (𝑥1, 𝑞, 𝜉)–coordinates is given by

𝐾23(𝛾) =
{
(𝑥1, 𝑞, 𝜉) ∈ R3 : |𝑞 | ≤ 𝛾

√
𝜇23

(
𝑥21 + 𝑞2 + 𝜉2

)1/2}
=

{
(𝑥1, 𝑞, 𝜉) ∈ R3 : |𝑞 | ≤ 𝜅0

(
𝑥21 + 𝜉2

)1/2} (5.81)

with

𝜅0 B

(
𝛾2𝜇23

1 − 𝛾2𝜇23

)1/2
. (5.82)

The functional 𝐿23 [𝜓23] can be written as

𝐿23 [𝜓23] ≥
(
𝑀23
𝜇23

)1/2 [ ∫
𝐾23 (𝛾)

��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2 𝑑 (𝑥1, 𝑞, 𝜉)

+
∫
𝐾23 (𝛾)

��∇(𝑥1,𝜉)𝜓23
��2 𝑑 (𝑥1, 𝑞, 𝜉) − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

| (𝑥1, 𝑞, 𝜉)) |2+𝜏
𝑑 (𝑥1, 𝑞, 𝜉)

] (5.83)

where (𝑀23/𝜇23)1/2 is the Jacobian determinant of the transformation to the new set of
coordinates (𝑥1, 𝑞, 𝜉). In abuse of notation, we denote𝜓23 expressed in coordinates (𝑥1, 𝑞, 𝜉)
by the same letter. We estimate (5.83) in two steps. As the first step, we show that

Lemma 5.8. ∫
𝐾23 (𝛾)

(��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2

)
𝑑 (𝑥1, 𝑞, 𝜉) ≥ −𝐶

∫
𝜕𝐾23 (𝛾)

|𝜓23 |2

|𝑥 |1+𝛿
𝑑𝜎 (5.84)

for some 𝐶 > 0 independent of𝜓 .

As a second step, we show

Lemma 5.9.

N[𝜓23] B
∫
𝐾23 (𝛾)

��∇(𝑥1,𝜉)𝜓23
��2 𝑑 (𝑥1, 𝑞, 𝜉) − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

| (𝑥1, 𝑞, 𝜉)) |2+𝜏
𝑑 (𝑥1, 𝑞, 𝜉)

≥ −𝐶
∫
𝜕𝐾23 (𝛾)

|𝜓23 |2

|𝑥 |1+𝜏
𝑑𝜎

(5.85)

for some constant 𝐶 > 0 independent of𝜓 .
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5.3.1. Proof of Lemma 5.8. We rewrite the first integral on the right–hand side of (5.83) as∫
𝐾23 (𝛾)

(��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2

)
𝑑 (𝑥1, 𝑞, 𝜉) =

∫
R2

∫ 𝜅0 | (𝑥1,𝜉) |

−𝜅0 | (𝑥1,𝜉) |

��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2 𝑑𝑞 𝑑 (𝑥1, 𝜉) .

(5.86)
Note that due to the positivity of operator ℎ23 also holds

−𝜕2𝑞 +𝑉23

((
|𝑞 |2

𝜇23
+ (𝑎2 − 𝑎3)2

)1/2)
≥ 0 . (5.87)

Since the potential 𝑉23 satisfies�����𝑉23
((

|𝑞 |2

𝜇23
+ (𝑎2 − 𝑎3)2

)1/2)����� ≤ 𝐶 |𝑞 |2+𝛿 (5.88)

for some constant 𝐶 > 0 if 𝑞 is sufficiently large, applying [BBV21, Lemma 6.2] (for conve-
nience of the reader we proof it in Appendix D) there exists 𝐶 > 0 that depends on 𝛿 but is
independent of𝜓 such that∫ 𝜅0 | (𝑥1,𝜉) |

−𝜅0 | (𝑥1,𝜉) |

��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2 𝑑𝑞

≥ −𝐶 |𝜓23(𝑥1, 𝜅0 | (𝑥1, 𝜉) | , 𝜉) |2 + |𝜓23(𝑥1,−𝜅0 | (𝑥1, 𝜉) | , 𝜉) |2

| (𝑥1, 𝜉) |1+𝛿
.

(5.89)

Combining (5.86) and (5.89) we find∫
𝐾23 (𝛾)

(��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2

)
𝑑 (𝑥1, 𝑞, 𝜉)

≥ −𝐶
∫
R2

|𝜓23(𝑥1, 𝜅0 | (𝑥1, 𝜉) | , 𝜉) |2 + |𝜓23(𝑥1,−𝜅0 | (𝑥1, 𝜉) | , 𝜉) |2

| (𝑥1, 𝜉) |1+𝛿
𝑑 (𝑥1, 𝜉) .

(5.90)

The points (𝑥1,±𝜅0 | (𝑥1, 𝜉) | , 𝜉) belong to the surface 𝜕𝐾23(𝛾). Direct computations show that
for the surface measure 𝑑𝜎 associated with the set 𝜕𝐾23(𝛾) satisfies the relation

𝑑𝜎 = 𝜅0𝑑 (𝑥1, 𝜉), (5.91)

with 𝜅0 defined in (5.82). Consequently from (5.90) we find∫
𝐾23 (𝛾)

(��𝜕𝑞𝜓23
��2 +𝑉23 |𝜓23 |2

)
𝑑 (𝑥1, 𝑞, 𝜉) ≥ −𝐶

∫
𝜕𝐾23 (𝛾)

|𝜓23 |2

| (𝑥1, 𝜉) |1+𝛿
𝑑𝜎 (5.92)

for a possible different constant 𝐶 > 0. Using that on 𝜕𝐾23(𝛾)

|𝑥 |2 = | (𝑥1, 𝜉) |2 + 𝑞2 = (1 + 𝜅20) | (𝑥1, 𝜉) |2 (5.93)

completes the proof of Lemma 5.8.
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𝐾23(𝛾)𝑏/2

𝑞

𝜌

𝑞 =
𝜅 0𝜌

𝑏

Figure 4. Sketch of the set 𝐾23(𝛾). In the circular blue area, the function
𝜓 vanishes. For fixed 𝑞 ∈ R the horizontal red line indicates the path of
integration used in Lemma 5.9.

5.3.2. Proof of Lemma 5.9. This lemma mainly follows the ideas of [BBV21, Lemma 6.7]. We
introduce polar coordinates in the (𝑥1, 𝜉)–plane as

𝜌 B
√︃
𝑥21 + 𝜉2, 𝜑 B arctan(𝑥1/𝜉) . (5.94)

The set 𝜕𝐾23(𝛾) corresponds to points with

|𝑞 | = 𝜅0𝜌, (5.95)

where 𝜅0 was defined in (5.82). For each fixed 𝑞 ∈ R let

𝜓 (𝑞) B
∫ 2𝜋

0
𝜓23(𝑞, 𝜅−10 |𝑞 | , 𝜑)𝑑𝜑2𝜋 and 𝜓 1(𝑞, 𝜌, 𝜑) ≔ 𝜓 (𝑞) · 1(𝜌, 𝜑) . (5.96)

Let ℱ B 𝜓23 −𝜓 1. We write ∇(𝜌,𝜑) for the gradient in polar coordinates in the (𝑥1, 𝜉)–plane.
Then ∇(𝜌,𝜑)𝜓 1 ≡ 0 and consequently∫

𝐾23 (𝛾)

��∇(𝑥1,𝜉)𝜓23
��2 𝑑 (𝑥1, 𝑞, 𝜉)

=

∫
𝐾23 (𝛾)

��∇(𝜌,𝜑)𝜓23
��2 𝑑 (𝑞, 𝜌, 𝜑) = ∫

𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑), (5.97)

where 𝑑 (𝑥1, 𝑞, 𝜉) = 𝑑 (𝑞, 𝜌, 𝜑) = 𝜌 𝑑𝑞𝑑𝜌𝑑𝜑 . Inserting (5.97) into the right–hand side of (5.85)
we arrive at

N[𝜓23] =
∫
𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑) − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

| (𝑥1, 𝑞, 𝜉) |2+𝜏
𝑑 (𝑥1, 𝑞, 𝜉) . (5.98)

Transforming the second integral on the right–hand side of (5.98) to polar coordinates we
get

N[𝜓23] =
∫
𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑) − 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

| (𝑞, 𝜌) |2+𝜏
𝑑 (𝑞, 𝜌, 𝜑) . (5.99)
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Since ℱ = 𝜓23 −𝜓 1 and (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 it holds∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓23 |2

| (𝑞, 𝜌) |2+𝜏
𝑑 (𝑞, 𝜌, 𝜑)

≤ 2
∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|ℱ |2

| (𝑞, 𝜌) |2+𝜏
𝑑 (𝑞, 𝜌, 𝜑) + 2

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

���𝜓 1

���2
| (𝑞, 𝜌) |2+𝜏

𝑑 (𝑞, 𝜌, 𝜑) .

(5.100)

Combining (5.99) and (5.100) yields

N[𝜓23] ≥
∫
𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑) − 4

∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

|ℱ |2

| (𝑞, 𝜌) |2+𝜏
𝑑 (𝑞, 𝜌, 𝜑)

− 4
∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

���𝜓 1

���2
| (𝑞, 𝜌) |2+𝜏

𝑑 (𝑞, 𝜌, 𝜑) .

(5.101)

Next, we show that the sum of the first two integrals on the right–hand side of (5.101) is
positive. The function𝜓23 = 0 for |𝑥 | < 𝑏 and consequently for

𝜌0 B max{𝜅−10 |𝑞 | , 𝑏/2} (5.102)
we have∫

𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑) = ∫ ∞

−∞

∫ ∞

𝜌0

∫ 2𝜋

0

��∇(𝜌,𝜑)ℱ(𝑞, 𝜌, 𝜑)
��2 𝑑 (𝜌, 𝜑)𝑑𝑞 . (5.103)

For 𝜌 = 𝜌0, the projection of ℱ onto functions with zero angular momentum in the (𝑥1, 𝜉)–
plane vanishes. As a result, the following two–dimensional Hardy inequality (see Lemma A.2)
holds for almost all 𝑞 ∈ R:∫ ∞

𝜌0

∫ 2𝜋

0

��∇(𝜌,𝜑)ℱ(𝑞, 𝜌, 𝜑)
��2 𝑑 (𝜌, 𝜑) ≥ 1

4

∫ ∞

𝜌0

∫ 2𝜋

0

|ℱ(𝑞, 𝜌, 𝜑) |2

𝜌2
(
1 + ln2(𝜌)

) 𝑑 (𝜌, 𝜑), (5.104)

where we assume 𝜌0 > 1 for sufficiently large 𝑏 > 0. Inserting (5.104) into the right–hand
side of (5.103) gives∫

𝐾23 (𝛾)

��∇(𝜌,𝜑)ℱ
��2 𝑑 (𝑞, 𝜌, 𝜑) ≥ 1

4

∫
𝐾23 (𝛾)

|ℱ |2

𝜌2
(
1 + ln2 (𝜌)

)𝑑 (𝑞, 𝜌, 𝜑) . (5.105)

Since 𝜌 > 𝑏/2 on 𝐾23(𝛾) ∩ supp𝜓23 the positivity of the sum of the first two terms on the
right–hand side of (5.101) follows from (5.105) for 𝑏 > 0 sufficiently large. We arrive at

N[𝜓23] ≥ −4
∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

���𝜓 1

���2
| (𝑞, 𝜌) |2+𝜏

𝑑 (𝑞, 𝜌, 𝜑) . (5.106)

It remains to show that the integral on the right–hand side of (5.106) can be estimated by an
integral over 𝜕𝐾23(𝛾). By direct computation∫

𝐾23 (𝛾)\𝑆 (0,𝑏)

���𝜓 1(𝑞, 𝜌, 𝜑)
���2

| (𝑞, 𝜌) |2+𝜏
𝑑 (𝑞, 𝜌, 𝜑) = 2𝜋

∫ ∞

−∞

∫ ∞

𝜌0

���𝜓 1(𝑞, 𝜌, 𝜑)
���2

| (𝑞, 𝜌) |2+𝜏
𝜌𝑑𝜌𝑑𝑞 . (5.107)



ABSENCE OF THE EFIMOV EFFECT FOR CONFINED PARTICLES 29

Using the definition of𝜓 1 and Schwarz Inequality

2𝜋
∫ ∞

−∞

∫ ∞

𝜌0

���𝜓 1(𝑞)
���2

| (𝑞, 𝜌) |2+𝜏
𝜌𝑑𝜌𝑑𝑞 ≤

∫ ∞

−∞

∫ ∞

𝜌0

∫ 2𝜋
0

��𝜓23(𝑞, 𝜅−10 |𝑞 | , 𝜑)
��2 𝑑𝜑

| (𝑞, 𝜌) |2+𝜏
𝜌𝑑𝜌𝑑𝑞 . (5.108)

Combining (5.107) and (5.108) we arrive at∫
𝐾23 (𝛾)\𝑆 (0,𝑏)

���𝜓 1

���2
| (𝑞, 𝜌) |2+𝜏

𝑑 (𝑞, 𝜌, 𝜑)

≤
∫ ∞

−∞

∫ 2𝜋

0

��𝜓23(𝑞, 𝜅−10 |𝑞 | , 𝜑)
��2 𝑑𝜑 ∫ ∞

𝜌0

1
| (𝑞, 𝜌) |2+𝜏

𝜌𝑑𝜌𝑑𝑞

(5.109)

Using | (𝑞, 𝜌) | > 𝜌 and 𝜌0 > 𝜅−10 |𝑞 |, yields by solving the integral over 𝜌 that there exists a
constant 𝐶 > 0, which depends on 𝜏 and 𝜅0 but is independent of𝜓 , such that∫

𝐾23 (𝛾)\𝑆 (0,𝑏)

|𝜓 1 |2

| (𝑞, 𝜌) |2+𝜏 𝑑 (𝑞, 𝜌, 𝜑) ≤ 𝐶
∫ ∞

−∞

∫ 2𝜋

0

|𝜓23(𝑞, 𝜅−10 |𝑞 |, 𝜑) |2

|𝑞 |1+𝜏 𝑞 𝑑𝑞 𝑑𝜑. (5.110)

The points (𝑞, 𝜅−10 |𝑞 |, 𝜑) with 𝑞 ∈ R and 𝜑 ∈ [0, 2𝜋) correspond to points on the surface
𝜕𝐾23(𝛾). Consequently, by substituting (5.110) into (5.106), we obtain for another constant
𝐶 > 0 that depends on 𝜅0 and 𝜏 but is independent of𝜓 :

N[𝜓23] ≥ −𝐶
∫
𝜕𝐾23 (𝛾)

|𝜓 |2
|𝑥 |1+𝜏 𝑑𝜎, (5.111)

where we used that 𝜓23 = 𝜓 on 𝜕𝐾23(𝛾). This completes the proof of Lemma 5.9 and as
discussed in 5.3 this also completes the proof of Lemma 3.2.

5.4. Proof of Lemma 3.3. We prove Lemma 3.3 for 𝛼 = (12). The proof for 𝛼 = (13) is
similar. We introduce spherical coordinates as follows:

𝑥1 = |𝑥 | sin(𝜑) sin(𝜃 ),
𝑥2 = |𝑥 | cos(𝜑) sin(𝜃 ),
𝑥3 = |𝑥 | cos(𝜃 ),

(5.112)

where 𝜑 ∈ [0, 2𝜋), 𝜃 ∈ [0, 𝜋], and |𝑥 | ∈ [0,∞). The boundary 𝜕𝐾12(𝛾) is then described by
( |𝑥 | ,±𝜃0, 𝜑), where 𝜃0 = arcsin(𝛾) and 𝜃0 ∈ [0, 𝜋] (see Figure 3).
Let 𝑃0 [(12)] be the projection onto radially symmetric functions in the (𝑥1, 𝑥2)–plane

introduced in Lemma 3.1, then∫
𝜕𝐾12 (𝛾)

| (𝑃0 [(12)]𝜓 ) (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎 ≤

∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎 (5.113)

where the surface measure 𝑑𝜎 associated with 𝜕𝐾12(𝛾) in the spherical coordinattes (5.112) is
given by

𝑑𝜎 = |sin𝜃0 | |𝑥 | 𝑑 |𝑥 | 𝑑𝜑 (5.114)
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By applying the one–dimensional trace theorem in the 𝜃 variable (see, [Eva10, Theorem 1, p.
272]) for every fixed |𝑥 | > 𝑏/2, 𝜑 ∈ [0, 2𝜋), there is a constant 𝐶 > 0 that depends on 𝜃0 and
𝜃1 B arcsin (𝛾1) but is independent of |𝑥 | and 𝜑 such that

|𝜓 ( |𝑥 | , 𝜃0, 𝜑) |2

|𝑥 |1+𝛿
≤ 𝐶

∫ 𝜃1

𝜃0

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2 + |(𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |1+𝛿
𝑑𝜃 . (5.115)

Integrating (5.115) with respect to 𝑑𝜎 in (5.114) yields∫ 2𝜋

0

∫ ∞

𝑏/2
|𝜓 ( |𝑥 | , 𝜃0, 𝜑) |2 |sin𝜃0 | |𝑥 | 𝑑 |𝑥 | 𝑑𝜑

≤ 𝐶 |sin𝜃0 |
∫ 2𝜋

0

∫ 𝜃1

𝜃0

∫ ∞

𝑏/2

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2 + |(𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |1+𝛿
|𝑥 | 𝑑 |𝑥 | 𝑑𝜃𝑑𝜑.

(5.116)

where we have also used that𝜓 ( |𝑥 | , 𝜃, 𝜑) = 0 for |𝑥 | < 𝑏/2. Similar we get∫ 2𝜋

0

∫ ∞

𝑏/2
|𝜓 ( |𝑥 | ,−𝜃0, 𝜑) |2 |cos𝜃 | |𝑥 | 𝑑 |𝑥 | 𝑑𝜑

≤ 𝐶 |sin𝜃0 |
∫ 2𝜋

0

∫ −𝜃0

−𝜃1

∫ ∞

𝑏/2

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2 + |(𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |1+𝛿
|𝑥 | 𝑑 |𝑥 | 𝑑𝜃𝑑𝜑.

(5.117)

For 𝐾12(𝛾,𝛾1) = 𝐾12(𝛾1) \ 𝐾12(𝛾) by combining (5.116) and (5.117) we find∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎

≤ 𝐶 |sin𝜃0 |
∫
𝐾12 (𝛾,𝛾1)

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2 + |(𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |1+𝛿
|𝑥 | 𝑑 |𝑥 | 𝑑𝜃𝑑𝜑 .

(5.118)

Using 𝑑𝑥 = sin(𝜃 ) |𝑥 |2 𝑑 |𝑥 | 𝑑𝜃𝑑𝜑 and sin(𝜃0) ≤ |sin(𝜃 ) | on 𝐾12(𝛾,𝛾1) we arrive at∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎

≤ 𝐶
∫
𝐾12 (𝛾,𝛾1)

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |2+𝛿
𝑑𝑥 +𝐶

∫
𝐾12 (𝛾,𝛾1)

| (𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |2+𝛿
𝑑𝑥 .

(5.119)

Since𝜓 (𝑥) = 0 for |𝑥 | ≤ 𝑏/2 we conclude from (5.119)∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎

≤ 𝐶

(𝑏/2)𝛿

(∫
𝐾12 (𝛾,𝛾1)

|𝜓 ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |2
𝑑𝑥 +

∫
𝐾12 (𝛾,𝛾1)

| (𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |2
𝑑𝑥

) (5.120)

Applying the radial Hardy Inequality to the first term on the right–hand side of (5.120) yields∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎

≤ 𝐶

(𝑏/2)𝛿

(∫
𝐾12 (𝛾,𝛾1)

1
4
��𝜕|𝑥 |𝜓 ( |𝑥 | , 𝜃, 𝜑)��2 𝑑𝑥 +

∫
𝐾12 (𝛾,𝛾1)

| (𝜕𝜃𝜓 ) ( |𝑥 | , 𝜃, 𝜑) |2

|𝑥 |2
𝑑𝑥

) (5.121)



ABSENCE OF THE EFIMOV EFFECT FOR CONFINED PARTICLES 31

Expressing the gradient in spherical coordinates we conclude from (5.121) that∫
𝜕𝐾12 (𝛾)

|𝜓 (𝑥) |2

|𝑥 |1+𝛿
𝑑𝜎 ≤ 𝐶

(𝑏/2)𝛿
∥∇𝜓 ∥2

𝐿2 (𝐾12 (𝛾,𝛾1)) , (5.122)

which completes the proof of Lemma 3.3

5.5. Proof of Lemma 3.4. In the set of coordinates (𝑥1, 𝑞, 𝜉) introduced in 5.3 the set 𝜕𝐾23(𝛾)

𝐾23(𝛾)𝑏/2

𝑞

(𝑥21 + 𝜉2)1/2

𝑞 =
𝜅0𝜌

𝑞 =
𝜅 1𝜌

𝑏

Figure 5. Sketch of the sets 𝐾23(𝛾) and 𝐾23(𝛾1) and their relation to the
constants 𝜅0 and 𝜅1. This construction is used in Lemma 3.4.

is determined by

|𝑞 | = 𝜅0(𝑥21 + 𝜉2)1/2 (5.123)

with 𝜅0 defined in (5.82). We introduce spherical coordinates as follows:

𝑥1 = |𝑥 | sin(𝜑) cos(𝜗),
𝜉 = |𝑥 | cos(𝜑) cos(𝜗),
𝑞 = |𝑥 | sin(𝜗),

(5.124)

where we used that the coordinates (𝑥1, 𝑞, 𝜉) fulfill |𝑥 | = | (𝑥1, 𝑞, 𝜉) | (see Lemma B.4). In this
set of coordinates 𝜗0 B arctan(𝜅0) corresponds to the opening angle of the conical set𝐾23(𝛾).
Let 𝜗1 B arctan𝜅1 with

𝜅1 B

(
𝛾21𝜇23

1 − 𝛾21𝜇23

)1/2
, (5.125)

then 𝜗1 > 𝜗0 corresponds to the opening angle of the conical set 𝐾23(𝛾1) (see Figure 5).
Analogous to Lemma 3.3 by application of the one–dimensional trace theorem in the variable
𝜗 and the radial Hardy Inequality proves Lemma 3.4.
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Appendix A. Hardy–Type Ineqalities

In the work at hand, several types of Hardy Inequalities are used. We collect them here
from different sources and refer to their proofs.

The one–dimensional Hardy Inequality, forwhich a proof can be found in [FLW22, Theorem 2.65]
is:

Lemma A.1. Let 𝑢 ∈ ¤𝐻 1(R) and assume lim inf
𝑟→0

|𝑢 (𝑟 ) | = 0. Then∫
R

|𝑢 (𝑟 ) |2

|𝑟 |2
𝑑𝑟 ≤ 4

∫
R
|𝑢′(𝑟 ) |2 𝑑𝑟 . (A.1)

The following is the Hardy Inequality in dimension two for which a proof can be found in
[Sol94] or derived from [FLW22, Pop. 2.68]

Lemma A.2. Let 𝑢 ∈ ¤𝐻 1(R2) with ∫ 2𝜋

0
𝑢 (𝑐, 𝜑)𝑑𝜑 = 0, (A.2)

where (𝜌, 𝜑) are polar coordinates and 𝑐 > 0. Then the following Hardy Inequality is true:∫
R2

|𝑢 |2

|𝑥 |2
(
1 + ln2

(
|𝑥 |
𝑐

))𝑑𝑥 ≤ 4
∫
R2

|∇𝑢 |2 𝑑𝑥 . (A.3)

The following is the radial Hardy Inequality on conical sets which was proven in [Naz06,
§4].

Lemma A.3. Let 𝑑 ≥ 2 and 𝐾 ⊂ S𝑑−1 a smooth domain and

Ω B {𝑥 = |𝑥 |𝜔 : 𝜔 ∈ 𝐾} . (A.4)

Then for any 𝑢 ∈ ¤𝐻 1(Ω \ {0}) the following Hardy Inequality holds:∫
Ω
|𝑢 |2 |𝑥 |−2 𝑑𝑥 ≤

(
2

𝑑 − 2

)2 ∫
Ω
|∇𝑢 |2 𝑑𝑥 . (A.5)

Appendix B. Remarks on the Geometry of the Sets 𝐾𝛼 (𝛾)
Lemma B.1. Let 𝛼, 𝛽 ∈ {(12), (13), (23)} then

𝐾𝛼 (𝛾) ∩ 𝐾𝛽 (𝛾) = {0} (B.1)

for 𝛼 ≠ 𝛽 if 𝛾 > 0 is small enough.

Proof. We begin with the sets 𝐾1 𝑗 (𝛾) for 𝑗 ∈ {2, 3}. Assume that 𝑥 ∈ 𝐾12(𝛾) ∩ 𝐾13(𝛾) and
𝑥 ≠ 0 then

|𝑥 |2 ≤ (𝑥21 + 𝑥22) + (𝑥21 + 𝑥33) < 2𝛾2 |𝑥 |2 (B.2)
which fails for 𝛾 small enough, which we assume henceforth. Consequently, we have

𝐾12(𝛾) ∩ 𝐾13(𝛾) = {0} (B.3)
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Next we assume that 𝑥 ∈ 𝐾12(𝛾) ∩ 𝐾23(𝛾) and 𝑥 ≠ 0, then

𝑥21 + 𝑥22 < 𝛾2 |𝑥 |2 ,���� 𝑥2√
𝑚2

− 𝑥3√
𝑚3

���� < 𝛾 |𝑥 | . (B.4)

Let𝑚 B min{𝑚1,𝑚2,𝑚3} and𝑀 B max{𝑚1,𝑚2,𝑚3} and recall the choice √𝑚𝑖𝑦𝑖 = 𝑥𝑖 then

𝑦21 + 𝑦22 <
𝛾2

𝑚
𝑀 |𝑦 |2

|𝑦2 − 𝑦3 | < 𝛾
√
𝑀 |𝑦 | .

(B.5)

Note that the points (𝑦2, 0), (𝑦3, 0) and (0, 𝑦1) are the corners of a triangle in R2 and thus by
the triangle inequality√︃

𝑦21 + 𝑦23 ≤
√︃
𝑦21 + 𝑦22 + |𝑦2 − 𝑦3 | < 𝛾

√
𝑀

(
1 +𝑚−1/2

)
|𝑦 | . (B.6)

Combining (B.5) and (B.6) there exists a constant 𝑐 (𝑀,𝑚) > 0 independent of 𝛾 and 𝑦 ≠ 0
such that

|𝑦 |2 ≤ (𝑦21 + 𝑦22) + (𝑦21 + 𝑦23) ≤ 𝑐 (𝑀,𝑚) |𝛾 |2 |𝑦 |2 (B.7)
which fails for𝛾 small enough and thus𝐾12(𝛾)∩𝐾23(𝛾) = {0}. Repeating the same arguments
for the set 𝐾13(𝛾) ∩ 𝐾23(𝛾) concludes the proof.

Lemma B.2. Let 𝛼 ∈ {(12), (13), (23)} and let 𝛾 > 0 satisfy the condition (B.1). Assume that
the potentials𝑉𝛼 satisfy (2.3). Then there exists𝐶 > 0 such that for any 𝑥 ∉ 𝐾𝛼 (𝛾) with |𝑥 | > 𝑏
holds

|𝑉𝛼 (𝑥) | ≤ 𝐶 |𝑥 |−𝜈𝛼 , (B.8)
where 𝜈23 = 2 + 𝛿 and 𝜈12 = 𝜈13 = 3 + 𝛿 .

Remark B.3. Lemma B.2 implies that for small 𝛾 > 0 condition (B.8) holds on Ω(𝛾) for any
of the potentials if |𝑥 | > 𝑏 and 𝑏 > 0 large enough. Consequently the condition (B.8) applies
on any of the sets 𝐾𝛼 (𝛾,𝛾) defined in Section 3.

Proof. We begin with 𝛼 = (23). The potential 𝑉23 fulfills (2.3) and thus there exist constants
𝐶, 𝛿 > 0 and 𝐴 > 0 such that

|𝑉23( |r23 |) | ≤ 𝐶 (1 + |r23 |)−2−𝛿 , (B.9)

whenever |r23 | > 𝐴. For 𝑥 ∉ 𝐾23(𝛾) we have

|r23 | ≥
���� 𝑥2√
𝑚2

− 𝑥3√
𝑚3

���� ≥ 𝛾 |𝑥 | . (B.10)

Consequently |r23 | > 𝐴 for |𝑥 | > 𝑏 for 𝑏 > 0 large enough. Combining (B.10) and (B.9) the
statement for 𝛼 = (23) follows directly.
Next, we prove the case 𝛼 = (12). The proof for 𝛼 = (13) is similar. The potential 𝑉12

fulfills (2.3) and thus there exist constants 𝐶, 𝛿 > 0 and 𝐴 > 0 such that

|𝑉12( |r12 |) | ≤ 𝐶 (1 + |r12 |)−3−𝛿 (B.11)



34 DIRK HUNDERTMARK, MARVIN R. SCHULZ, SEMJON VUGALTER

whenever |r12 | > 𝐴. Assume 𝑥 ∉ 𝐾12(𝛾) then

|r12 | ≥
(
𝑥21
𝑚1

+
𝑥22
𝑚2

− cos(𝜁 )2 𝑥1𝑥2√
𝑚1𝑚2

)1/2
≥

(
𝑥21
𝑚1

+
𝑥22
𝑚2

)1/2
(1 − cos(𝜁 ))1/2

≥
(
min

{
1
𝑚1
,
1
𝑚2

}
(1 − cos(𝜁 ))

)1/2
| (𝑥1, 𝑥2) |

≥
(
min

{
1
𝑚1
,
1
𝑚2

}
(1 − cos(𝜁 ))𝛾

)1/2
|𝑥 | .

(B.12)

where we have used that 2𝑎𝑏 ≤ 𝑎2 + 𝑏2 from the first to the second line in (B.12). Since
𝜁 ∈ (0, 𝜋/2], combining (B.12) and (B.11) completes the proof.

Lemma B.4. Let (𝑥1, 𝑥2, 𝑥3) ∈ R3 and let (𝑞, 𝜉) be defined as,

𝑞 =
1

√
𝑀23

(√𝑚3𝑥2 −
√
𝑚2𝑥3) , (B.13)

𝜉 =
1

√
𝑀23

(√𝑚2𝑥2 +
√
𝑚3𝑥3), (B.14)

where𝑀23 B 𝑚2 +𝑚3. Then
|𝑥 | = | (𝑥1, 𝑞, 𝜉) | . (B.15)

The surface measure on the set 𝜕𝐾23(𝛾) in this set of coordinates is given by

𝑑𝜎 = 𝜅0𝑑 (𝑥1, 𝜉) (B.16)

with

𝜅0 =

(
𝛾2𝜇23

1 − 𝛾2𝜇23

)1/2
, 𝜇23 =

𝑚2𝑚3
𝑚2 +𝑚3

. (B.17)

Proof. Direct computations show

𝑞2 + 𝜉2 = 1
𝑀23

(𝑚3𝑥
2
2 +𝑚2𝑥

2
3 − 2

√
𝑚2𝑚3𝑥2𝑥3) +

1
𝑀23

(𝑚2𝑥
2
2 +𝑚3𝑥

2
3 + 2

√
𝑚2𝑚3𝑥2𝑥3)

= 𝑥22 + 𝑥23 .
(B.18)

Consequently (B.15) holds.
The set 𝜕𝐾23(𝛾) is determined by���� 𝑥2√

𝑚2
− 𝑥3√

𝑚3

���� = 𝛾 |𝑥 | . (B.19)

Expressing 𝑥2 and 𝑥3 in (𝑞, 𝜉)–varibales gives

𝑥2 =

(
𝑚2
𝑀23

)1/2 (
𝜉 +

(
𝑚3
𝑚2

)1/2
𝑞

)
, 𝑥3 =

(
𝑚3
𝑀23

)1/2 (
𝜉 −

(
𝑚2
𝑚3

)1/2
𝑞

)
. (B.20)
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Inserting (B.20) into (B.19) gives���� 𝑥2√
𝑚2

− 𝑥3√
𝑚3

���� = (𝜇23)−1/2 |𝑞 | , (B.21)

for 𝜇23 in (B.17).
Combining (B.19) and (B.21) shows that the surface 𝜕𝐾23(𝛾) is determined by the relation

|𝑞 | = (𝜇23)1/2𝛾 | (𝑥1, 𝑞, 𝜉) | . (B.22)
Solving (B.22) for |𝑞 | yields

|𝑞 | = 𝜅0 | (𝑥1, 𝜉) | where 𝜅0 =

(
𝛾2𝜇23

1 − 𝛾2𝜇23

)1/2
. (B.23)

Using (B.23) as parametrization of the surface 𝜕𝐾23(𝛾) the relation for the surface element
𝑑𝜎 of 𝜕𝐾23(𝛾) in (B.16) follows from direct computations.

Appendix C. Auxiliary Estimate used in Lemma 4.3

Lemma C.1. Let 𝜉 ∈ 𝐶∞( [0,∞)) with 𝜉 (𝑡) = 0 for 𝑡 ≤ 1 and 𝜉 (𝑡) = 1 for 𝑡 ≥ 2, such that
𝜉 (𝑡) ≤ 1 and 𝜉′(𝑡) ≤ 2 for any 𝑡 ∈ [0,∞). For any 𝜔,𝜅, 𝛽 > 0 we define

𝐺 ( |𝑥 |) B |𝑥 |𝜅

1 + 𝜔 |𝑥 |𝜅 𝜉 ( |𝑥 | /𝛽) . (C.1)

Then
|∇𝐺 (𝑥) | ≤ 𝜅 |𝑥 |−1𝐺 (𝑥), for |𝑥 | > 2𝛽 (C.2)

and for
|∇𝐺 (𝑥) | ≤ 𝛽𝜅−1

(
2𝜅+1 + 𝜅2𝜅−1

)
, for |𝑥 | ∈ [𝛽, 2𝛽] . (C.3)

Proof. By construction

𝜉

(
|𝑥 |
𝛽

)
≡ 1 (C.4)

for |𝑥 | ≥ 2𝛽 and consequently

| (∇𝐺) (𝑥) | =
����∇ (

|𝑥 |𝜅

1 + 𝜔 |𝑥 |𝜅
)���� = 𝜅 |𝑥 |𝜅−1

(1 + 𝜔 |𝑥 |𝜅)2
≤ 𝜅 |𝑥 |−1𝐺 (𝑥) . (C.5)

For |𝑥 | ∈ [𝛽, 2𝛽]

𝜉

(
|𝑥 |
𝛽

)
≤ 2, (C.6)

then for |𝑥 | ∈ [𝛽, 2𝛽]

| (∇𝐺) (𝑥) | ≤ 2
𝛽

|𝑥 |𝜅

1 + 𝜔 |𝑥 |𝜅 +
����∇ (

|𝑥 |𝜅

1 + 𝜔 |𝑥 |𝜅
)����

≤ 2𝜅+1𝛽𝜅−1 + 𝜅2𝜅−1𝛽𝜅−1

= 𝛽𝜅−1
(
2𝜅+1 + 𝜅2𝜅−1

)
.

(C.7)
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Appendix D. Proof of Lemma 6.2 of [BBV21]

Lemma D.1. Let ℎ = −𝜕2𝑞 +𝑉 (𝑞) on 𝐿2(R), such that ℎ ≥ 0. Asume that for every 𝜀 > 0 there
exists a constant 𝐶 (𝜀) > 0, such that∫

R
|𝑉 (𝑞) | |𝜓 (𝑞) |2 𝑑𝑞 ≤ 𝜀

∫
R
|𝜓 ′(𝑞) |2 𝑑𝑞 +𝐶 (𝜀)

∫
R
|𝜓 (𝑞) |2 𝑑𝑞 ∀𝜓 ∈ 𝐻 1(R) . (D.1)

Assume there are constants 𝐶,𝐴, 𝛿 > 0 such that

|𝑉 (𝑞) | ≤ 𝐶 |𝑞 |−2−𝛿 (D.2)

for any 𝑞 ∈ R with |𝑞 | > 𝐴. Then there exists a constant 𝐶 > 0, such that for any 𝐿 > 0 and
any function𝜓 ∈ 𝐻 1(R)

J (𝜓, 𝐿) B
∫ 𝐿

−𝐿

(
|𝜓 ′(𝑞) |2 +𝑉 (𝑞) |𝜓 (𝑞) |2

)
𝑑𝑞 ≥ −𝐶𝐿−1−𝛿

(
|𝜓 (𝐿) |2 + |𝜓 (−𝐿) |2

)
(D.3)

Proof. Let 𝐿 > 𝐴, for 𝑠 > 0 we define for |𝑞 | ≤ 𝐿 + 2

𝜓𝑠 (𝑞) B


𝜓 (𝐿) (𝐿+𝑠)−𝑞

𝑠
𝑞 ∈ (𝐿, (𝐿 + 𝑠))

𝜓 (𝑞) 𝑞 ∈ [−𝐿, 𝐿]
𝜓 (−𝐿) (𝐿+𝑠)+𝑞

𝑠
𝑞 ∈ (−(𝐿 + 𝑠),−𝐿)

(D.4)

and 𝜓𝑠 (𝑞) = 0 for |𝑞 | > 𝐿 + 𝑠 . Then 𝜓𝑠 ∈ 𝐻 1(R). By construction J (𝜓, 𝐿) = J (𝜓𝑠, 𝐿) and
since ℎ ≥ 0

J (𝜓, 𝐿) ≥ −
∫ ∞

𝐿

(��𝜓 ′
𝑠 (𝑞)

��2 + |𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2
)
𝑑𝑞

−
∫ −𝐿

−∞

(��𝜓 ′
𝑠 (𝑞)

��2 + |𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2
)
𝑑𝑞

(D.5)

We estimate the first integral on the right–hand side of (D.5). Using that 𝜓 ′ and 𝜓 are
supported on {𝑞 ∈ R, |𝑞 | ≤ 𝐿 + 𝑠} yields∫ ∞

𝐿

(��𝜓 ′
𝑠 (𝑞)

��2 + |𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2
)
𝑑𝑞 =

∫ 𝐿+𝑠

𝐿

��𝜓 ′
𝑠 (𝑞)

��2 𝑑𝑞 + ∫ 𝐿+𝑠

𝐿

|𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2 𝑑𝑞 . (D.6)

The first term on the right–hand side of (D.6) vanishes in the limit 𝑠 → ∞ and for the second
term we find ∫ 𝐿+𝑠

𝐿

|𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2 𝑑𝑞 ≤ |𝜓 (𝐿) |2
∫ 𝐿+𝑠

𝐿

|𝑉 (𝑞) | 𝑑𝑞 (D.7)

Applying (D.2) and solving the remaining integral on the right–hand side of (D.7) we find
there exists a constant 𝐶 > 0 depending on 𝛿 > 0 but independent of 𝐿 and 𝑠 such that∫ 𝐿+𝑠

𝐿

|𝑉 (𝑞) | |𝜓𝑠 (𝑞) |2 𝑑𝑞 ≤ 𝐶

𝐿1+𝛿
|𝜓 (𝐿) |2 . (D.8)

Using the same Arguments for the Integral over (−∞,−𝐿] in (D.5) proves the statement in
the limit 𝑠 → ∞.



ABSENCE OF THE EFIMOV EFFECT FOR CONFINED PARTICLES 37

References
[AG73] R. D. Amado and F. C. Greenwood. There is no Efimov effect for four or more particles. Phys.

Rev. D (3), 7:2517–2519, 1973.
[Agm83] Shmuel Agmon. Lectures on Exponential Decay of Solutions of Second–Order Elliptic Equations

: Bounds on Eigenfunctions of 𝑁–body Schrödinger Operations. 1983.
[BB19] Simon Barth and Andreas Bitter. On the virtual level of two-body interactions and applications

to three-body systems in higher dimensions. Journal of Mathematical Physics, 60(11):113504, 11
2019.

[BBV20] Simon Barth, Andreas Bitter, and Semjon Vugalter. Decay properties of zero-energy resonances
of multi-particle schrödinger operators and why the efimov effect does not exist for systems of
𝑁 ≥ 4 particles, 2020. arXiv Version: arXiv:1910.04139v3.

[BBV21] Simon Barth, Andreas Bitter, and Semjon Vugalter. The absence of the Efimov effect in systems
of one-and two-dimensional particles. J. Math. Phys., 62(12):Paper No. 123502, 46, 2021.

[BHHV22] Jean-Marie Barbaroux, Michael C. Hartig, Dirk Hundertmark, and Semjon Vugalter. van der
Waals–London interaction of atoms with pseudorelavistic kinetic energy. Anal. PDE, 15(6):1375–
1428, 2022.

[BWR+09] G. Barontini, C. Weber, F. Rabatti, J. Catani, G. Thalhammer, M. Inguscio, and F. Minardi. Obser-
vation of Heteronuclear Atomic Efimov Resonances. Phys. Rev. Lett., 103:043201, Jul 2009.

[CFH+98] Ph. Courteille, R. S. Freeland, D. J. Heinzen, F. A. van Abeelen, and B. J. Verhaar. Observation of
a Feshbach Resonance in Cold Atom Scattering. Phys. Rev. Lett., 81:69–72, Jul 1998.

[Efi70] V N Efimov. Weakly bound states of three resonantly interacting particles. Yadern. Fiz., 12:1080–91,
1 1970.

[Eva10] L. C. Evans. Partial Differential Equations. American Mathematical Society, Providence, R.I., 2010.
[FG10] Francesca Ferlaino and Rudolf Grimm. Forty years of Efimov physics: How a bizarre prediction

turned into a hot topic. Physics, 3:9, 2010.
[FLW22] R. L. Frank, A. Laptev, and T. Weidl. Schrödinger Operators: Eigenvalues and Lieb—Thirring

Inequalities. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022.
[Gri13] Dmitry K. Gridnev. Why there is no Efimov effect for four bosons and related results on the

finiteness of the discrete spectrum. Journal of Mathematical Physics, 54(4):042105, 04 2013.
[GSKK09a] Noam Gross, Zav Shotan, Servaas Kokkelmans, and Lev Khaykovich. Observation of Universality

in Ultracold 7Li Three–Body Recombination. Phys. Rev. Lett., 103:163202, Oct 2009.
[GSKK09b] Noam Gross, Zav Shotan, Servaas Kokkelmans, and Lev Khaykovich. Observation of Universality

in Ultracold 7Li Three–Body Recombination. Phys. Rev. Lett., 103:163202, Oct 2009.
[GVL+01] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P.

Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle. Realization of Bose-Einstein
Condensates in Lower Dimensions. Phys. Rev. Lett., 87:130402, Sep 2001.

[HJL21] Dirk Hundertmark, Michal Jex, and Markus Lange. Quantum systems at the brink: Helium-type
systems, 2021. arXiv Version: arXiv:1908.04883v2 .

[HJL23] Dirk Hundertmark, Michal Jex, and Markus Lange. Quantum systems at the brink. In Michele
Correggi and Marco Falconi, editors, Quantum Mathematics I, pages 259–273, Singapore, 2023.
Springer Nature Singapore.

[IAA+98] Shin Inouye, M. R. Andrews, M. R. Andrews, J. B. Stenger, H. J. Miesner, Dan M. Stamper-Kurn,
and Wolfgang Ketterle. Observation of Feshbach resonances in a Bose–Einstein condensate.
Nature, 392:151–154, 1998.

[Jaf74] D. R. Jafaev. On the theory of the discrete spectrum of the three-particle Schrödinger operator.
Mat. Sb. (N.S.), 94(136):567–593, 655–656, 1974.

[Jaf75] D. R. Jafaev. The virtual level of the Schrödinger equation. Zap. Naučn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI), 51:203–216, 220, 1975. Mathematical questions in the theory of wave
propagation, 7.



38 DIRK HUNDERTMARK, MARVIN R. SCHULZ, SEMJON VUGALTER

[KMW+06] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch,
A. Jaakkola, H.-C. Nägerl, and R. Grimm. Evidence for Efimov quantum states in an ultracold gas
of caesium atoms. Nature, 440(7082):315–318, Mar 2006.

[KS79] M. Klaus and B. Simon. Binding of Schrödinger particles through conspiracy of potential wells.
Ann. Inst. H. Poincaré Sect. A (N.S.), 30(2):83–87, 1979.

[Naz06] A. I. Nazarov. Hardy-Sobolev Inequalities in a Cone. Journal of Mathematical Sciences, 132(4):419–
427, Jan 2006.

[NE17] P. Naidon and S. Endo. Efimov physics: a review. Reports on Progress in Physics, 80(5):056001,
2017.

[NT08] Yusuke Nishida and Shina Tan. Universal Fermi Gases in Mixed Dimensions. Phys. Rev. Lett.,
101:170401, Oct 2008.

[NT09] Yusuke Nishida and Shina Tan. Confinement-induced Efimov resonances in Fermi-Fermi mixtures.
Phys. Rev. A, 79:060701, Jun 2009.

[NT11] Yusuke Nishida and Shina Tan. Liberating efimov physics from three dimensions. Few-Body
Systems, 51(2):191–206, Nov 2011.

[OS79] Yu.N Ovchinnikov and I.M Sigal. Number of bound states of three-body systems and efimov’s
effect. Annals of Physics, 123(2):274–295, 1979.

[PDH09] Scott E. Pollack, Daniel Dries, and Randall G. Hulet. Universality in Three- and Four-Body Bound
States of Ultracold Atoms. Science, 326(5960):1683–1685, 2009.

[Pin95] Yehuda Pinchover. On the localization of binding for Schrödinger operators and its extension to
elliptic operators. J. Anal. Math., 66:57–83, 1995.

[Pin96] Y. Pinchover. Binding of Schrödinger particles through conspiracy of potential wells in R4, volume
345 of Pitman Res. Notes Math. Ser., pages 118–133. Longman, Harlow, 1996.

[Sob93] A. V. Sobolev. The Efimov effect. Discrete spectrum asymptotics. Communications in Mathematical
Physics, 156(1):101–126, Sep 1993.

[Sol94] M. Solomyak. A Remark on the Hardy Inequalities. Integral Equations and Operator Theory,
19:120–124, 1994.

[SR78] B. Simon and M. Reed. Methods of Modern Mathematical Physics: Vol.: 4. : Analysis of Operators.
Academic Press, 1978.

[Tam91] Hideo Tamura. The Efimov effect of three-body Schrödinger operators. Journal of Functional
Analysis, 95(2):433–459, 1991.

[TVA+08] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann. Quantum Degenerate
Two-Species Fermi-Fermi Mixture Coexisting with a Bose-Einstein Condensate. Phys. Rev. Lett.,
100:010401, Jan 2008.

[TVS93] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof. Threshold and resonance phenomena in ultracold
ground-state collisions. Phys. Rev. A, 47:4114–4122, May 1993.

[VZ84] S.A. Vugal’ter and G.M. Zhislin. On the finiteness of discrete spectrum in the 𝑛–particle problem.
Reports on Mathematical Physics, 19(1):39–90, 1984.

[VZ92] S. A. Vugalter and G. M. Zhislin. On the finiteness of the discrete spectrum of Hamiltonians for
quantum systems of three one– or two–dimensional particles. Letters in Mathematical Physics,
25(4):299–306, Aug 1992.

[VZ83] S. A. Vugalter and G. M. Zhislin. The symmetry and Efimov’s effect in systems of three-quantum
particles. Comm. Math. Phys., 87(1):89–103, 1982/83.

[XVdGC+20] Xin Xie, Michael J. Van de Graaff, Roman Chapurin, Matthew D. Frye, Jeremy M. Hutson, José P.
D’Incao, Paul S. Julienne, Jun Ye, and Eric A. Cornell. Observation of Efimov Universality across
a Nonuniversal Feshbach Resonance in 39K. Phys. Rev. Lett., 125:243401, Dec 2020.

[ZDD+09] M. Zaccanti, B. Deissler, C. D’Errico, M. Fattori, M. Jona-Lasinio, S. Müller, G. Roati, M. Inguscio,
and G. Modugno. Observation of an Efimov spectrum in an atomic system. Nature Physics,
5(8):586–591, Aug 2009.

[Zis74] G. M. Zislin. Finiteness of the Discrete Spectrum in the Quantum Problem of 𝑛 Particles. Teoret.
Mat. Fiz., 21:60–73, 1974. English Translation: Finiteness of the Discrete Spectrum in the Quantum
n–Particle Problem, Theoretical and Mathematical Physics, Volume 21, pages 971–980, (1974).


	1. Introduction
	2. Definitions and Main Result
	3. Proof of Theorem 2.1: Absence of the Efimov Effect
	4. Zero–Energy Resonances
	5. Proofs of the Lemmas for the Main Theorem
	Appendix A. Hardy–Type Inequalities
	Appendix B. Remarks on the Geometry of the Sets K()
	Appendix C. Auxiliary Estimate used in Lemma 4.3 
	Appendix D. Proof of Lemma 6.2 of BBV:2022 
	References

