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Abstract: Data management is important for the reproducibility of scientific research. One important
aspect of data management is version control. In software development, version control tools like
Git are commonly used to track source code changes and releases, reproduce earlier versions, find
defects, and simplify their repair. In scientific research, scientists often have to manage large amounts
of data, while also trying to achieve reproducibility of results and wanting to identify and repair
defects in the data. Version control software like Git is specialized for managing source code and
other textual files, making it often unsuitable for managing other types of data. This creates a need for
version control tools specialized for dealing with research data. This paper establishes requirements
for version control tools for research data and evaluates Git Large File Storage, Neptune, Pachyderm,
DVC, and Snowflake according to those requirements. We found that none of the evaluated tools fulfill
all of our requirements, but we still recommend DVC, Git LFS, and Pachyderm for the use cases they
do support.
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1 Introduction

Scientific research often involves collecting and managing large amounts of data and drawing
conclusions from the collected data. During an ongoing research project, datasets might
change as new data is collected, outdated data is removed, or wrong data is corrected. This
makes reproducing previous results challenging, as the dataset used to obtain the original
result might no longer be available or might not be able to be identified. This makes data
management a necessity for reproducibility in research [BV22]. A critical aspect of data
management is version control [KI21].

Some software used to analyze the datasets is custom-written for a specific research project
and might also be updated with new features, improved analysis, and fixed bugs during the
research. This makes it necessary to version not only the datasets used but also the software
used to analyze them. In some cases, changes in the underlying operating system and used
libraries can cause changes in the result.

In addition to this, research datasets are getting more significant. In some cases, downloading
datasets is no longer feasible due to their size [KI20]. With more and more research datasets
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becoming available online instead of being created by researchers, it becomes even more
important to introduce systematic data versioning, allowing researchers to cite the data
used [KI20] correctly.

Reproducibility can be divided into two concepts: internal reproducibility, which is the
ability of a research team to reproduce their own research, and external reproducibility,
which is the ability of other researchers to reproduce research once it is published. External
reproducibility requires researchers to publish their findings and their data in ways usable
for other researchers [BV22]. A significant factor in researchers not publishing their data
in such a way is that it is not part of a team’s regular workflow and is seen as extra
work [BV22]. Better data management tools, including version control, could simplify this
process, making it easier and less time-consuming to publish usable data and, therefore,
allowing better external reproducibility. While source code is usually textual, research data
can be represented in various formats, including textual formats such as CSV, binary formats,
or databases. A version control system for research data should efficiently handle different
data types.

This paper evaluates multiple research data versioning systems’ ability to version and
manage research data. We will first take a closer look at what types of data researchers
typically work with. After that, we will discuss concepts for version-controlling research
data. In the central part, we will examine the research data management systems Git LFS,
Neptune, Pachyderm, DVC, and Snowflake more closely and evaluate their features and
adherence to those principles.

2 Related Work

Seinhorst and Boekhoudt already evaluated data versioning tools DataHub and OrpheusDB
and compared them to both an Ad Hoc data versioning process and a simple database
without versioning features [SB19]. This paper will focus on other tools.

Seering et al. developed a versioning system using named versions and branches for the
scientific array database SciDB in 2012 [Se12]. The SciDB website linked in that paper is
no longer available and web searches only show results for other software with the same
name. Because of this SciDB could not be evaluated in this paper.

Schüle et al. presented TardisDB [Sc21]. TardisDB is a relational database system with
built-in support for data versioning using branches [Sc21]. TardisDB is Open Source and
its source code is available on GitHub3. There are currently no binary distributions of it.
TardisDB extends Structured Query Language (SQL) with a new VERSION keyword that
allows retrieving, updating, and inserting data from and into specific versions of a database
table [Sc21]. While this functionality looks promising, TardisDB is a research prototype
and not suitable for use in production systems, so it was also not evaluated in this paper.
3 https://github.com/tum-db/TardisDB
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eSciDoc is an Open Source e-research environment developed by Max Planck Digital
Library and FIZ Karlsruhe. It has support for versioning both working versions and releases,
as well as collections, that can contain multiple, independently versioned objects [Ra09].
Development of eSciDoc stopped in 2012 and its authors don’t recommend its use for new
projects due to security issues. For this reason, eSciDoc will also not be evaluated in this
paper.

Zenodo4 is a data publishing platform commissioned by the European Commission and
developed by CERN. While it has the ability to publish different versioned by specifying a
version string on every upload, it does not provide any tools to help with the versioning.
Because of this it will also not be included in this evaluation.

In a developer survey5, it was reported that version control systems such as Git and SVN
are already common in software development. At the time of writing, the most used
version control system among professional developers is Git, which is the primary version
control system for 96.65% of professional developers. Additionally, 98.62% of professional
developers and 82.82% of beginner programmers use some kind of version control system.
In software development, version control is used to keep versions of software, source code,
and configurations organized [Ti85].

While Git is good at version-controlling code, it has some shortcomings, that hinder its
usefulness for versioning research data. Git is very inefficient when dealing with large
files [Ma15].

Git is a command-line tool that supports local and remote repositories. Multiple Git server
implementations can be used to host a remote repository. Git servers like GitHub and
GitLab also provide a web interface for a subset of Git’s functionality [Br18]. When working
with a git repository, one first has to clone the repository. Cloning a Git repository6 with
default options downloads the whole repository history, including all historic data. It is
possible only to download the current version of a Git repository using a shallow clone.
This, however, severely limits Git’s functionality on this repo, preventing the uploading of
changed versions back to the server. For datasets where a single revision is already too large
to download Git isn’t useful at all.

3 Version Control Concepts
Now that we have established the types of data a version control system for research data
must handle, we will examine the functionality expected of such a system.

If we want to version research data we first need to identify what a version is. For this, we
will use a version of the Functional Requirements for Bibliographic Records (FRBR) model,
4 https://about.zenodo.org/
5 https://survey.stackoverflow.co/2022
6 https://www.peterlundgren.com/blog/on-gits-shortcomings
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developed by the International Federation of Library Associations and Institutions (IFLA).
The FRBR was originally developed for to describe how information resources relate to
each other in the context of bibliographic records.

Based on this model and 39 collected use cases Klump et al. first defined five principles for
data versioning [KI20] and later added a sixth principle [KI21].

Version Control and revisions All new dataset instances constitute a new revision [KI20].
Changes to the metadata of a dataset do not constitute a new revision [KI20]. Every new
revision needs to be identified. This can be done by creating a new, persistent, and unique
identifier for that release [KI21].

Identifiying releases of a data product A dataset might undergo multiple revisions before a
revision is designated as a release [KI20]. There are no clear guidelines for when a revision
should be designated as a release. Klump et al. describe a release as a revision considered
final [KI21].

A description of the release must accompany a release. This should include information about
the release, its nature, and the significance of the changes since the last release. This includes
information about possible incompatibilities between the old and new releases, requiring
users to adjust their processes when using the dataset. Semantic Versioning can be used to
efficiently communicate the significance of the change and degree of compatibility [KI20].

Identification of data collections Some datasets might be collections of other datasets,
such as a time series. When a dataset consists of other datasets, the overall and all contained
datasets must be independently versioned. The overall dataset is revised when a contained
dataset is changed to a different revision.

Identification of manifestations of datasets One dataset can be distributed as many
different manifestations [KI21], for example, with different encodings or different structures.
While different manifestations of the same expression contain the same information, there
might be technical considerations for identifying them seperately [KI21]

Requirements for provenance of datasets Provenance, in this context, describes the
knowledge of the history of a piece of information, as well as its origin [Ta15]. It includes
information on how a piece of information changed and where it originates so its trustwor-
thiness can be established [Ta15]. To enable those use cases a dataset release should include
information on its provenance [KI21]. This includes both revision histories for datasets and
information about how and from what a derived dataset was derived.

Requirements for data citation When published, they should be accompanied by meta-
data that allows easy citation. The DataCite metadata7 kernel gives requirements and
recommendations for what information should accompany the publication. This includes a

7 https://datacite-metadata-schema.readthedocs.io/en/4.5/

2184 Adrian Freund et al.

https://datacite-metadata-schema.readthedocs.io/en/4.5/


persistent identifier, a title, the dataset’s creators and publishers, and the publication date.
This principle is especially important for external reproducibility.

Therefore, a version control system for research data should be able to help users apply
those principles to their datasets. Whenever possible it should enforce principles to prevent
misuse.

4 Existing Systems for Version Control of Research Data

In this section, we will look closely at some data management tools and evaluate their
usefulness for version-controlling research data. The goal of this paper is not to give a
comprehensive overview of all data version control systems. Instead, we will look closer at
Git FLS, Neptune, Pachyderm, DVC, and Snowflake. The tools will be evaluated on their
technical ability to deal with large and very large datasets and their ability to version data
according to the six principles discussed above.

The evaluation in this section is based on available documentation and our usage of the
software in its free version, where available, or a time-limited trial otherwise. In addition,
some information about Pachyderm comes from a Hewlett Packard Enterprise (HPE)
representative we have been in contact with and a prerecorded software demo they provided
us with.

4.1 Git LFS

Git LFS8 is an extension for Git that improves handling large files. Multiple server
implementations, such as GitHub, GitLab, and Gitea, are available. GitHub offers 1 GB
of Git LFS storage on its free and paid plan, with more storage available for additional
payment. The maximum file size limit for the Git LFS implementation by GitHub varies
between 2 GB and 5 GB, depending on the payment plan.

Git LFS replaces large files inside the Git repository with references to files stored outside
of the repository, which allows the actual files to be retrieved on demand. It can be activated
by using the git lfs track <file_pattern> command to track files using Git LFS.

Git LFS replaces tracked files with references and uploads the actual files to a Git Large File
Store. When cloning a repository using Git LFS, only revisions of tracked files used in the
current version are downloaded, resulting in a significant speedup compared to normal Git.

However, downloading a full revision of a large dataset might not be feasible, making it
difficult to manage large or very large datasets using Git LFS. Therefore, Git LFS is only
feasible for managing small to medium-sized datasets.
8 https://git-lfs.com

Tools for Managing Research Data 2185

https://git-lfs.com


Fig. 1: A diagram from the Git LFS Website visualizing how Git LFS replaces large files with
references

Git LFS can potentially align with most of Klump et al.’s principles for version control. As
it is based on Git, it can benefit from most of its features. Versioning of datasets can be
represented as Git commits, which save the current state of the repository along with some
metadata, including the author, date, and time, a free text commit message, and an electronic
signature [CS14]. Each commit also receives a persistent identifier called a commit ID.
Git commit IDs are cryptographic hashes of the content of the commit, its metadata, and
a reference to the previous commit in the history [CS14]. This makes them completely
deterministic, but due to the cryptographic hash, it is still very likely to be unique.

The release of dataset versions can be represented as Git tags. Git provides two types of
tags: lightweight and annotated tags. A lightweight tag is a named reference to a specific
revision. An annotated tag includes an additional annotation message and free text metadata
added to the tag [CS14]. This annotation message field can be used to describe the nature
of the release and its significance. However, it is not mandatory, allowing for the release
of datasets without adequate release information. While the tag names can be used for a
Semantic Versioning version number, it is not enforced, allowing for arbitrary identifiers.
Although Git does not natively support adding metadata files or structured data to tags,
some Git servers, such as GitHub and GitLab, add them as an additional feature on top of
Git.

Git allows fine-grained access to specific revisions of single files in a repository. The
command git checkout <revision> -- <file> makes it possible to retrieve a file version
from an older revision without loading the whole dataset. Git also supports submodules,
which are pointers directing to a specific revision of a different Git repository. This allows
for versioning of dataset collections. Changing the revision of a submodule requires creating
a new Git commit and producing a new revision of the containing repository.

Git does not support identifying different manifestations of a dataset. As commit IDs are
deterministically dependent on the content of a repository, a repository containing a different
manifestation will have different commit IDs.
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Provenance is partially supported. One can view the full revision history of a Git repository,
enabling the user to see when changes were made and by whom. Git provides the git blame
command to determine in which revision a file or a part of a file was last changed. However,
information regarding the origin of the added data must be entered as free text in the commit
message field, which limits users from adequately describing the data’s provenance.

Datasets stored in Git LFS can be published by storing the relevant Git repository on a
Git server and setting it to public. However, publicizing the repository allows access to
the published release and the complete history. The only way to add additional citation
metadata is as a file in the repository. If someone wants to publish a specific release only,
they must first export it from Git LFS.

Additionally, Git has the advantage of being widely used in software development, making
it easier to manage datasets with the code used to analyze them.

4.2 Neptune

Neptune9 is a commercial, proprietary product for tracking machine learning data, metadata,
and models and is developed by Neptune Labs, Neptune specializes in tracking explorative
machine learning work. It is available both as a free and paid cloud service. The enterprise
version is also available for self-hosting.

Neptune10 provides a Python and R library that can be integrated into training programs to
upload and track data on every program run automatically. As most functionality is only
documented for the Python library this evaluation will also focus on the Python library. Some
data, such as general system information and the running program’s source code, are tracked
automatically on every run just by initializing the library. In contrast, the training program
must track other data using library calls. When initializing the Neptune library one gets
provided with a Run object. This Run object can be used to track data. The upload method
can be used to upload files, while a simple assignment can be used to track plain values.
Neptune can also integrate with some popular machine learning libraries to automatically
track relevant data, requiring less integration work by the developer.

Uploading large datasets to the server on every run is impractical. Neptune doesn’t specify if
it can detect unchanged data automatically. We tested this and found that even unchanged data
is uploaded on subsequent runs. To deal with large datasets, Neptune provides track_files
method to upload only file metadata instead of content. However, this approach has limited
usefulness for reproducibility since it only identifies the exact dataset used for a run.
Reproducing the results requires obtaining the dataset from another source.

The web interface compares graphs, output images, and metadata between different runs. It
is also possible to create and manage model releases.
9 https://neptune.ai
10 https://docs.neptune.ai/
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Because Neptune uploads and stores relevant data on every training run, tracking revisions
is automatic. A persistent identifier for a revision can be either specified manually or, if
left blank, generated by incrementing an integer by one for every run. As Neptune needs to
be manually integrated into one’s programs, it is possible to forget to track relevant data
accidentally. Also, in cases where models are trained infrequently, many changes to the
dataset might happen between runs, causing very large differences between versions.

Neptune only supports creating releases for trained models. Releases for the input dataset
used to train the model are not possible.

Because Neptune has no concept of datasets, only files and directories, a collection of
datasets can only be represented as a directory. It is not possible to version contained datasets
independently from the containing dataset. Only the dataset as a whole will be versioned. It
is, however, possible to retrieve individual files of older revisions without downloading the
whole revision using the download method on the Run object.

There is also no support for identifying different manifestations of a single dataset.

Support for data provenance is also limited. While it is possible to see a history of runs, the
data stored in those recorded runs is just whatever the current state of the dataset was at
runtime, without a way to track where changes have come from. Because derived data, such
as trained models, can be stored together with both the datasets and the source code used to
train them, provenance for derived data can be established, given that Neptune was used to
derive the datasets.

Projects on Neptune can be published, allowing anyone to view but not change them. It
should be noted that this allows access to all project data, including all revisions, derived
data, and metadata. Neptune also supports adding structured metadata to projects, making it
possible to add citation metadata. There is, however, no predefined scheme for how such
metadata should be structured.

4.3 Pachyderm

Pachyderm11 is a data-pipeline automation software owned by Hewlett Packard Enterprise
(HPE). It is available as both a paid enterprise edition and a free Open Source community
edition. According to an HPE representative, the enterprise edition has recently been
renamed to HPE Machine Learning Data Management Platform, although this change is
not yet reflected on the Pachyderm website. The community edition has constraints on the
number of pipelines and parallel workers, while the enterprise version is limited only by
hardware resources. The enterprise edition also supports more customizable authentication
for enterprise settings. For this evaluation, the community edition was used.

11 https://www.pachyderm.com, https://docs.pachyderm.com/, https://www.youtube.com/watch?v=BcKixx4Rhbw
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Pachyderm is available only as a self-hosted server. It aims to provide a comprehensive
data-analysis environment, including data storage, versioning, task and pipeline management,
execution, and output storage and versioning. Data is stored as files and directories within
data repositories. Projects can have multiple pipelines, each connecting one or more input
repositories to an output repository, which can then be used as an input repository for
other stages. Tasks are executed using container images dispatched to a Kubernetes cluster,
enhancing reproducibility and allowing users to utilize various programming languages and
tools. Pipelines can distribute datasets across multiple containers, enabling efficient scaling
with large datasets.

All code runs on the Kubernetes cluster, allowing less powerful computers to work without
downloading all the data. Users can interact with Pachyderm via a web interface, the pachctl
command-line tool, and a Python package.

Pachyderm supports versioning for input and output data repositories, similar to Git
repositories. Files are automatically deduplicated to conserve storage. Existing pipelines
automatically rerun upon changes in input repositories, with outputs committed to cor-
responding repositories. Pipelines can be run against old commits to reproduce results.
Revisions are tracked automatically for changes in data repositories. Multiple files can be
added with one commit using commands like pachctl put file and pachctl start/finish
commit, and Pachyderm generates persistent commit IDs as identifiers.

However, Pachyderm lacks support for adding tags to commits and referencing other
repositories, limiting proper versioning of dataset collections. It supports provenance
through commit messages and automatic versioning of output data linked to pipelines and
input repositories. The community version lacks advanced authentication features, which
limits its data publication capabilities. Despite these limitations, Pachyderm is a robust
option for versioning research data.

4.4 DVC

Data Version Control12 (DVC) is an Open Source data and data pipeline management tool
developed by iterative.ai. An enterprise version called DVC Studio is also available. While
the open-source version offers only a command-line tool, the enterprise version offers a web
interface with additional functionality. This evaluation uses the Open Source version. DVC
is designed for machine learning and supports data, experiment, and model management. In
this evaluation, we will only look at the data management functionality.

DVC is designed to be used together with Git. In contrast to Git LFS, it does not directly
integrate with Git as an extension. Instead, DVC lets its metadata be versioned in a Git
repository. Like Git LFS, DVC keeps large files from the Git object database by storing
them separately. DVC does however not require support for this from the Git server. Instead,
12 https://dvc.org
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the user can provide DVC with a remote server. S3 object stores, a server with SSH access,
other cloud storage providers, and more are supported. When DVC is told to track a file
called file_name it adds an additional file called file_name.dvc containing metadata about
the file. Only this additional metadata file gets added to the Git object database. The original
file is automatically added to the .gitignore file to prevent it from getting also added.
Using dvc push the original file can be uploaded to the configured remote server. When a
user obtains a repository with only the metadata file he can run dvc pull to retrieve the
original file from the remote server.

In addition to managing large files, DVC can also manage data pipelines and the derived
datasets they produce. A pipeline can have multiple stages, where each stage uses one or
more files from the repository as inputs and creates one or more files or directories in the
repository as outputs. DVC automatically tracks pipeline outputs as large files. Because all
inputs, pipelines, and outputs are stored in the same Git repository, they can be versioned
together. In contrast to Pachyderm, DVC does not automatically rerun pipelines when input
data changes, but only when the user requests it to use dvc repro. When asked to rerun
pipelines, it checks which data has changed and only runs the necessary pipeline stages.
While Pachyderm supports sharding data and running pipelines on a Kubernetes cluster
DVC pipelines always run locally.

Because all DVC metadata and states are stored in a Git repository, the same Git features as
those of Git LFS can be used. Git commits can represent dataset revisions with a commit
ID as a persistent identifier. Releases can be tagged with Git, and additional information
about the release is stored as free text in an annotated tag. DVC can also be used with Git
submodules to support versioning of dataset collections; however, DVC commands like dvc
push and dvc pull must be manually run from inside. DVC also doesn’t add any support for
identifying different manifestations of datasets. However, it improves provenance support
by adding data pipelines that track their in and output datasets and establish a provenance
between them. Support for publishing and data citing is again the same as with Git LFS,
with the additional requirement of making the remote storage server available to other users.
This is not necessary with Git LFS, as the server is built into the Git server.

DVC provides roughly the same versioning functionally as Git LFS and adds data pipelines.
It does, however, not integrate into Git as tightly, often requiring users to run two commands
(one git and one dvc command) to accomplish what Git LFS can do with one command.

4.5 Snowflake

Snowflake13 is a leading commercial cloud database tailored for managing extensive datasets.
Accessible via SQL and a dedicated Python library, it offers unique SQL extensions, including
the Time Travel extension for historical data retrieval. However, its historical data retention is
limited to 90 days, posing challenges for reproducing earlier research beyond this timeframe.
13 https://www.snowflake.com, https://docs.snowflake.com/
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Automatic revision tracking in Snowflake, utilizing timestamps or query IDs, provides
granular control over dataset changes. Yet, query IDs are valid for just 14 days, imposing
constraints on historical data access. While lacking a native release management framework,
Snowflake supports snapshotting through lightweight clones, allowing users to manually
manage release-related information.

Snowflake databases lack inter-database referencing, complicating comprehensive version-
ing of dataset collections. While not inherently supporting the identification of dataset
manifestations, its use of explicit schemas aids dataset comprehension. Provenance tracking
in Snowflake is modest, with a 7-day query history retention period and no provision for
adding metadata to queries. The Snowflake Marketplace enables dataset publication and
description, albeit restricted to Snowflake users.

5 Discussion

In this paper, we explored what properties a version control system for research data should
have and looked at five systems used in the real world. While none of the analyzed systems
manage to satisfy all of the requirements we established they can all be useful for a subset
of our goals. The results have been summarized in Table 1

Git LFS Neptune Pachyderm DVC Snowflake
Supports very large datasets x x
Revisions x - x x -
Releases x - - x -
Collections & Granularity x x
Manifestations -
Provenance - x x
Publishing & Citation - - - x

Tab. 1: Comparison of features across various version control systems. The table highlights the
support for different versioning principles, such as handling very large datasets, revisions, releases,
collection and granularity management, manifestations, provenance tracking, and publishing and
citation capabilities in Git LFS, Neptune, Pachyderm, DVC, and Snowflake. An "xïndicates that the
feature is supported, while a ïndicates that the feature is partially supported. When it is blank, the
feature is not supported at all.

DVC satisfies the most requirements. It fully satisfies four requirements and partially
supports an additional requirement. Is it, however, limited by not supporting very large
datasets too large to download?

Both Git LFS and Pachyderm fully satisfy three requirements. Git LFS additionally partially
satisfies two more requirements, while Pachyderm only partially satisfies one additional
requirement. However, the workflows when working with those two systems are very
different. The biggest weakness of Git LFS is its inability to deal with large datasets. Popular
Git LFS servers limit filesize and Git LFS does not provide any tooling to work with datasets

Tools for Managing Research Data 2191



without downloading them first, making its use with datasets that are too large to download
impossible. Git LFS also only provides versioning for source code and data. Pachyderm,
on the other hand, provides a much more complete platform that deals with data version
control and tools for building data analysis pipelines and versioning derived data, with
analysis pipelines running on a server or even cluster. Of course, Git LFS can also store
version-derived data, but provenance must be manually established. Git LFS, on the other
hand, is better equipped to handle dataset releases. Git tags can identify a revision as a
release and describe it using free text metadata. Pachyderm only provides limited support
for dataset releases using repository branches.

Git LFS and DVC are similar, but Git LFS provides a better user experience due to its tight
integration with Git. Neptune is specialized for explorative machine learning and lacks
general version control features. Researchers using Neptune might also use Git LFS to
version their data.

Snowflake was the only database in this analysis. While Snowflake has some functionality
for retrieving older data revisions, it is unsuitable for version control, as its version history
is limited to 90 days at most. The maximum history might be as short as 7 days for some
use cases. Dataset releases could still be implemented in an ad hoc process using database
snapshots. Notably, Snowflake was the only tool we evaluated that has specialized tooling
for data publishing.

6 Conclusion

This paper highlights the importance of data management and version control in research to
improve reproducibility. We analyze different research data types and the necessary criteria
for these tools. Based on these criteria, we then evaluate the version control features of Git
LFS, Neptune, Pachyderm, DVC, and Snowflake.

None of the tools fully meet all our requirements. However, Git LFS, Pachyderm, and DVC
are recommended for managing research data, with the choice depending on the specific
project. Database version control is still developing, with tools like TardisDB showing
promise but not yet suitable for production.
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