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Summary and Overview

Despite the tremendous amount of research that has been devoted to superconductivity, a
complete understanding of the phenomenon still eludes the scientific community. In the first
seventy years following its discovery in 1911 [1-3], a great many advancements have been
made [4-18|, the grandest of which is, no doubt, the development of Bardeen-Cooper-Schrieffer
theory in 1957 [19-21]. Yet it is only with the discovery of high-temperature superconductiv-
ity in 1986 [22] that we realized how incomplete our understanding truly is. In the wake of
this breakthrough, many other families of unconventional superconductors have been discov-
ered 23, 24], each one with its own set of challenges. An outstanding problem is to theoretically
explain — and, one would hope, even predict — the rich phenomenology displayed by the su-
perconducting phases of these fascinating compounds. Although there is no lack of theories,
discerning which one, if any of the currently proposed ones, is the correct one has proven to
be a formidable task.

In this thesis, we theoretically examine the unconventional superconductivity of systems
whose complexity has one of three origins: strong correlations, multiple Fermi surfaces, or
band structure topology. We chiefly study two aspects of their superconductivity: the pairing
mechanism and the pairing symmetry. With regard to the former, we investigate whether
a much-discussed loop-current-based pairing mechanism is viable (Chaps. 1 and 2), as well
as propose a new electronic one (Chap. 3). Regarding the latter, in the last Chap. 4 we
take advantage of recent experiments performed on SroRuQy4 to considerably narrow down the
viable candidates for its superconducting state.

The thesis is organized into four chapters, as summarized below. FEach chapter is self-
contained and can be read independently of the others. Although we have attempted to make
this work broadly accessible by providing extensive introductions within each chapter, some
background knowledge is nonetheless necessary. Namely, familiarity with quantum mechanics
and second quantization [25], as well as elementary knowledge of solid state physics [26] and
superconductivity [27], are prerequisites. More advanced knowledge of many-body theory 28]
is only needed in parts of Chap. 3. Symmetries play an important role throughout the thesis
and we use their natural language, group theory, extensively. We have thus supplemented
the main text with a group theory introduction in Appx. B, which is followed by Notation
and Conventions and a List of Abbreviations which the reader may also want to peruse. This
thesis builds on Refs. [29-32] whose text has been recycled in many places [33]. Results that
go beyond these references are pointed out at the start of each chapter.

Chapters 1 and 2. Magnetism most commonly originates in the spin sector. However, it
can also, in principle, originate in the orbital sector through the formation of loop currents
(LCs). When present, the fluctuations of these LCs mediate interactions among electrons
which can potentially cause Cooper pairing. These interactions are particularly strong when
the fluctuations are strong, as is the case near quantum-critical points (QCPs) associated with
LC order. According to a prominent proposal [34-36], quantum-critical LC fluctuations which
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Summary and Overview

are intra-unit-cell (i.e., order at @ = 0) are not only an effective pairing glue, but the main
explanation for the high-temperature superconductivity of cuprates. In the first and second
chapters, which are based on Ref. [29], we investigate both aspects of this proposal.

Our main finding is that, among all intra-unit-cell orders, which we also analyze, loop
currents are uniquely ineffective at driving superconductivity. The pairing that even-parity
LCs mediate does not become enhanced as one approaches the assumed LC QCP, while odd-
parity LCs strongly suppress any tendency towards Cooper pair formation in the vicinity of
their QCP (Fig. 1.4). In the case of cuprates, we systematically classify the possible intra-
unit-cell LC orders and find that neither of the two proposed [34-36] to occur in the cuprates
give the correct d,2_,» pairing symmetry (Figs. 2.12 and 2.15). Moreover, of the two proposed
LCs, the odd-parity one which has been invoked [37-40] to explain the pseudogap strongly
suppresses superconductivity, instead of enhancing it.

The strategy that we employ to tackle the problem of quantum-critical pairing is phenomeno-
logical and has two steps. First, we classify the possible LC orders and assume that the system
orders in one of the LC channels that we found. Second, we use BCS theory to analyze the
pairing tendency as the putative LC QCP is approached from the disordered side (Fig. 1.6),
where the normal state is a Fermi liquid. Although we focus on loop currents, this strategy is
clearly applicable to other orders, which we also analyze. As we demonstrate in Sec. 1.3.3.3,
for 2D systems with weak spin-orbit coupling, pairing mediated by nematic, ferromagnetic,
and altermagnetic fluctuations becomes strongly enhanced as one approaches the QCP. In
contrast, the superconductivity driven by ferroelectric and spin-nematic fluctuations does not,
just like in the case of even-parity LCs. The latter result is a consequence of a suppression of
forward-scattering that follows from parity and time-reversal symmetry.

In addition, we derive a number of subsidiary results. Bloch’s theorem is generalized to loop
currents in Sec. 1.1.1.2. In Sec. 1.3.3.2, we prove that the exchange of bosons which are even
under time-reversal favors s-wave pairing and that time-reversal-odd bosons robustly medi-
ate unconventional pairing. An extensive literature review on loop currents and symmetry-
breaking in the pseudogap of cuprates has been compiled in Sec. 2.2. In Sec. 2.4 we not only
classify LC orders, but all possible orders which can arise in the widely-used three-orbital
(Emery) model of cuprates. The idea of introducing an extended basis, that is key to our
classification, may prove to be useful in other multiorbital models. Finally, in Sec. 2.5.7 we
compare our work to a previous analysis of quantum-critical intra-unit-cell LC pairing [41].

Chapter 3. The origin of the superconductivity of doped bismuth selenide BisSes is a
mystery. On the one hand, there is considerable evidence that it is highly unconventional [42—
44|. On the other hand, the normal state from which it springs is an utterly conventional low-
density Fermi liquid that appears to neither be in the proximity of any competing orders nor
have strong electronic correlations. Yet there is one notable thing about BisSes: its topological
band structure [45, 46]. This raises the question: Can parity-mixing and spin-orbit coupling
that are responsible for the topological non-triviality of so many systems also be responsible
for unconventional superconductivity? In the third chapter, which draws from Ref. [30], we
propose precisely such a pairing mechanism.

Our mechanism is based on electron-electron Coulomb interactions. As we show in Sec. 3.1,
whenever the conduction band strongly mixes parity and has appreciable spin-orbit coupling,
its Fermi surface attains a finite electric dipole density (Fig. 3.2). Consequently, the dipolar
contributions to the effective electron-electron interaction become particularly large. In Sec. 3.3




we then demonstrate that, with sufficient screening, these dipolar interaction may result in
superconductivity, for which we prove that it is always unconventional. Although we estimate
a low-temperature T, that does not exceed a few Kelvins, the more interesting aspect is that
the pairing is unconventional, even though no strong local electron correlations or quantum-
critical fluctuations have been assumed.

Dirac metals are a natural platform for our theory, given that they are the effective model of
spin-orbit-coupled parity-inverted bands (Sec. 3.2.1.1), and we study them at length. Quasi-2D
Dirac systems turn out to be particularly promising for our mechanism, as we show in Sec. 3.2.
This is because their out-of-plane (z-axis) dipole coupling is marginally relevant, in contrast
to the monopole coupling which is marginally irrelevant, as our large-N renormalization group
calculation reveals. For physically realistic parameters, we find that the effective dipole mo-
ments can get significantly enhanced (Fig. 3.7). In addition, we establish that the proposed
pairing glue is directly measurable in the z-axis optical conductivity. Regarding the pairing
symmetry, in Sec. 3.4 we find that z-axis electric dipole fluctuations favor unconventional odd-
parity superconductivity of pseudoscalar symmetry, which is similar to the Balian-Werthamer
state of 3He B.

There have been many mechanisms that in some aspect resemble our work, whether elec-
tronic [47-50], ferroelectric [51-53|, or other, and in the last Sec. 3.5 we compare and contrast
them to the proposed electric dipole mechanism.

Chapter 4. Strontium ruthenate SroRuQ, is one of the most studied unconventional su-
perconductors [54, 55] whose normal Fermi-liquid state is characterized in exquisite detail. Yet
the fundamental question of what is its pairing symmetry remains unanswered. This question
gained a new life with recent NMR Knight shift experiments [56-58| that ruled out odd-parity
pairing, including the chiral p-wave state which was until then considered the most likely pair-
ing state. In the aftermath of these landmark NMR studies, many interesting experiments
have been conducted which clarify (or sometimes add to the puzzle of) the superconductivity
of strontium ruthenate. In the fourth and last chapter, which is based on Refs. [31, 32|, we
theoretically analyze the implications of two such experiments.

The first experiment [59] is a measurement of the elastocaloric effect under [100] uniaxial
stress. The elastocaloric effect is, let us recall, the effect of changes in the strain inducing
changes in the temperature. It is a measure of the strain derivative of the entropy, as follows
from a thermodynamic identity. From the measurements of Ref. [59], one clearly sees that
the normal state attains an entropy maximum as a function of strain precisely when the ~
Fermi sheet crosses a Van Hove line, as expected. However, as one enters the superconducting
state, the data of Ref. [59] reveal that the entropy maximum becomes a minimum (Fig. 4.7).
Our analysis of the gapping of Van Hove lines (Sec. 4.2.1) establishes that this can only be
accounted for if there are no vertical line nodes at the Van Hove lines responsible for the
normal-state maximum. A detailed symmetry analysis (Sec. 4.2.3, Tab. 4.11) moreover shows
that only three even-parity states are consistent with this observation: s-wave, d2_,2-wave,
and a body-centered d,. + id,. state that has horizontal line nodes. The pairing state of
strontium ruthenate therefore must include admixtures from at least one of these states.

The second experiment [32] are T, and elastocaloric effect measurements performed un-
der [110] uniaxial stress. They were motivated by recently reported jumps in the cgs elastic
modulus [60, 61]. If interpreted in terms of a homogeneous superconducting state, a Ginzburg-
Landau analysis shows that cgg jumps imply cusps in 7. and a second transition at a tem-
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perature Ty < T, as (110) pressure is applied (Tab. 4.18). However, neither were observed in
Ref. [32] (Figs. 4.16 and 4.17). As we show in Sec. 4.3.3, a very large degree of fine-tuning
is necessary if we are to accept both experimental results at face value. This poses a serious
challenge to any theory of bulk two-component superconductivity, whether symmetry-enforced
or accidental.

The superconductivity of strontium ruthenate thus remains as puzzling as ever. Yet some
aspects of it are coming into focus. In Sec. 4.1.1 we have summarized what is currently known
from all the (100+) available experimental investigations of its pairing state, including the two
experiments mentioned above.

xii
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Chapter 1

The limitations of loop-current
fluctuations as a pairing glue

Ordered states characterized by patterns of persistent spontaneously circulating charge cur-
rents, that is loop currents (LC), have been proposed to emerge in many systems [36, 62],
including cuprates, iridates, and kagome superconductors. In their most general setting, such
ordered states are best understood as instances of time-reversal symmetry-breaking (TRSB)
that takes place in the orbital sector. This orbital magnetism we shall refer to interchangeably
as LC order throughout the thesis.

Quantum-critical LC fluctuations have been put forward as a possible source of Cooper
pairing in general [34, 35|, and in the case of cuprates in particular [36, 37, 41, 63-66]. In this
chapter, we study the pairing due to fluctuating L.Cs in general systems, focusing on systems
with weak spin-orbit coupling (SOC) and on intra-unit-cell (IUC) loop currents which have
been the most discussed as a pairing glue. Our main finding is that quantum-critical IUC LC
fluctuations are not an effective pairing glue, contrary to previous suggestions [35, 36, 41]. In
the next chapter, we study IUC LCs in the cuprates and what role, if any, they could have in
driving the high-temperature superconductivity of the cuprates. Both chapters are based on
Ref. [29]. Although the text of Ref. [29] has been reused in this and the next chapter, here
we have taken the opportunity to elaborate in more detail upon the theoretical analysis of
Ref. [29], including discussions and results that have not ended up in the published article. In
particular, we prove a generalized Bloch-Kirchhoff theorem (Sec. 1.1.1.2) and we derive results
for general IUC order (Secs. 1.3.3.3 and 1.3.3.2), of which the results concerning loop currents
(Fig. 1.4) are a special case.

The chapter is organized as follows. We start by discussing the notion of orbital magnetism.
We explain why spontaneously forming patterns of charge currents must be made of loops in
Sec. 1.1.1, after which we review previous theoretical and experimental work on LC order in
systems other than the cuprates. After that, in Sec. 1.2, we introduce the paradigm of pairing
driven by quantum-critical order-parameter fluctuations. The studied LC pairing mechanism
falls into this paradigm. We also recall some basic facts on continuous quantum (i.e., 7" = 0)
phase transitions and on the behavior of itinerant electronic systems near quantum-critical
points (QCPs). In Sec. 1.3, we present the theoretical analysis leading up to the results of
Ref. [29], summarized in Fig. 1.4. In short, we find that even-parity IUC LCs are inefficient and
odd-parity IUC LCs are detrimental to superconductivity (SC) near their QCP in 2D systems




1 The limitations of loop-current fluctuations as a pairing glue

without SOC. In Sec. 1.3.1 we introduce a general model which allows us to make material-
independent statements for general IUC orders other than LCs and in Sec. 1.3.2 we study
the properties of the Cooper-channel interaction within this model. Using these properties, in
Sec. 1.3.3 we explain the strategy that we use to analyze quantum-critical pairing, summarized
in Fig. 1.6, and we derive the results of Fig. 1.4, but for general IUC order. The main results
are that (i) nematic, ferromagnetic, and altermagnetic fluctuations drive parametrically strong
quantum-critical pairing, (ii) even-parity LC, ferroelectric, and spin-nematic fluctuations give
parametrically weak SC near their QCP, while (iii) odd-parity LC fluctuations, unique among
all orders, give rise to parametrically strong suppression of SC near their QCP. Parametric
strength or weakness refers to whether the pairing eigenvalue A (7. eV ) diverges or
stays finite, respectively, as the parameter r controlling the distance from the QCP vanishes
(Fig. 1.4). These results apply to IUC orders in 2D systems with weak SOC. In addition,
in Sec. 1.3.3.2 we clarify the interplay between the time-reversal sign of the quantum-critical
modes and the symmetry of the pairing state.

1.1 Orbital magnetism and loop currents

Magnetism most commonly arises from interactions related to the spin degrees of freedom [26,
67]. The corresponding order parameter S has a non-trivial structure in spin space and is odd
under time reversal (TR):

6 's6 =5, (1.1)

where © is the antiunitary many-body TR operator. The simplest S is, of course, spin itself,
which is the appropriate order parameter for a ferromagnet. However, there is a wide variety
of orbital and spin structures that the order parameter S may acquire, depending on the type
of spin magnetism. A comprehensive classification of possible spin-magnetic orders is provided
in Fig. 1.1, reproduced from Ref. [68]. This classification is based on the local orientation of
the spin moments and the symmetry of the overall spin pattern.

In correlated systems, magnetism may develop in the orbital sector as well [36, 62]. Such
orbital magnetism is characterized by “generalized orbital angular momentum” or “fux” oper-
ators L which are odd under time reversal,

6 'Lod= 1L, (1.2)

but have trivial spin structures. As we shall later in Sec. 1.3 see, this difference in the spin
structure has far-reaching consequences, especially when SOC is weak, and it is the main
reason for why ferromagnetic and ITUC LC fluctuations behave so differently near their QCPs.
The range of possible LC orders is, in principle, as varied as that of spin-magnetic orders
classified in Fig. 1.1. However, LLC order is less common than spin magnetism, which is why
its phases have not been explored as extensively.

1.1.1 Bloch and generalized Bloch-Kirchhoff theorems on persistent currents

The only way TR symmetry can be broken in the charge or orbital sector is through the
formation of some sort of charge currents. This pattern of spontaneously flowing currents,




1.1 Orbital magnetism and loop currents

Materials
Non-migy Magnetic
Non-collinear Collinear
Coplanar Non-coplanar Incommensurate
(fans, helical, etc.) (Skyrmions, cubocs, etc.) (spin-density waves)
Commensurate
Not crystal-symmetry Crystal-symmetry
compensated compensated
Ferromagnetic Ferrimagnetic Antiferromagnetic Altermagnetic
Uncompensated "Luttinger
compensated"

Figure 1.1: Classification of spin-magnetic orders according to symmetry and ori-
entation of the local spin moments [68|. Magnetism is characterized by the breaking of
time-reversal (TR) symmetry ©. The local spins can either be collinear (aligned along one
axis), coplanar (orthogonal to one axis), or non-coplanar. Furthermore, the pattern of the
local spins and magnetic moments can either be commensurate (have the same periodicity as
the underlying lattice) or incommensurate (break additional translation symmetries). Even
though TR symmetry is broken, composing TR with a crystal symmetry may leave the spin
pattern invariant and thus compensate for TR symmetry-breaking. Antiferromagnets are
compensated by translations, whereas altermagnets are compensated by point group oper-
ations such as reflections or rotations. Spatial-inversion symmetry is always preserved by
spin-magnetic order.

moreover, must be made of closed loops to avoid a global current, which is forbidden because
of a theorem first proved by Bloch [69-74]|. Here we in addition prove a generalized Bloch-
Kirchhoff theorem according to which the pattern of spontaneously flowing currents must
be divergenceless, i.e., respect Kirchhoff’s law and not lead to an accumulation of charge
in some parts of the system. The latter was previously invoked in Ref. [29] in the form of
Kirchhoff constraints (see Sec. 2.5.2 of the next chapter), but not rigorously proved in the
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same manner as Bloch’s theorem. These two theorems give fundamental constraints on the
possible thermodynamically stable LC orders which may arise in nature.

1.1.1.1 Proof of Bloch’s theorem

The proof of Bloch’s theorem proceeds by contradiction. Let us assume that a ground state |Wy)
of energy Ey = (Wo|H|Wo) has a finite global electron charge current J = [ (Wo|j[Wo), where
fT = d?r. The corresponding charge is locally conserved in the sense that d;p, + V + jo = 0,
where p, is the local charge density operator of the electrons only and 9p. = i[H, pe]/h. We
use Heisenberg’s picture throughout. Now consider the state

W) = exp (i [ rpe) o) (13)

for small k. This corresponds to a state in which every electron has been given an additional
momentum hk. To linear order in k, its energy equals

Epy = (Wo|H[¥)

= Eo+1 [ e (I3 p¥o) + 0(K?)

= E0+h/k-r<‘1’o|8tpe|‘1’0> + 6(k?)
r (1.4)
o h/k:-rV - (Wolg[Wo) + O(K)

— By + hk - / (Wol3.[¥o) + 6(k?)
r
= Ey+ hk - J +06(k?).

Hence we may always lower the energy relative to Ey by orienting k in the opposite direction
of J. This implies that the true ground state cannot have a finite global electron charge
current [69]. Notice how the coupling to the ions, which proceeds via the density p., drops out
in the above manipulations. Examples of LC patterns which do and do not respect Bloch’s
theorem are provided in Fig. 1.2.

This proof applies to continuum models at zero temperature subject to open boundary
conditions. All three of these assumptions can be lifted [70-74]. In the case of lattice models,
the local charge conservation law takes the form

8tPRa + Z jRa;R/a’ = Oa (15>
R/a/
where jro;rR/0 = j;a; Rt = —JRa;Ra 18 the current flowing from the lattice site R and

orbital o to the lattice site R’ and orbital o. The variation

W) = exp (iz k- RpRa) W) (L6)

Ro
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Figure 1.2: Examples of loop-current (LC) patterns that have a finite (a) and van-
ishing (b) global charge current. Arrows indicate the direction of the local currents,
i.e., the flow of charge between the orbitals. The underlying model is the three-orbital
tight-binding model of the copper planes of the cuprates which we study in the next chap-
ter (Sec. 2.3). The LC pattern shown under (a) is forbidden by Bloch’s theorem [69-74],
as discussed in the text. As for the currents under (b), they must not lead to any local
accumulation of charge, as proved in the text.
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results in an identical Ej) = Eg + hk - J + 6(k?), where the global current is defined as

J = 3 RER:I ,(R/ — R)(Yo|ira;r'o/ |Y0)- (1.7)

In the proof for a finite-temperature ensemble described by the density matrix pg = Z~'e P,

where Z = Tre P one considers the variation

Po — P :exp(i/k-rpe>p0exp<—i/k-rpe> (1.8)

and by completely analogous manipulations obtains that the free energy F' = F+hk-J+06(k?)
given by F' = Tr po(H + kpT'log pp) is not minimal. Finally, for periodic boundary conditions
the variational k is on the order of L™!, where L is the length of the system. Because k is
not infinitesimal, the quadratic term in the expansion of Ej is non-negligible and, because
it is positive, it can compensate for the linear term and allow for a global charge current
density which is on the order of L='. The global charge current density thus vanishes in the
thermodynamic limit.

Because the proof only relies on the local conservation of charge, Bloch’s theorem quite
generally applies to U(1) symmetries and their Noether currents [74]. In particular, in the
absence of spin-orbit coupling global spin currents are forbidden in the ground state as well.
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1.1.1.2 Proof of a generalized Bloch-Kirchhoff theorem

Here we prove a generalization of Bloch’s theorem to local currents. Consider the order
parameter of a generic LC state:

© = [ o (balsiwo) (1.9)

where the vector field v specifies its structure. We shall now show that ® = 0 whenever v is
curl-free, V X v = 0. Assume that we are given a ground state |Wy). By Helmholtz’s theorem,
curl-free v can always be written in the form v = V). Hence the state

W) = exp (ik / ﬁpe) o) (1.10)

has the energy

El = Eo + ik / 9 (Yol [H, pel[¥o) + O (k?)
r

=Eo—hk/19V-<Wo|je|\yo>+®(k2) (1.11)

= Ey + hk® + 0(k?)

which can always be made smaller than that of the presumed ground state if ® is finite.
Thus ® always vanishes in the ground state for arbitrary curl-free v. In turn, this implies
that the longitudinal component of (Wy|je[Wo) vanishes, which is equivalent to stating that
V - (Wo|je|Wo) = 0.1 On a lattice, this gives the following Kirchhoff constraint on the pattern
of local currents:

> (Yoljrarrar[Wo) = 0. (1.12)
R'o/

Clearly, the proof of this generalized Bloch-Kirchhoff theorem proceeds with minimal mod-
ifications of the original proof. It is straightforward to generalize it to finite temperatures,
lattice models, and periodic boundary conditions.

A physical interpretation of both theorems is that if a current were initially present, it would
lead to an accumulation of a charge (in the bulk or on the boundary) whose electric fields would
then counteract to remove the initial current. Hence there cannot be any longitudinal charge
current in equilibrium.

1.1.2 Previous theoretical and experimental work on loop currents

Although the direct spin-spin (magnetic dipole-dipole) interactions are weak, because of Pauli’s
exclusion principle the much stronger Coulomb interactions among electrons, as well as the
Coulomb interaction between electrons and ions, may acquire spin-dependence, inducing an
effective spin-spin interaction which is strong |26, 67|. Magnetic ordering in the spin sector is
therefore relatively common.

IRecall that in general fT'v-w = fr ’UL"UJL-FIT vr-wr, where VXvr, = VXwr =0and V-vr = V-wr =0.
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There is no analogous simple argument for why orbital angular momentum should have as
large an influence on the electronic interactions in crystalline systems. Indeed, the surrounding
crystal environment lifts the angular momentum degeneracy because it breaks the full SO(3)
rotational symmetry group down to a discrete subgroup. As a result, on-site orbital angular
momentum L is not a good quantum number and its average vanishes, rendering L inactive
at low energies. This is the so-called quenching of orbital angular momentum |26, 67].

Nevertheless, if the systems has strong correlations and multiorbital physics, or if the quench-
ing of the on-site orbital angular momentum is sufficiently weak, orbital magnetism may still
arise [36, 62]. Multiorbital physics is expected to be favorable for orbital magnetism because
it enables intersite generalized orbital angular momentum operators, as we shall see in the
next chapter on cuprates (see Fig. 2.20, for instance). Even though we shall shy away from
attempting to derive LC order from microscopic models in this thesis, which is an interesting
but challenging problem in itself, let us briefly discuss previous theoretical work along this
direction, as well as experimental evidence for LC order in systems other than the cuprates.

One of the earliest mentions of orbital magnetism is in a chapter by Halperin and Rice from
1968 [75] in which, using the screened Hartree-Fock approximation, orbital antiferromagnetism
was found in a model of itinerant electrons as a possible instability alongside charge-density
waves and spin-density waves. This orbital antiferromagnetism was not studied in much detail
in the chapter, however. In the pioneering works by Kugel’ and Khomskii [76] and Ina-
gaki |77], they theoretically investigated the possibility of orbital magnetism due to exchange
interactions in systems where the crystal fields do not completely quench the orbital angular
momentum of the localized electronic states. One way of understanding this orbital ordering
is as a purely electronic analog of the cooperative Jahn-Teller effect |78]. In a more concrete
setting, Ohkawa [79] argued that CeBg has local orbital moments which order into an orbitally
antiferromagnetic state. Apart from these references, for many years orbital magnetism was
not the subject of much study. This changed with the discovery of the high-temperature su-
perconductors in 1986 [22]. After the discovery, a number of researchers have found LC order
in models of relevance to cuprates |37, 80-82|. In particular, Chandra M. Varma has suggested
that intra-unit-cell LC order is, in fact, the key to understanding the phase diagram of the
cuprates [36, 37]. Other researchers have made similar proposals [64—66]. This and related
work we shall review in the next chapter in Sec. 2.2.3.

Sun and Fradkin [83] have theoretically investigated orbital magnetism in general Fermi
liquids without SOC.? They considered two types of orbital magnetism: type I, which are
odd-parity LCs invariant under a reflection symmetry, and type II, which are even-parity LCs
odd under a reflection symmetry. Note that the parity of a LC state refers to the behavior
of the corresponding LC pattern under space inversion; see Fig. 2.20 of the next chapter
for examples of even- and odd-parity LCs. In modern terms [68, 84|, type II states can be
understood as orbital altermagnets since composing TR with a reflection leaves the system
invariant, i.e., reflections compensate for TRSB; cf. Fig. 1.1. What makes type II states so
interesting is that, unlike type I states, they spontaneously exhibit Kerr and anomalous Hall
effects even in the absence of magnetic fields and disorder. In related work, using mean-
field theory [83, 85] and renormalization group methods [86, 87|, it was found that LC states

ZNote that they call “magnetic” what we call spin-magnetic and their “nonmangetic with TRSB” means
orbital-magnetic according to us.
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can be stabilized in several microscopic models of itinerant electrons.®> Loop currents may
also accompany other orders, as has been explored in AV3Sbs kagome metals [88], TRSB
superconductors on a honeycomb lattice [89], spin liquids in cuprate superconductors [90], as
well as iron-based superconductors [91] in which conventional spin magnetism induces orbital
magnetism through SOC. Spin-orbit coupling may also act in the opposite direction, inducing
spin order which accompanies LC order [92].

LC order can be experimentally probed using a number of methods [62]. Although TRSB
takes place in the orbital sectors, external spins are still sensitive to the local magnetic fields,
irrespective of origin. Thus spin-polarized neutrons and muons, as used in polarized neutron
diffraction (PND) and muon spin relaxation (uSR), can probe LC order [62]. PND has the
additional advantage of momentum resolution, allowing it to tell apart LCs which do and
do not break translation symmetry. The latter we shall refer to as homogeneous, ¢ = 0, or
intra-unit-cell (IUC) LCs. TRSB can also be experimentally observed through the magneto-
optic Kerr effect [93|. If the LC order is odd under parity, it contributes to the third-rank
optical susceptibility tensor which is measurable via optical second-harmonic generation ex-
periments [94].

Although LC order has been most extensively studied in the cuprates |36, 62|, as we shall
discuss in Sec. 2.2 of the next chapter, there is evidence for LC order in other systems as well.
A state consistent with LC order has been inferred from optical second-harmonic generation
measurements [95] and PND [96] in the iridate Mott insulator SraIrO4 which displays an
unusual gap upon doping [97, 98]. A LC pattern that breaks translation symmetry is one
of the main candidates for explaining why the charge-density wave displayed by the recently
discovered kagome superconductors seemingly breaks TR symmetry [99]. Orbital magnetism is
generically induced by spin magnetism thorough SOC, hence experimental evidence for stripe
spin-magnetic order in iron-based superconductors [100-103] can be taken as indirect evidence
for (subleading) LC order in those compounds [91].

1.2 Paradigm of pairing driven by quantum-critical
order-parameter fluctuations

The idea that bosonic modes coupled to electrons can induce an attractive interaction among
electrons, resulting in Cooper pairing [11], has a long history, going all the way back to the
landmark articles by Bardeen, Cooper, and Schrieffer (BCS) [19, 20| in which the bosonic
modes are the phonons. For a lucid review of BCS theory, see the book by Leggett [104];
the book by Schrieffer [105] is also excellent. Since then, boson-exchange pairing mechanisms
have been extensively studied [106-108], mostly within the framework of Migdal-Eliashberg
theory [15, 16, 109-112].

Besides phonons, many other collective modes have been proposed as the pairing glue,
including ferromagnetic [113, 114] and antiferromagnetic [115-122] spin waves, nematic fluc-
tuations [123-126], ferroelectric modes [52, 53, 127|, and orbital loop currents [35-37, 41,
64-66]. With few exceptions [128, 129], the collective modes whose potential role in driving
superconductivity (SC) has been investigated the most are modes associated with ordered
states. We may think of these collective modes as fluctuating order parameters. As we shall

3For Hubbard, t-J, and other models of relevance to cuprates, see Sec. 2.2.3.
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Table 1.1: A selected list of bulk orders, classified according to whether they break
translation (red) or time-reversal (TR) symmetry and whether they are trivial
or not in the spin sector. Orbital/charge orders are trivial in spin space. Highlighted
in red are orders which break translation invariance. Nematic orders are electronic orders
which spontaneously break point group symmetries such as rotations or reflections without
breaking parity or translation symmetry [131, 132|. Spin-nematics do the same in the spin
sector, but without TR symmetry-breaking [133, 134|. Ferroelectrics have spontaneous
electric polarizations and their modes are usually soft polar phonons [135]. Alterelectrics
I dub orders which break parity in the orbital sector, just like ferroelectrics, but whose
order parameter does not transform like a vector. Hence, alterelectrics do not have a net
electric dipole moment. Charge- and spin-density waves are spontaneously forming periodic
modulations of the charge or spin density which are incommensurate with the underlying
lattice [136, 137|. Loop-current order is orbital magnetism, as discussed in Sec. 1.1. Spin
loop currents are loop currents which carry spin. Regarding the spin-magnetic orders, see
Fig. 1.1 for an explanation. For a more systematic classification of orders, see Refs. [138—
140].

orbital or charge spin
nematic ) )
) spin-nematic
ferroelectric
TR-even intra-unit-cell spin loop currents
alterelectric

) staggered spin loop currents
charge-density waves

ferromagnetic
intra-unit-cell (orbital) loop currents altermagnetic
TR-odd .
staggered (orbital) loop currents antiferromagnetic

spin-density waves

see in Sec. 1.3.1, within the action formalism fluctuating order parameters can be rigorously
introduced through a Hubbard-Stratonovich transformation [28, 130]. Of particular interest to
our work are “purely orbital” collective modes, that is, collective modes which are trivial in the
spin sector. Loop currents are an example, but there are other modes as well, as summarized
in Tab. 1.1.

When bosonic collective modes couple to electrons, they generate interactions among elec-
trons, as depicted in Fig. 1.5. As long as this interaction is attractive in some pairing channel
and sufficiently strong to overcome Coulomb and other repulsive interactions in that channel,
SC will emerge at low enough temperatures, assuming a normal Fermi-liquid state |27, 104,
105, 141]. This is a consequence of the fact that the Fermi sea is unstable against pairing in
arbitrarily weak attractive Cooper channels [27, 104, 105, 141], albeit at exponentially small
temperatures T, o wee Y, where w, is a characteristic frequency of the modes and \ is the
pairing eigenvalue. The appearance of SC and its strength, as reflected in the transition tem-
perature T, is then a matter of the detailed properties of the material under study. This is,
broadly speaking, the situation for Cooper pairing due to electron-phonon coupling [112, 142].
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Figure 1.3: Generic phase diagram in the vicinity of a continuous quantum phase
transition [146, 147|. T is the temperature and r is a tuning parameters, such as doping,
pressure, or uniaxial stress. At r =T = 0, the system passes through a quantum-critical
point (QCP), which may or may not be surrounded by a superconducting (SC) dome. See
text for further discussion.

In the case of coupling to order-parameter fluctuations, however, there is a well-defined
regime where one expects the boson-mediated electron-electron interaction to be especially
strong. This is the regime near the quantum-critical point (QCP) of the associated ordered
state, where the collective modes become soft and the associated order-parameter fluctuations
are particularly strong.* Such continuous quantum phase transitions have been the subject of
extensive study [144-148|, as has the corresponding pairing due to quantum-critical fluctua-
tions that takes places in the vicinity of QCPs [35, 149-156]. Although we shall not attempt
to review this vast field, below we recapitulate some fundamental notions which are relevant
to our work.

Consider a system that, as a function of some control parameter r such as doping, pressure, or
uniaxial stress, experiences a continuous quantum phase transition from a disordered state into
an ordered state of broken symmetry, as depicted in Fig. 1.3. This ordered state may extend
to finite temperatures, as assumed in Fig. 1.3, or it can formally only arise at T' = 0 because
of Hohenberg-Mermin-Wagner’s theorem [157-159]. This theorem forbids the spontaneous
breaking of continuous symmetries in two or less (spatial) dimensions at finite temperatures.®
Either way, this ordered phase can become disordered in two ways: by thermal fluctuations or
by quantum fluctuations.

4Soft modes are not necessarily good at driving SC if they couple weakly to electrons, as is the case for
Nambu-Goldstone modes [143]. For an explanation of why soft modes mediate strong interactions between
fermions, see Sec. 1.3.1 and the discussion surrounding Eq. (1.22).

®In two dimensions, however, finite-size and disorder effects can render Hohenberg-Mermin-Wagner’s theorem
physically irrelevant [160].
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If we are on the ordered side of the phase diagram, r < 0, and approach the transition
temperature T, with a constant 7, then for a continuous phase transition the correlation
length ¢ and the correlation (or equilibration) time &, diverge as [146, 147]

Eox |t Er o £ oc ||, (1.13)

where v > 0 is the correlation length critical exponent of the finite temperature transition,
z > 0 is the dynamic exponent, and t = (7' —T¢)/T. is a dimensionless measure of the distance
from T,. From the divergence of &;, it follows that the order parameter fluctuates coherently
over increasingly large time-scales as T — T,.. This means that the characteristic frequency
w, characterizing the large-scale order-parameter fluctuations becomes softer and vanishes at
the critical point like [146]

we oc €1 oc [t]72 (1.14)

Hence hw. < kT near T, and the critical fluctuations behave in a classical way [146, 147|.
The corresponding region is labeled “classical critical” in Fig. 1.3. Microscopically, quantum
effects can still be important near T, but at large scales at least the transition is essentially
classical. As the temperature is further increased, we enter a “thermally disordered” phase.

Let us now examine the 7' = 0, or quantum, transition as r is varied. For continuous
quantum phase transition, & and & again diverge, but this time as a function of the tuning
parameter r 146, 147|:

Eox |r|77, &r o< & o |r| 7. (1.15)

Here we have assumed that r is defined so that it is dimensionless and vanishes at the QCP.
Note that the critical exponents v and z are different from those of the finite temperature
transition [147]. The characteristic frequency w. oc -1 oc |r|”* of the quantum-critical fluc-
tuations yet again vanishes as the QCP is approached, but is finite elsewhere. Thus for finite
r > 0 and small T, hw. > kpT and the systems has essentially the same behavior as the
T = 0 ground state [146]. Since the disorder of the » > 0 ground state is driven by quantum
fluctuations, the same is true for the “quantum disordered” region of Fig. 1.3. In between
the quantum and thermally disordered regions, there is a “quantum critical” cone where both
thermal and quantum fluctuations are important [146, 147]. This cone widens with increasing
temperature because the continuum of quantum-critical excitations associated with the QCP
is more efficiently excited at large T'. At very large temperatures, kg1 becomes comparable to
the microscopic energy scales of the system and the minute microscopic features of the system
become relevant to its behavior, driving “non-universal” physics [146, 147]|, as indicated in
Fig. 1.3.

In the case of itinerant electronic systems, the quantum disordered phase is a Fermi liquid
and the quantum-critical phase is called a quantum-critical metal, strange metal, or non-
Fermi liquid [146, 147]. The key feature that sets strange metals apart from Fermi liquids is
the absence well-defined fermionic quasi-particles near the Fermi surface. Instead, one finds a
critical continuum of excitations which drives various power-law behavior [146, 147|. Following
the pioneering work by Hertz [130], later extended by Millis [161], there has been much work
on non-Fermi liquids driven by quantum-critical fluctuations. Although we shall not attempt
to review this fascinating field here, let us note that the broad qualitative picture of QCPs
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sketched above holds for itinerant electronic systems in particular. The interested reader we
refer to the many excellent reviews on the topic [145-148, 162-165].

More relevant to our work is the paradigm of Cooper pairing due to quantum-critical order-
parameter fluctuations [35, 149-156]. According to Ref. [149], some of the earliest seeds of
this paradigm are the marginal Fermi liquid ideas of Varma [166], motivated by the cuprates,
and the notion of SC driven by critical spin fluctuation [116, 167, relevant to heavy fermion
compounds. Although there has been much work that broadly falls into this paradigm (see [35,
149-156] and references cited therein), most reviews to date cover quantum phase transitions
in general, discussing Cooper pairing in the passing [147|, or focus on pairing near QCPs of
only one type of order [36, 122]. A comparative review of QCP-based pairing mechanisms
would be very interesting, but is currently unavailable. That said, I will not attempt to fill in
this gap in the literature here, but rather only sketch the broad physical picture.

The most well-understood part of the QCP phase diagram of Fig. 1.3 is the Fermi-liquid
region, so let us start from there. Let us assume that we have a Fermi liquid which is weakly
coupled to heavy order-parameter fluctuations. As the QCP is approached, these bosonic
order-parameter fluctuations become soft and the electron-electron interactions that they me-
diate become stronger. Because of the coupling to electrons, however, the order-parameter
bosons in addition become damped, which changes the effective space-time dimensionality of
the bosonic theory [149]. The order-parameter fluctuations, in turn, affect the electrons in
two ways [150, 155]. On the one hand, they make the electrons less coherent, which tends to
weaken the logarithmic Cooper divergence associated with pairing. On the other hand, the
Cooper-channel interaction that they mediate is more singular at low frequencies than it would
be away from the QCP. Depending on which of these two competing tendencies prevail, the
QCP may or may not be surrounded by a SC dome [150, 155], as shown in Fig. 1.3. Of course,
it may be the case that the interaction mediated by the order-parameter modes is repulsive
in all Cooper channels, in which case SC will never take place. It is also possible that the
quantum critical region is completely hidden inside the SC dome [151], in contrast to what is
shown in Fig. 1.3.

1.3 Analysis of pairing due to quantum-critical loop-current and
other fluctuations

Having introduced LC order and the paradigm of pairing due to quantum-critical fluctuations,
we are now in a position to study the pairing when the quantum-critical fluctuations originate
from an underlying LC order. As already mentioned at the beginning of this chapter, the
forthcoming analysis borrows heavily (sometimes verbatim) from Ref. [29].

Given their potential realization in a diverse set of systems, as reviewed in Sec. 1.1.2 and
Sec. 2.2 of the next chapter, it is important to elucidate whether fluctuating loop currents can
give rise to superconductivity (SC). Related, equally important, matters are the strength of
this pairing tendency and the symmetry of the resulting SC state. In this context, intra-unit-
cell (IUC) LCs have been prominently discussed as the pairing glue of the cuprates [35-37, 41]
which makes them particularly interesting, notwithstanding the difficulties in detecting them.®
For comparison, in the case of fluctuations deriving from IUC orders that preserve time-reversal

5Note that by TUC order we mean homogeneous g = 0 order which preserves the translation symmetries of
the underlying lattice.
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Figure 1.4: Schematic behavior of the leading pairing eigenvalue )\ as a quantum-
critical point (QCP) is approached from the disordered (Fermi liquid) side,
depending on the type of intra-unit-cell (IUC) order [29]. The tuning parameter r
(horizontal scale) controls the QCP r = T" = 0. The vertical temperature scale on the left is
for the ordered state, whereas the vertical A scale on the right is for the curves. The super-
conducting transition temperature grows with A according to kgT, = 1.134kw.e~ Y/, where
hw, is an energy cutoff. Pairing mediated by time-reversal-even IUC charge-fluctuations
or time-reversal-odd IUC spin-fluctuations (blue) is enhanced near the QCP, where weak-
coupling theory breaks down (dashed line). In contrast, we find that the pairing mediated
by even-parity IUC loop currents (orange) is not enhanced at the QCP, whereas pairing me-
diated by odd-parity IUC loop currents (green) becomes strongly repulsive near the QCP.

symmetry, such as nematic [123-126] and ferroelectric [52, 53, 127] ones, it is well established
that s-wave pairing generally emerges with a number of attractive subleading channels. Pairing
is promoted by ferromagnetic spin fluctuations [113, 114] as well, the main difference being the
p-wave nature of the leading pairing state. Furthermore, SC in all of these cases is strongly
enhanced in two (spatial) dimensions as the quantum-critical point (QCP) is approached, thus
establishing a robust regime in which pairing is dominated by the corresponding fluctuations.
However, the case of pure orbital magnetism is different, not only because LCs do not directly
couple to the spin, but also because they usually break additional symmetries besides time
reversal. This raises the question of whether there are general conditions, independent of the
details of a given material, under which pairing is dominated by quantum-critical IUC LC
fluctuations.

In the remainder of this chapter, we address this question. We show that IUC LC fluctuations
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do not give rise to an enhanced pairing near the QCP, as shown schematically in Fig. 1.4. Even-
parity LCs, such as orbital ferromagnets or orbital altermagnets, may cause unconventional
pairing. However, they are as likely or unlikely to do so as any other degree of freedom far from
its critical point. This is because the pairing promoted by these fluctuations is not enhanced as
the QCP is approached (orange line in Fig. 1.4), in sharp contrast to the cases of ferromagnetic
spin fluctuations or TR-even charge fluctuations, such as nematic or ferroelectric” ones (blue
line in Fig. 1.4). LCs that break parity, i.e. states of magneto-electric order, are repulsive for
all pairing symmetries as one approaches the QCP (green line in Fig. 1.4). Hence they weaken
pairing caused by other pairing mechanisms. Such odd-parity LC states can at best support
SC when their fluctuations are sufficiently weak.

These conclusions hold for general systems in which spin-orbit coupling (SOC) is weak. In
particular, they hold for the cuprates, seemingly challenging previous work on the topic which
suggested that IUC loop currents are effective at driving pairing [35-37, 41|. However, the
questions of what type of LC orders can arise in the cuprates, how can one probe and tell
apart these LC orders experimentally, and whether the fluctuations of these LC orders induce
the correct d,2_,2-wave symmetry still need to be addressed. To this task, we devote the next
chapter.

Although until now we have focused on LC order, the analysis leading up to our results
applies with minimal modifications to other IUC orders. However, many of these were previ-
ously already studied [124] and were not the subject of much controversy, which is why in the
article itself [29] we focused on LC order. That said, comparing and contrasting with other
IUC orders is enlightening, not only because we cover additional orders which are of interest,
but also because it highlights how uniquely ineffective LCs are at driving Cooper pairing near
their QCPs. As we shall see in Sec. 1.3.3.3, the pair-breaking tendency of odd-parity LCs is,
in fact, unique among all conceivable IUC orders.

For the above reasons, we have framed the whole analysis in the most general fashion
possible, starting with an arbitrary fluctuating order parameter which we narrow down to
loop currents only at the end. As a side-effect of this approach, the formulas of this section
will have many indices. To aid comprehension, here we list the notation conventions which we
shall consistently use through the rest of this chapter (see also Notation and Conventions):

e R J are real-space lattice vectors.
e k,p,q are crystal momenta and they are always within the first Brillouin zone.

e o, €{l,...,2M} are fermion component indices, covering both orbital and spin degrees
of freedom.

e s {1,]} are spin or pseudospin indices.
e n,m € {1,..., M} are band indices.

e k, is on the Fermi surface of the n-th band, i.e., it satisfies eg,, = 0, where &g, is the
dispersion of the n-th band displaced by the chemical potential. Likewise, p,, <=
€pm = 0.

"Here we are comparing ferroelectrics with SOC to LCs without SOC. In the absence of SOC, pairing driven
by quantum-critical ferroelectric fluctuations does not become enhanced near the corresponding QCP, just
like in the case of even-parity LCs. See Sec. 1.3.3.3 for further discussions.
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

e A, B € {0,1,2,3} are Pauli matrix indices. Within the Balian-Werthamer d-vector
notation [168], A = 0 is the even-parity singlet and {1,2,3} are the odd-parity triplet
channel components.

e a,be {l,...,dim®} are the order parameter component indices.
e g are point group elements.

The rest of this section is organized as follows. We start by defining the model of itinerant
fermions coupled to order-parameter fluctuations which we use to analyze quantum-critical
pairing. Its symmetry transformation rules are provided in Sec. 1.3.1.2. This section requires
some knowledge of group and representation theory, which is reviewed in Appx. B for the
reader’s convenience. Afterwards, in Sec. 1.3.2, we introduce the linearized gap equation
(derived in Appx. A) and we prove a number of properties of its Cooper-channel interaction.
In particular, in Sec. 1.3.2.2 we prove general symmetry constraints on the Cooper-channel
interaction which are key to our arguments. The results for the generic behavior near a I[UC
QCP, summarized in Fig. 1.4 for the case of LC, are derived in Sec. 1.3.3. We end with
a discussion of the effects of SOC on our results and a comparison with pairing driven by
fluctuations of staggered (finite-q) orders.

1.3.1 Model of itinerant fermions coupled to fluctuating order parameters

Here we introduce a general model which allows us to draw conclusions that are independent
of material details. The model is made of itinerant fermions coupled to a soft order-parameter
field. Other interactions, such as the repulsive Coulomb interaction, are not included, so any
strong pairing tendency that we find near the QCP is indicative of SC, but the obtained
transition temperature T, is likely overestimated.

Let us consider a centrosymmetric system with M orbitals per primitive unit cell. Introduce

the fermionic spinors Yr = (Y14, Yk, - > Yk M4 Yieoar,)) T, where s € {1, ]} is the physical
spin. In terms of these spinors, the one-particle Hamiltonian equals

Ho = vf Ht. (1.16)
k
The corresponding non-interacting Euclidean action is [28, 169]:
P T
Sol] = [ dr Sl (r)0r + Hiluu(r), (117
k

where 7 is imaginary time, 3 = 1/(kpT'), and all momentum summations here and elsewhere go
over the first Brillouin zone only. For Hy, we assume that it respects parity and time-reversal
symmetry.

The interactions we treat phenomenologically and assume from the outset that they give rise
to some kind of ordered state, which we later fix to LC order. For comparison, a microscopic
treatment would start from a physically motivated microscopic interaction, such as an extended
Hubbard interaction, and then decompose it into different channels (cf. Sec. 2.4.4.2). For each
of these channels, one may then use a Hubbard-Stratonovich transformation to introduce a
corresponding bosonic field which can be interpreted as a fluctuating order-parameter field |28,
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1 The limitations of loop-current fluctuations as a pairing glue

130]. The question of which of these channels prevails and orders first is a challenging one
and we shall not attempt to answer it. Instead, we focus on what happens afterwards: Are
the given order-parameter fluctuations effective at driving SC near their QCP? If the answer
is negative, then the whole problem of whether this or that order arises in a given compound
becomes moot, at lest with regard to quantum-critical Cooper pairing. Within the model, we
shall only include one type of fluctuating order parameter, implicitly assuming that the system
orders in that channel.

To introduce the interaction, let us suppose that there is a real collective mode ®,(R) =
&’ (R) present in the system that transforms according to an irreducible representation (irrep)
of the point group and that has a well-defined sign under time reversal (TR). This mode we
couple to the fermions through a Yukawa term of the form:

}Cc =g Z q)a(R)¢a(R)
aR

(1.18)
=g Z (I)a7—q¢aq7
aq

where ¢4 (R) = ¢L(R) is a Hermitian fermionic bilinear. This coupling preserves all symmetries
only when ¢,(R) belongs to the same irrep and has the same TR-sign as ®,(R). Given
such a ¢4(R), symmetries only break upon the condensation of the order-parameter field

Quq = P, _4- Here, g is the coupling constant, a,b,... are irrep component indices (they
go from 1 to the dimension of the irrep = dim ®), R goes over the real-space lattice, and
k,p,q,... are wavevectors. The fermionic bilinears ¢,(R) we shall specify a bit later.

In the presence of Yukawa coupling, the collective modes mediate an interaction between
the fermions, as shown in Fig. 1.5. Within the Euclidean path-integral formalism [28], the
interacting part of the action is

1
Sl v = 5 [

where z := (R, 7), [ = foﬁ d7) g, and x(x) = x(—x) = x*(«) is the bosonic propagator or
susceptibility. Integrating out the collective modes yields the four-fermion interaction:

S By (@1 — 22)®a(2) + 9 / S Gu(@)alz),  (119)

a

Suclt) = —59° [ 3 dulen)x(or — w2)du(a2)

: (1.20)
=3 2 " a,—q(—iwe) x(q, iwe) pag (iwe),

quwea

where wy = 27¢/3 are bosonic Matsubara frequencies and x(q, iws) = x(—q, —iwy) = x*(q, iwy).
Notice that

(Pag(iwe) Py, — g (—iwp)) = 8apdq—qrdee X (q, iwy)

= x(q,iwe) = (| Paq(iwe)]?) > 0 (1.21)

implies that the susceptibility is strictly non-negative. The divergence of x(Q,0), or equiva-
lently the softening of x (@, 0), indicates condensation at ¢ = Q.
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

3 4 3 4 3 1

Figure 1.5: The diagram of the four-fermion interaction that is mediated by a
bosonic collective mode. Solid dots represent the Yukawa coupling between fermions
and collective modes which is given in Eq. (1.18). Solid lines are fermion propagators, while
wavy lines are boson propagators.

Although this interaction is in general retarded, we may treat it as instantaneous if we
renormalize the theory down to an energy cutoff fw, which is sufficiently small to freeze the
boson dynamics. This is appropriate as long as we are far enough from the QCP [150]. At the
QCP, the non-trivial frequency dependence of the Cooper-channel interaction extends down
to w = 0, precluding a BCS treatment of the low-frequency sector [150]. Nonetheless, the
behavior of the pairing as one approaches the QCP is still indicative of the pairing tendency
at the QCP [41, 124, 150]. The effective interaction away from the QCP thus acquires the
form:

1
Hint = _592 ; X((L 0)¢a,—q¢aq- (1'22)

On the mean-field level, the static (wy, = 0) bosonic propagator (susceptibility) is given by the
mode frequencies:

x(g,0) = 0y (1.23)

Here we directly see what we alluded to many times in Sec. 1.2: that the softening of collective
modes, which is the defining feature of QCPs, implies that the electron-electron interactions
which they mediate become stronger.

The appeal of constructing four-fermion interactions via collective order-parameter fields is
that the motivation for their form is physically transparent. The interaction (1.22) could be
expressed in terms of local and non-local Hubbard interactions as well. Except for common
practice and custom, such an approach is not any better justified than ours in the effective
low-energy regime discussed here. That said, in Sec. 2.4.4.2 of the next chapter we shall explore
what are the ordering channels which are intrinsic to extended Hubbard interactions of the
three-orbital model of the cuprates (Sec. 2.3).

1.3.1.1 Specification of the order-parameter field and its coupling

We still need to specify the fermionic bilinears ¢,(R). As it turns out, there is an ambiguity in
how one should properly define the bilinears which derives from the fact that %(Rl + R») is not
necessarily on the same lattice as R; and Rs. For instance, for lattice neighbors %(Rl + Ry)
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1 The limitations of loop-current fluctuations as a pairing glue

is always in between lattice points. The most general possible definition of a fermionic bilinear
in the particle-hole sector is

¢a(R) =Y ¢ (R + 61)Ta(81,82)0(R + 82), (1.24)
4102

where 91, 2, ... go over lattice neighbors and 'y (91, d2) = FZ(&g, d1) are 2M x 2M matrices
in spin and orbital space. These I' matrices encode the information on the symmetry of the
ordering channel. After a Fourier transform with the conventions

¥(R) = \/1N Zk: e* By, $a(R) = \/IN zk: * B, (1.25)

1 : 1 .
3,(R) = i Z kR Lo(81,82) = 2 Z el(k-arp.tsa)pakm, (1.26)
k kp

where N is the number of unit cells, one finds that
1 f
aqg — T — Fa . 127
boa = 7 2 Vel akerativra (1.27)

This most general definition is the one that we shall use. Notice that the displaced bilinear
O (R) = ¢o(R+9') whose I,(81,02) = T'q(d1 + &', 02 + &) is equally valid. This arbitrariness
we shall eliminate by localizing ¢,(R) around R, i.e., making I'4(d1, d2) finite for small d; o
only.

It is instructive to see what goes wrong with alternative definitions. One alternative defini-
tion is

SH(R) =D Yl (R+ STV ()Y (R - 6), (1.28)
[

which is more symmetric. However, it is not general enough because it cannot include coupling
between closest neighbors. Another alternative definition is

o) (R) = ZwT(R + 8P (§)y(R) + H.e., (1.29)
o
alt2 1 alt2 alt2 f
dhg” = N >k (ng '+ [Fg,kJr)q] >¢k+‘1’ (1.30)
k
where
1 ~ a
Ffla“?)(d) = 5 Zelk.alﬂ((lkm)‘ (1.31)

This is manifestly Hermitian and can include coupling between neighbors of all distances 8. It
is used in a number of references in the literature (e.g. Ref. [127]) and is related to the previous
definition through

1_
Tu(81,82) = 85,002 (65) + [T D(=61)] 85,0, (1.32)
a a T
Topop = D) 4 [rg;”’] . (1.33)
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

In the simplest case when all the orbital are centered at the lattice points, i.e. have trivial
Wychoff positions, this definition is completely appropriate. However, when this is not the
case, symmetry operations map ¢ (R) not only to ¢(R’), but also to its neighbors ¢)(R’ + 8).
Thus with the above definition one cannot ensure that ¢Ef‘“2) (R) has well-defined symmetry
transformation rules in a sense that we shall explain in the next section (see Egs. (1.60)
and (1.61) in particular). In our study of a tight-binding model of cuprates (Sec. 2.4), we
will face precisely such a circumstance where some orbitals have non-trivial Wychoff positions.
One can circumvent this obstacle by using in Eq. (1.29), instead of ¢/(R), an extended spinor
U(R) which transforms into itself under all symmetry operations. This is how we will treat
the cuprate model in Sec. 2.4.

Loop-current order is purely orbital order. Hence the corresponding I' matrices are purely
orbital and have the form

Fak,p = Yak,p ® 00, (134)

where 0 is the 2 x 2 identity matrix in spin space. LCs are also odd under TR. For the Yukawa
coupling of Eq. (1.18) to respect TR and point group symmetries, the orbital v matrices must
therefore also be odd under TR,

’YZkJ) = _'Ya,—k:,—;n (135)

as well as belong to the same irrep as the LC order parameter.

1.3.1.2 Symmetry transformation rules

Here we state how the fields transform under TR, whose many-body TR operator is ©, and
under point group operations of the crystalline system, whose many-body operators are ﬂ(g)
with g denoting the point group elements.

The most general fermion transformation rules are:

AT A
U (9)¢rU(9) = Ur(9)VRr(g—1)k> (1.36)
~—1 A N
© YO =0OpY_g, (1.37)
where Ug(g) and Oy are unitary matrices which act on the spinors and R(g) are the usual

3 x 3 orthogonal matrices, defined in detail in Sec. B.3 of the appendix, which act on vectors.
They satisfy:

Uy, '(9) = Ul(9), 05 '(9) = ©L(9). R™'(g) = R"(g). (1.38)

Notice that the former two matrices depend on momentum. These momentum-dependencies
are necessary for Ug(g) and ©p whenever the fermionic basis functions (i.e., orbitals) have
non-trivial Wychoff positions and spin-orbit mixing, respectively.

The composition law is slightly modified for Ug(g):

Uk(9)Urg-1yk(9") = Urlgg"). (1.39)
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1 The limitations of loop-current fluctuations as a pairing glue

As a consequence, U(g71) = U};(g)k(g). Regarding R(g), it satisfies the usual R(g)R(¢") =

R(gg") and R(g~') = RT(g) relations. Let us observe that the reason why g acts on the spinor
and g~! on the momentum in Eq. (1.36) is to ensure that

W) [ W (9)entlio)| Wg) = W (99)nllig) (1.40)

is respected. For fermionic systems é2 = —1 holds which implies that
0,07, = —-1. (1.41)
Moreover, TR commutes with all point group operations:
Uk(9)OR(g-1)k = OrUZk(9)- (1.42)
Next, let us consider the eigenvectors of the band Hamiltonian:
Hougns = Eknlkns, u;rmsukms/ = OpmOssl- (1.43)

Here s € {1,]} is the pseudospin or Kramers’ degeneracy index. In the absence of SOC, s
reduces to the physical spin index. We may always choose a gauge in which:

UP( —Pupms Z Upms' 1Gy (1 .44)

In simpler notation, this is just a matter of defining the up-arrow pseudospin as [1) = PO|])
at each k. In this gauge:

UT( )upms = Z[Spm(g)]* 1UR(g=1)pms’>

(1.45)
UR( Upms Z uR g)pms’ pm(g)]s’Sa
where
Sk:n(g)SR(gfl)kn(g/) = Sk:n(gg/)7 (1.46)
(i0y)Skn(9) = Skn(g)(ioy). (1.47)

The latter property of Sk (g) follows from the fact that parity and TR both commute with
all point group operations g. It is also useful to consider the band eigen-projector

:Pﬁn = Z ukns(GA)ss’uLns/ (1.48)
ss!

weighted by the 04 Pauli matrices, where A € {0,1,2,3}. It transforms according to:

UL (@) P2 Uk(9) = Pyt yhns (1.49)
3

Ub(9)PinUk(9) = > [Rien() 4Py 1)kn (1.50)
B=1
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

where Ry, (g) are orthogonal 3 x 3 matrices which satisfy

Rkn(g)RR(g_l)kn(g/) = Rkn(gg/) (1.51)
and are related to Sk, (g) via
3
Sk (9)04Skn(9) = Y [Rin(9)]4505- (152)
B=1

In the absence of SOC, the eigenvectors and eigen-projectors factorize into spin and orbital
parts:

Ukns = Ukn ® |8), P = uknu};n ®04. (1.53)

Moreover, Sk, (g) equals the product of the band-orbital and spin representations of the point
group,

Skn(g) = " 95 (g), (1.54)
and Rpg;,(g) reduces to the vector representation of the point group,

Riea(9) = R(9)- (1.55)

The spin S(g) and vector R(g) representations are the usual ones and they are defined in
Appx. B, Sec. B.3.
The transformation rules of the bosonic order-parameter field are:

dim ¢
U (9)Puqll(g) Z M3(9)Pp.R(g—1)q: (1.56)
6 q>aq® = p@q)a,—lb (157)

where M? is a real orthogonal irreducible representation of the point group, dim ® is the num-
ber of components of ®, and pg = +£1 is the sign under TR. In real space, these transformation
rules take the form

dim ®

W9 (R)Ug) = 3 ME(9)0,(R(9™)R), (1.58)
b=1

6 "0, (R)O = pod,(R). (1.59)

The matrices Mg, (g) must be real to be consistent with the reality of ®qq = ®% . Recall
that every irreducible representation of a finite group can be made unitary (Ref. [170], see also
Sec. B.1.2), which for real representations means orthogonal.

The fermionic bilinears of the preceding section [Eq. (1.27)] must transform in the same way
as @ to ensure that the Yukawa coupling [Eq. (1.18)] between the two preserves all symmetries:

dim &
.
U' (9)Paqll( Z M (9)Bb,Rig-1)g» (1.60)
A1
© ¢aq®:p®¢a,—q' (1.61)
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1 The limitations of loop-current fluctuations as a pairing glue

In turn, these transformation laws constrain the I'qx , matrices:

dim ®
U;(Q)Fakp Z M FbR g-1k,R(g~1)p> (1.62)
@Lrak,p@p = p®ra7_k7_p- (1.63)

Reality entails gb(];q = ¢pg,—q and Flkp =Topk-

1.3.2 The linearized BCS gap equation

In this section, we introduce the linearized BCS gap equation that we shall use to study the
pairing problem and we analyze the Cooper-channel interaction which enters it.

In Appx. A, we have derived the linearized gap equation for a general Fermi liquid with
SOC that has parity and TR symmetry and whose Fermi surfaces do not touch each other
or have Van Hove singularities on them. For the following general non-retarded four-fermion
interaction

1
Hint = 73 > Sty kia—teg ks Urasath] 3 tbais, (1.64)
1234
where L? is the volume in d spatial dimensions and 1 = (ki,a1), 2 = (k2,a3), etc., are

shorthands for all the quantum numbers carried by the fermions (momentum, orbital content,
spin), the linearized gap equation is [Eq. (A.39)]:

3
2 / ((;i?d > Wra(Pm, kn) da(kn) = Adp(pm), (1.65)
A=0

n Ekzn:O

where the momentum integrals go over the Fermi surface(s), ek, are the dispersions of the
Ugns band eigenvectors,

{‘Pgm = Zupms(o—B)ss’uLmS/- (1.66)

ss!

are the projectors, and the pairing interaction is given by:

e+ P P4 oT
[ p°p ]OQa [ k]a3a4Ua1a2a3a4(pv _p7k7_k)' (167)

AV pepm|? W kern]

WBA(prmkn) - - Z

a1aoa30y
Positive pairing eigenvalues A\ correspond to pairing instabilities with transition temperatures

2eYE

kgT. = hwee™ A~ 1.134 hwe e/, (1.68)

where Aw, is the energy cutoff which defines the theory. See Appx. A for further details.
WpA(Pm, kn) is the Cooper-channel interaction which we shall now analyze.

22



1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

When the interactions are mediated by a bosonic mode as in Eq. (1.22), we can use Eq. (1.27)
to read off the interaction amplitudes:

Uioza = Utazs — Uiz, (1.69)

- L
U1234 = _QZW Z X(kl - k37 0)[Fak17k3]a1a3 [Fak2,k4]o¢2a4' (170)

The corresponding diagram is shown in Fig. 1.5. Assuming that the order-parameter field has
a well-defined eigenvalue under TR pg = £1, as defined in Eq. (1.57) of Sec. 1.3.1.2, we find
that

2 WBA(pma kn) + WBA(pma _kn)pA

Wpa(Pm; kn) =pe g : (1.71)
e 4|Vp5pm|1/2|vk5kn|1/2
Wpa(Pm, kn) = (LY/N)x(p — k,0) Y TrP5 Topp P, T 4 (1.72)
a
where the trace Tr goes over spin and orbital indices and
PA—o = +1 for even-parity singlet pairing, whereas (1.73)
PA=123 = —1 for odd-parity triplet pairing. (1.74)

The general physical implications of this important expression for Wg A(ppm, k») we shall dis-
cuss in the next section. Below, we derive some formal properties first.

1.3.2.1 Properties of the pairing form factor

Given how it enters W4 (pm, kn), it is of prime interest to explore the properties of the pairing
form factor:

FBA (pm, kn) = Z Tr :Pgmr‘apakjjﬁnrlp,k
a

(1.75)
= Ztl‘s (TBﬁa(pm, kn)UAﬁ;r(pm, kn)’

where

(fa(Pm, k)]s s, = uLmslrankuanQ (1.76)

is a matrix in pseudospin space and tr is a trace over pseudospins. This pairing form factor
contains information on the symmetry of the order parameter and band structure. Physically,
it measures the interference amplitude between Cooper pairs going from momenta (k,, —ky,)
to momenta (py,, —Pm ), and from pseudospin singlet/triplet A to pseudospin singlet /triplet
B. Both Fpa(pm, kn) and fo(pm, k) we shall call pairing form factors.

Because of T/

akp = Lapk, the following reality relations hold:

£l (Dms k) = fa(Kn, D), (1.77)
9;EA(pm, kn) = 9;BA(pm, kn) = gAB(k:n;pm)' (1.78)
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1 The limitations of loop-current fluctuations as a pairing glue

One may now show that:

peppfa(Pm,kn) = (iGy)Tﬁ;(pma ky)(ioy), (1.79)
dim @

Z be(g)ﬁb(R(gil)pma R(gil)kn) = S;ram(g)ﬁa(pma kn)Skn(g)7 (180)
b=1

where M2, (P) = ppSap, i.e., pp = %1 is the parity of the order-parameter field ®.

One consequence of Eq. (1.79) is that Fpa(pPm, kn) = pBPAFBA(Pm, krn), where pp—o = +1
for the singlet and pp—123 = —1 for the triplet channel. Hence even-parity pseudospin-
singlet and odd-parity pseudospin-triplet channels do not mix, as expected. As we noted in
Sec. A.3 of Appx. A, one can quite generally show that Wga(pm, k) = pppaWBA(Dm, kn)
for Wpa(pm, kn) given by Eq. (1.67).

1.3.2.2 General symmetry constraints

Equations (1.77) and (1.80), when combined, give:

dim ®

> Ma(9) [f(R(g™kn, kn)Skn(9 ™))" = Fa(R(9)kn, Kn)Skn(9). (1.81)
=1

This motivates the introduction of

£a(9,kn) i= fa(R(9)kn, kn)Skn(9), (1.82)
in terms of which
dim
Z M9 Fo(g " Fen) = Fulg: Kn). (1.83)
Eq. (1.79) implies that
poppfo(g, kn) = (i0y) Fo (g, kn) (ioy). (1.84)

Let us decompose f into Pauli matrices:

3
=3 Fa(g ka)oa. (1.85)

A=0
Because of (io,)T0%(i0,) = paoa, the following now holds:

popp = +1 <= Po(g,kn), iFu(g,kn), iFa(g,kn), iFa(g, kn) € R, (1.86)

popp = —1 < ifa(g,kn), Fa(9,kn)s P9, kn)s Fulg, kn) € R (1.87)

Notice that )73 o(g, kn) is not necessarily Hermitian or anti-Hermitian. Hoyvever, if we consider
an operation g whose R(g™1) = R(g), then Eq. (1.83) severely constrains £,(g, k). Because g
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

belongs to the double group of the point group, R(g~!) = R(g) does not imply that g~* = g so
we cannot assume that Sk, (g7") = Skn(g).® Instead, we have Sk, (g71) = (&) Skn(g), where

(1.88)

(4), = +1, when g is the identity or parity,
7 —1, when g is a 180° rotation or reflection.

If we in addition assume that be(g) is diagonal, we obtain the following symmetry constraint:

P2 (g, kn) = papopp(£),M2,(g) Fa (g, Kn)- (1.89)

This constraint forces the )732‘ to either have A = 0 or A = 1,2, 3 components, but never both.
This is as far as we can go for general systems with spin-orbit coupling.

In the absence of SOC, Sk, (g) equals the product of the band-orbital and spin representa-
tions of the point group [Eq. (1.54)],

Skn(g) = (9 5(g), (1.90)

and fo(Pm,k,) inherits the spin structure from the I'ypp matrices. Thus, depending on
whether the matrices are purely orbital or spin, f£,(g,k,) may vanish completely. For ¢g €
{1, P}, S(g) = 00, whereas for 180° rotations around 7, S(g) = —12?4:1 na04. Reflections
are compositions of 180° rotations with parity. By analyzing the various possible cases, for
systems without SOC we find that:

e For PO-odd purely orbital I' matrices, the forward scattering form factor vanishes,
fo(kn, kyn) = 0.

e For PO-even purely spin I' matrices, the forward scattering form factor vanishes,
fo(kn, ky) = 0.

e For ©-odd purely orbital I' matrices, the backward scattering form factor vanishes,

fo(—kn, ky) = 0.

e For O-even purely spin I' matrices, the backward scattering form factor vanishes,

fo(—kn, ky) = 0.

e For purely orbital I" matrices belonging to 1D irreps, £,(R(g)kn,k,) = 0 for g that are
180° rotations whenever poppM® (9) = —1. In the 2D irrep case, both components never
vanish at the same time so the corresponding Fpa(R(g)kn, kn) never vanishes.

e For purely spin I' matrices proportional to o3 and belonging to 1D irreps, f,(R(g)kn,
k,) = 0 follows from either (i) g that are 180° rotations around 7 || €3 with peppM®(g) =
+1, or (ii) g that are 180° rotations around 7 L &3 with peppM®(g) = —1. The reflec-
tion symmetry constraints are analogous with 71 pointing along the reflection normal.

Note that by “purely orbital I' matrices” we mean L'y = Yak,p @ 00, whereas “purely spin I'
matrices” entails 'y p = V;k p ® 01+ ng p ® 02+ 72k p ® 03.

8Recall that 27 rotations act on fermions like minus identity (Sec. B.3).
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1 The limitations of loop-current fluctuations as a pairing glue

1.3.3 Generic pairing behavior near the quantum-critical point

Here we derive the results of Ref. [29] for LC pairing in general systems. These results we
already reviewed at the start of this section (Sec. 1.3) and they are summarized in Fig. 1.4.
We also cover some additional results and discussions concerning general IUC orders which
follow from our analysis, but which did not end up in the final published article.

In Sec. 1.3.1, we have introduce a general model of a fluctuating order parameter coupled to
itinerant fermions. We want to study the pairing tendencies of this model as the order param-
eter approaches its QCP. Solving this coupled many-body problem is a formidable challenge.
In order to make progress, we follow the strategy of Refs. [41, 124] and approach the QCP from
the disordered side of the phase diagram, as depicted in Fig. 1.6. On the the disordered side,
far enough from the QCP, the normal state is a well-understood Fermi liquid whose pairing
can be investigated using an effective BCS description with a non-retarded interaction [150].
Moreover, far enough from the QCP, the collective fluctuations are sufficiently weak to enable
us to analyze the pairing instability to leading-order in perturbation theory using the linearized
gap equation of Sec. 1.3.2. This approach is controlled by the coupling g of the fermions to
order-parameter fluctuations. Although it is formally valid only for small ¢, any apparent
breakdown of the weak-coupling theory is a compelling indicator for strong quantum-critical
pairing, as evidenced by complementary analytical [149-156] and numerical [125, 171-174|
methods which find strong quantum-critical pairing only when weak-coupling theory indicates
it.

Notice that this strategy can be applied not only to LC order, but more broadly to any order
in the particle-hole sector. Let us also emphasize that this strategy is phenomenological in the
sense that we assume from the outset that the system orders in a certain channel; we make no
attempts at deriving the ordered phase from a microscopic model. Instead, we focus on what
happens afterwards: if we take for granted a certain ordered phase, are the corresponding
quantum-critical fluctuation effective at driving pairing near their QCP? This is the question
that the just discussed strategy allows us to answer; see also the discussion of Sec. 1.3.1.

The key task in front of us is to analyze how the solutions of the linearized gap equation
(Sec. 1.3.2)

3

Z/ dSkd > Waa(pm, kn) da(ks) = Adp(pm) (1.91)
) 2

n

ekn:O
depend on the distance from the QCP when the pairing interaction equals [Egs. (1.71, 1.72)]:

oWBA(DPm, kn) + WaA(DPm, —kn)pa

WBA(pnukn) =Peg ’ (192>
4’Vp5pm‘1/zyvk5kn‘1/2
Woa(pm. kn) = (LY/N)x(p — k,0) Y TrP5 Top 1P T (1.93)
1.3.3.1 Symmetries of the pairing interaction and eigenvectors
Let us start from the fact that
W*BA(pmvkn) = WAB(knapm) (194)
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critical metal e

ordered Fermi liquid
phase —
(strategy)

QCP G

Figure 1.6: Strategy for analyzing the pairing promoted by quantum-critical fluctu-
ations. The sketched phase diagram is a simplified version of Fig. 1.3. T is the temperature
and r tunes the system through a continuous quantum phase transition at » =T = 0. The
hypothetical superconducting (SC) dome surrounding the quantum-critical point (QCP) we
analyze by approaching it from the disordered (Fermi liquid) side, as indicated by the red
arrow.

is Hermitian [Eq. (1.78)], from which it follows that the pairing interaction can be completely
diagonalized to obtain an eigen-expansion of the form

WoaDm: ko) = 3 Ao dpia(Pm) [daa(n)]" (1.95)

where a is a general index here (not necessarily just the irrep index) and

3
dSg .
S [ o X el (k) = (1.96)
" €kn=0 A=0
Moreover,
Wy a(Pm: kn) = Wpa(Pm, kn) (1.97)

is in addition real [Eq. (1.78)] so the eigenvectors can be chosen to be real:
[dA;a(kn)]* = dasa(kn). (1.98)

Next, we prove the fundamental fact that the pairing interaction respects the symmetries of
the system. In Sec. 1.3.2, we already showed that composed parity and TR symmetry imply

WgA(Pm, kn) = pBpaAWBA(Pm, kn), (1.99)
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1 The limitations of loop-current fluctuations as a pairing glue

where pa—g = —pa—12,3 = 1, and therefore
Woar (P, kn) = Waro(Pm, k) =0 for A" € {1,2,3}. (1.100)

Hence pseudospin-singlet (A = 0) and pseudospin-triplet (A = 1,2,3) channels do not mix.
The two channels correspond to even-parity and odd-parity, respectively, as can be seen from
the relation

Wra(Pm, —kn) = paAWpa(Pm, kn) (1.101)

which follows from Pauli’s principle. Formally, Pauli’s principle is reflected by the way
Wpga(Pm, k) is an (anti-)symmetric average of WA (Pm, kn) [Eq. (1.92)]. Thus in the singlet
(triplet) channel only even-parity (odd-parity) eigenvectors can contract with W4 to give non-
zero eigenvalues. The pairing eigenvectors are therefore either even-parity pseudospin-singlets
with an A = 0 component or odd-parity pseudospin-triplets with A = 1,2, 3 components. Us-
ing the symmetry rules of Sec. 1.3.1.2, one may also show that point group symmetries yield
the following constraints:

WOO(R(gil)pmyR(gil)kn) :WOO(pmvkn)a (1'102)
3
Z [Rpm(g)]BB’ [Rkn(g)]AA’WB’A’ (R(gil)pma R(gil)kn) = WBA(p7m kn)~ (1'103)
Al,B'=1

These constraints are satisfied as long as the initial interaction of Eq. (1.23) or (1.64) does not
break any point group symmetries.

Because the pairing interaction respects the symmetries of the system, the solutions of the
linearized gap equation fall into irreps of the point group,” as is well-known [104, 105, 141].
In particular, they transform according to

dim ¢4
doa(Rg™pm) = > M55 (g™")do (pm) (1.104)
b=1

in the case of pseudospin-singlet solutions and according to

3 dimC-u
> Bom( @) ppdnia(Rlgpm) = Y M3 (g )dps(pm) (1.105)
B'=1 b=1

in the case of pseudospin-triplet solutions. Here (, and ¢, are even- and odd-parity irreps of
the point group, respectively, and Mgb(g) are the corresponding representation matrices.

9Mathematically, if we reinterpret the linearized gap equation as a diagonalization problem on a infinite-
dimension space of pairing states, this is equivalent to the statement that if symmetry operators commute
with the pairing interaction, then we may simultaneously diagonalize the two. Since the symmetry opera-
tors do not, in general, commute among themselves, we cannot simultaneously diagonalize all the symmetry
operators. Instead, the pairing eigenvectors d4(k,) fall into irreps, which is the closest thing to simulta-
neously diagonalizing all point group symmetry operators. See also Sec. B.1.2 of Appx. B on the basics of
representation theory.
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Conversely, every momentum-dependent scalar function f(k) can be decomposed into these
same irreps by exploiting the group-theoretical identity [170, Chap. 4]:

dim ¢
= Z Z f5(k), (1.106)
di
S (k) dmn;lé E;M k), (1.107)
ge

where G is the point group and ( goes over all irreps. Note that, for multicomponent ir-
reps, it is not in general true that f,g(R(gfl)k) => Mgb(gfl)fg(k) because the various (
irrep components contained in f(k) are not necessarily related. For instance, relative to the
Dy, tetragonal group (defined in Sec. B.4 of Appx. B), f(k) = k; + 2k, has fFu(k) = ky,
but (k) = 2ky # f; “«(R(CHk) = k. If we had replaced MSa(g) in Eq. (1.107) with
MSe(g), where c is fixed, then f$(R(g~)k) = Do Mgb(g_l)fbc(k) would indeed hold. How-
ever, the Corresponding fé(k:) now depends on c. For instance, f(k) = —k; + 3k, has
(fF, fF) = (—ke, —ky) when ¢ = 1, but (fF*, fE+) = (3ks, 3ky) when ¢ = 2. In the case of
momentum-dependent vector-valued functions f(k), in Eq. (1.107) one replaces f(R(g~!)k)
with Ry ()£ (R(g~ k).

The leading pairing instability has the largest positive pairing eigenvalue A, and its T,
wee 1/* is the largest. Its symmetry is determined by the corresponding eigenvector d Asa(Fn)-
When the eigenvector irrep is 1D, there is no ambiguity in the resulting pairing symmetry.
However, for multidimensional irreps, there is a continuum of possible pairing states which
are all degenerate on the linearized-gap-equation level. This degeneracy is lifted by high-order
terms, such as the quartic coefficients in the Ginzburg-Landau expansion. We shall see an
example of this phenomenon in Chap. 4 during our Ginzburg-Landau analysis of SroRuQy.

1.3.3.2 Pairing symmetry and the time-reversal sign of the order parameter

In the expression (1.72) for WA (pm, kn),
Waa(Pm, kn) = (L/N)x(p — k,0 ZTr? CapkePien 'l 1o (1.108)
the susceptibility is strictly non-negative:

x(gq,iwe) = (|®@aq(ivr)?) > 0. (1.109)

Furthermore, the pairing form factor Fpa(pm, kn) = >_, Tr ‘P Cop, kan apk which we stud-
ied in Sec. 1.3.2 can be written as [Eq. (1.75)]:

FA(Pm: kn) =D trs 08fa(Pm, kn) OALS (D, kn)- (1.110)

Hence in the singlet channel, the pairing form factor is also strictly non-negative:

J‘OO Pm, n Ztrs ﬁa Pm, n ﬁ (pmakn)

:Z‘ﬁa Pm, kn ss/| > 0.

ass’

(1.111)

29



1 The limitations of loop-current fluctuations as a pairing glue

Consequently
Woo(Pm, kn) > 0, (1.112)

and the singlet Cooper-channel interaction

2 WOO(me kn) + WOO(pm7 _kn)
AV pepm| | Vieral '/

WOO(pmakn) =PpPeg (1'113)

can be either positive or negative-semidefinite, depending on the TR sign of the order param-
eter pg = £1.

By the Perron-Frobenius theorem [175|, the definiteness of the pairing interaction implies
that:

1. The largest-in-magnitude pairing eigenvalue A arising in Eq. (1.91) is positive (negative)
for TR-even (TR-odd) order-parameter fields ®,q.

2. The corresponding eigenvector has components which are all positive, dg—o(k,) > 0.
3. This leading singlet channel is non-degenerate.

Hence the leading singlet pairing state of TR-~even collective modes is always a conventional
s-wave pairing state. This leading singlet pairing state is, in fact, the preferred pairing chan-
nel overall for TR-even order parameters. To prove this, consider the triplet eigenvector
da—123(k,) with the largest triplet eigenvalue. We may always switch to a gauge in which
this d-vector is parallel to és, i.e., in which only the ds—3(k,) component is finite. Since in
this gauge

GJ33(pm> kn) = Z trs G3ﬁa(pm, kn)c?)ﬁg (pma kn)

1.114
= Y ) Sl falpms k) (1.114)

ass’

is bounded from above by Foo(pm, kn), a corollary of the Perron-Frobenius theorem tells us
that:

4. The largest-in-magnitude triplet eigenvalue is strictly smaller than the largest singlet
eigenvalue.

This result is a generalization of a result due to Brydon et al. [176] concerning phonon
exchange to generic TR-even bosons, such as nematic, ferroelectric, alterelectric, spin-nematic,
or charge-density wave modes. This result holds quite generally for systems with parity and
TR symmetry. It even holds for multiband systems with topological band structures and spin-
orbit coupling. In the multiband case, s*~-wave pairing that has different signs on different
Fermi surfaces is not precluded by this result. It is also possible that interactions not included
in the model, such as Coulomb repulsion, suppress the leading s-wave state more than the
subleading state so that we get unconventional pairing in the end [176].

In the case of TR-odd collective modes, the singlet interaction is overall repulsive. This
does not, however, preclude the appearance of singlet pairing [49]. But it does mean that the
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1.3 Analysis of pairing due to quantum-critical loop-current and other fluctuations

existence of an attractive channel and its symmetry both highly depend on the form factor
fo(Pm, kyn) and on the g-dependence of the susceptibility x(q,0). The conceptual aspects of
this we discuss in Sec. 2.5.5 of the next chapter. Moreover, the Perron-Frobenius theorem
implies that any attractive singlet channel, if it exists, must be unconventional in the sense
that da—o(ky) changes sign as a function of k,,. This is necessary to ensure that it is orthogonal
to the most-repulsive (Perron-Frobenius) eigenvector which does not have sign-changes. The
overall most attractive channel can be either singlet or triplet in the case of exchange of TR-
odd modes, as we shall see in Sec. 2.5.4 of the next chapter when we study pairing due to
loop-current and spin-magnetic modes in cuprates.

1.3.3.3 The case of intra-unit-cell order with weak spin-orbit coupling

In Sec. 1.3.2.2, we have seen that, for systems without SOC, symmetries sometimes force the
pairing form factors to vanish at certain momenta. Here we show that this has far-reaching
implications for quantum-critical pairing driven by intra-unit-cell (IUC) order.

For IUC order, the static order-parameter correlation function or susceptibility x(q,0) is
peaked at ¢ = 0 in momentum space. This peak is characterized by a correlation length

&=apr ™’ (1.115)

which diverges as the QCP is approached. Here, ag is a microscopic length scale on the order
of the lattice constant and r is a dimensionless parameter that, by definition, vanishes at the
QCP; see Fig. 1.6. For r ~ 1, the correlation function is structureless in momentum space.
For the static correlation function we shall use the following critical scaling expression

_ F(¢la)
lq*"’

x(q,0) (1.116)

with critical exponents v and 7 and scaling function F(y) that has the usual asymptotic
behavior:

t., f 1
?(y)N{COHS ez (1.117)

>, fory <1,

This critical scaling expression for x(q,0) allows us to phenomenologically treat a general
critical boson sector, beyond the mean-field level (n = 0).

Before we present our analysis, let us briefly comment on previous results for pairing me-
diated by critical fluctuations. For order parameters that are nematic or spin-ferromagnetic,
as the QCP is approached (r — 0) one finds that the largest eigenvalue of the linearized gap
equation diverges like

Aocr™? (1.118)

with ¢ > 0 [34, 119, 124], as schematically shown by the blue line in Fig. 1.4. While this
corresponds to a breakdown of the weak-coupling analysis, it also signals the emergence of
a strong pairing tendency near the QCP. Weak-coupling theory alone cannot determine the
precise behavior in the immediate vicinity of the QCP, yet numerous computational approaches
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1 The limitations of loop-current fluctuations as a pairing glue

show that T is largest at or near the QCP [125, 171-174|. This is the much-discussed efficiency
of quantum-critical pairing [149-156].

Following Ref. [124], the divergence of A in the case of IUC order is based on the assumption
that the forward-scattering form factor Fpa(pm, kn)| pk 18 attractive and varies smoothly as
a function of the exchanged momentum g = p — k. Under these circumstances, the largest
eigenvalue of the gap equation is given by

AR Ao/dd_lq x(q),0), (1.119)

where q| are the components of the transferred momentum g tangential to the Fermi surface

and
9;AB(kn kn)
Ao = 2<p® ’ 1.120
0=9 |V keken| FS ( )

is a suitably defined average over the Fermi surface(s) of the pairing form factor at forward
scattering. The precise components (A, B indices) of F4p(ky,k,) which enter the above
average vary and depend on whether the leading state is a singlet or triplet. Using the scaling
form for x(q|,0) of Eq. (1.116), the integral in Eq. (1.119) gives

v=0B8-d-—n) in spatial dimensions d < 3 — 7. (1.121)

Hence QCPs in d = 2 with n < 1 yield strong pairing. Since most studies find 1 which are
smaller than %, QCPs in two dimensions almost always give strong pairing. The origin of this
pairing enhancement is the g = 0 divergence of the susceptibility at the QCP. In d = 3 the
enhancement is logarithmic, A o logr, provided that n = 0, and it can never become stronger
than this because 7 is never negative. In the remaining cases (when we obtain a negative 1),
A goes to a constant at the QCP (and not to zero as the negative ¢ suggests) and there is no
enhancement.
The enhancement of pairing near ITUC QCPs in 2D rests on two assumptions:

1. That the forward-scattering pairing form factor F4p5(k,, k,) has at least one singlet or
triplet component which has the same sign as the TR-sign of the order parameter, thus
rendering poFap(kn, k,) > 0 attractive in that channel.

2. That the pairing form factor Fp 4(pm, kr) in this same channel does not vanish at forward
scattering (p — k). Note that if it did vanish, then the forward-scattering divergence of
the susceptibility would be suppressed.

In the presence of SOC, both the singlet and triplet components of F4p(k,, k) are generically
finite, with different components having opposite signs when SOC is strong enough. Hence
both assumptions can be true in the presence SOC, i.e., IUC order can be effective at driving
pairing near its QCP in 2D. That said, when the pairing is not effective in the absence of SOC,
the strength of SOC has to be sufficiently large to overcome this tendency.

Without SOC, both assumptions depend sensitively on the type of order. In the case of
purely orbital order, the coupling I" matrix introduced in Eq. (1.27) has the form I'ogp =
Yak,p ® 0o which implies that the pairing form factor of Eq. (1.76) equals

Fa(Pmskn) = (W Yap,ktisn) 00, (1.122)
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where ugps = Uk, ® |s) are the band eigenvectors. Thus

FBA(Pm: kn) =D s 08fa(Pm, kn)Oafd (Dm, kn)

9 (1.123)
=duB Z‘U;r)m'}/ap,kukn‘ >0
a

has only positive components and the first assumption holds only for TR-even purely orbital or-
der. In the case of purely spin order, the spin trace has both positive and negative components
and the first assumption is always valid. Regarding the second assumption, the composition
of parity P with time-reversal © is the only symmetry operation which maps generic k to
themselves. In Sec. 1.3.2.2, we have seen that F4p(kn, k,) = 0 for PO-odd purely orbital
order and for PO-even purely spin order. As a result, the forward-scattering form factor is
suppressed by two powers of g = p — k,

GJBA(pm k’fl)|p~)k X (p - k)2> (1'124)
which changes the 1) value obtained from Eq. (1.119) into:
v=(1—-d—nyv in spatial dimensions d < 1 — 7. (1.125)

Thus quantum-critical pairing can only be logarithmically enhanced in d =1 if n = 0. Even a
small deviation away from the mean-field value of n = 0 eliminates this logarithmic enhance-
ment. In all other cases, there is no enhancement under any circumstance. This is the main
result of our analysis.

In the derivation of Eq. (1.124), we have assumed that the form factor Fpa(pn, kn) is
analytic near forward-scattering. However, even if the vanishing was slightly non-analytic,
i.e. if Eq. (1.124) had |p — k|*™™ instead of (p — k)? for a small |s| < 1, in 2D the exponent
1 = (1—d—n—k)v would yet again be negative, indicating the absence of an enhancement of
A near the QCP. Thus our main result is robust against both the non-analyticity of the vertex
and the non-mean-field scaling of the susceptibility.

Based on this understanding of IUC QCPs, we may now state the behavior of quantum-
critical Cooper pairing in the absence of SOC. We focus on two-dimensional systems. The
QCP pairing behavior of the various IUC orders, classified in Tab. 1.2, is:

e Nematic, ferromagnetic, altermagnetic, and odd-parity spin LC fluctuations drive para-
metrically strong quantum-critical pairing.

e Even-parity LC, ferroelectric, alterelectric, spin-nematic, even-parity spin LC, toroidal
ferromagnetic, and toroidal altermagnetic fluctuations gives parametrically weak pairing
near their QCP.

e Odd-parity LC fluctuations are parametrically strong pair-breakers near the QCP, i.e.,
they completely suppress the pairing driven by other mechanisms.

By “parametrically strong” pairing we mean that the leading A\ oc 7% is attractive and
diverges as r — 0 with a ¢ > 0, as shown by the blue line in Fig. 1.4. Although this di-
vergence indicates a breakdown of our weak-coupling treatment at the QCP, complementary
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Table 1.2: Orbital and spin intra-unit-cell orders, classified according to parity (P)
and time reversal (TR). Colored red are orders which, due to combine parity and TR
symmetry, have suppressed forward-scattering pairing form factors in the absence of spin-
orbit coupling [Eq. (1.124)]. Underlined are the TR-odd orbital orders which are repulsive
in all channels for weak spin-orbit coupling [Eq. (1.123)]. LC stands for loop currents. By
our conventions, nematic and altermagnetic orders do not break space-inversion symmetry.
Even though spin-nematic and even-parity spin LC orders cannot be distinguished using
symmetries, I have included them as separate entries due to their different microscopic
origins. For descriptions of the various ordered phases, see captions of Fig. 1.1 and Tab. 1.1.

Orbital intra-unit-cell orders:

P-even P-odd
. ferroelectric
TR-even nematic
alterelectric
TR-odd even-parity LC odd-parity LC

Spin intra-unit-cell orders:
P-even P-odd

spin-nematic . .
TR-even odd-parity spin LC
even-parity spin LC

ferromagnetic toroidal ferromagnetic
TR-odd '

altermagnetic toroidal altermagnetic

numeric [125, 171-174] and analytic [149-156| calculations indicate a robust SC dome sur-
rounding the QCP.

For “parametrically weak” pairing, in contrast, A — const. as r — 0, as depicted by the
orange line in Fig. 1.4. Hence superconductivity may result, but there is no particular reason
for why T, should be larger near the QCP. Indeed, with regard to pairing, these “parametrically
weak” orders near QCPs behave as any other degree of freedom far from its critical point.

Finally, odd-parity LCs which are “parametrically strong pair-breakers” require special elab-
oration. On the one hand, because they are TR-odd in the orbital sector, their Cooper-channel
interaction is repulsive between all momenta for both singlet and triplet channels; this follows
from Eq. (1.123). On the other hand, this repulsive interaction is strongly peaked at ¢ = 0
near the QCP. These two properties imply that the interaction behaves essentially the same
as the unscreened Coulomb repulsion (~ 1/¢?), which is known to strongly suppress pairing.
The largest attractive pairing eigenvalue A therefore must vanish as we approach the QCP,
as shown schematically by the green line in Fig. 1.4. Only away from the QCP can finite-q
features of the pairing form factor Fpa(pm, kn) or the Fermi velocity |V gegn| result in an
attractive pairing channel that, however, is parametrically weak. For even-parity LCs, note
that the g = 0 repulsion is suppressed because of PO symmetry [Eq. (1.124)] so that finite-q
features can give pairing even precisely at the QCP (orange line in Fig. 1.4).
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Spin-orbit coupling has the effect of eliminating the symmetry-based suppression of forward
scattering |[Eq. (1.124)]. Thus parametrically weak pairing becomes parametrically strong. In
the case of even-parity LCs, it is worth noting that the forward-scattering amplitude behaves
like a pseudospin triplet and changes signs so we get parametrically strong pairing instead of
parametrically strong pair-breaking. Pairing and pair-breaking which is parametrically strong
in the absence of SOC continues to be so with SOC.

In conclusion, focusing on loop currents in two-dimensional systems without SOC, even-
parity IUC LCs are inefficient at driving pairing near their QCP, whereas odd-parity ITUC LCs
are detrimental to pairing near their QCP, as summarized in Fig. 1.4. Note that the absence
of a strong attractive pairing interaction at the QCP justifies a posteriori the weak-coupling
analysis employed in our analysis.

Let us end with a comparison to finite-q order. In the case of staggered order, the static
susceptibility x(g,0) peaks at a finite ordering vector ¢ = @, as well as at symmetry-related
Q' = R(g9)Q, where g are point group operations. Finite-momentum Cooper pair scattering,
however, only takes place at certain “hot spots” on the Fermi surface where both k and k + Q
reside on some Fermi surface. Geometrically, these hot spots are found by translating the Fermi
surface(s) by @ and then looking at intersections. As long as the Fermi surface geometry is
such that hot spots exist, the largest pairing eigenvalue A will be essentially given by the same
Eq. (1.119), albeit with a modified Ao ~ Fap(ky, (k+Q)m) which is an average over hot spots.
Thus ¢ = (3—d—mn)v yet again and we find parametrically strong enhancement as we approach
QCPs in 2D. As in the IUC (Q = 0) case, at the QCP this weak-coupling treatment breaks
down and complementary methods which include the effects of retardation, damping, etc., are
needed to confirm that we get a SC dome around the QCP. The big difference from IUC order
is that there are no generic symmetries which map arbitrary k to k + Q. Hence, there are no
symmetry constraints which would suppress the ¢ = @ divergence of the susceptibility and
give results analogous to the ones we just derived for IUC order. Only when the hot spots
reside on special high-symmetry points of the Brillouin zone can some similar statements be
made. This remains as an interesting venue for further study.
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Chapter 2

Intra-unit-cell loop currents
in cuprates

The physics of cuprates has attracted an enormous amount of attention since the discovery
of high-T, superconductivity in these compounds in 1986 [22], almost four decades ago. As
of the time of writing, more than 30000 papers have been published that deal with cuprates
and their superconductivity [177]. Yet questions concerning the proper pairing mechanism,
the role of competing orders, the origin of the pseudogap and strange metal regimes, and the
remnants of Mott localization phenomena near optimal doping continue to be debated [178].

In a prominent proposal [35, 36|, Chandra M. Varma has suggested that loop currents
(LCs) are the key to understanding the phase diagram of the cuprates. The phase diagram
of hole-doped cuprates is shown in Fig. 2.2. Within this proposal, the underlying order of
the pseudogap phase is a LC order which preserves translation symmetry, but breaks space-
inversion and time-reversal symmetry in the orbital sector [37—40]. As the doping is increased,
this odd-parity intra-unit-cell (IUC) LC order vanishes at a quantum-critical point (QCP)
around which LC fluctuations are especially strong. According to the proposal, it is precisely
these LC fluctuations that are responsible for both the d,2_,2-wave superconductivity (SC)
surrounding the QCP [41] and the strange metal behavior above the QCP, which is described
using marginal Fermi liquid theory [166, 179]. The final proposal is summarized in Refs. |35,
36].

In this chapter, we explore to what degree are quantum-critical [TUC LC fluctuations a viable
source of Cooper pairing in the cuprates. We do so by employing the same strategy we used
in the previous chapter (Sec. 1.3.3, Fig. 1.6) to analyze the quantum-critical pairing of general
IUC orders. Given the strong evidence that cuprates are a Fermi liquid at overdoping with a
negligible spin-orbit coupling (SOC) [178, 180-182|, the results of Sec. 1.3.3.3, summarized in
Fig. 1.4, apply to the current case and essentially answer our question.

The answer is that even-parity LCs are not effective at driving SC near their QCP, whereas
odd-parity LCs are pair breaks which strongly suppress any pairing tendency near their QCP.
Since pairing driven by even-parity LCs is parametrically weak, there is no particular reason
to think that even-parity LCs can drive SC at such high temperatures as in the cuprates.
Although even-parity LCs can support unconventional pairing driven by other mechanisms,
they are not likely to be the main source of pairing in the cuprates. Regarding odd-parity
LCs, our results give a compelling reason to believe that the pseudogap phase is not associated
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with an odd-parity IUC LC order, contrary to Varma’s suggestion [35, 36]. At best, such odd-
parity IUC LCs may arise as a subsidiary order, as proposed in Refs. [90, 183, 184]. Note
that, according to our analysis, quantum-critical staggered LCs (whose g # 0), considered in
Refs. [64-66, 185-189], constitute an effective pairing glue, unlike IUC LCs (whose g = 0).

Even though the main question has thus already been answered in the negative in Chap. 1,
a number of related questions still remain. What types of LC orders are possible in the
cuprates? How can we experimentally distinguish these LC orders? And for which of these
LC orders do we get the correct d,2_,2 symmetry? These are the questions that we answer in
the current chapter. Just like the previous chapter, the current chapter is based on Ref. [29]
and in a number of places the text of Ref. [29] has been recycled. Additional material not
covered by Ref. [29] includes the literature review of Sec. 2.2, details of how fermionic bilinears
are classified (Sec. 2.4), analytic solutions of the linearized gap equation (Sec. 2.5.6), and
an extended comparison with the work by Aji, Shekhter, and Varma [41] which also studied
LC-driven pairing with a similar strategy, but came to very different conclusions (Sec. 2.5.7).

This chapter is organized as follows. We start with Sec. 2.1 in which we recall the basics of
cuprates: their composition, crystal structure (Fig. 2.1), and phase diagram as a function of
hole doping and temperature (Fig. 2.2). After that, in Sec. 2.2.1 we survey the experimental
evidence on symmetry-breaking in the pseudogap regime, which is overall mixed, in Sec. 2.2.2
we review the proposals which put loop currents forth as the hidden order of the pseudogap
regime, the most prominent of which are those by Varma [35, 36] and Chakravarty, Laughlin, et
al. [64—66], and in Sec. 2.2.3 we review microscopic theoretical investigations of loop currents,
some of which find them to be competitive for realistic parameters. In the next Sec. 2.3,
we discuss the electronic structure of the cuprates and we introduce the three-orbital model
of the CuO2 planes, summarized in Fig. 2.4, which we use in the rest of the chapter. The
fermionic bilinears of the three-orbital model are classified in Sec. 2.4, the main result being
Tab. 2.5 (Sec. 2.4.2.1) which lists all possible local orbital orders. How this classification is
put to practice is explained in Sec. 2.4.3. As an interesting application of potentially broader
interest, in Sec. 2.4.4.2 we decompose extended Hubbard interactions into symmetry channels
and derive Fierz identities which reflect ambiguities in the decomposition.

In Sec. 2.5, we finally turn to the analysis of pairing due to IUC LC fluctuations in cuprates.
First, we establish that the strategy of Sec. 1.3.3 (Fig. 1.6) applies to cuprates. Then, in
Sec. 2.5.1, we explain how the formalism of the previous chapter gets simplified for purely
orbitals orders in the absence of SOC. The allowed IUC LC orders are determined in Sec. 2.5.2
by taking into account the Bloch and generalized Bloch-Kirchhoff theorems of Sec. 1.1.1 of the
previous chapter. We find three local LC orders, with g,,(,2_y2), dz2_,2, and (pz|py) symmetry,
which we study in the remainder of the chapter. In Sec. 2.5.3, we explore how efficiently LC
fluctuations scatter Cooper pairs off Van Hove points, depending on the LC symmetry and
band structure. In Sec. 2.5.4 we present the main results: numerical solutions of the linearized
gap equation, together with discussions of how to experimentally probe the LCs and of the
influence of SOC. We find that g-wave LCs robustly favor dg, pairing (Fig. 2.12), while d-wave
LCs robustly favor d,2_,2 pairing (Fig. 2.13). As for p-wave LCs, they suppress pairing near
the QCP, while away from it they support extended s-wave pairing (Fig. 2.15). A conceptual
understanding of our results is outlined in Sec. 2.5.5. In the penultimate Sec. 2.5.6, we derive
analytic solutions of the linearized gap equation, which supplement the numerics. In the final
Sec. 2.5.7, we provide an extended comparison to the work by Aji, Shekhter, and Varma [41]
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2.1 Basics of cuprate superconductors

which claimed that d,2_,» superconductivity robustly appears in a model of p-wave and g-wave
LCs appropriate for cuprates. We argue to the contrary.

2.1 Basics of cuprate superconductors

The cuprate superconductors are a family of copper oxides materials which are famous for their
high-temperature superconductivity. Superconductivity in these materials was first discovered
in the copper oxide perovskite Las_,Ba,CuOy4 with a T, ~ 30K in 1986 by Bednorz and
Miiller [22], for which they were soon awarded a Nobel prize.

A T, of —240°C might not seem impressive, but it greatly surprised the community [190].
On the one hand, its T, ~ 30 K exceeded what was though to be possible based on BCS the-
ory [191], which was by then well-established. The intuition behind this expectation is that the
relatively weak electron-electron attraction mediated by phonons can, because of retardation,
only overcome the strongly repulsive Coulomb interaction at low energies, making T, small.
On the other hand, the material itself defied what were conventionally understood to be favor-
able properties for SC, as summarized in the empirical Matthias’ rules [192], for instance. The
simplified Matthias’ rules are [193]: (i) high symmetry is good and cubic symmetry is best,
(ii) high density of electronic states is good, (iii) stay away from oxygen, (iv) stay away from
magnetism, and (v) stay away from insulators. In contrast, the first cuprate superconductor
Las_,Ba;CuQy is strongly anisotropic and a poor conductor which, after a slight change of
doping, becomes a strongly insulating antiferromagnet. Since magnetism mostly arises from
repulsive electron-electron interactions, whereas Cooper pairing needs attraction, its vicinity
to a SC phase of such high T, seemed perplexing.

Very soon after the discovery, a flurry of scientific activity ensued in which many other
cuprate superconductors were discovered, with the highest ambient-pressure T, reaching 138 K
in Hg Tl 2BagCagCusOg.rs [24, 194], which is larger than in any other compound discovered
to date. Currently, there are more than 200 compounds that fall into the family of cuprate
superconductors [24].

In the intervening four decades, a vast literature has grown on cuprate superconductors,
spanning more than 30000 articles [177]. Reviewing this vast field would require a whole book
of its own, and indeed many have been written [195-199]. In this section, we take up the
more modest task of reviewing the basics regarding the composition, crystal structure, and
phase diagram of the cuprates. These basics provide the background that is necessary for
understanding the current work, which is based on Ref. [29]. The main references for this
section are the chapter on cuprate superconductivity in Leggett’s book [104] and the review
article by Keimer et al. [178]. Both references are an excellent entry into the field, and we
refer the interested reader to these references (as well as the literature cited therein) for further
reading.

2.1.1 Composition and crystal structure

The cuprates are layered compounds whose key feature are the CuO2 copper oxide planes,
which are depicted in Fig. 2.1(b). Conceptually, the chemical composition of a generic cuprate
material can be written in the following way [104]:

(CHOQ)n An—l X, (2.1)
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where CuQOs stands for the copper oxide planes, A is an alkaline earth element, a rare earth
element, or yttrium, and X can be an arbitrary collection of elements, possibly including copper
and/or oxygen. The appeal of writing the chemical formula in this way is that it now reflects
the crystal structure characteristic of cuprates [104], which is the following. The CuOs planes
come in groups made of n layers which are intercalated with (n — 1) A elements; together we
shall call this groupation an “n-fold multilayer.” In between these n-fold multilayers are the
X groups which act as a charge reservoir for the CuOy planes. Whereas the distance between
the CuOgy planes is small within the n-fold multilayers (assuming n > 2), the distance between
the multilayers is generally larger, although how much depends on X. Moreover, the CuO»
planes are stacked on top of each other within the n-fold multilayers, but are usually staggered
relative to one another between multilayers.

The cuprate crystal structure can also be understood as a variation of the perovskite struc-
ture in which (for n = 1) Cu is surrounded by an octahedron of oxygen atoms, while A reside
at the corners of the cube surrounding Cu [104]. Within this picture, the in-plane oxygen
atoms (which are called “ligand” oxygens) are shared between the copper elements, but the
out-of-plane oxygen atoms (the so-called “apical” oxygens) are staggered relative to each other.
For n > 2, the oxygen octahedra become vertically elongated. An example of a cuprate with
an = 1 perovskite structure is shown in Fig. 2.1(a); its formula can be recast into (2.1) using
n =1 and X = Lag_,Ba,CuO;. Although the A = La;_y/2Bay/ intercalant is present in
this example, it gets grouped with X due to the staggering of the CuO; layers. Let us also
note that some cuprate superconductors, such as Sr,Caj;_,CuQOs, are “infinitely layered” in
the sense that they do not have a charge reservoir group X [104].

Given how the CuOy planes are the motif that is common to all cuprates, it is almost
universally believed that SC originates in these planes [104, 178]. This does not, however,
mean that the surrounding is unimportant. The surrounding must play some role (beyond
doping) if we are to explain the large variations of T.' and other properties with n, A, and X
entering Eq. (2.1) [104]. Rather, the belief is that understanding the physics of the CuOg planes
is the correct first step (“zeroth-order approximation”) in understanding the broad qualitative
features of the cuprate phase diagram [104].

Although intuitively plausible, one may wonder if there is hard experimental evidence sup-
porting this belief. The answer is affirmative. The main experimental evidence comes from
studies of atomically-thin two-dimensional superconductors [201]| and from x-ray absorption
spectroscopy measurements [202]. In Refs. [203, 204], layered heterostructures were fabricated
in which a single cuprate layer situated between insulating layers was found to be supercon-
ducting, without any apparent suppression of 7T, relative to the bulk crystal. However, the
neighboring insulating layers could, in principle, play a role in stabilizing this SC, making
the interpretation of this finding not completely clear-cut [160]. More recently, undiminished
superconductivity was measured in exfoliated monolayer crystals of BigSroCaCusOg;s [205],
which has conclusively shown that SC essentially originates from one layer in isolation. The
CuOg, planes are the central parts of these layers, and complementary x-ray absorption stud-
ies reveal that the low-energy electronic states primarily derive from the in-plane CuOq or-
bitals [206-210], in agreement with theoretical considerations [211-213].

For the above reasons, the majority of theoretical work on cuprates has focused on the

!For some cuprates T. = 0 at all doping levels, which might be an important clue regarding the origin of their
superconductivity [104].
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Figure 2.1: Crystal structure of lanthanum barium copper oxide Las_;Ba;CuQO4 [200]
(a) and of the copper oxide planes CuOz (b). Lanthanum barium copper oxide was the
first discovered cuprate superconductor [22| and it has one of the simpler crystal structures
among the cuprates, which is that of a perovskite. Its horizontal planes, which are made of
copper and oxygen atoms, are shown from above under (b), together with the chemically
most active orbitals which are, namely, Cu:3d,2_,2 and O:2p,, (Sec. 2.3). Orange (blue)
are positive (negative) lobes of the orbitals. Figure (a) is reproduced from Ref. [200], with
permission from Springer Nature.

copper oxide planes [104]; see Refs. [214-224] for early examples.? In this chapter, we shall do
the same and study LC-driven pairing within a model of the CuQOs plane.

The CuOs plane is, to a first approximation, made of a square lattice of copper atoms, with
(ligand) oxygen atoms situated midway between the copper atoms, as shown under Fig. 2.1(b).
Hence it has a tetragonal point group. For n > 2 in Eq. (2.1), the neighboring layers are
stacked on top, with the same orientation and with copper atoms residing precisely above
copper atoms. In reality, there are a number of deviations from this idealized picture [104].
Many cuprates have a slightly rectangular lattice, instead of a square one, rendering the point
group orthorhombic. When there are multiple neighboring layers, the Cu—O bonds often
buckle away from the crystalline a and b directions. Finally, in some compounds, such as
BipSroCaCusOs, slight distortions with a large period appear within the CuOgz planes [104].
These inessential features, which are not common to all cuprates, we shall not include in our

2There are innumerable later references as well.
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analysis. As for the chemical structure, we shall discuss later, in Sec. 2.3, when we introduce
the three-orbital tight-binding model of the CuOs planes [217-222] that we employ in our
calculation.

2.1.2 Phase diagram of hole-doped cuprates

There are many experimental knobs one may use to tune the cuprates: pressure [225], uniaxial
or shear stress, magnetic fields [180], temperature, and chemical composition or doping. The
two most important ones are temperature and doping [104, 178]. A schematic temperature
vs. doping phase diagram of the hole-doped cuprates is shown in Fig. 2.2, reproduced from
Ref. [178]. The hole doping p is defined so that 1 4+ p is the number of holes in the CuOq
planes per copper atom. Electron-doped cuprates will not be discussed here or studied later
on. Although closely related to the stoichiometric doping levels (usually denoted with z or §),
the relation to p is not necessarily the simple linear one that follows from the naive chemical
valencies of A and X because the injected holes can end up elsewhere in the system, and
not only in the CuOg planes [104]|. Once rescaled to p, there is considerable evidence for the
universality of the corresponding cuprate phase diagram [104, 178], as shown in Fig. 2.2. That
said, one should keep in mind that, in practice, this diagram is reconstructed from multiple
cuprate compounds since no one compound is chemically and structurally stable over the
whole range of doping which is of interest [104]. One should also bare in mind that the precise
quantitative features, such as the value of T,, significantly vary with chemical composition in
a way that is not completely encapsulated by p [104]. Below we briefly discuss the various
phases appearing in Fig. 2.2.

In the absence of doping (p = 0), that is “at stoichiometry,” cuprates are magnetically
ordered insulators [104, 178| (blue region in Fig. 2.2). The obstruction to electric conduction
comes not from a gap at the Fermi level in the band structure, which is not expected for an
odd number of electrons per unit cell anyway, but from the strong on-site Coulomb repulsion
which localizes the holes to the copper atoms. The result is a Mott insulating phase [104, 178,
226, 227]. Although localized, the spins of the holes are still active degrees of freedom and
they interact via virtual hopping processes (“superexchange”). Since Pauli’s principle forbids
parallel spin exchange, whereas anti-parallel spin exchange is only suppressed by the Coulomb
repulsion, the effective spin-spin interaction favors opposite spins and is antiferromagnetic. In
agreement with these considerations, neutron diffraction and other studies show that at p = 0
cuprates have antiferromagnetic Néel long-range order in which neighboring copper elements
have oppositely oriented spins [104, 178, 226, 227]. This antiferromagnetic phase persists up
to room temperature, with little variation in the Néel transition temperature Ty ~ 300K
between compounds [104].

With the injection of holes into the CuOg planes via doping, the holes become more mobile
and through their interactions a variety of other phases appear [178|. At low temperatures,
we have the prominent SC phase (green region in Fig. 2.2) which spans a SC dome ranging
from pmin tO0 Pmax. In between somewhat closer to pmax, the SC transition temperature T,
attains a maximum at the so-called optimal doping popt which is then used to orient oneself
within the diagram. Samples with p < pop are called “underdoped,” those with p ~ popt
are called “optimally doped,” and those with p > popt “overdoped.” As we now increase
the temperature, underdoped samples enter the pseudogap phase (yellow-brown region in
Fig. 2.2), optimally doped samples enter the strange metal phase (purpler region in Fig. 2.2),
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Figure 2.2: Schematic phase diagram of the hole-doped cuprates, as a function of
hole doping p and temperature T [178]. The blue region indicates antiferromagnetic
(AF) order, which onsets below the Néel temperature Ty, whereas the green region indicates
superconducting order of d,2_,2-wave symmetry (d-SC), which onsets below T,. There is
a smooth crossover from Fermi liquid behavior at high doping (white) to strange metal
behavior above optimal doping (purple). The pseudogap phase (yellow-brown) develops
below T™ in a fairly sharp crossover. Within the pseudogap region, there are competing
orders which are, namely, charge-density waves (CDW) and spin-density wave (SDW). They
become fully developed below Tcpw (red stripes) and Tspw (green stripes), respectively.
T5c, onset> 1C, onset; and Ts onget Next to the red and green dashed lines indicate the onset
of superconducting, charge, and spin fluctuations, respectively. Indications of a quantum-
critical point (QCP), denoted with a purple dot, at which the pseudogap phase becomes
a Fermi liquid are experimentally seen by suppressing the superconducting state with a
strong magnetic field [180]. See text for further discussion. Reproduced with editing from
Ref. [178], with permission from Springer Nature.
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and overdoped samples which do not exceed pmax enter a Fermi liquid phase (white region
in Fig. 2.2). Although the transitions at T and T, are sharp, the change from the Fermi
liquid to the strange metal is a broad crossover, whereas the change from the strange metal
to the pseudogap phase at 7™ is a sharp crossover [178, 180, 228| which some interpret as a
transition |36, 64].

Even though the origin of cuprate SC is hotly debated, a few of its properties are agreed
upon [104, 178]. There is a large body of experimental evidence which shows that the SC
state is an even-parity singlet state which in the case of tetragonal systems has d,2_,2 sym-
metry [229-231] and which for weakly orthorhombic systems is dominated by the d,2_,2 com-
ponent [231, 232|. Its phenomenology is well-described using Ginzburg-Landau theory [104],
albeit with the noted difference that, unlike for classical SC, the Cooper pairs are a lot smaller
and phase fluctuations play a much more important role [233, 234]. Finally, there is consid-
erable evidence [235-240] that well-defined Bogoliubov quasi-particles are present in the SC
state. The normal-state quasi-particles, however, may or may not be well-defined, depending
on the doping.

At overdoping, numerous experiments indicate a conventional Fermi liquid normal state [104,
178, 180]. Thermodynamic and transport measurements exhibit the expected Fermi liquid
behavior [241-246], as do magneto-oscillation experiments [247, 248] and angle-resolved pho-
toemission spectroscopy (ARPES) [236, 249-252|. Moreover, the overdoped normal state is
well-described by density functional theory [181].

Near optimal doping, the normal state is a “strange metal” whose most fundamental feature
is the absence of quasi-particles [178]. This has far-reaching implications for its phenomenology,
perhaps the most striking of which is the linear in temperature resistivity which spans from
as low to as high temperatures as one can measure [180, 253|. At low T', very general phase
space considerations of electron-electron scattering processes show that the resistivity should
increase oc T? for a system with well-defined quasi-particles, as in a Fermi liquid [67, 254].
At T comparable to the Debye temperature, the dominant contribution to the resistivity is
electron-phonon scattering which is linear in 7" [67]. However, the resistivity should saturate at
high T once the electron’s mean free path becomes comparable in magnitude to the de Broglie
wavelength; this is the so-called Mott-Ioffe-Regel limiting [255]. The linear in 7' resistivity,
sometimes stretching up to three orders of magnitude in temperature, is thus one of the big
mysteries that has attracted much scholarly attention [35, 36, 253, 256], for it not only arises
in the cuprates.

In this context, high magnetic fields have been used to suppress the SC phase and uncover
the low-T normal state near optimal doping to great effect, as nicely reviewed in Ref. [180].
The picture that is emerging is that at T" = 0 the pseudogap phase ends at a near-optimal
p = p* in a sharp transition [180, 228|. In the absence of a magnetic field this transition is
shielded by a SC dome [180, 228] and for finite 7' = T it turns into a sharp crossover [180].
The main evidence supporting that the T' = 0 phase transition is second-order is the divergence
of the heat capacity [180].> However, the observation of a diverging length is missing and the
identification of the order which underlies the pseudogap phase has not been settled [180].

In addition to the proposal, mentioned at the beginning of this chapter, that intra-unit-cell

3Tt would be desirable if this heat capacity divergence as a function of doping could be reproduced in additional
cuprate compounds which do not have a Van Hove singularity near optimal doping.
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loop currents underlie the pseudogap phase [36, 37|, d-density wave [64-66],* oxygen orbital
moment [257|, spin magnetoelectric [258-260|, nematic [261], topological spin liquid [226],
and many other orders [262-264] have been suggested as well. For a concise review, see the
introduction of Ref. [265]; see also Sec. 2.2.2.

The pseudogap phase is characterized by three main experimental signatures [180, 228,
266, 267|: the opening of a gap at the Fermi surface near the anti-nodal regions (k,ky) ~
(w,0) and (0,7), the retention of a well-defined Fermi surface (“Fermi arcs”) at the nodal
diagonal regions intersecting k, = %k, and a carrier density n = p which abruptly changes
to n =1+ p at higher doping. The first two are most directly seen in ARPES [236, 237, 268,
269| and the name “pseudogap” derives from this partial opening of a gap, while the last is
inferred from Hall effect measurements [180]. The pseudogap is also seen in optical conductivity
measurements, scanning tunneling microscopy, and electronic Raman spectroscopy [266]. The
pseudogap regime is also marked by various competing orders whose interplay is not completely
understood [178]. The most prominent among these orders are charge-density waves [270, 271|,
which are denoted with red stripes in Fig. 2.2.

2.2 Previous experimental and theoretical work

In Sec. 1.1.2 of the previous chapter, we have reviewed the theoretical and experimental lit-
erature on orbital magnetism and loop currents in general systems. Here we continue this
discussion, focusing on the cuprate superconductors in which loop currents have arguably
drawn more attention [36, 62, 64| than in all other systems combined.

We start by reviewing the experimental literature on symmetry-breaking in the pseudogap
regime. After that, in Sec. 2.2.2, we discuss theoretical proposals in which some type of LC
order is put forward as the hidden order underlying the pseudogap regime. We end with
an overview of microscopic theoretical calculations which investigated whether LC order is a
competitive instability that could arise in a realistic model of the cuprates.

2.2.1 Experiments on symmetry-breaking in the pseudogap regime

As already noted in Sec. 1.1.2, LC order, although it takes place in the orbital sector, is
measurable using spin probes because they are sensitive to local magnetic fields and time-
reversal symmetry-breaking (TRSB), regardless of origin [62].

The earliest evidence supporting TRSB in the pseudogap phase of the hole-doped cuprates
comes from a spin-polarized neutron diffraction (PND) study of YBasCu3Og, performed in
the group of Philippe Bourges [272]. Their main finding is that the rate of neutron spin-
flipping changes at the @ = (0,1,1) Bragg peak below T*, indicating a TRSB state which
preserves the translation symmetries of the lattice. Later PND studies performed on a number
of other cuprate compounds [273-283|, mostly carried out by the groups of Bourges and
Greven using similar methodology, have reproduced and extended this finding. However,
an independent group led by Stephen M. Hayden using different methodology has found no
change in the spin-flipping rate at the same @ = (0, 1,1) Bragg peak below 7% [284]. In the
ensuing dispute [285-287] two notable points of contention are whether the data of Ref. [284]

4d-density waves are the same thing as staggered loop currents, usually with a Q = (m, 7). Sometimes they
are also called staggered flux states [80, 81] or orbital antiferromagnets [82].
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has the necessary statistics to resolve the effect and whether the measurement protocol and
background subtraction procedure of Ref. [272] results in spurious temperature-dependent
drifts in the signal. Although all the just cited studies reported no evidence of translation
symmetry-breaking, very recently two PND studies have found a short-ranged in-plane TRSB
order with a commensurate g = (m,0) = (0, 7) below 7™ [288, 289).

If taken at face value, the PND measurements (excluding Ref. [284]) suggest local magnetic
moments per unit cell that are on the order of 0.1 Bohr magnetons [290]. Local magnetic
moments of this size should be measurable using nuclear magnetic resonance (NMR) [291],
as well as muon spin spectroscopy [292]. Numerous NMR and nuclear quadruple resonance
experiments have been carried out through the years [293-298| and they do not find any evi-
dence for such local moments. A possible interpretation is that these local magnetic moments
fluctuate slowly enough in time to appear static when probed by neutrons, but that they av-
erage out to zero on the longer time-scales which are probed by NMR [298, 299|. If true, this
interpretation would suggest that the putative order underlying the pseudogap phase is not a
genuine static order.

Muon spin relaxation (4SR) measurements with zero and longitudinal magnetic fields have
also been used to probe TRSB, with mixed results. One uSR experiment does find a signal
at the expected T™ [292], indicating TRSB in agreement with PND, another finds a signal
at a different temperature [300], and the remaining [301-303] do not find any indications
of TRSB. Concerns were raised [304] and responded to [305] regarding the positive results
of Ref. [292]|, and a later study [306] investigated whether certain assumptions that enter
the analysis of Ref. [292] hold at overdoping, as a reference. In particular, they find that the
nuclear-dipole field is temperature-dependent [306], which casts some doubt on the conclusions
of Ref. |292], although the longitudinal magnetic field might be strong enough for the nuclear
dipolar relaxation to decouple [299]. The same group thus used stronger magnetic fields in a
recent experiment [299] in which they reproduced the finding of Ref. [292] that there are slow
magnetic fluctuations present in YBasCuzO,, albeit with relaxation rates whose T-dependence
below T™ is unusual when compared to conventional magnetic orders. We refer the interested
reader to Ref. [307] for an accessible discussion of SR technicalities and further discussion of
the just-mentioned puSR experiments of cuprates.

The magneto-optic Kerr effect is another experimental probe capable of observing TRSB [93].
A series of experiments have been performed on cuprates which all found a non-zero Kerr rota-
tion [93, 308-311], indicating TRSB. However, the signal onsets at a distinct temperature Tk
below T™ which is close to the charge ordering temperature. The observed Kerr effect is also
unusual because a magnetic field cannot be used to flip the sign of the Kerr rotation angle and
because opposite surfaces of the same crystal have the same Kerr rotation sign [311]. These un-
usual features motivated a number of proposals that a novel gyrotropic order which preserves
time-reversal symmetry is the explanation [312-314|, but later work established that TRSB
is necessary [315-318| which lead to retractions [319-321]. Intra-unit-cell loop currents [322,
323| are a possible explanation, but so are other TRSB orders [184, 258, 259, 324-326|. Let us
also mention an early observation of circular dichroism in the pseudogap regime [327]. This
is indicative of TRSB [327], although alternative interpretations exist [328-331| which were
disputed [332-334].

In addition to time reversal, many studies have investigated whether any point group sym-
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metries are broken at T* as one enters the pseudogap regime.” A sharp feature indicating
a transition was observed in resonant ultrasound spectroscopy [335].6 Torque magnetometry
measurements found a cusp in the T-dependence of the in-plane anisotropy [336, 337|, strongly
suggesting a nematic transition at 7" which breaks the four-fold in-plane rotation symmetry
Cy4. Multiple studies observed that a large in-plane anisotropy develops in the Nernst ef-
fect at T™ [338-341]|, supporting a Cy-nematic transition. A terahertz polarimetry experiment
found evidence for the breaking of both Cy and mirror symmetries at 7 [342], while an optical
second-harmonic generation experiment reported evidence for the breaking of spatial inversion
and two-fold rotation symmetries [343].” Finally, elastoresistance measurements also corrobo-
rate two-fold rotation symmetry-breaking at 7™ [345]. Thus most studies support nematicity
in the pseudogap phase, with the exception of one study which found no signatures of in-plane
anisotropy in the resistivity or the Seeback coefficient at T* [346]. One point of debate [347,
348| is whether the transition at 7™ is a genuine mean-field thermodynamic one, as suggested
in Refs. [309, 335, 336], because this would normally entail a specific heat anomaly which,
despite an intensive search, has not been observed [347-350]. The Ashkin-Teller/XY model
nature of the transition to intra-unit-cell LC order has been suggested [351, 352| to explain
why the transition is more easily observable in ultrasound than in heat capacity measurements.

In summary, the experimental evidence on TRSB in the pseudogap phase is mixed. PND
finds it, NMR does not, uSR is mixed, and polar Kerr measurements find something, but at a
Tk < T* and with a number of strange properties [311|. Regarding nematicity, there is strong
evidence that it sets in below T™, while spatial-inversion symmetry-breaking is supported
primarily by one study [343].

2.2.2 Loop-current proposals for the pseudogap phase

One possible interpretation of this state of affairs, advocated by Varma [37—40], is that the
pseudogap regime is an ordered LC phase of broken time-reversal and space-inversion symme-
tries that preserves lattice translation symmetry. Later this was revised [353] to include order
parameter fluctuations on time-scales shorter than those measured by NMR and zero-field
uSR, to avoid conflict with the latter two null-results. More recently, a small degree of lattice
translation symmetry-breaking was also included in the proposal to explain the pseudogap
and Fermi arcs observed in ARPES [354]. The remaining evidence can then be fit reasonably
well |39, 323, 355, with the phase diagram as shown in Fig. 2.3, reproduced from Ref. [36].
The final proposal is reviewed in Ref. [36].

In a conceptually similar proposal, Chakravarty, Laughlin, et al. [64] have also put forward
odd-parity loop currents as the underlying order of the pseudogap phase, with the main dif-
ference being that they are staggered with a finite ordering wavevector @ = (m, 7). This
staggered LC order can be understood as a d,2_,» density wave [356], which is the original
and most common way of referring to it. In light of even earlier work [80-82] which found
such a state in the Hubbard and Heisenberg-Hubbard models, d-density waves are sometimes

5Since the experiments that I list here are sometimes used to define T* proper, let me just note that the
approximate value of T* can be independently determined from the crossovers seen in ARPES and tunnelling
spectroscopy [228, 266], for instance.

®They were unable to deduce any information on symmetry-breaking in Ref. [335], however.

"There have also been second-harmonic generation measurements at zero doping which found evidence for
mirror symmetry-breaking above the Néel temperature [344].
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Figure 2.3: Selected experimental evidence on the nature of the pseudogap phase
of hole-doped cuprates [36]. Polarized neutron scattering points are from Ref. [272],
resonant ultrasound measurements are from Ref. [335], terahertz polarimetry data is from
Ref. [342], second-harmonic generation points are from Ref. [343], and muon spin relaxation
(1uSR) data is from Ref. [292]. See also Fig. 3 of Ref. [292] for a similar plot and the discussion
in the text regarding evidence (not shown) which is at odds or complicates the interpretation
of the pseudogap as a state of broken time-reversal and space-inversion symmetry. Reprinted
with permission from Ref. [36]. Copyright (2020) by the American Physical Society.

also called orbital antiferromagnets or staggered flux order. This proposal has been further
developed in a number of later articles |65, 66, 185-189] of which I would like to highlight the
two by Laughlin [65, 66] as good reviews.

For a long time, the main evidence supporting intra-unit-cell LCs over staggered ones was the
absence of translation symmetry-breaking observed in PND (see previous section). Recently,
however, two PND studies found Q = (7,0) = (0,7) TRSB order [288, 289|, which could be
taken as evidence for staggered LCs. Although most microscopic studies find staggered LCs
with Q = (m, m), if they find any (see next section), one study following [65, 66| actually found
Q = (7,0) = (0,7) as the preferred ordering [189]. In any case, the difficulty in observing a
Q = (m,m) Bragg peak could be due to pseudogap glassiness |65, 66| and the agreement of the
proposal with experiment is as reasonable, broadly speaking, as that of intra-unit-cell LCs.

Finally, let us also mention one unrelated paper [257] in which oxygen orbital moments
were considered as an alternative to loop currents between orbitals. Chiral nematics [325] and
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imaginary charge-density waves [326] have also been discussed in the context of pseudogap
physics. Both are orbital orders which are symmetry-wise similar to LCs, but microscopically
different.

Although these proposals are interesting and consistent with a significant portion of experi-
ments, it is worth pointing out that, even if we take for granted that TRSB takes place, there
is currently no experimental evidence which could tells us whether orbital magnetism (LC or-
der) is preferred as an explanation over some type of conventional spin-magnetism, or torroidal
spin-magnetism if we accept space-inversion symmetry-breaking. Moreover, even if LC order
is present, it could simply be a “passenger” accompanying other orders, instead of a “driver”
generating the superconductivity and strange metal behavior, as proposed by Varma [36] and
Chakravarty, Laughlin, et al. [64-66]. The fluctuations of both pair-density waves [183] and
bond-density waves [184] have been shown to induce subsidiary orbital loop currents, for ex-
ample. Orbital LCs have also been found to emerge in models where the pseudogap parent
phase is a spin liquid [90], and even for simple spin-magnetic orders spin-orbit coupling is ex-
pected to induce loop currents, as has been found in iron-based superconductors [91]. Needless
to say, there are numerous other interpretations of the experimental evidence. For instance,
both spin magnetoelectric order (torroidal spin-magnetism) [258-260] and (fluctuating) pair-
density waves [183, 357-359| are similar to the proposed LC orders in terms of symmetries
and are therefore difficult to tell apart experimentally. Microscopically, however, the two are
very different from LCs, with the former taking place in the spin sector and the latter in the
particle-particle sector.

2.2.3 Loop currents in microscopic models of cuprates

The cuprates are microscopically most often modeled using repulsive Hubbard models [178,
212|, possibly including extended interactions, hoppings, and multiple orbitals. These models
have been the subject of extensive research [360, 361|, in no small part because of their
potential relevance to high-temperature SC. Moreover, for the reasons discussed in Sec. 2.1.1,
the vast majority of theoretical work has focused on the copper oxide planes. The CuOs planes
are most commonly modeled using the one-band Hubbard model [215, 216|, which is based
on the Cu:3d,2_,» orbital, and the three-band extended Hubbard model [217-222], which in
addition includes the ligand O:2p, , orbitals; see also Sec. 2.3 and Sec. 2.4.4.2. The t-J [362]
and Hubbard-Heisenberg [80, 81] models, obtained from a strong-coupling expansion of the
one-band Hubbard model, are also often employed. When the two-dimensional models of
interest are out of reach, in the hope of gleaning some insight into their physics one frequently
resorts to studying one-dimensional chains, ladders, cylinders, etc., which are amenable to
Bethe Ansatz, bosonization, and other controlled techniques [234, 360|. Below we review the
work on these models in which loop currents (LCs) have been in some way addressed.

In an early study from 1988, Affleck and Marston |80, 81] investigated the one-band Heisenberg-
Hubbard model within a large-IN expansion, where N is the number of spin components.
Among the possible orders, they found a competitive staggered flux order with a Q = (m, ),
also called an orbital antiferromagnet, d-density wave, or staggered L.C order. Within a weak-
coupling treatment of the one-band Hubbard model at half-filling, Schulz [82] also found a
competitive staggered LC order whose consequences were explored on the mean-field level in
Ref. [363]. The appearance of this staggered LC order, later proposed by Chakravarty et
al. [64] for the pseudogap, has in fact been investigated in many more theoretical studies than
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the intra-unit-cell LC order proposed by Varma [36].

It is worth recalling that during these early years it was not immediately clear that cuprates
are spin antiferromagnets at stoichiometry, as opposed to something more exotic like a res-
onating valence bond state [214] or orbital antiferromagnet. The early work on staggered
LCs [364-372| thus chiefly focused on whether they are the ground state of the (one-band)
t-J model at underdoping. Unsurprisingly, for the ground state they by and large found spin
antiferromagnetism and d,2_,2-wave superconductivity, although the numerical studies were
significantly limited by the then-available technology. Later studies of the ¢t-J model, both
numerical and analytic, explored whether it could be the normal state of the pseudogap [373—
379], mostly finding that staggers LCs are competitive at underdoping for realistic parameters.
Motivated by STM experiments, related work [378-384| examined whether these subleading
staggered LCs could emerge in vortex cores of the mixed SC state.

The majority of studies on the one-band two-dimensional Hubbard model find that staggered
LCs with Q = (m, ) are competitive and sometimes prevail for realistic parameter values at
underdoping. Staggered LCs were found using a variety of methods, including weak-coupling
mean-field [185, 385-388|, perturbative renormalization group [389], and strong-coupling [390,
391] analytic approaches, but also numeric approaches based on the Hartree-Fock approxi-
mation augmented with Gutzwiller projection factors [387], Gutzwiller-projected variational
minimization [392], variational cluster approximation [393], and variational Monte Carlo [394].
A tendency towards staggered LC order was also found using dynamical cluster approxima-
tion [395] and dynamical mean-field theory [396]. However, the last two studies found no
divergence in the susceptibility, suggesting short-range order. For a complementary literature
review on staggered LCs in one-band models, we refer the reader to Yokoyama et al. [394].

Staggered LCs do not require oxygen orbitals, which is why there have not been many
studies searching for them in the three-band Hubbard model. Mean-field Hartree-Fock [397]
and generalized random phase approximation [398] calculations including three bands both find
staggered LCs to be competitive at underdoping, while variational cluster approximation [393|
and variational Monte Carlo [399] calculations find the opposite.

When it comes to intra-unit-cell (IUC) LCs, there have been only a few studies, all of them
dealing with the three-band Hubbard model. Early mean-field studies by Varma et al. 38,
400] showed that the LC order they dubbed ©j can be stabilized for strong enough Cu—0O
nearest-neighbor repulsion. This O LC order, which is odd under parity and transforms like
an in-plane vector, is the same one Varma proposes for the pseudogap [36]. Below, by IUC LC
order we always mean O LC order, unless explicitly stated otherwise. In our terminology,
we would call ©1; LC order p-wave IUC LC order. Later the mean-field phase diagram was
more thoroughly investigated by Fischer and Kim [401], who again find that IUC LC order is
viable alongside nematic and spin-nematic IUC orders. However, staggered LCs were found
to always prevail over IUC LCs in a generalized random phase approximation study [398].

Exact diagonalization of CugO16 and CugOgy clusters (the latter includes apical oxygens)
with periodic boundary conditions at zero temperature [402-404| and determintental quan-
tum Monte Carlo performed on CujOs2 and CugsO7o clusters at high temperatures (~
1000 K) [404] found no tendency towards O IUC LC order in the current-current correlation
functions at underdoping. This remained the case even when the model parameters were tuned
to be favorable for IUC LC order, as suggested by mean-field theory. Spin-antiferromagnetism
is clearly observed near stoichiometry in these numerical studies [402-404], thus confirming
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their sensitivity to ordering. In contrast, variational Monte Carlo studies on clusters ranging
from Cuj032 to CugsO128 with open [400] and periodic [399] boundary conditions reported
that TUC LC order is very competitive and that it is the ground state in a significant portion
of the phase diagram. The appropriateness of their variational procedure was checked by com-
paring against exact diagonalization of a CugOig cluster [399, 400]. Notably, the stabilization
of IUC LCs required physically-motivated modifications of the standard three-band Hubbard
model. The stabilization of IUC LCs was aided by apical oxygens in the first study [400],
while in the second study the next-nearest oxygen hopping t;,p, mediated by the Cu:4s orbital,
played this role [399].

One-dimensional chains and ladders [405-413|, sometimes including the oxygen orbitals,
have also been studied in this context, with mixed results regarding the competitiveness of
intra-unit-cell and staggered LCs.

In summary, staggered LCs are competitive in both the ¢-J and one-band Hubbard models in
two dimensions, but it is not clear whether they set in as a long-range order. In the three-band
extended Hubbard model, the results are mixed regarding both staggered and intra-unit-cell
LCs.

While these microscopic investigations are important and interesting, it is worthwhile to
ponder what can they actually tell us about the correct theory of cuprates. If one robustly finds
an order which agrees with experiment, as is the case for antiferromagnetism near p = 0, then
this supports the notion that the one-band and three-band Hubbard models capture at least
some of the essential physics of cuprates. Going from there, there is a broad range of effective
interaction parameters that are physically reasonable and that give antiferromagnetism at
half-filling. Within this broad range, one can apparently stabilize many ordered states away
from half-filling, including LC states. Given how no single order is robustly favored away from
stoichiometry (apart from d,2_,2-wave superconductivity), and how this sensitively depends on
what we put into the model (and what we should put into the model is hotly debated), it seems
that the main thing one can deduce from these studies is whether a certain order is a reasonable
candidate for the pseudogap. In this regard, loop currents, both staggered and intra-unit-cell,
are viable candidates. Beyond this, it is difficult to see how further theoretical work along these
directions could settle whether LC order arises at underdoping. There are simply too many
free tuning parameters, not to mention the lack of reliable methods for intermediate coupling.
At best, it could help clarify the microscopic mechanism which underlies L.C order and whether
the same (or related) mechanisms could play a role in driving SC or strange metal behavior.
Addressing this last question is quite challenging within microscopic approaches, however.

More phenomenological approaches, in which one starts from a higher-level description,
hold the promise of being able to shed more light on these issues. Such approaches have been
fruitfully applied to the problem of Cooper pairing due to quantum-critical order-parameter
fluctuations (Sec. 1.2, Chap. 1), and the current work, based on Ref. [29], continues this
tradition. As was explained in Sec. 1.3.3 of the previous chapter, in our analysis we have not
attempted to derive LC order microscopically. Instead, we have adopted a phenomenological
approach and identified from the start the pseudogap phase with LC order. This allowed us to
clarify whether LC fluctuations are an effective pairing glue near their quantum-critical point.
Within a weak-coupling analysis coming from the Fermi liquid regime (Fig. 1.6), we found
that even-parity IUC LCs are ineffective at driving pairing, while odd-parity IUC LCs act as
strong pair-breakers near the QCP (Fig. 1.4). Thus, without making any assumptions about
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2 Intra-unit-cell loop currents in cuprates

their microscopic origin, we have shown that odd-parity intra-unit-cell loop currents are not
a good candidate for the hidden order of the pseudogap [29]. Staggered loop currents are still
viable, as discussed at the end of Sec. 1.3.3.3.

There have been a few previous works on loop currents which are similar in spirit to our
own work [29]. In particular, the paper by Aji, Shekhter, and Varma [41] addressed the same
question and came to very different conclusions. As we explain in detail in Sec. 2.5.7, certain
assumptions were made in that paper which a careful analysis reveals to be incorrect. The
same limitations apply to later work by Varma [34-36, 63| concerning the pairing due to IUC
LCs. When it comes to staggered LCs, the two papers by Laughlin [65, 66] are conceptually
similar in the sense that one approaches the phase diagram from the overdoped Fermi-liquid
regime, just like in our own work [29], but with the different goal of attempting to reproduce
as much of cuprate physics at under- and optimal doping as possible. Methodologically, the
strategy we adopted is the same as the one employed by Lederer et al. [124] to investigate
pairing near nematic QCPs.

2.3 Electronic structure and the three-orbital model of the
copper oxide planes

The copper oxide planes are the structural component that is shared by all cuprates (Sec. 2.1.1)
and there are good reasons to think that the essential physics of cuprate SC is contained in
these planes, as is commonly believed [104, 178]. X-ray absorption studies show that the low-
energy electronic states of the cuprates derive from the orbitals which are within the CuOq
planes [206-210], while studies of atomically-thin cuprate monolayers observe undiminished
superconductivity [201, 203-205]. For these reasons, in the remainder of this chapter we study
the copper oxide planes. We do so using the three-orbital tight-binding model [217-222] which
is introduced in this section.

To start, let us recall that the atomic electron configuration of Cu is [Ar]4s13d'° and of O is
[He]2s%2p*. Keeping in mind that at stoichiometry two electrons are donated to each CuOa,
this means that (as a first approximation) the two oxygen atoms have filled shells, while
the copper atom has the electronic configuration [Ar]4s°3d® with a singly-occupied dy2_y2 Or-
bital [104]. More accurately, and more generally in the presence of doping, the states closest to
the Fermi level primarily derive from anti-bonding hybridization between Cu:3d,2_,2 orbitals
and O:2p, , orbitals oriented along the ligands [208, 211, 212, 217, 218]. These orbitals are
the basis of the three-band tight-binding model that was first introduced in Refs. [217-221]
and which is shown in Fig. 2.4. Between the partially filled anti-bonding band and the filled
3dy2_y2—2psy bonding bands, there are additional states coming from the remaining Cu:3d,
Cu:4s, as well as in-plane and apical O:2p orbitals [211, 212, 414-418|. Integrating these states
out strongly renormalizes the t,, and t;,p hopping amplitudes, mostly through the 2p,—4s-2p,
and 2p,—4s—2p, virtual processes [415-417, 419]. Most of the variation in the tight-binding
parameters between the various cuprate compounds comes from t,, and t,,, [416, 417, 419].
Upon downfolding, the apical O:2p, orbitals generate interlayer hopping [414], which we ne-
glect. We also neglect spin-orbit coupling. Further downfolding to a one-band model [215,
216] is possible, but at the expense of greatly delocalizing the effective Cu:3d,2_, orbital [419]
and limiting the number of possible intra-unit-cell orders.
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© Copper
® Oxygen

Figure 2.4: The CuO> plane of the cuprates and its chemically most active Cu:3d,2_,»2
and O:2p, , orbitals. Orange (blue) are positive (negative) lobes of the orbitals. Arrows
indicate hopping amplitudes we include in the three-orbital tight-binding model [217-222].

We use the following orbital basis

Cu: 3dx2_y2 (R) (039 |T>
Cu: 3dx2_y2 (R) ® )
O: 2p,(R+ 3é;) @ |1)
O: 2p,(R+ 3é;) @ |1)
0: 2py(R+ 58,) @ 1)
O: 2py(R+ 1é,) ® [])

Cu: 3d,2_,2(R)
P(R) = 0:2p,(R+1é,) | =
O: 2py(R + 5€)

(2.2)

with the Fourier convention
1 .
Y =—= > e *RyY(R), (2.3)
oS

where the lattice constant is set to unity so the Cartesian unit vectors &, , are the primitive
lattice vectors (which connect the neighboring copper atoms and are oriented along the x,y
axes denoted in Fig. 2.4), é; - é; = d;j, R € Zé, + Zé, goes over the real-space square lattice
(on which the copper atoms are positioned), k = (kz, ky) are crystal momenta which always
go over the first Brillouin zone only, and N is the number of unit cells. The spins 1, ] and
tensor products with the 2 x 2 identity og = 1 in spin space shall be suppressed when obvious.

With the orbital orientation conventions as depicted in Fig. 2.4, the three-band Hamiltonian
takes the form

hd(kx’ k'y) hpd(kw7 ky) _hpd(k'yv k:c)
Hy, = hp(kx,ky) hpp(kz, ky) , (2.4)
c.c. hy(ky, kz)
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Figure 2.5: Evolution of the Fermi surface of the three-orbital CuO2 model as the
hole doping is increased, ranging from slight overdoping (a), across the Lifshitz
transition (b) into the far-overdoped regime (c). The parameters used in these plots
are €q — €y, = 3tpd, tpp = 0.6ty4, and t;p = 0.5tpq |Eq. (2.11)] with ¢4 = 0 and p as given
in the subcaption. The hole doping p, as determined by Eq. (2.10), is also provided in the
subcaption.

where
ha(kz, ky) = €a — 1, (2.5)
hp(k:x, ky) = €p + 2t;,, cosk, — 1, (2.6)
hpa(kz, ky) = tpa(l — e ke, (2.7)
hp (ks ky) = —tpp(1 — o) (1 — ), (2.8)
Here p is the chemical potential, g — €, is the charge-transfer gap, and t,,4, t,,, and tpp are the

hopping amplitudes depicted in Fig. 2.4. t,4 is the the largest one and we shall use it to set
the overall energy scale. Typical values for the tight-binding parameters used in the literature
are [414]: (eq — €p)/tpa € [2.5,3.5], tpp/tpa € [0.5,0.6], and t;,,/t,q ~ 0 with t,q € [1.2,1.5] eV.
t,p is not really negligible [415-417, 419], although it is often assumed to be. The importance
of t,,, for stabilizing loop currents has been emphasized in Ref. [399].

The chemical potential p is set to intersect the band whose dispersion e, has the highest
energy among the three bands. We shall order the band index in ascending ordering of energy,

€kl < €k2 < €k3 (2.9)

so that eg3 is the conduction band. At zero temperature, ignoring interactions, p is related to
the hole doping p through

dk, dk
1 =2 YO 2.10
+p /1“BZ (27’(‘)2 (5k:3)7 ( )

e., 1 + p is the total number of holes per CuOs. Note that both Hj and its eigenvalues
€kn are displaced by p. Give that the lattice constant is set to unity, the first Brillouin zone
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Figure 2.6: The chemical potential u relative to ¢; in units of ¢,; as a function of
hole doping p, as determined by Eq. (2.10). The parameters used are €5 — €, = 3t,q,
tpp = 0.6t,4, and ¢, = 0.5t,q [Eq. (2.11)]. The dashed vertical line corresponds to . —eq =
0.9t,q and p = 0.23 [Fig. 2.5(a)|, while the red dotted vertical line is at pyu — €g = 0.83t,q
and pypg = 0.36 for which the Fermi surface crosses the Van Hove singularities at the high-

symmetry points M |Fig. 2.5(b)].

Table 2.1: Tight-binding parameter sets of the three-orbital CuOs model that we
considered in our calculations. t,; sets the overall energy scale and is in between 1.2
and 1.5eV [414]|. The hopping amplitudes are defined in Eq. (2.4) and Fig. 2.4. DFT stands
for density functional theory.

No. 94— for t;ip Comment
tpd tpd tpd

1. 3 0.6 0 One of the most conventional parameter choices [414].
2. 0.6 0 Reduced charge transfer gap.

3. 3 0.6 0.5 Includes t,,.

4. 1.5 0.6 0.5 Reduced charge transfer gap and includes t;,p.

5. 0.5 0.45 0 Based on DFT [419].

6. 0 —0.1 0.3 Based on DFT [419].

7. 0.7 —0.2 0.7 Employed in Ref. [399].

8. 14 -0.35 0.7 Employed in Ref. [399).
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(1*BZ) spans [—m, 7]y, X [—7, 7]i,. The evolution of the Fermi surface at overdoping is drawn
in Fig. 2.5. The chemical potential as a function of hole doping is plotted in Fig. 2.6.

As we shall explain in Sec. 2.5, within out calculation the one-particle Hamiltonian describes
Fermi liquid quasi-particles of the overdoped regime. Hubbard interactions are known to be
strong in these compounds and they drastically change the orbital character of the conduction
band depending on the doping [206, 208, 210, 211]. To account for this, we have considered
eight different parameter sets that cover a wide range of the physically reasonable possibilities.
They are listed in Tab. 2.1. We have ensured that all eight parameter sets reproduce the
ARPES Fermi surface shapes [249-252| and, relatedly, that the Lifshitz transition occurs at
a hole doping p;, > 0.15, as found in experiment [237]. In the end, our results have turned
out to be insensitive to these changes in the one-particle Hamiltonian. All results which we
show or quote in the remained of this chapter are for the representative parameter set (No. 3
in Tab. 2.1):

€4 — €p = 3tpd, top = 0.6pd, tyy = 0.5tpa, (2.11)
with the reference energy and chemical potential:
€q =0, 1= 0.9tq, (2.12)

unless stated otherwise. The corresponding Fermi surface is shown in Fig. 2.5(a).

When comparing to the work of others, one should keep in mind that there are multiple
possible orbital orientation conventions and momentum-space gauges that one may use. Ours
are given in Fig. 2.4 and Eq. (2.3). Alternative choices are discussed in Sec. 2.5.7.1.

2.4 Classification of particle-hole bilinears in the three-orbital
model

Although the three-orbital model of the previous section has been known for almost forty
years [217-222], a systematic classification of all possible particle-hole fermionic bilinears which
one can construct within it is absent in the literature. Partial classifications are available
in Refs. [41, 401]. Here we provide such a classification by exploiting a certain redundant
“extended basis” which has particularly simple symmetry transformation rules. Physically,
fermionic bilinears are interesting because their expectation values can be taken to represent
order parameters, or alternatively they can be used to construct the symmetry-allowed Yukawa
couplings to fluctuating order parameter fields, as we discussed in Sec. 1.3.1 of the previous
chapter. As a simple application of the classification, in Sec. 2.4.4.2 we use it to decompose
Hubbard interactions into symmetry channels. This classification has already been presented
in Ref. [29], but without its derivation or the listing of TR-even bilinears. Note that some of
the TR-odd matrices are defined with an additional minus sign compared to Ref. [29].

As was discussed in Sec. 1.3.1.1, the most general form of a Hermitian fermionic bilinear in
the particle-hole sector is [Eq. (1.24)]:

$a(R) =Y UI(R+ 61)T4(81,85) (R + 82), (2.13)
4102
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Table 2.2: The character table of the tetragonal point group Dy, [170]. The irreps
are divided according to parity into even (subscript g) and odd (u) ones. To the left of
the irreps are the simplest polynomials constructed from the coordinates r = (z,y, z) that
transform according to them. Cjy are 90° rotations around é,. Ca, C%, and C4 are 180°
rotations around €., €, or &,, and the diagonals &, & &,, respectively. P is space inversion
or parity. Improper rotations S; and mirror reflections ¥, 3, and X/ are obtained by
composing Cy, Ca, C4, and CY with P, respectively.

Dyy, E 20y Cy 204 20y | P 28 %, 2% 2%4

La? 492 22 Ay | 1 1 1 1 1 1 1 1 1 1
zy(@® —y?) Ay | 1 1 | 1 1 1 -1 -1
z? —y? By | 1 -1 1 1 -1 1 -1 1 1 -1
Ty By | 1 —1 1 -1 1 1 1 1 -1 1

(yz| — z2) E, 2 0 -2 0 0 2 0 -2 0 0
ryz(a? —y?) A | 1 1 1 1/ -1 -1 -1 -1 -1
z Agy | 1 1 1 -1 -1 -1 -1 -1 1 1

Tyz By, | 1 -1 1 1 -1 ] -1 1 -1 -1 1

(2% — y?)z Boy | 1 =1 1 -1 ~1 -1 —1
(z]y) E, | 2 0 -2 0 0| —2 0 2 0 0

where ¥ = (Y14,%1,0,- -, ¥n 4, ¥ary) T are the fermionic field operators, assuming M orbitals
per unit cell, and 81, d2,... go over lattice neighbors. The 2M x 2M matrices ['y(d1,02) =
F};(ég,él), which are in general non-trivial in both spin and orbital space, determine the
symmetry properties of ¢,(R) under time reversal (TR) and under crystalline operations, as
specified by the irreducible representation (irrep) of the point group under which it trans-
forms. The subscript a denotes different irrep components and is relevant only in the case of
multidimensional irreps. The classification of possible fermionic bilinears thus amounts to the
classification of the 2M x 2M matrices 'y (07, d2).

In the three-orbital CuOs model under consideration M = 3 and the fermionic spinor is the
one given in Eq. (2.2). The orbitals and their orientation are shown in Figs. 2.4 and 2.7. As
for the symmetries, the point group of the copper oxide plane is the tetragonal point group
Dyp. The structure of this point group is worked out in detail in Sec. B.4 of Appx. B, where
one may also find its character table (repeater here in Tab. 2.2 for the reader’s convenience)
and irrep product table (Tab. B.5). Here we shall just note that Dy, is generated by four-fold
rotations around the z axis Cly,, two-fold rotations around the z axis Cy, and dy = =+ y
diagonal Cyq,, and parity P. These symmetries are evident from Fig. 2.7. The center of
rotation and inversion we always take to be at the center of a copper atom.®

8The center of rotation and inversion can also be chosen to lie at R+ %(ém +é,), which is in the middle of four
copper atoms, instead of R. Point group operations g which leave R + %(éz + é,) fixed are related to those

that keep R fixed through a commensurate translation by R(g)3(é. + &,) — 3(é. + &,) = & € Zé, + Zé,.
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2 Intra-unit-cell loop currents in cuprates

2.4.1 Extended basis and the simplification of symmetry transformation rules

Because of the non-trivial Wyckoff positions of the oxygen atoms,” some point group operations

(e.g., 90° rotations around the z axis Cy, and parity P) map orbitals between different primitive
unit cells, as one can convince oneself by examining Fig. 2.7. To be more precise, for some
point group operations g € Dy, the orbitals of the unit cell at R get mapped not only to the
orbitals of the unit cell at R(g)R, where R(g) is the vector rotation matrix, but also to the
orbitals of neighboring unit cells which are at R(g)R + d. This remains true irrespective of
which primitive unit cell one chooses.

In momentum space, the corresponding unitary matrices therefore acquire k-dependent
phases. This we have already seen in Sec. 1.3.1.2 of the previous chapter when we wrote down
the most general possible fermionic transformation rules [Egs. (1.36) and (1.37)]:

W (g)urll(g) = Ur(9)riy- e, (2.14)
O ' Yp® = 04, (2.15)

where ﬂ(g) are the many-body symmetry operators and O is the many-body TR operator.
Notice how the 2M x 2M unitary transformation matrices Ug(g) depend on k. Thus the
change in the orbital structure of 1, depends not only on the point group transformation g,
but also on the momentum k.

In the current model, the TR symmetry matrix © of Eq. (2.15) has no k-dependence because
there is no spin-orbit mixing in the basis. One may always choose a gauge for the spins in
which

0 =1®io,, (2.16)

as we henceforth assume. o, = o3 is the second Pauli matrix.

For classification purposes, it is much more convenient if the orbital and momentum depen-
dencies of the point group matrices Ug(g) do not mix. This can be accomplished by employing
the extended basis

Cu: 3d,2_,2(R)

O: 2pm(R+ %ém)

U(R):= | O: 2py,(R+ 3&,) (2.17)
O 2p:c(R_ %éx)
O: 2py (R — %éy)

instead of the primitive basis ¥(R) that we introduced in Eq. (2.2). The corresponding
extended unit cell is shown in Fig. 2.7. If we use the same Fourier transform convention as in
Eq. (2.3), namely

1 ik
Wy, = msze kRy(R), (2.18)

9More simply stated, the oxygen atoms do not lie on the (Bravais) lattice points like cooper, but are instead
displaced away from them.
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2.4 Classification of particle-hole bilinears in the three-orbital model
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Figure 2.7: The primitive (left) and extended (right) unit cells of the CuO; plane.
The components of the extended fermionic field operator ¥ [Eq. (2.17)] are designed within
the extended unit cell. The underlying three-orbital copper oxide model is described in

Sec. 2.3 and Fig. 2.4.

then this new basis is related to the primitive basis through:

Vi = Ketr,
where (09 = 1 is the 2 x 2 identity):
1 0 0
0 1 0
Ke:=10 0 1 X 0g.
0 e 0
0 0 e h

Conversely, the primitive basis is related to the extended basis through

wkzxillpka
where K~ is the pseudo-inverse of Kp:
10 000
Xt=[0 100 0|®00
001 0O

(2.19)

(2.20)

(2.21)

(2.22)
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2 Intra-unit-cell loop currents in cuprates

Table 2.3: The symmetry transformation matrices of the four generators g of the
point group Dy, in the extended basis V. (4, is a 90° rotation around é,, Cy; is a
180° rotation around &, Cyq, is a 180° rotation around é, + é,, and P is parity. R(g) and
S(g) are vector and spin transformation matrices, respectively. 04 are Pauli matrices. The
extended basis VU is defined in Eq. (2.17) and O(g) are its orbital transformation matrices
which are easily deduced from Fig. 2.7.

g R(g) O(g) S(9)
10 0 0 0
0 -1 0 00 0 0 —1 6o — ic
Cus 1 0 0 01 0 0 0 e
0 0 1 0 0 -1 0 0 V2
00 0 1 0
10 0 0 0
1 0 0 01 0 0 0
Coy 0 —1 0) 00 0 0 —1 —ioy,
0 0 -1 00 0 1 0
00 -1 0 0
-1 00 00
1 0 0 0100 o to
Coa, 10 0 0 1000 i
0 —1 0 000 1 V2
0 0010
1 0 0 0 0
-1 0 0 00 0 -1 0
P 0 -1 0 00 0 0 -1 0
0 0 -1 0 -1 0 0 0
0 0 -1 0 0

The two matrices multiply to give an identity only for one ordering:

1 0 0 00
1 00 0 1 0 00

K%, =(0 1 0], KX t=[0o o 1 00 (2.23)
001 0 et 0 00
0 0 e 0 0

The reason why KK ~! # 1 lies in the fact that generic extended-basis vectors v = (v, va, v3,
v4,v5)T do not satisfy vy = e*‘kfvyvgg, as every output of X must. In the case of Wy,
JCkJC_lllfk = V..

In the extended basis the symmetry transformation matrices do not depend on crystal
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2.4 Classification of particle-hole bilinears in the three-orbital model

momentum:
A—'- ~
U (9)¥xU(g) = O(9) ® S(9)¥R(g-1)k (2.24)
6 06 = (1®ic,)V_y, (2.25)

in contrast to what we found in Eq. (2.14) (or Egs. (1.36) and (1.37) of the previous chapter).
Here, R(g) and S(g) are the usual vector and spin transformation matrices which are precisely
defined in Sec. B.3 of Appx. B.!Y Because we are dealing with a fermionic field, g belongs to
the double group of the tetragonal point group Dyj;. The orbital transformation matrices O(g)
encode the detailed orbital structure of the model and they are readily deduced from Fig. 2.7.
The symmetry matrices corresponding to the four generators of the point group Dy, are given
in Tab. 2.3. They are related to the k-dependent matrices of Eq. (2.14) via:

:KkUk:(g) = [O(g) ® S(g)]fKR(gfl)kv (226)
U(g) = X 'O(g) ® S Krg—1)k- (2.27)

Even though the 5 x 5 O(g) matrices are slightly larger than the corresponding 3 x 3 matri-
ces in the primitive basis 9, their momentum-independence greatly simplifies the symmetry
classification, as we shall see in the next section.

2.4.2 Symmetry analysis and classification

In momentum space, fermionic bilinears of the general form given in Eq. (2.13) become
[Eq. (1.27)]:

1
Pug = ij Ul ok ket gVt (2.28)

where L'y p = 25152 e—i(k'51—p-52)ra(51, 62).

Our goal is to classify the possible fermionic bilinears according to how they transform under
point group operations and TR. The point group and TR transformation rules are [Egs. (1.60)
and (1.61)]:

dim ¢

W (9)daqlile) = 3 M (901 m(e 1)g: (2.29)
b=1

O $ug® = podu—q. (2.30)

where ( is an irrep of the point group Dyp, g € Dyp, and pg = £1 is the TR sign. Irreps of Dyy,
are listed in Tab. 2.2. Given that ¢gq = ¢q,—q is real, the irrep transformation matrices Mgb (9)
must be real as well, which can be made true for all irreps ¢ of Dyp. These transformation
rules are satisfied if and only if the I'yx p, matrices satisfy [cf. Egs. (1.62) and (1.63)]:

dim ¢

S1(9)0M(9)Ta, r(g)e, R0 (9)S(9) = D M5y (9) ok p, (2.31)
b=1

(iGy)TFZ,—k,—p(iGy) = pGFak,p- (232)

9Tn short, for a rotation by ¢ around 7, R(g) = exp(—i¥f - L) with (L;);x = —ies;r and S(g) = exp(—idn - S)
with S; = %O'i, while for parity P, R(P) = —1 and S(P) = 0o.
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2 Intra-unit-cell loop currents in cuprates

Constructing 6 x 6 I'yx p matrices which combine their dependence on k, p, spin, and orbital
indices in just the right way so that they transform under an irreducible representation is a
non-trivial task to which we devote the current section.

To make progress, we introduce extended-basis (10 x 10) matrices I'yx that depend on only
one momentum and that transform according to:

dim ¢

S1(9)01(9)Ta,mkO(9)S(9) = D MG, (9) ek (2.33)
b=1

(16,) T, (i0,) = poT'ak. (234)

If we now construct the primitive-basis matrices by projecting the extended-basis matrices like
so [cf. Eq. (1.30)]:

Takp = K (Tak + Thp) K, (2.35)

then Egs. (2.31) and (2.32) are automatically satisfied. Note that reality Flk,p = Dyp i is also
automatically satisfied. Ky is defined in Eq. (2.20). However, to construct I',x, with proper
transformation properties, we first need to separately classify orbital matrices, spin matrices,
and momentum-dependent functions into irreps. After that, we use the irrep multiplication
Tab. B.5, provided in Appx. B, to construct the I'yg. We will give a number of examples in
Sec. 2.4.3.

Let us emphasize that the reason why we can assume dependence on only one momentum in
the first place is because the extended basis transformation rules [Eq. (2.24)] do not mix orbital
and momentum transformations. Thus dependence on only one momentum is sufficiently
general to cover all possible bilinears, as was explained in Sec. 1.3.1.1 of the previous chapter.

A collection of momentum-dependent scalar functions f,(k), indexed by a, is classified
according to:

dim¢

Fa(R(g)R) = > MG, (9) fol), (2.36)
b=1

fa(=k) = pofa(k). (2.37)

By going through the lattice harmonics, one readily retrieves the well-known result that:

1,cos ky + cosky € ATQ, (cos kg — cos ky) sin kg sink, € A;g,
cosk, — cosky € Bfrg, sink, sink, € B;rg, (2.38)

(sinkg|sinky) € E,,

where the irrep superscripts indicate the TR sign pg. Notice that their Taylor expansions
agree with Tab. B.4 of Appx. B. As long as the functions are real, the parity and TR sign will
be equal.

A feature specific to two dimensions is that 180° rotations around the z axis Cs, act in
the same way as parity P. Hence the same must hold for scalar functions f,(k) that do not
depend on k, and for orbital matrices A constructed from in-plane orbitals. As long as there is
no k,-dependence or out-of-plane orbitals, respectively, f,(k) and A cannot transform under
the irreps A1y, A2y, Biu, B2y, and Ej since their ME(Cyy) # ME(P).
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2.4 Classification of particle-hole bilinears in the three-orbital model

Spin matrices are classified according to:

dim¢
S1(9)0aS(g) = Y M5, (g)00, (2.39)
b=1
()70} (i0,) = peoa, (2.40)
and one readily finds that (Sec. B.4.2):
oo € A7, (01l02) € E, 03 € Ay, (2.41)

As for the orbital matrices, we denote them with capital A-s and we classify them according
to:

dim ¢

OT(9)AaO(g) = > MG, (9)As, (2.42)
b=1

A = pol,, (2.43)

where Of(g) = OT(g) = O71(g) = O(g~") because all O(g) are real and orthogonal (Tab. 2.3).
We shall always chose them so that they are Hermitian, Al = A Component-wise, (Aq)ap
transforms under the direct product representation O ® O which we can decompose using
representation characters:

XO@O = (5, _1; 1, 3, —1, 1) = XAlg + 2)_(’319 + XEu' (244)

This is explained in Sec. B.5, Appx. B. After the change of basis

1 0 0 0 0
0 b 3 -1 -}
s-fo 1 -1 -4 1| 245
1 1
0 7 0 7 0
00 5 0 o
the representation O takes the block-diagonal form of a direct sum of irreps:
MP1a(g)
5 M4 (g)
pu— T:
O(g) = BO(9)B MBia (g) (2.46)

MP(g)
We shall use overlines to designate matrices in the rotated basis. Notice that B* = B is real

and orthogonal, BTB = 1. For the 2D E; and E, representations we always use the matrices
(Egs. (B.43) and (B.44), Sec. B.4.2):

ME<C4Z>:((1’ ‘01), ME<czx>:<é _01), ME<02d+>:((f é) (2.47)
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2 Intra-unit-cell loop currents in cuprates

Table 2.4: Statistics of the classification of extended-basis orbital A matrices belong-
ing to the three-orbital CuO2 model. Table entries indicate the number of Hermitian
5 x 5 A matrices which transform according to Egs. (2.42) and (2.43). The Dyy, irrep ¢
is specified by the corresponding row, while the time-reversal (TR) sign pg is specified by
the corresponding column. The irrep E,, is two-dimensional. The last row is the net num-
ber of TR-even and TR-odd matrices, which coincides with the number of symmetric and
antisymmetric Hermitian 5 x 5 matrices.

TR-even TR-odd
Ay 5 1
Agy 0 1
B, 3 2
Bsy 1 0
E, 3 X2 3 X2
| =35 10=34

With the help of the irrep product Tab. B.5, the orbital matrices can now be classified in a
straightforward way. Schematically, we may write

Alg Blg Alg Ey Ey
. o Blg Alg Blg Eu Eu
A=BABT~0®0~ | A1y By Ay FE, Ey

Eu Eu Eu {A1g> A2ga

Eu Eu E, 3197 BQQ}

, (2.48)

where for F,, components of the same color go together. The arbitrariness in the definition
of the various A-s we partially eliminate by making them Hermitian, AT = A, as well as
orthogonal and normalized according to:

TrAS ,AS, ) = 28¢eSnmbab, (2.49)

n,a

where (,¢ are irreps of Dgp, n,m € {1,2,...} enumerate the orbital matrices belonging to
each irrep, and a € {1,...,dim(}, b € {1,...,dim ¢} are irrep component indices which are
only relevant for the 2D irrep FE,.

In total, there are 5 x 5 = 25 orbital matrices, of which 15 are symmetric and TR-even
and 10 are antisymmetric and TR-odd. How they fall into the various irreps is summarized in
Tab. 2.4. The final results are shown in Tab. 2.5 of the next section. In the text, the orbital
matrices of Tab. 2.5 we shall denote Aﬁfff , like for instance:

00 0 0 0 0 0 -1 0 —1

o 1|00 i 0 i . 1|0 0000

Aglgz5 0 i 0 i 0], Afgzﬁ -1 0 0 0 0 (2.50)
0 0 —i 0 i 00 0 0 0
0 i 0 —i 0 10 0 0 0
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2.4 Classification of particle-hole bilinears in the three-orbital model

2.4.2.1 Table of orbital matrices, classified according to symmetry

Table 2.5: The symmetry classification of extended-basis orbital A matrices belong-
ing to the three-orbital CuOs model. The symmetry transformation rule are given in
Egs. (2.42) and (2.43). The Dy, irrep ¢ (Tab. 2.2) is specified in the first column, with the
superscript denoting the time-reversal sign (TRs) pg. n enumerates the matrices belonging
to each irrep, while the irrep index a, relevant only to the 2D irrep FE,, indicates to which
component a given matrix corresponds to. A and A are the orbital matrices in the original
and rotated basis, respectively. Since B* = B is real [Eq. (2.45)], real matrices are TR-even
and imaginary matrices are TR-odd. All matrices are Hermitian. The last column is a
graphical representation of A. TR-even A represent densities, with yellow (cyan) denoting
positive (negative) superpositions, while TR-odd A represent currents, denoted with arrows.
To ensure that the schematics are physical and orbital convention-invariant (cf. Sec. 2.5.7.1),
bond densities (~ \Iiz‘lij + \If;rllll) and currents (~ i\Il;r\I/j - 1\112\111) have been consistently
multiplied with the sign of the overlap (hopping ¢;;) between the ¢ and j orbitals. Note that

A7 — —
the A2, AP and Af’;/y matrices are minus those of Ref. [29].

2,x/y’
irrep™  n,a A = BARBT A schematic
®
" V2 00 00 V2 0 0 00
Aj 1 0 0000 0 0000
9 0 000 0 0 000 0 v ® v
0 00 0 0 0 00 0 0
0 000 0 0 000 0
o
o
00000 00000
9 Lot o0 o0 Lot 000
~—loo 100 ~— 1o o100 v . v
V210 0 0 1 0 V210 001 0
0000 1 0000 1
[ ]
o
00100 0 1 -1 -1 1
3 00000 100 00
10000 1210 0 0 o0 ’ o) B
00000 2110 0 0 o
00000 1 0 0 0 0
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2 Intra-unit-cell loop currents in cuprates

Table 2.5: (continued)
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Table 2.5: (continued)

schematic
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Table 2.5: (continued)
1
2

schematic
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Table 2.5: (continued)

schematic
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Table 2.5: (continued)

schematic
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2.4 Classification of particle-hole bilinears in the three-orbital model

2.4.3 Construction of particle-hole fermionic bilinears

Having separately classified momentum functions, spin matrices, and orbital matrices in the
previous two sections, we can now combine them to systematically construct particle-hole
fermionic bilinears of any type. The procedure for doing so is explained here.

Suppose we have a collection of scalar functions f,(k), orbital matrices Ay, and spin matrices
o, which transform under the irreps M7, MA, and M?, respectively. Then the collection of
extended-basis I' matrices

Lapek = fa(k)Ap @ 0 (2.51)

transforms according to [Egs. (2.33) and (2.34)]:

dim f dim A dim ¢
ST(g)OT(g)rabc,R(g)kO(g)S(g) = Z Z Z Mga/(Q)Ml/)\b’(Q)Mgc’<g)ra’b’c’kv (252)
a’'=1 V=1 =1
1o )V T* ; — ol pA O
(i0y) ' Tape, 1 (10y) = PgPePSL ak- (2.53)

In other words, I'gpex transforms under the direct product representation MY @ M* @ M and
A

it has the TR sign pép@pg. Note that a reality condition, such as I‘Zb o = Labek, does not
need to be imposed because Iy, as given by Eq. (2.35) automatically satisfies Flk p = Lop k-
That said, if one looks at the gk k+q Which enter the ¢.q bilinear [Eq. (2.28)], one notices

that

Fak,k—f—q = JCL (Fak + FIL,k—&-q) jck—f—q (2'54)

vanishes in the ¢ — 0 limit when sz = —I'4k. Hence for intra-unit-cell orders, only Hermitian

Flk = 'y do not vanish at the condensation momentum q = 0.

In Sec. B.5 of Appx. B, we have worked out how to decompose composite objects such as
I gpere into irreps. The results are summarized in the irrep product Tab. B.5. The idea is to first
decompose M/ and M?* @ M into irreps and only afterwards decompose M/ ® (MA ® MU).
Here we give a few examples of how this is done with the help of Tab. B.5.

Let us start with a purely orbital order, such as orbital current order. Then 0. = 0g € Ai"g
transforms trivially and we can focus on f,(k) and A,. For purely local or contact bilinears all
the coupling takes places within the extended unit cell (Fig. 2.7). Hence f,(k) =1 € Afg and
Tab. 2.5 tells us that there are four possible orbital current bilinears. Their extended-basis
Iy, matrices are given by:

e
Tp=A " € Ay, (2.55)
e
Tp=A % € Ay, (2.56)
By, By,

T =cA] " + " € By, (2.57)

E, Ey Ey

ka) / <A1;> / (Aﬁ«) (A3 -

Cl=al B tel e tal B €E,. (2.58)

<Ty,k ALy AS AT

Here ¢; and c; are real coefficients which express the freedom to superimpose bilinears belonging
to the same irrep. The tensor product with oy has been suppressed. If we imagine expanding
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2 Intra-unit-cell loop currents in cuprates

some Yukawa coupling in powers of momentum, the above would represent the lowest order
terms in the expansion. Let us note that the TR sign cannot be changed by using a purely
imaginary f,(k) = 1 € Aj, because the corresponding I'k,p then vanish identically. For
instance, plugging

+ +1t
Tip = K} ( [iAsz} + [iAng] )x,, — 0. (2.60)

To construct orbital current bilinears belonging to B, , we need to allow for momentum
dependence. From Eq. (2.38), we see that the lowest order lattice functions are cos k,+cos k, €

Afg, cosk, — cosk, € Bfrg, and (sink;|sinky,) € E;. These can be multiplied with the
imaginary unit to flip the TR-sign. Because there is no A;g orbital matrix (Tab. 2.5) which

we could multiply with i(cos k, — cosky) € B, to get B the only option which uses the 1D

irrep momentum functions is:

29’

+
i(cos k; + cos k:y)Af?g € A, ® By, = By, (2.61)
There are three E;f orbital matrices. Recalling that (Tab. B.5)
Eu(fz‘fy) ® Eu(Az‘Ay) = Alg(szfc + fyAy) & A2g(szy - fyAm>

® Buy(fuhs — ,0) © By(fdy + i), 0D
we find another option:
sin k, (elAﬁZ + chiﬁ + C3A3’f§ ) + sin k, (clAlEg + ch% + C3A§§ ) € B,,. (2.63)
This one uses 2D irrep momentum functions. Altogether:
Iy = cpi(cos ky + cos k:y)Af;g +sin ky (cl‘/XfJf:;r + CQAQE};{ + c;:,Afg) -
+sinky, (clAﬁg + CQA2E,5 + 03A3E’“2) € B;g7 (2.64)

where ¢; € R. In agreement with what we previously said, in the homogeneous limit ¢ — 0
the first term which is non-Hermitian vanishes:
BT
Ik kt+q = coi(cos kg + cosky — cos(ky + g5) — cos(ky + qy))iKLAl 9 Kprq + - (2.65)

We can also ask what type of orbital current bilinears are possible within the one-orbital
model of the CuOz planes [215, 216]. This model is based on the Cu:3d,2_,» orbital and within
it the only possible orbital matrix is

V2 00 00

- 0 000 0

Af"=10 0000 (2.66)
0 00 0 0
0 0000
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2.4 Classification of particle-hole bilinears in the three-orbital model

The source of TRSB therefore must lie in the momentum dependence. The simplest options
are:

+

I = i(cos ky + cos ky)Aflg € Ay, (2.67)
+

T = i(cos ky — cosky)AL " € By, (2.68)

r in e, A0
Sin
< ‘”’“> v € E,. (2.69)

T ) AT
vk sinky, A} Y

The second Bj, option corresponds to d-density waves, which are also known as orbital anti-
ferromagnets or staggered flux states. For A; and By, orders of this kind, the ordering must
take place at a finite g, which is usually taken to be Q = (7, ), for (¢4) to be finite.

Up to now, we have simply listed the possible orbital current I',;. These extended-basis
matrices define the fermionic bilinears ¢,q through Egs. (2.35) and (2.28). If we want to
use the expectation value of ¢,q as an order parameter, then we have to ensure that (¢pqq)
is allowed to be finite. For orbital current orders, in Sec. 1.1.1 of the previous chapter we
have seen that the Bloch and Bloch-Kirchhoff theorems fundamentally constrain the orbital
current patterns to not have net currents or induce net accumulations of charge. Within our
phenomenological treatment, these constraints on the allowed I';, will have to be enforced by
hand, as will be explained in Sec. 2.5.2. The ¢4 correspond to a proper orbital loop-current
orders only once this is done.

There is a host of other purely orbital bilinears which one can construct. The possible
orbital orders were systematically listed in Tabs. 1.1 and 1.2 of the previous chapter and for
each one of them one can construct a bilinear. For example, here are two extended-basis I
matrices which correspond to nematic and ferroelectric order, respectively:

B, B, B,
T =c1A] " + oy + 3y + -+ € Bf,, (2.70)
. AT
<Fx,k:) _ [sin ky ALY L - 271)
'k . AT, s ’
Y sink, A}

There are many more. We shall not pursue this any further since the construction is analogous
to the construction of orbital current bilinears.

Regarding spin orders, there are three possible Pauli matrices which combine with the orbital
matrices to give a net of 3 x 25 = 75 possible spin-orbit matrices, which we shall denote with
a I'. Given that we know the irreps and TR signs of the orbital A matrices (Tab. 2.5) and
of the spin ¢ matrices [Eq. (2.41)] and that we also know how to decompose their direct
products (Tab. B.5), working out the irreps and TR sign of the 75 spin-orbit matrices is a
straightforward task. We shall not go through all the matrices, however. Instead, we shall
simply list how many spin-orbit matrices belong to each irrep in Tab. 2.6 and go through a
few examples below.

For example, let us see in how many ways can one construct a A, o Spin-orbit matrix. Tab. B.5
informs us that A,  can arise only by multiplying A € Afg with 0, € Ay, or (Az|Ay) € E;
with (0;|0y) € E; . Since A matrices transforming under F; do not exist, we find that the
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2 Intra-unit-cell loop currents in cuprates

Table 2.6: Statistics of the classification of extended-basis spin-orbital matrices I' =
A ® o0 belonging to the three-orbital CuQOs model. Table entries indicate the number
of Hermitian 10 x 10 momentum-independent I' matrices which transform according to
Egs. (2.33) and (2.34). The Dy, irrep ( is specified by the corresponding row, while the
time-reversal (TR) sign pg is specified by the corresponding column. The irreps E, and E,
are two-dimensional. The last row is the net number of TR-even and TR-odd matrices.

out-of-plane spin (® 0) in-plane spin (® 0 )
TR-even TR-odd TR-even TR-odd

Ay 1 0 Aqy 3 3
Agg 1 5 Agy, 3 3
Bi, 0 1 B 3 3
Boy 2 3 Bs, 3 3
E, 3 X2 3 X2 E, 4x2 9x2
$ 10 15 ) 20 30

most general spin-orbit A, o, matrix is:

AT, Af, AT, AT, Af,
I = <01A1 Yob oAy esAg T+ s+ es Ay 19) ® 0, € Ay, (2.72)
where ¢; € R. Similarly for By, and E; we find that:
B+
r=A*®o, € By, (2.73)

(FI) AR R B R PO A €E,. (274
Ty A @0, —AS ® o0, —ALY ® 0.

Clearly, allowing for momentum dependence in the ', matrices opens up even more possibil-
ities. Here is a non-trivial example where care needs to be taken to ensure the proper ordering
of the E components:

r ABSLQ ® 0
(Px> = E; Y cE,, (2.75)
Y A7 ® oy
o B3, e B3, +
'y =sink, A ™ ® 0y —sinky,A; ™ ® 0, € B{,. (2.76)

In this example, one could have also first constructed sink, o, — sink, 0, € Ag‘u and then
B+

multiplied it with A, 2.

2.4.4 Simple applications of the classification

Here we give two simple examples of how the classification of bilinears can be used to analyze
the three-orbital model of Sec. 2.3 and the associated three-band Hubbard model.
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2.4 Classification of particle-hole bilinears in the three-orbital model

2.4.4.1 Rewriting the one-particle Hamiltonian

All the hopping amplitudes which are included in the three-band model, depicted in Fig. 2.4,
are between orbitals that are within an extended unit cell, shown in Fig. 2.7. The hopping
amplitudes can therefore be collected into the following extended-basis matrix:

€ — W tpd —tpd —tpd tpd
%(Gp — 1) —tpp top tpp
Ti= %(617 o H) tpp t;p ’ (277)
%(ep ) ~tpp
c.c. $(ep — 1)

where a factor of % has been added to €, — u to avoid double counting. Notice how T can be
expressed in terms of the Afg matrices of Tab. 2.5:

1 At
E(Ed — WA+

as expected from symmetry.
The three-band Hamiltonian |[Eq. (2.4)] is recovered by projecting T down to the non-
redundant basis ¢ [Eq. (2.2)] with the aid of K}, [Eq. (2.20)]:

A, A, A, AT
T = (ep — WAL + 2,005 " + 260, AL + V21 AL (2.78)

1
V2

€d — U tpd(l - e_ikx) *tpd(l - e_iky)
Hy = HCL‘J'JC;C = ep + 2t cosky — 1 —tyy(1 — o) (1 —e ) | . (2.79)
c.c. €p + 2ty cosky — K

The corresponding second quantized one-particle Hamiltonian can be written in a number of
equivalent ways:

Ho =Y UH(R)TU(R) = W[TU, = o} Hpthy. (2.80)
R k k

2.4.4.2 Decomposition of Hubbard interactions

Conventionally, the interactions that are added to the three-band CuO2 model have the form
of (possibly extended) Hubbard interactions. Here we decompose these Hubbard interactions
into symmetry channels. Compare with the mean-field analyses of Refs. [397, 401, 420].

In the algebra below, we treat the extended-basis fields ¥(R) [Eq. (2.17)] as Grassmann
variables, neglecting any one-particle terms that would otherwise appear. Given that we only
deal with operators within one extended unit cell, in this subsection we suppress the argument
R. Introduce the following densities:

ng = Ul diag(1,0,0,0,0)T, (2.81)
ny = Wdiag(0,1,0,0,0)¥ = n,y5, (2.82)
np2 = W' diag(0,0,1,0,0)¥, (2.83)
ny3 = W' diag(0,0,0,1,0)V, (2.84)
nps = W diag(0,0,0,0,1), (2.85)
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2 Intra-unit-cell loop currents in cuprates

and for each 10 x 10 spin-orbit matrix I" let us denote the corresponding operator:

O(r) = viTw, (2.86)

Traditionally, the following four Hubbard interactions are considered [401]:

U U2 4 4
d
K — ?”?l + Ip Z ngg + Vpanad Z npe + Vpp Z NptMp 0415 (2.87)
(=1 =1 =1
where n,5 = np.
The U; Hubbard interaction can be written as:
1 Af (12

ng =30 (2.88)

However, this decomposition is not unique due to the Fierz identities:
AT (12 At 2
0(a7)]" + [o(aTea)] =0, (2.89)

where A € {1,2,3} is fixed. These identities follow from the Pauli exclusion principle (\I’L\IJIL =
U, ¥,, = 0). They do not arise for interactions between distinct unit cells.

After some algebra aided by Mathematica, the Up, V,q, and V,, Hubbard interactions can
be rewritten as well:

4
1
D=5 > [oW)*, (2.90)
=1 AeLF
4 1 , 1 3 , 1 )
Y ome=—5 3 [0 -1 3 S foen]*+ 5 3 [ow)’ o
=1 AeLr, Aess, A=1 Aec?,
4 1 , 1 3 , 1 )
plTlpl+1 = 775 -7 A - , .
> npen 2 [OW)]" =3 > [0(Aoa)] +3 > o) (2.92)
= A€Lpp AeLy, A=1 AeL,
where:
Ly = (A;ﬁ,7 Ay b, ATEL AT ) (2.93)
L]:d = (Afi(I? AlBiq? AlE,g7 AlE:g)y (294)
= (M AT AFEL AR, (2.95)
LI;P = (Af5g7 AQBiqv A§i7 AgEj)y (296)
Lpp = (Af;ga A4A1+“"a AP, AR ) (2.97)

The V,q decomposition is explicitly derived by hand in Sec. 2.5.7.3. These decompositions are
ambiguous too, as there are three Fierz identities pertaining to Up:

S [om)]*+ Y [0(Aea))” =0, (2.98)

AeLy AeLf

76



2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

where A € {1,2,3} is fixed. There are twelve Fierz identities relevant for V,:
[0(AT)]? + [0(A04)] = [0(AT)]* = [0(ATa4)]* =0, (2.99)

where A € {1,2,3} is fixed and AT are the first, second, third, or fourth matrices appearing

. . . . . + .
in L;td. For instance, one possible choice is A~ = AiE v AT = Aﬁ;. Note that if we use, e.g.,

the first matrix of L;d, then we must also use the first matrix of L+d. There are twelve Fierz
identities relevant for V},, that have the same form as Eq. (2.99), except that now A* are the
first, second, third, or fourth matrices appearing in Lpip

Having decomposed the Hubbard interactions, let us now discuss their interpretation. Mi-
croscopically, Hubbard interactions derive from Coulomb repulsion so Ug, Up, Vg, and V,,
are all positive. In the decompositions, however, some terms are attractive and negative. For
instance, the Uy and U, interactions result in terms that are attractive in the spin channels:

1< 2
ng=—c>. [ (A0 } : (2.100)
A=1
4 1 3
> ngp = —5 > [0(Aoa)], (2.101)
/=1 AE A=1

as follows from the Fierz identities (2.89) and (2.98). The same is true for the V,q and
Vpp interactions. Recalling how integrating out a fluctuating order parameter always gives a
negative interaction (Sec. 1.3.1), the negative terms in the decompositions can be interpreted
as being indicative of a possible instability towards condensation in the corresponding channel.
That said, in the V},4 and V},, interactions there is an ambiguity in which channels are attractive
since, by employing the Fierz identity (2.99), one can also write:

4 3

ndang:—% S jom)’ - Z Z (Aoa)] +i ST W) (2102
=1 AeLh, A £ AeL,
. 1 1 i 1 5
anmp,g“:—i > o -3 Z Z (Aoa)] +Z > (o)) (2.103)
=1 AEL, eLf, A=1 AELp,

In any case, finding out in which channel the system condenses is a non-trivial task that is not
the focus of the current work. In Sec. 2.2.3 we reviewed previous theoretical work that dealt
with this task.

2.5 Pairing due to intra-unit-cell loop-current fluctuations in
cuprates

The pairing due to quantum-critical intra-unit-cell (IUC) loop-current (LC) fluctuations has
been analyzed in Sec. 1.3 of the previous chapter. The main result of the analysis, summarized
in Fig. 1.4, is that IUC LCs are uniquely incapable of driving strong pairing near their quantum-
critical point (QCP). Even-parity IUC LCs are an ineffective pairing glue, while odd-parity
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2 Intra-unit-cell loop currents in cuprates

IUC LCs are parametrically strong pair breakers. This result holds for general two-dimensional
systems without SOC. In this section, we apply the analysis of Sec. 1.3 to the cuprates.

Let us recall that the strategy we used in Sec. 1.3 is a phenomenological strategy in which
we assume LC order from the outset and then explore whether there is an enhancement in the
pairing tendency as we approach the QCP from the disordered, Fermi liquid side (Fig. 1.6).
The first question that we need to address is whether this strategy is applicable to cuprates.

Although much of cuprate physics is hotly debated, there are several well-established facts
about these materials that are agreed upon [178], as already discussed in Sec. 2.1:

e The pairing state for tetragonal systems is an even-parity spin-singlet state with d,2_ 2
symmetry [229-231], whereas for weakly orthorhombic systems it is dominated by this
pairing state [231, 232].

e In the SC state there are well-defined Bogoliubov quasi-particles, as evidenced by angle-
resolved photoemission spectroscopy [235-237|, Andreev reflection experiments [238,
239], and shot noise measurements [240].

e Superconductivity originates in the CuOq planes, as explicitly seen in atomically-thin
cuprate monolayers [201, 203-205], and the predominant orbitals of the CuOg planes
are Cu:3d,2_,2 and O:2p,,, as deduced from x-ray absorption studies [206-210] and
theoretical considerations [211-213].

e The overdoped normal state is a Fermi liquid [178, 180|, as evidenced by thermo-
dynamic and transport measurements [241-246|, angular-resolved photoemission spec-
troscopy [236, 249-252], and magneto-oscillation experiments [247, 248]. Moreover, the
overdoped normal and SC states are well-described by density functional theory [181]
and dirty d-wave BCS theory [182], respectively.

Let us also remark that there is some evidence supporting that a QCP near optimal doping
lies beneath the SC dome [180, 228|. Clearly, these established findings justify the use of our
strategy to cuprates, but with the additional point that a viable pairing glue must reproduce
the correct d,2_,2 pairing symmetry.

The idea is thus to focus on the far-overdoped regime and assume a Fermi liquid normal
state. Starting from this well-understood normal state, we shall then phenomenologically
analyze within weak-coupling theory the pairing due to various types of LC fluctuations and
explore which ones yield the observed singlet d,2_,2-wave state. Which ones become enhanced
as the putative LC QCP is approached we already know from the results of the previous
chapter. As there is no experimental indication that the pairing symmetry changes upon
doping [178, 230, 231], this approach should allow us to draw conclusions for optimally doped
materials, even though all the complications of the Mott state, the pseudogap, etc., have been
ignored. As as long as there is sufficient continuity within the SC phase itself, the crucial
pairing interactions should be closely related across the phase diagram. This is certainly true
for LC-based proposals (Sec. 2.2.2) which we are currently examining. That said, the scenario
of two different, but complementary, mechanisms acting on the under- and overdoped sides of
the phase diagram cannot be excluded.

The rest of this section, which is based on Ref. [29], is organized as follows. First, we set up
the formalism. We state the band structure, the precise form of the interaction, and write down
the simplified linearized gap equation appropriate to the current problem. Then, in Sec. 2.5.2,
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

we discuss how the Bloch and Bloch-Kirchhoff theorems of Sec. 1.1.1 (Chap. 1) constrain
the viable LC patterns in cuprates down to three options. In Sec. 2.5.3, we investigate how
efficiently LC fluctuations couple Van Hove points to the rest of the Fermi surface, depending
on the LC symmetry and band structure. The numerical solutions of the linearized gap
equation are presented in Sec. 2.5.4. There are three possible LC orders with g,,(,2_y2)-
wave, dg2_,2-wave, and (p;|py)-wave symmetry. We find that their leading SC states have,
respectively, d,-wave, d 2_,
LCs yield the correct pairing symmetry. However, since they have even parity, their pairing
tendency does not become enhanced near the QCP (Sec. 1.3, Fig. 1.4). Moreover, if we include
weak SOC, then it induces subsidiary d,2_,2-wave spin fluctuations whose pairing does become
enhanced near the QCP, but with the incorrect p-wave symmetry. These are the main results
of Ref. [29] concerning cuprates. In Sec. 2.5.4, we also discuss how to experimentally measure
these LC orders. In the Sec. 2.5.5 thereafter, we explain how the pairing symmetry gets
chosen in boson exchange mechanisms based on IUC orders, as opposed to those based on
finite-q instabilities. We supplement our numerics with analytic solutions of the linearized
gap equation in Sec. 2.5.6. We conclude with an extended comparison with the work by Aji,
Shekhter, and Varma [41] which, in contrast to our results, suggested that p-wave LCs and
their conjugate momentum, g-wave LCs, give strong pairing near the QCP with the correct
dy2_,2 symmetry.

2-wave, and extended s-wave symmetry. Hence only d,2_,2-wave

2.5.1 Formalism

Having established the applicability of the formalism of Chap. 1, Sec. 1.3, we now discuss its
application to IUC LCs in cuprates.

In the general model of Sec. 1.3.1 that we considered in the previous chapter, we assumed a
general band Hamiltonian which respects parity and time reversal. Here, for the one-particle
Hamiltonian we use the three-band Hamiltonian of Sec. 2.3:

Ho = > vh Hitdk, (2.104)
k
where
€g — U tpd(l — efik””) — pd(l — efiky)
Hy, = €p + 2ty cosky — b —tpp(1— e*z) (1 — e ™) | @ 0. (2.105)
c.c. €p + 2ty cosky — 1

This Hamiltonian we diagonalize into:

3
Hy, = Z&?kn?kn, (2.106)
n=1

where n € {1,2,3} is the band index, g, are the band dispersions, sorted so that eg; <
ero < €k3, and Pg,, are the corresponding band projectors. Given that there is no spin-orbit
coupling:

Phen = UknUjyy, @ 00, (2.107)

79



2 Intra-unit-cell loop currents in cuprates

where ug, is the normalized (orbital part of the) band eigenvector. Even though Hy is just
a 3 X 3 matrix, its eg, and ug, cannot be found in closed form for general parameters.
As we shall discuss in Sec. 2.5.7.4, one can diagonalize Hj analytically for t,, = t;,p =0
[Egs. (2.303, 2.304)], but this is clearly too restrictive. Examples of Fermi surfaces are shown
in Fig. 2.5. It is worth noting that the band states of this one-particle Hamiltonian are
suppose to describe the already dressed Fermi liquid quasi-particles of the overdoped regime,
since no additional Hubbard or similar interactions will be included in the model, apart from
the effective interaction mediated by LC fluctuations.
The effective interaction between fermions has the form [Eq. (1.22)]:

1
Hie = — 59" %:x(qm,qcbaq. (2.108)

Instead of the critical scaling expression of Sec. 1.3.3.3, for the susceptibility we shall use the
following mean-field expression:
X0
X@) =157 ) (2.109)
5~ 1 (cos gz + cos qy)

where yo > 0 and the lattice constant has been set to unity. For r = 1, x(q) = xo is a constant.
As 7 — 0, x(q) becomes increasingly strongly peaked at ¢ = 0 and diverges like 1/(8r + ¢°)
near the QCP r = 0. Hence the critical exponents of Sec. 1.3.3.3 are v = % and n = 0. In
light of Eq. (1.23), this divergence is equivalent to a softening of the order parameter modes
at ¢ = 0. For r < 0, x(g = 0) becomes negative, indicating condensation to a homogeneous
intra-unit-cell order.

Regarding the fermionic bilinears ¢,q, we have classified them at length in Sec. 2.4 and now
we take full advantage of this classification. LC orders are, by definition, TR-odd and orbital

(Sec. 1.1). Hence their bilinears have the form [Eq. (2.28)]

1
_ T
= E kk+g D 00)Vk+q, 2.110
where
Vakp = ~Va,—k,—p- (2.111)

In principle, there are infinitely many LC bilinears which one could consider. These bilinears
describe the Yukawa coupling to the fermions He = g3, Pa,—qPaq [Eq. (1.18)] and, at least
for small Fermi surfaces, a renormalization group argument can be made that the non-local
terms in the Yukawa coupling are irrelevant. However, even for large Fermi surfaces it is
expected, although by no means necessary, that for a given LC channel the most local Yukawa
couplings in real space, or equivalently the lowest order harmonics in momentum space, are the
largest. We shall therefore restrict ourselves to only those LC bilinears that can be constructed
from one extended unit cell. In particular, this covers the most-discussed IUC LC proposal
put forward by Varma [35, 36, 41|. The  matrices we thus write as [Eq. (2.35)]:

Yak,p = :KLAa:Kpa (2.112)
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

where the orbital extended-basis A matrices are the TR-odd ones from Tab. 2.5 (Sec. 2.4.2.1).
Since K, = X_g [Eq. (2.20)], the condition Yakp = —Ya,—k,—p implies that LCs have purely
imaginary A. The purely imaginary nature of the orbital matrix A can be interpreted as intro-
ducing phase shifts in the bare hopping parameters of Hy. Via a reverse Peierls substitution,
these phase shifts correspond to magnetic fluxes generated by orbital currents (cf. Sec. 2.5.4.1).
However, this construction is not yet finished since not all ®,4 are able to condensed due to
Bloch and Kirchhoff constraints, as we shall discuss in the next Sec. 2.5.2.

The linearized gap equation that we wrote down in Sec. 1.3.2 applies to arbitrary orders in
general systems with multiple Fermi surfaces and spin-orbit coupling. For the system under
consideration, however, the order is purely orbital and there is only one Fermi surface and no
SOC. The linearized gap equation (1.65) thus simplifies to:

Al < B
5 ;i it T R)A () = X A, ) (2.113)

where the integral goes over the Fermi surface (line),
€k = €k3, Vg 1= |Vk:5k:| (2.114)

are the conduction band dispersion and Fermi velocity, and p = +1 (—1) stands for singlet
(triplet) pairing. The largest eigenvalue A determines the superconducting transition temper-
ature through kpT, = QGZE hw.e~ 1/ A where w, is the characteristic cutoff for LC fluctuations
and yg is the Euler-Mascheroni constant. The eigenvector A, (p) determines the symmetry of
the pairing and is related to the SC gap function of the Bogoliubov-de Gennes Hamiltonian

Ag(p) through

AL (p)(ioy)ss, for singlet pairing (p = +1),

: . iy (2.115)
A_(p)(oaioy),,, for triplet pairing (p = —1).

Ass’(p) = {

Here all triplet orientations A’ = 1,2, 3 are degenerate because, on the one hand, there is no
SOC, while, on the other hand, LCs are purely orbital. Hence nothing breaks the spin rotation
symmetry.

The linearized gap equation (2.113) is unsymmetrized, i.e., vg has not been absorbed into
the Cooper-channel interaction (cf. Eq. (A.41) of Appx. A). The Cooper-channel interaction
is thus given by

Ve (p. k) = ~g%L [Vo(p. K) + Volp. )], (2.116)

where the overall minus sign arises because LCs are odd under TR.

Vo(p.k) =x(p— k)Y _|fa(p.k)[> > 0 (2.117)

is a combination of the LC correlation function x(q) and the pairing form factor

fa(p, k) = Ul Vap kuks. (2.118)
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2 Intra-unit-cell loop currents in cuprates

This pairing form factors contains information about the nature and symmetry of the LC
state via the coupling matrix v,p k. For the coupling constant g, we assume a value that yields
sufficiently small dimensionless eigenvalues A to justify a weak-coupling treatment.

We have studied the symmetry properties of £,(p, k) in full generality in Sec. 1.3.2.2. The
most important finding was that the pairing form factor vanishes at forward-scattering,

lim £, (p, k) = 0, (2.119)
p—k

for order parameters that are odd under the composed parity and TR operation PO, pppe =
—1. For LC order, which is always odd under TR, this implies that even-parity LCs have a
suppressed forward-scattering Cooper-channel interaction. Moreover, from a Taylor expansion
it follows that

> lfalp k) < (p—k)* asp— k. (2.120)

The 1/q* divergence of the susceptibility near the QCP is thus completely eliminated in
Vo(p, k) for intra-unit-cell (g = 0) orders. Hence no pairing enhancement takes place, as was
demonstrated in Sec. 1.3.3.3. For odd-parity LCs, Vi(p, k) is uniformly repulsive with an
unchecked divergence near g = 0 as r — 0, imply that they act as strong pair breakers.

The general symmetry formalism of Sec. 1.3 can be imposing and at times difficult to
follow so it is instructive to prove Eq. (2.119) directly once more. Under spatial inversion

Vap,k L DPPYa,—p,—k> Where pp is the parity of the LC order parameter ®,4. Since LCs are odd

under time reversal, Yop 8 - If we further use the transformation properties of

72),*’4!'
orbital Bloch states ugg Lt U_f 3 o uy,5 under these same symmetries, we obtain ULS’)/akpup?, =
—ppuLSfyankukg from which Eq. (2.119) follows.

In the current model, the precise orbital structure of the conduction band eigenvectors ugs3
and LC coupling matrices vqp , can make the pairing form factor f£,(p, k) vanish when one
or both of the momenta are at high-symmetry points. These additional constraints, specific

to the model, are important for understanding some of our results and we discuss them in
Sec. 2.5.3.

2.5.2 Bloch and Kirchhoff constraints on intra-unit-cell current patterns

A bosonic mode ®,(R) is a viable candidate for a quantum-critical mode only if it can con-
dense, in our case to a homogeneous state with ¢ = 0. If the mode acquires a finite expectation
value, we may expand it around its mean value:

Do(R) = (D) + 604 (R). (2.121)

Neglecting the fluctuations d®,(R), the Yukawa coupling to the electrons [Eq. (1.18)] becomes:

3o =93 (@a)ou(R). (2.122)
aR

However, such a term in the Hamiltonian can have aphysical consequences, such as those
illustrated in Fig 2.8. For TR-odd ¢,(R), H,. may induce global currents, in violation of
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Figure 2.8: Current patterns which violate Bloch’s theorem (a & b) and which
violate the generalized Bloch-Kirchhoff theorem (c & d). Both theorems are proved
in Sec. 1.1.1 of Chap. 1. The current patterns under (a) and (b) result in a global current,
while those under (c) and (d) result in a continuous accumulation of charge around some of
the orbitals.

Jhy

Bloch’s theorem [69-74], or it may induce local currents that violate Kirchhoff’s current law,
resulting in an ever-increasing accumulation of charge on some of the orbitals, in violation of the
generalized Bloch-Kirchhoff theorem of Sec. 1.1.1.2. In the extended basis, g = 0 condensation
may also not be possible if ¢, g—o vanishes due to a cancellation between overlapping extended
unit cells.

Below, we analyze these constraints under the assumption that g(®,) is small. This enables
the use of linear response theory with current operators derived from only the kinetic part of
the Hamiltonian. Although the interacting part of the Hamiltonian also contributes to the
current operators, these corrections are of higher order and can thus be neglected.

2.5.2.1 Bloch constraints

In the extended basis of Sec. 2.4, the global current operator can be written as

= % > (@ — 2a)Tap VL (R)Us(R), (2.123)
Rap

where N is the number of copper atoms, «, 3 are orbital indices, T,z is the hopping matrix of
Eq. (2.77), and the basis vectors of the atoms are (see Fig. 2.4 or 2.7):

1
2
zo=| 3é, |. (2.124)

By introducing the matrices

(J&") 05 = 1€+ (@5 — Ta)Tap, (2.125)
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2 Intra-unit-cell loop currents in cuprates

taking the expectation value of Eq. (2.123), and assuming that the translation symmetry is
not broken, we find that the currents along the x and y directions equal:

o = <x1ﬁ(R)J£5 \Il(R)>, (2.126)

Jy = <‘I’T(R)J55‘P(R)>- (2.127)

Global currents are odd under parity and time reversal. Hence the JF» matrices belong to
the E, irrep and can be expressed in terms of the E, matrices of Tab. 2.5:

1
AN

The condensation of a £, mode will therefore generically induce global currents, in violation
of Bloch’s theorem (Sec. 1.1.1), unless we fine-tune the bilinears to cancel the global current.

If we restrict ourselves to bilinears that are localized within only one extended unit cell,
we are left with only three options which can induce global currents along the é, directions,
which are namely (Tab. 2.5):

w Ey E; E;
(7a*) tpalyy — typhat — tpplg - (2.128)

'yf,,ip = UCL (ClAfE + CQA% + c;;Af’g)JCp. (2.129)
Within linear response theory at zero temperature, adding

H, = \F Z Uk (Vien @ 00) (2.130)

to the Hamiltonian induces a global current

. g9 d?k T rEr
Ja = =) / o [Zé Ekn Tr<9< TE K Prn i1 Pin ) (2.131)
1tBZ ( )
—Ekm) — €kn - -
+ Z k k Tr(iKLJf“ Kk?kn’)’f]‘;k?km)
ntm — Ekm
g
— ——_(®,) h-c, 2.132
i (2.132)

where h = (hq, ho, hg) are the linear response coefficients obtained by evaluating the above
integral and ¢ = (c1, ¢2, c3) specify the v matrix of Eq. (2.129) which determines the fermionic
bilinear through Eq. (2.110). &g, and Pg,, are the dispersions and band projectors introduced

in Eq. (2.106). Note that only ’ygjk with the same b = a arises above because the trace
with the other component b # a vanishes identically by symmetry. Moreover, h has the
same value for both ¢ = = and a = y, again due to symmetry. The VN appears because
(D) = (@0(R)) = VN(Pq g-0).

The direction of h depends weakly on chemical potential and for the parameter set of
Eq. (2.11) with u = eq + 0.9t,4 it equals

b 0.85
mr= 029 (2.133)
Rl \ .44
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

Naively, if in Eq. (2.131) we dropped the Pg,, projectors, integral weights, etc., the trace iden—
tity (2.49) would suggest that h approximately points along (t,q/v/2 V2, tops pp) (0.707...
0.6)t,q. However, from the numerical result we see that the next-nearest hopping o< o actually
reduces the net current, even though t;p is positive just like t,q and t,,.

Bloch’s theorem gives the linear constraint:

h-c=0. (2.134)

If we further normalize the coefficients to ¢ - ¢ = 1, this leaves a one-parameter family of E,
bilinears that we parameterize with an angle o

¢ = h,cos & + hgsin «. (2.135)
Here h, = (0,1,0) X h, h. = h./|h.|, hs = h X h,, and h, = h,/|h|. Explicitly, for the h

from above:

0.46 0.25
h.=( o |, hy=10.96] . (2.136)
—0.89 0.13

The dependence of ¢ on « is plotted in Fig. 2.16(b).

2.5.2.2 Kirchhoff constraints

Local charge conservation entails that for each site «:

fo+ > Jap =0, (2.137)

where n,, is the charge on site a and j,g = jl 5= —JBa is the charge current flowing from the

site a to some other site 8. When H = Zaﬁ Talgwlﬂbﬁ, Heisenberg’s equations of motion give

Jap =1 Taptlbs + Hee. (2.138)

For steady phases of matter n, = 0, which in turn implies that any currents that may appear
due to breaking of TR symmetry must obey Kirchhoff’s law:

> jas =0. (2.139)
8

A TR-odd bosonic mode can be quantum-critical only if, after condensation, it satisfies the
above constraint. Indeed, in Sec. 1.1.1.2 we have have adapted the proof of Bloch’s theorem to
show that any state of matter that does not satisfy Kirchhoff’s law is unstable against charge
relaxation.

The global charges located on the various orbitals are given by:

ng = Zqﬁ ) diag(1,0,0,0,0)¥(R), (2.140)
Z\Iﬁ ) diag(0, 1,0, 3,0)¥(R), (2.141)
Z\Iﬁ ) diag(0,0, 3,0, 1) ¥(R). (2.142)
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2 Intra-unit-cell loop currents in cuprates

With respect to the non-interacting three-band Hamiltonian of Sec. 2.3, their time derivatives
equal

g = —Tp, — Ty, = Z\Iﬁ R)JMsU(R), (2.143)
Z\IJT R)JP190(R), (2.144)
where
— A_
Jhe = 2t A, (2.145)
TP = — 2, g A + Aty A (2.146)

Hence the A state described by the v matrix [Eq. (2.110)]

’ykp % A9, (2.147)
is forbidden because it would cause charge accumulation on the d orbitals. The A,/ state

oz = gt AT, (2.148)

satisfies Kirchhoff’s law identically since all the orbitals are located on mirror planes over
which the irrep changes sign. As for the local By, state

B7.
T = K <Clq 62@ >g<p7 (2.149)
linear response theory yields the Kirchhoff constraint

P = (W (R) P w(R)) = - (@) h-c, (2.150)

where h = (hq, ho) are obtained from Eq. (2.131) by replacing JF+ with JP1s and ’yf,gk with

the vy, & Biy of Eq. (2.149). After normalization, we are left with only one viable LC By, state:

C1 1 hQ 0.59
= ~ . 2.151
<C2> Vhi+h3 <—h1> <0~81> (2151)

The numerical value is for p = ¢4 4 0.9t,4 and the standard parameter set of Eq. (2.11). The
c = (c1,c2) coefficients do not depend strongly on chemical potential. For the E; state of
Eq. (2.129), Kirchhoff’s law is enforced by symmetry at each orbital site and does not give
any additional constraints.
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

2.5.2.3 No constraints for spin-magnetic orders

In the next section, we shall also considered spin-dependent bilinears belonging to E, that
have the form:

+ + +
Torp = Kb (clAfg + eoAJE + c3AfY >J<p ® 0, (2.152)

As was explained in Sec. 2.4.3, there are only three pairs of local spin-dependent E, bilinears

+
(Tab. 2.6), which are precisely those given above. In this case, UCLAg * Kg = 0 identically due
to exact cancellation deriving from translation invariance (see the schematic of Tab. 2.5) so
we are again left with a 1D parameter space:

Cos &
c= 0 . (2.153)
sin o

Although these bilinears cannot induce global charge currents, perhaps they can induce
global spin currents described by the matrix J”+ ® o,. However, given the absence of SOC,
one readily observes that the spin parts of the traces factor out in Eq. (2.131), leaving orbital
parts that vanish because they couple E, matrices of opposite TR signs. Thus there is no
Bloch constraint on the spin E; bilinears. For similar reasons, local spin A, _, spin By, and

29’ 1g>
spin By, bilinears have no Kirchhoff constraints. Orbital By, and spin Afg bilinears that
are localized within one extended unit cell do not exist for the three-orbital CuOs model.
The physical explanation for the absence of Bloch and Kirchhoff constraints is that TR-~odd
spin order is fundamentally about spin densities, not currents. Spin loop currents, which are
subject to these constraints, are even under TR, as noted in Tabs. 1.1 and 1.2 of the previous
chapter.

2.5.3 Cooper pair scattering off Van Hove points

Van Hove points are points in crystal momentum space where the Fermi velocity v = Vieg
vanishes. This, in turn, implies that the density of states (DOS), which is & [pg dSk/|vkl,
receives singular contributions from these points when the Fermi surface crosses them. Since
the Cooper pairing strength is proportional to the DOS, it is important to elucidate how Van
Hove points affect the pairing mediated by LC fluctuations.

At generic momenta in d spatial dimensions, all d components of vy, are finite. The equation
v, = 0 thus has solutions only when symmetries force some or all of the components of vy to
vanish identically. Van Hove points therefore reside on high-symmetry points and lines of the
Brillouin zone. In the three-orbital CuO2 model, there are four high-symmetry points:

kr = <g> , Ky, = <g> : kar, = (2) , kx = (Z) : (2.154)

shown in Fig. 2.9(a). All are, up to a reciprocal lattice vector, invariant with respect to
the vertical reflections ¥, and X, whose normals are €, and é,, respectively.!!  Given that
€x,k+G = €k = €y, k+G, differentiating this identity tells us that the x and y components of

HThe corresponding planes of reflection are yz and zz, respectively.
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Figure 2.9: The first Brillouin zone and its high-symmetry points (a) and the orbitals
of the CuO3 plane modulated by the Van Hove wavevector kj;, = (7,0) (b). Under
(a), shaded in blue is a typical Fermi sea at overdoping. Under (b), solid lines outline the
unit cells, while the dashed line denotes the yz-plane of reflection. At the M, momentum,
all orbitals are even under mirroring 3, across the yz-plane (Tab. 2.9). However, the p,
orbital belongs to a different irrep from d,2_,» and p, (Tab. 2.8), as can be seen from the
fact that it is odd under parity (spatial inversion across the copper site), unlike dy2_,2 and

Po-

v, both vanish. Hence these four high-symmetry points are Van Hove points. In principle,
additional accidental Van Hove points are possible, e.g., along the I'-M, high-symmetry line,
but for the model at hand they are not present. The kr and kx points are associated with
the minimum and maximum of the conduction band dispersion, respectively. More interesting
to us are the kjpz, and kps, Van Hove points which are associated with saddle points of the
conduction band and near which the DOS gets logarithmically enhanced.'?

2.5.3.1 Symmetries and the little group of the Van Hove points

Let us consider the Van Hove point kjs,. The full point group of the system Dy, which is
review in Sec. B.4, is generated by four-fold rotations around z Cl,, two-fold rotations around
x U, two-fold rotations around the diagonal dy = x +y Caq, , and parity P. The subgroup
of Dy, which keeps k), invariant up to a reciprocal lattice vector G is called the little group
of kpy,, or sometimes also the point group of the wavevector kjs,. Formally we may write it as
{9 € Dy, | 3G: R(9)kns, = knr, +G}. For kyy,, its little group equals the orthorhombic point
group Doy, which is generated by two-fold rotations around =z, y, z, and parity. Its character
table is given in Tab. 2.7. Irreps of the little group Dsj;, we shall denote with primes to avoid
confusion (e.g., the By, irrep of Dy, is even under Cy, and Cy,, while the B] g irrep of Doy, is
odd under these two 180° rotations). The Cy4, and Cjy. rotations map the two high-symmetry
points kyy, and kpy,.

The band Hamiltonian at kjs, commutes with all elements of the little group of kjys,. Since
there is no SOC, the orbital parts of the band eigenvectors fall into irreps of the little group, as
opposed to irreps of the double group of the little group which would allow for 360° rotations 6

12The DOS and gapping of a dispersion saddle point we study in a different context in Chap. 4 on SraRuO4.
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

Table 2.7: The character table of the orthorhombic point group Dy, [170]. This point
group is the little group of M, = (m,0) and M, = (0, 7). The irreps are divided according
to parity into even (subscript ¢) and odd (u) ones. To the left of the irreps are the simplest
polynomials constructed from the coordinates » = (z,y,z) that transform according to
them. Primes have been added on the irreps to distinguish them from Dy irreps. Co,,
Cay, and Co, are 180° rotations around €., &,, and &, respectively. P is space inversion
or parity. Mirror reflections ¥, ¥, and ¥, are obtained by composing C3., Ca,, and Ca,
with P, respectively.

Doy, E Cy, Cy Oy P X Xy Yo

1, 22, 92, 22 19 1 1 1 1 1 1 1 1
Ty 1o 1 1 -1 -1 1 1 -1 -1

Tz Bj, 1 —1 1 -1 R 1 -1

Yz Bj, 1 -1 —-1 1 1 -1 -1 1
Ty - 1 1 1 1| -1 -1 -1 -1

2 » 1 1 —1 -1 | -1 -1 1 1

y B, 1 -1 1 -1 | -1 R 1

x B}, 1 -1 -1 1| -1 1 1 -1

equal to minus unity. In two dimensions, Cs, = P so only A} , B}/, By, and B3, are possible

irreps. The Hamiltonian (2.105) is easily diagonalized and by exploiting the symmetry matrices
of Tab. 2.3, one readily finds the irreps of the bands given in Tab. 2.8. The irreps are robust
against variations of the model parameters and we indeed find the same result for all eight
parameter sets of Tab. 2.1. Moreover, even if we add strong Hubbard or other interactions,
as long as they respect the point group symmetries, the symmetry and orbital content of the
band states at the Van Hove points will remain intact.

Apart from the band eigenvectors ug,, it is worthwhile to contemplate whether one can
sensibly speak of the symmetry properties of orbitals for high-symmetry points, or even for
generic momenta k. For comparison, the band eigenvectors express the orbital content of the
band at a given k. Symmetries tell us that the orbital contents at different momenta are
related [cf. Eq. (1.45)]:

KL0(9) K gy = e 70 Dy 0
(9)Kpup R(g)k (2.155)

O(9)Krupn = 671%’“"(g_l)iKR(g)kuR(g)km

where K and X~1 are defined in Egs. (2.20) and (2.22) and s, (g) is a global phase, here
made consistent with Eq. (1.54). Clearly, R(g)k and k need to be commensurate for one to be
able to say that ug, are definite under a certain symmetry. Otherwise, there is no reason why
Uk, and UR(g)kn should be proportional'® and whatever proportionality one finds is dependent
on the global phase (gauge) chosen for ug,. In the case when the vectors are made of only one

13When R(g)k = k + G for inverse lattice G, the two eigenvectors have the same energy. Since they are also
non-degenerate, they must be proportional.
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Table 2.8: Irreps and orbital contents of the bands of the three-orbital CuOs model
at the high-symmetry point kj;, = (7,0). The model is defined in Sec. 2.3 and Fig. 2.4.
The band energies are ordered according to ex1 < €gs < €g3, i.e., n = 3 is the conduction
band. The irreps are those of the little group Doy, (Tab. 2.7). These results hold for all eight
parameter sets of Tab. 2.1.

band index irrep at M, orbital content at M,

n=3 Al Cu:3dy2_y2 and O:2p,
n=2 B, O:2py
n=1 Al Cu:3d,2_,2 and O:2p,

Table 2.9: Symmetry eigenvalues of the CuQO2 orbitals under D,; transformations.
The symmetry eigenvalues are defined in Eqgs. (2.157) and (2.158). Underlined are those
eigenvalues for which g does not satisfy the additional relation (2.159) for generic k. At
the high-symmetry momenta I', M, ,, and X, shown in Fig. 2.9(a), the g of the underlined
eigenvalues always satisfy Eq. (2.159).

1 Co. Cay Coy P 5, Sy I
M2 (g) | 1 1 1 1 1 1 1 1
MZI (g) 1 _e—ik’z _e—ikz 1 _e—ik’z 1 1 _e—lkz
M (g) 1 —eky 1 —eiky —eiky 1 etk 1
orbital, as in
1 0 0
Udy_ o = |0, up, = | 1], up, = | 0|, (2.156)

0 0 1

it turns out that even for generic k one can define their symmetry eigenvalue according to
K10(9)Kpta = ME(9)tq (2.157)

as long as the group operation g maps the orbital into itself. Here o € {dl,z_y2,px,py} and
Mii(g) is the k-dependent symmetry eigenvalue. This requirement excludes diagonal rotations
Caq, , four-fold rotations Cy., and related elements of Dyj, but it still includes all the operations
of the little group Dsyp,. The corresponding symmetry eigenvalues are provided in Tab. 2.9.
From the table one notices that, at the ky, = (7,0) momentum, Cu:3d,2_,2 and O:2p,
transform under A}, while O:2p, transforms under By, in agreement with Tab. 2.8.

In the extended basis, Eq. (2.157) is equivalent to

O(g)xkua = M%(Q)KR(g)kuou (2158)

i.e., the extended-basis vectors on the left-hand and right-hand side have different momenta.
This means that the corresponding symmetries apply to generic momenta, and give rise to
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

constraints for generic k, only when
KR(g)kua = Kkua. (2.159)

This relation always holds for the d,2_,2 orbital, but it does not always hold for the p,,
orbitals because of their non-trivial Wyckoff positions. The reason is that some g map the
Pa,y Orbitals at R to those at R(g)R+ 6 (Sec. 2.4.1) so additional e**9 phase factors appear
which make Kg(g)kua different from Kguq, unless k is one of the high-symmetry wavevector
listed in Eq. (2.154). As we shall see below, it is the extended-basis relation

0(9)Krua = Mg (9) K ua (2.160)

that will constrain the pairing form factor for generic k.

2.5.3.2 Constraints on pairing form factors and Van Hove decoupling

With this understanding of the orbitals and bands at the Van Hove point, we can now analyze
the pairing form factor of Eq. (2.118):

fa(p. k) = ub KA K gt (2.161)

We want to see whether it vanishes for generic p and k = ks, = (7,0) at the M, Van Hove
point.

Let us consider AQ_g LCs. The first thing to notice is that AZ_g LCs only couple p, and p,
orbitals, as depicted in the schematic of Tab. 2.5. Since we know that the conduction band at
M, is made of d,2_,» and p, orbitals (Tab. 2.8), it follows that

A A
uL39<;r,A1 2ngkMz Uk, 3 = const. X u;gyﬂC;r,Al ngKkMz Up, - (2.162)

There are only three symmetry operations of the generic extended-basis vector Kpup,: Cay,
Y., and ¥, (Tab. 2.9). Both Kpup, and Kg,, up, are even under them, so the minus sign
must come from the LC A matrix. And indeed

T

A, Al
O'(g)A;0(g) = —A, ™ (2.163)
for g = Cyy or ¥,. The ¥, mirroring operation is depicted in Fig. 2.9(b). Hence
£(p,kym,) = —f(p, kn,) =0 for A,, loop currents. (2.164)

An analogous argument applies to the M, Van Hove point. Thus A,, 9 LCs are unable to scatter
Cooper pairs away from the Van Hove points.

Although not our focus, for B;g nematic order the Van Hove points also decouple from the

+

B
rest of the Fermi surface. The argument is the same as for A, LCs. The corresponding A, 29

matrix only couples p, and p, orbitals (see Tab. 2.5) and it is odd under Cy, and 3.
Among the other LC orders, the contributions

ud KDALY Ky iy, 3 = ubs KEATE Ky, gy 3 =0 (2.165)
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to the E, pairing form factor vanish. The former AQEi matrix couples the p, orbital to
itself. Since there is no p, component of the conduction band, its contribution vanishes. The
latter Ag i matrix couples p, and p, and is odd under Cs, and 3, so the argument proceeds
analogously to Agg LCs. The above constraints are not that interesting because all other
contributions to the E, pairing form factor are finite.

More interesting is the observation that By, LCs would not couple Van Hove points if the
n = 2 band (Tab. 2.8) were the conduction band. In this scenario,

BT, BT,
ULQKLAl 199<ka Ukjwa = ULQKI,A2 Ig:KkMx UkjuxQ =0. (2.166)
The first A matrix couples the p, , and d2_,2 orbitals and its contribution is thus proportional
to
ul,  KEAT9, u (2.167)
dy2 2" P knr, Ypy - :

Even though the Bl_g irrep of Dy, is even under all Dy, operations, as is the dg2_,2 orbital,
the p, orbital is odd under C3;, Ca;, P, and X%, so the above vanishes. The second A matrix
couples the p, and p, orbitals, which implies that its contribution is proportional to

u, KA Ky, (2.168)

which again vanishes because the p, orbital is odd. Let us also note that Agg LCs would
effectively couple the Van Hove points in this scenario:

-
ul g KEAL* Ky, ey, 2 # 0. (2.169)

Although this scenario does not apply to cuprates, it illustrates the important fact that the
Van Hove decoupling is a consequences of the interplay between the symmetry of the LC order,
on the one hand, and the symmetry of the conduction band, on the other.

2.5.4 Results: numerical solutions of the linearized gap equation

Here we present the main results of Ref. [29]: the numerical solutions of the linearized gap
equation (2.113) for the three LC orders that we found in the previous section. These results
tell us which LC fluctuations induced superconductivity of the correct d,2_,2 symmetry, as well
as confirm the analytic results of the previous chapter (Sec. 1.3) that near the QCP, pairing
due to even-parity LCs does not become enhanced, while odd-parity LCs become strongly
repulsive. In addition, here we also briefly discuss the statistical mechanics of the three LC
orders, how to experimentally probe them, as well as the impact of spin-orbit coupling on our
conclusions.

The linearized gap equation (2.113), supplemented by the definitions and formulas of Sec. 2.5.1
and by the 7y, p matrices of Egs. (2.129), (2.148), and (2.149), is a numerically well-conditioned
problem. It is readily solved by discretizing the Fermi surface (line) and then diagonalizing the
corresponding matrix. The leading solutions converge already for ~ 20 Fermi surface points,
while grids up to ~ 300 and more points are easily accessible numerically. When the Fermi sur-
face grid respects'? the tetragonal lattice symmetries, the solutions fall exactly into the irreps

14Respects in the sense that the grid maps into itself under all point group operations.
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of the Dy, point group, as expected (Sec. 1.3.3.1). For dense grids in general, this is also true
to a very high degree of accuracy. Using the group-theoretic identity (1.107) of Sec. 1.3.3.1,
one can, in fact, completely automate the process of the identification of the eigenvector irreps.
Instead of discretizing the momenta, another option is to expand the Cooper-channel interac-
tion in angle-dependent harmonics and then diagonalize the corresponding truncated matrix.
Although numerically slower, this approach gives the same results as the direct discretization
of the Fermi surface.

In the preceding Sec. 2.5.2, by restricting ourselves to the most-local couplings in real space,
that is lowest-order harmonics in momentum space, we have found three possible LC orders:
Gay(a2—y2)-Wave LCs belonging to the irrep AQQ, dy2_,2-wave LCs transforming under the irrep
By, and (pz|py)-wave LCs whose irrep is E; .'> For the (p;|p,)-wave LCs, we have, in fact,
uncovered a whole one-parameter family of possible LC patterns. These LC orders we shall
refer to, respectively, as g-wave, d-wave, and p-wave loop currents. The symmetry class of the
LC fluctuations is the single most important factor governing our results. Hence below we
present our results according to LC type.

There are many parameters that enter the linearized gap equation (2.113). The pairing
eigenvalues A of Eq. (2.113) are dimensionless and they are linearly proportional to the di-
mensionless ratio ¢%xo /tpa. Physically, the reason for this is that, on the one hand, g*xo is
proportional to the overall interaction strength, while, on the other hand, t;dl is proportional
to the density of states at the Fermi surface. The overall interaction strength is proportional
to the coupling strength g squared, due to the two vertexes of the diagram of Fig. 1.5, and to
the strength of LC fluctuations, as quantified by the LC order parameter correlation function
x(q) = <\(I>q|2> which is o xo. This overall proportionality factor is well-understood from
BCS theory and by diving A with gxo/tq, that is measuring it in units of g%xo/tpd, in the
forthcoming we can focus on the impact of other parameters. Using these units for A also has
the advantage of rendering the A shown in the different figures comparable.

How do the results depend on the tight-binding parameters €4 — €y, t,p, and ¢, of Sec. 2.37
To test this, we have tried eight different parameter sets, listed in Tab. 2.1, which cover a
broad range of physically realistic values. In the end, we have found that they affect the
pairing solutions only quantitatively, but not qualitatively. All the important features of the
pairing solutions, like their symmetries or behavior near the QCP, are robust against the
variations of the band Hamiltonian. This is somewhat surprising, since the orbital content of
the conduction band varies drastically between the parameter sets. For some parameter sets
of Tab. 2.1, the conduction band is predominantly of Cu:3d,2_,2 orbital character, while for
others it is predominantly of O:2p, , character. As we shall explain in Sec. 2.5.5, the reason
for this insensitivity lies in the fact that the LC coupling 7,k p matrix is the one that primarily
governs the pairing solutions. All the shown results are therefore for the typical parameter set
(Eq. (2.11), No. 3 in Tab. 2.1):

€4 — €p = tpd, tpp = 0.6tq, typ = 0.5tpa, (2.170)

with the reference energy e¢; = 0.

Of all the parameters, we are thus lead to the conclusion that only two are important for
our pairing problem: the hole doping p and the LC softness parameter r. The hole doping p
is related to the the chemical potential p through Eq. (2.10) and the evolution of the Fermi

5The Dy, point group and its irreps are reviewed in Sec. B.4 of Appx. B.
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Figure 2.10: The parameter space of our pairing problem for a given loop-current
order. The horizontal axis is the hole doping p. The vertical axis is the loop-current softness
parameter r which determines the loop-current susceptibility x(q) through Eq. (2.109).
At the quantum-critical point (QCP) it vanishes, » = 0, while for negative r < 0 the
system is unstable against homogeneous loop-current ordering. The dashed lines are possible
dependencies of r on p as the QCP is approached from the overdoped regime p > p. with
pe = 0.2 for concreteness. The question mark highlights the fact that the precise r(p)
dependence is not known within our phenomenological treatment. Our numerical results
reveal that the precise r(p) does not matter, as discussed in the text.

surface with p is depicted in Fig. 2.2. The LC softness parameter > 0 measures the proximity
to the QCP and specifies the gap in the susceptibility through Eq. (2.109). At the QCP, r = 0.
In principle, if we had a microscopic model, its solution would tells us how r depends on p
as we approach the putative LC QCP from the overdoped side of the phase diagram. A
few hypothetical r(p) trajectories are illustrated in Fig. 2.10. Within our phenomenological
approach, however, the r(p) dependence is unknown.

We have therefore numerically explored the whole r-p parameter space of Fig. 2.10 and found
that there are two main features: the QCP line (r = 0,p) on which the LC susceptibility
x(q) o< 1/q* diverges and the Van Hove line (r,p = pyu) on which the Fermi velocity vg
vanishes at the Van Hove points k = (+,0) and (0, ==7). For the parameter set of Eq. (2.170),
pva = 0.36 with uyg = 0.83t,q. At this p = pyn, the Fermi surface undergoes a Lifshitz
transition, as shown in Fig. 2.5(b). The most important point about these two features is
that they are independent: ARPES measurements of the Van Hove doping pyy find that pyy
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

significantly varies between cuprate compounds, with apparently no relation to the critical
doping p. of the QCP shown in Fig. 2.2 [237]. The only consistent finding is that pyyg > p. [237].
Thus the enhancement in the density of states expected at pyy does not directly play a role
in the quantum-critical pairing around p.. Moreover, even tough the leading eigenvalue A
depends strongly on r and p, we find that the leading pairing state A(k) does not. The precise
trajectory r(p) is therefore not important within our phenomenological treatment, for neither
the enhancement (or suppression) of the pairing tendency as one approaches the QCP nor the
leading pairing state and its symmetry depend on the detailed path 7(p). Accordingly, in the
figures it is enough to show one cross-section for a fixed p, and another for a fixed r, as we do
in the following.

2.5.4.1 g,y(,>_,2)-wave loop currents

The first type of LCs found in Sec. 2.5.2 are g, (,2—,2)-wave LCs. They are depicted in the
bottom right of Fig. 2.12. We shall call them “g-wave” and denote their order parameter
with ®,. Physically, ®, describes a LC order which gives rise to an orbital-magnetic dipole,
i.e., an orbital ferromagnet. It is odd under TR (pg = —1), even under parity (pp = +1),
and transforms under the A, g irrep of Dyp. ®4 is an Ising order parameter and its statistical
mechanics is governed by the Ising model. It can be polarized by applying an external magnetic
field orientated along the z direction B, via the coupling

H, = —kP,B., (2.171)

where k is a coupling constant. The coupling of ®, to fermions proceeds through
He =gy » U, (7:?_5 ® (To) Uk, (2.172)
k
where the coupling v matrix was found to be [Eq. (2.148)]:
72 if’ = K} A K. (2.173)

Here Ky, is the projection matrix of Eq. (2.20) and the extended-basis orbital matrix AfZ" is
listed in Tab. 2.5 (Sec. 2.4.2.1). The v p of Eq. (2.173) enters the Cooper-channel interaction
via Eq. (2.118), with the irrep component index suppressed because the AQ_g irrep is one-
dimensional.

As an alternative way of deriving the coupling to fermions, one can use the Peierls substi-
tution. To wit, let us consider the four oxygen p orbitals of an extended unit cell, shown in
Fig. 2.11. The four orbitals form a loop and if we thread a magnetic flux through it, since
both @, and B, belong to the same A, irrep, the flux will couple to the fermions in the same

-
way as the g-wave LC order parameter ®,. Hence, up to a constant, v, 29 follows from the
Peierls substitution. The tight-binding Hamiltonian of the p orbitals is [cf. Eq. (2.77)]:

o 0 0 0 0
0 —typ 0ty

—typy 0ty 0 |. (2.174)
0ty 0 —ty

ty 0 —tp, O

At
Hy, = 2tppA4 =

o O O O
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tpp tpp
o ,)80
tpp tpp

Figure 2.11: The four p orbitals of an extended unit cell with a flux threaded through
them. Grey arrows indicate the hopping amplitudes, while the purple arrow indicates the
direction of the vector potential A.

In the presence of a magnetic field, the hopping amplitudes get modified via the Peierls sub-
stitution:
Tag — Tap exp(—iAalg (T — .’Bg)) ~ (.Taﬁ(l —iAqp - (o — :13/3)), (2.175)

where A,3 = Ap, is the average vector potential along the line connecting the sites o and 3
and x,, is the position of the orbital ¥, given in Eq. (2.124). A magnetic flux can be represented
by a circulating vector potential, shown in Fig. 2.11, that satisfies A,g+ (€0 —xg) = ®/4 when
xo = R(Cy.)xs is the neighbor in the counterclockwise direction of @5.'% Here ® is the total
magnetic flux through the loop. By enacting this substitution in H,,,, we find that

.
Hy, — Hyp — @ 5ty 7, (2.176)
with the same

0O 0 0 0 O

- 1 0O 0 1 0 i
A==-10 -i 0 -0 (2.177)

0O 0 1 0 1

0 -i 0 -1 0

from earlier. Thus magnetic fields along the z direction, up to a constant, couple the same
way to fermions as g-wave LC order parameters. Conversely, from the above we may deduce
Eq. (2.173).

The results for the pairing mediated by g-wave LCs are given in Fig. 2.12. As shown in
Fig. 2.12(a), ®4 fluctuations result in parametrically weak d, pairing, which is parametrically
weak in the sense that the pairing eigenvalue A\ does not diverge at the QCP (r — 0). This

When x,, is the neighbor in the clockwise direction of &g, Aagp + (Ta — x5) = —B/4.
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Figure 2.12: Results for the pairing mediated by g¢g-wave loop-current fluctua-
tions [29]. The g-wave loop currents have Gry(a2—y2) Symmetry and transform under the
1D irrep AQ_g of the Dy point group. Their coupling matrix is given in Eq. (2.173), with
the corresponding current pattern depicted in the bottom right. The plots show the pairing
eigenvalues A of Eq. (2.113) as a function of the tuning parameter r at fixed chemical poten-
tial p = 0.9t,4 (a) and as a function of the hole doping p at fixed r = 0.5 (b). The colors of
the curves indicate the pairing symmetry (upper right). s’ stands for extended s-wave. The
gap function A(k) of the leading pairing state, normalized to a maximum of +1, is shown on
the center right. The tight-binding parameters used are those of Eq. (2.170). r determines
the susceptibility through Eq. (2.109) and the putative loop-current quantum-critical point
(QCP) is at r = 0. p is related to p via Eq. (2.10). The dashed vertical line under (b)
shows the p = 0.23 hole doping used in (a). The additional solid vertical line under (b)
corresponds to the Van Hove doping pypy = 0.36. The corresponding Fermi surfaces are
shown in Fig. 2.5(a),(b). See Sec. 2.5.4.1 for further discussion.
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2 Intra-unit-cell loop currents in cuprates

is in agreement with the general results of Chap. 1, Sec. 1.3, which are visualized in Fig. 1.4.
Sub-leading singlet and triplet instabilities arise as well. In Fig. 2.12(b), one sees that the
leading d, instability is weakly enhanced near the Van Hove singularity at p = pyy, while
dy2_,2 pairing is strongly suppressed in the same limit.

The reported [41] degeneracy between d,, and d,2_,» pairing for ® is recovered in the limit
of extremely overdoped systems with small Fermi surfaces, p — 1. The counter-intuitive!”
result that this degeneracy is lifted in favor of d,, pairing by realistic p values follows from
the fact that the pairing form factor £(k,p) vanishes when either k or p are at the high-
symmetry Van Hove points kys, = (7,0) or kys, = (0,7), as we proved in Sec. 2.5.3.2. Hence
®,-mediated pairing cannot take advantage of the enhanced density of states due to the Van
Hove singularity.

2.5.4.2 d,._,.-wave loop currents

The second type of LCs found in Sec. 2.5.2 are d,2_,2-wave LCs. They are depicted in the
bottom right of Fig. 2.13. We shall call them “d-wave” and denote their order parameter with
®,. Physically, &, describes a LC order which has a magnetic octupole moment. They can
be understood as an orbital altermagnet, i.e., a TR-odd state which is invariant under the
combination of TR and a four-fold rotation around the z axis, ©Cy,®4 = ®y; see also Fig. 1.1
of Chap. 1. @4 transforms under the By, irrep of D4y, and as such it has even parity, pp = +1.
Like ®,, ®4 is an Ising order parameter, but unlike ®,4, it does not have a magnetic moment.
Instead, it displays piezomagnetism. This means that it can be polarized by the combination
of an external magnetic field pointing in the z direction and shear strain €,,:

He = —rPgB.egy. (2.178)

Here k is a coupling constant. The coupling of ®, to fermions proceeds via
M= gy > 0} (’y,]j 19 g Gg) Ve, (2.179)
k
where the coupling v matrix was determined to be [Eq. (2.149)]:
’Y,i;_f = .'KL <01Af1_" + CQAZBI_Q) Kp, (2.180)

with Ky, defined in Eq. (2.20), the A matrices given in Tab. 2.5, and (c1, c2) ~ (0.58,0.81) as
found in Sec. 2.5.2.2. During the numerics the c; 2 coefficients are recalculated for each n.

The results for the pairing mediated by d-wave LCs are provided in Fig. 2.13. As is evident
from Fig. 2.13(a), ®4 fluctuations promote pairing of the correct d,2_,» symmetry. However,
this pairing is parametrically weak in the sense that the pairing eigenvalue A does not diverge
at the QCP (r — 0), in agreement with the general results of Sec. 1.3 (Fig. 1.4). In addition,
several sub-leading singlet and one triplet pairing instabilities appear, but none of them are
competitive to the leading instability. The pairing strength of the leading d 2_,2 channel is
logarithmically enhanced if one tunes the chemical potential to the Van Hove singularity, as
can be seen in Fig. 2.13(b).

17 Counter-intuitive because, on the one hand, the SC gap function is usually largest where the density of states
is largest (Fermi velocity is smallest), while, on the other hand, d., pairing precisely vanishes at the Van
Hove point where the Fermi velocity vanishes. See also Sec. 2.5.5.
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Figure 2.13: Results for the pairing mediated by d-wave loop-current fluctua-
tions [29]. The d-wave loop currents have d,2_,» symmetry and transform under the 1D
irrep By, of the Dy, point group. Their coupling matrix is given in Eq. (2.180), with the
corresponding current pattern depicted in the bottom right. The plots show the pairing
eigenvalues A of Eq. (2.113) as a function of the tuning parameter r at fixed chemical poten-
tial o = 0.9t,4 (a) and as a function of the hole doping p at fixed r = 0.5 (b). The colors of
the curves indicate the pairing symmetry (upper right). s’ stands for extended s-wave. The
gap function A(k) of the leading pairing state, normalized to a maximum of 1, is shown on
the center right. The tight-binding parameters used are those of Eq. (2.170). r determines
the susceptibility through Eq. (2.109) and the putative loop-current quantum-critical point
(QCP) is at r = 0. p is related to p via Eq. (2.10). The dashed vertical line under (b)
shows the p = 0.23 hole doping used in (a). The additional solid vertical line under (b)
corresponds to the Van Hove doping pyg = 0.36. The corresponding Fermi surfaces are
shown in Fig. 2.5(a),(b). See Sec. 2.5.4.2 for further discussion.
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Figure 2.14: The four degenerate p-wave loop-current patterns when the in-plane
tetragonal anisotropy favors z and y directions (a) vs. 2’ = (z +y)/v2 and ¢/ =
(r —)/v/2 directions (b). Which ones are favored depends on the quartic coefficients of
the Ginzburg-Landau expansion. Here the o« of Eq. (2.184) was set to zero.
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2.5.4.3 (p,,p,)-wave loop currents

Finally, the last type of LCs found in Sec. 2.5.2 are (p;|py)-wave LCs. They are depicted
in Fig. 2.14. We shall call them “p-wave” and denote their two-component order parameter
P, = (<I>pz, <I>py). Physically, @, describes a LC order with a toroidal magnetic dipole moment.
It transforms under the E,; irrep and thus has odd parity, pp = —1, in contrast to the g-wave
and d-wave LCs considered previously. Although all directions of ®, are degenerate on the
quadratic level, quartic terms in the Landau expansion reduce the degeneracy down to four
discrete directions (Fig. 2.14).'® Its statistical mechanics is therefore governed by a four-state
clock model. @, has a magneto-electric response, that is to say it can be polarized by crossed
electric and magnetic fields according to:

He = —k(Pp, By + ©p, By) E.. (2.181)

A similar effect can be achieved by applying, instead of electric fields, time-varying currents
along the z axis. The coupling of ®,, to fermions is given by:

Ie=9)_ Pp,¥} (751@_1@ ® 0_0>¢k7 (2.182)
ak

where a € {z,y} and [Eq. (2.129)]:

oy = Kk (als + 0T+ eshfy )% (2.183)

'8 We shall explicitly see this in a similar context during our Ginzburg-Landau analysis of SroRuQy in Sec. 4.3.2
of Chap. 4.
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Figure 2.15: Results for the pairing mediated by p-wave loop-current fluctua-
tions [29]. The p-wave loop currents have (p.|p,) symmetry and transform under the
2D irrep E,; of the Dy, point group. Their coupling matrix is given in Eq. (2.183) with
o« = 0in Eq. (2.184) and the corresponding current patterns is depicted in the bottom right.
For other « values, see Fig. 2.16. The plots show the pairing eigenvalues A of Eq. (2.113)
as a function of the tuning parameter r at fixed chemical potential p = 0.9¢,4 (a) and as
a function of the hole doping p at fixed r = 0.5 (b). The colors of the curves indicate the
pairing symmetry (upper right). s’ stands for the extended s-wave solution whose gap func-
tion A(k) = cos40j is shown on the center right. The tight-binding parameters used are
those of Eq. (2.170). r determines the susceptibility through Eq. (2.109) and the putative
loop-current quantum-critical point (QCP) is at » = 0. p is related to p via Eq. (2.10). The
dashed vertical line under (b) shows the p = 0.23 hole doping used in (a). The additional
solid vertical line under (b) corresponds to the Van Hove doping pyy = 0.36. The corre-
sponding Fermi surfaces are shown in Fig. 2.5(a),(b). See Sec. 2.5.4.3 for further discussion.

101



2 Intra-unit-cell loop currents in cuprates

(a) 0.010 Pairing symmetry:
— — dz2_y2
0.008¢
G 0.006f
£
RY:
= 0.004 Loop-current components:

0.002§ ~ e
\ : s C] ~ Af{;
0.000
0

3 o=@ =P o

E-

wmmmr (3 NA3E’7;/\

-1 ,OO Z‘i ,5‘, %r x .\. °
: 7

Figure 2.16: Dependence of the results for the pairing mediated by p-wave loop-
current fluctuations on the angle « [29]. The o angle specifies the ¢, ¢z, and c3
coefficients via Eq. (2.184), as plotted under (b). These coefficients correspond to the current
patterns depicted on the right and they specify the coupling matrix through Eq. (2.183).
Note that co contributes oppositely to the global current than what is shown because of
band structure effects, as discussed after Eq. (2.133). The plot under (a) shows the pairing
eigenvalues A\ of Eq. (2.113) as a function of « at fixed » = 0.5 and chemical potential
i = 0.9t,4. The colors of the curves indicate the pairing symmetry (upper right). The
gap function of the leading extended s’-wave pairing state can found in the center right of
Fig. 2.15. The tight-binding parameters used are those of Eq. (2.170). r determines the
susceptibility through Eq. (2.109). The Fermi surface corresponding to g = 0.9t,4 is shown
in Fig. 2.5(a). See Sec. 2.5.4.3 for further discussion.
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In Sec. 2.5.2.1, we found a one-parameter family of possible ’yf,g P Its existence follows from the
fact that Bloch’s theorem gives one constraint, while three paths connecting opposite oxygen
orbitals of the same kind are possible: an indirect path through the Cu atom (process ¢; in
Fig. 2.16), a direct path (process ¢3), and an indirect path through the O atoms (process c3).
In the actual cuprate structure, the second process is mediated by the Cu:4s orbital [415, 417,
419]. We shall parameterize this one-parameter family with an angle « according to:

C1
cs | = h.cos o+ hgsin x, (2.184)
c3

where the iLC,s are defined in Sec. 2.5.2.1. Although the FLC,S are recalculated for each pn during
the numerics, they depend weakly on u and for u = €4 + 0.9%,4 and the parameter set of
Eq. (2.170) we find h. = (0.45,0,—0.89) and hy = (0.28,0.95,0.14). Since Yakp and —Yak.p
give the same interaction [Eq. (2.116)], it is sufficient to consider the range a € [0,7]. In
Figs. 2.14 and 2.15 we use o« = 0.

The results for the pairing mediated by p-wave LCs are shown in Fig. 2.15. As can be
seen from Fig. 2.15(a), away from the QCP @), fluctuations result in weak extended s-wave
superconductivity that is dominated by an angle-dependent gap function of the form A(6y) =
Ap + Ajcos(46y) with |A1| > |Ayg]|, yielding eight vertical line nodes. The corresponding
gap function is draw on the center right of Fig. 2.15. This finding is perfectly consistent
with the result of Sec. 1.3.3.2 of the previous chapter, where we proved that the fluctuations
of TR-odd modes can never yield conventional (nodeless) s-wave pairing. In addition, we
find a sub-leading weak d,2_,» pairing state. From Fig. 2.15(b), we see that this d,>_»-
wave SC state could only become dominant if one could approach smaller hole doping values
without increasing the LC correlation length. We also notice that the Van Hove singularity
logarithmically enhances all pairing, as expected for E, LCs which effectively scatter Van
Hove momenta (Sec. 2.5.3.2). Most importantly, and in complete agreement with the general
result of Sec. 1.3 (Fig. 1.4), the pairing eigenvalues turn strongly repulsive in all symmetry
channels as one approaches the QCP, as signaled by the absence of any positive eigenvalue in
Fig. 2.15(a) as r — 0. While the results in Fig. 2.15 refer to o = 0, in Fig. 2.16 we show the
impact of the parameter & on pairing. The impact is clearly minor, consisting of the emergence
of other weak subleading SC states for a range of « values and of the suppression of all SC
states near o« = /4.

2.5.4.4 Spin-orbit coupling and subsidiary spin-magnetic fluctuations

Our analysis so far has considered only pure orbital magnetism in the absence of spin-orbit
coupling (SOC). Here we explore how SOC impacts our results. There are two ways SOC can
influence our results: through the band structure, or by modifying the interaction. The two
are closely related, as we show below.

In Sec. 1.3.2.1 of Chap. 1, we have studied the pairing form factor which for general systems
with SOC is a 2 X 2 matrix in pseudospin space [Eq. (1.76)],

[ﬁa(pa k)]5152 = U;slrap,kuksz- (2185)
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It satisfies £ (p, k) = fa(k,p). An important result from that section is Eq. (1.79):

(iO'y)Tﬁ:(p, k:)(iO'y) = pPp@ﬁa(pa k)> (2'186>

which follows from the combined parity and time-reversal symmetry. Depending on the pppe
sign of the order described by I'yp g, this result implies that at forward-scattering (g = p—k =
0):

0o, when prpe = +17

fa(k, k) o { (2.187)

01,23, Wwhen pppg = —1.

In other words, the forward-scattering pairing form factor f£,(k, k) is a pseudospin-singlet for
pppoe = +1 and a pseudospin-triplet for pppeg = —1. Therefore odd-parity LCs are pseudospin-
singlets, while even-parity LCs are pseudospin-triplets. In the absence of SOC, the trivial spin
structure of the LCs is directly inherited from the I'yp x = Vop k ® 00 matrices, which explains
why even-parity LCs vanish at forward scattering. Finite SOC, however, allows the even-parity
LCs to be finite at forward scattering, with a Cooper pairing form factor that has the same
form as for symmetry-equivalent spin orders. Regarding odd-parity LCs, they are strongly
repulsive at forward scattering irrespective of the SOC and no change is expected in their
pair-breaking tendency near the QCP.

Expect influence the band structure, on the interaction level SOC can also give rise to spin
fluctuations which have the same symmetry as the orbital LC order [88, 91, 92]. In Sec. 2.4.3,
we have classified them and found that only those spin orders which have moments oriented
along the z direction can belong to the A;g, By and E;; irreps of the loop currents (Tab. 2.6).
This assumes, as in the case of LCs, that we only consider orders which are local in the sense
that they are constructed from couplings within one extended unit cell. Explicitly, for the
possible coupling matrices we found [Egs. (2.72) and (2.73))]:

AT A+ A+ A+ A+ A+

Fk;f = fKL <61A1 lo 02A2 9 4 03A3 o 4 C4A4 lg 4 C5A5 1g> ® 0.Kp, (2.188)
BT B

Ty = KGAT™ © 0.5, (2.189)

and |Eq. (2.74)]

— + + +
=% (c’lAf; +chAYE + chgEjzj) ® 0. Kp,
(2.190)

= —%K (o’lAfi + chgg + chgi ) ® 0.Kp.
The most important point about these symmetry-equivalent spin orders is that their forward-
scattering (g = 0) pairing form factors in the absence of SOC behave the same as the corre-
sponding LC form factors f£,(k, k) in the presence of SOC. In particular, spin-magnetic orders
in the absence of SOC satisfy the inverse of what LC orders do: they are finite at ¢ = 0 for
even parity, but vanish for odd parity (Sec. 1.3.2.2). Thus even-parity (odd-parity) subsidiary
spin-magnetic fluctuations will give rise to strong (weak) quantum-critical pairing, respectively,
as we already established in Sec. 1.3.3.3. As long as the subsidiary odd-parity spin-magnetic
fluctuations soften at the same QCP as the LCs, their weak quantum-critical pairing will be
completely suppressed at the QCP because of the pair-breaking tendency of odd-parity LCs.
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Figure 2.17: Results for the pairing mediated by subsidiary spin-magnetic fluctua-

tions [29]. The g-wave (a), d-wave (b), and p-wave (c) spin orders transform under A, ,
By, and E irreps, respectively, and their coupling matrices are given with ¢; = v/2¢ = 1
and cg = ¢4 = ¢5 = 0 in Eq. (2.188), Eq. (2.189), and ¢} =1 and ¢, = ¢ = 0 in Eq. (2.190).
The corresponding spin patterns are depicted on the right. The plots show the pairing
eigenvalues A of Eq. (2.191) as a function of the tuning parameter r at fixed chemical po-
tential p = 0.9¢,4. The colors of the curves indicate the pairing symmetry (upper right). s’
stands for extended s-wave, while p,, 1 é, and p,, || €. are triplet p-wave states whose
Balian-Werthamer vector A 4—1 2 3 is oriented along the xy-plane and the z-axis, respectively.
The tight-binding parameters used are those of Eq. (2.170). r determines the susceptibility
through Eq. (2.109) and the putative loop-current quantum-critical point (QCP) is at r = 0.
See Sec. 2.5.4.4 for further discussion.
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The pairing mediated by subsidiary spin-magnetic fluctuations we analyzed by solving a
generalization of Eq. (2.113) to spin exchange [Eq. (A.41)]:

3
f'{ (2ifk Z Vpa(p,k)Aa(k) = AAp(p), (2.191)

er=0

where A = 0 is the pseudospin-singlet even-parity channel, while A = 1,2, 3 is the pseudospin-
triplet odd-parity channel. The Cooper-channel interaction is

= 1
VBa(p,k) = —g"[VBa(P, k) + paVBa(p, — k)], (2.192)
where the overall minus sign arises because we consider TR-odd modes, pa—o = —pa=12,3 = 1,
and
Vea(p. k) = x(p— k)Y _trs 0pfa(p, k)oafl(p. k), (2.193)

with the pairing form factor of Eq. (2.185). We use the same band structure as before. In
particular, SOC has not been included at the one-particle level for the just discussed reasons.
Due to the non-trivial spin structure of the modes, the degeneracy between the in-plane and
out-of-plane triplet channels is now lifted.

The results for the pairing mediated by subsidiary spin-magnetic fluctuations are shown in
Fig. 2.17. For g-wave and d-wave spin fluctuations, we find strong pairing in the in-plane p-
wave channels. As the QCP is approached (r — 0), this p-wave pairing will eventually surpass
the weak singlet instabilities cause by LC fluctuations discussed earlier. Conversely, for p-wave
spin fluctuations, we find that they promote parametrically weak out-of-plane p-wave pairing.
Hence the strongly repulsive behavior of the pairing interaction in the orbital sector cannot be
offset by the attractive contribution from subsidiary spin fluctuations. Even when used ¢; and
c; coefficients in Egs. (2.188) and (2.190) different from those shown in Fig. 2.17, we never
managed to get the correct leading pairing symmetry, which for cuprates is d2_,2

2.5.5 How the pairing symmetry gets chosen

Broadly speaking, if one considers the linearized gap equation, which we may schematically
write

/S - Zp@x p—k)Fpa(p,k)Aa(k) = X Ap(p), (2.194)

there are two conceptually different ways the symmetry of the leading pairing channel can
get chosen: either through the finite-momentum features of the boson susceptibility x(q) or
through the form factor F45(k, p). Here we focus on the exchange of TR-odd modes (pg = —1)
because, as we proved in Sec. 1.3.3.2, TR-even modes always give rise to conventional s-
wave superconductivity, although the considerations of this section are potentially relevant to
subleading channels. These subleading instabilities could become leading due to additional
interactions not included in the model, for instance.

Perhaps the simplest way of obtaining unconventional superconductivity is for the TR~odd
modes to have a non-trivial spin structure, in which case the form factor F4p5(k, p) is negative
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

for at least some triplet components, thereby resulting in triplet pairing. Recall that the singlet
Foo(p, k) > 0 is always positive (Sec. 1.3.3.2).

A less obvious possibility is that of unconventional pairing due to the exchange of TR~odd
orbital modes, i.e., loop currents. Even though they have a uniformly repulsive interaction,
since Fap(k,p) = 545|f(k,p)|* > 0, unconventional pairing may arise in two different ways.

The first is by having the Cooper-channel interaction peak at a finite momentum trans-
fer Q [49, 115]. The intuition behind why this would result in pairing can be gathered by
simplifying Eq. (2.194) down to the pairing of two “hot spots,” in which case we essentially
have:

(_XO _XQ> A= )\A. (2.195)
—XQ —Xo

This 2 x 2 matrix is easily diagonalized:

1
Ar=—x0F XQs Ay = (:I:l) . (2.196)

Hence, if xg > x0, A~ > 0 and we find an attractive Cooper instability whose gap function
changes sign for points differing by Q. In the actual linearized gap equation, A(k + Q) =
—A(k) cannot hold everywhere. Instead, it only holds where the gap function is weighted
the most, which are the places where the Fermi velocity v is smallest and the DOS largest,
as follows from Eq. (2.194). As the QCP points is approached, xq diverges and the pairing
eigenvalue will diverge as well in two dimensions, indicating strong quantum-critical pairing,
unless some symmetry suppresses the form factor at the hot spots (Sec. 1.3.3.3). The generic
symmetry PO maps k — k and can only constrain F4p(k,k + Q) for Q = 0.

As discussed in Sec. 2.2.2, LC orders which break translation symmetry have been proposed
for the pseudogap of the cuprates [64-66, 189].19 In the case of the cuprates, the Van Hove
points are at ky;, = (7,0) and kjz, = (0,7) and a TR-odd mode ordering at Q = (7, 7) is
naturally expected to induce d,2_,» superconductivity [115]. And indeed, if we numerically
solve the linearized gap equation for d-wave and p-wave LCs with Q = (7w, 7) using the same
band structure as before, we find that they both favor d :_,2-wave pairing which becomes
strongly enhanced as the QCP is approached. In the case of Q = (m, 7) g-wave LCs, however,
we get a different pairing symmetry because of the suppression of the form factor Foo(k, p) =
|£(k,p)|* at the van Hove points (Sec. 2.5.3.2).

The case of intra-unit-cell LCs is different because the susceptibility x(q) is peaked at g = 0.
Hence the pairing symmetry, which is fundamentally about the phase differences at different
momenta (g # 0), cannot be chosen by the susceptibility, especially when the IUC QCP is
approached. As we saw in the numerical results of the previous section, the leading pairing
channels is always chosen away from the QCP and as the QCP is approached (r — 0) it
becomes enhanced (spin fluctuations), suppressed (odd-parity LCs), or stays the same (even-
parity LCs), but never changes. The actual choosing of the pairing symmetry is carried out
by the form factor which we can imagine diagonalizing like so:

F(p,k) ~ Y vnwa(p)w (k). (2.197)

198taggered LCs have also been proposed in the kagome superconductors [99].
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2 Intra-unit-cell loop currents in cuprates

For pairing due to exchange of ¢ = 0 fluctuations, it is the interplay of these form-factor
eigenvectors with the DOS that selects the leading pairing instability, as we discuss in the
next section.

2.5.6 Analytic solutions of the linearized gap equation

The insights of the previous section motivate the following approach to analytically solving
the linearized gap equation. As previously, we consider IUC LCs in the absence of SOC. Let
us start by rewriting Eq. (2.113) in a more symmetric fashion:

ST B
7{ Tty P RE) = Ad(p), (2.198)

ep=0

where d(k) = /v, A+ (k) and

2
‘ (2.199)

V(p,k) = —¢*Vo(p, k) = —¢*x(p — k) Z‘ULg%p,kukg
a
Although we did not explicitly split V(p, k) into even and odd parts [V4 in Eq. (2.113)], the
eigenvectors d(k) are nonetheless always either even or odd, d(—k) = +d(k), as follows from
parity and TR symmetry.

This eigenvalue problem is difficult to solve analytically because it is infinite dimensional (k
is continuous). Even finite-dimensional matrices are difficult to diagonalize in closed form. In
numerical approaches, one either discretizes the Fermi surface or expands d(k) in harmonics
and then truncates the expansion (Sec. 2.5.4). Both approaches are approximate. Here we

show that this problem can be reduced to a finite-dimensional one exactly. The essential idea
is to first separately diagonalize x(p — k) and UI,g’Yap,kUks- If theS(i two operators have only
a finite number of non-zero eigenvalues, then the diagonalization of V(p, k) can be reduced to

the diagonalization of a finite matrix.
The mean-field susceptibility Ansatz of Eq. (2.109),

X0

X(q) = 1+r 1—r y (2'200)
5 T 1 (cos gy + cosqy)
has an infinite number of non-zero eigenvalues for r # 1. However, if we instead use
1 1-—
x(q) = ;r + 4rr(cos qx + COS qy), (2.201)

this also also has a maximum of r~! at ¢ = 0 and a minimum of 1 at ¢ = (7, 7). The
r = 0 behavior is drastically different (~ 1/g? vs. ~ 1/r + 6(g?)), but, as we have seen in the
numerics of Sec. 2.5.4, the pairing symmetry of our problem is always chosen away from r = 0
so this replacement should not matter for our purposes. For g = p — k:

COS gz + cos gy = cos k; cos p, + cos ky, cos p, + sin k; sin p, + sin &y sin p,,. (2.202)

We may therefore write:

X(p - k) = X0 Z Nnvn(p)V:L(k)v (2'203)
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Table 2.10: Eigenvalues 1, and eigenvectors v, (k) of the susceptibility of Eq. (2.201).
The irreps of scalar functions are defined according to Eq. (2.36). The eigen-expansion is
given in Eq. (2.203). The eigenvectors are not normalized.

n Ln, v (k) irrep
1
1 ;;T 1 Ay
1—r
2 ™ cos k; + cos ky Ay
1 _—
3 v ! cos k; — cos ky By
1 —
4,z . ! sin k, E,
r
1 —
4,y y d sin k, E,
r

with the eigenvalues and eigenvectors listed in Tab. 2.10.
The coupling v matrices are given by [Eq. (2.112)]

Yapde = KA K. (2.204)
If we diagonalize the A, matrices,
Ay = Z Va;nwamwlm, (2.205)
n
we find that
Ul Vap ket = Y VanWain (P) Wi (K), (2.206)
n
where
Wan (k) = uLngLwa;n. (2.207)

Clearly, there are only a finite number of eigenvectors of A,. In fact, for most of the matrices
we listed in Tab. 2.5, there are only two finite eigenvalues because they have only two finite
components in the basis rotated by B.

We thereby arrive at the following expansion of the Cooper-channel interaction:

V(p, k) = _92X0 Z fnyVains Vains * Viy (P)Wasnams (P) + [Vay (B)Wainaing (k)]*7 (2.208)
aninans

where

Wainaims (K) = W, (K)Waing (k). (2.209)

a;ng

The most notable thing about it is that, no matter what input vector d(k) we multiply and
integrate against V(p, k), the output vector will be proportional to some linear superposition
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of Vi, (P)Wasngms (P). In other words, the spectrum of V(p, k) is finite. Given that V(p, k) is
diagonalizable, it thus follows that eigenvectors with non-zero eigenvalues have the form:

1

d(k) = m % danlnzng Vg (k)Wa;ng;n3 (k) (2.210)
Let us note that
Wa;nag;ng (k) = wl;ngxkuki’)u;@gx};wamg = Wl§n3;n2 (k) (2211)

is gauge-invariant under ugs — e*ugs and that it has well-defined transformation rules
inherited from the A, matrices. The latter follows from the fact that kaukgu};ngL € Ay
transforms trivially. The original eigenvalue problem of Eq. (2.198) has thus been reduced to:

Z Vanﬂlgng;bmlmgmg,d’b’rnﬂng’rn:g = )\d'anann37 (2212)
bmimams
where
van1n2n3;bmlmgmg = _QQXO/MM VanoVains
Al . (2.213)
X m[vm(kz)wamwg(k)] Viny (B)Whima;m (K)-

This is a finite matrix diagonalization problem whenever the sum over b, my, mo, and msg is
finite.

2.5.6.1 g,,(,2_,2)-Wave loop currents

A
The eigenvalues and eigenvectors of the A]*’ matrix (Tab. 2.5) are

v = +1, vy = —1, (2.214)
and
0 0
1 1 1 1
wi=g [y wp =3 |1 (2.215)
1 1
—i i

Under the orbital matrices of Tab. 2.3 they transform according to:

O(g) (w1 ws) = (w1 w2) M(g), (2.216)

where:

(2.217)
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Given that O(g)ﬂ(kukguL3KLOT(g) = KpupguL35Cp with p = R(g)k, the composite eigenvec-
tors Wy, .n, (k) transform according to:

Wm;nz(R(g)k) = Z Mmml(g)M:;gmg(g)Wml;mQ(k)v (2'218)

mima

that is, under the representation M ® M*. This direct product representation can be decom-
posed as explained in Sec. B.5 of Appx. B, with the result:

wi,1(k) + wa2(k) € Axg, wi1(k) — wao(k) € Ay, (2.219)
Wl;g(k) + Wg;l(k) € Blg7 Wl;Q(k) — W2;1(k) € ng. (2.220)

When r = 1, under the momentum integral the above functions are orthogonal so they directly
give the pairing eigenvectors. From vjv1 = o1 = +1 and v1vy = o) = —1 we see that only
B14 and By irreps have positive eigenvalues and yield superconductivity, in agreement with
Fig. 2.12.

The exact pairing eigenvectors and eigenvalues for r = 1 are:

™9 (k) = 21% [wi2(k) + wa1 (k)] AB1s = gQXOjI{ (gﬁ’;Q \dBlg(k:)|2, (2.221)
P2 (k) = \/;Tk[wm(k:) — w1 (k)] AP = 92X07{ (;17?;2 |29 (k)| (2.222)

The pairing eigenvectors are not normalized and numerically we find that the d,, € Ba, state
is significantly bigger than the d,2_,2 € B1y, one. When r # 1, the exact By, eigenvector has
the form

dBro = [(d1vi + dova)(wWi2 + wo.1) + d3vi(wig + wa)]. (2.223)

Uk

The coefficients <123 are determined by diagonalizing the corresponding 3 x 3 matrix. Due
to the non-trivial irreps of the susceptibility eigenvectors (Tab. 2.10), pairing instabilities with
symmetries other than By, and By, can also arise.

2.5.6.2 d,»>_,.-wave loop currents

By, By,
For A = c; A" + coA, " with ¢ + ¢3 = 1, we find that

v = +1, vy = —1, (2.224)
and
2c1 2¢1
1 i— C9 —i— Co
wy=—=| i+ec |, wy = | —i+ca |, (2.225)
\/g —i+cy i+ co
_1 — C9 1 — C2

and that under point group transformations:

O(9) (w1 wg) = (w1 wg) M(g), (2.226)
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where:
M(C4z) - (_01 _01> ) M(C2a:) - <(1) (1)> )
0 o (2.227)
Hence:
(k) = (k) +wnk)] € Ay Bu(k) = [ (k) — waa(d)] € B, .
Aa(k) = —lwia(k) + v (B)] € Ay Balk) = —=fwia(k) = war ()] € B,
The exact eigenvectors for r = 1 therefore have the form:
as (k) = V}k[dlm(k) T daAs(R), (2:229)
4P (k) — j)*k[dlBl(k) T daBa(k)) (2:230)

where the coefficients and pairing eigenvalues are found by diagonalizing

dly Ai(k)Ay (k) A%(k)Aq(k) \ [(di) . (4
_92X07{ (2m)%vx <_‘i;(k)il<k> —fi;(k)jg(k» <d;> =A <d;> (2.231)

for the Ay, channel, and an analogous matrix with A replaced by B for the By, channel.
Although not Hermitian, one can show that the eigenvalues of these matrices are always
real. Given that only Ay, Byy, and E, irreps appear among the susceptibility eigenvectors
(Tab. 2.10), from the Dyy, irrep product Tab. B.5 it follows that only s-wave, d2_,2-wave, and
p-wave instabilities are possible, at least if we use Eq. (2.201). These results are consistent
with Fig. 2.13(a) in which we find s’ and d,2_,» pairing at = 1 and an additional p-wave
pairing for 7 < 1, while the “forbidden” g, ,2_,2) and dz, channels only appear at very small
r for which the difference between the susceptibility expressions (2.201) and (2.200) is the
largest.

2.5.6.3 (p,,p,)-wave loop currents

For A, = clAf’; + 63A£§; with ¢f + ¢3 = 1, which corresponds to « = 0 in Eq. (2.184), we
obtain

Va=x;1 = +17 Vo=x;2 = _17 Vo=y;1 = +17 Va=y;2 = -1 (2232)
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and
\/501 \/561
i —i
Wa=z;1 = 5 —C3 1, Wo=g;2 = 5 —Cc3 |,
i —i
C3 C3
2.233
\/§Cl \/501 ( )
1| “ 1] @
Wa=y;1 = 5 —1 ) Wa=y;2 = 5 1
—C3 —C3

as the eigenvectors and eigenvalues. Under point group transformations they transform ac-
cording to:

O(9) (wrn wap wya Wya) = (Wan Wz Wy wy2) Mg), (2.234)
where:
0 0 0 -1 1000
0 0 -1 0 0100
MCE =19 ¢ o o] M) =14 0 0 1|
0 -1 0 O 0010
(2.235)
0 -1 0 0100
0 0 0 -1 1000
MCa)=1_1 o o o] MPY=10 0 0 1
0 -1 0 0 0010

Now there are 8 possible momentum-dependent functions we.pn,.n, (k) that may arise in the
exact pairing eigenvectors d(k). From the representation characters (Sec. B.4.1) one may
deduce that M = A4 @ By @ I, and therefore M @ M* = 3A1, ® Azg ® 3B1y ® Boy ® 4E,,
as follows from the irrep product Tab. B.5. At r = 0, at least at first sight, the pairing
eigenvectors can belong to any irrep. By writing the most general superpositions as we did
for d-wave LCs, one can now formulate finite-dimensional eigenvalue problems that exactly
determine the pairing eigenvalues A at » = 0. In the numerics shown in Fig. 2.15, we found
that only the Ayy and By, channels have positive A corresponding to pairing instabilities.

2.5.7 Comparison to the work by Aji, Shekhter, and Varma (2010)

In the context of the cuprates, the most prominent theory in which intra-unit-cell loop currents
play an important role is the one proposed by Varma [35, 36]. This theory has been developed
by Varma and his collaborators in many ways during the last three decades [37-41, 92, 179, 322,
323, 351-355, 399, 400]. Some aspects of this theory pertaining to the pseudogap regime [37—
40, 353, 354| and to the numerical derivation of IUC LCs from microscopic models [399,
400] we have already reviewed in Secs. 2.2.2 and 2.2.3, respectively. For other aspects not
directly related to superconductivity, we refer the reader to Refs. [35, 36] in which Varma has
summarized the final proposal.
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The main tenant of Varma’s theory is that the pseudogap regime corresponds to a hidden
odd-parity intra-unit-cell loop-current order [35, 36]. As the hole doping is increased, this
putative IUC LC order ends at a QCP, as denoted in the phase diagram of Fig. 2.2; see also
Fig. 2.3. Within this theory, the ordering of odd-parity IUC LCs explains the phenomenology
of the pseudogap regime, while their quantum-critical fluctuations drive both the strange metal
behavior and the d,2_,2-wave superconductivity [35, 36]. It is this last issue — Can Varma’s
theory explain the high-temperature d,2_,2-wave superconductivity of cuprates? — that we
discuss in this final part of the chapter. Needless to say, any viable theory of cuprates must
be able to account for their remarkable high-temperature superconductivity.

The main work in which Varma and collaborators have addressed cuprate superconductivity
is the work by Aji, Shekhter, and Varma (ASV) from 2010 [41]. Here, we compare and
contrast our own analysis of pairing due to IUC LC fluctuations in cuprates, and general
systems (Chap. 1), to that of ASV [41]. We start by noting that ASV use a different orbital
orientation convention and momentum-space gauge than the current work (and Ref. [29] on
which the current work is based). This should be kept in mind whenever comparing formulas
between the two works. In Sec. 2.5.7.2 thereafter, we show that the flux operators introduced by
ASV [41] agree with our classification of LC operators (Sec. 2.4). Afterwards, in Sec. 2.5.7.3, we
discuss ASV’s decompositions of the V,,4q and V},, Hubbard interactions and compare them with
the results we derived in Sec. 2.4.4.2. In the last Sec. 2.5.7.4, we examine the most important
point of disagreement: how the loop currents couple to fermions. We review ASV’s theory [41]
and argue that the direct coupling of the main odd-parity LC order parameter to fermions
cannot be neglected, as ASV have done [41]. Since we have shown that quantum-critical odd-
parity LCs are parametrically strong pair breakers (Sec. 1.3, Fig. 1.4), this by itself strongly
undermines Varma’s proposal. But even if we accept ASV’s suggestion [41] that g-wave loop
currents, as the conjugate momentum of the main p-wave LC order parameter, primarily
drive superconductivity, due to their decoupling from the Van Hove points (Sec. 2.5.3.2) they
robustly yield the incorrect dg, pairing symmetry (Fig. 2.12). In fact, if it was not for a subtle
mistake in the g-wave LC coupling (sin 2k, ,, vs. sink, ), ASV [41] would have noticed in their
own work the decoupling of the Van Hove points, as we explicitly demonstrate. In the end,
even though loop currents may be present in cuprates, given the experimental evidence for
TRSB and parity-breaking in the pseudogap regime (Sec. 2.2.1), our results show that they
are an unlikely candidate for the pairing glue. We finish with a discussion of the challenges in
circumventing our results.

2.5.7.1 Differences in the orbital orientations and momentum-space gauge

There are two possible sources of ambiguity in how one defines the three-orbital model of
Sec. 2.3: the orientations (£ signs) of the orbital states and the precise definition (gauge) of
the Fourier transform. Our work differs in both from ASV [41]. Of course, as long as one
consistently uses a given convention, its choice does not matter, except when comparing to
the work of others.

The orbital orientation conventions that we employ are transparently stated in Fig. 2.4,
which we repeat here in Fig. 2.18(a) for the reader’s convenience. ASV [41], on the other
hand, use the convention shown in Fig. 2.18(b), i.e., their oxygen p, orbitals have the opposite
sign compared to ours. Although the orbitals have not been drawn anywhere in Ref. [41],
the differences in conventions can be deduced by comparing the kinetic energies. Our kinetic
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energy is given by [Eq. (2.77)]:

0 tpd _tpd —tpd tpd
0 —tp O tpp

KE =) Ui(R) 0 4, 0 |wR)
0 (2.236)
C.C. 0
_tpdz R)p.(R+ 1é,) — d'(R)p,(R+ Lé,)] + +He,

where [Eq. (2.17)]
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is the extended-basis fermionic annihilation operator. It creates orbital states which are ori-
ented as shown in Fig. 2.18(a). To ease the comparison to ASV’s work [41], through this last
section we shall denote the components of ¥ with orbitals labels (d = d2_,2 and p, ) instead
of indices (V12345 as in Fig. 2.7).

In their work [41], ASV use the labeling for the orbitals that is shown in Fig. 2.19(a). To
compare their equations to ours, we shall find it convenient to write:

dis=d(R+é,+¢é,), diy = d(R
3=d(R+ o N &) 1=dR+ ey) (2.238)
pite = Do (R+ &), ity = Dy (R+ 3&),
Dite = Dp(R+ 5€, + &), Pizy = by (R + &5 + 3&,).

We shall use tildes to denote operators and variables from ASV [41]. In this notation, the
kinetic energy written in Eq. (B1) of Ref. [41] equals

KE. =% [&T(R)f)x(R +1e,) +d (R)p,(R+1e,)] + - +He. (2.239)
R

Here we have only included the ?,4 term because, as the only term that couples all three
orbitals, it completely specifies the orbital conventions, up to an absolute sign. Our kinetic
energy [Eq. (2.236)] agrees with this kinetic energy by ASV if we identify:

d(R) = d(R), Py (R) = pz(R), py(R) = —py(R), (2.240)

i.e., if we take into account that the p, orbitals are oppositely oriented, as depicted in Fig. 2.18.
With this identification, all the other terms that we have not written out in the kinetic energy
[ellipses in Eqgs. (2.236) and (2.239)| agree as well. Let us also note that the ¢,, parameter of
ASV is by definition the opposite of ours:

tpd = tpd, top = —tpp. (2.241)
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Figure 2.18: The convention for the orientation of the Cu:3d,:_,» and O:2p, , orbitals
employed by Refs. [29, 37, 399, 414] and us (a) and the convention employed by
Aji, Shekhter, and Varma [41] (b). Orange (blue) are positive (negative) lobes of the
orbitals. The underlying three-orbital CuO2 model is defined in Sec. 2.3. Throughout this
section, we use tildes to denote the orbitals, parameters, and operators of Ref. [41].

The convention for the signs of ¢,4 and t,, we adopted from Ref. [414]. Of course, the con-
vention for the hopping amplitudes does not matter as long as the correct sign and value are
used in the end.

In addition, ASV [41] use a different definition of the Fourier transform. According to our
definition [Eq. (2.3)],

1 ik
e = %je *Ry(R), (2.242)

ie., the p, , (R+ $é.,) orbitals use the same phase factor as the corresponding d(R) orbital.
An equally viable gauge, used in Ref. [414] for instance, is

10 0
o =0 ek 0| gy (2.243)
0 0 e—iky/Q

in which the band Hamiltonian of Eq. (2.4) or (2.105) is a bit simpler:

. €1 — 1 2it,q sin(kz/2) —2it,q sin(k,/2)
HM — ep+ 2t cosk, — 1 —dty,sin(k,/2)sin(k,/2) | . (2.244)
c.c. €p + 2ty cosky — 1
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Figure 2.19: Labeling of the eight orbitals and five unit cell areas employed by
Aji, Shekhter, and Varma [41| (a) and the conventions they use for defining
their triangle operators [Eq. (2.258)] in terms of their link operators [Eq. (2.259)]
(b). The implicit orbital orientation convention is shown in Fig. 2.18(b). Reprinted with
permission from Ref. [41]. Copyright (2010) by the American Physical Society.

Note that the Fourier transform phase factors coincide with the actual positions of the oxygen
atoms in this gauge:

altl) o 1 7ik-(R+léz ) 1~
oy by = T D 290 pyy (R + 3€4.y). (2.245)
Y \/N =

We have avoided it because it suffers from the disadvantage that @Z),(calt) is discontinuous at the
Brillouin zone boundary, i.e., wiﬂ% % w,(calt) for k, = —m and G = (27,0) and analogously for

the ky = —m boundary. This renders H ,(flt) aperiodic, as one explicitly sees from the sin %k:x’y
appearing in it. Given that the cuprate Fermi surface intersects the Brillouin zone boundary
(Fig. 2.5), it is desirable to have eigenvectors which are smooth and periodic functions of k,
not only for the numerics but also for the various symmetry analyses. Hence our decision to
use the Fourier convention of Eq. (2.242).

Combining these two differences, we find that the momentum-space field operators of ASV

1y, are related to our field operators 1, through:

g = Brt, (2.246)
where
i 1 0 0
Bp =0 e ke/2 0 . (2.247)
0 0 —e k2
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2 Intra-unit-cell loop currents in cuprates

Note that their real-space field operator

di1 d(R) d(R)
b= |pie | = [ Bo(R+36) | = | po(R+ 360) (2.248)
Pily py(R+ %éy) —py(R+ %éy)

includes the same orbitals as ours. The primitive unit cell (Fig. 2.7) is thus the same in both
works. The relation to the extended basis of Sec. 2.4.1 is given by

U, = Kty (2.249)
where
1 0 0
0 elke/2 0
Kp=%Bl =10 0 et/ (2.250)
0 eh/2 0
0 0 —e /2

The old Ky is defined in Eq. (2.20). This gauge difference has been deduced from the con-
duction band eigenvector ASV provided in Eq. (17) of their article [41], as we explain in more
detail in Sec. 2.5.7.4 after Eq. (2.302).

2.5.7.2 Agreement between the loop-current operators

As part of their analysis, ASV [41] have introduced a number of LC or flux operators, depicted
in Fig. 2.20(b). We have gone through the effort of explicitly transcribing these flux operators
and comparing them with our classification of fermionic bilinears of Sec. 2.4. Our LC operators
are made from one copper d,2_,2 orbital and the four oxygen p, , orbitals that surround it
[Fig. 2.20(a)|, while ASV’s LC operators are constructed from four copper d,2_,2 orbitals and
the four oxygen p,, orbitals that are in between them [Fig. 2.20(b)|. Here we show that the
two sets of operators are in agreement, despite the different appearances.

Given that ASV’s unit cell contains four copper atoms [Fig. 2.19(a)|, some of the LC oper-
ators that they introduce break translation symmetry. This includes, in particular, the Ei’s
operator which according to Eq. (C1) of Ref. [41] equals:

Liw=i|d (R)p,(R+1&,) —d (R+&,)p,(R+ Lés + &)+ + He. (2.251)
Thus if we look at the ¢ = 0 component

Lg—os=» Lis=0, (2.252)
R

it vanishes identically because the currents of neighboring copper atoms have opposite orien-
tations. This is clearly visible in Fig. 2.20(b). Although such non-homogeneous LC operators
are allowed and can condense for finite g, they are not the focus of our work or of the work by
ASV [41], so we shall not discuss them further. In addition, let us note that the ii,z operator
of Ref. [41] includes a component proportional to INLZ-7S, as can be seen by examining the outer
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Figure 2.20: Comparison of the loop-current operators introduced by us (a) to those
introduced by Aji, Shekhter, and Varma in Ref. [41] (b). Our operators are con-
structed from the five orbitals of an extended unit cell, drawn in Fig. 2.7, while the flux
operators of Ref. [41] are constructed from the eight orbitals shown in Fig. 2.19(a). Here
¢’ = (z+y)/v2and y = (x—y)/V/2. Figure (b) is reprinted with permission from Ref. [41].
Copyright (2010) by the American Physical Society.

rim of L; . in Fig. 2.20(b). As we are interested in intra-unit-cell LCs, we shall set this part
of Z)i,z to zero.

The remaining L',Z, ii’m/z,ylz, im/, and L’y/ flux operator are in direct correspondence to
our LC operators, whose LC patterns are shown in Fig. 2.20(a). These operators are precisely
defined in the Appx.es C and D of Ref. [41], but in a notation that is quite different from ours.
After (i) transcribing the expressions provided in Appx.es C and D of ASV’s paper [41], (ii)
taking into account the different conventions for the p, orbitals, as in Eq. (2.240), and (iii)
translating the operators so that they are centered around only one copper atom, one finds
that:

Li. = U(R) [2Af 29] U(R), (2.253)
Lige_yo = U(R) [41\? 0 _9Ay lg] U(R), (2.254)
and
Liw = Ui(R) [—x/i (A{Ej; + AP ) . (Afg + AP )} U(R), (2.255)
Liy = Vi (R) [—\/i (Aﬁg o ) - (Agg e )} U(R), (2.256)

i.e., the flux operators agree with our LC matrices. Here the equality holds modulo lattice
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2 Intra-unit-cell loop currents in cuprates

translations. The A matrices of the right-hand side are listed in Tab. 2.5.2°

The subscripts of the L flux operators are suppose to indicate how they transform. Thus,
according to Ref. [41], Ei’z transforms under the same Dy point group irrep as z, which
is Agy, while (L;.|L;,s) transform as (2'|y’) € FE,. Keeping in mind that according to
ASV 2/ = (z +y)/V2 and ¢/ = (x — y)/v/2 [41], the latter claim is in agreement with the
relations (2.253) to (2.256). The former statement is also correct if we take that L; . is even
under parity, As, — Agg, as one would expect for an orbital angular momentum operator [41].
Regarding f/l-@/z_y/z, we find that it transforms according to the By, irrep. The appropriate
polynomial is 22 — y? without the primes (see Tab. 2.2 or Tab. B.4 in Appx. B, for instance),
and not 2’2 — y? = 2xy € By, as suggested by ASV [41]. That said, in their paper [41]
it is also stated that fji,xa,ya has the symmetry of the so-called ©; IUC LC phase [38-40],
whose irrep was previously correctly identified as Bi, [38-40]. The other, so-called O LC
phase [38-40| corresponds to ]Nii,x/ and ii,y/ [41]. Apart from the misleading naming of one flux
operator (ima_y/z), the flux operators of ASV [41] are in agreement with our classification
of fermionic bilinears (Sec. 2.4). A point of difference between our LC operators and their
flux operators is that we have determined the relative weights between the two E and By,
components from the Bloch and Kirchhoff constraints (Sec. 2.5.2).

Let us demonstrate how we obtained the results of Eqs. (2.253) to (2.256) using the L; , flux
operator as an example. In light of its direct coupling to fermions, this is the most important
operator within ASV’s theory [41]. The others can be analyzed in similar fashion. We start
from Eq. (D11) of ASV [41] which defines L; . as the sum of triangle flux operators:

L, = Z fiL (2.257)
L=I,..,IV
The triangle flux operators f;;, are defined in Eq. (D4) as
fir = 0i12e — i1y + 0412y,
firr = 0i22+ 02y + 0524y,
firrr = —0i32 + 053y + 0;.3 24,
firv = =042 — 0iay + Qi a2y

(2.258)

with the conventions shown in Fig. 2.19(b). The d,2_,2-p, link (or current) operator O; ¢, is
defined in Eq. (D2), the d,2_,2p, link operator O;y, follows by extension, while the p,—p,
link operator O; ¢,y is defined in Eq. (D3) of Ref. [41]:
Oi,é,x = 12 d;&spi,&x,s + H.c.,
S
Oney =1 dl, iy, +He, (2.259)
S

Oivévxy = izp;‘r,é,y,spive,x,s + H.c.
s

As we explain in the next section, the diagonal spin summation is not the appropriate one for
decomposing Hubbard interactions. However, for the purpose of relating their flux operator

A _
29Note that the A% and Af;’/y matrices used in this thesis are the opposite of those given in Appx. C of
Ref. [29].
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

to ours, the above definitions (based on Eqs. (D2) and (D3) of Ref. [41]) are the right ones.
Below we suppress the summation over spins s € {1, ]}.

As discussed previously, in L; . we ignore the o L; ¢ outer rim [Fig. 2.20(b)] because it
breaks translation invariance. The O;/, and O; 4, operators we thus eliminate, leaving:

4
Li. = Z Oi oy = *i(PzT,l,xpi,l,y + PzTg,xpm,y + PZTA,xPi,z,y + pzTA,xPz',l,y) +He  (2.260)
=1

Here we used the triangle labeling shown in Fig. 2.19(b). Next, we rewrite this in terms of the
notation introduced in Eq. (2.238):

Li.=—i[pl(R+1é,)p,(R+ 3&,) + PL(R + 3€.)p, (R+ é, + 3&,)] + He. (2.261)
—i[pl(R+ 16, + &,)p,(R+é, + 3&,) + PL(R+ 1é, + &,)p,(R+ 1é,)] + Hec.

Finally, we exploit translation invariance to center the orbitals around R and switch to our
convention for the p, orbitals (the latter only gives an overall minus sign) to obtain:

Liz = +i[pL(R+ 58)py (R + 38,) + pL(R+ 58:)py (R — 38,)] + He.
ot L L. : L. L (2.262)
+i[ph (R — 3€)py (R — 3&y) + pL(R — 3&)py (R + 3&,)] + Hee.
The last step is to express this result in matrix notation:
d(R) "0 0 0 0 0 d(R)
i P:c(R+§ :c) 0 0 i 0 i px(R+§eI)
Liz=|py(R+38) [ |0 —i 0 —i 0] |py(R+38)
pe(R—3&) | [0 0 i 0 i]|p(R-1Le,) (2.263)
py(R — 38y) 0 =10 =10/ \p,(R-3¢,)
— vi(R) [2Af % | y(R).

This is the relation stated in Eq. (2.253). Analogous manipulations give the other relations.

As an aside, the classification procedure of Sec. 2.4 can be adapted to the enlarged unit
cell of ASV, shown in Fig. 2.19(a), with minimal modifications. The orbital transformation
matrices analogous to the O(g) of Tab. 2.3, call them O(g), are now 8 x 8 matrices. Using
characters (Sec. B.4.1), it is easily seen that O = 2454 ® Big ® Bag @ 2E,. With the aid of
Tab. B.5, one can now readily decompose O ® O, with the classification statistics as given in
Tab. 2.11. The additional matrices that arise, when compared to Tab. 2.4, are equivalent to
the old 5 x 5 orbital A matrices multiplied with momentum-dependent functions, as explained
in Sec. 2.4.3.

2.5.7.3 On the decompositions of the V,; and V,,, Hubbard interactions
The starting point of ASV’s derivation of their effective LC Hamiltonian is the following exact

identity (Eq. (2) in Ref. [41]):

~ 2
2afashl,by = —|dss|” + alas +blby, (2.264)
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2 Intra-unit-cell loop currents in cuprates

Table 2.11: Statistics of the classification of the orbital matrices constructed from
the eight orbitals of Aji, Shekhter, and Varma [41|, shown in Fig. 2.19(a). Table
entries indicate the number of Hermitian 8 x 8 orbitals matrices which transform according
a given Dyy, irrep and time-reversal (TR) sign. The last row is the net number of TR-even
and TR-odd matrices, which coincides with the number of symmetric and antisymmetric
Hermitian 8 x 8 matrices.

TR-even TR-odd
Ay, 8 2
Ao, 2 1
By, 5 3
Ba, 5 3
E, 8 x 2 8 x 2
__ 8x9 _ 8T
R
where a and b are fermionic annihilation operators and gss/ = —i(albs/ — bl,as) = E]ZS/ is a

current operator. This identity enables one to decompose density-density interactions into
(spin-dependent) current channels. Here we discuss how we obtain very different results from
ASV [41] when carrying out this decomposition.

If one drops the uninteresting one-particle terms and also neglects the spin operators, ASV
find that the V,q and V,, Hubbard interactions decompose into (Egs. (D10) and (D12) in
Ref. [41]):

- . Voo
24 |Li) + \Li,zﬂ — 2\ P (2.265)

2 117
+ § ‘Li’$/2_y/2 8

2y |L;

2

=g e

On the other hand, the LC operators that we found to appear in Sec. 2.4.4.2 are

L;dZ(Afl_g, A AP A{E;) (2.266)
Lz?p:(/\f;g, Ay, AP ASy) (2.267)

for V,q and Vj,, respectively. Keeping in mind Egs. (2.253) to (2.256), the two decomposi-
tions appear quite different. Part of this difference might be due to using different unit cells
(Fig. 2.20), but the symmetries and orbital contents should be the same at the very least.
The symmetries of i}m, Ei7x/2_y/2, I}i@/, and I}i’y/ agree with the matrices of L;d, respectively.
However, f/i@/z_y&, L‘,m', and Ei,y/ include p,—p, currents [Fig. 2.20(b)| which are absent in
all the matrices of £ ; (see the schematics of Tab. 2.5). In light of Eq. (2.264), a dy2_,2-
Dz,y density-density interaction cannot result in p,—p, currents. Given its pure p,—p, current
character (up to translation symmetry-breaking terms), the appearance of L’,Z is even more

. . = 2 . . . . .
mysterious. In the article [41], ASV state that ‘LZZ‘ “is also present in the interactions” with-
out proof or elaboration. Writing out ASV’s decomposition does not yield exact cancellations
between the p,—p, currents and the present author has not managed to reproduce their V4
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

Hubbard interaction decomposition. The same goes for V},, which only includes ‘ELE‘Q, even
though we found components of -Z/i,z, z/l-@/z,y/z, im/, and Eijy/ to appear as well (see L;p)'

As the V,,q decomposition is the most pertinent one to ASV’s work [41], let us state our
result once more [Eq. (2.91)]:

4 3
1 1 1
nay mp=-5 Y. [O(A)]?—Z > % [(9(AGA)}2+Z S o] (2.268)
= A€L_, AeL A=1 AGLL
where
5;;:(/\?{"7 AT AP ATY). (2.269)

Here ¥ = (d7p17p27p3)p4)T7 Ng = dea npe = pzpfv and
o) = 'y, (2.270)

As explained in Sec. 2.4.4.2, Fierz identities allow one to also write [Eq. (2.102)]:

4 3
ndznpg:—% > [O(A)]z—% > Z[O(AGA)]Q—{—E > (o). (2.271)
1= Aect, Aegt, A=l AeL,,

The most notable thing about Eqs. (2.268) and (2.271) is that nematic (~ AT € L;d), spin-
magnetic (~ AToy for AT € L;d), and spin LC (~ Ao, for A™ € L) instabilities at first
sight appear to be as competitive as orbital LC instabilities (~ A~ € L;d)' LC operators are,
in fact, repulsive in the latter form. That said, we shall not carry out any mean-field [397,
401, 420] or numerical [399, 400, 402-404] analyses to find out which order prevails. We
reviewed such work in Sec. 2.2.3. The main point is that ASV [41] by dropping all other
terms are essentially assuming, rather than deriving, LC order. Conceptually, their treatment
is therefore very similar to ours. The philosophy behind our treatment was explained in the
introduction of Sec. 2.5.1.

To derive Eq. (2.268), we start from the following relation (in which we ignore quadratic
terms):

1 L
NgNpe = Z dldspzslpﬁs’ = _5 Z gﬁ;ss/gf;ss’
ss ss’

1 ) (2.272)
=73 Z do;s5 30305 + 1 Z(:RZ;SSIRZ;S’S’ — J0.s530:5'5),
55 55
where:
Reyssr = dlpgs/ + pzsds/, (2.273)
Jusser = —i(dipes — pldy), (2.274)
Jtss = —i(dlpey — phyds). (2.275)
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2 Intra-unit-cell loop currents in cuprates

The first line follows from Eq. (2.264), but it is actually the second line that more accurately
reflects the channels contained in the d-p density-density interaction. The Ry, Js.ss, and

Je.ss operators are not independent:

gf;ss’ + gﬁ;s’s = 3&55’ + 3&5’57 (2276)
gl;ss’ - gﬁ;s’s = _i(:RE;ss/ - :Ré;s’s)' (2277>

In addition (2dlprs)? = (Rewss + iessr)? = 0 and (R — idp.ss)2 = 0. Notice how:

~t ~
:RT = Rﬁ;s’sa 3253/ = 34;5’57 36;55/ = 36;55" (2278)

?;ss’

The fact that in J we do not interchange the spin indices complicates things when we construct
spin operators from the J, as we explain below.
Next, we introduce for each orbital extended-basis A matrix the operators:

g (A) = UIAT,,, (2.279)

éss’(A) = (dl pl/) A <;l:,> ’ (2'280>

where ps = (p1s, D2s, P3s, Pas)T. A straightforward comparison to the matrices of Tab. 2.5 shows
that:

OSS/ (Al g) 31-55’ (T)SS/ (Al g) gl'ss’
By, ’ 3 B .
OSS/ (Al j]) X 32;55’ ’ OSS/ (Al j]) — 62;53’ , (2281)
OSSI (AEu ) 53;83’ 655/ (AEu ) 63;83/
gﬂf 34;55/ - ggﬁ 34;53’
Oss’ (Al,Z/ ) OSS/ (Al’z )
and
A+
(933’ (A3Birg) :Rl;ss’
Osr (A7) | Z op [ Rse | (2.282)
Oss’ (A{Eg) R3;88/
E’Jr jQ4;ss’
Ossr (A7)
where
1 1 1 1
2 2 2 2
1 1 1 1
x=|2 2 2 72 (2.283)
vi 0o 0
0o -% 0 -%
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Above, notice that the matrices that enter the columns on the left-hand side are those listed
in L;d and L;rd. Since X is orthogonal, XTX = 1, it follows that:

4
naS g = —% S Y B (0)0,w (M) (2.284)
(=1 AGL;d ss’
1 1 1
- _5 Z OSS’(A)OSS’ (A) - 4 Z OSS(A)OS’S’ (A) + 4 Z OSS(A)OS’S’(A)-
AeL, AeL, Aelt,

Finally, we replace spins with Pauli matrices in the latter equation using

O(Aoa) =D 05w (A)(04)ss, (2.285)
3
Our(A) = £ 3 O(A04)(04)s (2.256)
A=0

to obtain Eq. (2.268). This completes the proof.
Alternatively, we could have also defined

0a(A) = 04 (A)(04)ss, (2.287)
3
O (1) = 3 37 04(A)(0a)or (2.259)
A=0
to obtain
4 1 3 B
na Yy = - ST [040)] [0a(A)]. (2.289)
=1 AGL;d A=0

Although this equation looks simpler, one should keep in mind that Q) A(A) # UTAGAT in
general. In the current case of d—p orbital coupling, one finds that

(?O(A:) = O(A7), (?1(/\:) = O(A:(ﬁ)a (2.290)
OQ(A ) = —iO(AJrO'Q), Og(A ) = O(A 0'3),

where A~ and AT are the first, second, third, or fourth matrices of L;d and L;Fd, respectively.
By exploiting the Fierz identity [Eq. (2.99)]

2

[0(A*e9))? = [0(A7)] + [0(A~09)] — [0(AH)]?, (2.291)

one recovers Eq. (2.268).
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2.5.7.4 Unappreciated aspects of the coupling of loop currents to electrons

Before we discuss the shortcomings of ASV’s theory [41], we first review it. Let us call &, , ;,
<I>py,7i, and @, ; the order parameters which, through a Hubbard-Stratonovich transformation,

correspond to the ii,x’v I:i,y/, and ]NL@Z flux operators of ASV [41], respectively. In ASV’s
notation, @, , ;, <I>py,,i, and ®,; would be called L; ;/, L;,, and L; ., in that order. The pair
P, = (sz,’i\@py,’i) transforms according to the E; irrep of the underlying tetragonal Dy,
point group, while ®,; transforms according to the Agg irrep of Dy, (the irrep superscripts
are TR signs).

Within the theory of ASV [41], it is the p-wave LC order parameter ®,, that condenses. The
resulting ordered phase is the so-called O1; LC phase which was studied earlier by Varma and
collaborators [38-40]. However, for superconductivity the regime of interest is where ®,, still
fluctuates [41]. Due to in-plane tetragonal anisotropy, two easy in-plane axes are expected
and, according to ASV [41], they are oriented along the 2’ = (2 +y)/v2 and v/ = (z —y)/V2
diagonals (Fig. 2.21). Furthermore, a fluctuating g-wave LC order parameter @, is also present
in the theory. According to ASV [41], ®, and ®, are conjugate momenta, with the latter acting
as a generator of rotations for the former. Because of the A;rg contributions to the logarithm
of the orbital rotation matrix O(Cy,) from Tab. 2.3,

+ + + + -
_idlog O(C) = (2\@\’14 9 4 AL 2N ﬁA?lg) oAl (2.292)
™

-
it cannot be said that ®, ~ A’ by itself generates fermionic rotations However, for the
p-wave LC fermionic bilinears one could say so based on the spin-like commutator relations:

— — A_ — A_ — - — —
[AVE AT ] =AY, [ATL A=A, [AVAG] AT (2299)

For the other F, matrices of Tab. 2.5, the commutator relations are not so neat:

A5, Ay ] =0, (M35, A55] =0,
A7 AT ) = —iafy, (A7, A ) = —iadl, (2.204)
(A}, AFe] = iaFe (A2, AP ] =D

In any case, from these considerations ASV have come to the conclusion that the effective
model of their LC fluctuations is the quantum rotor model [41, Eq. (12)]:

2
H= Z |L291’ + JZ cos(0; — 0;), (2.295)
g (i)

where ®,; is identified with Ly, = i0p, and the 0; angles specify the in-plane directions
of ®,; [41]. Two notable features are that the susceptibility of ®,; has weak momen-
tum dependence and that the amplitude fluctuations of @, ; are not included in the model,
®,; - ®,; — cos(f; —0;). Let us emphasize that this effective Hamiltonian has not been
rigorously derived (see previous section), but rather constitutes an educated guess, assuming
loop currents as the ordering channel.
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Figure 2.21: The four domains of the loop-current phase in the theory of Aji,
Shekhter, and Varma [41]. The domains can be specified by the four orientations of
a p-wave order parameter vector ®, shown in red. Compare with Fig. 2.14(b). Reprinted
with permission from Ref. [41]. Copyright (2010) by the American Physical Society.

To asses the Cooper pairing instability, next ASV [41]| couple the fluctuating loop currents
to fermions. They only consider the coupling of the g-wave LC order parameter ®,;, however.
From a Hubbard-Stratonovich transformation of the —%V})d}imf term in Eq. (2.265), they

obtained the |®,,]*/(2I) term of Eq. (2.295), while the remaining ®,;L; . term gives the
desired coupling to fermions (Eq. (16) in Ref. [41]):

\Va -
K, = 1L6d Z ®,;L; . +Hec. (2.296)
7

By Fourier transforming this expression and projecting it onto the conduction band states
given by the approximate eigenvector (41, Eq. (17)]

1

|| oy sa)

Ups = —F— Sey(k) |, (2.297)
2
N Y
Say(k)
where

sz (k) = sin 1k,, sy(k) = sin 1k,, say(k) = \/s2(k) + s2(k), (2.298)
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ASV obtained the LC-fermion coupling [41, Eq. (18)]:

v .
H. = —3%‘1 S @y npchfk.p)ep, (2.299)
kp

where ¢ = 71};3{% are the conduction band annihilation operators. For the g-wave LC-fermion
coupling matrix ASV find [41, Eq. (19)]:?!

~ k k

f(k,p) = —isx_yl (k:)s;yl (p) <Sin ?w sin % — sin ?y sin ]92z> . (2.300)
In the continuum this simplifies to f(p,k) o &, - (k X p), which they then proceeded to
analyze by integrating out ®,4 and solving the BCS gap equation [41]. ASV find that the
leading pairing states have d,>_,» and dg, symmetry [41], as can be seen from (k; — cos 0y,
ky — sinfy):

1 cos 20), cos 20,  sin 20y, sin 20,
2 V2 V2 V2 V2

Note that cos26), = k2 — k:i € Bi4 and sin20), = 2k;k, € Ba,. For a circular Fermi surface
in the continuum, these two pairing states are exactly degenerate (see above), as follows from
the fact that 45° rotations around é, map one into the other. Finally, ASV conclude that [41]:
“For the actual Fermi surface of the cuprates in which the Fermi velocity is largest in the (1,1)
directions and the least in the (1,0) or the Cu—~O bond directions, d;2_,» pairing is favored
because in that case the maximum gap is in directions where the density of states is largest.”

With ASV’s theory outlined, we may now discuss aspects of it that have not been sufficiently
carefully treated by ASV [41]. Let us start by discussing the coupling of g-wave LCs and
demonstrating that Eq. (2.300) is incorrect for large momenta. As we observed in Sec. 2.5.7.1,
ASV use a different gauge than us. Their Hamiltonian is given by

ié. - (kxp)?=sin®() —6,) =

(2.301)

B R €d— KU Qitpd Sin(k:x/Q) Qitpd sin(ky/Q)
Hy, = BpHyBl = ep + 2t cosk, — 1 Atyysin(k,/2)sin(k,/2) |, (2.302)
c.c. €p + 2t,, cosk, — p

where Hy is the three-band Hamiltonian of Eq. (2.105) and By, is the gauge transition matrix
of Eq. (2.247). This Hamiltonian cannot be diagonalized in closed form. However, if we set
top = t;)p = 0, for the conduction band we obtain:

. . 5+ Suy(k)

gy = — —isg(k) |, (2.303)
VR S ()5 ®) i)

k3 = 3(€a + €p) + 2tpaSay(k) — 1, (2.304)

where

Suy(k) = /52, (k) + 62, 5= €d4t_d€p. (2.305)
P

21T have replaced s, (k) + s5, (p) with s, (k)ss, (p) in Eq. (19) of Ref. [41] since this is likely a typo.
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

If we further set § = 0, we recover Eq. (2.297) and what was meant by the cryptic “absence
of orbital order” of ASV [41]. This agreement confirms the gauge difference we claimed in
Sec. 2.5.7.1.

Using Eq. (2.250), the appropriate g-wave coupling matrix is now easily found to be:

T aA2g g sin k, sin p,, — sin k, sin
Fke, p) = i} KE AL Kpiips = —i 2 Sinpy ySInp,

\/((S + Sxy(k))sxy(k)\/(5 + Sxy(P))Sxy(P)‘

At small momenta, this reduces to the €, (k X p) from earlier. Indeed, the continuum coupling
can be guessed purely from symmetries, as ASV point out [41].22 The continuum model is only
accurate near the I' point, i.e., when the Fermi surface forms a small electron pocket at very
large overdoping (p — 1). Using perturbation theory on the Hy, of Eq. (2.302) near kp = 0,

(2.306)

1 . 0
s = 0| + % ik | 4+ (2.307)
0/ TP \ ik,

one may confirm that the continuum coupling has the same form for generic parameters:
- 2t2
. d
f(kap) =1 £ 2
(ed —€p — 2%1,)

é.-(kxXp)+ . (2.308)

More importantly, for large momenta sin k,, appears instead of sin%k‘w,y in Eq. (2.306),
which makes all the difference at the Van Hove points ky;, = (7,0) and kyz, = (0,7). The
correct g-wave coupling therefore exactly vanishes at the Van Hove points, as we proved in
general in Sec. 2.5.3. Although setting t,,, = t;p = €4—€p = 01is clearly aphysical, which is what
ASV did to get Eq. (2.297), one may verify that the conduction band still transforms according
to the correct irreps at the high-symmetry points, which explains why we still observe the effect
of Sec. 2.5.3. Because of this, the exact degeneracy between d,2_,2> and dy, pairing states is
lifted in favor of d,, symmetry. This is precisely what we found in our numerics, shown in
Fig. 2.12. In our numerics, we recover the degeneracy between d,2_,2 and dg; pairing only in
the p — 1 limit where the Fermi surface is a small circle surrounding the I' point. In light
of their effective rotor model [Eq. (2.295)], the g-wave susceptibility is not strongly peaked at
q = 0 and ASV’s theory corresponds to r ~ 1 in our formalism. Why should the SC dome be
centered at the p-wave LC QCP is not entirely clear in ASV’s theory [41], nor has later work
given a crisp answer to this question [34-36, 63]. Any potential softening of the g-wave LCs
at ¢ = 0 cannot be the answer, as follows from the results of Sec. 1.3 (Fig. 1.4). Including
spin-orbit coupling does not help either, given that the corresponding subsidiary spin-magnetic
fluctuations favor p-wave pairing (Fig. 2.17). In conclusion, intra-unit-cell g-wave loop currents
cannot explain the d 2_,» superconductivity of cuprates.

But there is another difficulty with ASV’s theory [41]: the direct coupling of the main p-wave
LC order parameter @, to fermions has not been included. This is quite surprising, since the
direct coupling of the main order parameter to fermions is what normally anyone would first
write down and study. This coupling is not even commented on in Ref. [41], or later work [34—

22r}“he lowest-order coupling follows from the transformation rules }(R(g)k,R(g)p) = M#29(g)f(k,p) and

f (=k,—p) = ff(k,p), supplemented by the reality condition }*(k,p) = f(p,k) which gives the i in
Eq. (2.306).
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36, 63], even though it was discussed earlier [40], and one can only speculate what explains
this lacuna. However interesting the coupling of the conjugate momentum — the g-wave LCs
— may be, the main order parameter itself will always couple directly to electrons, if allowed
by symmetry. In our analysis, we found a whole one-parameter family of possible direct, local
couplings of ®,, to electrons that are consistent with Bloch’s theorem (Sec. 2.5.2.1). Indeed,
just like for g-wave LCs [Eq. (2.296)], the Hubbard-Stratonovich transformation employed by
ASV [41], if consistently applied to all LC operators appearing in their Hubbard interaction
decomposition [Eq. (2.265)], yields a term o< ), (I)pz/,if/i,a:’ + épy,yif]wu In the language of the
quantum rotor problem [Eq. (2.295)], this represents a coupling of the fermions to the direction
vector (cos,sinf). These couplings are relevant operators in the renormalization-group sense
and the effective low-energy theory of p-wave LC fluctuations will therefore generically include
them. Most importantly, the fact that ®, is even under PO allows it to directly couple to
fermions at forward scattering (g = 0). As we showed in Sec. 1.3.3.3, this has the dramatic
consequence that odd-parity IUC LC fluctuations, uniquely among all IUC orders (Tab. 1.2),
act as parametrically strong pair breakers near their quantum-critical point. Even if the
coupling constant of @), is substantially smaller than the one of ®,, the g = 0 divergence of
the susceptibility will render the pair-breaking interaction mediated by ®,, stronger than the
attractive interaction mediated by ®, near the IUC p-wave LC QCP. It is worth emphasizing
that this result is robust to the precise details of the quantum-critical LC sector. As long as
the ®,, susceptibility peaks at g = 0 with critical exponents that are in-line with theoretical
bounds, suppression of pairing will take place near the QCP (Sec. 1.3.3.3). At best, away from
the QCP p-wave LC fluctuations can give rise to extended s-wave superconductivity (Fig. 2.15).
If the pseudogap phase is to be interpreted as an intra-unit-cell loop-current order, as argued
by Varma [35, 36|, the experimental evidence unambiguously points towards E; or (pz|py)
symmetry (Sec. 2.2.1, Fig. 2.3). The strong pair-breaking of p-wave loop currents thus poses
a serious challenge to Varma’s theory [35, 36].

Are there ways our results could be circumvented? The principal idea behind our anal-
ysis is to, in a phenomenological spirit, assume an IUC LC QCP and then to explore its
pairing instabilities within a weak-coupling treatment coming from the far-overdoped regime,
where complications relating to Mott physics, the pseudogap, and competing orders can be ne-
glected [178, 180-182]. Strong-coupling physics will not change the appearance of a ¢ = 0 peak
in the susceptibility, nor is it likely to change the pairing symmetry. If there is no pairing in-
stability at weak coupling to begin with, the experience [149-156| of all other quantum-critical
modes suggests that nothing interesting will happen in the Cooper channel near the QCP. For
comparison, in the case of nematic [123-126|, ferroelectric [52, 53, 127], and ferromagnetic [113,
114] quantum-critical IUC fluctuations a coherent picture of a SC dome surrounding the QCP
emerges, whether one studies it numerically [125, 171-174] or analytically using weak-coupling
or other methods.

If the bare ingredients of Varma’s theory — p-wave and g-wave LCs — cannot reproduce
cuprate superconductivity, it is difficult to see how would including additional aspects of
cuprates, like Mott physics or competing orders, help out. For spin-orbit coupling, we have
established that it is of no assistance (Sec. 2.5.4.4, Fig. 2.17). If the symmetry of the con-
duction band were different at the Van Hove points, this would help because g-wave LCs
would then efficiently couple Van Hove points (Sec. 2.5.3.2), yet such a proposition strongly
departs from the well-established understanding of the CuO2 band structure [211, 212, 217—
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2.5 Pairing due to intra-unit-cell loop-current fluctuations in cuprates

222, 414-419], reviewed in Sec. 2.3. In particular, for this to work, it is not enough for the
interactions to merely redistribution the weights among the orbitals: the interactions would
need to fundamentally alter the symmetry of the conduction band at the Van Hove points, as
we demonstrated in Sec. 2.5.3. A modest improvement over the theory of Aji, Shekhter, and
Varma [41] can be made by replacing g-wave LCs with the d-wave LCs of Sec. 2.5.4.2. These
By, LCs were previously discussed by Varma et al. [38—40] under the name ©; LCs. Even

though ASV [41] found the i/i’:E/Q_y/Q € By, LC operator in their decomposition [Eq. (2.265)],
this term was subsequently neglected in their analysis. In the continuum, d-wave LCs couple
through a pairing form factor f(k,p) o i(k2 — k; —p2 + pz) which robustly favors d,2_,»
pairing, as can be seen from (k; — cos by, k, — sinfy):

‘1<k‘2 . k‘2 _p2 +p2)|2 . (1 COS491€> 1 % 140 _ 4COS29k COS29p (2 309)
T Y T Y V2 % 0 \/ip \/i \/i .

Diagonalizing the 2 x 2 matrix from above gives an extended s-wave instability with the
eigenvalue %(\/3 — 1) = 0.37, which is much smaller than the eigenvalue 4 characterizing the
cos 20y, = k2 — k‘g € Bj4 pairing channel. The more realistic numerical calculation performed
in Sec. 2.5.4.2 confirms robust d,2_,2 pairing (Fig. 2.13). Nonetheless, even with d-wave LCs,
the theory suffers from the pair-breaking of p-wave LCs. It is curious that ASV have not
included d-wave LC fluctuations in their analysis [41], even though they previously studied
them [38-40].

In conclusion, intra-unit-cell p-wave loop currents strongly suppress superconductivity near
their quantum-critical point. Their conjugate momentum — g-wave loop currents — robustly
favor d,, symmetry. Both conclusions follow from previously unappreciated aspects of the
coupling of loop currents to fermions. Although we focused on the original work by Aji,
Shekhter, and Varma [41], these two issues have not been addressed in later work by Varma et
al. [34-36, 63|. It remains to be seen whether a theory based on intra-unit-cell loop currents
can overcome these two obstacles and credibly explain cuprate superconductivity.
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Chapter 3

Unconventional superconductivity
from electronic dipole fluctuations

The fluctuations of electric dipole moments of electrons are fundamental to understanding a
wide variety of systems, ranging from atomic gases and molecules interacting through van der
Waals interactions [421-427], to small metallic clusters and their cohesive energies [428], up to
solids with sizable contributions to the binding energy and optical conductivity coming from
interband dipole excitations [427, 429-434]. From a microscopic point of view, all these effects
are due to processes involving electromagnetic interactions among virtual or real excitations
that have electric dipole moments. The above examples usually involve high-energy processes,
at least when compared to typical energy scales of collective modes in correlated electron
materials. For electrons near the Fermi level, on the other hand, the Coulomb interactions
among them are crucial to facilitating phenomena such as Mott insulation [435, 436/, itinerant
magnetism [437, 438], and unconventional superconductivity [49]. This raises two questions.
First, can one sensibly generalize the concept of electronic dipole excitations to states residing
on or near the Fermi surface? And second, can their Coulomb interactions give rise to non-
trivial electronic phases, such as superconductivity?

In this chapter, we address both of these questions. We develop the theory of dipole ex-
citations of electronic states near the Fermi surface (Sec. 3.1) and we use it to show that
the dipolar parts of the Coulomb interaction can result in unconventional superconductivity
(Sec. 3.3). In addition, we study Dirac metals (Secs. 3.2 and 3.4) as quintessential systems with
the two key ingredients for strong Fermi-level dipole effects: parity-mixing, but also strong
spin-orbit coupling (SOC), as we explain below. This chapter is based on Ref. [30]. Since
Ref. [30] is written in a long-paper format already appropriate for a monograph chapter, the
majority of the text and figures of this chapter have been recycled from Ref. [30]. Apart from
the reorganizing, editing, and the inclusion of additional discussions (see Secs. 3.2.1.1, 3.2.3.1,
3.2.4, and 3.3.2 in particular), the content of this chapter is essentially the same as that of
Ref. [30].

Electric dipole excitations, while present in generic solids, only contribute to the Fermi
surfaces of itinerant systems in the presence of SOC. To elucidate this important fact, consider
a simple lattice with orbitals of opposite parities on each site, such as the s and p, orbitals
shown in Fig. 3.1(a). Then in the basis of these two orbitals, a local electric dipole operator
D, = T1 ® 0 exists and is perfectly well-defined. (1, and o, are Pauli matrices in orbital and
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3 Unconventional superconductivity from electronic dipole fluctuations

spin space, respectively.) However, what matters for the description of the itinerant periodic
solids is the matrix element

[‘Dx;kn]ss’ = (Ukns| D |Ukns) (3.1)

in the basis of the Bloch states ug,s. Here k, n, and s stand for the crystal momentum, band,
and spin, respectively. In the absence of SOC, the dipole operator is trivial in spin space:
Dyiken < 0¢. It then follows that D, = —Dy.kyn = 0 for systems invariant under the product
PO of parity and time reversal (TR). The same applies to dipole operators constructed in
any other way, such as by mixing orbitals of the same parity located at different positions,
like in Fig. 3.1(b).! As we will prove in Sec. 3.1.1, as long as there is no SOC, electric dipole
operators vanish when projected onto the Bloch states. The argument is essentially the same
one from Sec. 1.3.2.2 of Chap. 1 regarding the pairing form factor at forward scattering. In
contrast, with SOC the Fermi surface may acquire a sizable electric dipole density (Fig. 3.2).

A notable feature of electronic dipole fluctuations, as opposed to polar phononic ones [135], is
that their interactions are mediated and screened together with electric monopole, quadrupole,
etc., fluctuations. More precisely, as we will show in Secs. 3.1.2 and 3.1.4, the dipolar con-
tribution to the total electronic charge density comes alongside a monopolar one, and the
corresponding interactions are mediated by the same plasmon field which mediates all electro-
static interactions.

The description of electric dipole moments of insulating periodic solids in terms of Bloch
states and their Berry connection played an important role in resolving the ambiguity in the
definition of the polarization [439-444|. This description is, in fact, closely related to our
treatment of electric dipoles. As we explain in Sec. 3.1.3, the finite extent of the electronic
wavefunctions used as a tight-binding basis modifies the periodicity conditions relating k+G to
k for inverse lattice vectors G. As a result, within the tight-binding basis, the dipole operator
as given by the King-Smith—Vanderbilt formula [439] acquires an anomalous (or intrinsic)
contribution

iV — iV +T (3.2)

which is determined by the same dipole matrix elements that are key to our treatment. For
quasi-2D materials in particular, the anomalous contribution can easily be the dominant one
along the out-of-plane direction.

Materials featuring strong SOC and conduction bands which mix parities are therefore
natural applications of our theory. In many materials, such as the topological insulators
BisSes, BigTes, SboTes, and (PbSe)s(BiaSes)s [46] or the topological crystalline insulators
SnTe and Pby_,Sn,Te [46, 445], the parity-mixing and SOC come together through SOC-
induced band inversion. As we establish in Sec. 3.2.1, in the vicinity of such band-inverted
points, the band structure has essentially the form of a massive Dirac model. This motivates
the investigation of dipole excitations in Dirac metals that we carry out in Sec. 3.2. Using a
large-N renormalization group (RG) analysis of the Coulomb interaction (Sec. 3.2.3), we show
that for quasi-2D Dirac systems, where the monopole coupling is known to be marginally
irrelevant [446, 447, the z-axis dipole coupling becomes marginally relevant. In Sec. 3.2.2 we
also demonstrate that these enhanced dipole excitations are directly observable in the z-axis
optical conductivity.

'How a finite displacement between the orbitals allows for dipole operators is explained in Sec. 3.1.1.
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Figure 3.1: Two simple examples of periodic systems in which local electric dipole
operators can be introduced. This is made possible by the opposite parities of the s and
pz orbitals under (a), and by the different inversions centers (non-trivial Wyckoff positions)
of the two s orbitals under (b). The latter possibility is explained in more detail in Sec. 3.1.1.
Orange (blue) are positive (negative) lobes of the orbitals.

Interestingly, all the materials listed in the previous paragraph become superconductors (SC)
at low temperatures when doped or pressured.? In the case of doped BisSes, there is strong ev-
idence that its superconductivity spontaneously breaks rotational symmetry [43, 44, 466-471]
and has nodal excitations [468, 472, 473|, indicating an unconventional odd-parity state [42,
474, 475]. Conversely, experiments performed on In-doped SnTe point towards a fully gapped
pairing [476-479] which preserves time-reversal symmetry [480] and has a pronounced drop in
the Knight shift [481]. Although most simply interpreted as conventional s-wave pairing, given
the moderate change in the Knight shift, a fully-gapped odd-parity state of Ay, symmetry is
also consistent with these findings [479]. Because of their topological band structures, these
two materials are prominent candidates for topological superconductivity [482, 483].

When electric dipole fluctuations are present on the Fermi surface, their monopole-dipole
and dipole-dipole interactions can give rise to superconductivity, as we will show in Sec. 3.3.
The resulting pairing is necessarily unconventional, as we explicitly prove in Sec. 3.3.3 using
arguments similar to those of Sec. 1.3.3.2. It also requires substantial screening, which is true
of most other pairing mechanisms. Although we find that the dimensionless coupling constant
A of the leading pairing channel is comparatively small and not expected to exceed ~ 0.1,
dipole fluctuations can still be the dominant source of pairing for systems without strong local
electronic correlations. In the case of quasi-2D Dirac metals (Sec. 3.4), the leading pairing

23C under pressure was found in BiySes [448, 449], BixTes [450], and SbaTes [451]. Under ambient pressure,
SC was observed in the following compounds doped via intercalation: Cu,BizSes [452-454], Sr,BizSes [455,
456], Nb;BizSes [457], Pd;BizTes [458], and Cu, (PbSe)s(BizSes)s [459]. Non-intercalated doping was found
to give SC in Tl BisSes [460, 461], Sn1-,In,Te [462, 463], and (Pbg.5Sng.5)1-«In, Te [464, 465].
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3 Unconventional superconductivity from electronic dipole fluctuations

state is an odd-parity state of pseudoscalar (Ay,) symmetry, similar to the Balian-Werthamer
state of *He— B [484-486|, while the subleading instability is a two-component p-wave state,
as required for nematic SC. Though the latter is the second dominant pairing channel in most
cases, it could prevail if aided by a complementary pairing mechanism, such as a phononic
one [176, 487].

The chapter is organized as follows. In Sec. 3.1, we study electronic dipole excitations of
Fermi-surface states in general systems. We derive how they interact, when is their Coulomb
coupling direct, and the relation of our work to the modern theory of polarization. After that,
in Sec. 3.2, we introduce a general Dirac model with dipolar coupling and using RG show that
the z-axis dipole moment becomes enhanced for quasi-2D systems. In addition, we demonstrate
that this z-axis dipole moment is directly measurable in the z-axis optical conductivity. In
Sec. 3.3, we study Cooper pairing due to electronic dipole fluctuations in general systems.
We write down the linearized gap equation, show that the proposed dipole mechanism can
only give unconventional pairing, and derive a number of estimates on the pairing strength.
In the penultimate Sec. 3.4, we study Cooper pairing due to electronic dipole fluctuations
in the particular case of quasi-2D Dirac metals. We solve the linearized gap equation both
analytically and numerically and for the leading instability find an unconventional odd-parity
pairing state with pseudoscalar symmetry. In the last Sec. 3.5, we recapitulate the main results
of the current chapter and compare them at length to related work.

3.1 Theory of dipole excitations of electronic Fermi-surface
states

Electric dipole moments are conventionally only associated with localized electronic states.
Here, we first show that itinerant electronic states can carry electric dipole moments as well
if SOC is present. After that, in Sec. 3.1.2, we derive the corresponding dipolar contributions
to the electron-electron interaction. In Sec. 3.1.3 our treatment is related to the modern
theory of polarization. Lastly, in Sec. 3.1.4, we reformulate the electron-electron Coulomb
interaction in terms of a plasmon field, showing that monopole-monopole, monopole-dipole,
and dipole-dipole interactions are all mediated by the same plasmon field.

3.1.1 Electric dipole moments of itinerant electronic states

Itinerant electronic states are states of definite crystal momentum k, which is defined through

the eigenvalues e*® of the lattice translation operators Jg. Crystal momentum, however,

is not the same as physical momentum, the eigenvalue of the continuous translation genera-

tor P = —iV. Because of this difference, itinerant electronic states carry not only electric

charge and spin, which commute with P, but also the generalized charges associated with any

Hermitian operator @ that is periodic in the lattice, i.e., that commutes with Tg = ¢ 'B-P.
For instance, the Bloch state (not to be confused with the fermionic fields i or ¥)

q)kns(r) = eik.rukns(r) (33)
carries the charge

(s | @ 1t} = / ul, (P)Q(F)usns(r) (3.4)

r
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K ko
(a) (b)

Figure 3.2: An example of a cylindrical Fermi surface with a finite electric dipole
density along the é, direction. The arrows indicate the direction and strength of the elec-
tric dipole density (s|D.kn|s) for the pseudospin s directed along +€é,, |1), = %(H) + 1)),

under (a) and for the pseudospin s directed along +é,, [1), = %(H) +1ild)), under (b).
Opposite pseudospins and opposite momenta have opposite electric dipole densities.

for any

o) = x> Q(r ~ R) (35)
R

where N = )" p 1 is the number of unit cells and the fr =/ d?% integral goes over all space.
Within tight-binding descriptions, a possible generalized charge is the orbital composition of
the Bloch waves. However, generalized charges associated with electric or magnetic multipoles,
local charge or current patterns, and more broadly collective modes in the particle-hole sector
of all types are also possible.

Collective modes couple to their associated generalized charges. Because they exchange
momentum with the electrons, the key matrix elements to analyze are

<ukn8 ‘®|uk+qn’s’> (3.6)

of which the dipole element of Eq. (3.1) is a special case with ¢ = 0 and n’ = n. At finite q,
or alternatively for n’ # n, these matrix elements are generically finite. However, the coupling
to the Fermi-level electrons (n’ = n) is particularly strong when they remain finite in the limit
q — 0. This is the limit we discuss in what follows.

In systems without SOC, the periodic parts of the Bloch wavefunctions |ug,s) decompose
into an orbital and spin part:

|ukns> = |ukn> & |3> (37)

Since the composed space-inversion and time-reversal operation PO is the only symmetry that
maps generic k to themselves, this is the only symmetry that limits the types of generalized
charges that itinerant states can carry. For a purely orbital charge @ = Q ® o( that has
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sign pp € {£1} under parity and pg € {£1} under TR, one readily finds the PO symmetry
constraint to be

(Uken |Qlukn) = PPPO (Ukn|Q|ukn)- (3.8)

Hence in the orbital sector only generalized charges with pp = pg are allowed. In the spin
sector an additional minus sign appears during time reversal so the generalized charges must
satisfy pp = —peg to be finite. Thus quite generically, a theory of itinerant electronic states
that couple without SOC to collective modes as ¢ — 0 is a theory of charge (pp = pe = +1),
spin (pp = —pe = +1), and their currents.

Because their pp = —1 # po = +1, electric dipole moments cannot be carried by itinerant
electronic states in the absence of SOC (cf. Refs. [52, 488]) and, as a result, they tend to
be negligible in most Fermi liquids. The same is true for even-parity loop currents (pp =
+1 # pe = —1) which also decouple from electrons in the g — 0 limit, as was discussed in
Sec. 1.3.2.2 of Chap. 1. In particular, notice that the pairing form factor [£o(Pm,kn)]s s, Of
Eq. (1.76) that we previously studied in Sec. 1.3.2 is the same thing, mutatis mutandis, as the
matrix element of Eq. (3.6).

With spin-orbit coupling, restrictions are much less stringent and generalized charges such
as electric dipoles can be carried. The main difference from the case without SOC is that
even-parity orbital operators that commute with the physical spin can acquire a non-trivial
structure in pseudospin (Kramers’ degeneracy) space. Conversely, purely spin operators can
have trivial pseudospin structures. In the gauge |ugnt) = POlugy,,), where s € {1,]} are
pseudospins, the PO symmetry constraint has the form

0yQrn 0y = PPPOQkn, (3.9)

where [Qrnlsy = (Ukns|Q|ugns) and o, acts in pseudospin space. Hence pppe determines
whether Q,, is a pseudospin singlet or triplet. In both cases, Qr, can be finite for all charges
Q.

Electric dipoles are pseudospin triplets. Given their purely orbital nature, this means that
SOC need to be relatively strong near the Fermi surface for the electric dipole density to
be large. There is no net electric dipole moment, however. The total electric dipole density
averages to zero at each k because of the relation

[Déknliy = —[Deknlrr (3.10)

which follows from TR symmetry. Here Dg is the electric dipole operator along the é direction.
This is also true for each pseudospin individually in the gauge |u_gns) = P|ugns) since oddness
under parity then implies

[‘Dé;—kn]ss = _[‘Dé;kn]ss- (311)

In the simplest case when the point group symmetry matrices can be made momentum-
independent,® one finds that Dag, x €+ (k X ) [489]. An example of a Fermi surface
with an electric dipole density is drawn in Fig. 3.2 for the case of a quasi-2D Dirac metal of
the type we study in Sec. 3.2.

3Note: contrary to what is claimed in Ref. [489], the “Manifestly Covariant Bloch Basis” for which the point
group symmetry matrices are momentum-independent does not exist across the whole Brillouin zone in
general systems; e.g., if the parity of all time-reversal invariant momenta is not the same.
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Up to now, we have treated electric dipole operators Dg abstractly as fermionic operators in
the particle-hole sector which are even under TR, odd under parity, and transform like a vector
under rotations and reflections. Let us briefly comment on how such operators are constructed
within tight-binding descriptions of solids. As was already noted in the introduction of this
chapter, the most straightforward way of constructing local electric dipole operators is by
mixing orbitals of opposite parity centered on the same point. For the example shown in
Fig. 3.1(a), the local dipole operator has the form D, (R) = s'(R)p.(R) + ph(R)s(R), where
s(R) and p;(R) and fermionic annihilation operators of the respective orbitals at site R. Less
obviously, even when orbitals have the same parity as in Fig. 3.1(b), local dipole operators exist
whenever not all orbitals are centered at the same site. This is made possible by the fact that
the inversion centers are distinct for the different orbitals, thereby allowing for the construction
of bonding and anti-bonding superpositions which do have opposite parities. In the example
of Fig. 3.1(b), the (anti-)bonding annihilation operators are 54 (R) = s(R+ 6) + s(R — §)
for 6 = %éx + %éy = %é@. Hence the local dipole operator along dy = x +y is Dg, (R) =

sT(R)5_(R)+ 5 (R)s(R). In an analogous way, non-local electric dipole operators can always
be constructed because the orbitals are allowed to belong to different unit cells.

3.1.2 Coulomb interactions and electronic dipole excitations

Here we derive how itinerant electrons which carry electric monopole and dipole moments
interact. Our starting point is the electron-electron Coulomb interaction (in SI units):

1 1
He == —_— N. 3.12
o=y | o) =) (312)

The electronic charge density operator is given by
pe(r) = —e S W), (r), (3.13)
S

where e is the elementary charge and s € {f,]} are the physical spins.
Next, we expand the fermionic field operators in a complete lattice basis:

Uy(r) = [@a(r — R)]a(R). (3.14)

Rao

Here, we allow the basis to depend on spin s. « is a combined orbital and spin index. One
popular choice of basis functions are the Wannier functions [490]. If they are constructed
from a set of bands which (i) has vanishing Chern numbers and (ii) does not touch any of
the bands of the rest of the spectrum, then the corresponding Wannier functions can always
be made exponentially localized [491, 492]. Condition (i) is always satisfied in the presence
of time-reversal symmetry, while the second condition can be satisfied to an adequate degree
by including many bands. Thus as long as we do not restrict ourselves to the description
of low-energy bands, we may assume that our basis functions @,(r — R) are exponentially
localized. Using this basis, we may now decompose the charge density into localized parts:

pe(r) = _pr(r — R), (3.15)
R
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3 Unconventional superconductivity from electronic dipole fluctuations

where the pgr(r) are localized around r = 0:
=—- Z oL (r)es(r — &) PL(R)Ys(R+8) + He. (3.16)

5015

Here the § sum goes over lattice neighbors.
By expanding H¢ to dipolar order in multipoles, we obtain

Hint = 5 Z Y Du(R1)Viu(Ri — Ra)Dy(Ry), (3.17)
R1R2 y24
where u,v € {0,1,2,3},
Do(R) = / PR(T) (3.18)

is the electric monopole moment operator, and
Di(R) = /ripR(r) (3.19)
T

are the components of the electric dipole operator. Here the integration fr = f d3r extends
over the whole space, and not merely over a unit cell. Due to exponential localization, these
integrals converge and give well-defined operators. Because we are working with a non-periodic
pr(7), there is no ambiguity in these definitions, other than the obvious dependence on the
choice of basis functions @, (r — R).

The interaction matrix which follows from the multipole expansion equals

1 (1 =9\ 1
Via(R) = 47eg (ai —31(%-) R (3:20)

Here, R = |R|, 4,5 € {1,2,3}, and 0; = 0/0R;. At R =0, V,,,(R) has an aphysical divergence
that we regularize by replacing R~! with R~!erf %:

1 1 =9; \1 R

viee)(R) = 7o) Zerf —. 3.21
" (R) 47e <5¢ —81'33’) R 2ag (3:21)
This corresponds to an unscreened on—site Hubbard interaction U = e?/(473/2€yag). The

Fourier transform q_ze_“?)q2 of R~ erf now decays exponentially for large ¢ = |q|:
V#(ﬁeg Z el RV reg Z V Teg G), (3.22)

~ (reg.) _/ —ig-ry/(reg.) o <1 —1Qj> e—a3d’

1% = [ eIV ) (r) = | . . 3.23
72 (q) , % ( ) g qiqj €0q2 ( )

Here we have exploited the Poisson summation formula to express the Fourier series sum

Vu(reg)( ) in terms of the Fourier transform ‘N/Lryeg')(q). The exponential decay of ‘N//(jyeg')(q)

renders the Umklapp sum over inverse lattice vectors G appearing in Vu(ﬁeg')(q) convergent.
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3.1 Theory of dipole excitations of electronic Fermi-surface states

For ag small compared to the lattice constant, the Umklapp sum is well-approximated with
just the G = 0 term. Hence in momentum space:

1
g{int = ﬁ Z D,u,fqvw/(Q)szqa (3'24)
quv

where L% is the total volume in d spatial dimensions, g goes over the first Brillouin zone, and

1 —ig; 1
Viw(q) = Vu(lr'eg.)(Q) ~ <iQi qjj) €0q?’ (3.25)
Keeping only the G = 0 Umklapp term in V},,(g) can be understood as another way of regu-
larizing the V,,, (R = 0) divergence. When we later consider quasi-2D systems, the Umklapp
sum for the out-of-plane G' will not be negligible. Its main effect is to make V,,(q) periodic
in the out-of-plane ¢,, which we shall later account for by replacing all ¢, with sin q,.

For the D, (R), we now obtain, in matrix notation,

D, (R) = —%z/zT(R)FM(d)z/J(R +6)+He., (3.26)

where
Fo(@)os = [ ehrystr =5) (3.27)
@)y = [ riokr)osir =) (3.28)

When the lattice bases @q(r — R) are orthogonal and normalized I'g(d) = 85,01, and when
they are sufficiently localized I';(8) ~ 0 for § which are not 0 or the nearest-lattice neighbors.
Moreover, [I';(8 = 0)]qs is finite for @, (r) and @g(r) centered at r = 0 only when they have
opposite parities. That said, substantial dipole moments can also arise from orbitals of the
same parity if they belong to different neighboring atoms because of the possibility of forming
anti-bonding superpositions. This last point we discussed at the end of Sec. 3.1.1.

In the simplest case when only T'g(d = 0) = 'y = 1 and I';(d = 0) = I'; are finite, in
momentum space we get

Dy = 3 e URD, (R)
R
(3.29)
= —€ Z w;ruwkﬂrqa
k

where k runs over the first Brillouin zone. The associated matrix elements (ugns|Iy|tUk+qn/s')
were analyzed in the previous section. The monopole matrix elements (¢ = 0) become diagonal
in the band index as g — 0, but are otherwise finite. The intraband dipole matrix elements
(u = 1,2,3), on the other hand, vanish in the ¢ — 0 limit in the absence of SOC. The
corresponding coupling of the electric dipoles to Fermi-level electrons thus gains an additional
momentum power, which makes these interactions even more irrelevant with respect to RG
flow than usual, unless the system has spin-orbit coupling.
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3 Unconventional superconductivity from electronic dipole fluctuations

The multipole expansion employed in Eq. (3.17) is justified whenever two charges are local-
ized on length scales smaller than their distance. In the limit of strong screening that we later
analyze, however, the strongest interactions come from nearby particles, indicating a break-
down of the multipole expansion. Nonetheless, the additional dipolar terms that we identified
in the effective electron-electron interaction of Eq. (3.17) will still be present, albeit with coef-
ficients that are phenomenological parameters. Although their values cannot be inferred from
a direct multipole expansion when screening is strong, the momentum-dependence and form
of the dipolar coupling follows from symmetry and retains the same structure as derived in
this section.

It is worth noting that the exact Coulomb interaction elements are, in principle, exactly
known. They are found by simply inserting the basis expansion (3.14) into the Coulomb
interaction (3.12):

| st = RL 0007 = Rl g (7 = o)l [0, ' = Rl (330

/
- dmelr — 7
SS

In practice, however, this expression, with its four indices and three relative distances, is too
complex to treat. The most common approximation employed in theoretical studies is to
include only the monopole-monopole term in Eq. (3.17), perhaps even restricting it to solely
the on-site Hubbard term. The main novelty of the current work, which is based on Ref. [30], is
thus that we include the additional dipolar terms in Eq. (3.17) and explore their consequences.

3.1.3 Relation to the modern theory of polarization

Our theory deals with dynamical electric dipole moments and their fluctuations. Nonetheless,
it is enlightening to make contact to the modern theory of polarization [439-444| in which the
static polarization is expressed in terms of the Berry connection via the King-Smith—Vanderbilt
formula [439]

occ.
(D) = =€) (tkns[iVi|tthns), (3.31)

kns
where k goes over the first Brillouin zone, n goes over occupied bands only, and s € {1,]} is
the pseudospin. The intuition behind this formula is that iV roughly represents the position
operator 7 in momentum space so (D) ~ —e(r), as one would expect. However, for systems
under periodic boundary conditions a position operator r cannot be defined, which is reflected
in the above formula by its apparent gauge-dependence: enacting |ug,s) — elVkns |ugns) causes
a change in (D) proportional to the winding numbers % ¢ dk; Ok, Okns. Effectively, this gauge
transformation moves the weight of the charge density by a direct lattice vector R, thereby
changing (D) by —eR. Since only differences in the static polarization are physically meaning-
ful, this ambiguity is not a problem. Another notable feature of formula (3.31) is that the static
polarization is not only a function of the charge density, but also of the Bloch wavefunction
phases, as measured by the (ugs|iVg|urns) average which is precisely the Berry connection.
There is a deep connection between the static polarization and geometric phases. For further
discussion of the modern theory of polarization, we direct the interested reader toward the

excellent review by Resta [444].

As we shall now show below, the finite extent of the @, (r — R) basis wavefunctions, which
is crucial for the definition of the higher-order multipoles in the first place, gives rise to an

142



3.1 Theory of dipole excitations of electronic Fermi-surface states

anomalous contribution to the polarization of Eq. (3.31) when expressed within a tight-binding
description.

Assuming time-reversal symmetry, the Bloch wavefunctions of Eq. (3.3) can always be chosen
to be periodic in k,* meaning Vg, gns(T) = Wrns(r) for all inverse lattice vectors G, where
Wgns(7) are continuous, but not necessarily analytic, functions of k. The real-space periodic
parts Ugns(r) = Ugns(r + R) then satisfy

ukns(r) = eiG'TukJans(r). (332)

Next, we expand the ug,s(r) with respect to an orthonormal tight-binding basis:

ukns("‘) = Z (Pa("‘ - R) [Ukns]a- (333)
Ro

The periodicity condition (3.32) now becomes:

Vkns = UG Vk+Gns» (334)

where

Uglus =3 / oL ()T s (r — 8). (3.35)
6 T

In evaluating this expression, one often argues that the wavefunctions are point-like objects
such that eiG'T(pa(r) ~ G Ta @a(r), where x, are the positions of the orbitals; see also
Refs. [493, 494]. This would then give a diagonal [Ug],5 = eiG@ag 5 with U(1) phase factors
which can be absorbed into the [vg,s], through a U(1) gauge transformation. However, the
spread of the @,(7) around x, also contributes significantly to Ug when the orbitals mix
parities or overlap. By expanding the ¢!&" exponential to linear order in 7, one readily finds
that these corrections result in

Ug = e G2XsT0) (3.36)

where the I';(d) are the matrix elements of Eq. (3.28). Having found tight-binding vectors
vgzl)s that are periodic, v,(c(RGn s = vggs, the periodicity condition (3.34) can be accommodated
by the unitary U(N) transformation

(3.37)

Uhkne = €T T

ns’

This holds to the same order in momentum as the expression for Ug.” Within the @, (r — R)
basis, the King-Smith—Vanderbilt formula (3.31) therefore acquires an additional term:

(D) = —e§<v,§fj§5

kns

Uk ) (3.38)

iVi+ )  T(0)

4This follows from the fact that the band energies are bounded from below, thereby precluding spectral flow
in which the n-th band maps to a different band as loops are traversed in the Brillouin zone. This remains
true even if the bands cross, albeit with a non-analytic k-dependence around the crossing. If a (possibly
degenerate) band with vanishing Chern numbers does not touch any other band, one can always choose a
gauge in which Ygns and ugns are analytic functions of k [491].

oo . 1
®Note that the I'; = 3", T';(8) matrices do not commute so e'*TelGTe i(k+G)T — ez BTG T+ £

143



3 Unconventional superconductivity from electronic dipole fluctuations

This additional, or anomalous, term is determined by the same I';(§) of Eq. (3.28) that govern
the dipolar interactions.

To illustrate the importance of this anomalous term, let us consider a system whose tight-
binding Hamiltonian is independent of k.. This is often approximately true in quasi-2D sys-
tems. The eigenvectors vggs are then independent of k, and a naive application of Eq. (3.31)
would suggest that the out-of-plane polarization vanishes. However, Eq. (3.38) reveals that

this is not necessarily true:

(D) = —e Z Z<v,(c(28

kns &

r.(6)[vio, ) (3.39)

can be finite when the wavefunctions are spread along the é, direction, even though there is no
hopping along z. In Dirac systems, this regime, which is dominated by the anomalous term,
will turn out to have the strongest enhancement of dipole fluctuations, as we show in Sec. 3.2.

3.1.4 Formulation in terms of a plasmon field

Here we reformulate the effective interaction Hiy, of Eq. (3.17) in terms of Hubbard-Stratonovich
fields |28]. Naively, one would do this by introducing a Hubbard-Stratonovich field for each
component of D,. The result would then formally look like the models of ferroelectric crit-
ical fluctuations coupled to fermions that have been the subject of much recent interest [52,
53, 488, 495, 496|. Specifically, there would be a monopole Hubbard-Stratonovich field and
an independent dipole Hubbard-Stratonovich field with the same symmetry and coupling to
fermions as ferroelectric modes. However, this is not correct for our H;,; because the same
electrostatic fields mediates all electric interactions, whether they are monopole-monopole,
monopole-dipole, or dipole-dipole. Formally, this manifests itself through the non-invertible
rank 1 matrix structure of V,,(q) in Eq. (3.25). Within perturbation theory, one may indeed
confirm that this rank 1 matrix structure stays preserved and that only ¢yq?> — €(q)g® gets
renormalized.

To carry out the Hubbard-Stratonovich transformations, we group all D,, into one effective
charge density:

3
pq = Dog — iz i Djq- (3.40)
j=1

If we were not on a lattice, in real space this expression would reduce to the familiar p(r) =
Do(r) — V - D(r), with Dy playing the role of the free charge density and D the role of the
polarization density. The FEuclidean action of H;y is

Sunlt] = 3577 2 -V (@) (3.41)
q

where ¢ = (wy, q), wg € 2nZ/B are bosonic Matsubara frequencies, and

1
€0q

V(q) = Vy=op=0(q) = (3.42)

5
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3.2 Dipole excitations in Dirac metals

Figure 3.3: Decomposition of the total electron-plasmon vertex (solid dot) into
a monopole-plasmon (open circle) and dipole-plasmon (crossed circle) contri-
bution. This decomposition follows from the expansion of the electron density given in
Eq. (3.40). Solid lines stand for electrons and wiggly lines for plasmons.

After the Hubbard-Stratonovich transformation, it becomes:
1 i
Sint[@, 0] = 5> D V)P + ——= > P_gpq, (3.43)
24 VBLL 4

where ®, = ®* is the electrostatic (plasmon) field. The only difference from the usual
Hubbard-Stratonovich-formulated action of plasma excitations is that the charge density has
additional contributions coming from itinerant electric dipoles. This is illustrated in Fig. 3.3,
where we show the decomposition of the total electron-plasmon vertex into monopole-plasmon
and dipole-plasmon contributions, in agreement with the expansion of Eq. (3.40).

3.2 Dipole excitations in Dirac metals

In many systems, the electric dipole moments are relatively small, and if the spin-orbit coupling
(SOC) is weak, their contribution to the interaction of Fermi surface states is even smaller.
Yet in Dirac systems which are generated through band inversion the opposite is the case.
Band inversion takes place when SOC inverts bands of opposite parities near high-symmetry
points. This large mixing of parities enables large electric dipole moments which, due to strong
SOC, project onto the Fermi surface to significantly modify the electrostatic interaction. Dirac
metals therefore provide fertile ground for sizable electric dipole effects.

In the first part 3.2.1 of this section, we introduce the model which we study in the remainder
of this section and whose Cooper pairing we study later in Sec. 3.4. In Sec. 3.2.1.1, we show
that the band Hamiltonian describing the vicinity of band-inverted points has the form of an
anisotropic gapped Dirac model. We derive how the electric dipole moments are represented
within this model (Tab. 3.3) and we introduce the corresponding electrostatic interactions
of Sec. 3.1.2 to the model in Sec. 3.2.1.2. In Sec. 3.2.2 thereafter, we turn to the study of
the polarization of this model in the quasi-2D limit of weak z-axis dispersion. Although it
should naively vanish in this limit, we show that the additional dipole coupling renders the
z-axis optical conductivity finite, thereby opening a route towards experimentally measuring
the dipole excitations of our theory. After that, in Sec. 3.2.3, we use renormalization group
(RG) methods to investigate the dipole-coupled Dirac model in the regime of strong screening,
as schematically shown in Fig. 3.5. This regime coincides with strong coupling and, to access
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3 Unconventional superconductivity from electronic dipole fluctuations

it analytically, we employ a large-N expansion to 1-loop order, N being the number of fermion
flavors. For generic Fermi surfaces, we find that electric dipole coupling is RG-irrelevant at
the tree level (Sec. 3.2.3.1) and thus becomes weaker at low energies. However, if the dipole
moments are parallel to the Fermi surface, as is the case for the out-of-plane moments in quasi-
2D systems, they are marginal. The detailed analysis of Sec. 3.2.3.2 furthermore shows that
they are marginally relevant (Fig. 3.7), in contrast to the monopole coupling constant which
is marginally irrelevant (Fig. 3.6). Note that the dispersion along the out-of-plane direction
here needs to be flat on the scale of the band gap of the semimetal because otherwise z-axis
scaling would tend to make the z-axis dipole moments irrelevant. The band gap also needs to
be finite for the z-axis dipole moment to flow, because otherwise a chiral symmetry protects
it, as we explain in the last Sec. 3.2.4.

3.2.1 The model: Dirac fermions with dipolar interactions

The minimal model which captures the essential physics and that we shall study has the
Euclidean (imaginary time) action

8[th, @] = Sy[¢] + 8¢ [P] + Sc[v, T, (3.44)

where 8, and 8¢ are the non-interacting fermionic and plasmonic parts, while 8. describes the
electrostatic coupling between the two. All three action parts are defined in this Sec. 3.2.1.

3.2.1.1 Effective band Hamiltonian of band-inverted points

To construct the fermionic part, we consider two bands of opposite parities in the vicinity
of the I' point k = 0 and assume that the other bands are sufficiently far away to not be
important at low energies. Within this two-band subspace, the parity and TR transformation
matrices are

U(P) = T30, O = T13i0y, (3.45)

where T, and 0, are Pauli matrices in band and pseudospin space, respectively. Note that we
have chosen TR to be © = T3i0y so that

U(P)O = Ttpioy, (3.46)

which maps k — k, becomes simpler and proportional to tg. In Tab. 3.1 we classify all the
matrices according to their parity and TR signs, which are defined according to

UN(P)TU(P) = ppT, (3.47)
07I*e = pel. (3.48)

The only two matrices which are even under both parity and TR are 1303 and 190y and they
give the band gap and chemical potential displacement in the Hamiltonian, respectively.

Because of the parity-mixing, terms linear in k also arise in the Hamiltonian. They are
constructed by combining k with three out of the four odd-parity and TR-odd matrices t10g,
T20,, T20y, and T20,; which ones depends on the rotational symmetries. When there is n-fold
rotation symmetry around the z axis, with n > 3, that has the form

U(Cp:) = toexp(—iZZi0,), (3.49)
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3.2 Dipole excitations in Dirac metals

Table 3.1: The classification of Hermitian 4 x 4 spin-orbital matrices 7,0, according
to their eigenvalues under parity P and time-reversal ©. Here X is the complex
conjugation operator.

P = 1300 TRop = t3ioy K
TpOy, T300 +1 +1
T0O0z,y,z2, T302z,y,2 +1 -1
T200, T102,y,2 -1 +1
T100, T20z,y,~ -1 -1

the pairs (T20,|T20,) and (T20,| — T20,) transform the same as (k;|k,), giving a Rashba-like
term in the Hamiltonian. When there is twofold rotation symmetry around the x axis, its
form determines which of these two pairs continues to transform as (k;|k,), as well as whether
T10g or To0, transforms the same as k.. For

U(Cyy) = t3(—i0y),

3.50
(To0y| — T20,) ~ (kg|ky) and T100 ~ k, ( )

whereas for

U(CQ;L-) = To(—iO'x),

3.51
(T204|T20y) ~ (kz|ky) and T20, ~ k.. (3:51)

For concreteness, below we assume the former [Eq. (3.50)]. The latter choice for U(Cay)
is related to the former one through the basis change BIU(Co,)B = U(Cyy), where B =
diag(1,1, —i,i). This basis change preserves the other symmetry matrices (B'U(P)B = U(P),
BIU(P)OB* = U(P)O, and BIU(C,,,)B = U(C,..)), which implies that all subsequent results
are independent of which U(Ca;) we use.

In summary, the symmetry transformation rules have the following form when acting on the
two-band fermionic spinors:

W ()urli(g) = Ug)dripm = O(9) @ S(9)¥rioe: (3.52)
6 'Yy, = tsic, v, (3.53)

where ﬂ(g) and © are the Fock-space point group and TR symmetry operators, respectively,
with the corresponding U(g) = O(g) ® S(g) and R(g) matrices given in Tab. 3.2. The reason
why we are allowed to assume that U(g) and © do not depend on k, which they do in general
(see Egs. (1.36) and (1.37) in Sec. 1.3.1.2), is because the k are restricted to the vicinity
of the I point k = 0. Using gauge transformations, one may always make Ug(g) and O
locally k-independent. All the complications we had to deal with in the previous chapter on
cuprates (see Sec. 2.4.1 in particular) are thus not relevant to the construction of the current
model. That said, when we later consider the quasi-2D limit, we shall be expanding around
the k; = ky = 0 line. A non-trivial constraint on the applicability of the model will thus be
that the symmetry transformation matrices must be the same at both the I' point k£, = 0 and
the Z point k, = £m.
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3 Unconventional superconductivity from electronic dipole fluctuations

Table 3.2: The symmetry transformation matrices of the three generators g of the
dihedral point group of the model. C, . is an n-fold rotation around é,, Co, is a 180°
rotation around é,, and P is parity. R(g) and S(g) are vector and spin transformation
matrices, respectively, O(g) are orbital transformation matrices, and U(g) = O(g) ® S(g).
Ty, 0, are Pauli matrices.

g R(g) O(9) S(9) Ul(g) = O(g9) ® S(g)
cos 2% —sin %” 0
Cha sin %’r cos 27” 0 To o—imoz/n Toe im0 /n
0 0 1
1 0 0
ng 0 -1 0 T3 —i0y, Tg(—iGm)
0 0 -1
-1 0 0
P 0 -1 0 T3 00 T300
0 0 -1

The effective Hamiltonian near k = 0 therefore reads
Hj, = mt300 + UTQ(kay — kme) + v,k,T100 — UTO, (3.54)

with the corresponding Euclidean action being;:

Syll = ol [—iw + Heltw, (3.55)
k;

where k = (wy, k) and wy, € 7(2Z + 1)/p are fermionic Matsubara frequencies. Because the
k-linear terms depend on spin, they need SOC to be large. At quadratic order in k, m and p
gain momentum dependence, as do v and v, at cubic order in k. This does not affect things
qualitatively as long as the k-linear terms are dominant so we shall not include this higher
order k-dependence in our analysis. We shall also neglect the oc (3k2k, — k;’)'cg 0 term which
arises at cubic order and breaks the emergent Dirac form.

To recast the action more closely as a Dirac model, introduce the Euclidean gamma matrices

Yo = 1300, Y1 = T10y,

(3.56)
Y2 = —T10yg, Y3 = —T200.

The Euclidean signature we shall use not only for the gamma matrices, in the sense that

v}t =20, (3.57)

but also for raising, lowering, and contracting the indices of any four-vector. By switching
from ¢t to

¥ == 9T, (3.58)
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3.2 Dipole excitations in Dirac metals

Table 3.3: The symmetry classification of Hermitian 4 x 4 matrices that can be
constructed from the four v, matrices. Below v5 := v9717273, L; == —i ij €k Vk>
i,j,k € {1,2,3}, £ is the angular momentum under SO(3) rotations which are generated by
L;, and X is the complex conjugation operator. Note that we are using a basis in which all
five v, = %TL are Hermitian (including v5 = 'yg:) and for which 7§ = 70, 77 = =71, 75 = 72,
and 3 = —3.

P =7~ SO(3) rotations O = —yy3 K
1, o +1 (=0 +1
Y5 -1 (=0 +1
1075 -1 =0 -1
Vi -1 (=1 +1
107 -1 (=1 -1
Ly, s +1 t=1 -1

one now readily finds that

Syl =D G (k) (3.59)
k
where
G~ (k) = ml — i[weyo + v(kem1 + kyY2) + V23] — w0 (3.60)

has a Dirac form. Consequently, at high energies (|wg| > |u|) the symmetry of the system is
enhanced to SO(4) with generators

K, = —i[yﬂ,yy]. (3.61)

K, generate rotations within the k,k,-plane, where k, = (wg, k), and they satisfy the stan-
dard SO(4) generator commutation relations:

[KMVNKMW] = .(6M1M2KV1V2 + 61/11/2Kvlﬁ1112 - 6M1V2KV1M2 - 6’/1IL2KleV2)' (3‘62)

The chemical potential p breaks this symmetry down to SO(3): the group of spatial rotations
which is generated by

1
L; = 5 Zk: eijn Kk (3.63)
J

These generators satisfy the usual spin Lie algebra [L;, L;j] = i), €;jr L. The neglected cubic
term which is proportional to (3kZ2k, — k;)'rgcrz = (3k2ky — kg)i'yg%, where v5 := Yv172773 =
—T10,, reduces the symmetry group further down to the dihedral group generated by C),, and
Cy, that we started with. Note how U(P) = v9 and © = —v17v3, and how L3 = K3 = %TOO‘Z
and Ly = Koy = 1130, agree with Egs. (3.49) and (3.50), respectively.
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3 Unconventional superconductivity from electronic dipole fluctuations

The alternative choice of Eq. (3.51) for U(C2;) would have given us the gamma matrices
Yo = T300, V] = Ti0gz, 79 = T10y, and 75 = T10,. These are related to the previous ones
through ‘BT’yl’LB = 4, where B = diag(1,1, —i,i). All subsequent results rely only on the
intrinsic Clifford algebra structure of the gamma matrices and their precise form in no way
affects any of our conclusions.

We have thus found that anisotropic gapped Dirac models describe SOC-inverted bands
of opposite parities near the I" point. This is true for other high-symmetry points of the
Brillouin zone as well if P, C,, with n > 3, and Cy, are symmetry operations (belong to
the little group) of these points. When the high-symmetry points k, have multiplicity higher
than one, as happens when not all symmetry operations map k, to ks modulo inverse lattice
vectors G, multiple valleys arise, each described by a Dirac model. Although effective Dirac
models have been found long ago in graphite, bismuth, and SnTe [46, 445, 497-501], and more
recently in topological insulators such as BisSes, BiyTes, and SbeTes [45, 502]|, the derivation
of this section showcases that this generically holds true for band-inverted systems with SOC.

3.2.1.2 Plasmon propagator and electrostatic coupling

In light of the previously derived action (3.43), the part describing the internal dynamics of
the plasmon field is given by

s0(2] = 3 S0V ()%, (3.64)
q

where in the bare plasmon propagator
Vg =ei(@ +qp) + e (3.65)

we allow for anisotropy between the zy plane and z axis.

Within the Dirac model, electric dipole moments are represented by ;1) = 1y, where
i € {1,2,3}. To see why, we note that the iyyy; which enter Hy transform as k. Therefore
multiplying with iyy will preserve the parity, while inverting the time-reversal sign, to give
the unique Hermitian matrices which transform as electric dipoles; see Tab. 3.3. Ferroelectric
modes couple to Dirac fermions in the same way [52, 496], as expected from symmetry. The
electrostatic coupling term thus equals

‘Sc[d)a (I)] = \/ﬁ Z (I)fqpq
q

: B (3.66)
ST % YAk, p)tp®i—p,
where B = 1/(kgT), L¢ is the volume, and
pa=—>_ U Alkk+ Q) riq (3.67)
k
is the density. In the bare interaction vertex
A(k,p) = evo + inL(kx — pz)yoy1 +inL(ky — py)y0y2 + in:(k: — p2)y07s (3.68)

we allow for anisotropy between the in-plane n; and out-of-plane 7, electric dipole moments.
For later convenience, we retained the dependence of A(k,p) on both the incoming p = (wp, p)
and outgoing k = (wg, k) electron four-momenta.
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3.2 Dipole excitations in Dirac metals

3.2.2 Polarization and optical conductivity

The polarization or plasmon self-energy II(q) is defined with the convention
T q) = V™Hg) + (), (3.69)
where
V(@4 = (0,00) (3.70)

is the dressed plasmon propagator. The small-momentum behavior of the polarization deter-
mines the symmetric part of the optical conductivity in the following way:

w, %11 (w,, q)
oij(wy) = —i— 4 — D20 (3.71)
*J a 2 8%8%’ q=0
Here, 11%(q) = 11¥(w,, q) is the retarded real-time polarization which is obtained from II(q) =
II(wq, ) via analytic continuation iw, — hew, +107.
Within RPA, II(q) is given by the fermionic polarization bubble which would have the form

fk:—l—qn - fk:n’
€k+qn — Ekn! + iwq

II(q) o

knn'ss’

‘<uk+qns|ukn’s/>‘2 (372)

if we ignored the dipolar coupling. Here, e, are the dispersions, ug,s the eigenvectors, and
fen =1/ (eﬁg’m + 1) are the Fermi-Dirac occupation factors.

In most systems, the electric monopole-monopole contribution to II(g), which is schemati-
cally written above, is dominant and gives the leading contribution to the optical conductivity.
However, in quasi-2D systems the Hamiltonian Hj, has weak k.-dependence, making both &g,
and ugy,s weakly dependent on k., in contrast to the coupling of the z-axis electric dipoles 7,
[Eq. (3.68)]. It then follows that the monopole-monopole contribution to o,,(w,) is small in
quasi-2D systems, whereas the dipolar contributions can be large. In particular, for the model
of the previous section we have evaluated the polarization in the quasi-2D limit:

v, =0, ny. =0, (3.73)

which is also of interest for RG reasons discussed in the next section. The T = 0 result is:

HR(qu 07 07 Qz) ==

A,m2n2q2 9 B
ULRIFL [10 ‘ MH 0| 4 i ©(hfwg| — 2u) |, (3.74)

2u — hwy

m2v2hw,

where A, is the g, cutoff, ¢, € [-A,,A.], = y/m2 + vzkz% is the chemical potential, and ©
is the Heaviside theta function. Note that in the no doping limit kr — 0, p should go to m,
not 0, in the above expression. This result we derive below, in Sec. 3.2.2.1.

The z-axis optical conductivity is therefore exclusively given by the z-axis dipole fluctua-
tions:

AZang

2u + hwog
m202h

o=2(q) = 21 — hoo,

<7r O(h|w,| —2n) —1ilog

). (3.75)
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3 Unconventional superconductivity from electronic dipole fluctuations

Due to interband excitations, above the gap we obtain a flat real part of the conductivity,
which is very similar to the usual behavior of the in-plane optical conductivity for a two-
dimensional Dirac spectrum [503, 504|. The surprise is that we obtain this result for the z-axis
conductivity, even though the band velocity along this direction is zero. The matrix element
responsible for this is exclusively the anomalous dipole element of Eq. (3.28). The band gap
m and in-plane Fermi velocity v entering o,,(w,) can both be measured using ARPES. If
one finds weak to no dispersion along the é, direction in ARPES, but nonetheless measures a
substantial z-axis optical conductivity, then this provides direct evidence for the z-axis dipole
elements of our theory.

In summary, in quasi-2D Dirac systems the z-axis dipole fluctuations that are so important
for our pairing mechanism of Sec. 3.4 are directly observable in the z-axis optical conductivity.

3.2.2.1 Evaluation of the polarization bubble

Here, we evaluate the lowest-order contribution to the polarization II(q). Because of the RG
considerations discussed in the next Sec. 3.2.3, we only consider the quasi-2D limit:

v, =0, ny. =0. (3.76)

For quasi-2D geometries, we shall find it convenient to use bolded vectors with | subscripts
to denote in-plane vectors, as in:

k= (wkaklykz)u kJ_ - (kl‘7ky>7

(3.77)
q=(wg,:q1,92), qL = (4e> qy)-

Except the real-time polarization for g; = 0 that we gave in Eq. (3.74), here we also evaluate
the imaginary-time polarization for u = 0 and for w, = 0. The former we shall use during the
RG of the next Sec. 3.2.3, while the latter is employed in Sec. 3.4 where we investigate the
pairing instabilities of our model.

The polarization is defined with the convention Il(q) = ¥ ~!(q)—V ~1(q), where ¥ (¢)84+¢ =
(®q®Py) is the dressed plasmon propagator. To lowest order in the coupling, it is given by the
fermionic bubble diagram:

4k
() = — / Gyt O E+ Gk + ) A(k +3.5), (3.78)

where the thermodynamic and 7" = 0 limits were taken,

ml +i[(wg — i)y + v(key1 + kyy2)] X
5 — il 3.79
Gk) m? + (wg — ip)? + v2k? 9k (3.79)

is the bare fermionic Green’s function [Eq. (3.60)], and

A(kﬁ,p) =ey + iﬁz(kz - pz)'YO’YZ’) (380)

is the bare vertex in the quasi-2D limit under consideration [Eq. (3.68)]. The corresponding
diagram is drawn in Fig. 3.4. X (Yx) is a shorthand for the numerator (denominator) of G(k).

First, we consider the retarded real-time polarization HR(wq,q 1 = 0,q.) for finite and
positive u > m, finite real-time frequencies w, # 0, arbitrary ¢., and vanishing q| = (¢z,qy) =
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3.2 Dipole excitations in Dirac metals

Figure 3.4: The fermionic bubble diagram which gives the leading contribution to
the polarization. The solid vertices contain both monopole and dipole contributions, as
specified in Fig. 3.3. Solid lines stand for electrons and wiggly lines for plasmons. The
corresponding expression is given in Eq. (3.78).

0. Because the dispersion does not depend on g, it is straightforward to evaluate the frequency
integral to get:

Ao [*kidk 2m’nlq

" 0.0) / 1 . 1
wanJ_ =Y,qz) = — 9 271.2 )
T Jep 20 m®+0%kT |\ o m? + 02k2 +iw,  2y/m? + 02k2 — i,

(3.81)

where A, is the ¢ cutoff, ¢, € [~A;, A.], and kp is the Fermi wavevector, u = y/m? + v2k%.

The retarded real-time polarization is obtained through the substitution iw, — hw, + i0T.
After applying the Sokhotski-Plemelj formula and evaluating the momentum integral, one
obtains the result

A,m?3n3q2 2u + hw
HR(w(qu = 07QZ) == — |: ‘ h

q
& 2u — hwoy

0z, +im O(h|w,| — Qu)] (3.82)
which was provided in Eq. (3.74).

For the next two cases, we express the denominator with the help of the Feynman parametriza-
tion:

1 1
1 _/ i 1 2_/ da 1 5, (3.83)
Yderg  Jo (A=) +2Yerd® Jo Yy +2(1 - 2) (w2 +02¢2)]

where p = k 4+ x ¢. In the momentum integral we then switch from k to p. Up to terms which
are odd in any component of p and thus vanish under the integral, the numerator trace equals

—Tr XAk, k4 @) XrrgA(k + g, k) = €14 &+ (1 —22) + &3 2(1 — 2) + &4 - (VP — wy),

P
(3.84)
where
&1 = —4(® —nZg)m® — 4(® + 2w, €y = —4(e? + 12¢2) piwy, (3.85)
€3 =4(® + 2% (v3q? — wg), €4 =—4(e® +12¢2).
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3 Unconventional superconductivity from electronic dipole fluctuations

When p = 0, there is an SO( ) symmetry in the (wp,vp ) variables because of which in
the numerator p? 1= p and wp — v 2p?. The radial integral is then readily evaluated using
dimensional regularlzatlon

7r
——, fore=0,
/°° p*tedp _ (1+em (AJ)—! = 4v3A (3.56)
o (A2+0%p?2)2  dvicos T _3mA for ¢ s 9 '
4057 '
The € = 2 case, which arises during the evaluation of the &4 term contribution, formally

diverges. This divergence is actually spurious. If instead of radially integrating in frequency
and momentum, one first executes the frequency integral and then the momentum integral,
one finds a convergent result for the €4 contribution which agrees with the dimensionally
regularized result. In detail, the integrals

/Oo 112192L dw _ 7rv21)2l (3.87)
— (m? +v2p? + w?2)? 2(m? +0?p? )3/

00 2 d
/ : W - T (3.88)

e 24 PP A 2 g R

individually both go like pll for large p;. This makes their in-plane momentum integrals
linearly divergent. However, their sum

= 3.89
oo (m2 4 v2p? +w2)2 2(m? + v2p? )3/2 (3.89)

/OO (w? —v?*p? ) dw m?

goes like pf’ at large p|, giving a convergent result which agrees with dimensional regular-
ization. The x integrals can be evaluated through a x — y = 4x(1 — x) substitution with the
help of

L dy 1 2 1
= — arccot —, 3.90
Vi-y/1+Q2y @ Q (3.90)
1
ydy 1 1 [( 1 ) 1 1]
=—|({1- arccot — + —|, 3.91
\/1—y\/1+Q2 ol\' @ 2" Q (3.91)
1 1
14+ Q%= [< > arccot — ] 3.92
o ViV T Ee It 270 (3.92)
The final result is
A.q (€® +n2g) 20, m*nZq;

[(1- 7“2) arccotrg + rq| +

arccotrg, (3.93)

H(Q)‘p,:o =

4n?, Jw? +v2q7 202, Jw2 + v2qt

where ¢ = (wg,91,4:), 91 = (¢z,qy), and ry == 2m/, /w2 +v2g%. This u = 0 polarization
reproduces the polarization of Ref. [446] in the m — 0, 7, — 0 limit.
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3.2 Dipole excitations in Dirac metals

When w, = 0, but p > m is finite and positive, we proceed by first evaluating the frequency
integral. We write:

A, [t > pydpy
11 = == d
(o =0y =2 [aa [ 2

3.94
RS B T O (&9
2r \ Yp+ (1 — x)qui [Yp + (1 — x)qui]Q .

—00

Note that during the evaluation of the contour integral, one must not overlook the additional
Dirac delta function that appears in the second term:

(A — pu?), (3.95)

[
ceo 2T A+ (w—iw)? T 2VA
00d£ 1 _ 1 @(A—M2)_ o

/_OOQW[A+(W_1H)2]2_2\/K< 9A 5(A u))- (3.96)

The p | and x integrals are now readily evaluated. For g, < 2kp, p| goes from \/k% —z(1-— x)qi

to infinity for all . For ¢; > 2kp, one has to separately consider |z| which are smaller and

larger than %(1 — /11— 4]{%/(13) After some lengthy algebra, one finds that

2 2
1+ 772327 for qL < 2kF7
e
2 2 2 4k?
M(wy = 0,q) _ <1+77zgz> L VH T
gF€2 e 2qL
772q2 ) s n2q2 for q| > 2]€F,
zZ1z z1z
[l—i- o2 }v qL—4m[1— 62} v /qi*‘lk%
+ arctan ————,
dpog 2u
(3.97)
where

Ap 5 . o
gr = 7['221}27 q1L = q% + qu H= \/m (398)

In the 1, — 0 limit, this II(wy = 0, g) reduces to the expression derived in Refs. [503, 504].

3.2.3 Renormalization group analysis

Here we study how the fluctuations of high-energy states modify the low-energy physics of
our model. To this end, we first analyze the naive scaling under RG flow, which is depicted
in Fig. 3.5. We show that the electric dipole coupling is irrelevant in 3D systems, while in
quasi-2D systems its out-of-plane component is marginal. Afterwards, for the quasi-2D case
we derive the 1-loop RG flow equations in the limit of a large number of fermionic flavors N.
The technical parts of this calculation we delegate to the end of this section (Secs. 3.2.3.3).
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3 Unconventional superconductivity from electronic dipole fluctuations

Using these 1-loop RG flow equations, we establish that the out-of-plane dipolar coupling 7,
is marginally relevant (Fig. 3.7). Consequently, 17, becomes enhanced at low energies.

Cooper pairing, which we study in the next section, takes place only when the screening
is strong enough. The Thomas-Fermi wavevector krr = +/e?gr /€y thus needs to be larger
than the Fermi sea size kp. Since the density of states gp o k%/(hvp), kg o< kpy/o where
« = e2/(hvpep) is the monopole coupling constant. For this reason, throughout this section
we focus on the strong-coupling regime o > 1.

The strong-coupling regime is not accessible through direct perturbation theory, which is
why we use a large-N expansion, N being the number of fermion flavors. Formally, we modify
the model by introducing an additional summation over fermionic flavor indices in Eqgs. (3.59)
and (3.67). Although in the end we take N to be of order unity, the hope is that by organizing
the calculation in orders of 1/N we can at least make definite statements about some strongly
coupled model that resembles our model. When the band inversion point is not located at
k = 0, multiple valleys arise, each described by a Dirac model. This naturally gives larger
values for N, provided that the intervalley interactions are small.

At the start of the RG procedure, the momentum cutoff A is initially much larger than the
Fermi wave vector kr and we integrate out high-energy degrees of freedom until A becomes
comparable to kp; see Fig. 3.5. To a first approximation, we may thus set the chemical potential
mid-gap, i.e., kr to zero. Since we are only interested in the low-temperature physics, we may
also set T' = 0. Throughout this section, we thus set

w=0, T =0. (3.99)

Finite u and T are both reintroduced later when we study Cooper pairing given a cutoff
A~ kp.

3.2.3.1 Tree-level scaling

First, we study the tree-level scaling (when u = krp =T = 0). In light of the Dirac form, the
cutoff A we impose on both momenta and frequencies according to

k)1 == wi /v? + k2 + k2 + (v2/0)%k2 < A%, (3.100)

The full action (3.44), with all of its terms spelled out, is given by

A A
_ _ 1
S, ®) = Y Pylml —i(wiyo + v(kam1 + kyy2) + vakays) |tk + 3 D> 0 yle1ql +e.q]P,

k
. A !
1 - . . .

T > Skoprg®—q¥ilero — inLavomt — iN1g1072 — 10:0:7073]Yp,
kpq

(3.101)

where the sum over the N fermionic flavor indices has been suppressed. The fields ¢ = ¥+~
and ® = & 4+ P~ we decompose into slow and fast parts with four-momenta within 0 < [|k|| <
A/band A/b < ||k| < A, respectively; here b = e > 1. The naive slow-field action, which is
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3.2 Dipole excitations in Dirac metals

Wk y

v\ €k

—UA‘

Figure 3.5: A schematic of the renormalization-group procedure. Here, wy and k) =
K2+ k; are the frequency and in-plane momentum, respectively, 2m is the band gap, u is

the chemical potential, kg is the Fermi wavevector, and e = {/m? + 1)2192L is the dispersion.

The occupied states are shaded in grey and the cutoff of Eq. (3.100) is highlighted in red.
Arrows indicate the direction of the renormalization-group flow.

obtained by substituting the slow fields into the above equation, can be recast into the original
action written above [Eq. (3.101)] through the rescaling:

k=K =0k,
Y = Y = b My, (3.102)
Pp — (I);f/ = b—%@k_

The 7, and n¢ exponents we choose so that the fermionic frequency Vwity and monopole
coupling ®_,Yrevor4q terms are invariant.
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3 Unconventional superconductivity from electronic dipole fluctuations

In 3+1D, for the naive scaling exponents we find

m' = b4 m = blm,
5

ZZJ = b_4b2771/)b_1 =1 — Ny = 57

v = by =,

vl = b=4p*e ey, =,

elL — b74b2nq>b72ej_ =€, (3103)
€, = b4 p 2, =¢,,

e = b 8p?wtnee =e = ne =3,

nl — b—SbQHw—i-Wq:.b—l,r]L — b_lnLa

77,/2 = biBanernq)bilnz = bilﬂm

where Z,, is the proportionality constant of the fermionic frequency term 1),wyr. The first b=4
and b8 factors come from the rescaling of the four-momentum integral(s), the middle ~ M 1D
factors come from the fields, while the last factor, if present, comes from any additional powers
of momentum present in the corresponding term. If we call 8’ the action (3.101) with m,v, ...
replaced by the m/, v/, ... from above, but the same cutoff A, then S8[), @] = 8'[¢, ®']. The
coupling constant of a general local momentum-conserving term which we may schematically
write as (M, K, Ly, Ly € Ny)

~ g S kry gk B [k |gl" (3.104)
kq
scales as
J = b4—3M/2—K—L1—LQg' (3.105)

The electric dipole couplings n; and 7, are thus naively irrelevant, as are all higher-order
momentum-conserving local terms in the action which preserve ® — —&® symmetry and par-
ticle number. Because the scaling of 1, and 7, only receives loop corrections of order N~! or
higher, in 3D Dirac systems electric dipole moments become increasingly weak at low energies.

In quasi-2D systems, however, v, =~ 0 and the Fermi surface is cylindrical instead of spherical.
Consequently, during the RG we do not rescale the momenta along z. This changes the naive
scaling dimensions to

m' = b 30" m =blm,
Zl, = byt =1 = 5y =2,
v = b3 p =,
€| = b3 2%e ) =bley,
€, = b3, =ble,, (3.106)
e = b Op?tnee =e = np =2,
) = b0 ey = by
m, = b b ey, =12,
g — p3M-K-Li—Lzg
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3.2 Dipole excitations in Dirac metals

Hence the out-of-plane dipole moment is now marginal, and we shall later see that loop correc-
tions make it marginally relevant. The monopole coupling e remains marginal. Intuitively, the
reason why the dipolar couplings 1, and 7, were previously irrelevant is that they come with
an additional power of momentum compared to the charge e. As this momentum becomes
smaller because of the restricted momentum range (A — A/b), they become increasingly less
important, at least in three dimensions for kr < A. In quasi-2D systems, however, the ex-
changed momentum along the €, direction is always large (on the order of the Brillouin zone
height) and the importance of the 7, term is always (naively) the same, which explains its
marginality as A is decreased. As for €., it is relevant, as expected for what is essentially a z-
dependent mass of the plasmon field. However, the electrons themselves also gap the plasmon
field and in the strong screening limit their contribution is dominant. This is why we do not
consider the flow of €, later on.

Given our interest in dipole effects, we focus on quasi-2D systems. Since 7, is irrelevant,
we may set it to zero from the outset. We therefore consider the regime

v, =0, nL =0 (3.107)

from now on. In practice, the z-axis dispersion and 7| have to be small compared to m and 7.,
respectively, for our calculation to apply. For quasi-2D geometries, we shall find it convenient
to use bolded vectors with L subscripts to denote in-plane vectors. For instance:

k= (Wk,kj_,kz), kJ_ = (kmvky)a

(3.108)
q=(wg,q1,492), a1 = (¢z:qy)-

3.2.3.2 1-loop RG flow equations

To formulate the RG flow equations, we use the Callan-Symanzik equations [505]. Let us
assume that we have found how all the states up to the cutoff A renormalize the fermionic
Green’s function G(k) of Eq. (3.60) into € (k) = (¢Yri)y):

G k) = Zypml — i Zywiyo — iZpv(keyr + kyya) + - (3.109)
and the same for the interaction vertex A(k,p) — d(k,p) of Eq. (3.68):
A(k,p) = Zeeyo +1Zpanz (ks — p2)yovs + - - (3.110)

The Callan-Symanzik equations follow from the requirement that this asymptotic behavior for
small k,p stays preserved as we change A. Before imposing this, we need to fix the scale of

the fields ¥ and ® which can in general depend on A. We choose ¥ — Z,, 1 21/}, in which case
the Callan-Symanzik equations take the form:

o A

arlz,™ dr |z,

(3.111)
i é =0 i an =0
ar |z, T aa |z, | T

Because ® couples to the Noether charge of the U(1) phase rotation symmetry 1 — ¢4,
there is an exact Ward identity Z. = Z,, which implies that the charge e does not flow. The
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3 Unconventional superconductivity from electronic dipole fluctuations

proof of this important fact we provide later, in Sec. 3.2.4. As for the other parameters, the
chain rule gives the RG flow equations:

Z A dg; A 87
S (o5 + % Adg; A OZ (3.112)
J Zz 8gj A gj dA Zz oA ge
where
m Zm/Zw
g’i — v ) Zz - Zv/Zw . (3113)
U an/Zw

Since Z; = 1+ 6(N~1), as we later show, to N~! order the RG flow equations simplify to:

Adg A9z
g dh ~ T Z, 0N

(3.114)

In these RG flow equations we have not included €, or €, because the bare interaction is
negligible compared to the polarization in the strong coupling limit. €; and €, we shall
therefore keep constant (independent of A) and only include in various expressions to make
them dimensionless.

To lowest order in NV, the plasmon self-energy II(q) is given by the fermionic polarization
bubble which is drawn in Fig. 3.4. We have evaluated it in Sec. 3.2.2.1, with the result
[Eq. (3.93)]:

20 m*n2q?

2,2 /,,2 2,2
URCARVACHEe uChl i

A.q3 (e* +n2q2)
4m2, w2 + v2g?

where A, is the ¢, cutoff, ¢. € [-A,, A;], and

(q) = N (1 —r2)arccotry + 14 + N

7 arccot g, (3.115)

2
rg = m (3.116)

=
VWi +val

Notice how II(g), unlike the bare V~!(q) of Eq. (3.65), is frequency-dependent as well as
non-analytic at ¢ = 0.

The next step is to evaluate the various renormalization factors Z;, which we do to N~!
order. The relevant self-energy and vertex correction diagrams are standard and the details of
their evaluation are delegated to Sec. 3.2.3.3. Although the shell integrals cannot be carried
out analytically, they can be simplified by introducing the dimensionless parameters:

. .m N e
m = —— = —
vA’ €Lv’
3.117
A, i A G417
nz . e ’ N Az’
and expressing the shell momentum
q=(wg,q1,qz) (3.118)
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3.2 Dipole excitations in Dirac metals

in terms of dimensionless @ and g, through

wy = VA, lqL| = AV1 — &2, q. = A.q.. (3.119)

The strong-coupling large-IN RG flow equations are to 1-loop order given by:

1 dm 4 ! L B(@,7,)
e =B =1t e [ dg, [ do
mar =P N+ m2)? /0 =], P w@,q.)
1 de 4 ! L Bu@,7,)
S N — dé dp = z)
ade T NG +m2)2/o o @ (3.120)
P M Y
n,d T 2NA+m?)? o % J P(@,q.)
1dA
Ade
where ¢ determines the cutoff through A = Ag/b = Age™* and
Bon(@,7,) = (1 - @) [1 = (1 +7A)P]A” — @% + )i,
Ba(@,3.) = (1 - & +2m2) (A +723?),
B (,.) = 2R (A" + 7232), (3.121)
P(@,7,) = (1 — &) 2[(1 — 4m?) arccot(2m) + 2] A
+{(1 — @*)2[(1 + 4m?) arccot(2mm) + 2] + 8@w*m?2 arccot(2rm) }727>.

These RG flow equations are the main result of this section and one of the main results of
Ref. [30] on which this chapter is based.

By inspection, one sees that P, B, and %B,, are strictly positive for all @ and g, whereas
B, can be positive or negative. Consequently, the dimensionless out-of-plane electric dipole
moment 7, is always marginally relevant, while the effective fine-structure constant « is always
marginally irrelevant.

The flow of the dimensionless gap m is the simplest: it grows with an exponent that ap-
proximately equals +1 even when we extrapolate N — 1, as the numerical evaluating of the
shell integral shows. Once m becomes on the order of ~ 1, the RG flow should be terminated.
Even though large m are thus never reached, let us nonetheless note that all three B; /P « m
for large m and therefore the flow of both « and 7) is suppressed as m — 400, as expected. In
addition, the RG flow equations are symmetric with respect to m — —m so we may always
choose m > 0, as we do below.

The flow of « for a gapless 2D Dirac system without electric dipoles was analyzed in Ref. [446]
and we recover their Jyx = —ﬁoc result when we set m = 0. Our analysis shows that the
flow towards small « persists for finite gaps m and finite z-axis dipolar couplings 77,. The
detailed behavior is shown in Fig. 3.6, where we plot the flow of « for different initial values of
the mass m and dipole element 7,. Notice that o does not enter any of the beta functions 3; in
the strong-coupling limit &« — oo. Hence, we may offset the solutions via multiplication, as we
did in Fig. 3.6 for illustration purposes only. The suppression of « is stronger for intermediate
m ~ 1 than for very small m — 0, and we shall later see that this is accompanied by an
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3 Unconventional superconductivity from electronic dipole fluctuations
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Figure 3.6: The RG flow of « with N =1 for various initial m(¢ = 0) and 7,({ = 0), as
indicated on the figure [30]. Solid lines become dashed when m(¢) > 1. The «(¢) curves
associated with different initial masses we have offset relative to each other via multiplication
(displacement on a log scale). We are allowed to do this because a(¢ = 0) enters as a
multiplicative factor in the solution of the RG flow equations (3.120).

enhancement of 77 that also predominantly takes place for m ~ 1. On the other hand, because
RBx/P =1 when m = 0, 77, has a negligible effect on the flow of « for small 7. For intermediate
m ~ 1, small 7, are more favorable for the suppression of « than large 7,, as can be seen from
Fig. 3.6. Both positive and negative 7, affect o the same way because of horizontal reflection
symmetry 7, — —1),, which is respected by Eqgs. (3.120); below we assume 7, > 0.

The dependence of the flow of the dipole strength 77, on the mass m is more subtle than
that of the monopole coupling x. Its beta function (3, vanishes for both small and large m.
That large gaps suppress the flow of 7, is expected because large gaps suppress the mixing
of parities that is needed for high-energy fluctuations to affect electric dipole moments. Less
obvious is the fact that there is a chiral U(1) symmetry ¢ — €34} in the gapless limit m — 0
(with kp = v, = n; = 0) and that the out-of-plane electric dipole moments precisely couple
to its charge 1¥v9y31. As a result, the associated Ward identity guarantees that Lz = Ly,
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3.2 Dipole excitations in Dirac metals
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Figure 3.7: The RG flow of 7, and m with N = 1 for an initial A(/ = 0) = 3, m({ =
0) = 0.2, and 7,(¢ = 0) € {0.002,0.01,0.04,0.1,0.4} [30]. Solid lines become dashed when
m(€) > 1. There are small variations in how m flows, depending on 7, (¢ = 0), which we are
not shown. The same scale is used for both m and 7,.

precluding any renormalization of 7)., as we prove in Sec. 3.2.4. The largest increase in 7, thus
- - <2
happens for moderate m ~ 1, and for large A, as follows from the fact that 9%B,. oc A",

The numerical results for the flow of the z-axis dipole element 7, are shown in Fig. 3.7.
These results depend on the initial values of ]\, m, and 7,, which are specified below. Note
that they do not depend on « as long as it is large because «(¢) decouples from the rest in
the strong-coupling limit described by Eqgs. (3.120).

For A, we assume that initially A = 3, which corresponds to a reasonable amount of
anisotropy for a quasi-2D system (A = 3A,). The RG flow we run until ¢ = 2, at which
point A = 3e~2 = 0.41. The Fermi radius kp, which we neglected [Eq. (3.99)], is thus on the
order of 0.2A..

Regarding the gap, in Fig. 3.6 we only show the results for an initial m = 0.2. We have
explored other initial values as well and we have found that the enhancement of 7, is compa-
rable in magnitude to that shown in Fig. 3.6 in the range m € (0.05, 1.0), whereas outside of
this range it is a lot smaller. As already remarked, the flow of /M, given an initial value, is not
significantly affected by 7, so only one curve for m(¢) is shown in Fig. 3.6.

The RG flow is given for five different initial values of 7., ranging from 0.002 to 0.4. As can
be seen in Fig. 3.6, although smaller 7, tend to get more enhanced, sometimes by even two
orders of magnitude (if we take N — 1), the final value of 7, (¢ = 2) declines with decreasing
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3 Unconventional superconductivity from electronic dipole fluctuations

n,(¢ = 0). Larger microscopic electric dipole moments 7, (¢ = 0) thus always lead to larger
effective dipole moments 77, (¢ = 2). It is also worth noting that the increase in 7, is finite even
if we extend £ to go from —oo to +00. The reason lies in the fact, discussed earlier, that both
small and large m suppress the beta function of 7,: the former because of a chiral symmetry
(Sec. 3.2.4) and the latter because of weak parity mixing. Hence the dipole matrix element
grows only in an intermediate window before m becomes too large. This should be contrasted
to the flow of « which stops for large ¢, but is exponential for small £ — —oc.

3.2.3.3 Evaluation of 1-loop self-energy and vertex diagrams

Here we evaluate the 1-loop fermionic self-energy and electron-plasmon vertex diagrams in the
quasi-2D limit v, =7, =0 [Eq. (3.107)] with u =T = 0 [Eq. (3.99)|. These diagrams underlie
the RG flow equations (3.120).

The fermionic self-energy is defined as

Y(k) =€ k) - G k), (3.122)
where

(Yratp ) = Gap(k)dp—p. (3.123)

To lowest order, it is given by the Fock term [Fig. 3.8(a)]:

d%q
(k) = / WA(k’ k+q)G(k+ q)A(k + q,k) -V (—q). (3.124)

The Hartree term has been omitted because it merely results in an absolute displacement
that can be absorbed into the chemical potential. The bare G(k) and A(k,p) are (Egs. (3.60)
and (3.68) in Sec. 3.2.1):

ml +ifwpyo + v(kay1 + kyy2)]
m? + w? + v2k?
A(k,p) = evo + (k2 — p2)v073- (3.126)

Gk) =

: (3.125)

Note that the interaction needs to be dressed (¥ appears instead of V' in X) with the polar-
ization bubble diagram because of the large-/N limit. In a slight abuse of terminology, we shall
still call this diagram “1-loop,”
in the interaction.

When v, =n; = u =0, one finds that:

even though a geometric series of loops has been summed up

E-1+8& - m+E& - m+E-mn+tEs

Ak, k+q)Gk+ @Ak +q,k) = , 3.127
( q)G(k + q)A(k + g, k) M7+ (wr +g)? + (k1 + qL)? (3.127)
where

€ =m(e® — ¢n), €0 = 1(€” + @22 (wi + wy),

&1 = —i(e® + @Zn2)v(ks + qu), & = —i(e® + @Zn2)v(ky + qy), (3.128)

&3 = 2imeq,n,.
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3.2 Dipole excitations in Dirac metals

(a) (b)

Figure 3.8: The diagrams of the leading contributions to the electronic self-energy
(a) and electron-plasmon vertex (b). In the large-N limit, the plasmon propagators
needs to be dressed, as indicated by the double wiggly lines. Solid lines are fermion propaga-
tors. In all cases, the vertices contain both monopole and dipole contributions, as specified
in Fig. 3.3.

By expanding in small £ and dropping everything odd under ¢, one obtains:

G k) = G (k) + 2(k) = Zpml — iZywiyo — iZpv(keyt + kyy2) + -0 (3.129)
where:

d4q 62 _ q2n2

T =1 +/ S (), (3.130)
(2m)tm? + w2 4+ v2q?
d4q —(€® + ¢2n2)(m? + v2q? — w?

Zw:1+/ ¢ (€ +am:)( qg ) -V (—q), (3.131)
(2m) [m? + w2 + v?q? ]
d4q (e? + ¢Zn?)(m? + w?

Zy = 1+/ q4( %1z )( g) -V (—q). (3.132)
(2m) [m? 4 w? + v2q? |

The dressed vertex is defined by amputating the connected fermion-boson Green’s function:
i
NOZ

Recall that L¢ is the volume and B = 1/(kgT). To lowest order in N, it equals [Fig. 3.8(b)]

(Vh,a¥p,5®8q) = (Vratps)(Bq) = [6(k)sh(k, p)6 (D)0 (0)8k—p+q- (3.133)

4
dA(k,p) ZA(k,p)/dq4A(k,k:+q)G(k+Q)A(k+q,p+Q)G(p+Q)A(p+q,p)'°V(q),

(2m)
(3.134)

where the interaction again needs to be dressed with the polarization bubble.

Multiplying out the matrices in the above expression for 9 (k, p) results in gamma matrices
of all orders, going from 1 and 7, up to V7YYo = €uvper0V17273- At k = p = 0, only
the oc v term survives, giving a renormalization of the charge e. At linear order in k and

165



3 Unconventional superconductivity from electronic dipole fluctuations

p, we find terms o (k; — p;)yoy: which renormalize 1, and 7., but also an additional term
& (wg + wp)1. This additional term is irrelevant, just like 77, so we shall neglect it. As for
the remaining terms which are higher order in k and p, they are also irrelevant under RG flow
and we therefore neglect them as well. After some lengthy algebra, we find that

A(k,p) = Zeeyo +1Zynz(kz — p)yoy3 + -+ (3.135)

where:

g 1. [ 4 —(e® + @2n2)(m?® + v’qt —wj) W (—q) (3.136)
= (27T)4 [mQ + OJ2 + U2q2]2 q), .
q 1
dig —(2+ 2n?)(—m? + v’} — w?)
Znz =1 +/ (2m)4 2 12 1 1202 V=) (3137)
[m +wg +vq ]

Notice that Z, = Z, and that Z,, = Z, when m = 0. This is a consequence of exact Ward
identities which we prove in the next section.

In all the renormalization factors Z;, the frequency and in-plane momentum integrals go up
to A, as specified by [¢||* = w?/v? +¢% < A? [Eq. (3.100)]. Differentiating by A in Eq. (3.114)
thus gives the shell integrals we provided in the RG equations (3.120).

3.2.4 Ward identities and a chiral symmetry

Ward identities are exact (non-perturbative) identities which express the ways symmetries
constrain the renormalization of the theory [505, 506]. Here we prove two Ward identities for
the limit v, = n; = w = 0. We are focusing on this limit because of the RG considerations
of Sec. 3.2.3. The first Ward identity follows from charge conservation, while the second one
follows from a chiral symmetry which only holds in the massless m = 0 limit.

We start by writing the Euclidean action of Eq. (3.44) or (3.101) in real space and imaginary
time:

3
¥~ [ o) Z By = (o) + n10s2(@) [ (a) + 5 [ S0
L

(3.138)
Here z = a# = (1,7), [, = [drd®, and 9, = 8/da*. Temporarily, we have set v = 1 and

€| = €, = €, which we shall restore later.
Let us recall that within the imaginary-time formalism, averages are defined as

1. 8)) = 5 [[olfasle @51, 0l (3130)

where F is a functional of the fields,

2= / [dy][d®]e Sl (3.140)
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3.2 Dipole excitations in Dirac metals

is the partition function, and the integrals are path integrals which go over all possible field
configurations:

Hd% ) A (2), [d®] = [ [ d® (). (3.141)

Here v, () and 1, () are Grassmann variables, while ®(x) are real variables. An important
property of this path integral measure is that it is affine, i.e., translation invariant. Thus
integrating over all ¢ and ® should give the same result as integrating over all ¢/ = 1 + d1)
and ® = ®+6®P. For the averages, this implies the following exact Schwinger-Dyson equation:

—(68 - F) + (6F) =0 (3.142)

which is the path-integral equivalent of the Heisenberg equations of motion in the canonical
formalism. Note that the order above matters: (68/0v¢ - F) = —(F - 68/ ) when both the
field ¢ that we are varying and the functional F that we are averaging are Grassmann-odd.
Similarly, during the chain rule the order also matters for Grassmann-even J:

/[Z&/fa +Z 0 (@ ) 5@(3;)5;??;) : (3.143)

Under an infinitesimal U(1) phase rotation 1 (x) — €@ (z), ¥ (z) = (z)e V@) &(z) —
®(x), the action changes by

2
8 =i [ 9() Y- e (Dl yui(a)). (3.144)
T =0

By applying the Schwinger-Dyson equation (3.142) to the functional F[¢), ®] = 1)y, (72) s (23),
one obtains the Ward-Takahashi identity:

2
(82— — daay) (Y( Z (@) ()] - (w2)(x3)). (3.145)

Physically, this identity expresses the conservation of charge within a four-point thermal av-
erage. In Fourier space, it takes the form:

2
(Prytq¥hy) = (Pra¥ry—g) = D D gy hwtbprq - Yrathyy )- (3.146)

P w=0

Motivated by the above expression, let us introduce for an arbitrary 4 x 4 matrix I" the
amputated matrix-fermion vertex:

Wk, q) = (VTprq G (B)rthyy €' (k+0q)). (3.147)

p

The Ward-Takahashi identity (3.146), with k1 = k and k2 = k + ¢, can now be recast into

Gk +q) — G (k) = —iwg W (k,q) — i0gs T, (k. q) — fvg, Wy (k. q). (3.148)
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3 Unconventional superconductivity from electronic dipole fluctuations

where we have restored v. In particular, this means that:

W, (k,q=0) = 187%@*1(@, (3.149)
i 0 4
i 0
Y
Thus if for small k
6 (k) = Zpml — iZywiyo — iZpv(key + kyye) + - (3.152)
it follows that
Wy (k. g = 0) = Zu0, (3.153)
Wy, (k,q =0) = Zym, (3.154)
Wy (kyq = 0) = Zyy2. (3.155)

The Schwinger-Dyson equation that follows from varying ®_, = ®; with F = ¢k17a1@k2’a2
is:

VU ) (@t Ury) = S (Vpr0(€e = 1020:73)Pprq - Yy iy )- (3.156)
q k \/W zp: P pt+q k

After employing Eq. (3.133) on the left-hand side under the assumption that (®4.0) = 0, the
above becomes:

Ak, b+ q) = V()T q) - Wy (@) — i1:0: W (). (3.157)
If we now further assume that for small four-momenta V(q)¥ ~'(q) = Z. +--- and
Ak, k+q) = Zeeyo —1Zpm2q:0073 + - (3.158)

as well as exploit Eq. (3.153), we obtain the Ward identity Z, = Z.Z,,. In Sec. 3.2.2.1, we
found that IT(q) = ¥ ~(q) — V~1(q) is non-analytic at ¢ = 0, which implies that II(¢) cannot
be Taylor expanded at ¢ = 0. Moreover, there is no canonical decomposition of II(g) into a
non-analytic part and analytic part (which could then be expanded around ¢ = 0). Hence no
part of II(q) contributes to the renormalization of the bare plasmon propagator. Consequently,
Ze =1 and we obtain the Ward identity:

Zo= 7. (3.159)

Physically, this identity expresses the fact that charge does not renormalize, as we explicitly
saw on the 1-loop level in Sec. 3.2.3.3.

Apart from the U(1) phase rotation symmetry which is associated with charge conservation,
in the massless limit there is an additional U(1) rotation symmetry of the form ¢(x) —
V@ ap (), h(x) = P(x)e? @3 B(x) s B(x). Given that 43 anticommutes with all v, just
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3.3 Pairing due to electric monopole-dipole interactions

like 5, physically this represents a chiral symmetry of the model. Analogous manipulations
to the previous give the Ward-Takahashi identity

73@_1(143 +q) + <g_l(k)% = iwqcﬂf%'ya(ku q) + ivqfﬂ/yl%(k, q) + 10qy Weypys (k,q), (3.160)

which implies

Wogys (kg = 0) = Zuyo7s, (3.161)
Wy (ks g = 0) = Zy7173, (3.162)
Wy (K, q = 0) = Zyy27s. (3.163)

From Eq. (3.157) we now obtain the Ward identity
Zye = Zo, (3.164)

where we used the fact that ., (k, q) cannot be linear in g, because of horizontal reflection
symmetry. In the massless limit, the chiral symmetry thus protects the out-of-plane electric
dipole moment 7, from renormalizing.

3.3 Pairing due to electric monopole-dipole interactions

The strongly repulsive nature of the Coulomb interaction is often one of the biggest obsta-
cles to the formation of Cooper pairs. Its monopole-monopole part by itself is repulsive and
suppresses pairing. However, the monopole-dipole and dipole-dipole parts can yield uncon-
ventional superconductivity (SC) if the screening and dipole moments are strong enough, as
we show here. Although we call this pairing after the monopole-dipole term only, we are not
neglecting dipole-dipole interactions in our analysis, but are rather emphasizing the fact that
the monopole-dipole coupling is the main source of pairing. Starting from an effective instan-
taneous interaction among Fermi-level electrons, such as the one obtained at the end of the RG
flow of the previous section, we first summarize the formalism for analyzing SC instabilities
in Sec. 3.3.1. The expressions that we obtain are very similar to those that we previously
had in Sec. 1.3.2 of Chap. 1 for the exchange of order-parameter modes. We compare and
contrast the two in Sec. 3.3.2. Using this formalism, in Sec. 3.3.3 we then study the pairing
due to electric monopole-dipole interactions for general systems and we derive a number of
its properties. A toy model is analyzed in the last subsection. The pairing in quasi-2D Dirac
metals, which were the subject of the preceding Sec. 3.2, we analyze in the next part of the
chapter.

3.3.1 Linearized gap equation and formalism

To study Cooper pairing, we use the linearized gap equation that we derived in Appx. A. If
we keep the electron-electron interaction generic for the moment, then we may write it as

1
Hine = J7a D Okrrha—ta—ks U asaryans (K1 Ko, K, Ka) ), o 0, 0y VksicaVksiogs (3.165)

where U is fully antisymmetrized with respect to particle exchange and the sum goes over all
four momenta and spin and orbital degrees of freedom. At leading order in this interaction,
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3 Unconventional superconductivity from electronic dipole fluctuations

in Appx. A we obtained the following linearized gap equation, formulated as an eigenvalue
problem [Eq. (A.39)]:

3
> / (gi;chWBA(pm,kn)dA(kzn):/\dB(pm). (3.166)

Here n,m are band indices, e, is the band dispersion displaced by the chemical potential,
the momenta k,,, p,, are on the Fermi surfaces which are determined by g, = epm = 0, dSk
is a surface element, A = B = 0 corresponds to even-parity and A, B € {1,2,3} to odd-parity
pairing, da(k,) is the pairing d-vector, and WgA(pym, k) is the pairing interaction. This
linearized gap equation applies to spin-orbit-coupled Fermi liquids with space-inversion and
time-reversal symmetries whose Fermi surfaces do not touch each other or have Van Hove
singularities on them.
Positive pairing eigenvalues A correspond to SC states with transition temperatures:

QQYE

kpT,. = hwee YV & 1.134 hw, e~ V2, (3.167)

where yg is the Euler-Mascheroni constant and hw, is the energy cutoff of the theory, which
is assumed to be much smaller than the bandwidth. The leading instability has the largest
positive .

The pairing interaction is given by:

— (0P8 ] [P oT]
W A pm,kn == L Q20 n Q304 Uoz a3 p7 _paka _k 9 3168
B ( ) a10§0;3a4 4‘Vp€pm’1/2‘vk€kn|l/2 10203 4( ) ( )

where ‘an are the Pauli-matrix-weighted band projectors:

Tﬁn = Z ukns(o-A)ss’ULnS/- (3.169)

ss’

Here s,s’ € {1,|} are the pseudospins, 04 are the Pauli matrices, a; are combined or-
bital and spin indices, ug,s are the normalized band eigenvectors which diagonalize the one-
particle Hamiltonian, HgUgns = Eknlkns, and © is the unitary matrix that determines how

~

single-particle states transform under the antiunitary time-reversal operator, (:)_11/);67,11@ =
> s OonasV—k,as- A pseudospins degeneracy requires both space-inversion and time-reversal
symmetry, which we henceforth assume. See Appx. A for further details.

For the plasmon-mediated monopole and dipole interaction of Eq. (3.24), the monopole and
dipole fermionic bilinears of Eq. (3.26) we write in the following way:

Dyq =—€ Y Uik sorqPhtq- (3.170)
k

The interaction now reads:

Unyasasas (K1, k2, k3, kg) = € Z Viw (k1 — B3)[L ks k) o g L vko ksl anay
- (3.171)

— (the same with a3 <> a4 and k3 <> ky).
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3.3 Pairing due to electric monopole-dipole interactions

After some manipulations that exploit the fact that D, is even under time reversal, so

6 ﬂ)#qG = D, _q and of Lk p® = 17, but also Hermitian, so @Lq = D, _q and

w,—k,—p’
I’:r/p & = Lukp, for the pairing interaction we obtain:
o WBA(DPm, kn) + Wpa(Pm, —kn)pa
Wosa (i, k) = 21 2P En) 4 Ao “en)pa, (3172
4|V pepm || Viernl
where pa—g = —pa=1,23 = +1 and
W A(Dm, kn) ZVW p—k)TrP5 Typ kPl (3.173)

The trace arising in Wpa(pm, kn) goes over both spin and orbital degrees of freedom and one
can alternatively write it as a pseudospin trace:

GJJIBI;VA (pm7 kn) =Tr ?Emrﬂp’kipénrj;p,k (3 174)
= try O-Bﬁ,u(pma kn)O'Aﬁl(pma kn)7

where

[ (P Kon) ]y 1= b Ui s (3.175)

Fp' and £, we shall call pairing form factors.

3.3.2 Comparison to pairing due to order-parameter fluctuations

At this point, a comparison to the analysis of pairing due to order-parameter fluctuations of
Chap. 1 is instructive. In Sec. 1.3.2 of Chap. 1, for the pairing interaction we found [Egs. (1.71)
and (1.72)]:

(Ch.1) (Ch.1)
Ch.1 W pWL7k + W Pm, _kn PA
VO (D o) = po g2 84— ) o ( 7 pa. (3.176)
4V pepm| |V kken|
Ch. L4 Ch. ch.)]t
WERD s k) = 50 S (0 — K, 0030, T 25, TR E [PRD] 3

ab

which is formally very similar to what we found in this section. However, there are a number

of important differences:
~(Ch.1 . .
1. For TR-even order parameters, WSB A ) X pog® = +g? is overall attractive. In contrast,
the TR-even electric monopoles and dipoles of this section give an overall repulsive
Wpga x —e?. Thus it is the TR-odd order parameters which result in Cooper pairing

that is analogous to the one considered in this chapter.

2. The order-parameter field @gCh'l) transforms under an arbitrary irreducible represen-

tation, while the plasmon field ® transforms like a TR-even scalar (Afg), just like the

(Ch.1)

ap.k trans-

electric charge density. Moreover, the fermion-boson coupling matrices I'

(Ch.1)

form under the same irreducible representation as @4 , while the components of I' 5, .
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3 Unconventional superconductivity from electronic dipole fluctuations

transform as a scalar (u = 0) and vector (u = 1,2, 3), i.e., its representation is reducible.
Consequently, in WJ(BCX] U the sum over the irrep component indices a, b must be oc 84
(see Sec. B.2 of Appx. B), while in our case the sum over u, v in Wpgy4 is non-trivial. In
particular, the V,;(p — k) need to contract with the dipole matrices I'jp  in the right

way to give a ATQ density-like object.

3. Relatedly, for higher-dimensional irreps the order parameter of Chap. 1 has multiple
components and the associated matrix x(“*1)(p — k,0)8,, is invertible. In our case
there is always just one bosonic (plasmon) field and the 4 x 4 matrix V,,(p — k) is
non-invertible, with rank 1.

4. When it comes to the structure of the coupling I' matrices, in Chap. 1 we focused on
(Ch.1)

loop currents whose I' apl  Ar€ purely orbital. Electric monopoles and dipoles also have
purely orbital I, i, but with the notable difference that they are TR-even.

The origin of the first difference is that the Coulomb interaction He = 5 [, pe(r)V (r —
") pe(r') is repulsive, whereas the exchange of an order-parameter field always gives an attrac-

tive interaction of the form Hiny = —3¢° [ 2 ¢ (Ch.1) ( )X (p—p )gZ)aCh 2 (r") [Eq. (1.22)],
at least in the limit of negligible retardation. With the help of a Hubbard-Stratonovich trans-
formation, the Coulomb interaction can also be recast as an exchange of a bosonic (plas-
mon) ﬁeld as we discussed in Sec. 3.1.4. However, in the resulting Siye = €o fx(Vé(:c)f +
i[ ®(x)p(x) [Eq. (3.43)] the coupling between the plasmon and density must be imaginary to
ensure that the integral over the real-valued plasmon field ®(z) = ®*(x) converges, i.e., the
i cannot be absorbed into ®. Among other things, this means that (®(x)), if finite, is imag-
inary, as follows from the Schwinger-Dyson equation V2(®(z)) = i(p())/eo. Evidently, ® is
just (—i) times the scalar potential of the electromagnetic field and its (—i) can be understood
as arising from the Wick rotation of the electromagnetic four-potential A, to Euclidean time.

On the other hand, the order-parameter field <I>(Ch 1)( ), if it condenses, on physical grounds

must attain a real value. This constralns the coupling between the real-valued field <I>(Ch b

h.1)

can also be formulated as a field operator in the canonical formalism and its coupling

and the Hermitian fermionic bilinear gzﬁa
p(Cn1)
a

to necessarily be real. The order-parameter field

to ¢((1Ch'1) then must be real to ensure that the Hamiltonian is Hermitian (which, in turn,
is needed to make time evolution unitary). Conversely, the plasmon field ® (i.e., the scalar
potential) does not arise as an operator or a dynamical degree of freedom in the Hamiltonian
formalism, but as a Lagrange multiplier that enforces Gauss’ law.5

The second and third differences are self-explanatory.

Regarding the last difference, we have already discussed one important implication of this
difference in Sec. 3.1.1, namely, that electric dipole moments cannot be carried by electrons
in the absence of spin-orbit coupling. This is equivalent to the statement that the pairing
form factor £,,(pn, kn) vanishes at forward scattering p, — k,, for the dipolar p = 1,2,3. For
loop currents, due to their opposite time-reversal sign, in Sec. 1.3.2.2 we found the opposite:
that even-parity loop-currents decouple at forward scattering. Both statements follow from
oddness under PO symmetry and in both cases we find pseudospin-triplet pairing form factors
in the presence of SOC.

SFor an interesting recent discussion of Hubbard-Stratonovich transformations in the presence of both attrac-
tion and repulsion, see Ref. [507].
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3.3 Pairing due to electric monopole-dipole interactions

Given these similarities, it should come as no surprise that in the next section we shall be
able to prove statements that resemble those we proved in Sec. 1.3.3.2 of Chap. 1.

3.3.3 Pairing symmetry and upper bounds on the pairing strength

The fact that all interactions between the electric monopoles and dipoles are mediated by the
same electrostatic field allows us to make a number of very general statements regarding the
pairing. To encode this fact, we start by writing the V), of Eq. (3.25) in the following way:

V(@) = vu(@)V(g)v;(a), (3.178)
where
1
vu(q) = <1;> = igi : (3.179)
ig.

See also Fig. 3.3. After renormalization, only V(q) — ¥ (q) changes. It then follows that

2
Woo (P, kn) = V(p — k) Z! (P, ke (3.180)
is strictly positive in the singlet channel, with £ given by
B 3
[ﬁ(pma n ]s’s = Zvu(p - k)[ﬁu(pma kn)]s/s- (3181)

u=0

The singlet pairing interaction Woo(pm, k») is therefore negative-definite. For negative-definite
matrices, the Perron-Frobenius theorem [175] applies and states that the largest-in-magnitude
eigenvalue A, is negative and that the corresponding eigenvector d,(ky) has no nodes, i.e.,
is an s-wave SC state. While A, and dy(k,,) do not correspond to a SC instability, they are
nonetheless a useful reference that bounds the possible pairing instabilities. In particular,
all positive singlet eigenvalues are bounded by |A.| and, to be orthogonal to dy(k,), their
eigenvectors need to either have nodes or sign changes between Fermi surfaces. Hence any
singlet superconductivity must be unconventional and weaker than |\.|. Note that extended
s-wave pairing is still possible.

The triplet eigenvalues are bounded by |A.| as well. To show this, consider the eigenvec-
tor corresponding to the largest triplet eigenvalue. Using the SU(2) local pseudospin gauge
freedom, we may always orient this eigenvector along the és direction. The corresponding

WSS(pma kn) = V(p - k) Z(i)S’(i)s‘ [?(pm’ k")}s’s

s's

2

, (3.182)

where (£)r = —(&£); = +1, is therefore bounded by Woo(pm,kn), as is Wss(pm, kn) by
!Wgo (Pm., kn) ’ A corollary of the Perron-Frobenius theorem [175] then states that the largest-
in-magnitude triplet eigenvalue is strictly smaller in magnitude than the largest-in-magnitude
singlet eigenvalue Ay, which we wanted to show. That said, the largest positive triplet eigen-
value may still be larger than the largest positive singlet eigenvalue, resulting in triplet pairing
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3 Unconventional superconductivity from electronic dipole fluctuations

+

(a) (b)

Figure 3.9: The leading contributions to the pairing interaction derive from
monopole-monopole (a) and monopole-dipole (b) coupling. The double wiggly
lines indicates that the plasmon propagator is screened, while the cross indicates a dipole
vertex, as defined in Fig. 3.3. With sufficient screening, the repulsive contribution from (a)
mainly acts in the s-wave channel and is orthogonal to the attractive contribution from (b).

overall. Clearly, the proofs of these statements are completely analogous to those of Sec. 1.3.3.2
concerning pairing due to order-parameter exchange, which are in turn similar to the results
of Ref. [176] concerning phonon-exchange superconductivity.

Although it is, of course, expected that electronic mechanisms can only give superconduc-
tivity that is unconventional (not s-wave), the arguments of the previous paragraphs show
this rigorously. More interesting is the statement that the Cooper pairing strength is bounded
by the strength of the repulsion, as measured by A,. To get an intuition regarding A, let
us consider the simplest limit where there is only monopole coupling with I'j—g g x+q = 1 in
Eq. (3.170). We may then schematically write

o)
N8R\ T T
* 2 €0q? + €gr / g
1 e? k3
_-¢ gg log OrF ,
2 EokF eng
where in the interaction V(g) we included Thomas-Fermi screening, the average is a Fermi

surface average, kp characterizes the size of the Fermi sea (~ k% is the area), and the total
density of states (DOS) is

(3.183)

d Sk 1
=2 3.184
Br=2) / )3 | Vieknl ( )

™ en=0
The factor of two comes from the spins.
Hence A, goes like ~ gp|log gp| to zero for small g, and to —1/2 for large gp. Clearly then,
a small DOS is unfavorable for superconductivity, as expected. Less obviously, one cannot
make the pairing arbitrarily strong by increasing the DOS because of the DOS-dependent
screening. This is in distinction to other mechanisms, such as pairing due to phonons and, to
some extent, also the pairing due to quantum-critical boson exchange [53, 113, 114, 124-126],
where the DOS can be increased while the pairing interaction changes only moderately.
Finally, we show that our interaction can indeed have positive eigenvalues, resulting in su-
perconductivity, when the screening and dipole moments are strong enough. Our reasoning
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3.3 Pairing due to electric monopole-dipole interactions

is the following: In the interaction (3.178), V(q) decreases with increasing q, whereas the
dipolar part of v,(q) = (1,ig;) increases. Strong screening means that V(q) decays weakly
with increasing g. Thus sufficiently large electric dipole moments can overwhelm this decay
to give an interaction that is overall more strongly repulsive at finite g than at g = 0. It then
follows that pairing eigenvectors which change sign every @, where Q # 0 is the repulsion
peak, have positive eigenvalues [49], which we wanted to show. A qualitative argument for
this statement is given in Sec. 2.5.5 of Chap. 2. A similar behavior occurs in the celebrated
Kohn-Luttinger mechanism [47-50] in which the overscreening of V'(q) is a consequence of the
2kr non-analyticity of the system. In our case, the electric dipoles are responsible for this
overscreening and formally it develops already in the leading order of the Coulomb interaction
(Fig. 3.9). In particular, to leading order in powers of the electric dipole moment, the inter-
action that is responsible for the pairing in our mechanism is the screened monopole-dipole
interaction which is shown in Fig. 3.9(b).

3.3.4 Pairing in a spherical toy model

To illustrate our mechanism, let us consider a Fermi liquid with spherical symmetry and only
one Fermi surface. For the interaction and coupling we assume

EVip—k)=Uy+Uip-k+---,

fo(p, k) = oo, (3.185)
n R -~
where p = p/|p| and k = k/|k| are direction unit vectors, while |p| = |k| = kp. U; > 0
quantifies the degree of screening and 7 is the electric dipole moment. Notice that spin-orbit
coupling is needed (Sec. 3.1.1) for the dipolar pairing form factors £;(p, k) to have the form
we assumed here. The f; that we wrote down is the simplest one that is consistent with
symmetries. To linear order in U; and 7, we find that:

_ Uy
Woo(p, k) = — 20
00(p7 ) 'UF7 (3 186)
Wii(p, k) = QM@]}; — k) — Lp ks,
J 9 vpe 1'v] ] vp Jo

where 4, j € {1,2,3} and vp = |Vieg| is the Fermi velocity at |k| = kp. In the singlet channel
we find no pairing, while for the leading instability in the triplet channel we find

2 1
M = zgrUokpn/e — —grUn,
3 6 (3.187)

di(k)=k

which has pseudoscalar symmetry (~ k- o). There is also a subleading p-wave instability with

1 1
Xo = —grUokpn/e — —grUn,
3 6 (3.188)

doo(k) =€, Xk
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3 Unconventional superconductivity from electronic dipole fluctuations

which is threefold degenerate; a € {x,y, z} is the degeneracy (irrep) index and é, are Cartesian
unit vectors. Thus if dipole moments are strong compared to the screening, namely krn/e >
U1/(4Uy), the monopole-dipole electrostatic interaction will result in superconductivity of
pseudoscalar symmetry.

3.4 Cooper pairing in quasi-2D Dirac metals

Here we study the superconducting instabilities of the dipolar Dirac model of Sec. 3.2.1 in
the quasi-2D limit v, = 0, that is v,A, < m. The starting point our analysis is the effective
model that emerges at the end of the RG flow of Sec. 3.2.3. This effective model has a
negligible in-plane dipole coupling 17, = 0, an enhanced out-of-plane dipole coupling 7., and a
momentum cutoff A ~ kp. Its Cooper pairing we analyze using the linearized gap equation we
introduced in Sec. 3.3.1. For strong enough screening and z-axis dipole moments 7, we find
that unconventional odd-parity Cooper pairing takes place which has pseudoscalar symmetry
~ k- o, similar to the superfluid state of He - B; see Figs. 3.10 and 3.11. In addition, we find
a competitive subleading pairing instability of p-wave symmetry.

As in our RG treatment, we employ a large-IN expansion to analytically access the regime
of strong screening. A slight difference from Sec. 3.2.3 is that the cutoff is not imposed on the

frequencies [Eq. (3.100)], but only on the momenta through their energies e, = /m? + v2k? —
i. Because we ended the RG flow with a A ~ kp, our energy cutoff fiw. is on the order of
the Fermi energy Ep = u—m = /m? + v2k:12,, — m. Note that the same convention with the

energy cutoff was used in the derivation of Eqgs. (3.166) and (3.167) in Appx. A.
Another minor difference from before is that we need to impose periodicity along the é,
direction on the model. Instead of Egs. (3.65) and (3.68), we thus use

4A26Z .92 e

-1 _ 2
V(@) =erql + — 5 sin oA (3.189)
Az FA kz_ z
A(k,p) = eyo + i 7:7 sin ™ 0 P=) o (3.190)

This is necessary because we are interested in momenta with |q;| ~ kr and ¢, ~ A,. The
origin of this periodicity is the Umklapp sum along €., as we discussed after Eq. (3.25).
We only consider quasi-2D systems with v, = n; = 0 because of the RG considerations of
Sec. 3.2.3.1.

In the limit of strong screening, the interaction is given by the polarization bubble which in
the static w, = 0 limit for |g | < 2kp equals [Eq. (3.97)]:

A2 2 .
(wg =0,9) =7 '(q) —V~'(q) = Ner |:62 + =2 gin? M] : (3.191)
T

where

A.p / 2
8r = 5 3 = /m?+v2kz. (3.192)

Although this was evaluated without a cutoff (A — o), reintroducing it does not significantly
influence this expression.
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3.4 Cooper pairing in quasi-2D Dirac metals

In the Wg4(p, k) pairing interaction of Eq. (3.173), we therefore use

1 Az . Tq
—1— S1n A
T
Vi (q) = ) | V(q), (3.193)
Az . Tqy Az . 2 T(qy
1— S1n —= S1n

T A, 72 A,

L = ((n/t)%) B <—("7/;L)T200> | (3.154)

where u,v € {0,3}; the p,v =1,2 components have been omitted because they vanish.
To calculate the pairing interaction Wp4(p, k) of Eq. (3.172), we need to diagonalize the
Dirac Hamiltonian [Eq. (3.54)]:

Hj, = mt300 + vT2(ky0y — kyoy) — WTo00. (3.195)
The dispersion of the conduction band is

ek = \/m? + vk — p, (3.196)

and the corresponding conduction band eigenvectors are easily found to be

m+ y/m? + v2k?

1 0
ust = e 0 , (3.197)
—v(ky +iky)
0

oy = 1 m+ y/m? + v2k?
VN v(ky — iky) ’
0

(3.198)

where k| = (kg, ky) [Eq. (3.108)], 1, | are pseudospins, and

N = 24/m? + v2k?% (m +4/m? + U2ki>. (3.199)

In this particular gauge, the symmetry transformation rules of the pseudospins are identical
to those of the spins:

U(g) (urr uky) = (urgr  wr(gky) S(9), (3.200)
O (upr ugy) = (U_pp U_gy)i0y. (3.201)

The U(g) and S(g) matrices are given in Tab. 3.2, while © = 13i0, [Eq. (3.45)]. At each k,
ugr = U(P)Ouy, | = Toioyug, . The most notable difference from the most general transforma-
tion rules we wrote down in Eqs. (1.44) and (1.45) of Sec. 1.3.1.2 (Chap. 1) is that there is no
k-dependence in the pseudospin rotation matrices, despite the presence of spin-orbit coupling.
This is made possible by the absence of k-dependence in the U(g). Because the pseudospins
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3 Unconventional superconductivity from electronic dipole fluctuations

transform like spins, this means that the triplet-channel pairing d-vectors transform like vec-
tors, as described by Eq. (1.105) of Sec. 1.3.3.1 with Rp,,(9) — R(g).

The Fermi surface is a cylinder and the in-plane momenta that are on the cylindrical Fermi
surface we shall parameterize with azimuthal angles:

p1 = kp(cosb,,sinb,), (3.202)
k?L = kF(COS Gk,sin Qk) .

Now it is a straightforward task to find Wga(6,, ps, 0k, k=) as given by Eq. (3.172). The
final expression for Wp4 that one obtains is fairly complicated, and one cannot diagonalize
it |[Eq. (3.166)] analytically for general momentum-dependent interactions %'(q). Thus one
needs to resort to numerical methods.

3.4.1 Analytic solution of the perfect screening limit

Physically, we are interested in the limit of strong screening in which case the momentum
dependence of ¥ (q) is weak. To understand this limit, a good starting point is to consider a
constant Hubbard-like interaction

1
=0, (3.203)

V(q) = o

which corresponds to the large-N limit [Eq. (3.191)| with the ¢, dependence neglected. The
numerical results, which we present in the next section, can be well understood by analyzing
this idealized scenario. For a constant interaction, we can exactly diagonalize Wg 4. The result
is [30]:

dimn

e2U,
W (6, p=, O, k- Ozwn Z (0, =), 4 (O, K2, (3.204)

where w,, are dimensionless eigenvalues of degeneracy dimn and dy o(6p,p.) = dy, ,(0p,p2)
are the corresponding eigenvectors, which we made real-valued. Both are listed in Tab. 3.4,
reproduced from Ref. [30]. The eigenvectors are orthogonal and normalized according to

46 A,
/ =Tk / (O k) (B, Kz) = BB (3.205)

The corresponding pairing eigenvalues A arising in the linearized gap equation (3.166) therefore
equal

w
Ap = ————, (3.206)
21 + m?
where
V1+m?+n A,
5y 1= ﬁ7 Py o= wj 7= N (3.207)

vkp 2(1 + 2m?) me
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3.4 Cooper pairing in quasi-2D Dirac metals

are dimensionless measures of the gap and electric dipole coupling. Given how A, /7 arises in
many places, we shall find it convenient to henceforth set the lattice constant along z to unity:

A, =m. (3.208)

Of the twelve w,, four are positive and give positive A which correspond to superconducting
instabilities. The leading instability among these four is odd-parity and pseudospin-triplet,
with (n = 5,6 in Tab. 3.4):

1+ m?

cos 0y, cos k., (3.209)
ds5/6(Ok, k=) = | sin b cosk,
sgn sink,

Since ds6(0k, k) ~ (kz, ky, £k, ), its symmetry is pseudoscalar. The d-vector of this solution
is depicted in Fig. 3.10.

The subleading pairing instability is also odd-parity and pseudospin-triplet, but has p-wave
symmetry and is weaker by a factor in between v/2 and 2 from the leading instability. It is
a two-component pairing state that may either give rise to time-reversal symmetry breaking
or nematic superconductivity, depending on the quartic coefficients in the Ginzburg-Landau
expansion (cf. Sec. 4.3.2 of the next chapter). Its pairing eigenvalue equals:

V1 + 2m?

Ao — 3.210
T 81+ ) (3:210)

The corresponding two degenerate eigenvectors are (n = 7,8 entries of Tab. 3.4):

0

_ —7r_sgn1 sin 20 sin k,
Dr/s.aOk: k=) = | (o 45 sin26;) sanfsinks | (3:211)

V/2sin 0, cos k,

0
| (P4 4+ 7_cos20y)sgnisink,
/3y (O, =) = 7_sgnf sin 260y sin k, : (3.212)
—+v2cos 0y cosk,

In agreement with our general discussion of Sec. 3.3.3, the largest-in-magnitude A which
bounds all other A is (n =1 in Tab. 3.4)

_1+2m2+f72

A=\ =
! A1+ m?)

(3.213)

and it has an even-parity pseudospin-singlet s-wave eigenvector. Compare with Eq. (3.183).
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3 Unconventional superconductivity from electronic dipole fluctuations

3.4.1.1 Table of pairing eigenvalues and eigenvectors

Table 3.4: The eigenvalues w, and eigenvectgs dn,a(Ok, k) arising in the eigen-
expansion (3.204) of the pairing interaction Wg4(6,,p., 0k, k.) of a quasi-2D Dirac

L+m? £
metal with a constant interaction [30]. Here m := %, Py o= M,
vrE 2(1 + 21m?)
A
N = 27772, A, = 7, and 0 is the azimuthal angle specifying the in-plane position on

the Cylflrldrical Fermi surface, k| = kp(cosf,sinfy). The degeneracy dimn of the n-th
eigenvalue is either 1 or 2, depending on how many eigenvectors are shown in the table. In
cases when dimn = 1, we suppress the a € {1,...,dimn} index. For the p-wave cases with
dimn = 2, we have ensured that the two components transform like (z|y), so sometimes we
need to negate and permute the components, like in (ky0.| — k;0.); see also Sec. B.4.2 of
Appx. B. For even-parity pseudospin-singlet eigenvectors only the first component is finite,
while in odd-parity pseudospin-triplet eigenvectors only the last three components are finite
and together constitute the corresponding Balian-Werthamer d-vector.

n,a W, dn,a(Or, k2) symmetry

1427 47

1
0
2/1 + 1 0
0

1 s-wave
0
9 1= 7? cos 0, pseudoscalar
2v/1 + 1?2 sin 0, kpoy + kyoy
0
0
1+ sin O, p-wave
3 = z-axis vector
2v/1 + m? —C(()]sé?k kyoy — kyo, ~ €,
0
9 _ 2 p-wave
4, x — 1 = 8 z-axis vector
4v/1+m kyo, ~ €
V/2sin 6y, e
0
0 p-wave
4,y y-axis vector
0 —ky 0., ~ &
—+v/2cos by
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3.4 Cooper pairing in quasi-2D Dirac metals

Table 3.4: (continued)

n,a W, (O, k2) symmetry
0
5 ﬁ cos O cos ki, pseudoscalar
2 sin Hk COS kz kax + kyo-y + szz
sin k,
N pseudoscalar
6 _5 d5(9k7 _kz> k;ro-a: + kyGy - szz
0
. nv 1+ 21> —7_sin 20 sin k., Pr-Wave
¥ 4 /1+m2 (—7A"++7A”7 SinZOk)sinkz kycz+"' Néz
V/2sin 0, cos k
0
7 (74 + 7— cos 20y sin k, py-wave
Y 7_sin 20y sin k., —kpo, 4+~ €y
—v/2cos 0, cos k,,
v 1+ 2mm?
8, x A d7 (0K, —k-) Pr-wave
41 +m?
8,y d7,y(0k7 _kz) py-wave
i /s
9 _— 2 cos(2ky) - dy (O, k2) s-wave
41+ 12 ’ ’
7¢/2
10 —_— V2 cos(2k.) - da (0, k) pseudoscalar
41 +m?
7¢]2
11 _— V2cos(2k,) - d3(Oy, k=) pL-wave
41+ m?
772
12,z —_—— V2 cos(2k,) - da o0k, k) Pr-wWave
8V 1+ m?
12,y V2co8(2k;) - day(Ok, k) Py-wave
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Figure 3.10: The d-vector of the leading pairing state of a quasi-2D Dirac metal as a
function of momentum, assuming perfect screening. The grey cylinder is the Fermi
surface. The arrows indicate the direction of the d-vector which is given by Eq. (3.209) with
7 > 0. The overall symmetry of this d-vector pattern is pseudoscalar.

3.4.2 Numerical solutions of the linearized gap equation

A more realistic screened interaction is given by RPA (i.e., large-N, what we wrote down at
the start of this Sec. 3.4):

U
V(g q:) =V (p— k) = 7 2 7 : (3.214)
1—|—/§J_sin2§q —{—HZSiHQEz —|—f7251n2qz

where 6, = 0, — 0y, ¢. = p. — k., Up := 1/(gre?), and the strength of the screening we specify
using the dimensionless parameters:

4k%e ) A kg ve,
A _ veL 3.215
T gre? T 1wt A € (3:215)
s = 402, A A, ves (3.216)

- mlgpe? V1+m2 nkp €2

For such a 7' (6,,q.), we have numerically investigated the resulting pairing instabilities.
The results for one generic parameter choice, previously presented in Ref. [30], are shown
in Fig. 3.11. For general parameter sets, we find that pairing takes place only when x; and
k, are sufficiently small compared to |7)]. This agrees with the conclusions drawn from the
schematic example we considered in Sec. 3.3.4. Moreover, the symmetry of the leading pairing
state is robustly pseudoscalar triplet, with essentially the same d-vector as in Eq. (3.209).
A p-wave instability also arises that, although usually weaker by a factor of ~ /2 than the
leading instability, in a few cases becomes leading.

In many materials, v is on the order of 1eV A which gives a small o™ = veg /e? ~ 0.006.
Hence for m ~ 1, kp/A, ~ 1, and €, ~ €, ~ ¢y the screening coefficients x; and k, can
be very small, i.e., the screening can be very efficient. In other words, for physically realistic
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Figure 3.11: The largest pairing eigenvalue \ as a function of the screening parame-
ters x| and k. entering the RPA interaction of Eq. (3.214) for the case 7 = 1 with
7 = 0.3 [Eq. (3.207)] [30]. A is found by numerically solving Eq. (3.166) on a dense grid

and the reference Aot = |71]/4V/1 + Mm% ~ 0.05 is given in Eq. (3.209). The leading pairing
state has pseudoscalar (A1) symmetry in regions colored red, which is almost everywhere.
Colored white are the regions of large k., where there is no pairing. On the two points

around (K, k;) = (0,1.7) highlighted green, the leading pairing state is p-wave with a small
A/ Aref = 0.01.

parameters the momentum-dependence of the screened interaction can be such that it only
modestly suppresses the pairing eigenvalue A from its k; = k, = 0 value of Eq. (3.209).
That said, one should keep in mind that & flows toward weak coupling under RG, as shown in
Sec. 3.2.3; see Fig. 3.6. For the materials that motivated the current study, one finds v ~ 3eV A
in the case of BigSes and BigTes [502] and v ~ 1eV A in the case of SnTe [501]. The dielectric
constants are up to ~ 10 in the frequency range of interest for these materials [508-510], giving
a small enough oc=! ~ 0.2 for our theory to be of relevance.

We have thus found that the leading paring instability is odd-parity and of pseudoscalar
(A1y) symmetry. It is interesting to note that states of such symmetry are more robust to
disorder than usual [511]. As demonstrated in Ref. [511], this follows from the fact that the
pseudoscalar pairing state transforms like a singlet under the combined application of chiral
and time-reversal symmetry, which in turn implies that it is protected by an effective Anderson
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3 Unconventional superconductivity from electronic dipole fluctuations

theorem relative to disorder which respect these symmetries.

If we use 1) = 0.5 as the largest value for the effective dimensionless electric-dipole coupling
that follows from the RG treatment of Sec. 3.2.3, we obtain from Eq. (3.209) a dimensionless
pairing eigenvalue A ~ 0.1 which puts the system into the weak-coupling BCS regime. A
quantitative estimate of the transition temperature requires knowledge of the cutoff energy
hw.. Using for example Er ~ 1eV, which is the appropriate energy scale for an electronic
mechanism, one gets transition temperatures in the sub-Kelvin regime. While these transition
temperatures are not large, they do give rise to unconventional pairing in materials without
strong local electron correlations or quantum-critical fluctuations of any kind.

3.4.3 The leading pseudoscalar pairing state is not topological

Interestingly, the leading pairing state of Eq. (3.209) can be interpreted as the quasi-2D solid-
state analog of the B phase of superfluid *He [484-486]. In the helium case, it is known that
this phase is topological in three dimensions [486, 512, 513, belonging to the class DIII in
the classification of non-interacting gapped topological matter [514, 515|. Hence, it couples to
gravitational instantons through a topological 6 term and its boundary contains a Majorana
cone of topologically-protected surface Andreev bound states [513, 515|. To test whether our
state is topological, we have evaluated the corresponding topological invariant [512, 513]

d3k OH OH OH
I S et (02 ko™ e Hil ™ e gl o e (3207
and found that it vanishes. Here v, are Pauli matrices in Nambu space, the Nambu spinor is
(w, (®¢T)T), where © = T3i0,, and Hpagr = V3Hy + v1A(k) is the Bogoliubov-de Gennes
Hamiltonian which anticommutes with va, {Hpgg k,V2} = 0. Hence our pairing state is
topologically trivial. As shown in Ref. [474|, fully-gapped odd-parity superconducting states
need to have a Fermi surface which encloses an odd number of time-reversal invariant momenta
to be topological. In our case, the cylindrical Fermi surface encloses not only the I' point, but
also the Z point k = (0,0, 7), unlike 3He- B, which explains the difference in topology.

3.5 Summary, discussion, and comparison to related work

In this chapter, which is based on Ref. [30], we developed the theory of electric dipole excita-
tions of electronic states residing near the Fermi level (Sec. 3.1), we demonstrated that out-of-
plane electric dipole fluctuations become enhanced at low energies in spin-orbit-coupled quasi-
2D Dirac systems (Sec. 3.2), and we showed that electric monopole-dipole interactions induce
unconventional low-temperature superconductivity in sufficiently screened systems (Sec. 3.3).
In quasi-2D Dirac metals in particular, in Sec. 3.4 we found that the resulting pairing state
is an odd-parity state of pseudoscalar (Aj,) symmetry, similar to the superfluid phase of
‘He-B [484-486], with a competitive subleading p-wave instability appearing as well. These
are the main results of the current chapter.

In our general treatment of dipole fluctuations of Sec. 3.1, we made two key observations.
The first one is that intraband electric dipole excitations require spin-orbit coupling to main-
tain a finite coupling to plasmons in the long-wavelength limit. The second one is that the
same plasmon field mediates all effective electric multipole-multipole interactions that arise
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from the electron-electron Coulomb interaction. With these in mind, we then formulated a
general theory of itinerant dipole excitations and their electrostatic interactions. In addition,
we related our treatment of dynamically fluctuating dipoles to the modern theory of polar-
ization [443, 444| and showed that the King-Smith—Vanderbilt formula [439] for the (static)
polarization acquires an anomalous term within tight-binding descriptions.

When strong spin-orbit coupling inverts bands of opposite parities, dipole fluctuations are
especially strong. The vicinity of such band-inverted points is, moreover, generically described
by Dirac models. Although this has been known in various particular cases [45, 498-502], in
Sec. 3.2.1.1 of this chapter we presented a general symmetry derivation of this important fact,
before turning to the renormalization group analysis of dipole excitations in Dirac systems
in Sec. 3.2.3. Our large-N RG analysis of the strong-screening limit reveled that, although
irrelevant in most systems, electric dipole coupling is marginally relevant along the out-of-
plane direction in quasi-2D geometries. Even though the enhancement of the effective z-
axis (out-of-plane) dipole coupling is limited, it is sufficiently large to imply that electronic
dipole interactions cannot be ignored at low energies. As a concrete experimental footprint,
in Sec. 3.2.2 we have found that this z-axis dipole coupling gives the dominant contribution
to the z-axis optical conductivity in quasi-2D Dirac systems.

The electric monopole-dipole coupling between itinerant electrons, introduced in this chap-
ter, causes unconventional superconductivity whenever dipole moments are sufficiently strong
compared to the screening, as we established in Sec. 3.3. Even when other pairing mechanisms
are present, as long as they mostly act in the s-wave channel which is suppressed by the electric
monopole-monopole repulsion, electric monopole-dipole interactions can still be the main cause
of pairing. Hence, in systems not governed by strong local electronic correlations or nearly
critical collective modes, the proposed mechanism is a possible source of unconventional low-
temperature superconductivity. Using arguments similar to those of Ref. [176] and Sec. 1.3.3.2,
we showed that the pairing due to our mechanism is necessarily unconventional, but also that
it is not likely to reach high temperatures (strong coupling). For comparison, the pairing due
to the exchange of phonons [176], ferroelectric modes [52, 53, 495, 496, 516], and non-magnetic
odd-parity fluctuations [127] robustly favors conventional s-wave pairing and is able to reach
strong coupling. Although we included dipole-dipole interactions in our analysis, we found
that they give a weaker (subleading) contribution to the Cooper pairing for realistic dipole
strengths. This should be contrasted with pairing in degenerate dipolar Fermi gases [517-521],
discussed in more detail below, in which the neutrality of the cold-atom fermions precludes
monopole-dipole interactions, rendering dipole-dipole interactions dominant.

Our theory of dipole excitations of Fermi-surface states resembles theories of ferroelectric
metals where itinerant electrons couple to ferroelectric modes [51-53, 488, 495, 496, 516, 522,
523|, which are usually soft polar phonons [135]. In both cases, the electrons couple through
a fermionic dipole bilinear that is odd under parity and even under time reversal. Hence
this coupling is direct only in the presence of spin-orbit coupling [52, 488|, as we proved in
Sec. 3.1.1. However, in our case there is no independent collective mode associated with this
dipole bilinear. Instead, as we showed in Sec. 3.1.4, the dipole bilinear contributes to the
total charge density alongside a monopole bilinear, and its fluctuations are mediated by the
same plasmon field which mediates all electrostatic interactions. In contrast, ferroelectric
modes propagate separately from plasmons and can thus be tuned to quantum criticality, for
instance. As discussed in Ref. [53], this may even give rise to non-Fermi liquid behavior. We
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3 Unconventional superconductivity from electronic dipole fluctuations

do not expect that such behavior emerges in our theory as dipolar fluctuations will remain
massive due to the screening of the Coulomb interaction.

Another distinction between our problem and ferroelectric metals is that, in the Cooper
channel, the Coulomb interaction and its monopole-dipole and dipole-dipole parts are repul-
sive, whereas the exchange of ferroelectric modes is attractive. The former can therefore only
give unconventional pairing (Sec. 3.3.3), whereas the latter robustly prefers conventional s-
wave pairing [52, 53, 495, 496, 516|, as expected for a type of phonon exchange [176]. The
same distinction applies when comparing our problem to that of metals coupled to more
general non-magnetic odd-parity fluctuations [127|. Apart from this sign difference in the
dipole-dipole interaction, a further dissimilarity is that it is the monopole-dipole interaction
that is primarily responsible for the pairing in our theory. This follows from the fact that the
dimensionless dipole coupling constant 7 < 1 for realistic parameter values so dipole-dipole
interactions (~ 7?) are weaker than monopole-dipole ones (~ 7). For further comparison to
pairing mechanisms based on order-parameter exchange, refer to Sec. 3.3.2.

In degenerate fermionic gases composed of cold atoms or molecules, electric dipole-dipole
interactions have been proposed as a source of pairing in a number of theories [517-521] which
appear similar to ours. Further inspection reveals that they are very different. A compari-
son is still instructive. In these theories, the particles are neutral single-component fermions
which carry electric dipole moments. The electric monopole-dipole interaction, which is key to
our mechanism, is thus absent, nor is there any need for screening of the monopole-monopole
repulsion. Their dipole-dipole interaction has no internal structure and its momentum depen-
dence solely determines the preferred pairing channel, whereas in our theory the pseudospin
structure of the interaction plays an equally important role. Their dipoles are also aligned
along an external field, giving a net polarization. In contrast, our electric dipole density varies
across the Fermi surface, with opposite momenta and opposite pseudospins having opposite
dipole densities (Fig. 3.2). Finally, unlike in our theory, the nature of their dipole moments
is unimportant and one may exchange electric for magnetic dipoles, as has been done experi-
mentally [524].

The pairing mechanism proposed in this chapter is similar to other electronic mechanism [49,
50], which derive in one form or another from the electron-electron Coulomb interaction. In
their pioneering study [47, 48], Kohn and Luttinger showed that the non-analyticity originating
from the sharpness of the Fermi surface induces pairing with high orbital angular momentum ¢
in isotropic 3D systems, even when the short-ranged bare interaction is repulsive in all channels.
Although non-analyticity has proven to be a negligible source of pairing, giving T, ~ 1071 K
or smaller [47], the idea that the overscreening of a bare repulsive interaction can result in
pairing has survived and been developed in many ways [49, 50]. Subsequent work generalized
this mechanism to isotropic 2D systems [525| and low-density Hubbard models [526-528], as
well as showed that the pairing extends to £ = 1 for a bare repulsive contact interaction in
isotropic 3D systems [527, 529-531], with a T. ~ 1073 K when applied to *He [530]. For
repulsive Hubbard models, asymptotically exact weak-coupling solutions were found which
gave pairing in both p-wave and d-wave channels [532, 533|.

In our mechanism, just like in the Kohn-Luttinger-like mechanisms, an initially repulsive
interaction becomes overscreened, resulting in pairing. Both mechanisms need the interaction
to be, or become, nearly momentum-independent. Because we had started from the long-
ranged unscreened Coulomb interaction, to screen it properly we needed to reach the strong-
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coupling regime of large o« = e2/(hvpeg). Since this regime cannot be analytically treated
in the unmodified model [534, 535|, we employed a large-N expansion, N being the number
of fermion flavors. In contrast, Kohn-Luttinger-like mechanisms start from a short-ranged
repulsive interaction which is readily perturbatively treated. The origin of the overscreening
is different between the two mechanisms as well. In our mechanism, the electric dipole terms
appearing in the bare vertex are responsible, and not perturbative corrections to the Cooper-
channel interaction. Once projected onto the Fermi surface, the dipolar part of the bare vertex
acquires a non-trivial structure in pseudospin space which plays an important role in choosing
the pairing symmetry. In Kohn-Luttinger-like mechanisms, on the other hand, the pairing
symmetry is essentially chosen by the momentum-dependence of the overscreened interaction.

In light of the strong dipole fluctuations we had found in quasi-2D Dirac systems, in the
penultimate Sec. 3.4 we explored their pairing instabilities. Across most of the parameter
range, the dominant pairing state due to electric monopole-dipole interactions has pseudoscalar
(A1) symmetry and resembles the Balian-Werthamer state of *He B [484-486] (Figs. 3.10
and 3.11). Since the dimensionless dipole coupling is at best a fraction of the monopole
coupling, the pairing problem is expected to be in the weak-coupling regime. Although we
estimated transition temperatures on order of 0.1 K, a detailed prediction of T, will depend
on a number of material parameters, making quantitative predictions rather unreliable. That
said, it is interesting to observe that SnTe is well-described by Dirac models [445, 500, 501 and
that an Aj, pairing state is consistent with experiments performed on In-doped SnTe [476—
481]. This suggests that our mechanism could be of relevance. In the case of doped BisSes,
which is also well-described by Dirac models [45, 502], there is strong evidence for nematic p-
wave pairing [42—44, 466-475], which in our mechanism is a competitive subleading instability.
In combination with electron-phonon interactions [176, 487, it is possible that this subleading
p-wave state becomes leading. A symmetry-breaking strain field could have a similar effect,
but only if it is sufficiently large.

Despite their unusual superconductivity, neither Sn'Te nor BisSes have strong local electronic
correlations or nearly critical collective modes, which was one of the motivations for the current
work, which is based on Ref. [30]. Is parity-mixing and spin-orbit coupling enough to obtain
unconventional superconductivity, even in mundane weakly correlated systems? And can
such a mechanism deliver unconventional pairing as the leading instability? The proposed
mechanism answers both in the affirmative.
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Chapter 4

Constraints on the pairing symmetry
of strontium ruthenate Sr,RuO,

The unconventional low-temperature superconductivity of strontium ruthenate SroRuO,4 was
discovered in 1994 [536]. In the intervening three decades, an impressive array of experiments
have been performed on SroRuO4 with high precision and on exceedingly pure samples [54,
55, 537-541]. Yet despite this large community effort that has made strontium ruthenate one
of the most-studied unconventional superconductors, the high quality of crystal samples that
should have made the experiments and their interpretation unambiguous, and the extraordi-
narily well-characterized and well-understood Fermi liquid normal state that should have made
the theoretical understanding of this material within reach, fundamental questions concerning
the nature of the unconventional superconductivity (SC) of strontium ruthenate (SRO) re-
main [55]. The biggest two are “What is the pairing symmetry of the SC state?” and “What is
the pairing mechanism?” In this chapter, we discuss the recent progress in which the present
author has been involved in [31, 32| that addresses the former question. Although the text
and figures of Refs. [31, 32] have been recycled in many places in the current chapter, there is
also a significant amount of additional material. Most of it builds and further elaborates upon
the results of Refs. [31, 32].

For a long time, the leading candidate for the pairing state of SRO was an (odd-parity, spin-
triplet) chiral p-wave state [54, 537, 539-541]. As we shall extensively review in Sec. 4.1.1, such
a state appeared to be the most consistent with the then-available experiments. The absence
of a change in the NMR Knight shift [542, 543] and polarized neutron diffraction (PND) [544]
as one entered the SC state suggested spin-triplet pairing, as did the the observation of 7
phase shifts [545] and half-quantum vortices [546| indicating odd parity. Moreover, zero-field
muon spin relaxation [547, 548] and polar Kerr effect [93, 549| experiments supported time-
reversal symmetry-breaking (TRSB) in the SC state, which would imply that SC domains
exist, in agreement with what was observed in Josephson junction interference patterns [550].
The simplest state consistent with these experiments is a chiral p-wave state (see Tab. 4.2),
and indeed influential early theories [551, 552|, published right after the discovery of SC in
SRO [536], predicted p-wave pairing based on an analogy to superfluid He.

However, even at that time tensions existed in the experimental evidence [54]. A drop in
the NMR, Knight shift should be visible for some directions of the magnetic field even for
triplet SC states, but was not observed for any direction [539, 543]. Likewise, the apparent
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Pauli limiting [54] of the in-plane upper-critical magnetic field is difficult to reconcile with
triplet pairing. Spontaneous magnetization and currents should appear on the surface around
defects for TRSB SC states, but have not been observed, despite numerous searches [553—
557|. Furthermore, experimentally it was found that 7, depends quadratically on shear strain
without any thermodynamically measurable splitting of the transition [558, 559|, whereas a
chiral p-wave state should split linearly with shear strain into two measurable transitions.
Finally, multiple experiments have reported low-temperature behavior that is only consistent
with nodal SC states [560-566], in contradiction to chiral p-wave pairing which is fully gapped
(nodeless).

Five years ago, the paradigm began to shift [55|, with the preponderance of evidence cur-
rently standing against odd-parity spin-triplet pairing of any kind. The key experiment that
challenged the old paradigm was a revision of the temperature-dependence of the NMR Knight
shift [56, 57]. As they discovered in Ref. [56], the Knight shift does, in fact, significantly drop
as one enters the SC state of SRO. This enabled them to rule out chiral p-wave pairing whose
d-vector points along the z-axis (d(k) ~ (k, £iky)é., Tab. 4.2). With later Knight shift mea-
surements [58], they provided strong evidence against spin-triplet pairing of any kind. The
explanation for why early experiments [542, 543| found no changes in the Knight shift at 7,
is that, at the ~ 1K temperatures relevant for SRO (T, = 1.5 K), sufficiently energetic NMR
pulses can locally heat up the sample to the normal state [56-58|, implying that they were
not measuring the Knight shift of the SC state. Moreover, this NMR, pulse heat-up effect acts
only on time-scales much shorter than the nuclear spin-lattice relaxation time 77, which is
why clear features were observed at T, in the early NMR measurements of T} [543, 564, 567],
but not in the NMR Knight shift [542, 543]. Motivated by this finding, PND measurements
have been redone as well [568|, at a smaller magnetic field and with better statistics than
before [544], and they also report a drop in the magnetic susceptibility.

With these discoveries, the study of SRO has been reinvigorated, as has the debate regarding
what is the correct pairing symmetry [55]. In Sec. 4.1.1, we review both old and recent
experimental studies of SRO and summarize what is currently known about the pairing state.
In brief, we know that the SC state is unconventional, that it has line nodes, at least some of
which are vertical, and that it is more likely to be even-parity than odd-parity. The SC order
parameter appears to couple quadratically to all strains, except €, shear strain for which there
is inconclusive evidence that it couples linearly. Whether the (homogeneous) SC state breaks
time-reversal (TR) symmetry is not clear. It is worth remarking that the most direct and
theoretically minimalistic interpretations of the currently-available experiments are regularly
at odds with one another in SRO, like with regard to TRSB. An open question in the field,
which has bearing on the field of unconventional superconductivity more broadly, is whether
the interpretation of some of the well-established experimental probes needs to be reexamined.

Without fine-tuning or invoking special mechanisms, it is very challenging to theoretically
interpret the superconductivity of SRO in terms of a homogeneous pairing state (described by
Ginzburg-Landau theory, etc.). Developing a theory, even on the phenomenological level, that
reconciles the various experimental results is an outstanding open problem of the field. Many
proposals [569-585] have been put forward in the last few years, but no consensus has formed
around which proposal is the correct one. That said, the focus of the current chapter will not
be theories of SRO as such, which we shall only discuss in the passing, but on theoretically
analyzing experiments.
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Two experimental probes have recently been developed that enable one to significantly
narrow down the viable pairing candidates of SRO [31, 32]. The first is an apparatus for
performing measurements under uniaxial stress [558, 559], whether heat capacity, upper-critical
magnetic field, nuclear magnetic resonance, muon spin relaxation, or other. Notably, strain
tunes the system without adding disorder, which is known to strongly suppresses T, |586—
589, as expected for an unconventional superconductor. The second is a method of precisely
measuring the elastocaloric effect [590-592|, which is the effect of adiabatic changes in the
strain inducing changes in the temperature.

In this chapter, which is based on Refs. [31, 32|, we discuss the constraints on the pairing
symmetry of SRO which follow from recent heat capacity [593], magnetic susceptibility [32],
and elastocaloric effect |32, 59] measurements performed under in-plane uniaxial stresses. To be
able to explain elastocaloric measurements under [100] stress [59], in Sec. 4.2 we find that even-
parity pairing states must include either large extended s-wave, d,2_,2-wave, or (dy.| — dq=)-
wave admixtures, where the last possibility arises because of the body-centered lattice of SRO.
These (dy.| — dy.)-wave admixtures take the form of distinctively body-centered-periodic har-
monics that have horizontal line nodes. Hence g,y 2_,2)-wave and dg,-wave pairings are
excluded as possible dominant even-parity SC states. The absence of any thermodynamic sig-
natures of transition-splitting under [110] strain [32] furthermore provides strong experimental
evidence against bulk two-component SC states of any kind, whether accidental (e.g., s’ +1dy,
or dy2_y2 + 1y (s2—y2)) O symmetry-protected (dz, +1idy.). As we shall show in Sec. 4.3,
reconciling the measurements of Ref. [32] with related experiments [60, 61, 593] requires an
extraordinarily high degree of fine-tuning if we assume TRSB. Given the strong suppression of
T. by non-magnetic impurities [586-589], the single-component dy2_,2 pairing state appears
to be the simplest one consistent with thermodynamic probes of the SC state, as well as NMR
and PND. The extended s-wave pairing is also a viable candidate, although some tuning is
needed for it to saturate the Abrikosov-Gor’kov bound regarding 7, suppression by impurities.
That said, neither of these two pairing candidates are without their difficulties.

The chapter is organized as follows. We start with the fundamentals of strontium ruthenate
SroRuOy4. These are briefly explained at the start of Sec. 4.1, and in more detail in its
subsections. In the first one (Sec. 4.1.1) we review all the available experimental investigations
of SRO’s SC to date and summarize what is currently known about its superconductivity.
In the Sec. 4.1.2 after, we specify SRO’s crystal structure and symmetries. The electronic
structure is discussed in Sec. 4.1.3, where we also introduce a tight-binding model that we
employ in later analyses. Some basics on the elastic tuning of SRO are recalled in Sec. 4.1.4.
In the last subsection 4.1.5 that deals with fundamentals, we explain how superconducting
states are microscopically constructed and classified in a multiband system such as SRO. In
the remaining Secs. 4.2 and 4.3, we present the works of Refs. [31] and [32], respectively. In
both, the results and derivations of Refs. [31, 32| are elaborated in more detail than in the
published articles.

Sec. 4.2 has essentially two parts. In the first part (Sec. 4.2.1), we discuss how elastocaloric
experiments show that a normal-state entropy maximum becomes a minimum in the SC state
(Fig. 4.7) and how this is only possible if there are no vertical line nodes at the Van Hove lines
responsible for the normal-state entropy maximum (Fig. 4.8). In the second part (Sec. 4.2.3),
we exploit the classification of SC states of Sec. 4.1.5 to determine which states do not have
symmetry-enforced vertical line nodes at the Van Hove lines. The main result is Tab. 4.11.
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As already remarked, we find that only s, dy2_,2, and (dy.| — d,.) dominant pairing states are
consistent with the elastocaloric data of Ref. [59], where the last (d,.| — d..) state must be
made of characteristically body-centered harmonics that have horizontal line nodes.

In the next Sec. 4.3, we first present the main experimental findings of Ref. [32]: the absence
of a cusp in T, (Fig. 4.16) and the absence of a second anomaly in the elastocaloric data
(Fig. 4.17) as (110) uniaxial stress is applied. As we explain in the Ginzburg-Landau analysis
of the following Sec. 4.3.2, both a cusp and a second anomaly should take place if the SC state
has two components. This is summarized in Tab. 4.18. Conversely, the reported null-results of
Ref. [32], when combined with the reported jumps in the cg6 elastic constant [60, 61], put tight
constraints on which two-component states are viable and how finely tuned they must be. This
is the subject of the last Sec. 4.3.3. In particular, we find that TRSB two-component states,
both accidental and symmetry-protected, require an implausibly high degree of fine-tuning,
which is especially severe in the symmetry-protected case (Fig. 4.22).

4.1 Fundamentals of strontium ruthenate

Here we first briefly recollect basics information on strontium ruthenate (SRO) before dwelling
into more detail. In Sec. 4.1.1 we review the literature on experimental investigations of the
pairing state of SRO, with a very brief overview of theories. After that, in Sec. 4.1.2 we state
the crystal structure and symmetries of SRO. The electronic band structure is explained in
Sec. 4.1.3, where we also introduce a tight-binding model [594] that we later use to study SRO.
The tuning of SRO under external pressure is discussed in Sec. 4.1.4. In the last Sec. 4.1.5,
we review how superconducting (SC) states are classified and constructed with the effective
three-orbital model of SRO [31, 595-597].

Strontium ruthenate (SRO) is a layered perovskite with chemical composition SroRuO4 and
a body-centered tetragonal lattice [537, 538|. Its crystal structure is depicted in Fig. 4.1(a),
from which one sees that it has the same structure as that of the cuprate superconductor
lanthanum barium copper oxide Lay_;Ba,CuQy, which was previously shown in Fig. 2.1(a) of
Chap. 2. Indeed, this similarity was noticed immediately from the beginning [536]. The crystal
point group is therefore the same, which is namely Dy4p. The tetragonal Dy point group is
discussed at length in Sec. B.4 of Appx. B. For the reader’s convenience, we repeat its character
table again in this chapter in Tab. 4.3 of Sec. 4.1.2, given that the irreducible representations
(irreps) of Dy, will play an important role in the following discussion.! Despite the structural
similarities, the physics of both the normal and the superconducting states could not be more
different between the two compounds.

The normal state of SRO below 25K is a quasi-2D multiband Fermi liquid, as established
by numerous experiments [537, 538]. This Fermi liquid state is experimentally very well-
characterized [537, 538, 598-600]. It has three conduction bands in total, which are conven-
tionally referred to as «, 5, and «. All three bands have cylindrical Fermi sheets, as shown

1For the group theory uninitiated: the simplest way of thinking about irreps is as ways objects can transform

under a given point group. Thus, for instance, when we state that the shear strain component €z, — €yy
belongs to the irrep Biy, we are stating that it transforms the same as the polynomial 22 — y* (Tab. 4.3)
constructed from the Cartesian coordinates z, y, and z pointing along the principal axes of the crystal. In
the case of the 2D irreps E, and E,,, the object has two components. Relatedly, the fact that z* + y? and
2% both transform according to A1y means that one cannot tell the two apart purely from symmetries in a
tetragonal crystal environment. For further discussion, see Appx. B.
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Figure 4.1: Crystal structure of strontium ruthenate SroRuQOy4 [200] (a), visualization
of the three Fermi surfaces of SroRuQOy [538] (b), and k. = 0 cross-sections of the
Fermi surfaces deduced from ARPES [598] (c). The c-axis corrugation is exaggerated
by a factor of 15 for clarity under (b), where bronze, silver, and gold stand for the «, 3, and
~ Fermi sheets, respectively. These Fermi sheets are also denoted under (c). Figure (a) is
reproduced with permission from Springer Nature from Ref. [200], figure (b) is reproduced
with permission from Taylor & Francis from Ref. [538], and figure (c) is reproduced with
editing from Ref. [598] (CC BY 4.0).
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.1: Parameters characterizing the superconducting state of SroRuOy4 at zero
temperature for unstrained and very pure samples. T, is the transition temperature,
Amax 1s the gap maximum, B, is the thermodynamic critical field, B is the upper-critical
magnetic field, & is the Pippard coherence length, and Ay, is the London penetration depth.

Starred values were calculated from the others in the following way. . = ,/%392”.,

€O,ab

by = Q—he, was determined from orbital limiting, and &y . from the ratio s measured in
Refs. [603, 604]. 25: was calculated from the relation [537, 539| 25:: % = % with

E(Q”ab = Be||c(€0,ab/&0,c) instead of B y)qp because the latter is Pauli limited [605]. AL
follows from & . and zgc“ Compare with Ref. [55].

parameter value Refs. parameter value Refs.
T, 1.5K [537, 539 2Amax 54 “
Amax 0.35 meV [606] kpTe
B, 23mT [537, 539 Bezjap 2 *
Beajab 15T 537, 539 f c2le
Beaje 75mT  [537, 539] gL—“” 2.9 *
0,ab
€o,ab 660 A * AL
0. 1A * 57 6600 *
ALab 1900 A [539, 607] €0.ab

60 603, 604
AL 73000 A * €o,c | ]

in Fig. 4.1(b). These bands primarily derive from the to, orbital manifold of the ruthenium
atoms, which is made of the 4d,., 4d,., and 4d,, orbitals [537, 538, 584|. In light of the
layered highly-anisotropic structure, the Ru:4d,, and Ru:4d,. orbitals mostly hop along the
x and y direction, respectively, and together hybridize into the quasi-1D « and g bands. The
middle v band predominantly derives from the Ru:4d,,, orbital, which hops along both = and y
directions, and it is quasi-2D in character, as can be seen from Fig. 4.1(c). Near the diagonals
k, = £k, where the three Fermi sheets almost touch [Fig. 4.1(c)]|, there is a large degree of
orbital mixing which is partially mediated by spin-orbit coupling. For further discussion of
the normal state, see Sec. 4.1.3.

Strontium ruthenate develops superconductivity at stoichiometry, with a low-temperature
T. which reaches 1.5 K in the clean limit [55, 537]. In contrast to cuprates, adding any doping
rapidly suppresses T, because it adds disorder [586-589] and we shall therefore only discuss
pure SRO, here and throughout the chapter. Some fundamental parameters characterizing
the SC state of SRO are provided in Tab. 4.1. From the table one sees that the SC is very
anisotropic, just like the compound itself [Fig. 4.1(a)]. Phenomenologically, from the Ginzburg-
Landau ratios K = Ar/xo it follows that its SC is strongly type II for in-plane (|| ab) magnetic
fields, but only weakly type II for magnetic fields pointing along the ¢ axis. Recently [601]
evidence appeared indicating that the SC state evinces non-local electrodynamics [602].
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4.1.1 Review of experimental investigations of the pairing state

Despite having been extensively experimentally investigated, the fundamental question of what
is the pairing symmetry of SRO remains to this day unanswered [55]. In Tab. 4.2 we list the
possible options. The multiband and spin-orbit-coupled nature of SRO supports a richer set of
possible pairing states than single-band superconductivity (SC) [595-597|, as we shall explain
in Sec. 4.1.5, so the pairing wavefunction that we provide in Tab. 4.2 should be understood as
schematic examples of pairing states belonging to each symmetry class (irrep). There have been
many reviews of SRO’s SC in the past [54, 537, 539-541, 581]. However, given the dramatic
change in the experimental outlook, in the introduction of Ref. [31] we have reviewed the
literature once more. Below is an updated version of this review: What do we know about the
pairing symmetry of SroRuQOy4 as of September, 20247 Recently, a complementary literature
review has been published [55] that goes into more details.

The superconductivity of SRO is unconventional. This has been established early on by the
absence of a Hebel-Slichter peak [608, 609] in the NMR relaxation rate 1/77 [543, 564, 567], and
by the large suppression of the SC transition temperature 7. by non-magnetic impurities [586—
589] that saturates the Abrikosov-Gor’kov bound [610, 611]. Subsequent experiments have only
further confirmed the unconventional character of SRO’s SC.

The pairing of SRO is more likely to be even than not. Recent? NMR Knight shift [56-
58] and polarized neutron scattering [568] experiments strongly favor singlet pairing, as do
numerous studies [54]% indicating that the in-plane critical field Begjap s Pauli limited [617].
Although the observation of 7 phase shifts [545] and half-quantum vortices [546, 618, 619] is
at tension with even-parity SC, possible explanations do exist [573, 620, 621]. Reconciling
an 80 % drop in the in-plane Knight shift [58] with triplet pairing, or a strained critical field
anisotropy Begjjab/Bezjje ~ 3 [559] far below the SC anisotropy &ay/&c ~ 60 [603, 604] without
Pauli limiting [54], is significantly more challenging, but perhaps possible [622, 623].

The evidence for time-reversal symmetry breaking (TRSB) is mixed. Zero-field muon spin
relaxation (ZF-pSR) [547, 548, 624-626] and polar Kerr effect [93, 549] experiments indicate
TRSB at a Trrsp at or very near T,, yet the current response of micron-sized Josephson
junctions [627, 628]* exhibits time-reversal invariance. Under (100) uniaxial pressure, ZF-
USR. [625] observes a large splitting between Trrsp and T, yet no signatures of a TRSB phase
transition below T, have been found in heat capacity [593] or elastocaloric [59] measurements

2The heating caused by NMR pulses [56, 57] has rendered early NMR Knight shift experiments [542], nicely
summarized in Figure 14 of Ref. [543], invalid. The NMR pulse heat-up effect acts on a time-scale much
shorter than 77 and has not invalidated the early NMR relaxation rate studies [56]. An early polarized
neutron scattering study [544] has been superseded by a new one [568] with better statistics, carried out at
a smaller magnetic field. See also the discussed at the start of this chapter.

3The evidence for a Pauli-limited Bea|ap is threefold: (i) the SC-normal state transition is first-order below
0.5T¢, as seen in the hysteresis [604, 612, 613] and jumps in the specific heat [613, 614], thermal conduc-
tivity [614], magnetocaloric effect [612], ac magnetic susceptibility [615], magnetization [604], and Knight
shift [58]; (ii) the measured intrinsic SC anisotropy &as/&c ~ 60 [603, 604] exceeds the critical field anisotropy
Beajjab/Bezjje ~ 20 [605] by a factor of 3 at zero temperature in the absence of strain, and by a factor of 20
under (100) uniaxial pressure that maximally enhances T. [559], whereas for orbitally limited Beajqs the two
ratios would be comparable; and (iii) Begjjap < A/pup o Te under small uniaxial strain [616], as expected for
Pauli limiting.

“Note: contrary to what is stated in Ref. [627], the inversion symmetry I} (H) = —I; (—H) for which they
observe that it becomes restored for small junctions is precisely time-reversal symmetry.

5In one sample [625], Trrse and T¢ split even without any external pressure.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

under (100) strain. Under disorder and hydrostatic pressure, no splitting between SC and
TRSB is observed in ZF-uSR [626]. Preliminary ZF-uSR measurements point towards splitting
of SC and TRSB under (110) uniaxial stress [629], but elastocaloric effect measurements
performed under the same strain do not find any signatures of a second TRSB transition [32].
Phenomenologically, TRSB requires a two-component SC order parameter, which is usually
taken to couple linearly to [110] stress to explain the jump in the cgg elastic coefficient [60, 61,
630] However, this linear coupling entails a cusp in 7, as a function of €119 strain that has not
been observed [32| and the only way homogeneous TRSB SC states can be reconciled with this
absence of a cusp is through delicate fine-tuning [32]|. In the presence of TRSB, spontaneous
magnetization and currents are generically expected to appear around domain walls, edges,
and defects, yet scanning SQUID and Hall probe microscopy [553-557, 631, 632] has failed
to find any evidence for them, even though theoretical estimates suggest that they should be
measurable if present [555, 632-634]. Josephson junction experiments [550, 627, 635-637| show
signs of SC domains in their interference patterns, switching behavior, and size-dependence of
their transport properties, but the domains themselves need not be chiral.

The coupling of SC to strain is partially known from measurements of elastic constants. The
main obstacle to making these measurements conclusive is the fact that strain inhomogeneities,
such as stacking faults or lattice dislocations, mix elastic waves of different symmetry.® That
said, according to elastic constant measurements, the SC order appears to couple quadratically
to €z — €yy € By strain and possibly linearly to €, € Ba, strain. The evidence for the
former is the quadratic dependence of T, on €;, — €,,, whether measured globally [558, 559,
600] or locally [638, 639], and the absence of a jump at T, in the shear elastic modulus cp,, =
%(011 —c12) [60, 61, 562]. The evidence for the latter is a jump at T, in the shear elastic constant
ce6 € Bog 60, 61, 630], as measured by ultrasound. However, the magnitude of this jump varies
by a factor of 50 between the two experimental groups [60, 61] and direct measurements of
T, under [110] strain show linear dependence without any cusp whose magnitude can be fully
accounted without linear coupling to €, [32]. Moreover, no evidence of transition splitting
is found in elastocaloric measurements under [110] strain [32], as generically expected in the
presence of linear coupling to €,,. This raises the possibility that the observed jump in cgg is
due to lattice defect effects that, however, need to be channel selective so as to not generate
a jump in cp,,. One such proposal [572] is that a subleading pairing channel activates near
dislocations; the product of the leading and subleading pairing irreps then determines which
elastic modulus experiences a jump. No jump has been observed for the elastic modulus
cas € Ey 61, 562], indicating that the coupling to E, strain is quadratic. Large jumps in the
A1y components of the viscosity tensor have recently been discovered at T [640].

The preponderance of evidence points towards line nodes. The expected dependence on
temperature is found in the heat capacity [560, 561, 642|, ultrasound attenuation rate [562,
563], NMR relaxation rate [564|, and London penetration depth [565, 601, 643]. In weak
in-plane fields, the heat capacity [566, 642] and Knight shift [58] obey Volovik scaling (o<
V/B/Be2) expected of line nodes [644]. The in-plane thermal conductivity [645, 646] exhibits
universal transport, which is a type of transport found only in nodal SC [647-650|. Finally,
STM spectroscopy [606, 651] shows a V-shaped conductance minimum,” although this is not

5As pointed out in Ref. [572], dislocations give contributions to elastic constants that are on the order of 1 %,
which is two orders of magnitude larger than the (larger of the two sets of) measured jumps of the elastic
constants at Te [61].

"One should keep in mind that STM mostly probes the a, 8 bands because of their ds., d,. orbital characters
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4.1 Fundamentals of strontium ruthenate

Table 4.2: Possible superconducting states of SraRuQy.

In the first column are the
irreps of the tetragonal point group Dy, (Tab. 4.3) to which the pairing states can belong
to, together with the orbital functions often used to specify them (s-wave for Ay4, etc.). In
the middle column are the simplest (lowest order in k) pairing wavefunction which transform
under a given irrep. In the last column are the orientations of the symmetry-enforced line
nodes, which can be vertical (V) or horizontal (H), if present. Accidental (acc.) line nodes
may also arise, as in the case of extended s-wave pairing. The options belonging to the same
irrep can be superimposed, in which case only line nodes shared between them survive. In
the case of 2D irreps, their (A;|As) may condense into a time-reversal symmetry-breaking
(TRSB) chiral superposition A; £iAs or rotation symmetry-breaking nematic superposition
A1, Ao, or A1+ Ay, as explained Sec. 4.3.2. Only even-frequency pairing without accidental
degeneracies between irreps is listed. See also Sec. 4.1.5 and Refs. [55, 641].

Even-parity spin-singlet pairing states:

symmetry simplest dy(k) line nodes
Aqy(s) 1 none

Aig(s) k2 + k2 none
Aqg(extended s) k2 acc. horizontal

A2g gxy )

(s
(
Ajg(extended s)
(
Big(dy2_ yz)

(

Bdi )

Eg (dy2| - dm)

KA+ kD — 6k2k2
Faky (k2 — k)
K2 2
koky

(kykZ‘ - kfckZ)

acc. vertical
vertical
vertical
vertical

H for TRSB,
H&V for nematic

Odd-parity spin-triplet pairing states:

symmetry simplest d(k) line nodes
Aqy(helical p) kpés + kyéy none
Ajy(helical p) k,é, horizontal

Agy (helical p) kyéy — kyé, none
Aou(Pgyz(22—y2)) kykyk. (k2 — kZ)éz H&V
Biy(helical p) kyé, — kyé, none
Bru(fa2—y2)2) (k2 — kg)kzéz H&V

By, (helical p) kyéy + kyé, none

B2u(fzyz> k$kykzéz H&V

R R none for TRSB,
Eu(pz|py) (kyé.| — kz€.) .
V for nematic

Ey(pz|py) (k.éz| — k.€y) horizontal
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completely reproducible [652-654]. The only evidence to the contrary is an STM/S study [655]
that scanned micron-sized grains (~ 10 qp) situated on top of SC aluminium and found an
implausibly large SC gap A of 3.5K. Given that so many studies [560-566, 642| found nodal
behavior, in some cases down to as low as 0.04 K ~ T,./30, any fully gapped SC state candidate
must have extraordinarily deep minima to be viable.

The line node(s) are more likely to be vertical than horizontal, but this is not completely
settled. If present, the vertical line nodes are most likely located away from the Van Hove
points (7,0) and (0, 7). Heat capacity [642] and in-plane thermal conductivity [656, 657] both
display a fourfold anisotropy in their dependence on the in-plane B orientation.® Since these
anisotropies are small (~ 1%), they can be explained by both horizontal and vertical nodes.
That the heat capacity anisotropy has the same sign down to 7./20 appears to exclude dg,-
wave pairing [642], and perhaps other pairing states too. A resonance at transfer energy ~ 2A
and momentum with a finite z component was reported below T in the inelastic neutron scat-
tering intensity [658], suggesting horizontal line nodes, but was not reproduced in subsequent
measurements [659]. The universal heat transport along ¢ has been found finite with 20 sig-
nificance [646], indicating that nodal quasi-particles have a finite c-axis velocity. If true, this
result is strong evidence against symmetry-enforced horizontal line nodes. Elastocaloric effect
measurements under (100) uniaxial pressure [59] reveal that the normal-state entropy attains
a maximum at the Lifshitz transition strain €199 = —0.44 % = eyy, which becomes a minimum
as one enters the SC state [31]. Further analysis shows that this can only be accounted for if
there are no vertical line nodes at the Van Hove points (7, 0) and (0, 7) [31]. Note that these
same Van Hove points are responsible for the normal-state entropy maximum [559, 600, 660].
From the upper-critical field dependencies on temperature in a very pure sample, in Ref. [601]
they deduced that SRO’s SC exhibits non-local electrodynamics [602|, which is a type of SC
response where nodal excitation are important. They find that the T-dependence of the pene-
tration depth is more consistent with vertical than horizontal line nodes [601], however further
information, like the number or precise locations of the nodes, cannot be inferred [661].

Interface and surface experiments offer limited information. Josephson junctions to con-
ventional superconductors behave in unusual ways and suffer from irreproducibility [55, 541,
662], which is one of the reasons these experiments have not been conclusive. Their unusual
behavior (as seen in their interference, switching, and size-dependence) has most often been
interpreted as evidence of domains [550, 627, 635-637|, but deducing any more precise informa-
tion on the structure of the SC order parameter has been challenging. Some experiments have
shown signs of 7 shifts [545, 546, 618, 619], indicating odd-parity SC, but their interpretation
is not clear-cut [573, 620, 621]. STM tunneling conductance measurements have also been
inconsistent [606, 651-654, 663], likely due to surface reconstruction effects [652-654, 664]. A
V-shaped conductance minimum has been reported in Ref. [606], indicating line nodes. In
another STM study [651], they considered the Fourier transform of the real-space tunneling
conductance and found peaks at nesting vectors expected of dg2_,2-wave SC. However, the
peaks are not clearly resolved because of noise (see Supplementary Information of Ref. [651])
and when compatibility with other pairings was later investigated [665]|, their measurements
were found to be consistent with extended s-wave pairing, as well as accidentally degenerate
s' +idyy and 5" +id,2_,» states.

which make their overlaps with the tip (along z) large.
8 As pointed out in [642], little useful information can be extracted from the out-of-plane field-angle anisotropy.
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4.1 Fundamentals of strontium ruthenate

This concludes the review of the experimental literature concerning strontium ruthenate’s
superconductivity. When it comes to theories, many [569-585] have been developed in the
wake of the landmark NMR Knight shift study of Pustogow et al. [56]. Although some [581,
582| still explore odd-parity pairing as an option, most recent theories are based on even-
parity SC states. In Tab. 4.2 we list the possible SC state which are based on only one irrep.
The most studied of such states are the chiral (TRSB) E, state dy, + idy, [578, 579] and
the one-component Bj, state d,2_,2 [572]. Most other proposals assume an accidental (fine-
tuned) degeneracy between two distinct irreps, which should be contrasted with d,, +id,.
where the degeneracy is symmetry-enforced. Such proposals include s + i dy2_,2 pairing [569,
570], dy2_y2 + 1 Gay(22—y2) Dairing [571-575], and s’ +idy, pairing [576, 577|, where s denotes
extended s-wave states. In most of these proposals, the accidentally degenerate pairing state
is a proper bulk order, while in others [572]| the mixing among irreps emerges only near lattice
defects. To explain the puzzling experimental phenomenology of SRO, some have pursued
even more exotic ideas, such as mixing of even- and odd-parity SC states [585] or mixing of
even- and odd-frequency pairing [584]. For further discussion of theories of SRO, we refer the
reader to Ref. [55].

In Secs. 4.2 and 4.3, we elaborate in more detail how the results of Refs. 31, 32] were
obtained. These results were already mention during the literature review of this section.

4.1.2 Crystal structure and symmetries

As shown in Fig. 4.1(a), SRO is a layered perovskite with a body-centered tetragonal lattice.
Its lattice constants equal [537, 538]:

a=b=386A, c=12.7A. (4.1)
The primitive lattice vectors of the body-centered tetragonal lattice of SRO are:
a; = CLéI,
az = aéy, (4.2)
a a c.
as = 561; + §ey + §ez,

where the x,y, z Cartesian coordinates have been aligned with the principal a, b, ¢ axes of the
lattice. The corresponding reciprocal lattice is face-centered tetragonal, which is equivalent to
body-centered tetragonal for tetragonal systems. The reciprocal primitive lattice vectors are
(ai . bj = 27T61’j):

2 2
b= e, — —é.,
a C
2 2
by= "6, — e, (4.3)
a C
4
by = —é.

The corresponding first Brillouin zone is draw in Fig. 4.2. Instead of the crystal momenta

k= kyly+kyéy+hé.= [k, |, (4.4)
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Figure 4.2: The first Brillouin zone of SroRuOy4, drawn in proportion. The larger
polyhedron that has thick black edges corresponds to the body-centered-tetragonal first
Brillouin zone of SroRuO4. The smaller rectangular cuboid shaded in blue is the simple-
tetragonal first Brillouin zone, shown for reference. The ¢ axis points upwards.

we shall often use the dimensionless

oy ak,
kR =rhely+hyéy+h.,=|hy| =1|aky|. (4.5)
1 ck,

The lattice constants a, c we retain because the precise geometry of the Brillouin zone and its
boundary will be important in Sec. 4.2.

For reference, if the system were simple tetragonal, the reciprocal primitive lattice vectors
would equal

2

bll == 7 T
2r

b/2 = ;ey, (46>
2

bé = 762.

Since by = b} — bf, by = bl, — bfy, and bz = 2bf, it follows that every function which is simple-
tetragonal periodic is also body-centered-tetragonal periodic. The converse is not necessarily
true: f(k) = cos(3R4) cos(ik,)sin(3%.) is body-centered-periodic [f(k + b;) = f(k)|, but
not simple-periodic [f(k + b;) = —f(k)], for instance. This point will be of significance in
Sec. 4.2.3, during our analysis of which pairing states have vertical line nodes on the Van Hove
lines.

The space group of SRO is I4/mmm [537, 538|. This space group is symmorphic, i.e., there
are no symmetry operations, such as glide plane, screw axis, or others, which include fractional
translations. Hence translations and point group operations can be treated separately. As
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4.1 Fundamentals of strontium ruthenate

Table 4.3: The character table of the tetragonal point group Dy, [170]. The irreps
are divided according to parity into even (subscript g) and odd (u) ones. To the left of
the irreps are the simplest polynomials constructed from the coordinates r = (z,y, z) that
transform according to them. Cjy are 90° rotations around é,. Ca, C%, and C4 are 180°
rotations around €., €, or &,, and the diagonals &, & &,, respectively. P is space inversion
or parity. Improper rotations S; and mirror reflections ¥, 3, and X/ are obtained by
composing Cy, Ca, C4, and CY with P, respectively.

Dyy, E 20y Cy 204 20y | P 28 %, 2% 2%4

La? 492 22 Ay | 1 1 1 1 1 1 1 1 1 1
zy(@® —y?) Ay | 1 1 | 1 1 1 -1 -1
z? —y? By | 1 -1 1 1 -1 1 -1 1 1 -1
Ty By | 1 —1 1 -1 1 1 1 1 -1 1

(yz| — z2) E, 2 0 -2 0 0 2 0 -2 0 0
ryz(a? —y?) A | 1 1 1 1/ -1 -1 -1 -1 -1
z Agy | 1 1 1 -1 -1 -1 -1 -1 1 1

TYz By, | 1 -1 1 1 -1 ] -1 1 -1 -1 1

(22 —y?)z By, | 1 -1 1 -1 -1 -1 -1
(z]y) E, | 2 0 -2 0 0| -2 0 2 0 0

previously already mentioned, the point group of SRO is Dy, (4/mmm in Hermann-Mauguin
notation) and its character table is given in Tab. 4.3. This point group is worked out in great
detail in Sec. B.4 of Appx. B. Here, let us just note that Dy, is generated by four-fold rotations
around the z axis Cy,, two-fold rotations around the z axis Cy,;, two-fold rotations around the
dy = x+y diagonal Cyq, , and parity P. The center (fixed point) of all of these operations are
the ruthenium atoms. In principle, as the center we could also choose the point R—i—%(al +as),
which is in the middle of the neighboring four ruthenium atoms of a layer. This latter choice
for the center yields point group operations which are equivalent, up to a lattice translation, to
the former ones. We shall always use ruthenium atoms as the center. By inspecting the crystal
structure [Fig. 4.1(a)|, one may verify that these operations really are symmetries. One may
also confirm the same for the primitive lattice vectors: R(g)a; = a; + R and R(g)b; = b, + G
for g € D4y and lattice vectors R, G.

4.1.3 Electronic structure and the ¢,, orbital tight-binding model

Here we explain the electronic structure of SRO and introduce a tight-binding model for its
Fermi liquid phase.

The atomic electron configuration of Ru is [Kr|5524d°, of Sr is [Kr]5s2, and of O is [He]2s?2p?.
If for the valencies of strontium and oxygen we take the usual Sr?" and O?~ values, then the
ruthenium atoms are left in the configuration Ru?"™ = [Kr|5s%4d*. In SroRuOy, each ruthenium
atom is surrounded by an octahedron whose vertices are oxygen atoms, as shown in Fig. 4.3.
This octahedral environment lifts the degeneracy of the 4d orbital, as sketched on the right of
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

a

Figure 4.3: The octahedral environment of a ruthenium atom (center) within the
layered perovskite crystal lattice of SroRuQO4 (left) and the splitting of the 4d
orbitals cause by such an environment (right) [538|. The crystal field splits the five
degenerate 4d levels into a low-lying tp, orbital manifold made of (dy.,d.s,dsy) and an
elevated e, orbital manifold made of (dy21,2_9.2,d;2_,2). Reproduced with editing from
Ref. [538], with permission from Taylor & Francis.

Fig. 4.3 [538]. Specifically, the five d orbital fall into the Th, and E, irreps of the octahedral
group Op, from which the corresponding orbital manifolds derive their name: tog(dy.|d.z|dzy)
and eg(d,2 +y2,222\\/§ dy2_y2). The states closest to the Fermi level derive primarily from
the partially filled to, orbitals, with some anti-bonding admixtures coming from the O:2p
orbitals [538].

Among transition metal oxides, metallic behavior is fairly rare because of the small hopping
amplitudes, on the one hand, and the large on-site repulsion, on the other, both of which are
a consequence of the small radius of the d orbitals [538]. The result is usually an insulating
magnetic state, as in the cuprates (Sec. 2.1). In the case of SRO, however, metallic behavior
robustly emerges at low temperatures. More precisely, below around 30 Kelvins, SRO settles
into a quasi-2D multiband Fermi liquid state [537, 538]. There are three conduction bands in
SRO, which are conventionally called «, 3, and +y, and their Fermi sheets are cylindrical [537,
538|. They are depicted in Fig. 4.1(b). The a band is hole-like, while the 8 and ~ bands are
electron-like.

The conduction bands of SRO primarily derive from the toq4(dy.|d.z|dzy) orbital manifold
of the Ru atoms [537, 538, 584]. To a first approximation, due to the high anisotropy of
SRO (¢/a = 3.3), dy. and d,, hop along only one in-plane direction and have the following
one-dimensional tight-binding dispersions:

ey-(k) = —p — 2t cos aky, (4.7)
€.0(k) = —u — 2t cos ak,. (4.8)

The d, hops along both in-plane directions, with the following approximate 2D tight-binding
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Figure 4.4: The Fermi surfaces of SroRuQO4, as determined by the schematic dis-
persions of Egs. (4.7-4.9) (a) and the tight-binding model of Eq. (4.23) (b). The
solid lines are the k, = 0 cross-sections of the cylindrical «, 8, and v Fermi sheets of un-
strained SRO, shown in Fig. 4.1(b). The parameters that were used in Eq. (4.23) are those
of Ref. [594]. The e4,(k) = 0 Fermi surface is colored red under (a) for clarity.

dispersion:
exy(k) = —p — 2t(cos aky + cos aky) — 4t' cos(ak,) cos(aky), (4.9)

where p ~ 0.35eV, ¢t ~ 0.3eV, and ¢’ =~ 0.1eV [578, 594]. The corresponding schematic Fermi
surfaces are drawn in Fig. 4.4(a). Notice how they already reproduce the broad qualitative
shape of the three Fermi surfaces of SRO. After introducing interorbital mixing and spin-orbit
coupling (SOC), €,.(k) and e,,(k) hybridize into the quasi-1D « and § bands, while €., (k)
hybridizes into the quasi-2D v band, with the result shown in Fig. 4.4(b). Let us note that
the d,, and d,, orbitals are even, while d, is odd, under horizontal reflections, which in turn
forbids the mixing of d,.,d., with d,, for k., = 0 in the absence of SOC. With SOC, the
two may mix, and this mixing is strongest at the diagonals k, = £k, where the three Fermi
sheets almost touch. Including interlayer hopping adds warping along k.. It is worth noting
that although a Fermi liquid that behaves as if weakly interacting, interactions are significant
in SRO and its quasi-particles are strongly renormalized by electronic correlations [537, 538,
598-600].

To describe the Fermi-liquid quasi-particles of the normal state, we shall now introduce
a tight-binding model based on the t3, orbitals of ruthenium. Below 25K, SRO is well-
described by such a tight-binding model [578, 594, 666—668]. Within it, the hopping am-
plitudes T§ between neighboring lattice sites are significantly constrained by the symmetries
of SRO. In a body-centered lattice, hopping amplitudes along the half-diagonal § = a3 =
%(aéx + aéy + cé.), as well as many other §, are also possible. However, all such character-
istically body-centered hoppings necessarily connect different layers and are thus suppressed
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by SRO’s anisotropy. For the purpose of making estimates, throughout this chapter we shall
employ the tight-binding parameters of Ref. [594], listed in Tab. 4.5.

In our definition of the model, we use cyclical ordering of the to,4 orbitals. The column-vector
of fermionic annihilation operators (spinor) we define as:

Ru: 4d,.(R) @ |1)
Ru: 4d,.(R) ;{u i;lyz(}ﬂ;) @)
W(R) = | Ru: 4do(R) | = | =«(B) ©[1) , (4.10)
Ru: 4d (R) Ru: 4dz:r:(R) X Hr>
Co Ru: 4d,,(R) ® |1)
Ru: 4d,y(R) ® |)
with the Fourier convention
_ L —ik-R
o= g e R (4.11)

where k = (k, ky, k-) are crystal momenta which always go over the first Brillouin zone only
and N is the number of unit cells. The subscript ordering does not matter in d,, = d.y,
dzz = dgz, dyy = dyz. This same convention is used in Ref. [578]. When comparing to
Refs. [594, 661, 665-668], among others, one should keep in mind that they use a different
ordering of the orbitals.

Symmetries act on fermions in the following way in the cyclically ordered basis:

(9)¥rU(g) = U(9)¥r(g-1yk = O(9) ® S(9)UR(g-1 )k (4.12)
0 Y6 =(1®ioy)Y 4, (4.13)

where ﬂ(g) are the Fock-space point group operators, g € Dy, O is the Fock-space time-
reversal (TR) operator, and R, O, S are unitary representations of Dy, whose generators are
listed in Tab. 4.4. Here 1 is the 3 x 3 identity matrix and o, are Pauli matrices. Because the
Ru atoms are centered at the Bravais lattice points R, they map to themselves under all point
group operations and the corresponding symmetry matrices therefore do not depend on k.
This makes SroRuQO4 symmetry-wise simpler to treat than cuprates. Compare with Sec. 2.4.1
of Chap. 2.

Because there is only one ruthenium atom per a body-centered unit cell, the tight-binding
Hamiltonian has the form:

3
Ho=— szﬂé Ts @00+ > Loy ©0; |V, (4.14)
R4 i=1

where R, go over the body-centered tetragonal lattice. The Hamiltonian is Hermitian only
when

T 5 =Tk, Lo5i=L%. (4.15)
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Table 4.4: The symmetry transformation matrices of the four generators g of the
point group Dy, in the cyclically ordered basis (4.10). Cj, is a rotation by /2
around the z-axis. Co, and Cyq, are rotations by 7 around x and the diagonal d = x + y,
respectively. P is parity. R(g), O(g), and S(g) are vector, orbital, and spin transformation
matrices, respectively, which enter Eq. (4.12). o0, are Pauli matrices.

g R(g) O(g) S(g)
0 -1 0 0 1 0 oo
O 1 0 0 1.0 0 20 e
0 0 1 0 0 —1 V2
1 0 0 1 0 0
Cos 0 -1 0 0 -1 0 —io,
0 0 —1 0 -1
01 0 0 -1 0 o to
Cod, 10 0 -1 0 0 —i—=—
00 —1 0 0 1 V2
1 0 0 100
P 0 -1 0 01 0 o
0 0 -1 00 1

It respects point group symmetries, ﬂT(g)J'foﬂ(g) = Hy, only when the following relations
which constrain and relate different hopping amplitudes hold:

O'(9)T50(9) = Tr(g-1s; (4.16)

0'(9)L5:0(g) = det R(g ZR (9)£ R(g-1)6:- (4.17)

To ensure time-reversal invariance, the matrix elements of
T5=1Ts (4.18)
must be real, while those of
L3 = Ly (4.19)

must be imaginary.
Symmetries that map § to itself constrain the forms of the hopping amplitudes. For the
nine closest § of SRO, we find that

wp 0 0 o0 0
Jo=| 0 wp O |, Ja; =0 t2 0,
0 0 Ha2D 0 0 Zl (4 20)
t3 ti1 O ta tin tj1
Jajta, = |ta 3 0], Jaz =tz ta tjn |,
0 0 to tjl tjl t3
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

and

ts 0 0 tr tiz O
J2a, = | 0 t6 O, J2a14a, = | tis s 0],
0 0 tq 0 0 ts
to ti O to 0 O
72(a1+a2) = |tia Ty _0 ) {'T3111 = 0 t11 _0 s (4.21)

0 0 L6 0 0 tr
tie 0 O

72113—(11—(12 == 0 t12 _0
0 0 tg

Among these Ts for the closest § whose T are thus also largest, only T4, and T24;—a;,—as
connect different layers, reflecting the high anisotropy of SRO. Here 2a3 — a1 — as = cé,.
Moreover, it is only through Tg, that the body-centered periodicity of SRO is felt on the level
of the one-particle band structure. The on-site SOC takes the form:

00 0 0 0 i 0 —i 0
Lo1=nL|0 0 —i], Lo2=n.10 0 0|, Los=mn|i 0 0 (4.22)
0 i 0 —i 0 0 0 0 0

Notice that the L£g.; have the same form as the orbital angular momentum of vectors, (L;) i =
—i€jjk, which is one of the benefits of using cyclical ordering for the to, orbitals. Off-site
(k-dependent) spin-orbit coupling we shall not include, although one should keep in mind that
some [578] have found that it has a large effect on the preferred Cooper pairing, even when
small.

In momentum space, the tight-binding Hamiltonian reads:

3
Hy, = —Z Js ® 0o + ZLé;i ® 0| e k0

5 i=1
. . 4.2
mp(k)  hi(k)  hy(k) 0 o, —ino, (423)
= hip (p) hj (p) oo + _inz 0 0 Ny oy ,
C.C. th(k) i77J_0'y —i'r]J_O-x 0
where
ks ky Py aky
k= k‘y 5 P = R(ng+)k = k‘x y k= f?,y = aky s (4.24)
k., k. f., ck,
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4.1 Fundamentals of strontium ruthenate

and

hip(k) = —pp — 2t1 cos ky — 2ty cos Ry — 4t3 cos Ry cos Ry (4.25)
— 8t4 cos %kx cos %ky cos %fcz — 2t5 cos 2k, — 2t cos 2k,
— 4ty cos 2k, cos Ry — 4tg cos Ry cos 2k, — 4tg cos 2R, cos 2R,
— 2t109 cos 3ky — 2t11 cos 3ky — 212 cos R,

hop (k) = —pap — 2t1(cos ky + cos ky) — 4tg cos kg cos Ry (4.26)
— 8t3 cos %ftm cos %féy coS %kz — 2ty(cos 2k, + cos 2ky)
— 4t5(cos 2k, cos Ry + o8 kg cos 2Ry) — 4t cos 2k, cos 2k,
— 2t7(cos 3ky + cos 3ky) — 2tg cos k.,

hi(k) = 4t;1 sin & sin Ry, + 8t;2 sin %kx sin %f@y cos %7%2 (4.27)
+ 8ti3(cos fy + cos Ry) sin Ry sin ky + 4t sin 2k, sin 2k,

hj(k) = 8tj1 8in Sk cos 3Ry sin 3R (4.28)

All the tight-binding parameters appearing in the above expressions are real.
Of the six ty4 states (including spin degrees of freedom), four are occupied, as depicted on
the right of Fig. 4.3. This means that within the model at zero temperature:

a3k
2 / VBZZQH’“”):ZL’ (4.29)

where @ is the Heaviside theta function, Vzz = 2(27)3/(ac), and the integral goes over
the body-centered first Brillouin zone shown in Fig. 4.2. The band energies e, of Hy are
numbered in ascending ordering,

Ekl = €ka < Ek2 = Eky < Ek3 = €kj, (4.30)

with the lowest one corresponding to the a band, the highest one to the 5 band, and the
middle one to the v band.

In the remainder of the chapter, whenever we make estimates, we shall employ the tight-
binding parameter values of Ref. [594], which they found by fitting to the ARPES-based tight-
binding 17-band model of Ref. [599]. Their tight-binding parameter values are reproduced
in Tab. 4.5, where we also compare them to other references. The hopping amplitudes of
Refs. [594] and [578] are broadly in agreement, as one would expect given that both were fitted
to Ref. [599]. High-resolution ARPES measurements have recently been carried out [598] and
the fit to the corresponding data [661] gives parameter values not too different from Refs. [578,
594]. However, the hoppings of all three [578, 594, 661| are by a factor of two or so larger
than those of Refs. [666-668|, which are also ARPES-derived; see Tab. 4.5. Although all these
models give the correct shapes for the Fermi sheets, find that the v band is responsible for
over 50 % of the normal-state DOS, and predict a roughly 20 % increase in the DOS at Van
Hove strain (see Sec. 4.2.1), consistent with the entropy data that we later show (Fig. 4.7),
the predicted values for the total DOS differ by a factor of two. The total DOS gr is directly
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.5: The values of our tight-binding model parameters according to various
references. Parameters not shown vanish for (or have not been considered in) a given
reference. Refs. [661, 666-668] obtained their parameter values by fitting to ARPES data,
while Refs. [578, 594] fitted to the ARPES-based tight-binding 17-band model of Ref. [599].
Refs. [578, 661] include a few additional terms whose small hopping parameters are not
listed or included in our Hamiltonian (4.23). We use the values shown in the Ref. [594]
column.

value [meV]
parameter  Ref. [666]  Ref. [667]  Ref. [668]  Ref. [594]  Ref. [578]  Ref. [661]

D 122 109 178 286.9 443.5 209.9
t 16 9 13 27.8 134.0 49.95
to 145 88 165 257.8 362.4 281.35
t3 —22.4 44.0 ~11.83
ty 13.6 0.023 12.75
ts 3.2 5.73 0
t6 —35.5 1.02 —87.15
ty 0 7.52 0
tg —4.7 13.93 ~12.95
to 0 0 0
to 0 0 0
t —2.4 0 —5.50
tho 0 —2.52 0

1B 122 109 176 351.9 212.3 284.2
t 81 80 119 356.8 262.4 229.1
Ty 39 40 49 126.3 43.73 82.5
f ~1.0 ~1.81 ~1.54
i 5 5 0 17.0 —34.23 —3.75
T 22.3 —8.07 6.325
T 0 0 8.20
i 0 0 1.75
Ts 0 3.16 0
ti1 0 0 21 —2.0 ~16.25 0
tio 7.8 9.98 —9.05
ti 0 —3.94 0
tia 0 0 0
ti 2.7 8.30 0
n 32 35 0 59.2 57.39 81.0
. 32 35 0 59.2 57.39 81.0

208



4.1 Fundamentals of strontium ruthenate

related to the Sommerfeld coefficient vy = (7%/3)Rgp, which is experimentally in between
38 [560, 561, 566] and 40 mJ /(K2 mol) [642] for very pure samples (T, > 1.48 K); here R is the
molar gas constant. By a rescaling all hopping parameters, one can preserve the Fermi surface
shapes and relative DOS contributions, while increasing or decreasing the Fermi velocities to
reproduce the 16.5 states per eV per body-centered tetragonal unit cell seen in experiment.
The main takeaway is that the various estimates that we make might be off by a factor of
two, which is still sufficient for our purposes and does not impact the arguments of Sec. 4.2
regarding the elastocaloric effect under (100) pressure in any way.

The dispersion of the v band near the Van Hove line (0, g,k‘z), that we later provide in
Egs. (4.84) and (4.100), was found by diagonalizing the Hy, of Eq. (4.23) with the parameter
values of Ref. [594] (Tab. 4.5).

4.1.4 Elastic coupling and the v band Lifshitz transition

With the development [558, 559] of experimental techniques capable of applying uniaxial
stress on SRO in a controlled manner accessible to various probes, many such experiments
have been performed on SRO in recent years [32, 56, 58, 59, 558, 559, 593, 600, 616, 660,
669-671|. Uniaxial stress applied along the [100] directions in particular has been shown to
dramatically influence SRO, in part because the 7 band experiences a Lifshitz transition at
€100 = —0.44 % = eyy strain [559, 600, 660]. Here we describe the elastic coupling of SRO and
specify how the tight-binding model of the previous section couples to in-plane strain fields.

The strain and stress tensors we shall denote €;; and o;;, respectively, where 4, j € {z,y, 2}
and the associated é; directions are aligned along the principal axes of the crystal. Given that
€;j = €;; and 0;; = 0j; are symmetric, one conventionally defines [672|:

€1 = €ga, €2 = €yy, €3 = €2z,

(4.31)
€4 = 2€yz’ €5 = 2642, €6 = 2€zya
and
01 = Ogx, 02 = Oyy, 03 = Oz, (4 32)
04 = Oyz, 05 = Ogz, 06 = Ogy- ‘
This is called Voigt notation. The factors of two ensure that
6
Z 0ij€i5 = ZO’iéi. (433)
1,J=,Y,% =1

When uniaxial stress of magnitude oy is applied along the direction 71, this means that the
stress tensor equals

Oij = OpNin;. (4.34)
For small enough stresses, the elastic response is linear and given by

6

€ = Z c;jlcrj, (4.35)

j=1
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.6: Elastic constants of SroRuQO4 at T = 4K temperature and their symme-
tries. Ref. [60] measured them using ultrasound echos, while Ref. [61] employed resonant
ultrasound spectroscopy. The irreducible representations of D4, shown under the symmetry

column are defined in Tab. 4.3.

value [GPa]
symmetry parameter Ref. [61] Ref. [60]

Ay $(c11 + c12) 190.8 182
By (e — c12) 53.1 51
Ay, c13 85.0

Ay, C33 257.2

E, Ca 69.5 68.2
By cos 65.5 64.3

where ¢;; is the elasticity tensor.

€11 C12 (13
C12 C11 C13
€13 (€13 €33

C44
C44
C66

For tetragonal systems such as SRO it has the form [672]:

(4.36)

where the elements not shown vanish. The inverse of the elasticity tensor is called the elastic

compliance tensor and it has the same form:

€11 E12
€12 &1
€13 &3

Ei=c =

where
€11€33 — C%g
E:11 - PR
(c11 — c12)[(e11 + c12)ess — 2¢3,]
Eag = c11 + ci2
(c11 + c12)ess — 2¢23”
and

2
C12€33 — C13
)
C11€33 — 0%3

€13
&13
€33
Eaa ’
€44
€66

€12 = —vzy€11, 13 = 1211,
Eag = —, E66 = —,

C44 C66

(c11 — c12)e1s
C11€33 — C%g

rz —

(4.37)

(4.38)

(4.39)
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X X

ol [

(1 AT

™ —7 0 v
R
(a) €100 — —0.0029 (b) €100 — —0.0044 = €EVH (C) €100 — —0.0049

Figure 4.5: Evolution of the three Fermi sheets of SraRuO4 with increasing (100)
uniaxial stress according to our tight-binding model. The Hamiltonian is given
in Eq. (4.23), with the strain coupling specified in Eqs. (4.44), (4.45), and (4.47). The
parameter values used are those of Ref. [594], given in Tab. 4.5. The €;, = €100 strain is
given in the caption, while €,, = —v,,€100 With v, = 0.508. The 7 band which experiences
a Lifshitz transition at eyy strain is highlighted in red. %, = ak, and &, = ak,.

Vgy and v, are called Poisson ratios and they quantify the degree to which z-axis stress induces
strain along y and z. This is true in general: o;; = oan;7; induces a finite

eni= Y hi€hy, (4.40)

Z?J:z7y1z

but also strain components orthogonal to n;. Note on nomenclature: when we write o119, for
instance, this shall mean that o;; = 110775 with o = (1,1, 0)/v/2. On the other hand, €109
will entail that e;, = €100, but also €,y = —vzy€100 and €., = —v;.€100. In experiment, one
applies stress, not strain, which is why we use different conventions for strain and stress.

The elastic constants of SRO at T' = 4K are given in Tab. 4.6. In this chapter, we shall use
the values of Ref. [61] throughout for which ¢17 = 243.9, ¢12 = 137.7, and:

T Eag = —
"7 160.1GPa’ %7 219.3GPa’ (4.41)
Vey = 0.5079, Vys = 0.1626.

The strain induced by external stresses modifies the tight-binding model we introduced
in the preceding Sec. 4.1.3. The coupling to in-plane strain we adapt from the Supplemen-
tary Information of Ref. [59]. In particular, given a stress applied along the (100) direction,
this induces an €;; = €100 strain and a €,, = —v y€100 strain specified by the Poisson ratio
Vzy = 0.508 [61]. The induced €,, = —v,.€1090 strain we neglect because it mainly affects
interlayer hopping amplitudes which are small. These strains modify the tight-binding Hamil-
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

tonian (4.23) by replacing

hip(k) = —pup — 2tacosky + - -+, (4.42)
hip(p) = —wp — 2tacoshy + - - - (4.43)
with
€xe + Eyy
th(k) = — (1 + BHT) wip — 2to(1 — Beyy) COS ﬁ/y + e (4.44)
T +
hip(p) = —(1 + m%) D — 2ba(1 — Bege) cos oy + - - | (4.45)
respectively, and
hop (k) = —pap — 2t1(cos kg + cos ky) — 4o cos ky cosky + - - - (4.46)

with

€xx T Eyy
2

— 2t1(1 — cveyy) cos ky — 4ta (1 -«

hop(k) = — (1 + ay )HzD —2t1(1 — avezy) cOs oy

4.4
s €xz T Eyy (447)

5 )cosfemcosfty+---.

The strain-dependence of the terms not shown has been neglected, as in Ref. [59]. We use
the values & = o/ = = 15.2 and o, = B, = 2.7. In Ref. [59] the value o = o/ = 15.62
with 8 = o, = B, = 0 was used instead. Both result in a Lifshitz transition at the €jgop =
—0.44 % = eyy strain, as measured in experiment [559, 600, 660|. The evolution of the Fermi
surfaces with strain is shown in Fig. 4.5. The Van Hove strain Fermi sheets are also shown in
Fig. 4.8 The origin of these changes in the hopping amplitudes are changes in the interatomic
distances. p adjusts to keep the particle number constant.

4.1.5 Construction and classification of multiband superconducting states

The multiband nature of SroRuO4 (SRO) allows for a richer set of possible superconducting
(SC) states than usual [595-597|. Here we detail how the construction of SC states is carried
out, following Refs. |31, 595-597]. The usual pairing wavefunctions (neglecting crystalline
periodicity) we listed in Tab. 4.2.

Microscopically, SC is described by a gap matrix A,g(k) that has both momentum and
spin-orbit structure. It is the possibility of a non-trivial orbital structure that sets multiband
systems apart from singleband ones. Thus, for instance, when dealing with even pairings,
we cannot simply assume a spin singlet that transforms trivially (Ai,) under all symmetry
operations and equate the irrep of the momentum wavefunction with the irrep of the total
gap matrix. The irrep of the gap matrix is determined by the product of the irreps of its
momentum and spin-orbit parts, as we explain below (cf. Sec. 2.4.3). Within the effective
tight-binding model of Sec. 4.1.3, there are spin-orbit matrices belonging to all possible irreps
of Dy, for both even- and odd-parity pairings (Tab. 4.8).

Superconductivity emerges from the condensation of an order parameter in the particle-
particle sector. Let us call this complex order-parameter field ®,4. Its symmetry transforma-
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4.1 Fundamentals of strontium ruthenate

tion rules are:

L dim ¢
U (9)Pagll(g) = > M3(9) b r(g-1)> (4.48)
b=1
e“m@aqe_“m = e 2, 4.49)
~—1 o
O $,,0 =peP,_gq, (4.50)
where a,b € {1,...,dim ®} are component indices, Mg’b is a representation of the point group,

g are point group operations, O is time reversal (TR), and N is the many-body particle-number
operator:

N=>" ?Z)La?!)k,a, N e N = ey . (4.51)
ka

Because a simple phase rotation of the complex field ®,4 — i®,4 changes pe — —pe, we may
set pg = 1. Time-reversal symmetry-breaking (TRSB) takes place through the condensation
of multiple SC order-parameter components with complex phase differences, as we shall see in
Sec. 4.3.2.

This SC order parameter couples to fermions through

H, = Z Dy qtaq + Hec., (4.52)
aq
where
1
Gag = —— > Uk Daaplle b+ )0’ 5. (4.53)

\/N kaS

Here a, 8 are indices which go over both spin and orbital degrees of freedom and N is the
number of unit cells. Because of the fermionic anticommutation, the SC gap matrix Ay.qz(k, p)
satisfies the particle exchange property:

Aa;ﬂa(kvp) = _Aa;aﬁ(_pv _k)- (4.54)

In principle, we could allow for Ag,.43(k,p) to have a particle-exchange symmetric part, but
once contracted with fermions such a part would vanish identically and not contribute to H..

Given that the SC order parameter is still a fluctuating field that has not yet condensed, all
symmetries must be respected by the coupling H,, i.e.,

' (g)HA(g) = e, V3N 5, O 3.0 = 3. (4.55)

Provided that the fermionic symmetry transformation rules have the form (4.12) and (4.13),
for the Ag.qp(k, p) this implies

dim ®
Ut (9)Aa(k, p)U*(9) = > M (9) A (R(g™ )k, R(g™")p), (4.56)
b=1
(1®i0,) Au(k, p)(1 ®ic,)* = AL(—k, —p). (4.57)
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Here we have also assumed that Mg’b is irreducible, because otherwise additional coeflficients
specifying the anisotropies could arise, as explained in Sec. B.2 of Appx. B.
After condensation, on the mean-field level the pairing term of the Hamiltonian becomes

Ha = P Daplk) 5+ He, (4.58)
kap
where
1
Anp(k) = i D (Rag=0)Aaap(k, k). (4.59)

Here we only study zero-momentum Cooper pairing, although we should mention that there
have been interesting recent experiment on finite-momentum SC in the presence of a magnetic
field in SRO [673]. Even though we are treating the SC as instantaneous, symmetry-wise these
pairing states behave the same as more general even-frequency pairings [674]. Hence consid-
ering instantaneous SC states is sufficient for the purpose of classifying them. Odd-frequency
pairings we shall not consider, although some [584, 675] have explored such possibilities.

The SC order parameter has a global U(1) phase rotation symmetry associated with particle-

number conservation. Because of this, even when C:)ilfHAé) results in a phase difference
compared to Ha, as long as this phase difference can be absorbed into (®, 4=0), TR symmetry
cannot be said to be broken. Only when there are unremovable and imaginary relative phase
differences between the (®, q—0) components does TR symmetry break.

If the pairing were conventional, all point group operations would be preserved and

ﬂT(g)HAﬂ(g) = Ha would hold for all g € Dy, giving the constraint UT(g)A(k)U*(g) =
A(R(g~1)k). Unconventional pairing is classified by the way it breaks this constraint:

dim ¢
U (9)Aa(R(@F)U*(g) = > MG, (9)A(k). (4.60)
b=1

Here, ( is an irrep of Dy, a,b are indices internal to the irrep, and Mgb are the corresponding

matrices. Only for the 2D irreps E,, are there multiple possible Mgb. We use the following
convention (Egs. (B.43) and (B.44), Sec. B.4.2):

erca = (13 e = (5 ) aF = (§ ). e

with MFs(P) = oy and MP«(P) = —0. Fermionic anticommutation and time-reversal sym-
metry in addition yield:

(i0y)'A5 (k) (ioy) = Au(—k) = —AL(K), (4.62)

where T is transposition and * is element-wise complex conjugation.

To construct a A,(k) that properly transforms according to Eq. (4.60) and satisfies the
constraint (4.62), we need to combine the momentum dependence and spin-orbit structure in
just the right way. This is accomplished [31, 595-597] by first separately classifying pairing
wavefunctions and spin-orbit matrices (Tabs. 4.7 and 4.8), and then combining them according
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4.1 Fundamentals of strontium ruthenate

to a set of rules (Tab. B.5, Appx. B). Let us emphasize that the SC order parameter ®, that
enters Ginzburg-Landau theory belongs to the irrep determined by the total SC gap A, (k)
according to Eq. (4.60), and not to the irreps of its momentum or spin-orbit parts.

Pairing wavefunctions f,(k) are classified according to:

dim ¢

= > M5, (9) fo(K). (4.63)
b=1

All fq(k) should be made periodic, just like A, (k). If we call &, = ak,, Ry = ak,, and
k. = ck,, the primitive translations of a body-centered tetragonal lattice map (&, Ry, k) to
(Byp+2m, Ry, by —2m), (Ry, Ry +27, R, —27), and (Ry, Ry, k. +4m). As discussed in Sec. 4.1.2,
some functions can be body-centered-tetragonal periodic, but not simple-tetragonal periodic.
Conventionally, we choose f,(k) to always be real,

fa(k) = fa(k). (4.64)

Examples of pairing wavefunctions are provided in Tab. 4.7. Using the irrep product table B.5,
from these lowest-order lattice harmonics one can systematically construct higher-order ones,
as explained in Sec. B.5.

When it comes to spin-orbit matrices which we shall denote I',, notice that U(P) = 1 leaves
the matrix part of Eq. (4.60) invariant. This means that all spin-orbit matrices are even. Odd
spin-orbit matrices arise when the conduction bands derive from orbitals of opposite parities, as
in the case of cuprates (Sec. 2.3) where we indeed found odd-parity orbital matrices (Tab. 2.5,
Sec. 2.4.2.1). Spin-orbit matrices we classify according to:

dim ¢
Ut (g)LaU* (g Z M, (9)Ts, (4.65)

where U(g) = O(g)®S(g) with the O(g) and S(g) provided in Tab. 4.4. Given the transposition
appearing in the constraint (4.62), it is natural to further categorize I', according to (anti-
)symmetry:

L'y = prly, (4.66)

where pr = +1. The corresponding irreps we shall denote ¢ for pr = —1 and ¢* for pr = +1.
We shall also ensure TR invariance:

(1®i0,)Ti(1®ic,) = —TT, (4.67)

where we have added a minus and a transposition so that we are comparing matrices at the
same momentum in Eq. (4.62).
Conventionally [168], the spin-orbit matrices are written in the following way:

T, =Tu(1®ioy,). (4.68)
Notice that all O(g) are real in Tab. 4.4 so O*(g) = O(g) in Eq. (4.65). Regarding the spin
rotations, their generators S = o are TR-odd, (i0,)7S*(io,) = —S, hence (ioy)S*(g) =
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S(g)(io,). Consequently, the transformation rules (4.65) for T', take the form:

dim ¢
Ul (g)TaU(g) = Y M, (9)Ts. (4.69)
b=1

As the basis of the orbital part of 'y, we use the following Gell-Mann matrices A, (see also
Notation and Conventions):

10 0 010 0 —i 0
A():Olo, A1:100, AQZIOO,
0 0 0 0 0 0 0 0 0
1 0 0 00 0 001
As=[0 -1 0], A=1(0 0 0|, As=1(0 0 0}, (4.70)
0 0 0 0 0 V2 100
0 0 —i 0 0 0 00 0
A¢=10 0 0}, Ar=10 0 1], As= (0 0 —i
i 0 0 010 0 i 0

They are normalized so that tr A4Ap = 264p5. The spin-orbit matrices we write in terms of
these:

Ty~ Aa®ou(ioy). (4.71)
Ap

Given that AL = Ay for all A € {0,...,8}, written thusly I, automatically satisfy time-
reversal invariance (4.67). In three-band systems, there are in total 32 x 4 = 36 possible T,
of which 15 are antisymmetric and 21 are symmetric. The categorization of all Ay ® o, (ioy)
is given in Tab. 4.8.

SC gap matrices A(k) are constructed by combining pairing wavefunctions f,(k) and spin-
orbit matrices I',. Because of the exchange property A,(—k) = —Al(k) [Eq. (4.62)], we
may only combine even f,(k) with antisymmetric I'y, or odd f,(k) with symmetric T';. Now
consider a f,(k) € (f and I'y € (r, where (f and (r are irreps of the Dy, point group. The
composite object

Aab(k) = Fafb(k) (472)
then transforms according to the direct product representation (r ® (y:

dim ¢ dim (y

UN(9)Au(R@ORU*(9) = S > ME ()M (9) Ay (k). (4.73)
a’'=1 b=1

Since we want to construct SC gap matrices that transform according to irreducible represen-
tations [Eq. (4.60)], we decomposed Agp(k) into irreducible parts with the help of Tab. B.5.
This is explained in more detail in Sec. B.5 of Appx. B. The most general A, (k) belonging to
irrep Ca is then given by a sum over all possible fq(k) € (; and I', € ¢t such that (A € (r®(;.

For example, let us construct SC gap matrices belonging to By,. In Tab. B.5 every row
has a Bj, meaning antisymmetric I', belonging to every irrep could be used. Combining
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Table 4.7: A sample of possible pairing wavefunctions f,(k), categorized according
to the transformation rule of Eq. (4.63). The irrep subscripts g and u mean even and
odd under parity, respectively. The two-component (f1(k)|f2(k)) transform according to
the MF (g) matrices given in Eq. (4.61). k = (ks, ky, k) and &y = aky, ky = aky, R, = ck,.
Highlighted red are those wavefunctions that are periodic under body-centered-tetragonal
translations, but not under simple-tetragonal translations (Sec. 4.1.2).

irrep ¢ pairing wavefunction f,(k)
A1y 1, cosky+cosky, coshk,, coskycoshy
Agg (cosky — cosky) sin kg sin ky
By, cos ky, — cos Ry
. . 1 1 o1
Bo, sin kg sinky, sin gk, sin 5k, cos 5k,
sin %, sin & cos 1t sin 24, sin 1

E Yy 2 05 5 g SIN 5 iy SIN 5y

g . . ’ . .

—sink,sink,, —sin %féi cos %féq sin %faz

Ay (cos oy — cosky) sin %fél sin %féy sin %fsz
Agy sink,, cos %fer cos %fty sin %ftz
B sin 1£, sin 24, sin 1%

1lu s o v S o vy B o vz
Ba, (costky —cosky)sink,

E, (Sin ﬁ,x> <(cos Ry — cos Ry ) sin fs‘,z> (sin %f% COS %féy coS %ﬁz>

. : os 1 qinl ;L
sin &, (costky — cosky)sinky cos 5k sin 5ky cos 5k,

Aoog(ioy) € Af, and cosk, — cosky € Biy gives a A(k) = Ao(ioy)(cosky, — cosky) € By,
but so do many others:
Aly @ Big: (Agoy — Agoz)(ioy)(coshy — cosky),
%g X ngl (A@(Yx + AgGy)(iO'y) sin &, sin f{/y,
B, ® A1g: As(ioy) cos ky cos ey, (4.74)
B3, ® Agg: A1(ioy)(cos ky — cos Ry) sin Ry sin Ry,
E;®Ey: Ao (0 sink, — 0y sinky)(ioy) sin k.,
etc. The most general A(k) € B, is a linear superposition of all of these options. The
construction for other irreps proceeds analogously. Refer to Sec. 2.4.3 for a discussion in a
formally similar context.

Having constructed the 6 x 6 gap matrices Ayg(k) which describe SC on the mean-field
level, let us compare them to the usual one-band case. In the one-band case, A(k) = dy(k)ioy
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.8: Spin-orbit matrices I', = f’a(1®ioy) categorized according to the transfor-
mation rule (4.65) and (anti-)symmetry (4.66). Only the I', parts are shown. The irrep
subscript g means even under parity. The irrep superscript s (a) indicates that pr = +1
(—=1) in Eq. (4.66), i.e., that the corresponding I', matrices are (anti-)symmetric under
transposition. The matrices are written in terms of the Gell-Mann matrices A4 listed in
Eq. (4.70) and Pauli matrices o,. The two-component (I'1|I's) transform according to the
MF(g) given in Eq. (4.61). Highlighted blue are the singlet and triplet pairings with trivial
orbital structures, typical of one-band Cooper pairing. Underlined are purely orbital T,.

irrep ¢ spin-orbit matrix I', = Ty (ioy)f
(fg m, Aso, M, Agoy — Agoy
%9 A6o, + Agoy,
ig As00, Agoy + Asoy
29 Aiog, Agor — Asoy

Ea AQUy A70‘0 AGO‘Z
g —AQO-;U ’ —A50'() ’ Ag(TZ

A5Uy — A7Ux

1g
59 Mooz, Aoog, A40., As0,+ Aroy
fg Alaz, A5(Ty +A70‘x

ng A3(TZ, A50‘x — A7(Yy

B AOGz Alo—y A30'm A4(71. A5O'Z Ag()'g
g Aooy ’ Aoy ’ —As0y ’ Asoy, ’ Ao, ’ —Ag0g

for even-parity singlet states and A(k) = d(k) - o(ioy) for odd-parity triplet states, with the
d,(k) as given in Tab. 4.2, for instance. The analogues of such states are highlighted blue in
Tab. 4.8. In the multiband case, this continues to be true in the sense that, once Ayg(k) is
projected onto the bands, it is a pseudospin singlet or triplet, depending on the parity. To be
more precise, let us introduce the band-projected SC gap matrix:

[da(kn)]sy = uLnsAa(k)U*—kns’ = Z dg(kn)lou(ioy)],y, (4.75)
n

where the Pauli matrices act in pseudospin (Kramers’ degeneracy) space spanned by s,s’ €
{11} and Hpugns = €gnligns diagonalize the Hamiltonian of Eq. (4.23). Since all three to4
orbitals are even, U(P) = 1 and we may always locally choose a gauge in which u_gy,s = tugns
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

so that
do(kn) = ppda(—kn) = —ppdl (k). (4.76)

Hence d,(k,) is a pseudospin-singlet with only the p = 0 component for even-parity A(k)
(pp = +1), and a pseudospin-triplet with u € {z,y,2} components for odd-parity A(k)
(pp=—1).

However, in multiband systems interband coupling is also possible, although it is not ex-
pected to be important in a Fermi liquid such as SRO, where SC is essentially a Fermi surface
phenomenon. More interesting is the possibility of having non-trivial orbital structures. Once
projected onto the Fermi surface(s), such orbital structure is expected to modulate the d, (k)
in the same way a pairing wavefunction f,(k) belonging to the same irrep would. So the way
the Fermi surface gets gapped is not qualitatively different. However, many other quantities
(tunneling, spin response, etc.) depend more sensitively on the local spin-orbit structure of the
SC gap matrix. As an extreme example, consider the following state which is spin-singlet, but
has odd parity: A(k) = (Agsink, — Agsink,)(ioy) € Ai,. Such states are constructed from
the (As| — A¢) € Ej and Ay € A5, Gell-Mann matrices which represent in-plane and z-axis
orbital angular momentum operators (Tab. 4.8), respectively, and they can be understood as
orbital triplets. Because external probes couple to the physical spin, and not the pseudospin,
in this regard such states are expected to behave similarly to even-parity spin-singlet states. It
is worth remarking that these states require spin-orbit coupling if their d, (k) are to be finite,
because otherwise oddness of orbital angular momentum under PO implies that d,(k,) = 0,
as one may show using arguments similar to those of Sec 1.3.2.2 or 3.1.1.

4.2 Constraints from elastocaloric measurements
under [100] uniaxial stress

As already mentioned in Sec. 4.1.1, compelling evidence on the gap structure of SroRuO4 (SRO)
has recently emerged from measurements performed under uniaxial pressure. When (100)
uniaxial pressure is applied on SRO, its superconductivity (SC) is drastically enhanced [558,
559, 600, 616, 669], with T, increasing from 1.5K to a maximal 3.5 K before decaying again.
The most likely cause of this enhancement is the Lifshitz transition that occurs at €199 =
—0.44% = eyy strain [559, 600, 660] which is accompanied by an increase in the density of
states (DOS). The DOS peaks at ey, as does the normal-state entropy [59]. In the SC state,
however, the entropy becomes a minimum at eyy, as directly measured by the elastocaloric
effect [59]. As we shown in this section, which is based on Ref. [31], this is only possible
if SRO’s SC does not have vertical line nodes at the Van Hove lines that induce the DOS
peak at eyy. This is a strong constraint on possible pairing states, one whose implications we
explore in the current section which reuses much of the text from Ref. [31]. The final piece of
the argument is that these properties of strained SRO carry over to the unstrained SC state,
which is supported by the absence of any signatures of a bulk SC state change at finite strain
in the heat capacity [593], elastocaloric effect [59], or NMR Knight shift [56, 58].

The main result of Ref. [31] is that, among even pairings, only s-wave (Aig), dy2_y2-wave
(Big), and body-centered periodic (dy.| — dy»)-wave (E,) pairings gap the Van Hove lines.
Thus the SC state must include admixtures from at least one of these three pairings to be
consistent with the elastocaloric experiment of Ref. [59]. The logic of our argument does not
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

put any constraints on the subleading channels. For instance, almost degenerate states like
s' +idya_yp [569, 570], dy2_yo +1guy2—y2) [571-575], and s' +idyy [576, 577] are consistent
with a dominant d,2_,2-wave or s-wave state; here s’ stands for extended (nodal) s-wave
states. Among odd-parity pairings, all irreps can gap the Van Hove lines. However, A, and
By, pairings must be made of body-centered periodic wavefunctions, and for the rest we find
non-trivial constraints on the orientations of their Balian-Werthamer d-vectors [168].

This section largely follows the structure of the article itself [31]. It is organized as follows.
In Sec. 4.2.1, we explain what has been measured in the elastocaloric experiment [59] and why
these measurements forbid vertical line nodes at the Van Hove lines. The precise location of
the Van Hove lines is the subject of Sec. 4.2.2. The main results are presented in Sec. 4.2.3:
how the momentum and spin-orbit parts of the SC gap behave near the Van Hove lines and
which SC states are excluded by the elastocaloric measurements. Tab. 4.11 is our main result.
In the last Sec. 4.2.4, we discuss our results.

4.2.1 Elastocaloric measurements and the gapping of Van Hove lines

The elastocaloric effect describes the change in the temperature that accompanies an adiabatic
change in the strain ¢;;. By measuring it, one may determine the dependence of the entropy
S on strain. This is made possible by the thermodynamic identity:

oT T 08
= — 4.
aeij S Ce(T) 66,;j T’ ( 77)

where Cc(T) = T(0S/0T), is the heat capacity at constant strain. Recently, important
progress has been made in the experimental techniques for measuring the elastocaloric ef-
fect and in their analysis for correlated electron systems [590-592].

The elastocaloric effect has been measured two years ago for strain applied along the [100]
direction [59]. Numerical analysis of this dense data set [59], which is shown in Fig. 4.6, enables
the separation of the contribution from C,. and the reconstruction of the dependence of the
entropy on strain. The results of this analysis are plotted in Fig. 4.7. The data shown in this
figure is available in the Supplementary Material of Ref. [31].

As clearly seen in the figure, the normal-state entropy has a maximum at the Van Hove
strain €199 = —0.44% = eyy. As we enter the SC state, however, this maximum becomes a
mintmum as a function of strain. To understand this behavior, let us recall that the entropy
of a Fermi liquid is given by [169, 676]:

7.‘.2
S = V?k%T / dE d7(E)g(E), (4.78)

where V' is the volume, T is the temperature, F is the energy relative to the chemical potential,
g(FE) is the DOS, i.e., the number of states (including both spins) per unit cell and energy,
and

3

51(B) =

—felog fe — (1 — fg)log(1 — fE)], (4.79)

where fg = 1/(e/#8T 4 1) is the Fermi-Dirac occupation factor. Notice that 67 (F) — 8(E)
as T'— 0 so S o< T'g(0) at low temperature. This formula applies to both the normal and the
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Figure 4.6: Elastocaloric measurements of SroRuO4 as a function of temperature
T and compressive uniaxial (100) strain ejop [59]. The color indicates the measured
change in the temperature AT when an ac strain Aejgg of a magnitude in between 2.9 x 1076
and 3.5 x 1076 with frequency 1513 Hz is applied on SroRuOy4. The solid red circles are the
superconducting transition temperatures determined from specific heat measurements of
Ref. [593]. The yellow star indicates the magnetic phase transition temperature deduced
from muon spin relaxation in Ref. [625]. The latter agrees with the phase boundary identified
by the dark blue contrast seen in the elastocaloric data for €199 in between —0.6 % and
—0.7% [59]. Reproduced with editing from Ref. [59] (CC BY 4.0).

SC state. Thus to understand the entropy, we need to study the DOS near the Fermi level
E=0.

In the normal state, at Van Hove strain the 7y band experiences a Lifshitz transition in
which its cylindrical Fermi surface opens at the Van Hove lines kyp =~ (0, +7, kz) along the
k, direction [559, 600, 660]. This is shown in Fig. 4.5. Because of the particularly weak k.-
dispersion of the v band at kyp (~ 1K), the Van Hove lines contribute a pronounced peak in
the DOS that is only rounded on an energy scale of about one Kelvin [59]. It is this peak in
the DOS that explains the observed normal-state entropy maximum (Fig. 4.7).

To gain a qualitative understanding of what sort of pairings can induce an entropy minimum
at eyp strain, it is sufficient to consider the v band near the Van Hove lines. This region is
highlighted red in Fig. 4.8(a). This is justified by the fact that the v band contributes 60 % of
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Figure 4.7: The entropy S (top) and ratio S/T" (bottom) of SroRuOy4 as a function of
applied €1gp strain at constant temperatures 7' ranging from 2.5 K (blue) to 4.0K
(red) in 0.1 K increments [31]. At Van Hove strain €100 = —0.44 % = eyy, T, attains its
maximal value of 3.5 K. Above (below) 3.5 K, the entropy has a maximum (minimum) at
evy strain. In the top figure, entropies at different temperatures are naturally offset from
each other by their temperature dependence. In the bottom they coalesce because for a
Fermi liquid S is linear in 7. The entropy has been reconstructed from the elastocaloric
measurements of Ref. [59], shown in Fig. 4.6, using Eq. (4.77). The plotted data is available
in the Supplementary Material of Ref. [31].
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

the total DOS (Sec. 4.1.3) and is solely responsible for the normal-state peak in the entropy.
For the moment, we shall also neglect the k,-dispersion; we discuss its impact later.
The DOS of a band in 2D with a dispersion e and SC gap A(k) is given by:

mel) =2 [ TES3L8(E - 60, (1.80)

& = \/er + |A(K))? (4.81)

is the Bogoliubov quasi-particle dispersion, and temporarily in this section we define % relative
to the Van Hove point (0,7/a):

o= by + Foyl, = @x) - < ake ) . (4.82)
)

aky, —m

where the 2 is due to spin,

It is often easier to calculate the integrated DOS

E
NelB) = [ dE B =2 /g W Ay (4.83)

L<E (27T)2

instead and then differentiate it to get gsc(£). Near the Van Hove point k = (0,7/a), the
dispersion of the v band is approximately given by (Sec. 4.1.3):

1

1 1
k=5 —hy = —q1q-, (4.84)

2m1 r 2m2

where g+ = %(rﬁ,x + ky/r) and

4
— 1 r = = 0.59. 4.85

The values of m; 2 and r were deduced from the Hamiltonian (4.23) with the parameter values
of Ref. [594] (Tab. 4.5). Since this expression for e only applies near the Van Hove point,
we impose a momentum cutoff || < A. This corresponds to the region highlighted red in
Fig. 4.8(a). (The region depicted in Fig. 4.8(a) has cutoffs imposed on %, ,, but this is just
for illustration purposes.)

In the normal state (NS),

my = mimsg

ANS(k) =0 (4.86)
and the DOS at the Van Hove strain equals:

8Mix A2

NS
E) = log ——.
8 (F) o) %8B

(4.87)

This diverges logarithmically as E — 0. As we move away from €199 = ey, the logarithmic
divergence is moved away from the Fermi level E = 0, explaining the normal-state entropy
maximum [59].

If we fully gap (FG) the saddle point like so

AFC (k) = A, (4.88)
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then the DOS vanishes up to A and diverges above it in the following way:

0, when F < Ag,
g (B)=4 8m, E A? (4.89)

lo , when E > Ag.
(27m)? /B2 — A2 gm*\/EQ—Ag 0

Since d7(E) in Eq. (4.78) has a width ~ kgT, for sufficiently large A¢/kpT the normal-state
entropy maximum can be suppressed so strongly that it becomes a minimum as a function of
strain. Hence fully gapping the Van Hove lines reproduces the features of Fig. 4.7. Note that
a constant gap does not necessarily mean an s-wave state, but merely that the gap is finite in
the vicinity of the Van Hove point. For instance, d,2_,2-wave pairing is finite at the Van Hove
point (0,7/a) and approximately constant around it. The same is true for extended s-wave
pairing which has vertical line nodes away from the Van Hove points. Our analysis focuses
only on the behavior of the pairing gap near the saddle point of the dispersion.

Can pairings with nodal lines at the Van Hove lines also reproduce the SC entropy minimum?
To answer this question, let us calculate the DOS for a vertical and horizontal line node. For
vertical line nodes (VLN), there are two cases to distinguish: when A(k) is linear and when
A(k) is quadratic in the (displaced) momentum & = (ak,,ak, — 7).

In the linear case, we may always write the gap as:

AVIN(E) = Ag(g cos® + g_sind) /A = Ag(a1/A). (4.90)
In the limit of small E, the inequality { < F that determines Ns.(E) simplifies to

A2 sin?(29)

Tgﬂ% Tam? 2 < E? (4.91)
where py = g_ cosV—q sin?. The area enclosed by this inequality equals 7|21, max| |22, max|
where 7/ = 4f01 dzv1 — 2% = 3.496..., and therefore for small E:

37 A [ 2m.E
VLN _ *
ge (B —=0)= (2m)2 Ag \/ [sin 29| (4.92)

This g¥'N o v/E behavior persists up to the point where gV 'N(E,) ~ gN5(E,). By solving

this equation with Ag ~ 3K (the T, at €100 = eyn) and A ~ 0.5, one obtains F,, ~ 0.2K.?
Exceptionally, when 9 = 0 or /2, one finds a constant DOS up to Ay:

AQ

/ 81 .
gVIN(E < Ag) = " oresinh

< )’ A (4.93)

Thus if a single line node cuts through the Van Hove point, the DOS generically vanishes like
VE in a very narrow range E < 0.2K. If this line node is fine-tuned to coincide with the lines
g+ = 0 or g_ =0, then the DOS becomes finite and large.

The second case is when A(k) is quadratic in k. Quadratic A(k) may correspond to a line
node with a quadratic orthogonal dispersion, a pair of line nodes that intersect at k = 0, or

?The solution of \/z = £8log(1/z) is @ = §*W?>(1/5), where W (z) is the Lambert W-function. In our case
x = m.Ey/A? and § = (8v/2/37")(m.Ao/A?).
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

a point node, depending on the eigenvalues of the Hessian at k = (0,7/a). The inequality
&k < E is in this case invariant under the scaling k — /a k, E — «E. Hence Ny(F) is linear
in F for small F, yielding a finite ggéLN” (E = 0) and no opening of a gap. Exceptionally, when
we have two SC line nodes that coincide with the Van Hove strain Fermi surfaces g4 = 0, the
SC gap equals A(k) = Ag(g1g_/A?), from which we see that gV=N" retains the normal-state
logarithmic singularity, albeit with a renormalized 1/m, + /1/m2 + A3/A%,

Lastly, there’s the possibility of a horizontal line node (HLN) crossing the vertical Van Hove
line (0,7/a,k;). For a schematic

APIN (k) = Ay (k. /70, (4.94)

the 3D DOS can be calculated by averaging Eq. (4.89):

T dk
HLN z FG
8sc (E) _/ 8sc (E)‘A0—>A0|ﬁ,z\/ﬂ'

2w
4.95
_ Am. BT 2A* X(E) (4.95)

2200 | ® m.E ’
where
0, when F < Ay,
2
X(E) = (m — 2arccos x) log + 2log(2x) arcsin(z) (4.96)
my b for £ > Ay,

—2log(z) arctan + Cla(p),

x
V1—22

x=1/1-A%/F2 ¢ = arccos(1 — 227). (4.97)

HLN
sc

with

Here Cla(p) = >°0° | sin(np)/n? is the Clausen function. g
to Ag.

The dependence of the DOS gy (F) for different realizations of the SC gap A(k) near the
saddle point is summarized in Fig. 4.8(b).

Now we come back to the question of whether line nodes at the Van Hove lines are consistent
with an entropy minimum. To clarify this issue, we need to take into account the k,-dispersion,
the energy integral in Eq. (4.78), and the DOS contributions of the other bands.

The k,-dispersion of the v band smears all characteristically 2D features of the DOS by the
scale of its energy variation deyy ~ 2 K [Eq. (4.100)]. The normal-state logarithmic singularity
becomes a peak. The gV'N oc v/E ascent is cut off to give a finite zero-energy DOS that is
because of E,,/deypy < 1 of the same magnitude as the normal-state DOS. Finally, the HLN
DOS attains a finite zero-energy DOS that is at most a factor of three or so smaller than the
normal-state DOS (since deyy/Ag ~ 1). The d7(FE) factor in Eq. (4.78) leads to a temperature
smearing that has a similar effect: the “effective DOS” that enters the entropy is not gg.(0),
but ge(E) averaged over F ~ kgT'. All in all, because of these smearing effects, vertical line
nodes at the Van Hove lines (0, +7/a, k,) do not suppress the entropy contribution coming
from the Van Hove lines, whereas horizontal line nodes can indeed suppress it.

is thus roughly linear in F up
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Figure 4.8: The Fermi surfaces of SroRuO4 at Van Hove strain 199 = eyg (a) and
how the Van Hove (VH) line (0, g,k:z) contribution to the density of states gg.
depends on the superconducting gapping (b) [31]. The Fermi sheets shown under (a)
are the k, = 0 cross-sections determined by our tight-binding model (Secs. 4.1.3, 4.1.4). In
the density of states gs.(F), only the contribution coming from the vicinity of the VH line
(0,Z,k) is included. This region is highlighted red under (a). Under (b), NS stands for
normal state (A(k) = 0), FG for full gapping of the VH line (A(k) = Ay), VLN for a vertical
line node crossing the VH line (A(k) x k;), and HLN for a horizontal line node crossing
the VH line (A(k) o k.). These correspond to Egs. (4.87), (4.89), (4.92), and (4.95),
respectively. The VLN case (with ¥ = 7/4) was calculated numerically. The parameter
values m; ' = 3200K, Ag = 3K, and A = 0.5 were used in all four cases. Note that the
Fermi energy (E = 0) is tuned precisely to the saddle point, so this depicts the density of
states at the Van Hove strain, shown under (a).

Because of the strain-dependence of T, the SC gap becomes €1g9-dependent at constant T',
peaking at Van Hove strain. A strong enough gapping of the o and 8 bands could then, in
principle, suppress the entropy more than the Van Hove singularities enhance it, resulting in
a minimum. To exclude this scenario, we have calculated the entropy for the case when the
a, 3, and 80 % of the v band are fully gapped A(k) = Ag, while the remaining 20 % of the ~
band that includes the Van Hove lines is fully nodal with a vanishing A(k) = 0. In particular,
for the total DOS we have assumed the form:

FE
g;g’t(E) =gva +O(F — AO)ﬁgresm

where gy is the normal-state DOS coming from the parts of the v sheet that are close to the
Van Hove lines and gyeg¢ is the remaining normal-state DOS. For the temperature-dependence
of the SC gap Ay we used the Ansatz

T.
Ao = 1.76 kpT, tanh (1.76, [ & - 1). (4.99)

(4.98)
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

Both gy (€100) + &rest(€100) o< S(€100,T)/T| w1, and Te(e100) are known experimentally. Only
the ratio gy /grest needs to be calculated, which we have done using the tight-binding model
of Sec. 4.1.3 whose coupling to strain is described in Sec. 4.1.4. One finds that grest(€100) 1S
roughly strain-independent, as expected. The entropy is calculated by evaluating Eq. (4.78)
with gl (E). The result of this calculation is that a minimum as a function of strain does
develop, but the drop in the entropy is 20 % too small when compared to experiment at 2.5 K.
Thus even in this worst-case scenario, where line nodes that are known [560-566, 642] to be
present in the system are neglected, the Van Hove lines must be gapped in some way to agree
with experiment.

The final conclusion that follows from all of these considerations is that the Van Hove lines
kyvyg ~ (0, +7, kz) must be either fully gapped or can at most have a horizontal line node
crossing them. Hence, we may exclude vertical line nodes at kyyg near Van Hove strain, as
previously suggested in Ref. [59]. This is one of the main results of Ref. [31]. That the heat
capacity jump is maximal at the Van Hove strain [593] also supports this conclusion. Vertical
line nodes away from the Van Hove lines are still possible.

To draw conclusions for the unstrained tetragonal system from measurements performed at
uniaxial strain €199 & ey, we rely on the assumption that the pairing states of the strained
and unstrained system are adiabatically connected. Measurements of the highly-sensitive
elastocaloric effect [59] and heat capacity [593] show no hints of a transition between two
different bulk SC states under [100] strain. By contrast, the onset of spin-density waves,
previously found through muon spin relaxation [625], is clearly visible in the elastocaloric data
of Ref. [59], shown in Fig. 4.6. So the elastocaloric effect is able to identify a variety of phase
transitions, as expected for an indirect probe of the entropy.

We may thus exclude all SC states of the unstrained system that are adiabatically con-
nected to SC states of the €1gp strained system which have a vertical line node at kyyg =~
(O, +7, k:z) [31]. Given that ejgo strain preserves all the symmetry operations that map the
Van Hove lines to themselves, as we shall see in Sec. 4.2.3, we may conclude that there are
no vertical line nodes at either (:l:g,O, kz) nor (O, +7, kz) in the unstrained tetragonal sys-
tem. Intuitively, this means that SRO’s SC takes full advantage of the enhanced DOS induced
by the Van Hove lines. Indeed, the drastic enhancement of 7. and B, under uniaxial pres-
sure [558, 559, 600, 616, 669] were suggestive of this conclusion long ago, but only with the
recent elastocaloric measurements of Ref. [59] could more conclusive statements be made [31].

4.2.2 Location of and dispersion at the Van Hove lines

Here we establish that the Van Hove lines are adequately approximated with (:I:g, 0, k‘z) and
(O,ig,kz), i.e., with straight vertical lines located at (:tg,O) and (O,ig). For a simple-
tetragonal lattice, the Van Hove lines are lines of high symmetry. However, they are not located
precisely on the boundary of the body-centered first Brillouin zone relevant to SroRuQOy4, which
could in principle allow for large deviations away from (ig, 0, k:Z) and (0, +7, kz) As we shall
see, the high anisotropy of SRO makes these deviations negligible, justifying the subsequent
analysis.

Van Hove points are points in momentum space where the gradient of the band energy &g
vanishes. In 3D, the solutions of Ve, = 0 are generically isolated points. However, quasi-2D
dispersions may yield Van Hove lines, that is, lines on which a number of Van Hove points are
situated of similar energy. The quality of the emergent Van Hove lines is quantified by how
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

well-aligned the Van Hove points are to a line and by how close the energies of the Van Hove
points are.

Consider the Van Hove line (O, g, k:z) Then for any two k = ((51%, =+ 0ky, kz) and k' =
R(g)k related by a symmetry operation g € Dy, € = €1 for any reciprocal lattice vector
G. Applying this to parity gives Vger, = 0 at the mid-points of the Brillouin zone faces,
which for body-centered tetragonal SRO are (0, - :l:%) These are the first two Van Hove
points. The positions of the other two Van Hove points are restricted by symmetry to be
at (0, o+ (5kVH72,O) and (0, o= 5kVH,2,j:27“). Reflection across the k, = 0 plane implies
Ok, €k = 0 in the k; = 0 plane and reflection across the k, = 0 plane implies Ok, e = 0 in the
planes k, = 0, i%”. If the system were simple tetragonal-periodic, then reflection across the
k, = 0 plane would imply 9, ex = 0 in the k, = 7 planes, making dkyy 2 = 0. Because of
the smallness of the characteristically body-centered hopping in SRO, which is always between
layers (Sec. 4.1.3), dky2 is very close to zero.

From the tight-binding model of Sec. 4.1.3, we may extract the following simplified expres-
sion for the dispersion of the v band near the Van Hove line (O, - kz):

2 2 2
a a T
cuo = bovm g = o (k= )
a? T ck,
— deyp cos ck, + — dkvm 2 (ky — —) cos .
mo a

(4.100)

Its form follows from symmetry; only the lowest powers in k;, k, and lowest harmonics in k.
were retained. Using the parameters of Ref. [594], we find that

WvH = 54 rneV, 55VH =24 K, aékVHg = 0.013,

1 1 (4.101)
m;' = 1100 K, my ' = 9300 K.

While this dispersion was derived from a model of unstrained SRO, it offers a good under-
standing of the effects of the k,-dispersion on the Van Hove line. The deviation of the Van
Hove points from the (7,0, k;)-line is characterized by dkvu2 < %’r, which is a factor of 500
smaller than the width of the Brillouin zone. Furthermore, the difference in the + band ener-
gies of the Van Hove points is given by deyy which is on the order of a few kelvins. We may
thus conclude that the four Van Hove points, illustrated in Fig. 4.9, together constitute a Van
Hove line (0,7/a, k) to a high degree of accuracy [31]. The same is true for the Van Hove
lines (0, —7/a, k) and (£7/a,0, k).

4.2.3 Behavior of superconducting states on the Van Hove lines

To see which SC states are excluded by the fact that vertical line nodes on the Van Hove lines
are incompatible with the elastocaloric effect data of Ref. [59], let us briefly recall which SC
states are possible [595-597].

As we discussed at length in Sec. 4.1.5, the multiband nature of SRO allows for a richer
set of possible SC states than usual. The main novelty is that the gap matrix A,g(k) can
have non-trivial orbital structure. As we found in Sec. 4.1.5, for the effective model of SRO
based on the to4(dy.|ds|dyy) orbitals of Ru, spin-orbit matrices belonging to all possible irreps
of Dy, exist, for both even- and odd-parity pairings (Tab. 4.8). The irrep of the total gap
matrix A(k) is determined by the product of the irreps of its momentum and spin-orbit parts.
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

(a) 3D Brillouin zone

sz

(b) kz = 0 cross-section

>

Yy

(c) zoomed-in (x2.5)

Figure 4.9: The body-centered tetragonal Brillouin zone of SRO (a), its k, = 0
cross-section (b), and the region around the (0, Z,k.) Van Hove line (c). Shaded
in blue is the simple tetragonal Brillouin zone. The red crosses are the (O z :I:%) Van Hove

Y a?

points. The blue dots are the (0, ® + 0kvH,2, 0) and (0,  —0kvu,2, :t%”) Van Hove points.
Together they constitute the Van Hove line (0, - k:z), drawn here with a dashed red line.

The displacement length dkvy 2 =~ 0.013/a is designated under (c).

Thus for all symmetry channels, generic SC states have non-trivial orbital structures and it
is not sufficient to just analyze the pairing wavefunctions. One needs to study the symmetry
properties of the spin-orbit matrices as well.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.9: The character table of the orthorhombic point group Dy, [170]. This is the
point group of SroRuO,4 when (100) uniaxial stress is applied on the system. The point group
in the absence of stress is Dy (Tab. 4.3). The irreps are divided according to parity into
even (subscript g) and odd (u) ones. To the left of the irreps are the simplest polynomials
constructed from the coordinates r = (x,y, z) that transform according to them. Primes
have been added on the irreps to distinguish them from Dy, irreps. Cs., Coy, and Cy, are
180° rotations around €., €,, and &, respectively. P is space inversion or parity. Mirror
reflections ¥, ¥, and ¥, are obtained by composing Cs., C,, and Cy, with P, respectively.

Doy, E Gy, Oy Oy P X, Xy p-

1, 22, 42, 22 19 1 1 1 1 1 1 1 1
Ty 1o 1 1 -1 -1 1 1 -1 -1

xz B, 1 -1 1 -1 R I

Yz B, 1 -1 -1 1 1 -1 -1 1
Yz A, 1 1 1 1| -1 -1 -1 -1

2 » 1 1 -1 -1 | -1 -1 1 1

y B, 1 -1 1 -1 | -1 R 1

T BS, 1 -1 -1 1| -1 1 R

Now we analyze which SC states of the €jgp-strained system gap the Van Hove lines suffi-
ciently strongly to be able to explain the elastocaloric experiment [59]|. Viable unstrained SC
states must be adiabatically connected to these states. As we shall see, in the arguments of this
section the key symmetry operations are those that map the Van Hove lines kv = (0, +7, k:z)
to themselves. As it turns out, although €19 strain reduces the point group from Dyy, to Doy,
whose character table is provided in Tab. 4.9, the symmetries that map the Van Hove lines to
themselves are the same for both Dy, and Dsyp,. They are listed in Tab. 4.10. Hence we may
do the whole analysis either with or without €199 strain. We have opted for the latter. Using
Fig. 4.10, one may translate all the results for irreps of Dy derived in this section, which is
based on Ref. [31], into results for irreps of Dyj,. Fig. 4.10 also specifies which irreps of Dy,
are adiabatically connected to which irreps of Dy, which brings us back to the initial Dyy
irreps.

Let us consider the Van Hove line (k, € R):

0
kvau=|7/a]. (4.102)
k.

For a SC gap matrix A, (k) to be able to gap the v band at kyy, both its pairing wavefunction

fa(k) and the projection of its spin-orbit matrix I'; onto the v band must be finite there.
The only point group symmetries g € Dy, that constrain f,(kyy) or the band projections

of I, are those that map the (O, o kz) line to itself, modulo body-centered reciprocal lattice
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

Dyp: Ai(x) Bi(x) Az E(z]y)
\ / \ /
Doy, Al () By (y) By (z)

Figure 4.10: How the Dy, irreps (top) reduce to Dy, irreps (bottom) in the presence
of €199 uniaxial strain. Parity stays the same so we have suppressed the g and u subscripts.
The pair (z|y) transforms according to the standard M¥(g) matrices of Eq. (4.61), Sec. 4.1.5,
that we also use elsewhere in the thesis (Sec. B.4.2).

vectors. One readily find that these are
Yaiky— ks,

2
Coey Syt ke o koo +

¢ (4.103)
Coy, T bz 5 —ks,

2
Cow, P+ ks s ks +—7T

Here, C;, Coy, Co. are rotations by 7 around z, y, and z, respectively, and ¥, = PCy;,
Yy = PCyy, Xj, = PCsy; arereflections. Given that Co, = X3, Coy = X3, and P = X,Co,
we may focus solely on the reflections and P (or Cy,). The other point group operations do
not yield any additional constraints. Their matrices are listed in Tab. 4.10. The strongest
constraints follow from X, because it maps k, — k.. In the simple-tetragonal limit, k, =
k., + 27” so kyy are on the Brillouin zone boundary and X, Cs. give strong constraints too.

Consider one of the point group elements g € Dy, listed in Tab. 4.10 and a k. . that g maps
to itself, modulo 47”. As written in Tab. 4.10, this means that g -k, , = k., mod 47”. In light
of Eq. (4.103), k. . may take the following values, depending on g:

o For g =3%,, all k., € R are allowed.

e For g = X, or Uy, no k., maps to itself in a body-centered system like SRO. In the
simple-tetragonal limit, all k. , € R map to themselves and are thus allowed.

e For g =X or Cyy, only k. . € {0, :I:%”} are allowed.
e For g = P or Oy, only k. € {£7} are allowed.

For such k. ., periodicity and the symmetry transformation rule of pairing wavefunctions
(Eq. (4.63), Sec. 4.1.5) give the following symmetry constraint:

dim ¢
Fa(0, % ks Z M, (0,2, k. ). (4.104)

Because all M¢(g) are diagonal (see Tab. 4.10), the above constrains each component of f,
individually. In particular, notice that whenever Mga(g) = —1, this constrains the pairing
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Table 4.10: The symmetry transformation matrices M¢(g) for all the irreps ¢ of the
tetragonal point group Dy, and for all the point group operations g € Dy, which
map the Van Hove line (O, g,kz) to itself. Highlighted red are the negative elements
which constrain various things to vanish during symmetry arguments. In the last column is
how the the &, coordinate of (O, . kz) gets mapped to itself under g, R(g) (0 z k:z)T +G =

s a?
( N k:z)T, modulo body-centered-tetragonal inverse lattice vectors G.

M (g)
g | Ay Ay DBig DBay E, Ay Aoy Bry Bay E, gk
101 1 1 1 (é ?) 1111 <(1) ?) k-
Co | 1 -1 1 -1 (é _01) 1 -1 1 -1 <(1) _01> —k,+ 2
Cy | 1 —1 1 -1 (_01 (1)> 1 -1 1 -1 (‘01 (1)) —k,
Co. | 11 1 1 (_01 01> 1111 <_01 01) k. + &
Pl 1 1 1 1 <(1) [1)) -1 -1 -1 -1 <01 01) —k, + 2
% | 1 -1 1 -1 <(1) _01> o1 -1 (01 ?) k-
Sy 1 -1 1 —1 (01 (1)> 1 1 -1 1 (é _01> k. + 2
Y| 1 1 1 1 (_01 01> -1 -1 -1 -1 ((1] (1)> —k,

wavefunctions f, (O, - k‘z,*) to vanish identically by symmetry. These negative elements are
highlighted red in Tab. 4.10. By going through all the irreps and point group operations,
we find the following symmetry-enforced behavior of f, (0, o k:z), depending on its irrep and
k, =k,

e f belonging to Asy, Bagy, A1y, and By, vanish for all &..

For (fi|f2) € Ey, f2 vanishes for all k., whereas fi vanishes only at k, =0, i%’r.

For (f1|f2) € Eu, f1 vanishes for all k., whereas fy vanishes only at k, = +7.

[as

For those (fi|f2) € Egy/, that are periodic under simple tetragonal translations (k.
k, + 27”), both components vanish for all k,.

f from irreps As, and By, vanish only at k, = 0, +7, and :I:%”, but are otherwise
unconstrained.

e f from Ay, and By, are completely unconstrained for all £,.
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

Next we study the spin-orbit matrices I',. We do so by considering the pairing of the band
eigenstates of the problem and focus on intraband pairing. To explore it, we need to project
the I'; onto the bands. Call ug,s the eigenvectors of the v band: Hyugys = €pyUrys With the
Hj, given in Eq. (4.23). The projection is then given by:

o = U Lot g =Y Pk ou(ioy)],, (4.105)
17

[Pa(K)]

where s,s" € {1,]} are the pseudospins. Since all three o, orbitals are even, U(P) = 1 and
we may always locally choose a gauge in which u_gys = ugys so that Py (k) = Pu(—k) =
prPd (k), where I'f = pr[,. In turn this implies that P, (k) has only the x4 = 0 component
for antisymmetric I'; (pr = —1) and only the p € {z,y,2} components for symmetric I',
(pr = +1).

Whenever a g € Dy, maps a k, to itself modulo periodicity, its symmetry transformation
matrix U(g) = O(g)®S(g) (Sec. 4.1.3, Tab. 4.4) commutes with the normal-state Hamiltonian
Hk:

U'(9)He,U(g) = Hp(g-1)k, = H, - (4.106)

This means that the interband parts of U(g) vanish. Here we are assuming that Hg g = Hy
is periodic, which entails a periodic momentum-space gauge.'” As for the intraband part, we
may choose a basis for the Kramers’ degenerate subspace such that it takes a spin-like form:

Ul U9tk = [S(9)] s (4.107)

or equivalently:

9) Uk s = Zukm (4.108)

Although such transformation rules do not apply to general spin-orbit-coupled systems (see
Sec. 1.3.1.2) even at high-symmetry points k,, one may verify that they hold for the Van Hove
lines in the effective to; model of strontium ruthenate of Sec. 4.1.3. Notice also that U(P) =1
so rotations and reflections act in the same way on the eigenvectors and Hamiltonian.

The symmetry transformation rule of spin-orbit matrices (Eq. (4.65), Sec. 4.1.5) now gives
the following constraint on the spin-orbit matrix projections:

dim ¢
ST(9)Pa(ky)S* (g Z M, (9)Ps (). (4.109)

For k, on the Van Hove line (O, - kz), the g from Tab. 4.10 constrain certain P4 (k) to vanish,
depending on the (anti-)symmetry, irrep, and k, = k. .. To write down the constraints more
explicitly, let us note that all M¢(g) are diagonal, that (ic,)S*(9) = S(g)(ioy), and also that
0o is a scalar, while o; transforms like a pseudovector (E4, @ Aag). Hence for antisymmetric
Il =-T,:

Pa(ke) = Mgy ()P (k). (4.110)

10This point is of more significance in systems where some of the orbitals have non-trivial Wyckoff positions,
as in the cuprates. See Secs. 2.4.1 and 2.5.7.1 in particular. The gauges used for SRO are always periodic.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

while for symmetric I'f = +T,:

PE(ke) = M (9IS (9)PE (),
PY (k) = Mag (9)MS(9)PY (k) (4.111)

Pi (ki) = M2 ()M, (9) P (K-

As previously, when P} is equal to minus itself due to some symmetry, it vanishes. The
(anti-)symmetry '} = prI', we shall denote with an irrep superscript s (a) when pr = +1
(pr = —1). Thus, for instance, I' € A‘fg are antisymmetric under transposition, whereas
I' € By, are symmetric under transposition. The symmetry-enforced behavior of Pl (O, - kz)
we may summarize as follows:

e I' belonging to A3, and Bj, have PO =0 for all k,.

(T'1|Ty) € Ey have P =0 for all k,, whereas P) = 0 only at k, = 0, i%ﬁ.

I' € Aj, and Bj, have ¥ = &P* = ( for all k;, and P =0 only at k, =0, +2T,

I' € A5, and B3, have % = 0 for all k;, and ¥ = 0 only at k. = 0,+22. P is

unconstrained.

142 = = = E2) 5 = z = YL
(T1|T'2) € E; have P} = Pf = P§ =0 for all k., and P§ = 0 only at k, = 0,+2%. The
remaining ¢ and P are unconstrained.

e The P of T from A‘fg and Bf, are completely unconstrained for all k.
In the limit of vanishing body-centered tetragonal hopping, the following P} vanish in addition:
e For (I'h[I2) € EY, PY vanishes for all k. so both P? are zero.
o ForI' € Afg and Bf,, " completely vanish for all k..
e For I' € A5 and B3, P¥ = 0 for all k., but P~ is still unconstrained.
e For (I'|T2) € By, P5 = 0 for all k., but P¥ and P are still unconstrained.

Owning to the fact that all characteristically body-centered hopping is necessarily between
layers and that these hoppings are very small in SRO because of its high anisotropy, the
vanishing P! listed above are very small for SRO, although not precisely zero. Using the
tight-binding model of Ref. [594], described in Sec. 4.1.3, we have quantified their smallness:
the vanishing P’ listed above are by a factor of 50 or more smaller than the largest possible
PE ~ 1, where all I, have been normalized to tr Fll“a = 1 for a fair comparison. Note that
we did not analyze odd-parity spin-orbit matrices because they do not arise in the to; model
of SRO, as follows from the fact that all orbitals are even; see Tab. 4.8.

Unlike the above anisotropy argument, arguments based on the d,, orbital character of the
~ band do not suppress any irreps, but only inform us on which I'; from within a given irrep
have large P

Finally, we synthesize the results found for f, and I',. This is done by going through the
multiplication table of Dy, irreps (Tab. B.5 in Sec. B.5 of Appx. B) and seeing which entries
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4.2 Constraints from elastocaloric measurements under [100] uniaxial stress

Table 4.11: Even-parity and odd-parity superconducting states that do not have a

vertical line node at the Van Hove line (0,Z,k.) [31]. These states are constructed
by combining pairing wavefunctions f,(k) with spin-orbit matrices I, according to the
multiplication table of Dy irreps provided in Tab. B.5 of Sec. B.5. An s superscript on a
spin-orbit matrix irrep means that the matrices are symmetric (I'" = +T"), whereas an a
superscript indicates antisymmetry under transposition. A zero component of £, indicates
that it vanishes identically on (O, . kz) Highlighted red are those f, that must be periodic
under body-centered translations, but not under simple tetragonal translations, to be finite
on (O,g,k‘z). For examples, see Tab. 4.7 from Sec. 4.1.5. Such f, have horizontal line
nodes at k, = 0, j:%“. Highlighted blue are those I', whose projections onto the 4 band are
suppressed by two orders of magnitude because of the weakness of body-centered interlayer
hopping. Such T', are unable to account for the elastocaloric experiment of Ref. [59], but
are listed for the sake of completeness.

Even-parity pairings that are finite on (0, = k:z):

® Avg(f) Biy(f) E4(f110)

A(lzg(r) Alg(rf) B19(Ff) Eg(rflm)

B‘fg(I’) Blg(rf) Alg(rf) Eg(rfl |0)
E5(T"[0) Ey(I'1f]0) Ey(I'1f]0) A1y(T1 /1 +0) & Byg(I'1 f1 = 0)

Odd-parity pairings that are finite on (O, = k:z):

® Ao (f) Bau(f) Ey(0[f2)
A, (D) Agu(I'f) By (I'f) EL (0T f2)
A3, (D) A (I'f) Biu(I'f) Ey(T' /2]0)
By, () Boy(T'f) Aoy (T'f) E, (0] —T'f2)
B3,(T) Biu(T'f) A1 (Tf) Ey(T f2]0)
B | BCafl=Tap) | BCainyg | TSR

yield a A,(k) with a finite v band projection. The results are summarized in Tab. 4.11,
which is reproduced from Ref. [31]. Tab. 4.11 is the main result of the current analysis (and
Ref. [31]). As mentioned, SRO’s anisotropy suppresses the blue entries of the table by two
orders of magnitude. This means that a A with a maximal value ~ kT, is way too small on
the Van Hove lines to explain the observed entropy quenching [59]. Hence the blue entries of
Tab. 4.11 are excluded as possible leading SC states as well.

From Tab. 4.11 we see that, among even-parity pairings, only A4, Big, and Ej irreps have
SC states that do not have symmetry-enforced vertical line nodes on the Van Hove lines.
Thus even-parity pairings must have admixtures from one of these three irreps to be able to
explain the elastocaloric experiment of Ref. [59]. It is worth noting that within these three
irreps, pairings with symmetry-enforced vertical line nodes on kyy do exist, like for instance

235



4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

A(k) = Aq(ioy)sinak, sinak, € BS ® Bag = Aig; the Gell-Mann matrix Ay is defined in
Eq. (4.70) of Sec. 4.1.5. So Tab. 4.11 also yields non-trivial information on the spin-orbit and
momentum structure of these Van Hove line-gapping admixtures.

One such piece of information is that E, pairing must be made of wavefunctions f, that are
body-centered periodic, but not simple tetragonal periodic. The lowest order such (d.|—d,.) €

E, is (Tab. 4.7):

< ak, . ak, . ck.| . ak,  ak, Ck‘z>. (4.112)

CcOS — sin —= sin —sin — cos —= sin
2 2 2 2 2

It is this pairing state, only allowed because of the body-centered tetragonal structure of SRO,
that opens a gap at the Van Hove line and that we cannot exclude based on the elastocaloric
data. In Ref. [578] it was shown that such a pairing state can be stabilized by a strongly
momentum-dependent spin-orbit coupling. A better understanding of the origin of such mo-
mentum dependence might help elucidate whether this state is a viable option for SRO’s SC.
In distinction, the E, pairing state

(sin ak, sin ck,| — sin ak, sinck;), (4.113)

which would be the only allowed one for simple-tetragonal lattices, cannot be the only pairing
state as it does not open a gap on the Van Hove line. An important difference between these
two types of states [Eq. (4.112) vs. (4.113)] is that the former always have horizontal line nodes
at k, = 0,£2.

In Figs. 4.11 to 4.15, we have plotted the Fermi surface-projections of a number of Van
Hove line-gapping even-parity SC states from Tab. 4.11. These have been constructed by
combining the six A{, and B{, spin-orbit matrices (Tab. 4.8) with the lowest order A4, Big,
and E, pairing wavefunctions (Tab. 4.7). Note that V2Ao + Ay = V21. A(k) constructed
from the highly suppressed EJ spin-orbit matrices (blue in Tab. 4.8) are not shown. Of all the
possible superpositions in the case of Ey pairing (see Sec. 4.3.2), we have plotted the chiral
ones as they are the most interesting because of the various evidence |93, 547-549, 624-626]
indicating TRSB. The most general Van Hove line-gapping A(k) belonging to A4, By, or
chiral F is a superposition of the depicted ones, plus higher order harmonics. In the figures
Ry = aky € [—m, 7], Ry = aky € [—m, 7], and k., = ck, € [-27,27x]. In the middle v sheet
plots, the Van Hove lines (ig, 0, k:z) and (0, +7, kz) have been highlighted red. Even though
the projections of some A(k) onto the 7 band might be small (shaded blue) near the Van
Hove lines [Fig. 4.11(b), Fig. 4.12(a)&(d), Fig. 4.13(c), Fig. 4.14(b), Fig. 4.15(a)], they are
only exactly zero at a certain %, for the A(k) € E, that have horizontal nodes at &, = 0, £2.
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I Ak

0 02 0.4 06 08 10 Amax

~

oy
Fo B

(d) A(k) = (Asoy — Asox)(ioy) € A

7y

Figure 4.11: Projections onto the Fermi sheets of Van Hove line-gapping supercon-
ducting states. &, = ak, € [-7, 7], ky = aky € [-7, 7], and k. = ck, € [-2m,27]. In the
~ sheet plots, the Van Hove lines (:l:g, 0, kz) and (0, +7, k:z) are highlighted red.
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0 0.2 04 06 0.8 10  Amax
& '
(a) Ag(lO'y)(COSfi, —cosky) € Aiq

i'll m

= (A¢0y + Ag0oy)(ioy)(cos ky — cosky) € Aig

i'll (118

(c) = (V2A¢ + Ay)(ioy)(cos kg — cosky) € Big

/ﬂml -

R

R

R

= A90,(ioy)(cos ky — cosky) € Big

Figure 4.12: Projections onto the Fermi sheets of Van Hove line-gapping super-
conducting states (continued). %, = ak, € [-m, 7], &y = ak, € [—m, 7, and
k., = ck, € [-2m,27]. In the 7 sheet plots, the Van Hove lines (:l:g, 0, kz) and (O, +Z, k:z)
are highlighted red.
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[ T AR
0 02 04 06 08 10 Amax
| I l m
(IJ ﬁl)
(a) = (Ao — V2A4) (i0y)(cos ky — cosky) € Big

i'll (e

= (A¢0y — Ag0oy)(ioy)(cos ky — cosky) € By

i“u' [

(c) A(k) = As(ioy) € By

a I 7 6
% I % % y
Ay o %
Rz

R
A(k) = (AﬁO'y + AgO'x)(iO'y) € Blg

R

Figure 4.13: Projections onto the Fermi sheets of Van Hove line-gapping super-
conducting states (continued). %, = ak, € [-m, 7], Ry = ak, € [—m, 7], and
k., = ck, € [-2m,27]. In the 7 sheet plots, the Van Hove lines (:I:g,O, kz) and (O, +7, kz)
are highlighted red.

239



4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy
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E“a' E m

\on+A4 10"y sin ff, cos k +icos k sin = ﬁ,)sm k. € By,
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0.6

éy
R

B
= Ag0,( 1cry sin = ﬁ, coslﬁ, +icos 7‘%, smlﬁ, )sm sk, € I,
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Figure 4.14: Projections onto the Fermi sheets of Van Hove line-gapping super-
conducting states (continued). %, = ak, € [-m,7|, ky = ak, € [—m, 7], and
k. = ck, € [—2m,2x]. In the v sheet plots, the Van Hove lines (:I:g,(), k‘z) and (O,ig,kz)

are highlighted red.
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Figure 4.15: Projections onto the Fermi sheets of Van Hove line-gapping super-
conducting states (continued). %, = ak, € [-m, 7|, Ry = ak, € [—m, 7|, and
k., = ck, € [-2m,27|. In the 7 sheet plots, the Van Hove lines (:I:g,O, kz) and (0, +7, kz)
are highlighted red.

Among odd pairings, all irreps have pairings without symmetry-enforced vertical line nodes
on kyg. However, the orientations of the Balian-Werthamer d-vectors [168] are non-trivially
restricted and the non-suppressed As, and Bs, pairings are necessarily made of characteristi-
cally body-centered periodic wavefunctions f,. They thus have horizontal line nodes.

In multiband systems with spin-orbit coupling, a d-vector is associated with each band in
its pseudospin (Kramers’) space. It is defined through:

u;rcns’A(k)u*—kns = ['d'kn : G(in)] (4114)

s's?

where ug,s are the Kramers-degenerate eigenvectors of the n-th band. They satisfy u_gns =
Ugns because U(P) = 1. We make the following gauge choice for the pseudospins:

U (1 @10, i = 103,
Ul (1® 02) ks = [1202] 4, (4.115)
u};ns,(l ® Oz)Ukns = [La0z + 02202] 4,

where t,, 1,0, € R. This is the closest one can make the pseudospins look like spins for

general momenta k. In general ¢, is not zero, nor are the d,;,d,. from ulms,(l ® Oy)Ukns =
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

[tyOy 4 0yz 04 + 0y-02] .. However, in SRO the only regions where 6,.,0yq,dy. are substan-
tially different from zero is at the nesting of the «, 8, and v bands at k, = £k, (see Fig. 4.4).
The explanation for this is the fact that spin-orbit coupling most strongly affects the band
structure there, as we discussed in Sec. 4.1.3.

Using the to, orbital-based tight-binding model of SRO that we introduces in Sec. 4.1.3
[Eq. (4.23)], we have explored the orientation of the -d g,-vectors on the «, §, and v Fermi
sheets. Everywhere except near the k, = %k, nesting of the sheets, we find that symmet-
ric spin-orbit matrices from 1D irreps have -dg, pointing along +é,, whereas (I';|T'2) from
E; always have in-plane dg;,. So the non-suppressed Ag, and Bg, from Tab. 4.11(b) have
d, || €.. Moreover, among odd-parity pairings not made of body-centered f,(k), A, and
By, pairings have d, || é; and E, pairings have in-plane d,. Given that body-centered
(f1lf2) € E, have horizontal line nodes, on the one hand, and that the spin susceptibility
is intimately related to the orientation of the Balian-Werthamer d-vector, on the other, this
information may prove to be useful in further narrowing down the odd-pairing SC candidates.

4.2.4 Discussion

The article [31] on which the current section is based was motivated by the measurements of
the elastocaloric effect of SraRuOy4 under strain which were reported in Ref. [59] (Fig. 4.6). The
elastocaloric effect measures, with high accuracy, the entropy derivative 0S(e,T)/9e. Above
T., the elastocaloric effect revealed a pronounced maximum in the entropy as function of (100)
strain €190. As demonstrated in Ref. [59], this maximum of S(e) can be fully accounted for
by the DOS enhancement that occurs when the Fermi energy crosses the Van Hove points
near the lines (O, +7, kz). Below T, the entropy maximum was found to transform into a
minimum (Fig. 4.7). This is only possible if the states near the saddle points of the electronic
dispersion open a gap as one enters the SC state. Hence, with rather minimal modeling, it
is possible to obtain information about the momentum-space structure of the SC gap from a
thermodynamic measurement.

In order to draw more detailed conclusions about the allowed pairing states, we performed
a symmetry analysis for a three-dimensional, three-band description of SRO. Here we focus
primarily on even-parity states, given the strong evidence for even parity in NMR measure-
ments [56-58]. From a simple two-dimensional perspective, one would conclude that the SC
state must open a gap at the Van Hove points (:tg, O) and (O, ig) However, to distinguish
the relevant pairing states, in particular those of the 2D irreducible representation E, that
transform like (dy.| — d;>), we must include the third momentum direction. It is well known
that the energy dispersion of SRO is strongly anisotropic. Indeed, our analysis shows that the
energy scale below which the three-dimensionality of the Fermi surface becomes important is
about one kelvin [Eq. (4.100)], fully consistent with magneto-oscillation experiments [537]. We
also show that the saddle points deviate by very small amounts kv < %’r from the lines
(ig,O, k:z) and (O, +7, kz) However, this need not be the case for the SC state. While the
single particle spectrum of SRO is highly anisotropic, it is possible that many-body interac-
tions that are responsible for the SC pairing couple different layers more efficiently. Hence, at
least in principle, one should not exclude a strong dependence of the gap function on k,; such
dependence is crucial for the (dy.| — d,.)-wave pairing states.

With these insights, we then turned to the symmetry analysis of potential pairing states. If
one assumes for a moment that the crystal structure of SRO is simple tetragonal, one is left
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

with only two possible even pairing states, namely, the s-wave state of A;4 symmetry and the
dy2_,2-wave state of By symmetry. Given that fine-tuning is required for s-wave pairing to
be consistent with the pair-breaking role of impurities [586-589], d,2_,2-wave pairing would
then appear to be the only natural pairing candidate. However, SroRuQy4 is a body-centered
tetragonal compound. The corresponding symmetry analysis now allows, in addition to dg2_,2-
wave pairing, for a (dy.| — dg.)-wave state of E,; symmetry like the one given in Eq. (4.112).

Our analysis does, however, allow us to exclude d,,-wave pairing states that transform like
Bag and g, (,2—y2)-Wave pairing states that transform like Ay, as sole pairing states. Such
states may at best be subleading contenders that could be added to the pairing wavefunction
at fine-tuned points of accidental degeneracy. In addition, we can exclude (dy.| — d;)-wave
pairing that is exclusively of the type given in Eq. (4.113). The nature of our argument does
not allow us to more precisely quantify how large these subleading dy,-wave or g,,2_,2)-
wave contributions are because they vanish precisely where the elastocaloric experiment is
most sensitive: at the Van Hove lines. Thus, while the elastocaloric measurements do not
allow for a unique determination of the superconducting order parameter symmetry, they do
constrain the available options. To finally resolve the nature of superconductivity in SroRuO4
requires a better understanding of the origin of time-reversal symmetry-breaking and of the
orientation of line nodes.

In the next section, we discuss a subsequent work [32] which reported strong evidence
against homogeneous time-reversal symmetry-breaking, and two-component superconducting
order parameters more broadly.

4.3 Constrains from 7. and elastocaloric measurements
under [110] uniaxial stress

A significant number of experiments performed on strontium ruthenate (SRO) suggest that its
superconducting (SC) order parameter has two components. On the one hand, there is the old
evidence indicating time-reversal symmetry-breaking (TRSB) in the SC state, as seen in muon
spin relaxation (uSR) [547, 548, 624], polar Kerr effect [93, 549], and Josephson junction [550]
experiments. As we shall explain here, TRSB in the SC state necessitates two components
with a complex phase difference. On the other hand, there is an old ultrasound study [630]
that found a jump in the cgg € Bay elastic coefficient. Such a jump can only take place when
the SC order parameter couples linearly to €;, € Ba4 strain, which is in turn only possible
for two-component SC. This we shall explain in more detail in Sec. 4.3.2. More recently, in
the wake of the landmark Knight shift study of Pustogow et al. [56], the TRSB signal in the
1SR rate has been reproduced [625, 626, 629] and found to split from the SC transition under
[100] and [110] uniaxial stress. Regarding cgg, from the data of Ref. [630] it is not entirely
clear that the sharp feature at 7, is a jump. Three years ago this has been confirmed [60,
61], albeit with estimates for the Acgg jump that differ by a factor of 50 between the two
ultrasound measurement techniques. Taken together, these two sets of experiments strongly
suggest that SRO exhibits a chiral two-components SC that couples linearly to €., strain.
Among even-parity SC states, this leaves only three options: s’ + idy,, Gry(a2—y2) +1dy2_y2,
and d, +1 dyz.l1 The degeneracy between the two components is accidental in the former two

HEor a list of all options, excluding accidental degeneracies, see Tab. 4.2.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

and symmetry-enforced in the latter (d,, +1id,. € Ey).

However, not all evidence is consistent with a two-component SC state, as we already
remarked during our literature review of Sec. 4.1.1. On the one hand, numerous experi-
ments [553-557, 627, 628, 631, 632] have searched for TRSB and found no evidence for it. On
the other, cross-checking against thermodynamic measurements [32, 59, 558, 559, 593, 600]
reveals inconsistencies with TRSB or linear coupling to €,, € Bag strain, especially if these two
phenomena are to be interpreted in terms of a homogeneous SC state. It is this cross-checking
that has motivated the study [32] whose results I present in the current section. Much of the
text of the current section has been recycled from Ref. [32].

As often happens when a large number of experiments are performed on a single material,
the results and/or interpretations of some experiments disagree. While it is appropriate for
theory to attempt to reconcile apparently contradictory results, the possibility of experimental
error must also be kept in mind. In the context of SRO, a noted example of the latter are early
NMR Knight shift measurements [542, 543|. As we reviewed in the introduction of this chapter,
a reduction in the Knight shift was measured at T, only after a subtle systematic error was
uncovered [56-58|. Notably, this development was preceded by experimental contradictions:
Pauli limiting was observed [604, 612, 613| which is at tension with the absence of a reduction
in the Knight shift [54]. It is therefore important to cross-check experiments to see whether
a coherent picture of SRO’s remarkable SC can be attained. In this regard, thermodynamic
experiments hold a privileged position which rests on their unambiguous interpretation and
well-developed measuring techniques.

When it comes to cross-checking, positive results are always more helpful as guides than
negative ones. Recently, Ref. [625] reported that the transition temperature of TRSB Trgrsp,
as seen in non-thermodynamic uSR measurements, splits from 7% under (100) stress. However,
high-resolution heat capacity [593] and elastocaloric [59] measurements performed under (100)
stress failed to resolve any anomaly at the reported [625] TRSB temperature. A Ginzburg-
Landau analysis of TRSB SC states (Sec. 4.3.2) moreover demonstrates that their 7, should
develop a cusp in its dependence on shear strain [677, 678|. Yet this cusp has not been
observed for uniaxial [100] stress (which induces €, — €, € Big4 shear strain), despite several
searches [558, 559, 600, 638, 639]. Reconciling the two within a Ginzburg-Landau description
requires considerable fine-tuning.

The subject of the current section is the cross-checking of the results of Refs. [60, 61, 629]
which has been carried out in Ref. [32]. Two main results were reported in Refs. |60, 61, 629].
First, a jump in the cgs € By elastic modulus at T was reported in ultrasound echo mea-
surements [60] and resonant ultrasound spectroscopy [61]. Second, uSR measurements [629]
found that the TRSB transition temperature Trrgp splits from 7, under [110] pressure with
a Trrsp < T.. Through Ehrenfest relations which we derive in Sec. 4.3.2, these two results
imply that the cusp of T,.(o119) and that the splitting of Trrsp away from T, under (110)
stress o110 should be easily observable, if their results are taken at face value.

In Ref. [32], high-resolution measurements have been carried out of both the magnetic sus-
ceptibility (77) and the elastocaloric effect under [110] uniaxial pressure. Within tight limits,
neither a cusp nor transition splitting is resolved in the data. As we show in Sec. 4.3.3, these
results cannot be plausibly reconciled with the observed jumps in cgg under the assumption of
a homogeneous SC state — the level of tuning implied is implausibly fine. The data is also not
consistent with the transition splitting seen in uSR [629]. In contrast, the data of Ref. [32] is
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in agreement with previous work under [001] and hydrostatic pressure [670, 679], confirming
thermodynamic consistency.

In the remainder of this section, we first we present the main experimental findings of
Ref. [32]. Then we carry out a general Ginzburg-Landau analysis of two-component SC states
which couple linearly to o € By, stress. Using the results of this analysis, in the final
Sec. 4.3.3 we examine the consistency and fine-tuning that is needed for the ultrasound [60,
61] and thermodynamic [32, 593| experiments to be in agreement under the assumption of a
homogeneous two-component SC state.

4.3.1 Experimental findings: no indications of a cusp or transition splitting

The main experimental findings of Ref. [32| are shown in Figs. 4.16 and 4.17.

As can be seen in Fig. 4.16, overall T, depends linearly on o119. This is expected because
uniaxial o119 stress implies 0., = 0yy = Oy = Oy = 0110/2 stresses, which in turn in-
duce not only the shear e = 2¢;, € By, component of the strain tensor ¢;;, but also Aiq
components (Sec. 4.1.4). By symmetry, ea,, are always allowed to couple linearly to the
SC order parameter. If a coupling x € A1g|<1>|2 is present in the free energy, this means that
the temperature T, at which the quadratic coefficient of the Ginzburg-Landau expansion be-
comes negative changes linearly with €4,,. By using the relations of Sec. 4.1.4, one may
show that the measured d7./do119 = 64 £ 7mK/GPa (Fig. 4.16) and the previously mea-
sured dT./dogor = 76 = 5mK/GPa [670] imply that d7¢./donya = 202 + 12mK/GPa, which
agrees with the d7./donyq = 220 & 20mK/GPa of Ref. [679]. The measurements are thus
thermodynamically consistent.

More significant is the fact that no cusp is resolved in T, at 0119 = 0. From the lower panel
of Fig. 4.16, we see that within experimental resolution 7 depends quadratically on o119, after
the linear dependence is subtracted. For comparison, if we had a two-component SC order
parameter (®1]|P2), it would be able to couple linearly to eg € Bag through a term of the form:

66(@7Dy + D3D;) = (|04 7 — [0 P), (4.116)

where &4 = (®; + ®)/y/2. Hence the quadratic coefficients of ®, and ®_, which are equal
at eg = 0, would be offset in opposite directions and only one of them would become negative
at T, in the presence of finite ¢ strain. The associated transition temperature would therefore
grow linearly for both positive and negative €g, with the following dependence near o119 = 0
(06 = 0110/2 = ce6€6):

T =T+ —— . - 4.117
c(o110) 0 + dO_HOUllo + Qo los| + ( )

dT, ‘ dT,
In contrast, in Fig. 4.16 we find that the the quadratic dependence goes downwards. Even if
we imagine that internal strain inhomogeneities smear the cusp o |og|, and they would have
to be very large, on the order of ~ 0.3 GPa, to do so, we should still see some dip in T, — T}
at 0110 = 0. None is observed, and if we try to fit one (dashed black line in the lower panel of
Fig. 4.16), we obtain the following upper bound on the cusp:

dT,

<2-65.5GPa-0.003KGPa~! = 0.4K. (4.118)
do110

‘ dT.
= 2cg6

deg
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Figure 4.16: Dependence of the superconducting transition temperature 7, on (110)
uniaxial stress o110, as determined by magnetic susceptibility measurements [32].
In the bottom panel, T, is displaced by linear fits T;(o110) = To; + 0io110 With T; =
(1.464,1.397,1.477) K and ¢; = (0.0719,0.0679,0.0586) K GPa~! for samples i = (1,2,3),
respectively. T ; have been intentionally chosen to vertically offset the different samples for
clarity. The solid black line is the curve 0.0045K — 0.01 K GPa~!|o110|, while the dashed
black line is the curve —0.0025 K +0.003 K GPa~!|o110| — 0.006 K GPa~2(0110)2. The cusps
of these two curves give estimates for cusps in T, below experimental resolution. The plotted
data is available at [32].
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Figure 4.17: Elastocaloric measurements of SrosRuO4 as a function of temperature
T as a small ¢ strain is adiabatically varied along the (110) direction [32]|. For
clarity, all curves apart from the black ones have been shifted vertically with respect to each
other. The colors of the curves indicate the average (110) uniaxial pressure o119 that is
applied on the sample, as designated in the plots. The plotted data is available at [32].
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Here we used the cgg value of Ref. [61], listed in Tab. 4.6. In the article itself [32], a different
procedure was used for estimating the upper bound that gave a more conservative upper

bound:

‘dTC <1.3K. (4.119)

€6

From the lower panel of Fig. 4.16, we see that this is roughly the bound that one can infer
from sample 3. Sample 2 gives a tighter bound [Eq. (4.118)], while sample 1 gives a looser
bound. In the remainder, we use the bound (4.119).

As already discussed in Sec. 4.2.1, the elastocaloric effect is the effect of adiabatic changes
in the strain ¢; inducing changes in the temperature. More importantly for the current
discussion, the associated quantity [Eq. (4.77)]

oT T 08

= — 4.12
86@' S Ce(T) 8eij T ( 0)

is sensitive to phase transitions and it can be measured with a higher signal-to-noise ratio than
heat capacity [59, 593]. The results are shown in Fig. 4.17, reproduced from Ref. [32]. The
details of how these results were obtained from the measured thermocouple voltage can be
found in the article [32]. Evidently, only one main transition is observed in the elastocaloric
effect, with apparently no visible sign of uniaxial pressure-dependent splitting of the main
transition. Any structure in the transition that is seen at zero pressure (likely due to slight
inhomogeneity of the strain field and/or defect density) remains the same at non-zero pres-
sure. Thus no evidence of a second transition is present in the elastocaloric effect [32]. With
additional assumptions, one can make statements on how finely tuned the second transition
would have to be to evade detection. We refer the interested reader to the article [32] for
this. Below we mainly analyze the implications of the bound (4.119) when compared to the
observed jumps in the cgg elastic modulus [60, 61].

4.3.2 Ginzburg-Landau analysis of two-component superconducting states

In this section, we analyze the response of a two-component order parameter ® = (®y, $o)7
to 06 = 04y shear stress within the Ginzburg-Landau framework, under the assumptions of
homogeneous strain and superconductivity. While the analysis of a symmetry-protected two-
component order parameter had already been done for the Dy, point group [60, 61], the case of
accidental degeneracy has not been analyzed in the literature to the degree of detail required
for the analysis of Ref. [32]. Here we reproduce the analysis of Ref. [32] with more elaborations
and with a more elegant parametrization.

The case of a symmetry-protected two-component order parameter corresponds to the two-
dimensional irreducible representations £, and E, whose wavefunctions we may write as (d,.|—
dy.) and (pg|py), respectively. The unusual ordering for the E, irreducible representation
(irrep) is to ensure that the two components transform under the conventional transformation
matrices which we consistently use through the thesis; see Egs. (B.43) and (B.44) of Sec. B.4.2
or the Eq. (4.61) of Sec. 4.1.5.

Accidental degeneracy could, in principle, be between any pair of one-dimensional irreps.
Because of ultrasound experiments [60, 61|, we consider only those degenerate pairs that couple
linearly to og € Bag, which are namely Ajg(s) ® Bag(day) and Big(dy2_y2) ® Ang(guy(z2—y2))-
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Table 4.12: Irreducible representations (irreps) of the Dy, point group under which
the bilinear forms T, := <I>Tcrut1> transform. The bilinears are constructed from a two-
component order parameter ® = ($1, $2)T which belongs to the 2D irreps E,, on the left,
whereas on the right ®; » belong to two distinct 1D irreps (; 2, respectively. The 4 (—) irrep
superscript indicates evenness (oddness) under time reversal. We only analyze accidentally
degenerate pairs whose (1 ® (2 = Bay.

®cE,, Q1 e, P2
bilinear irrep bilinear irrep
To Af To AT,
T, Bj, T, | (Gee)t
Ty Agg T, (G ® )~
T, By, T, A7,

Odd-parity 1D irrep pairs, such as A1y (kz€; + kyéy) @ Boy(k.€éy + kyé;) and By, (ky€, —
kyé,) ® Aoy (ky€é, — kyé;), are also in principle possible, but are not deemed likely due to
NMR Knight shift [56-58] and Pauli limiting [604, 612, 613] experiments, as we discussed in
Sec. 4.1.1. Formally, the analysis is identical for even- and odd-parity SC states, and precisely
which pair of accidentally degenerate 1D irreps we consider does not matter, as long as the
product of their two irreps is Byy. Quadratic coupling to og does not induce a jump in the
shear elastic modulus cgg nor does it split the transition.

Before we proceed with the Ginzburg-Landau analysis, let us first broadly sketch how the
SC transition is expected to split under €g strain, depending on the symmetries. This is
summarized in Fig. 4.18. Let us introduce the bilinear forms:

T, :=®'0,®, (4.121)

where o0p is the 2 x 2 identity matrix and 0, , . are Pauli matrices. The transformation
properties of T, are are easily deduced with the help of Tab. B.5 from Appx. B and we have
summarized them in Tab. 4.12. A sufficient condition for a cusp in T,(0¢) is that there exists a
T, that transforms like the shear strain og € BZ], where the 4 superscript indicates evenness
under time reversal (TR). In our case, this is only possible for T,. If T, acquires a non-zero
expectation value below T, at eg = 0, then €g strain acts like a conjugate field that lifts the
degeneracy between +(T, ), and only one transition takes place since the symmetry associated
with T, is already broken. Moreover, the transition between the +(Y,) states as a function of
€6 at fixed T' < T¢ is first-order. This corresponds to the Byg-nematic column of Fig. 4.18. If,
on the other hand, T, is not the bilinear that acquires a finite expectation value below T, at
€6 = 0, an additional symmetry can still break, resulting in a second transition. This second
transition can be a nematic one, as for the B,-nematic states of £, or E,, or a TRSB one. In
the Bis-nematic case, in going from the ®; £ ®5 states at finite eg above 75 into the ®1 + cP9
with ¢ # %1 states below T3, it is the diagonal rotation symmetry Cyq, : ®12 +— P21 that
breaks down. Notice that this symmetry is present even when o, or o119 stress is applied on
the system. This symmetry does not mix the two components in the accidentally degenerate
case, Caq, : P12 — £Pq 2, and is therefore always broken, which explains the crossover shown
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Figure 4.18: Temperature 71" vs. shear strain ¢ = 2¢,, phase diagrams for various
possible superconducting order parameters [32]. The first column specifies the two
order parameter components (®q,®Ps). At eg = 0, they condense into ®; + i®y for the
time-reversal symmetry-breaking (TRSB) case, into ®; + ®; for the Bys-nematic case, and
into @1 or @5 for the no coexistence/Bi4-nematic case. In the last row the precise ordering
does not matter because there is no linear coupling to e strain. For (dy., —d,.) € E4 the
two components are degenerate by symmetry, while for the other cases the are degenerate
by accident. g is a shorthand for g,,,2_,2) € Azg. In all panels, single black lines indicate
second-order transitions, double lines indicate first-order transitions, and color gradients

indicate crossovers.

in Fig. 4.18(f). Quadratic coupling to € is incapable of splitting the transition for the simple
reason that (eg)? € Afg transforms trivially under symmetries. Hence no splitting or cusp is

found for SC order parameter which can only couple quadratically to es [Fig. 4.18(g)].
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The Ginzburg-Landau expansion of the free energy in the absence of stress is given by
- a a Vg 0
F=Fy+ 500+ 50+ o%:y Z ST+ Yo, (4.122)
II’L: bR~ Bl

where F), is the normal-state free energy. From Tab. 4.12 and the irrep product Tab. B.5, it
is straightforward to confirm that this is the most general form of an invariant (Afg) function
that is quadratic in T, (quartic in ®). Due to the Fierz identity

o= > 717 (4.123)

1=T,Y,Z
there is a redundancy between the vuTi terms that we eliminate by setting
vg = 0. (4.124)

Note that this is different from Appendix E of Ref. [32] where v, was set to zero. As it turns
out, setting vy to zero results in simpler and more symmetric expressions.
In the case of a symmetry-protected degeneracy, Y, transforms under By, and therefore

a=v=0 for symmetry-protected ® € E,,,. (4.125)

Below the transition temperature T, the quadratic coefficient changes sign. To leading order
in temperature, a(7') is thus linear in 7" with a positive slope a@ > 0:

a(T) = (T — Tio) &, (4.126)

whereas the quartic coefficients are T-independent.

When ®; 5 belong to two 1D irreps, T, transforms trivially and both a and v are allowed
to be finite. However, since ®; and ®s are unrelated by symmetry, we may rescale them
(D1, ®2) 5 (sB1, 51 ®s) by a factor s = (v, — 0)/%/(v, + ©)/® so that after the rescaling

7=0, (4.127)
which we henceforth assume. Regarding d, in the expansion F = ay(T — Teo1)|®1]> +
ao(T — TC072)|<I>2\2 + .-+ the fine-tuning of the two transition temperatures corresponds to

the requirement that Tco 1 = Teo.2 = Tro. Hence a(T) is given by Eq. (4.126) with a = a; + as,
while
a(T) = a xa(T) (4.128)

for a T-independent coefficient a = (a1 — a2)/(a1 + G2). o can take any value in between —1
and 1 and reflects the absence of a symmetry transformation connecting ®; and ®5. Thus in
the symmetry-protected case the only formal difference is that & = 0, given that © = 0 in both
cases.

Let us now include elasticity. When strains ¢; are present in the system, they couple to the
superconductivity via

2
Fo=> 3" Xiaedidy, (4.129)

i=1 a,b=1
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

where Ay are the coupling constants and €; are in Voigt notation (Sec. 4.1.4). As it turns
out, when the elastic free energy is quadratic in €;,

6
1
F6 = 5 'Zl Cij,0€i€5, (4'130)
©J=

one may decouple the elastic and superconducting parts of the free energy, greatly simplify-
ing the free energy minimization problem. Here ¢;;¢ is the elastic tensor in the absence of
superconductivity. This decoupling is accomplished by introducing the “external” strain

6 2
€0 = € + Z Z Ci_j}o)\jabq);q)ba (4.131)
7j=1a,b=1

which is decoupled from ® and directly related to the external stress:

6
€0= Y Cioo; (4.132)
j=1

It is the strain that would be obtained under a given set of stresses in the absence of super-
conductivity.

In practice, the difference between €; o and the total strain ¢; is negligible for SroRuOy4: the
larger of the two reported values of Acgg is ~ 10™2cgg 0 [60, 61], and the experimental upper
limit on any spontaneous nematic strain is on the order of 1078 [Eq. (4.183)], far smaller than
the scale of the strains applied during experiments. For this reason, during our presentation
of the experimental results of Ref. [32] (Sec. 4.3.1) we made no distinction between €; g and
€;, nor shall we distinguish the two during our analysis of Sec. 4.3.3. Here, we retain this
distinction to be able to calculate the jump in the shear modulus Acgg.

In the presence of o4 external shear stress, the total free energy after decoupling therefore
equals

F=F,+ Fq+ Fao, (4133)
where the elastic part is
1

Feo = 5666706270 — 06€6,0 (4.134)

and the superconducting part is

a a Vg an2 Vy ~r2 Vz An2 0—6)\6

Foo==T =1, +—7 —=7 =T T,. 4.135
20 = 5 To+agTe+ 1o+ 7T + Z+066’0 z ( )

The form of the coupling to gg € B;g follows from Tab. 4.12. For the accidentally degenerate
case, here we assumed that (; ® (2 = Bgy. As already remarked, o = 0 in the symmetry-
protected case, while for accidental degeneracies a can take any value in between —1 and 1.
By enacting (®1, ®2) — (P17, —P3), T, — —T, so we can always make

X¢ > 0, (4.136)

which we henceforth assume. In shifting from ¢; to €; 0, the quartic coefficients v;, vy, v, have
been renormalized.
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

The minimum of the elastic free energy is Fg = —%C66706g70 with €50 = 06/c66,0-
To find the minimum of Fgg, we use the spherical parametrization

D, cos 2
= 2 4.137
<(I)2> 0 (sin g ew> ( )

in terms of which

T sin ¥ cos
Y=(T,| =23 sindsing | . (4.138)
T, cos v

8

Evidently, all three v, , . must be positive if the free energy Fgo is to be bounded from
below because otherwise we could orient Y along the negative direction to get Fpg — —00
as @9 — +00. For later convenience, the v, vy, and v, parameters we write in the following
symmetric manner:

ve = (14 K+ V3K )w,
vy = (1+r — V3K )w, (4.139)
v, = (1 —2K)w.

The u, 7, and ' parameters previously employed in Ref. [32] are related to our parameters
through v, = (1 +~v+9")u, v, = (1 +~v —9')u, and v, = wu, which is less symmetric.
The condition that vy, . > 0 is equivalent to w > 0 with (k,x’) constrained to lie within
an equilateral triangle centered at zero. This physical phase space of the Ginzburg-Landau
theory is drawn in Fig. 4.19.

The SC free energy in spherical coordinates attains the form:

Fyo = AW, 9)5 8 + W (0, ) S ¥, (4.140)
where
A0, p) =14 acos(V) + Bsin(V) cos(p), (4.141)
W (0, ¢) =1 — 2k + K(p) sin?(¥9), (4.142)
K(p) = 3k + V3K cos(2¢). (4.143)

Here we have introduced the shorthand:

2)\666 0 2)\606
— 0 _ . 4.144
& a c66,0(T — Teo)a ( )

B is the main parameter through which the temperature 7" and external strain € enter the
analysis. The saddle point equations for the non-trivial solution whose
2 aA(ﬂ7 90)

Pl = ——— L 4.14
0= Tuw(a,) " (4.145)
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

are given by:

BV, )
2A(0,¢) |’
. : W (9, ¢)
0 = sin(9J) cos(V¥) K () + [asin(?) — B cos(p) cos(P)| ——=.
(9) cos(9) K () + fxsin() — eos(ip) cos(9)] 4
In light of the Fierz identity (4.123), the saddle point equations can also be formulated in
terms of the Y bilinears directly:

0 = sin(ip) sin(9) | V3 &’ cos(p) sin(1)
(4.146)

(a+v:Y0)Ty = —aBYo,
(a+v,To)Y, =0, (4.147)
(a+v,Y9)Y, = —aay,

where Yo = /T2 + T2 4+ T2 = &F > 0.

4.3.2.1 Solutions in the absence of B, stress (o5 = 0)

In the absence of applied stress (8 = 0), these saddle point equations are easily solved. They
give three classes of solutions.

e No coexistence (@12 only) solutions whose ® has only one finite component:

& = ®, (é) or @ <(1)> (4.148)

Le,9=0ormand T =+ <I>(2) é.. In the case of symmetry-protected degeneracy (a = 0),
the @1 only and ®5 only ground states are degenerate because of the diagonal rotation
symmetry Caq, : @12 +— P21 which continues to be a symmetry in the presence of og
stress. For ® € E,,, the two solutions we may thus identify with B;g-nematic order.

e DBs,-nematic solutions whose

9
COS 5
d=07 2 4.149
0 (j: sin g) ( )

with a ¢ = arccos( > and ¢ = 0 or 1. X = ®F(L£sindé, + cos?é.). Here

Vy — Uy
the relevant symmetry operations are 180° rotations around the x and y axes which act
according to (@1, ®2) — £(P1, —P2).

e Time-reversal symmetry-breaking (TRSB) solutions whose

s
cos 5
=0 X 4.150
° (i isin 3) (4.150)
. avy m 901 e aa . .
with a 9 = arccos and ¢ = :I:E. Y = O5(E£sind é, +cos v é;). Time-reversal
Uy — Uy

acts on ® through complex conjugation: (@1, ®2) — (P, %)
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

K

R\v

[] no coexistence

[ ] unstable ] Bag-nematic

[C] TRSB

Figure 4.19: The phase space of the Ginzburg-Landau theory for accidentally degen-

erate two-component superconducting order parameters (Ja| > 0) in the absence
of strain (06 = 8 = 0). The color indicates the global ground state, as specified by
Eqgs. (4.148), (4.149), and (4.150). The region outside the equilateral triangle is unstable on

the quartic level. In the no coexistence region, ®; (®2) is preferred for @ > 0 (a < 0). For

—lo
? 3+|af
cides with the origin 0 and the ®; 5 solutions of the no coexistence region become degenerate
and can be identified with Bjg-nematic order.

symmetry-protected order parameters, a = 0 so the triple point (k’, k) = <0 > coin-

The free energy values for these solutions are:

( (1 2
ﬂ, for ®; only,
Vy
1— 2
2 %, for ®5 only,
Foo= —— N 9 (4.151)
4 1 «@ .
— + , for Bag-nematic,
Vp Uy — Ug
1 2
=+ % for TRSB.

\Vy Uz — Uy

For the preferred global minimum, Y points in the “softest” direction whose quartic coefficients
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Uzy,» are the smallest, as one would intuitively expect. To be more precise, introduce the set

1-2
Y = (fum, Vy, 1:7()4) =w X (1+/<;+\/§/<;’, 1+r— V3K, 1+|o’j|) (4.152)

Then the global minimum is

e &, only when min7v = vz and o > 0,
14+ |«

e ®5 only when min7 = Y anda< 0,
1+ |of

e DBsg-nematic when min?" = v;, and
e TRSB when min 7" = v,.

The corresponding phase diagram is shown in Fig. 4.19. For vanishing «, the triple point
is moved to the origin and the no coexistence region attains two degenerate Bjgs-nematic
solutions.

4.3.2.2 Solutions in the presence of By, stress (o # 0)

First, let us consider T' > T,y. In this case, given that a = (T' — Te9)a > 0, a non-trivial
solution with Fgo < 0 is only obtained when A(J,¢) < 0. By minimizing Eq. (4.141), we
see that the minimum of A(d,¢) is 1 — y/a? + 32 and has ¢ = 0 or m with ¢ # 0. This
corresponds to Byg-nematic order. Hence the upper transition occurs for

8] = Be = V1-a?, (4.153)

which translates to 5

Vi
and the symmetry of the state is Bpg-nematic. In the symmetry-protected case (o = 0),
9 = —%W sgnf = —%W sgn og, while for o # 0 the angle 9 takes values in between 0 and
—msgn 3 = —mwsgnog.

Now consider reducing T below T,. Asillustrated in Fig. 4.18, a second transition takes place
when the ground state breaks time-reversal symmetry, whether the degeneracy is symmetry-
protected or not, and when the ground state is Big-nematic. In the latter case, the degeneracy
must be symmetry-protected because only then is the (®1, ®2) — (P2, P;) diagonal rotation
symmetry present which forbids a smooth crossover between B, and Byg-nematic states.

To determine the lower transition temperature 75, we need to solve the saddle point equa-
tions (4.146) and figure out which solution yields the smallest free energy.

We start with the nematic case. Its ¢ = 0, while its ¥ is determined by the transcendental
equation:

Agle
T, = T 4 20100

(4.154)

S cos(9) = <Uw — 1> cos(¥) sin(9) + aZ sin(?). (4.155)

(% (%

For « # 0, this equation cannot be inverted to get () in closed form. However, plotting 5 as
a function of ¥ is just as instructive, as we have done in Figs. 4.21 and 4.20. By inspecting this
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Figure 4.20: The evolution of nematic (¢ = 0) saddle point solutions as a function
of B = (2X¢/a) - €60/(T — Teo) when Bog-nematic states are the ground state for
vy /v, = 0.5 and o =0 (a) and for v, /v, = 0.5 and a = 0.02 (b). Solid lines are stable
solutions, while dashed lines are unstable solutions, of Eq. (4.155). Black (red) indicates the
portion where T' < Tpy (T > T,9). The ¥ € (—m,0) part corresponds to €59 > 0, whereas
for strain €50 < 0 the angle ¥ € (0,7). The arrows indicate the direction of the evolution
as the temperature is lowered. The red dots are the initial solutions at the upper transition
T = T,, while black dots are the final solutions in the absence of strain €59 = 0 (formally
T — —o0). The . and [y are provided in Egs. (4.153) and (4.156).

equation (see figures), one may readily confirm that it has two solutions for large |/3|. When
|3] becomes smaller than
— 3/2
gy = e =] [1 - IDCIQ/?’} , (4.156)

z
two additional solutions may appear if

lorfvy

X =

— (4.157)
is smaller than 1, |X| < 1.

As can be seen from Fig. 4.20, when the 0 = 8 = 0 ground state is Bag-nematic, o
of the global minimum changes smoothly with temperature at a fixed og and there is no
second transition. The same happens when ®; or ®5 are the ground states and o # 0
[Fig. 4.21(b)&(c)]: we have a smooth crossover. This follows from the fact there is no symmetry
which would prevent such a crossover.

When the ground state is Bjg-nematic and o = 0 [Fig. 4.21(a)|, Big-nematic solutions
overtake the Bag-nematic solutions below |3| = f2 = (v, — v;)/v;, yielding

_ )\6‘66,0’ 2’UZ

Ty =Ty (4.158)

UJ:_UZ.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

B

Figure 4.21: The evolution of nematic (¢ = 0) saddle point solutions as a function
of B = (2X¢/a) - €60/(T — Teo) when no coexistence (B;,-nematic) states are the
ground state for v,/v, = 1.5 and o = 0 (a), for v, /v, = 1.5 and a = 0.02 (b),
and for v /v, = 0.8 and a = 0.5 (c). Solid lines are stable solutions, while dashed lines
are unstable solutions, of Eq. (4.155). Black (red) indicates the portion where T' < Ty
(T > Teo). The ¥ € (—m,0) part corresponds to egg > 0, whereas for strain esg < 0 the
angle ¥ € (0,7). The arrows indicate the direction of the evolution as the temperature is
lowered. The red dots are the initial solutions at the upper transition 7' = T, while black
dots are the final solutions in the absence of strain €59 = 0 (formally 7" — —o0). The S,
and fg are provided in Eqgs. (4.153) and (4.156).
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

When the ground state is TRSB with symmetry-protected degeneracy:

Xél€s0] 2y

Ty = Tu — (4.159)

a Uy — Uy
Along the line v, = v, (k' = v/3 k) that is the boundary between the By, and TRSB regions
of the e = 0 parameter space, these two expressions for Ty agree. When the ground state is
TRSB with accidental degeneracy:

Xél€so]  2vy Uy — Uy
a Uy — Uy \/(vz —wvy)? — a?v?

In the TRSB case, one may solve the saddle point equations analytically in closed form:

Ty = To — (4.160)

¥ = arccos< ik’ >, (4.161)
vy — Uy
A 2 —
¢ = Farccos 60 _=U Ve (4.162)
@ vy Jo, - ,)? - a2
2/ 2 N2
Fao = _“< + 2 > _ 660 (4.163)
4 \vy vy—y Vg — Uy
4.3.2.3 Ehrenfest relations
The jump in the heat capacity across the superconducting transition is given by:
AC d*F.
2= 20 . (4.164)
Teo oT T=T0,06=0
From the free energy expressions of Eq. (4.151):
( 1 2
M, for ®; or @4 only,
Uy
ACO (:“L2 1 a2
= —< — for Bog,- ti 4.165
Too 5o + ——— or Byg-nematic ( )
1 a?
— 4+ , for TRSB.
Uy Uz — Uy
The shear elastic modulus cg¢ below T is given by
1 1 O*F.
— == . (4.166)
C66 €660 905 |7 5e=0

The jump Aces = c66,0 — Co6|T=T,, is the difference between cgs just above T,y and that just
below it. Since Acgg is so small, below we use 1/cgs = 1/ce6,0 + ACGG/C%&O.
When the ground state is ®; or @4 only,

1+ |af
(1+ |a))vy — v,

Acgs = 2)\2 (4.167)

259



4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

This is derived by solving Eq. (4.155) for small 5. In the case of symmetry-enforced degeneracy
(ae = 0), that is, Big-nematic ground states, one obtains the following Ehrenfest relation:

dT,
deg o

dTs

. 4.168
deg o ( )

A666 =

TcO

In the general oo # 0 case, we could try using T, instead of Ty above, but the corresponding
dimenionless ratio

AC, | dT. || dT, A +]a)X =1 '
Teo |deg,o||desyo

can be any positive real number, depending on the values of o and X = |a|vy/(v, — vy) €
(—o00, —|a]) U (1, +00) which we do not know.
When the ground state is Bag-nematic, by solving Eq. (4.155) one finds that

1+ x3/|a|
Acgg = 202 —— 111 4.1
C66 6 on(1 — X2)’ (4.170)
and therefore )
Acgg _ (1 -« )(1—|—x3/|a|) (4.171)
ACy| dT. || dT. (14 |a|X)(1 —2X2) ° '
Teo |deg,o||desyo
where
0 < X= lafo, < 1. (4.172)
vV, — Uy

When o = X = 0, this expression reduces to the standard Ehrenfest relation. The stability
condition for Bag-nematic order corresponds to 0 < X < 1 indicated above and the right-hand
side can equal any number between (1 — a?) and +oo for o # 0 and X in this range.

When the ground state is TRSB, the second derivative of Eq. (4.163) with respect to €60
yields

1
Aces = 203 : 4.173
Co6 ey ( )
The corresponding Ehrenfest relation takes the form:
A VI—aZ/1— Y2
66 - a L (4.174)
ACy | dT, || dT5 1+ |alY
Teo |deso || deg,o
where
0 < Y= afo, < 1 (4.175)
Uy — Uy

In the 0 < Y < 1 region where TRSB is the ground state, the right-hand side of Eq. (4.174)
takes values in between 0 and 1, and for a = 0 equals 1.
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

4.3.2.4 Ratio relations

Here we show that the ratios of the jumps at the upper and lower transitions are related.
These relations hold only for the symmetry-protected case («« = 0). The heat capacity and
elastic modulus jumps we shall denote AC, and Acgg . at the upper transition (T' = 1), and
AC and Acgp 2 at the lower transition (17" = T3), respectively.

The jumps at the upper transition are (o« = 0, o # 0):

AC, &2

= 4.176
T. 205 ( )
202
Acgp e = TG (4.177)
€T
The jumps at the lower transition are (o = 0, og # 0):
Vg — Uz .
. , for Bj,-nematic,
AGy _ &%) v, ! (4.178)
T 2 1% 7% o TRSB
'U;E'Uy ) )
%, for Bi4-nematic,
Acgss = 202 o\ TV (4.179)
—Y _ for TRSB.
Uz (Vg — Vy)

To find these expressions, we had to solve Eq. (4.155) around the 8 at which the solutions
bifurcate. Note that AC. /T, + AC3/T» and Aceg . + Aces 2 reproduce the previous ACy /Ty
and Acgg with a = 0. Combining, we obtain the ratio relations:

dT:
‘ 2 ACe Yz , for Bjg-nematic,
deso| T, _ Acesa _ ) va —v: (4.180)
dT. |~ AC: ~ Acgge % for TRSB. '
d66’0 T2 Ve = Uy

Thus small second-transition heat capacity jumps AC imply large cusps for Ts, but also large
elastic modulus jumps Acgg 2 at the second transition.

With some work, one can also derive the ratio relation for the accidentally-degenerate TRSB
case (a # 0):

dTs
V1-1Y* |deso
AY4 1-— 042 ‘ ch

deg o

AC,
(=90 +]ax) T,
(1= a22(1—9/%) AG;
T
(1-— a2)(1 — ‘3}3/%) Acee,2 Uy

(4.181)

T A-P)A+eX) Acsse  ve—vy,
TRSB is the ground state at 06 = 0 when Y € (0,1) and X € (—o0,—|a|) U (Y, +00). By
varying X, Y, and o € (—1,1) within their allowed ranges, one can make the prefactors arising
in the above equation take any value. This makes the TRSB ratio relation for accidentally
degenerate states of little practical use.
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Unlike the Ehrenfest relations, these ratio relations tie together properties at finite strain.
If we are applying o119 stress, for instance, this will induce not only €5 strain, but also Ay,
strain components. Since a, A, vy, etc., can all depend linearly on A, strain, the ratio
relation (4.180) formally holds only as €59 — 0. More precisely, the ratio of the cusps in
Eq. (4.180) is evaluated at €4,, = 0, while the ratios of the heat capacity and elastic modulus
jumps are evaluated at a finite €4,, # 0, which means that the v, ratios that they equal
[rightmost part of Eq. (4.180)| are suppose to be evaluated at different A4 strains. That said,
the Ginzburg-Landau expansion of the free energy only holds in the vicinity of T, so |1, — T3]
needs to be small anyway. The domain of validity of Eq. (4.180) is thus not any smaller or
larger than that of the Ginzburg-Landau analysis as a whole.

As an aside, let us note that the reason why non-trivial Ehrenfest and ratio relations can
be derived in the first place is because the cusp-like part of the slope |dT./deg |, the jump
in the heat capacity AC, the jump in the cgg elastic coefficient, etc., all isolate only one
coupling constant: Ag. One may thus relate the corresponding dimensionless, experimentally-
measurable quantities to the Ginzburg-Landau expansion coefficients. In contrast, if we were
to look at the total T, slope, total heat capacity, and so on, because of the contributions from
other \jqp in Eq. (4.129), it is difficult to make similar statements.

4.3.2.5 Bounds on the nematic strain

The second term in Eq. (4.131) defines the “internal” strain, which is the strain generated by
the superconducting order parameter:
nem )‘6 * *
€6 :'_E‘(®1®24'¢2¢1>
‘f6 (4.182)
= ——GQ% sin ¥ cos .
C66
Due to the proportionality to cos¢, when og = 0 only the Bsj,-nematic states generate a
non-zero €g. Its value is bounded from above through

c66,0/€6" | _VI-a?VI-X2

= 1, 4.183
ACy | dT, T — T 1+ |a|X - ( )
Teo |dego <
where the right-hand side is in between 0 and 1 in the range 0 < X = % < 1 where

Bsg-nematic order is preferred and for o = 0 equals 1.

4.3.2.6 The case of By, stress

As we shall see in the next Sec. 4.3.3, if one combines the measurements of Ref. [32] with those
performed under [100] uniaxial stress [593], one can put tight constraints on where precisely
SroRuO4 must be in the phase diagram of Fig. 4.19. See Fig. 4.22 in particular.

To make contact with the measurements under (100) uniaxial stress, here we briefly sum-
marize the results of the Ginzburg-Landau analysis for By, stress 0By, = %(01 —039) = 0100/2.
Superconductivity couples linearly to Bi4 stress only in the case of symmetry-protected de-
generacy

a=0, (4.184)
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

which we henceforth consider.
In light of Tab. 4.12, the coupling to By, stress takes the form

Feo=-+ O-Blgcéig)\BlgTZ’ (4.185)

where cp,, = %(cn — ¢12); see Tabs. 4.6 and 4.12. By a rotation

o= \2 G _11> o (4.186)

and reparametrization

Uz = Uz,
By = vy, (4.187)
Vy = Uy,

one obtains a free energy identical in form to Eq. (4.135). Hence all the previous formulas
carry over if we replace vz, vy, vz, A¢ With 0, vy, 02, Ap,,, and exchanges what one identifies as
By4 with Bgg, and vice versa.

The upper transition temperature is given by:

2)\319 ‘631970‘

Te =T+ (4188)

a

At finite B4 stress, the superconductivity is Byg-nematic slightly below T,.. When B;4-nematic
pairing is the ground state, there is no second transition. For the other two cases:

2\ ‘e ‘ Uz , for Byg-nematic,
Ty = Ty — 2 B1ol] vzv v (4.189)
a Y for TRSB.
Uy — Uy
The heat capacity jumps:
AC, a&?
= 4.190
T = 20 (4.190)
Vy — Uy )
) , for Bs,-nematic,
AGy _ @) w ’ (4.191)
o 2u|%7% ¢ TRSB.
Uy
The jumps in the By, elastic constants:
2)%
ACBlg@ = u = ) (4192)
2 Uz , for Bs,-nematic
2A _ Y '
Acp, o =4 7y ™ (4.193)
u Y for TRSB.
Uy — Uy
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

The total jumps are obtained by summing the jumps at the upper and lower transition, if it
takes place.
The Ehrenfest relation for Bjg-nematic states:

ACy
TcO

dT,
dGBlmo

dT,
dGBlg,O '

Acp,, = (4.194)

The Ehrenfest relation when Byg-nematic or TRSB pairing is preferred in the absence of stress:

. AC() ch dT2

Acp, = ) 4.195
1g TCO d6B1g,0 dGBlg,O ( )
Ratio relations:
dT:
’2 AC. Y2 for Byg-nematic,
deBiyol _ T, _ AcBy2 _ Jv:—u (4.196)
dT. AC: — Acp,, . % for TRSB.
dEBlg70 T2 vz - Uy

4.3.3 Theoretical implications: quantifying consistency and fine-tuning

One of the motivations for the measurements reported in Ref. [32] was to cross-check recent
ultrasound experiments [60, 61| which resolved jumps in the cgg elastic constant at T,. As we
have seen in the previous section, a jump in cgg € Bag implies that the SC order parameter
has two components which couple linearly to o6 € Bay stress. However, two-component SC
that couples linearly to og should also exhibit transition splitting, as summarized in Tab. 4.18,
which has not been observed in T, or elastocaloric measurements [32]|, as we reviewed in
Sec. 4.3.1. The two are clearly at odds with one another. Using the results of the Ginzburg-
Landau analysis of the preceding section, here we examine the degree of fine-tuning that is
needed for SRO’s SC to be consistent with both experiments. We do so under the assumption
of a homogeneous SC order. In other words, we shall suppose that all invoked experiments are
giving information on bulk, homogeneous thermodynamic phases.
The following jumps in cgg have been reported by Benhabib et al. [60]:

0.026 MPa, at 169 MHz,
Co6 = { b ’ (4.197)

0.13MPa, at 201 MHz (not used).

More precisely, they reported jumps in the ultrasound speed dvs/vs of magnitude 0.2 ppm and
1.0ppm that are related to cgg through cgs = pv2. For the elastic constants needed during
various conversions, we employ those reported in Ref. [61], which are listed in Tab. 4.6. These
twoAcgg were measured with two separate apparatuses using ultrasound pulse echos. The
difference between the two pulse-echo results has been attributed to possible mode mixing in
the 201 MHz experiment [60]. We shall therefore use the value measured obtained at 169 MHz.
From resonant ultrasound spectroscopy performed at much lower frequencies of approximately
2MHz, Ghosh et al. [61] deduced a larger value for the jump (Acgg/ces = 17.5 ppm):

Acgs = 1.15 MPa. (4.198)
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

It has been suggested that the difference between the pulse-echo and resonant ultrasound
results is a consequence of the very different measurement frequencies [61], with the higher
frequencies thought to suppress the jump from its intrinsic thermodynamic value [60]. Below
we compare our results with both values reported for Acgg.

On the basis of magnetic susceptibility measurements (Fig. 4.16), in Sec. 4.3.1 we established
that any putative cusp is smaller than [32]:

dT.
‘ < 1.3K. (4.199)

d66

In addition, we shall find it interesting to compare our results to experiments performed under
[100] uniaxial stress. Because E, (and E,,) SC states couple linearly to both By, and B4 strains
(Tab. 4.12), transition splitting, cusps in T, and jumps in elastic moduli should develop for
both [110] and [100] stress directions. However, neither a T;(ep,,) cusp [558, 559, 600, 638, 639]
nor a Acp,, jump [60, 61] has been resolved so the Ehrenfest relations of Sec. 4.3.2.6 cannot
be exploited to make any strong statements. The ratio relations of Sec. 4.3.2.6 prove to be
more useful because of recent high-resolution heat capacity measurements [593]. Although a
second transition has not been resolved [593|, the tight bound

N

T

AC,
T

< 0.05 (4.200)

Gqu

that they put on the anomaly of any putative lower transition 75 < 7, can be used to make
non-trivial statements. For reference, the heat capacity anomaly ACj in the absence of strain
or magnetic fields has been measured to be 40 mJ/(mol K?) [642] and 41 mJ/(mol K?) [560,
561, 566] for high-quality samples with T, = 1.505K and 1.48 K, respectively. By using the
molar mass 340.3 g/mol and mass density 5954 kg/m? [672], this translates to

ACy

= 470J/(m® K?) (4.201)
TcO

up to a 10 uncertainty that we shall suppress.

Now we go through the various possible two-component SC states and discuss the impli-
cations of the experimentally reported values that we provided above. We start with the
symmetry-protected Bag-nematic SC since this is the simplest one to analyze. According to
the associated Ehrenfest relation [Eq. (4.171) with o = X = 0], it follows that:

% B Acgsg ) TA4K, for Acgs of Ref. [60], (4.202)
deg | | ACo/To 49K, for Acgg of Ref. [61]. '

Thus there is a discrepancy between a factor of 5.7 and 38 between our bound (4.199) and
the ultrasound experiments. We can therefore rule out bulk Bsg,-nematic SC of the form
dy. £ dy. € E4 as the origin of the observed jumps in cgs. As an aside, even before T,
measurements [32] established the bound (4.199), from the heat capacity bound (4.200) of
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4 Constraints on the pairing symmetry of strontium ruthenate SroRuQOy

Ref. [593] it was evident that a high degree of fine-tuning is necessary for Byg-nematic SC to
be viable. To be more precise, introduce

‘ dT,

, dep,, Vy — Ug —3k — V3K

r = = = . 4.203
‘ dTy Vg 1+ x4+ V3K ( )

dEBlg

Then from the bound (4.200) and the ratio relation (4.196) we may deduce that
P <1l =0.05 (4.204)
and therefore

/ /
_nEBERIE o A (4.205)
(1+7)V3
Within the Ginzburg-Landau phase space of Fig. 4.19, this puts any presumed Byg-nematic
state to be right on the border to the Bys-nematic phase. This region is highlighted purple in
Fig. 4.22.

Regarding accidentally degenerate Bag-nematic SC, no similarly definite statements can be
made because the corresponding Ehrenfest relation (4.171), derived in Sec. 4.3.2.3, contains
two free tuning parameters: o and X. The only thing we can say is that some degree of
fine-tuning is necessary for the accidentally degenerate Bag-nematic states (namely s' + dgy
and dy2_ 2 + gxy(xz_yz)) to be measurable in ultrasound, but not give a visible cusp in 7.

Next, we discuss Bjg-nematic states. Under [100] strain, the degeneracy of these states is
lifted and no second transition takes places [cf. Fig. 4.18(b)|. Thus they are automatically
consistent with the absence of a heat capacity anomaly [Eq. (4.200)]. However, from our
bound (4.199) and the Ehrenfest relation (4.168) it follows that that slope of the second
transition would have to be enormous to be consistent with the observed jumps in ultrasound:

@ _ ACGG 43 K, for AC@@ of Ref. [60], <4 206)
deg ACy|dTe| — | 1880K, for Acgs of Ref. [61]. .
Teo | deg

Presumingly, such a large change coming from small increases in €5 should be visible in the
elastocaloric data of Fig. 4.17. No signatures of a second transition are apparent, however.
We can quantify the necessary degree of fine-tuning by considering the dimensionless ratio

’ch
_ /
poo ldeo| _va—ve 35+ V3k (4.207)
dTy U, 1—-2k
deg

which is directly related to the Ginzburg-Landau coefficients, as we demonstrated in Sec. 4.3.2.4.
From the Ehrenfest relation (4.206), it now follows that

AC, | dT.|?

T | deg {0.031, for Acgg of Ref. [60),
r=————<rr,=

(4.208)
Acgs 0.00069, for Acgg of Ref. [61].
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

Hence only a small region on the cusp of the Bi4-Bag-nematic boundary is allowed:

, Ty 27y
3k < K < 7 <J§+ \/§>/<c. (4.209)
This region is colored orange in Fig. 4.22.

For the no coexistence (only ®; or only ®3) instances of accidentally degenerate states,
little can be inferred because the corresponding Ehrenfest relation has two additional free
tuning parameters. Moreover, the second transition under og stress is replaced by a crossover,
as depicted in Fig. 4.18(f). This agrees with absence of any additional sharp features in the
elastocaloric data of Fig. 4.17. Let us also note that these accidentally degenerate states couple
quadratically to ep,, strain so no second transition is expected, in agreement with Eq. (4.200).

Finally, we come to the most interesting case of TRSB. As previously discussed, a number of
non-thermodynamic experiments support TRSB [93, 547-549, 624-626]. Let us start with the
symmetry-protected state d,, £id,, € E4. Such a state should split under both [100] and [110]
strain. Neither has been observed in thermodynamic measurements. To quantify the degree
of fine-tuning necessary to avoid detection, we use the ratio relations (4.180) and (4.196) to
express dimensionless experimentally-bounded quantities in terms of Ginzburg-Landau coefhi-
cients:

dT,
- 2v/3 K
T = d66 = ,Ux vy —= fﬁ s (4210)
@ Vy 1+k— \/glﬂ/
d€6
dT,
’I", = dEBlg = UZ _ Uy = _3H + \/§H/ . (4211)
dT2 Vy 1+k— \/glﬁ?/
dep,,

From Eq. (4.199) and the Ehrenfest relation (4.174) for €g strain (with a =Y = 0), it follows
that

AGC |dT, |?
_ Ty | deg - _ {0.031, for Acgg of Ref. [60], (4.212)
Acgs 0.00069, for Acgg of Ref. [61],
which in turn implies
0 < K < M. (4.213)
(24 r)V3
By furthermore exploiting the ratio relation (4.196) for ep,, strain, we find that
' <1l =0.05, (4.214)
and therefore
V3k < K < ERAChEY (4.215)

(1+7)v3
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0.03 Bj,-nematic
0.02
0.01 |

K 0.00E

—0.01
—0.02 By,-nematic @ TRSB
—0.03 ' '

—0.010 _ —-0.005 0000 _ 0.005 _ 0.010
/
K

Figure 4.22: Regions consistent with the absence of a T.(¢) cusp [32] (orange, r <
0.031) and the absence of a second heat capacity anomaly ACh| [593] (purple,
g9

€By
r’ < 0.05) for symmetry-protected E,(d,.| — d;.) and E,(p;|py) pairing. The global
minimum is By -nematic for £ > v/3|x'|, Ba,-nematic for k < —v/3x’ and ' < 0, and
time-reversal symmetry-breaking (TRSB) for x < v/3 %’ and &’ > 0. These global minima
are divide with thick black lines (cf. Fig. 4.19). The T, cusp bound (4.199) together with the
conservative Acgg value (4.197) implies r < 0.031 = r,, which is completely inconsistent with
Bsg-nematic states whose r = 1, while for Bg-nematic and TRSB it is only consistent in the
orange region, which is specified by Egs. (4.209, 4.213). The heat capacity bound (4.200)
implies 7’ < 0.05 = r}, which is consistent with Bjgs-nematic states whose ' = 0, while
for Bag-nematic and TRSB it is only consistent in the purple region, which is specified by

Eqs. (4.205, 4.215). The lines emanating from P = (225, 55 and Q = (0, ~ 57 )

connect to the outer vertexes of Fig. 4.19.

The 7, upper bound tells us that the TRSB state must be near the Byg-nematic transition,
while the r}, upper bound constrains the SC to the cusp of the TRSB-Bj4-nematic boundary.
Thus any bulk symmetry-protected TRSB SC state must be doubly fine-tuned to the triplet
point k = k" = 0 of the phase space, as depicted in Fig. 4.22. Note the scale in Fig. 4.22, as
compared to the total phase space of Fig. 4.19. The total stable phase space of Fig. 4.19 has an
area 3v/3/4 = 1.30, while the allowed region of Fig. 4.22 has an area % =1.5x 1074
Evidently, the level of required fine-tuning is extraordinary high.

In case of TRSB SC order constructed from accidentally-degenerate components, the Ehren-
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4.3 Constrains from T, and elastocaloric measurements under [110] uniaxial stress

fest relation (4.174) becomes an inequality. It entails the following lower bound:

Aces 43K, for Acgg of Ref. [60],

— AGCy |dT:| — | 1880K, for Acgs of Ref. [61].
Teo |deg

’ dTrrss (4.216)

deg

This bound on |[dTrrss/ dég,o| holds for both the symmetry-protected and accidentally-degenerate
case. One would expect such strong splitting of the transition to be visible in the elastocaloric
data of Fig. 4.17, yet no second anomaly was found. On the other hand, a recent muon spin
relaxation experiment reported splitting of Tprrsg = 15 from T, with the following depen-
dence [629]:

dTrrsB

= —90+ 30K. 4.217
i 90 =+ 30 (4.217)

This agrees with the smaller [60] of the two reported c¢gg jumps, but not with the larger one [61].
Let us observe that the larger one [61] has been measured at a two orders of magnitude
smaller frequency and thus likely reflects the intrinsic thermodynamic value more accurately.
Regarding the heat capacity bound (4.200), the ratio relation (4.196) cannot be generalized to
the case of accidentally-degenerate order parameters. If one attempts to do so [Eq. (4.181)],
additional free tuning parameters appear that make the relation uninformative. Nonetheless,
some degree of fine-tuning is still needed if TRSB states such as s’ +idy, or dy2_y2 +100y(22—y2)
are to be measurable in ultrasound, but not in heat capacity or elastocaloric experiments.

In conclusion, something is amiss with either some of the experiments which explore the
superconductivity of strontium ruthenate, or with our theoretical understanding of how to
interpret these experiments. The most straightforward interpretation in terms of a homoge-
neous bulk superconductivity, as describe by Ginzburg-Landau theory, is filled with tensions.
Depending on what pairing state we presume, we either find outright contradictions or high
levels of fine-tuning, which are at times implausibly high. Given these tensions, it is highly
desirable to (re)establish the interpretation and consistency of the fundamental probes used to
study unconventional superconductivity, both thermodynamic and non-thermodynamic. For
instance, domains and inhomogeneities might play a more important role in ultrasound, muon
spin relaxation, and other probes than was previously appreciated.

The difficulty in obtaining clear thermodynamic evidence for two-component superconduc-
tivity, both in the results covered here and in previous measurements under [100] uniaxial
stress, suggests that the possibility of single-component pairing in SroRuQOy4 should be seri-
ously considered, even though it cannot break time-reversal symmetry homogeneously in the
bulk. Thus strontium ruthenate might not be a two-component superconductor. Yet there
is no doubt that a large number of experiments exhibit highly unusual behavior even for an
unconventional single-component pairing state, as we reviewed in great detail in Sec. 4.1.1.
In circumstances like these, it is particularly important to cross-check and verify experimen-
tal results using different methods, and further experiments like those of Ref. [32] hold the
promise of pointing the way towards a final understanding of the enigmatic superconductivity
of strontium ruthenate.
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Appendix A

Derivation of the linearized gap
equation

Here we derive the linearized version of the BCS gap equation for general systems. Its solution
determines the transition temperature and symmetry of the superconducting state. Although
variants of the linearized gap equation are available for various special cases [104, 105, 141],
starting with the original article by Bardeen, Cooper, and Schrieffer [20], the following deriva-
tion is more streamlined and general than what I found elsewhere in the literature.

A.1 Hamiltonian of itinerant fermions with instantaneous
interactions

Let us consider a general fermionic system whose one-particle Hamiltonian is given by:

Ho = Zw;Lkak, (A1)
k
where
Y1
Y = : (A.2)
YoM

is a spinor of the fermionic annihilation operators. They satisfy the usual anticommutation
rules

{¢k,ou ¢p,ﬁ} = 07
{Ura U], 5} = Skpbas, (A.3)
{Uh o) 5} = 0.

Here, k and p refer to the crystal momentum and their summations go over the first Brillouin
zone only. The 2M components go over both spin and orbital degrees of freedom and we index
them with lowercase Greek letters o, 8 € {1,...,2M}. M is the number of orbital or internal
degrees of freedom.
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A Derivation of the linearized gap equation

For the Bloch Hamiltonian Hy, which is a 2M x2M Hermitian matrix, the eigen-representation
written in the following form

Hy = Z6kn9’kn (A.4)

will be useful. Here, n is the band index, e, are the band energies or dispersions, and the
band projectors are defined as

Prn = ZuknsUTan = Z‘uknsxukns’a (A5)

where ugns = |ugns) are the band eigenvectors and s is the band degeneracy index. The band
eigenvectors and projectors satisfy:

Hi|ukns) = €kn|Ukns), HyPrn = PrnHi = €tonPrn, (A.6)
<ukns‘ukms’> = 6nm685’a (Pk:ntpkm = ZSnmtpkzn -

In systems with parity and time-reversal symmetry, s € {,]} is the Kramers’ degeneracy
index or pseudospin. In the absence of spin-orbit coupling, the pseudospin reduces to the
physical spin and the eigenvectors and projectors factorize into orbital and spin parts:

Ukns = Ukn & |5>7 :Pkn = uknu;rcn & 0p. (A7>

0y is the 2 x 2 identity matrix.
In addition, let us assume that the fermions interact through an instantaneous momentum-
conserving four-fermion interaction:

1 tot
Hint = 17l g;lékﬁkgk3k4U12341/11¢2¢41/J37 (A.8)

where L% is the volume in d spatial dimensions, 1 = (ky1, 1), 2 = (ka, a2), etc., are particle
indices, and

U1234 = Ua1a2a3a4 (kla kz, k37 k4) (A9>

is the interaction. Due to the anticommutation of 1k, o, the interaction is antisymmetric under
particle exchange:

Ui234 = —U2134 = —U1243 = Us143. (A.10)
The total Hamiltonian is the sum of the one-particle and interacting parts:

H = Ho + Hint. (A.11)

A.2 BCS gap equation and the instability towards Cooper pairing

To assess the Cooper pairing instability, we decouple the interaction in the Cooper or Bogoli-
ubov channel, i.e., we write

ipdbats = (WTbyparps + plod (Yahs) +-- - . (A.12)
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A.2 BCS gap equation and the instability towards Cooper pairing

This generates a pairing term in the Hamiltonian
Z¢k0& aﬁ 1/1Tk.5+Hc (A.13)
k:oaﬁ

plus a remainder (Hi, — Ha) that describes fluctuations. The superconducting gap matrix
A(k) is determined by demanding that this pairing term coincides with thermally averaged
Bogoliubov part of the decoupled interaction. The resulting self-consistency equation is the
BCS gap equation [104, 105]:

Aas(p) = 2Ld S U (0, k) Ukt ). (A.14)
ko' 8!
where the Cooper-channel interaction is defined as
Unirs (P k) = Usgiarir (p. —p, . k). (A.15)
Due to antisymmetry under particle exchange, the gap matrix satisfies
Anp(k) = —Apa(—k), AT(k) = —A(—k). (A.16)

Given that we are only interested in the onset of superconductivity, next we linearize the
BCS gap equation.

For weak interactions, fluctuations are negligible and the anomalous average (¢ % —k g) is
performed relative to the mean-field Bogoliubov-de Gennes Hamiltonian

Hume = Ho + Ha. (A.17)
Using the general inversion formula
<A B> - ((Aa-BD'c)"" (C-DBtA)! (A18)
¢ p) ~\(B-Ac'D)' (D-ca'B)"! '
on the mean-field Euclidean action [28, 169]
1 P . Gy, (iwe) A(k) U (iwe)
Sutld] =3 ka (Welir) - [0t ( Alk) - [GTk(_w)]1> ([zﬂ_k(—iw)?) |
(A.19)
one finds that to linear order in A(k):
()= 5 3 (lion) [0al—iw)] D
{=—00
S (6T )] AT G )+ ATR)) T (a
=5 pa T ¢ r (iwe (A.20)
- ée_z G (i) A(K)GT o (—iwe) + O(A?),
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A Derivation of the linearized gap equation

where B = 1/(kpT), we = (20 + 1)1 /P are the fermionic Matsubara frequencies, and G (iwy)
is the normal-state imaginary-time single-particle propagator:

1 {:Pkn

G IUJ = - - B )
w(iwr) —iwyp + Hy, - —1lWy + Ekn,

(A.21)

which we expressed with the aid of Eq. (A.4). Note that e, are measured relative to the
chemical potential.
Performing the Matsubara summation in Eq. (A.20) using

1 1
1 i 1 _ tanh 5fe 4 tanh 5Be’ (A.22)
§ —iwy + €)(iwe + €') 2(e+¢)
gives the linearized gap equation:
tanh 2 Beg, + tanh 1 Be_gm
A = Ulr) 2 2 PrnA(k)PT .
ol 2Ld k%, ot 5 %n: 2(ekn +€—km) Pen K Lo
(A.23)

At weak coupling, the pairing instability is dominated by the Cooper logarithm. Assuming
no accidental or near-accidental degeneracies (Kramers’ degeneracies are taken care of through
the projectors) and time-reversal symmetry (¢_g, = €gn), this means that the n = m terms
dominate the above summation. We thus drop the n # m terms.

Next, into the momentum summation we insert

hwe
1= / de’ 8(egn — €) (A.24)

—hwe

where hw, is the energy cutoff of the theory. After that we neglect the dependence of d(eg, —¢'),
U©Cr) Pr.. and A(k) on the direction orthogonal to the Fermi surface eg,, = 0, retaining only
tanh( %Be’) /(2€’). This allows us to perform the energy integral, which we can do analytically
in the low-temperature limit X = %Bhwc > 1 by applying the standard partial integration
trick:

X dzlogx

b's
/ d(log z) tanh z = log X tanh X — / 5
0 o cosh®(x) (A.25)

4eyE

~ log X + log

where yp = 0.5772... is the Euler-Mascheroni constant. The last step is to take the thermo-
dynamic limit of L~¢ > & O(€kn), resulting in an integral over the Fermi surface.
The final result is the following linearized gap equation, formulated as an eigenvalue problem:

(Cp.)
1 Uspoig (D K
=S / dSk sarp (P )[fpknA(k)fPTkn]a,B,:)\Aaﬂ(p), (A.26)

274



A.3 Fermi surface projection and final form of the linearized gap equation

Here, d.S are infinitesimal area elements of the Fermi surface specified by eg, = 0, d is the
spatial dimension, and p is on the Fermi surface specified by ep,, = 0. The eigenvalue A, if
positive, determines the transition temperature according to:

kpT. = hwee VA~ 1.134 hwe e/, (A.27)

The leading instability is determined by the largest positive eigenvalue.

Although kpT,. seemingly depends on the arbitrary cutoff fiw., note that the effective inter-
action of the theory also depends on the cutoff. This dependence of the effective interaction
turns out the be just right to make kg7, cutoff-independent [104]. Under the change of cutoff
(i.e., renormalization group flow)

i dw,
we df

=1, (A.28)

one may show that the pairing eigenvalue flows as a marginally relevant parameter [680]:

1dx

X@ —_— ) (A.29)

thereby ensuring that d7,./d¢ = 0.

A.3 Fermi surface projection and final form of the linearized gap
equation

Assuming parity and time-reversal symmetries of the most general form
~ T ~
W (P)¢pW(P) = Uk (P)Y—k, (A.30)
A1 ~ .
O YO =Yk, (A.31)

we can further simplify Eq. (A.26) by introducing Balian-Werthamer d-vectors [168] for each
band:

3
Alp) = [Vpepm!* D dp(pm)P5,07,, (A.32)
B=0
{Pgm = Z upms(GB)ss’u;ms/- <A33)

ss’

Here, op are the Pauli matrices in pseudospin space, A, B € {0,1,2,3}, and the subscript on
Pm indicates on which Fermi surface the momentum lies. The reason why the TR matrix O
appears here is because Cooper pairing naturally couples states with their time-inverted pairs.
One important implication of this principle is Anderon’s theorem [611, 681-684].

Note that we have rescaled dp(pm) by the square root of the Fermi velocity |V pepm| to
ensure that the matrix which we diagonalize (i.e., the Wp4 pairing interaction introduced
below) is explicitly Hermitian. The alternative is to have a matrix which we diagonalize
relative to a non-trivial scalar product which includes the Fermi velocity as a weight.
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A Derivation of the linearized gap equation

If the gap matrix has a well-defined parity eigenvalue,
ULP)A(K)U"(P) = ppA(—k), (A.34)

then by using the relations
A(-k) = ~AT(K), (4.35)
0,07, = -1, (A.36)
U-(P) = U*(P) (A.37)
U ( )@ kukns - @kU ukns Zukns wy s'ss ( )

one can show that B = 0 corresponds to even-parity (pp = +1) pairing and B € {1,2,3} to
odd-parity (pp = —1) pairing. By plugging (A.32) into (A.26), we obtain the final form of the
linearized gap equation that we employ in this thesis:

>

n

ASk o
) Z WpaA(DPm, kn) da(ky) = Adp(pm), (A.39)
A=0

akn:O

WBA(pmakn) = Z

aBa’ B!

[th?gm] Ba [Tfn@T—k] o'B ++(Cp.)
41V pepml| /2|Vk5kn|1/2 apels

(p, k). (A.40)

Its solutions fall into irreducible representations of the point group of the system. In particular,
one may show that Woar = Wao = 0 for A’ € {1,2,3} so there is no parity mixing. The
Hermitian matrix WgA(pm, k) we identify as the pairing interaction. In a few places we shall
also employ the following unsymmetrized variant of this linearized gap equation:

S
v my kn) Aa(k AAB(Pm), A4l
Z/ ent |Vk5k|2 palo k) Ball) = AAp(p,), (A1)
) 1 * Cp.
VoaPm k) = =7 D [07,P0] 50 [PnOT4] U (9. ). (A.42)
a/galﬁl

where Ap(py,) = |Vp€pm\1/2d3(pm).

These linearized gap equations apply to spin-orbit-coupled Fermi liquids with space-inversion
and time-reversal symmetry whose Fermi surfaces do not touch each other or have Van Hove
singularities on them. The interactions that enter them are the effective instantaneous inter-
actions that one obtains by integrating out all states outside of a thin shell, specified by the
energy cutoff fiw., around the Fermi surface(s).
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Appendix B

Elements of group and representation
theory

Here we recapitulate some elements of group and representation theory that are relevant to
our work. We start with the fundamentals of group and representation theory. After that,
in Sec. B.2, we discuss how representation theory can be used to construct invariants. In
Sec. B.3, we recall some elementary facts on the vector SO(3) and spin SU(2) rotation groups,
as well as parity, and state the conventions we use for these two groups throughout the thesis.
The structure of the tetragonal group Dyyp, which is the point group of both many cuprates
(Chap. 2) and strontium ruthenate (Chap. 4), is reviewed in Sec. B.4. Finally, in Sec. B.5,
we discuss how to decompose composite objects into irreducible parts. We also provide an
irreducible representation product table for the tetragonal point group Dy, (Tab. B.5) which
enables quick decomposing. For the reader’s convenience, we bold group-theoretic terms when
we first define them.

The material covered here is standard. A great book on group and representation theory
as it applies to condensed matter physics is Dresselhaus et al. [170]. The unpublished lecture
notes by Arovas [685] are also recommended. We refer the reader to both for further reading.

B.1 Fundamentals

B.1.1 Group theory

Group theory is the natural mathematical language of symmetries. The idea behind intro-
ducing groups is to abstract away the notion of a symmetry operation away from the precise
object on which it acts. Let us recall how a group is defined mathematically:

Definition. A group (G, o) is a set of transformations, operations, or group elements g € G
that can be composed or multiplied using o: G x G — G. Group multiplication, moreover,
must satisfy:

e closure: composing any transformations g1, go € G results in a another transformation
gog2€G,

e associativity: (g1 0g2) 0 g3 = g1 0 (g2 0 g3) for all transformations g1, g2, g3 € G,
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B Elements of group and representation theory

e there exists an identity 1 such that 10 g =gol = g leaves all g € G invariant, and

1 1

e cvery transformation g € G has an inverse ¢! € G such that gog~ ! =g tog=1.
One often writes G instead of (G,0) and uses juxtaposition instead of o to denote group
multiplication.

Groups in which multiplication is in addition commutative, g; o go = g2 o g1, are said to be
Abelian. In physical applications, g are operations such as rotations, reflections, or transla-
tions. Group theory allows us to study the structure of such operations abstractly, without
committing to any particular object or system on which they act.

Some examples of groups are the trivial group which is made of only the identity {1}, the
group Zo made of {+1, —1} with multiplication x, and the cyclic group Z, = {0,1,...,n—1}
with addition modulo n as the group multiplication. These are examples of finite groups, i.e.,
groups with a finite number of elements. Groups can also have a continuum of elements, such as
real numbers R under addition or phases U(1) = {e¢!” | ¥ € R} under multiplication. The latter
groups are called Lie groups. More precisely, Lie groups are groups whose set GG is a manifold
and whose group multiplication and inversion are smooth. Notable examples are groups of
invertible matrices, such as the general linear group GL(n), unitary group U(n), and orthogonal
group O(n). The general linear group GL(n) is the group of n x n invertible matrices, which
can be either real or complex, with matrix multiplication as the group composition. U(n) is
made of unitary (U~! = U for U € U(n)) complex n x n matrices, while O(n) is made of
orthogonal (O~! = OT for O € O(n)) n x n real matrices, again with matrix multiplication
as the group multiplication. The elements of the special linear group SL(n), special unitary
group SU(n), and special orthogonal group SO(n) are special compared to GL(n), U(n), and
O(n), respectively, in the sense that their matrix determinant is equal to unity.

Two groups (G,o) and (H,-) are essentially the same if there exists a mapping Y: G — H,
called an isomorphism, that is bijective and preserves multiplication in the sense that

Y(g1092) = T(g1) - T(g2) (B.1)

for all g1, g2 € G. From this condition, it follows that T(g~!) = [Y(g)]~! and T(1) = 1. Such
groups are said to be isomorphic to each other. A group H is a subgroup of G if all its
elements are contained in G and if multiplication acts in the same way for both. O(n) is a
subgroup of GL(n), for instance, but so is SU(n) a subgroup of U(n).

Two elements g1 and g2 of G are conjugate to each other if there is a § € G such that

92 =7 "7 (B.2)

Conceptually, elements are conjugate if they are in some sense similar, without being outright
equal (except in the case of Abelian groups). “Two elements are equivalent if they are conju-
gate to each other” defines an equivalence relation which partitions the group into conjugacy
classes.! In other words, every group can be written as a union of disjoint conjugacy classes.
Conjugacy classes are sets of mutually conjugate elements.

'Recall that an equivalence relation ~ is a way of formally identifying elements. Equivalence relations are by
definition reflexive (g ~ g), symmetric (g1 ~ g2 <= g2 ~ g1), and transitive (g1 ~ g2 and g2 ~ g3 —
g1 ~ g3). These three properties are enough to show that equivalence classes (sets of mutually equivalent
elements) constitute a partition of the set over which the equivalence relation is defined.
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In this thesis, we predominantly study crystalline systems. On the one hand, these systems
are symmetric under discrete translations. On the other hand, they are also symmetric under
various operations, such as rotations and reflections, that leave a point fixed. Symmetry oper-
ations which keep a point invariant together constitute the (crystallographic) point group of
the crystalline system. The (crystallographic) space group of the crystalline system is made
of all symmetry transformations, without any restrictions on the transformations. The space
group includes lattice-commensurate translations, point group operations, their compositions,
but sometimes also additional symmetry operations in which a fractional translation? is com-
posed with a reflection or rotation. The corresponding space groups are called non-symmorphic
and they are somewhat complicated to treat. All the systems studied in this thesis have sym-
morphic space groups, meaning there are no symmetries involving fractional translations.
In symmorphic systems, translations and point group operations can be separately analyzed.
More formally, symmorphic space groups are semidirect products of the group of translations
and the point group.

The possible crystals and their space groups and point groups have been classified by crys-
talographers a long time ago. In three dimensions, there are symmetry-wise fourteen different
ways one can arrange identical point into a periodic lattice. Such lattices are known as Bra-
vais lattices and given how some of these fourteen Bravais lattices look similar, one speaks
of 7 different crystal systems, which are namely: cubic, tetragonal, orthorhombic, hexagonal,
trigonal, monoclinic, and triclinic. Depending on how the atoms are positioned within the
Bravais lattice, multiple point groups and space groups are possible for each Bravais lattice
type. In total, there are 32 crystallographic point groups, 73 symmorphic space groups, and
157 non-symmorphic space groups. We refer the reader to the book by Dresselhaus et al. [170]
and to the Bilbao crystallographic server [686, 687| for details. Here we shall only list the
notation that we use for point-group symmetry operations throughout the thesis:

e I =1 is the identity.

e P is space inversion or parity; P? = 1.

‘6 is the rotation by 27, which can be non-trivial for fermions and half-integer spin;
®2 = 1. The axis of rotation does not matter.

e (), are n-fold rotations, i.e., rotations by 27 /n around some axis; (Cp,)" = 6. Conven-
tionally, the z axis is chosen to be along the axis of highest rotational symmetry. When
we want to be specific about the rotation axis, we shall usually add the subscripts z, ¥,
or z for the principal axes, d+ = = + y for the in-plane diagonals, or D = x + y + z for
the space diagonal.

e ¥ is a reflection or mirroring across some plane; 32 = €. When a 180° rotation along
some axis 73, Chp, is composed with parity P, the result is a reflection across the plane
orthogonal to 7.

e Y = P(Y, is a reflection across a horizontal plane, which is by definition perpendicular
to the axis of highest rotational symmetry.

2Fractional translations are translations which move a fraction of the distance between unit cells, in contrast
to lattice-commensurate translations which move by a multiple of the distance. By themselves fractional
translations are not symmetries, whereas lattice-commensurate translations are.
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B Elements of group and representation theory

e Y, = P(Cs, is a reflection across a vertical plane, which by definition contains the axis
of highest rotational symmetry.

o Y, = PCy, is a reflection across a diagonal plane, which is diagonal relative to the some
principal symmetry axes.

e S, = X,C, is an improper rotation by 27 /n around some axis, which by definition is an
n-fold rotation around the axis followed by a reflection perpendicular to the axis.

This is a slight variation on the Schonflies notation [170]. See also Notation and Conventions.

B.1.2 Representation theory

Having abstracted transformations such as rotations, reflections, etc., into groups, we may now
systematically study how these transformations act on different objects. This is the subject
of representation theory. The objects of prime interest in physics are vectors, which in the
abstract sense of linear algebra are simply objects which can by added together and multiplied
by scalars. Representations are defined in the following way:

Definition. A (linear) representation of a group G over the vector space V is a mapping
M: G — GL(V) in which to each group element g € G we attribute a linear transformation
M(g): V — V in such a way that both group multiplication and group inversion are respected:

M(g1 © g2) = M(g1)M(g2), M(g™") = M(g)] " (B.3)
From this it immediately follows that M(1) = 1.

In more concrete settings, V' = R" or C" and GL(V) is the corresponding group of n x n (real
or complex) matrices GL(n). A representation is called real or complex depending on whether
its matrices are real or complex. A representation is unitary when M(g) € U(n) are unitary
and therefore M(g~!) = MT(g). Similarly, a representation is orthogonal when M(g) € O(n)
are orthogonal and therefore M(g~1) = MT(g).

In physical applications, G is usually the group of symmetry operations, while the vectors
€ V can be Cartesian coordinates of position or momentum, spinors, quantum-mechanical
states, multi-component order parameters, sets of operators which transform into each other
under symmetries, and many other things. An important result in this context is Wigner’s
theorem [688] which states that symmetries act on quantum-mechanical states through linear
operators that are either unitary or antiunitary. Apart from time reversal, which is represented
through an antiunitary operator, it thus follows that representation theory is the natural
mathematical language of how symmetries act in quantum mechanics.

One of the main goals of representation theory is to simplify representations. In general, the
n X n matrices M(g) are quite complicated. In linear algebra, the main way square matrices
are simplified is through diagonalization, i.e., by changing into a basis made of eigenvectors
in which the matrix is diagonal. Within representation theory, we can also enact changes of
basis. Representations which differ by a change of basis are said to be equivalent. To be more
specific, two representations M and M’ are equivalent if there is an invertible change-of-basis
matrix B € GL(V') such that

M'(g) = B~ 'M(g)B (B.4)
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for all group elements g € G. The main task is thus to see to what extent can we use the same
B to simultaneously diagonalize all M(g).

An important result from linear algebra is that commuting matrices can be simultaneously
diagonalized, while non-commuting matrices cannot. Hence if we have an Abelian group,
[M(g1), M(g2)] = 0 and we can simultaneously diagonalize all M(g). For more general groups
this is not the case. Instead, the best we can do is to ensure that the M(g) matrices become
block-diagonal in the new basis in the sense that:

Mi(g)
Ma(g)
! _ m—1 _
M(g) =B~ M(g)B = Ms(9) (B.5)
=MyoMadMs@---)(9),
where My, My, Mg, ... are the smallest possible representations and @ is the direct sum oper-

ation. Clearly, a necessary condition for the existence of such smaller representations is that
there exists a vector subspace V' < V which is invariant under all M(g), i.e., M(g)v" € V' for
all v/ € V'. A representation which has a non-trivial® invariant subspace is called a reducible
representation. An irreducible representation (irrep) is a representation which is not re-
ducible. Irreps can also be characterized in an affirmative way as representations for which the
set {M(g)v}geq for any non-zero v € V always spans the whole space. The My, Mg, Ms, ...
representations appearing in Eq. (B.5) are irreps. Irreps thus constitute elementary building
blocks from which all representations are constructed. In linear algebra, multiplication by
scalars (eigenvalues) plays the same role.

Now we state a few fundamental results concerning representations and irreps. For proofs,
see Refs. [170, 685, 689].

Theorem (Schur’s first lemma). Consider two irreducible representations M and M’ of a
group G over the same vector space V. If a linear operator B: V — V satisfies

BM'(g) = M(9)B (B.6)

for all g € G, then either (i) B = 0 or (ii) B is invertible and M and M’ are equivalent. A
non-zero and non-invertible B is not possible.

The intuition behind this lemma is that, for non-zero B and v, both {M'(g)v}seq and
{M(g)Bv}seq span the whole space (since both M and M’ are irreps) so only an invertible B
is consistent with Eq. (B.6).

Theorem (Schur’s second lemma). Consider an irreducible representation M of a group G
over V. If a linear operator B: V — V satisfies

BM(g) = M(g)B (B.7)

for all g € G, then it is proportional to the identity, i.e., B = A 1 for some scalar \.

3Non-trivial in the sense that the invariant subspace is neither zero nor the whole space.
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To understand this result, suppose you are given an eigenvector v of B, Bv = Av. Then
Eq. (B.7) tells us that M(g)v is also an eigenvector with the same eigenvalue A. Since M is an
irrep, {M(g)v}gec spans the whole space and B must be proportional to the identity.

Notice that Eq. (B.5) requires that M(g) not only has one invariant subspace Vj, but also
that it has a complementary invariant subspace Vf‘ = Vo @ V3@ --- such that the total space
V=Viae Vﬁ. Here V,, are the subspaces on which M,, act. Otherwise mixing of the form

Mi(g) M(g)
< 0 MZ(Q)) (B8)

cannot be excluded. Such M which have complementary invariant subspaces are called com-
pletely reducible. The following theorem clarifies when representations are completely re-
ducible [689]:

Theorem (Maschke). Consider a reducible representation M of a group G over the vector
space V. Then this representation is completely reducible if any one of the following three
conditions is true:

e M is a unitary representation,
e (57 is a finite or compact group,

e (G is connected, not compact, and semisimple.

In the case of unitary M, the theorem follows from the fact that the orthogonal complement of
an invariant subspace is also invariant. For finite or compact G, the idea is to use an arbitrary
scalar product ( , ) to construct the following scalar product

(o]t = ,61” S (M(g)v, M) (B.9)

geG

with respect to which M is unitary; here |G| is the number of group elements and the sum over
g € G becomes an integral for continuous compact groups. After this, the proof proceeds in the
same way as for unitary M. Completely reducible representations can always be decomposed
into irreps, as written in Eq. (B.5).

A subject that is very important, but has not yet been covered, is that of representation
characters. Since this is best explained in the context of an example, we discuss characters in
Sec. B.4.1 after introducing the Dy, point group.

B.2 Construction of invariants

As a simple application of group and representation theory, we shall now prove the following
important result on how to construct invariants [170, 685, 689]:

Theorem (Fundamental Theorem of the Theory of Invariants). Consider two objects v =
(v1,...,o5)T and w = (uy,...,up)T whose transformation under the group G is described
by the unitary irreducible representations M, and M, respectively. Then a non-zero bilinear
invariant v T'u specified by the N x M matrix I' exist if and only if M, and M, are equivalent.
Furthermore, when it exists, I' is unique up to a constant. In the basis in which M, = M,,
I" is proportional to the identity, I' o« 1, and the (up to a constant) unique bilinear invariant
that one may construct takes the form viu.
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B.3 Rotations, reflections, and parity

Proof. The condition that the bilinear vT'u is invariant in the sense that
o My (9)] TMu(9)u = v'Tu (B.10)
for all v, u, and g € G is, due to unitary of M, equivalent to the requirement that
I'Mu(g) = My (g)T (B.11)

for all group elements g € G. This requirement is the same one from Schur’s first lemma
[Eq. (B.6)]. Hence I' can be non-zero only if it is invertible, which implies that M, and M,
are equivalent. Since they are equivalent, we may always switch to a basis in which M, and
M, are equal. Schur’s second lemma now tells us that in this basis I' = A1 for some scalar
A O

This theorem underlies a great many applications of group theory in physics. The Hamiltonian,
the action, and the free energy are all examples of important operators and scalars which
must be invariant under all symmetry operations and their construction is aided by the above
theorem.

In practice, one is usually given objects which transform under reducible representations, in
which case some work needs to be done to obtain the irreducible parts of the objects to which
the theorem applies. In case we want to combine more than two objects into an invariant
(e.g. > Tapeviupwe), one does so by first decomposing composite objects (e.g. {upw.}) into
irreducible parts and then only later applying the theorem. The decomposition of composite
objects is discussed in Sec. B.5.

B.3 Rotations, reflections, and parity

Rotations act on three-dimensional vectors v € R3 via multiplication with special orthogonal
3 x 3 matrices R € SO(3):

v — Rv. (B.12)

Rotations act on spinors ¢ € C? via multiplication with special unitary 2 x 2 matrices S €
SU(2):

W — S (B.13)

Recall that:
SO(3) := {real 3 x 3 matrices R | R™' = RT,det R = 1}, (B.14)
SU(2) := {complex 2 x 2 matrices S | S~ = ST det S = 1}. (B.15)

Parity or spatial inversion P inverts vectors,
P:v— —v, (B.16)
but acts trivially on spinors:

P:ap s 1h, (B.17)
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On the other hand, rotations by 27 (around any axis) invert spinors,
G: Y= —1P, (B.18)
but acts trivially on vectors:
G:v—v. (B.19)

The operation of rotating by 27 is conventionally denoted 6.
By composing parity with rotations, we obtain the orthogonal group

O(3) := SO(3) x {1, P} = {real 3 x 3 matrices R | R™' = RT} (B.20)

which is the point group of isotropic systems. In addition to rotations, it includes parity,
reflections, and improper rotations. Its elements have det R = £1. In crystal systems, this
group is broken down to finite subgroups. To emphasize the fact that the elements of O(3)
represent physical point group transformations, which can act in a variety of ways on different
objects, we shall denote them abstractly as g € O(3) through the thesis. The corresponding
matrices we shall denote R(g).

When dealing with spinors, one has to allow for 27 rotations 6 which are non-trivial. This
is done by formally enlarging the point group (SO(3) x {1, P} in isotropic systems) to the so-
called double group of the point group, which for isotropic systems equals SU(2) x {1, P}.
In crystals, this isotropic double group of the point group is broken down to finite subgroups.
For the same reasons as for O(3), elements of SU(2) x {1, P} we shall denote abstractly as
g and the corresponding matrices as S(g) throughout the thesis. Notice that S(P) = 1 and
R(€) = 1. Just like parity P, 6 commutes with all other point group operations.

General rotations can be parameterized using Euler angles and the composition of rotations
can be understood as a mapping from two sets of Euler angles into a new set of Euler angles.
However, studying SU(2) and SO(3) rotations, and infinitely-dimensional Lie groups in general,
through their group multiplication turns out to be quite complicated. Instead, what one does
is study infinitesimal rotations, i.e., Lie group elements that are close to the identity. This is
a lot simpler because infinitesimal group elements have a linear “Lie algebra” structure which
is easier to analyze. More importantly, the Lie algebra contains almost* the same information
as group multiplication.

The infinitesimal generators of vector SO(3) rotations are

0 0 O 0 0 1 0 -1 0
L.=(0 0 —i], L,=[0 0 0], L.=(i o o, (B.21)
0 1 O —-i 0 0 0 0 O
or more compactly (L;);r = —ie;;k, while the generators of spin SU(2) rotations are

1/0 1 1/0 —i 1/1 0

“The global structure/topology of the group is not contained. E.g., the generators of SO(3) and SU(2) satisfy
the same algebra, even though SO(3) # SU(2).
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or more compactly S; = %O‘i; here €;;, is the Levi-Civita symbol and o; are Pauli matrices.
The generators satisfy the spin algebra:

3 3
[Li, Lj] = iz eijkLk, [Si, Sj] = iz €1'ij]€, (B.23)
k=1 k=1

which is the Lie algebra of SO(3) and SU(2).
In terms of these generators, a rotation by an angle ¥ around an axis specified by the
unit-vector 7 is given by

R(g = Cyp) = exp(—idn - L), (B.24)
S(g = Cysn) = exp(—idn - S), (B.25)

where S = (S;,5y,S:) and L = (Lg, Ly, L.). In conjunction with R(P) = —1 and S(P) =
1, this completely specifies the representations R and S for g € SU(2) x {1, P}. The two
representations are, moreover, related through

3

ST(9)0iS(g) = det R(g) > _ Rij(9)0; (B.26)
j=1

for all ¢ € SU(2) x {1, P}. This relation can be alternatively read as the statement that
0 = (04, 0y, 0,) transforms as a pseudovector.

R(g) is the canonical representation of SO(3) and S(g) is the canonical representation of
SU(2). However, one can also consider how rotations act on other objects as well, such as
tensors. Mathematically, this is described by linear representations. The possible irreducible
representations can be derived by introducing the raising and lower operators J+ = J, £iJ,,
where J = L or S. This is explained in all quantum mechanics textbooks [25], albeit without
stating that mathematically this amounts to finding irreps of SU(2) and SO(3). The result is
well-known.

Irreps of SU(2) are specified by a non-negative half-integers j € {0, %, 1,...} called the spin.
The basis of the irrep vector space is made of states |m), m € {—j,—j+1,...,7—1,7}, which
are eigenstates of J,, but get mixed under J, and J,, according to:

I m) = % ViG+ D =mm+ Dim+ 1)+ V5 + 1) —mm—1m-1)],  (B.27)
IPm) = = [ViG+ D =mm+1)m+1) = ViG+ D —mlm - Dim—1)],  (B.28)
JD|m) = m|m). (B.29)

The irrep matrices we obtain by exponentiating the generators:
DY (g = Cypn) = exp(—mﬁ : JU')). (B.30)
Since m are integer or half-integer, depending on j, it follows that DU)(€) = (=1)%1. Re-

garding parity, DU)(P) can be set to either +1 (for even-parity irreps) or —1 (for odd-parity
irreps) independently of j because P commutes with all rotations. The irreps of SO(3) are the
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same as for SU(2), except for the fact that they can only have integer spin j = ¢ € {0,1,...}.
The canonical representations are obtained by setting j = % and £ = 1:

S(g) = D=2 (g) with S(P) = +1, (B.31)
R(g) = D=V (g) with R(P) = —1. (B.32)

There is an infinite number of possible irreps because SU(2) is an infinitely-dimensional
Lie group. Moreover, this infinite set of irreps is discrete (not a continuum) because SU(2)
is compact. For finite groups (which are always compact), the number of possible irreps is
finite and equals the number of conjugacy classes. As we shall see in the next section, when
the isotropic group of rotations SU(2) gets broken down to a finite subgroup, such as the
tetragonal point group Dyj, there will be only a few irreps which conceptually correspond to
the lowest-spin irreps of SU(2). The high-spin irreps break down into smaller parts because,
for finite point groups, there is simply not enough symmetry operations to generate from the
state |m = j) all the 2j + 1 states {|m)};,|<; when j is large.

B.4 The tetragonal point group Dy,

The tetragonal point group Dy is a subgroup of SO(3) which is generated by the following
three operations:

e four-fold rotations around the z axis Cy,,

e two-fold rotations around the x axis Co,, and

e two-fold rotations around the dy = x + y diagonal Caq, .
If we add the fourth generator,

e parity P,

we obtain the tetragonal point group Dy, which is a subgroup of O(3). By multiplying and
inverting these finite-group generators in all possible ways, we obtain the whole group. In
principle, we should also state how the different generators compose and commute, but for
rotations this is implicitly known since they inherit the group structure from SO(3).

For the tetragonal point groups, we find that:

Dy = Dy x {1, P}, Dy ={1,C4.,Cs;,C_4.,Cop, Oy, Cog, , Coq_}, (B.33)
where d_ = x — y and
Cz:Cz2a sz:Cz_lzczga
22 = (C1z) 3 4 (4)71 (Caz) (B.34)
Coy = Cy4,C2(Cyz) ™, Coq_ = (Cyz)” Caq, Cys.

By composing with parity, we obtain improper rotations and reflections:

S_4, = PCy, = XpC_y, Xy = PCo, Sa, = PC_y4, = X0y,

(B.35)
Y, = PCoy, Sy = PCyy, S4, = PCha, , Yy = PCyy .
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Table B.1: The group multiplication table of the tetragonal point group D,. For the
row with group element g; and column with group element go, the table entry gives the
result of group multiplication g1g2 (in this order). The group elements have been colored
according to conjugacy class to highlight the group structure.

1 Ciy. Ca. C_4. Cox Coy Caa, Caq_

1 1 Ciy. Ca. C_4; Coz Cay Coa, | Cog_
Cyz Cy. Ca, C_4. 1 Coq, | Caa_ Coy Coy
Ca. Ca. C_4. 1 Csz Cay Coz Caa_ Caa.,
C_4 C_4. 1 Cy Ca. Caa_ Caa, Coy Cay
o Coy Cag_ Cay Caa, 1 Ca. C_4. Cyz

Cay Cay Caa, Coz Caa_ Co. 1 Cy: C_4.
Caa, Caa., Coy Cag_ Cay Csz C_4: 1 Cs,
Coa_ Caa_ 9%y Caa, Coy C_y4. Caz Ca, 1

These are included in Dyy:
Dy = Dy U{P, S 42,580,842, 82,8y, Xa,, Xq_}- (B.36)

Y, and ¥, are vertical reflections and ¥4, are diagonal ones.

Normally, for application purposes, it is not necessary to work out the multiplication of all
group elements. We nonetheless do so here for pedagogical purposes. The group multiplication
table of the Dy point group is provided in Tab. B.1. Since parity commutes with everything,
that is [P, g] = 0 for all g € Dy, as well as P? = 1, it follows that for g1, g2 € Dy:

(Pg1)ge = 91(Pg2) = P(g192), (B.37)
(Pg1)(Pg2) = 9192 (B.38)

Thus Tab. B.1 also gives the multiplication rules for Dy, = Dy x {1, P}. Two notable features
of the multiplication Tab. B.1 are (i) there are ¢g; and go for which g1g2 # g201, i.e., group
multiplication is not commutative in general, nor in this case in particular, and (ii) every
column and row has only one appearance of each number. The latter is a consequence of the
invertibility of group multiplication. Associativity (g192)g3 = ¢1(g293) is not obvious from the
table and, in general, one has to verify it.

The conjugacy classes of the group are much more important during practical applications
of group theory in condensed matter. Conjugacy classes are defined by identifying group
elements g and ¢, g ~ ¢/, whenever there exists a group element § such that ¢ = §7'¢3.
There are five conjugacy classes of Dy:

o b= {1}7
L4 C4 — {0427 0742}7
o (y ={Cs.},
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° Cé = {CQJ;, C'Qy}, and
o Cy ={Cs,,Coq_}.

It is a good exercise to show this. The identity is always its own conjugacy class. Notice
how the conjugacy classes are made of conceptually similar elements. Given that parity P
commutes with everything, there are ten conjugacy classes of Dy, which are those of Dy plus

. PP}
Sy = {S4:,58-4:},
h=A{Zn},

Y ={3;,%,}, and

X0 = {34, Zaq_}.

B.4.1 Character theory

Let us now discuss the representations of the tetragonal point groups Dj and Dy,. The
completely reducible representations of any point group can always be decomposed into irreps,
which are the elementary building blocks of representations. Finding the irreps of a given
finite group, however, is a bit involved and we refer the reader to Refs. [170, 685, 689] for the
details on how this is done. For the point groups which appear in condensed matter physics
applications, the results are well-known and tabulated in the form of character tables. The
character tables can be found in books such as Dresselhaus et al. [170] or online on websites
such as that of the Bilbao crystallographic server [686, 687]. Here we explain how to read and
use these tables.

As we have seen in Sec. B.1.2, irreps can come in a number of different forms which are all
equivalent in the sense that they differ by a change of basis. We do not want to be distracted
by the detailed way a group is represented in a certain basis, however, because this it not
universal. Instead, we want to characterize the linear operators of the representation M(g)
in terms of invariants which are universal (basis-independent). The most important of such
invariants in representation theory is the trace, which defines the so-called character.

Definition. The character of a group element g € G with respect to a representation
M: G — GL(V) is the trace of M(g):

xat(g) == Tr M(g). (B.39)

The character of a representation M: G — GL(V) is the set of all group element charac-
ters:

Xt = {xm(9) | g € G} (B.40)

An important result from representation theory is that representations M and M’ are equiva-
lent for a finite (or compact) group G if and only if the characters of the two representations
Xt and Xy are identical. Thus characters completely characterize the representations of finite
groups.

Here are a few important properties of characters and irreducible representations (irreps) [170,
685, 689]:
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The character of the identity gives the dimension of the representation since Tr M(1) =
Tr1l = dim M.

The trivial representation, usually denoted A, Ay, or Aig4, in which all g are mapped to
plus one, My, (g) = +1, is always an irrep. All its characters equal +1.

The character is the same for all elements of the same conjugacy class. This follows from
TrM(571g5) = TrM (G M(g)M(§) = TrM(g). Thus one may speak of characters of
conjugacy classes.

For finite groups, the number of conjugacy classes equals the number of irreps.

The characters of the irreps are orthogonal in the sense that

1 - 1 B
@l > xae (97 Do (9) = €] D 1Culxae (€5 ) (Cn) = B¢, (B.41)
9€G ChEG/~

where ¢ and £ denote the irreps, C,, goes over the conjugacy classes G/~, and |C,,| is the
number of elements within the conjugacy class C,.

The characters of the conjugacy classes are orthogonal in the sense that
1 _
|G| > lenlxoe (€5 )xat (€m) = Snm, (B.42)
¢

where ¢ goes over all irreps of G and €, ,, are conjugacy classes.

Irreps are complete in the sense that every representation can be written as a direct sum
of irreps.

The characters of direct sums of representations add up: X, en, (9) = X, (9) +xMm, (9)-

The characters of direct products of representations get multiplied: X, e, (9) = X, (9)
X X Mg (g ) .

The character tables of {1, P} and D, are provided in Tab. B.2. From these two tables,
the character table of the Dy, point group is easily constructed. It is shown in Tab. B.3.
In character tables, columns correspond to conjugacy classes, which are denote on the top
together with their size if larger than 1. E.g., the conjugacy class E has only the identity {1},
while 2C% has two elements which are, namely, C, and Cy,. Rows correspond to irreps whose
names are given at the leftmost end. The entries of the table are the characters XMC(en)7
where the irrep ¢ and conjugacy class C,, correspond to the given row and column.

The properties we just listed for the characters and irreps are all reflected in Tabs. B.2
and B.3 The first column under E gives the dimension of the irreps. The first rows has only
plus ones because the corresponding representation is trivial. One may also verify that the
rows and columns are orthogonal in the precise way described by Egs. (B.41) and (B.42).
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Table B.2: The character tables of the (triclinic) point group S; = {1, P} and tetrag-
onal point group D, [170]. P is space inversion or parity. Cy are 90° rotations around
é.. Oy, Cf, and CY are 180° rotations around é,, &, or é,, and the diagonals &, + é,,

respectively.
So E P
Ay 1 1
Ay 1 -1

D, | E 20, Cy 20, 2c
A |1 1 1 1 1
Ay | 1 1 1 -1 -1
By | 1 -1 1 1 -1
By | 1 -1 1 -1 1
E | 2 0 -2 0 0

Table B.3: The character table of the tetragonal point group Dy, [170]. The irreps are
divided according to parity into even (subscript ¢g) and odd (u) ones. C4 are 90° rotations
around é,. Cy, C%, and CY are 180° rotations around é., é, or é,, and the diagonals é, £ &,,
respectively. P is space inversion or parity. Improper rotations 54 and mirror reflections Y,
¥, and 3/ are obtained by composing Cy, Ca, C3, and Cy with P, respectively. Notice how
the four quadrants have the same structure as the Sy = {1, P} character table of Tab. B.2,
as follows from the commutativity of parity.

Dy | E 200 Cy 20, 200 | P 25 %, 2%, 2%/
Ay, | 1 1 1 1 1 1 1 1 1 1
Ay | 1 1 1 -1 -1 1 1 1 -1 -1
By, | 1 -1 1 1 -1 1 -1 1 1 -1
By | 1 —1 1 -1 1 1 -1 1 -1 1
E, | 2 0 -2 0 0 2 0 -2 0 0
A | 1 1 1 1 1] -1 -1 -1 -1 -1
Ay, | 1 1 1 -1 -1 -1 -1 -1 1 1
B, | 1 -1 1 1 -1 -1 1 -1 -1 1
Boy | 1 -1 1 -1 1| -1 1 -1 1 -1
E, | 2 0 -2 0 0| -2 0 2 0 0

B.4.2 Examples and conventions for irreducible representations of Dy,

In the case of 1D irreps, the character table explicitly gives us the irrep xa(g), which is
actually unique since there is no such thing as changing the basis of a 1D vector space. In the
case of multidimensional irreps, such as F, or £, of Tab. B.3, however, one has to explicitly
specify the basis which one uses and the precise form of the irrep matrices. Throughout the
thesis, whenever we say that an object transform under the irreps £, or E, of Dy, we shall
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B.4 The tetragonal point group Dgp

Table B.4: Examples of coordinate polynomials transforming according to the irreps
of the tetragonal point group Dy [31]. As discussed in the text, Dy is generated by
fourfold rotations around z, twofold rotations around x and ¥, twofold rotations around the
diagonals = £ y, and parity. It has five even (A1, Azg, Big, B2y, E4) and five odd (A,
Aoy, Biy, Bay, Ey) irreps, of which E; and E, are two-dimensional. The character table is
given in Tab. B.3.

Alg A2g Blg B29 Eg
L,a? +y?, 22 | aye® —y?) | 2 —y° xy (yz| — x2)
A1y Agy By Boy E,

zyz(x® — y?) z ryz (2% — )z (zly)

entail that the transformation matrices have the form:

0 —1 1 0
MEg/u (042) = <1 0 > Y MEg/u (0233) = <0 _1> ) Jv[Eg/u (02d+) = (1 O) 9 (B43)

with
Mg, (P) = (é ?) Mg, (P) = <_01 _01) (B.44)

Note that to specify the Mg, Ju (g) for all g € Dy, it is sufficient to specify how the matrices look
like for the four group generators of Dyy,. Parity is diagonal for multidimensional irreps because
it commutes with all group elements, as follows from Schur’s second lemma (Sec. B.1.2).

The best way to get an intuition regarding the various irreps is to think of them in terms
of elementary objects which transform under them. The most basic objects are the real-space
coordinates r = (z,y, z) and polynomials can be constructed from these coordinates so that
they transform under all irreps of the point group.” Such polynomials are often provided
alongside the character table; see Ref. [170], for example. In Tab. B.4, we have listed the
lowest-order coordinate polynomials which transform according to the various irreps of Dyy,.

In the example (zy| — zz) € E4 of Tab. B.4, the peculiar-looking ordering and minus sign
are necessary to ensure that the corresponding transformation matrices are the ones given in
Egs. (B.43) and (B.44). For instance, Ca, maps (z,y,2) — (z,—y,—z) hence (zy| — zz) —
(zy|zz), in agreement with Eq. (B.43), only if we flip the places of xz and yz. Similarly, the
relative minus sign is needed so that Cy, acts through the matrix given in Eq. (B.43).

In the case of the isotropic point group SO(3), the coordinate polynomials which fall into
the various irreps are the spherical harmonics. It is insightful to compare them with Tab. B.4.
The s-wave (¢ = 0) constant wavefunction 1 belongs to A4, but so does the d-wave (£ = 2)
wavefunction 22 4 32 — 222. The two d-wave functions 22 — 2 and 2z, although related by a
45° rotation around z, belong to different irreps because the symmetry operation which relates
them is not an element of the point group Dyp. For the same reason, the p-wave (¢ = 1)

5In the case of irreps of the double group of the point group which are odd under 27 rotations, spinors need
to be used to represent them.
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SO3): ( 3(z*+y?) — 2%, % — 92, 2xy, 2z, 2yz )522
Dyp Alg(l'2 + 92 - 222) Blg(IQ - y2) ng(l‘y) Eg(yz‘ - IZ)

Figure B.1: The splitting of d-wave (¢ = 2) spherical harmonics (top) into irreps of
Dy4p, (bottom) in the presence of a tetragonal crystal environment.

functions (x|y) and z belong to different irreps of Dyj,. Indeed, this one may explicitly see by
evaluating the vector representation R(g) using Eq. (B.24):

0 —1 0 1 0 0
RCyx)=|1 0 o], R(Cy)= (0 =1 0 |,
0 0 1 0 0 -1
(B.45)
01 0 -1 0 0
R(Coq,)=11 0 0 |, RP)=[0 -1 o0
00 —1 0 0 -1

None of the Dy, group generators mix (z|y) and z. Hence the two belong to different irreps,
E, and Aj,, as follows from R(g) = Mg, (g) ® Ma,,(g). The broad patter is therefore that
spherical harmonics, which are degenerate under SO(3), have their degeneracy lifted in crystal
environments. The splitting of the degeneracy is depicted in Fig. B.1 for the £ = 2 spherical
manifold.

Of course, coordinate polynomials are not the only thing that transforms under irreps.
Matrices, operators, field, etc., can all be decompose into parts which transform according to
irreps of the point group of the problem. For instance, the magnetic field B = (B, By, Bz)
decomposes into (B;|By) € E4 and B, € Agy. Similarly, the Pauli (or spin) matrices transform
according to:

2

S1(9)0aS(g) = [ Mg, (9)] 0.
b=1

S1(9)035(g) = May, (9)03,
for g € Dyjp. Thus (01]|02) € E; and 03 € Agg. This is a special case of Eq. (B.26). Here, S(g)

is the spin representation of Sec. B.3. From Eq. (B.25), it follows that for the generators of
D4h:

(B.46)

S(C4z) = M; S(CQJ:) = —i0y,
V2
0o+ 0, (B.47)
S(ng+):*17, S(P):GO
Here o is the 2 x 2 identity matrix.
B.5 Decomposition of composite objects
Suppose we are given two vectors v = (v1,...,un)T and u = (uy,...,up)T which transform

under the representations M, and M, of a finite group G, respectively. Then the composite

292



B.5 Decomposition of composite objects

object {v,up} transforms like

M

N
g: vatty = Y > [Mo(9)] 4o [Mu(9)pgvetia, (B.48)
c=1d=1

which is fairly complicated. We want to simplify this.
The first step is to introduce the direct-product vector

v1uq

vou=| UM, (B.49)
Va2u1

UNUM

Then Eq. (B.48) can be recast into matrix multiplication with the direct-product matrix
Moy (g) @ My(g):

g: v @u = [My(g) @ Mu(g)](v @ u) = [My(g)v] @ [Mu(g)u]. (B.50)

Hence v ® u transforms under M, ® M,,.

The components of v and u can be scalars or operators. In the case of operators, there
is usually a representation of G on the operator space, call it ﬂ, which is related to the
representations M, and M, through:

N
U (9)oalllg) = S Mo (9)] s, (B.51)
B A b]:wl
U (9)uall(g) =Y [Mu(g)]apus- (B.52)
b=1

Notice how these relations are consistent with composition (¢ — ¢g1g2) and how

M
|

N
U (gvauslilg) = U (9ol (9)uslllg) = 3 S IMul(@)]geMu(9)pgvena.  (B.53)
c=1d=1

The next step in the simplification is to decompose M, ® M, into irreps. More explicitly,
we want to change into a basis in which M, ® M,, is block diagonal [cf. Eq. (B.5)]:

M, (9)

B~ M, (g9) @ Myu(g9)B = M, (9) (B.54)
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Although finding B is a bit involved, finding out which (i, (s, ... irreps appear on the right-
hand side is more straightforward since it can be deduced from the characters alone. By taking
the trace of the above, one finds that

X, (9) = xon, (9)xon, (9) = Xae, (9) + X, (9) + X, (9) + - (B.55)

Given that we know the characters of M,,, M,,, and all the irreps, the above is readily solved
to find which irreps appear in the decomposition of M, ® M,. The orthogonality of irreps
[Eq. (B.41)] is very useful in this context.

Let us now consider the tetragonal point group Dg, whose character table is given in
Tab. B.3. Introduce the character vectors:®

W = 0on(E), xn(Ca), xa(C2), xm(Ch), xn(CY), xm(P)). (B.56)

By employing the character table, one can now easily find the irrep decompositions of direct
products, like for instance:

>_<'A29®Blu - (17 _17 17 _17 1> _1) = 5{32“, (B57)
XEQ@BQQ = (2’ 0, =2, 0, 0, 2) = X)Ega (B58)
2E9®Eu = (4’ O’ 4’ 0’ 07 _4) = X)Alu + X,A?u, + X’Blu + X’BQu’ (B59)

and so forth. In the case of 1D irreps, the above completely answers what we get after a
direct product. In the case of 2D irreps, however, special care needs to be taken to ensure that
the 2D vectors transform under the same 2D irrep matrices which were given in Egs. (B.43)
and (B.44):

e = () ) ) e = (g &) decad= (] o). @

Regarding parity, because it commutes with everything, in the direct product one can treat
it separately from the rotational part D4 of Dyy. After going through all the possible irreps
of the Dy, point group, one obtains the irrep product table B.5, which was previously also
provided in Ref. [31]. Let us note that in the case of E(v) ® E(u), it is convenient to write
the result in terms of Pauli matrices:

vTogu € Ay, vTo,u € By,

(B.61)
vio,u € Ay, vlo,u € By.

Analogous irrep product tables can be derived for other point groups. When these point
groups have multidimensional irreps, as it the case, e.g., for the hexagonal point group Dgp
and cubic point group Oy, special care needs to be taken to ensure that the components of
the multidimensional irreps consistently transform under the same irrep matrices. For the
respective irrep product tables and a discussion of their derivation, we refer the reader to the
doctoral thesis of Charles Steward [690].

SImproper rotations and reflections need not be included in the vector because parity commutes with every-
thing.
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Table B.5: The product table(s) for irreducible representations of the tetragonal point group Dy, = {1, P} x Dy [31].
The upper table is the product table for {1, P}, which has an even (g) and odd (u) irrep, while the lower table is the product table
for Dy. Both tables are symmetric in the sense that {(v) ® {(u) = £(u) ® ((v) for irreps (,{. For Dy, notice how the products
between 1D irreps have the structure of the Zy x Zg group, with the first Zo = {A, B} and the second one corresponding to the
subscripts {1,2}. In the case of the 2D irrep E, we have ensured that the two components always transform under the same set
of matrices of Eq. (B.60). In particular, the ordering is important since E(u1|uz) and E(ug|u;) imply different transformation
rules for u = (uy,uz). Thus, when multiplied with a 1D irrep, the vector components sometimes need to be permuted or negated
to ensure that the transformation matrices stay the same.

® g U
g
® Aq(u) Ao (u) Bi(u) B (u) E(uy|ug)
A1 (v) Aq(vu) Az (vu) Bi(vu) Bs(vu) E(vuq|vug)
As(v) As(vu) Aq(vu) Bs(vu) B (vu) E(vug| — vuy)
Bi(v) B (vu) Bs(vu) Aq(vu) Az (vu) E(vuy| — vug)
Bs(v) Bs(vu) B (vu) Az (vu) Az (vu) E(vug|vuy)
A1 (viug + voug)
E Az (viug — vauy)
(v1]v2) E(viu|vau) E(vou| — viu) E(viu| — vou) E(vou|viu) By(orur — vauy)
1(viur — vaug
Ba(viug + vouq)

sp00[qo o31s0duIod Jo uoIISOdUOdd([ G'¢f






Notation and Conventions

Here we summarize the notation and conventions that we employ throughout the thesis.

We use SI units without exception, with the standard notation for the fundamental constants
and units. Both the reduced Planck constant i = h/(27) (the Planck constant h is never used)
and the Boltzmann constant kg are retained, i.e., not set to unity. The elementary charge
e one can always tell apart from the Euler constant e from context. yg = 0.5772... is the
Euler-Mascheroni constant.

All the systems considered in this thesis are crystalline. Periodic boundary conditions
are always used, unless explicitly stated otherwise. In Chap. 2 we have in addition set the
lattice constant to unity so L¢ = N, a; = &;, etc. The Fourier normalization factors are
symmetric [f(R) = N~1/2 >k kR fi | for fields (¢, ¥, ¢, ®) and are asymmetric [f(R) =
N1y elF B for everything else (T, p, D, A, Hg). If not explicitly stated, the Fourier
conventions can be easily deduced.

To avoid confusion, we never use the Einstein summation convention, i.e., all summations are
explicit. We employ the Euclidean signature for everything so there are no differences between
lower and upper indices (z, = z#, k, = k*, etc.), the Dirac matrices satisfy {v,,7} =
25,,,, and so on. All calculations are performed in imaginary (Euclidean) time, with the only
exception being Sec. 3.2.2 where we analytically continue to real time.

Vectors are bolded and have hats if they are normalized to unity. We use hats for operators
only in a few instances where we wish to distinguish them from their matrices. Occasionally,
Dirac braket notation is used.

Basic quantities:

T temperature

B thermodynamic beta, 3 := 1/(kgT)

T superconducting transition temperature

T* pseudogap onset temperature (of cuprates, Chap. 2)

i chemical potential

g density of states

D hole doping

, general tuning parameter or the quantum-critical boson softness
parameter

€ij (€) strain tensor components (in Voigt notation)
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oij (03)

o
Sh
S

N A R » o N n Q

h
U

2

stress tensor components (in Voigt notation)

elasticity tensor, in Voigt notation

heat capacity

entropy

free energy

partition function

Euclidean (imaginary-time) action

many-body (Fock-space, second-quantized) Hamiltonian
spatial dimension

linear size of the system

total volume of the system

total number of unit cells

number of orbitals per unit cell included in the tight-binding model

column-vector/spinor of fermionic annihilation operators or

Grassmann-odd fields, ¢ = (Y14, 01,0, -, s ¥ary)T

extended-basis (Chap. 2) or continuum (Chap. 3) fermionic field
operator

number of fermionic flavor components (during large-/N expansion,
Chap. 3)

number of order parameter components

order parameter or the corresponding fluctuating bosonic
Grassmann-even fields (or field operators), a € {1,...,dim ®}

bilinear constructed from ®, ~ ®f 0,®
fermionic bilinear conjugate to ®,

fermion-boson coupling matrix (~ D YTy, ® \IITI‘\I/) or general
spin-orbit matrix

orbital matrices of various types (I' ~ A ® 0) or momentum-space
cutoff

plasmon field
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electric charge density
electric dipole operator (Chap. 3)
superconducting gap matrix

pairing eigenvalue, T, x e~/

pairing interactions which enter the linearized gap equation (Sec. A.3)

pairing form factors, Fap = >, trs O'AﬁaO'Bﬁ;r (Sec. 1.3.2.1)

band Hamiltonian, including the displacement by the chemical
potential p

dispersion of the n-th band with the Fermi level set to zero
band eigenvector of the n-th band, Hxtgns = Eknlkns

band projector of the n-th band, Py, =), uknsu};m

parity

m-fold (22) rotation around 7

reflections

many-body unitary symmetry operator

matrix describing the action of ﬂ(g) on fermions 9y, in k-space
many-body antiunitary time-reversal operator

matrix describing the action of © on fermions Y in k-space
3D vector transformation matrices, R(g) € O(3) (Appx. B.3)

2D spinor transformation matrices, S(g) € SU(2) (Appx. B.3)

irreducible) representation matrices, for Dy, irreps see Sec. B.4.2
P ) P

Unit vectors, components, and crystal notation:

Cartesian unit vectors {é,,é,,€é.}, é + €; = d;;.

Cartesian components of r, r; := &; - . Individually, we shall usually
denote them z, y, z instead of r4, ry, v, or r1, 72, 73.
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[hk],
(hk?)

(hk0),
(hke)

Cartesian components of k, k; := é; - k. We shall always denote them
ke, ky, k. instead of k1, ko, k3 because in a few cases the latter denote
four-momenta, and not components. Same goes for p; and g;.

Primitive vectors of the real-space Bravais lattice of the system.
Primitive vectors of the reciprocal lattice, a; - b; = 278;;.

Miller indices describing the direction Ry = hay + kag + las,
modulo point group symmetries for (hk¢). Bars denote negative
integers, 1 = —1, etc.

Miller indices describing the plane 7 + G x¢) = 0, where
G (hke) = hb1 + kby + £bz, modulo point group symmetries for {hk(}.

Variables and their domains:

9

R,$

Lo

we

k,p,q

Elements of the point group of the system. For naming of individual
point group elements, see the end of Sec. B.1.1 of Appx. B.

Imaginary time, € [0, 3] and [ = foﬁ dr.

Continuous spatial positions, € R? and [ = [d% = L. These
integrals always go over the whole space, and not just one unit cell,
unless explicitly stated otherwise.

Direct lattice vectors, € Zay + Zas + Zasz and ) 1 = N. Their sums
always go over the whole lattice. R vs. § is used to emphasize whether
we are dealing with an absolute position or relative displacement,
respectively. ) s is a sum over lattice neighbors, both close and
distant, including § = 0.

Relative position of the center of the « orbital within a unit cell, with
respect to the Bravais lattice. R+ x,, are the absolute positions.

Spacetime four-vectors, € R¥1. They can either equal = (7, 7) with
Jo = foﬁ dr [d%, or x = (7, R) with [, = fOB d7 >R, depending on

whether we are dealing with a continuum or lattice model.

Matsubara frequencies, can be either bosonic wy, = 20w/ or fermionic
we = (2 + 1)7/P; should be obvious from context which ones.
Matsubara sums sz always go over all frequencies.

Wavevectors/crystal momenta, ), 1 = N. Their sums and integrals
always go over only the first Brillouin zone, unless explicitly stated
otherwise.

Reciprocal lattice vectors, € Zby + Zby + Zbs, /G =1, and
> ¢ 1 =N. Their sums always go over the whole reciprocal lattice.

300



k,p,q

Crystal momentum four-vectors, k = (wx = wy, k) and 3, = > > 4.
The Matsubara frequencies corresponding to k, p, ¢ we usually denote
Wk, Wp, wq instead of wy, respectively.

Indices and their spans:

¢,§

a,b

[y vV

i,J, k

Denote irreducible representations (irreps). For the tetragonal point
group D4h (SGC. B4)) C?é- € {A197 A2ga Blga B2ga Eg) Alu) AZ’U,) Blua
B2ua Eu}

Order parameter component indices € {1,...,dim ®}, irrep
components indices € {1,...,dim(}, or just general matrix indices.
dim ( is the dimension of the irrep. This index we suppress for 1D
irreps (dim¢ = 1).

Spacetime component indices, € {0,1 = z,2 = y,3 = z}, or Pauli
matrix indices including og = 1.

Spatial component or direction indices, € {1 = x,2=y,3 = z}, or
spin-like Pauli matrix indices (excluding op). Also used as the Voigt
notation indices, € {1 = zx,2 = yy,3 = 22,4 = yz,5 = zx,6 = xy}.

k we use sparingly and, when we do, it should be obvious from context
that k isn’t a four-momentum.

Fermion component indices, covering both orbital and spin degrees of
freedom, € {1,2,...,2M}. In a few instances they go only over orbital
degrees of freedom, in which case they span 1,..., M.

Band indices, € {1,...,M}. All systems under consideration have
both parity and time-reversal symmetry so their bands are doubly
degenerate. Also used as general enumeration indices € {1,2,...}.

Spin or pseudospin (Kramers’ degeneracy) indices, € {1,/}.

Pauli € {0,1,2,3} or Gell-Mann € {0, 1,...,8} matrix indices.

Special notations:

ky,pm

ki,pi,q1

This means that the wavevector k is on the Fermi surface of the
n-th band, i.e., it satisfies eg,, = 0, where &g, is the dispersion of
the n-th band displaced by the chemical potential. Likewise,

Pm < €pm = 0.

Denotes the in-plane components of k, p, g is quasi-2D systems,
ie, k| = (kxyky), k= (kkaz) = (kxa kyakz)a pP1L = (vapy)a etc.
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Matrices:

e The Pauli matrices are the usual ones:

1 0 0 1
0p = Tg = 0 1/’ 01 =0, =Ty = 1 0/

0 —i 1 0
UQEO'y:Ty:<i 0), 0'3E(TZ:TZ:<O _1>

04 are used for Pauli matrices in spin or pseudospin space, while T4 are used for Pauli
matrices in orbital or flavor space. The tensor product ® between T4 and op is usually
suppressed. The T4 only arise in Chap. 3.

e The Dirac gamma matrices employed in Chap. 3 are:

1 0 0 0 0 0 0 —i
01 0 0 0O 0 i O
Y0 = T300 = 00 -1 0|’ Y1 = Ti10y = 0 —i 0 O) )
00 0 -1 i 0 0 O
0 0 0 -1 0O 0 i 0
0 0O -1 0 0 0 0 1
Y2 = —T10z = 0 -1 0 0 ) ) Y3 = —T200 = 50 o0 ol
-1 0 0 0 0 -1 0 0
0O 0 i O
0O 0 0 i
VEENNTB =TT = 0 g g
0O —-i 00

Note that they are Hermitian, fy): =7, and in Euclidean signature, {v,,7,} = 25,,.

e In Chap. 4, we use the following unconventional choice for the nine Gell-Mann matrices:

1 0 0 010
A=1|0 1 0], Ai=1[1 0 0},
000 000
0 —i 0 1 0 0
Ab=1i 0 o], As=1[(0 -1 0],
0 0 0 0 0 0
00 0
Aq=1(0 0 0],
0 0 V2
00 1 0 0 —i
As=10 0 0], A¢=10 0 0},
1 00 i 0 0
000 00
Ar=10 0 1], As=|0 0 —i
010 0i 0
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These 3 x 3 Gell-Mann A 4 matrices, used in Chap. 4, should not be conflated with the
5 x 5 extended-basis orbital A%,a matrices, introduced in Sec. 2.4.2.1 of Chap. 2.

Various:
const. constant
z* complex conjugate of z € C (the notation z is never used)
A* element-wise complex conjugate of A, (A*)ap = (Aap)*
c.c. complex conjugate
AT transpose of A
Af Hermitian conjugate of A, AT = (A*)T
H.c. Hermitian conjugate
1 identity operator or matrix
diag(xy, 2, diagonal matrix with x1, xs, ...on the diagonal
[A, B| commutator, [A, B] := AB — BA
{A, B} anticommutator, {A, B} := AB + BA
tr, Tr trace

a “ket,” i.e., a column-vector v in Dirac notation

a “bra,” i.e., a conjugated and transposed vector v' in Dirac
notation

a “braket,” i.e., a scalar product between v and w in Dirac
notation

dij Kronecker delta symbol

€ijk Levi-Civita symbol

5(x) Dirac delta function

O(x) Heaviside step function

sgn(x) sign function

log natural base-e logarithm (the notation In is never used)
erf(x) error function, erf(z) := % Jo dt et

Cly(z) Clausen function, Cly(z) := Yo% | sin(nz)/n?

303



Notation and Conventions

0
v real-space nabla operator, V := I
r
0
Vi momentum-space nabla operator, Vi := %
O(z™) big O notation
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List of Abbreviations

nD
AF
ARPES
ASV
BCS
BZ
CDW
DFT
DOS
irrep
IUC
LC

SR

NMR
PND
QCP
RG
RPA
SC
SDW
SOC
SQUID
SRO
STM
TR
TRSB

n spatial dimensions/n-dimensional (for integer n)
antiferromagnet /antiferromagnetic/antiferromagnetism
angle-resolved photoemission spectroscopy

Aji, Shekhter, and Varma (authors of Ref. [41])
Bardeen-Cooper-Schrieffer

Brillouin zone

charge-density wave

density functional theory

density of states

irreducible representation

intra-unit-cell (synonymous with homogeneous g = 0 order)
loop current (synonymous with orbital magnetism)

muon spin spectroscopy /muon spin rotation/muon spin
relaxation

nuclear magnetic resonance

polarized neutron diffraction
quantum-critical point

renormalization group

random phase approximation
superconductor /superconducting/superconductivity
spin-density wave

spin-orbit coupling

superconducting quantum interference device
strontium ruthenate SroRuQy

scanning tunneling microscopy

time reversal

time-reversal symmetry-breaking
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