

Optimization of cryogenic mixed-refrigerant cascades for intermediate cooling stations of the long-distance superconducting power cable SuperLink

F. Boehm, W. Batista de Sousa, S. Grohmann, International Cryogenic Engineering Conference, July 25, 2024

www.kit.edu

SuperLink – 15 km sc. HV cable in Munich

Progressing electrification due to energy transition
 Upgrading power grid is imperative (age, performance)

[1] www.nkt.de

- Lower space demand
- No electromagnetic emissions
- No joule heating
- Higher transmission performance

[2] NKT

SW//M

THEVA

OU Refrigeration and Cryogenics

SuperLink – Closed cycle cooling stations

Cooling temperature below 77 K
 15-30 kW per cooling station
 Low-maintenance → reliability
 Low space requirement
 Low energy demand

[3] Alekseev et al. 2020

- Cooling systems are the main contributor to energy demand
 - 1st and 2nd law of thermodynamics $\rightarrow P = \sum T_{U} \cdot \dot{S}_{i,irr}$

•
$$\Delta p: \dot{S}_{i,irr} \propto -\frac{v}{T} dp$$

• $\Delta T: \dot{S}_{i,irr} \propto \frac{T_1 - T_2}{T_1 \cdot T_2}$

Influence of ΔT and Δp increases at cryogenic temperatures

Why mixed refrigerants? – The Linde Hampson Cycle

- Easiest cryogenic cooling cycle
 - Capacity flows do not match for pure refrigerants
 - $\rightarrow \Delta T$ increases entropy production

$$\Delta s_{\rm irr} = \int \frac{T_{\rm h} - T_{\rm c}}{T_{\rm h} T_{\rm c}} \,\mathrm{d}q$$

- Improvement by matching capacity flows \rightarrow constant ΔT along inner CFHX
 - by adjusting massflows in CFHX
 - e.g. Claude process
 - ... by using wide boiling refrigerant mixtures
 - Cryogenic mixed-refrigerant cycle (CMRC)

Why mixed refrigerants? – Refrigerant Design

CMRC cascade

- Single-stage CMRC inefficient for very low temperatures (70 K)
 - Amount of high boiling components must be drastically reduced to avoid freeze-out
- \rightarrow CMRC cascade
 - precooling (PC) stage
 - cooling down to T_{precool}
 - Iow temperature (LT) stage

• cooling at T_0

Process simulation

[4] I.H. Bell et al. 2014

Optimization by genetic algorithm^[5]

Optimization by genetic algorithm^[5]

DE is predestined to parallelization

Different candidates in the same generation can be calculated independently

Initial Population

Total Carnot efficiency for different *T*_{precool}

T_0	64 K – 74 K	T _{precool}	80 200 K
T _a	293.15 K	$ ho_{ m ND}$	1 20 bar
$\Delta T_{\rm a}$	5 K	$ ho_{ m HD}$	10 … 60 bar
$\Delta T_{\rm min}$	2 K	\widetilde{X}_i	0 1
$\eta_{ m is}$	0.7		

- liquid refrigerant supply (LRS) to HX2 for $T \le 120$ K
 - → significantly improves efficiency of low temperature stage

HX temperature profiles and T-h plot for LT stage

Conclusions and outlook

Simulation results

- Successful implementation of genetic CMRC cascade optimization algorithm
- Precooling temperatures below 120 K improve efficiency
- Very good match of capacity flow rates within heat exchangers

Technology outlook

- Compared to Turbo-Brayton cycles, CMRC cascades have
 - higher Carnot efficiency (> 40 %)
 - higher power density (2-phase)
 - no cold expanders
 - scalable technology

Next steps

- Prototype development?
- Test facility COMPASS^[9] available

Thank you for your attention!

- [1] https://www.nkt.de/presse-events/nkt-entwickelt-den-prototyp-fuer-das-weltweit-laengste-supraleitende-stromkabel, last checked: 17 July 2024,
- [2] NKT, private communication
- [3] A. Alekseev, S. Grohmann and L. Decker, "Anforderungen an das Kühlsystem für lange HTSL-Leistungskabel", german, 2020. DKV Tagung 2020 online, A I.11, 19-20 November 2020
- [4] I.H. Bell, J. Wronski, S. Quoilin and V. Lemort, "Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp", Industrial & Engineering Chemistry Research 53, S. 2498–2508, ISSN 0888-5885. 2014.
- [5] F. Boehm and S. Grohmann, "Modelling and optimization of cryogenic mixed-refrigerant cycles for the cooling of superconducting power cables." IOP Conference Series: Materials Science and Engineering. Vol. 1301. No. 1. IOP Publishing, 2024. doi: 10.1088/1757-899X/1301/1/012132
- [6] R. Storn and K. Price, "Differential Evolution A Simple and Efficient Heuristic for global Optimization over Continuous Spaces", Journal of Global Optimization, 11, S. 341-359, 1997. doi: 10.1023/A:1008202821328
- [7] K. Price, R. Storn and J. Lampinen, "Differential Evolution A Practical Approach to Global Optimization", Springer Berlin, Heidelberg. ISBN: 978-3-540-20950-8. 2005.
- [8] https://www.scc.kit.edu/dienste/bwUniCluster_2.0.php, last checked: 17 July 2024
- J. Arnsberg, M. Stamm, and S. Grohmann. "Design of a High-Current Cryogenic Test Stand for Compact Accelerator Systems". In: 26th IIR International Congress of Refrigeration - Refrigeration Science and Technology Proceedings. 26th IIR International Congress of Refrigeration. Vol. 1. Paris, France, Aug. 21, 2023, pp. 231–239. DOI: 10.18462/iir.icr.2023.0290.