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Abstract

Crazing is the primary damage mechanism in amorphous thermoplastics. Despite decades of extensive
research, craze models that allow the study of fracture processes involving crazing and shear yielding
under cyclic loading have yet to emerge. Crazing describes the localised formation and dilatant growth
of crack-like defects, consisting of fibrillated matter interspersed with voids. This network of highly
oriented fibrils is of significant practical importance, as it enables load transfer between its surfaces,
resulting in a substantial increase in the material’s fracture toughness.

This cumulative dissertation aims to elucidate the cyclic crazing response and its interaction with
the adjacent bulk material by utilizing a multiscale approach that combines molecular dynamics and
continuum micromechanics. To this end, a micromechanics-inspired constitutive model for crazing is
developed, enhanced with results from molecular dynamics simulations and employed as a traction
separation law along the ligament of a mode I crack propagation problem. In a finite strain setting,
the model accounts for (i) the morphological changes from microvoids to mature fibrils during craze
initiation, (ii) craze thickening due to viscoelastic deformation of existing craze fibrils, (iii) craze
thickening due to the transient process of viscoplastic conversion of bulk material into new fibrillated
craze matter and (iv) premature jamming of the craze fibrils during unloading. The structural behaviour
of the craze fibrils is modelled as string-like. This leads to creep recovery of the fibril deformation
when they are stress-free, which facilitates continuous fibril drawing across loading cycles. As the
craze is taken to break down at a critical thickness, the current craze fibril length can be considered a
measure of cyclic damage accumulation.

To enrich the polymer physical understanding of the involved processes, molecular dynamics sim-
ulations of a generic bead-spring model are conducted. The mechanical response of sole fibrillated
craze matter and the bulk-craze interaction in glassy polymers under cyclic loading is analysed. The
results support the string-like representation of craze fibrils as they undergo a stress-free folding
motion during unloading. Further essential findings of this study are the complex stress response and
the driving mechanisms leading to the hysteresis. Extensive postprocessing of the simulation results
enables the incorporation of mechanisms and experimentally inaccessible material parameter scopes
into the crazing model through a bottom-up approach.

The molecular dynamics informed continuum model is employed in a finite element study to analyse
mode I craze and crack growth under cyclic loading in brittle and ductile glassy polymers. The model,
along with the calibration methodology, successfully reproduces important craze, shear band and failure
characteristics reported in the experimental literature. These include, for instance, the craze contour,
the initiation of shear bands at the current crack tip that arch towards the craze, which shares much
resemblance to the so-called epsilon-shaped deformation zone and properties of normal fatigue crack
propagation. A novel insight form this study is the delayed crack propagation due to plasticity-induced
unloading of the craze at the crack tip.

i





Kurzfassung

Crazing ist der primäre Schadensmechanismus in amorphen Thermoplasten. Trotz umfangreicher
Forschung in den letzten Jahrzehnten existieren bislang keine Crazing-Modelle, die eine detaillierte
Untersuchung von Bruchprozessen in Wechselwirkung mit Scherfließen unter zyklischer Belastung er-
möglichen. Crazing beschreibt die lokalisierte Bildung und dilatante Ausdehnung rissähnlicher Defekte,
die aus fibrillierter Materie bestehen und mit Poren durchzogen sind. Dieses Netzwerk hochorientierter
Fibrillen ist von hoher praktischer Bedeutung, da es einen Lasttransfer zwischen den Crazeflächen
ermöglicht und somit signifikant die Bruchzähigkeit des Materials erhöht.

In dieser kumulativen Dissertation wird die Wechselwirkung zwischen Crazing und dem umgebenden
Grundmaterial des glasartigen Polymers durch einen Multiskalenansatz mittels Molekulardynamik
und Kontinuumsmikromechanik unter zyklischer Belastung untersucht. Hierfür wird ein mikrome-
chanisch inspiriertes konstitutives Modell für Crazing entwickelt und durch molekulardynamische
Simulationsergebnisse erweitert, um es anschließend als Kohäsionszone entlang des Ligaments in einem
Modus I Rissproblem einzusetzen. Im Rahmen finiter Deformationen berücksichtigt das Materialmodell
(i) die morphologischen Veränderungen von Mikroporen zu vollständig entwickelten Fibrillen während
des Initiierungsprozesses, (ii) die Dickenänderung des Crazes infolge viskoelastischer Deformationen
bestehender Crazefibrillen, (iii) die Dickenänderung des Crazes durch den transienten Prozess der
viskoplastischen Umwandlung von Grundmaterial in neues fibrilliertes Crazematerial sowie (iv) ein
frühzeitiges Verklemmen der Fibrillen während der Entlastung. Das Strukturverhalten der Crazefi-
brillen wird als seilartig idealisiert, was zur Kriecherholung der Fibrillenverformung führt, während
die Fibrillen spannungsfrei sind. Dies begünstigt ein kontinuierliches Fibrillenziehen über mehrere
Lastzyklen hinweg. Der Craze versagt bei einer kritischen Dicke, sodass die aktuelle Fibrillenlänge ein
Maß für die zyklische Schadensakkumulation darstellt.

Zur Verbesserung des polymerphysikalischen Verständnisses der Prozesse werden molekulardynami-
sche Simulationen eines generischen Bead-Spring-Modells durchgeführt. Dabei wird das mechanische
Verhalten eines Crazes sowie die Interaktion mit dem Grundmaterial unter zyklischer Belastung ana-
lysiert. Die Simulationsergebnisse bestätigen das seilartige Verhalten der Fibrillen, da diese während
der Entlastung eine spannungsfreie Faltbewegung durchlaufen. Weitere zentrale Ergebnisse sind die
komplexe Spannungsantwort und die zugrundeliegenden Mechanismen der Hysterese. Umfangreiche
Auswertungen der Simulationen ermöglichen die Einbindung von Mechanismen und experimentell
unzugänglichen Materialparametern in das Crazing-Modell durch einen Bottom-Up-Ansatz.

Das hierdurch molekulardynamisch erweiterte Kontinuumsmodell wird in einer Finite-Elemente-Studie
eingesetzt, um die Craze- und Rissausbreitung im Modus I unter zyklischer Belastung in spröden und
duktilen amorphen Polymeren zu analysieren. Das Modell sowie die Kalibrierungsmethodik reproduzie-
ren erfolgreich wichtige Crazing-, Scherband- und Versagenscharakteristiken aus der experimentellen
Literatur. Dazu gehören beispielsweise die Crazekontur, die Initiierung von Scherbändern an der ak-
tuellen Rissspitze, die sich zum Craze hin neigen und ausgeprägte Ähnlichkeit mit der sogenannten
epsilon-förmigen Deformationszone aufweisen, sowie Charakteristiken der normalen Ermüdungsriss-
ausbreitung. Eine neuartige Erkenntnis dieser Studie ist die verzögerte Rissausbreitung aufgrund der
plastizitätsinduzierten Entlastung des Crazes an der Rissspitze.
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1. Introduction

1.1. Motivation

Polymers are an important class of engineering materials. Research advancements and the combination
of outstanding mechanical, thermal, electrical, optical and manufacturing properties as well as their
biocompatibility have popularised polymers across a wide range of applications from simple packaging
to high-performance elements across essentially all industries such as automotive, aerospace, electronics
and biomedical devices [25]. From an engineering perspective, understanding the mechanical response
of polymeric materials under a broad range of loading conditions is critical to ensuring their proper
functioning. Cyclic (fatigue) loading is particularly crucial, as many engineering materials spend part
or even their entire lifetime under these conditions.

Amorphous thermoplastics are an important subset of engineering polymers. They are characterised
by a disordered molecular structure in which molecular chains form an entangled network without
chemical cross-links. With a glass transition temperature above room temperature, these materials
exhibit high stiffness in their glassy state at room temperature. As the temperature approaches and
surpasses the glass transition point, their ductility increases and they eventually transition into a
rubbery state. The key damage mechanism in glassy thermoplastics is crazing, which describes the
dilatant process of localized formation and growth of crack-like defects, cf. [34, 52, 53]. Crazes are a
network of highly oriented fibrils interspersed with voids as depicted in Figure 1.1. Oriented in the

load direction

craze length
craze thickness/width

pore space

craze fibrils

glass (bulk material) in black

Figure 1.1.: Craze in polystyrene from [62] with additional annotations.

direction of maximum principal stress, the main fibrils are several tens of nanometre thick and can
grow up to a few micrometres in length, whereas the craze length can extend over several millimetres
(cf. arrow and length scale in Figure 1.1). For sufficiently high entanglement densities, cf. [77], the
main fibrils are commonly interconnected by so-called cross-tie fibrils. Unlike cracks, the fibrillated
craze matter enables a significant load transfer between its surfaces, which substantially increases
the material’s fracture toughness. This gives the crazing process significant practical importance.
Simplified, the crazing process involves three stages: First, craze initiation, which is marked by the
formation of microvoids that eventually coalesce into an interconnected void space. Second, craze
growth in thickness, which occurs in the direction of maximum principal stress as surrounding bulk

1



1. Introduction

material is drawn in from the so-called active zone. At the molecular level, this process is understood to
be driven by chain scission and disentanglement. Finally, craze breakdown as the fibrils rupture, which
is often observed when the craze thickness approaches a critical width.

Despite the intense experimental research on crazing over the past decades, cf. reviews in [34, 46, 48,
49, 66], theoretical-computational studies involving continuum modelling [12, 26, 27, 82, 84, 96, 97] and
molecular dynamics simulations [11, 32, 60, 76, 100, 102] are primarily confined to monotonic loading
conditions. Hence, the understanding of the governing micromechanisms during cyclic loading and
cyclic damage accumulation remains incomplete and inconclusive. Compared to monotonic loading,
modelling the response of the fibrillated craze matter under cyclic loading is more challenging, particu-
larly due to the ambiguity in the structural response of craze fibrils during unloading and reloading.
For instance, this includes the relaxation and creep recovery of the craze fibrils when fibril drawing
is interrupted, the uncertainty in selecting an adequate fibril deformation model that encompasses
the unloading and reloading response and the understanding of cyclic damage accumulation by, for
instance, either fibril drawing and creep deformation [15] or fibril buckling [19, 64]. Moreover, a
combination of experimental and theoretical evidence indicates the occurrence of compressive stress
during unloading while the macroscopic deformation is still tensile [23]. As this behaviour scales with
the craze length, it may be interpreted as a jamming of the craze fibrils arising from the dilatant nature
of the crazing process and the low probability of fibrils perfectly aligning during unloading. Although
it is a physically plausible interpretation, the consequences on the adjacent bulk material are not yet
understood. Further challenges arise from the length scale involved in the crazing process, which makes
it difficult to obtaining detailed mechanical insight through experimental investigations. This also poses
challenges for theoretical-computational studies, as calibrating material parameters of constitutive
models through the classic engineering approach using experiments is not readily possible.

While the previous challenges focused on modelling of a uniform craze, additional model complexity
arises when studying the craze in the context of cyclic crack propagation. In this scenario, the craze
interacts with the adjacent bulk and exhibits nonuniform deformation along its length. Moreover,
fracture mechanisms change with the loading amplitude [90]. For instance, at low amplitudes, crack
growth may not occur in every cycle, but rather discontinuously in jumps [50, 83]. Damage accumulates
over hundreds of cycles as the craze length grows. Upon reaching a critical limit, fibrils at the crack
tip rupture abruptly within a single cycle, resulting in a rapid crack advance and a shrinking craze
length, after which the damage cycle repeats. Könczöl et al. [50] reported a transition from mainly
fibril drawing in the first half of the craze’s lifetime to predominantly fibril creep deformation in the
second half leading up to the crack jump. This type of crack propagation is referred to as discontinuous
or retarded fatigue crack growth, whereas normal fatigue crack growth involves crack propagation in
every cycle. An increase in loading amplitude may give rise to the formation of regularly spaced shear
bands in ductile polymers, which initiate at the crack tip and arch in the direction of crack propagation
as shown in Figure 1.2. The crack growth is again discontinuous and the combination of the two shear
bands with the craze ahead of the crack tip leads to the name-giving fracture process regarded as epsilon
discontinuous crack growth and the local description of the crack tip as epsilon crack tip plastic zone
[63, 92, 94]. From a fracture mechanics perspective, this is noteworthy, since both, shear bands and
the craze, initiate from the crack tip. In contrast, craze initiation is often observed at the intersection
of already formed shear bands, e.g., at blunt notches [66] or microvoids [105]. Besides the fracture
mechanical aspect, the interaction between shear yielding and crazing is also of technical relevance,
since the formation of shear bands increases the load bearing capacity by shielding the craze from
further damage [94].

2



1.2. Aim and methods

Figure 1.2.: Epsilon crack tip plastic zone in polycarbonate (left) with a schematic (right) from [94].

Concluding, although crazing holds significant practical importance in polymer engineering, theoretical
models that allow the study of fracture processes involving crazing and shear yielding under cyclic
loading have yet to emerge.

1.2. Aim and methods

The aim of this work is to elucidate the cyclic crazing response and its interaction with the adjacent
bulk material under mode I craze and crack growth, as, for instance, shown in Figure 1.2. A physically
motivated crazing model that realistically captures the response under cyclic loading is not yet available
in the literature. This leads to the following three challenges and solution approaches involving the
highlighted methods:

Craze model
The first challenge concerns the development of an adequate craze model within a suitable framework.
The most prominent existing craze models were developed by Van der Giessen and co-workers [26, 96,
97] and Boyce and co-workers [82, 84]. However, both consider only monotonic loading conditions,
thereby omitting micromechanisms that become important under cyclic loading. The key obstacles in
model development can be summarised as follows: The length scale involved in the crazing process
restricts extensive experimental evaluations. This renders a purely phenomenological model with
generic material parameters unsuitable. Moreover, the crazing process involves complex micromecha-
nisms, such as craze thickening as transient process of bulk conversion into fibrillated craze matter
with lower density or the morphological transition from thick to thin (mature) fibrils during craze
initiation. Besides the micromechanisms, realistic constitutive descriptions are necessary to represent
the deformation behaviour of both bulk material and craze fibrils during unloading and reloading, as
well as processes such as craze initiation, fibril drawing and fibril breakdown.

A physically motivated continuum-micromechanical model (see Chapter 2) can address these challenges
effectively. It enables the separation of bulk and craze responses, which facilitates adequate model
selection and provides the flexibility to readily replace model components as new knowledge emerges.
It further allows access to important micromechanical quantities, such as the fibril stress. Moreover,
it simplifies the accommodation of important micromechanisms and permits the association of ex-
perimentally measurable parameters with them. Altogether, these features make sensible parameter
scopes more naturally accessible, which remedies the lack of experimental knowledge. Combined with
a material parameter normalisation, the model response can be systematically investigated. The overall
aim to study the interaction with the adjacent bulk material, e.g., undergoing shear yielding under
mode I crack growth makes the continuum-mechanical framework a suitable choice. The craze model
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1. Introduction

can be applied as traction separation law along the mode I symmetry plane. The model development and
testing can be efficiently conducted using Python, as it offers capabilities of automatic differentiation
and includes solvers for nonlinear system of equations.

Uncertainties in molecular mechanisms
The second challenge pertains to the uncertainty in molecular mechanisms involved in the cyclic
deformation of craze matter. The constitutive craze model is inherently based on simplification and
assumptions that stem partially from the incomplete knowledge of the cyclic crazing process. This can
be divided into two parts: On the one hand, there is an inconclusive polymer physical understanding
regarding the structural behaviour of crazes during unloading and reloading. This poses an significant
issue, since it impacts the picture of the damage mechanism during cyclic (fatigue) loading. On the other
hand, there is a lack in detailed knowledge concerning the mechanical response of craze deformation
across a broad range of loading conditions.

Considering the length scale, molecular dynamics simulation (see Chapter 3) provides a potential
solution. It yields insight into many molecular scale mechanisms of crazing in particular the ones
concerning the entanglement network. Thus, they contribute to establishing the microscopic picture
which is often assumed in micromechanical models, yet difficult to evaluate experimentally. Moreover,
the controlled conditions in the simulations enables a systematic bottom-up transfer of results to the
continuum model, as molecular dynamics simulations and the micromechanical model complement
each other effectively. The Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
package [69, 95] offers an efficient way to conduct the molecular dynamics simulations.

Mode I crack growth
The third challenge is the analysis of craze and crack growth under mode I loading. In addition to the
craze model, this demands a realistic constitutive description of the bulk material and the solution of
the boundary value problem accounting for both materials. Furthermore, the material parameters of
both, bulk and craze model, need to be adequately calibrated to yield meaningful results. Finally, the
quality of the model needs to be assessed.

Mode I crack growth can be studied in a physically meaningful way by merging the previous results
into a multiscale model with normalised material parameters and qualitatively comparing simulation
results to a wide range of experimental observations for brittle and ductile polymers reported in the
literature (see Chapter 4). The molecular dynamics analysis allows for the incorporation of relevant
mechanisms as well as representative parameter scopes, which cannot be deduced from experiments,
into the craze model. The cyclic viscoplastic finite strain deformation of the adjacent bulk material
can be modelled with an established and experimentally calibrated glassy polymer model. Adequate
normalisation of boundary value problem dimensions mitigates size effects. Combined with the material
parameter normalisation of bulk and craze models, this enables a systematic evaluation of generic, yet
representative glassy polymer responses. The commercial finite element software Abaqs [2] allows
for an efficient solution of the boundary value problem by incorporating the non-standard materials
via user subroutines written in Fortran. Dual number automatic differentiation is a suitable tool for
the efficient implementation of the material models in Fortran.
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1.3. Outline

1.3. Outline

This cumulative dissertation is organised into five chapters, where chapter 2 to 4 contain the stand-alone
publications. As they can be read independently, a certain degree of repetition occurs between the
chapters.

Chapter 2 reproduces [56]. In this chapter, the continuum micromechanical crazing model for cyclic
loading is presented. The micromechanical finite strain setting of the craze element, comprising bulk
and fibrillated craze matter, is introduced in Section 2.2. The constitutive equations governing the
different components and mechanisms within the model accompanied by a detail motivation and the
efficient numerical realisation are addressed in Section 2.3. The influence of the parameters, with
emphasis on the viscosities associated with fibril drawing and fibril creep deformation, on the craze
element response under uniaxial deformation is analysed in Section 2.4.

Chapter 3 reproduces [55]. In this chapter, the cyclic craze response within molecular simulations of
a coarse-grained bead spring model is studied from a polymer physics points of view. The model setup
and the methods are outlined in Section 3.2. The molecular mechanisms leading to the macroscopic
cyclic stress-strain response of a sole craze and for coexisting fibrillated craze and bulk matter are
analysed in Section 3.3. Links to animations and supplementary simulation results are presented in
the Appendices 3.A and 3.B, respectively. Appendix 3.C presents additional, unpublished results on
semiflexible polymer glass, which extends the analysis in [55] and addresses the role of the bending
stiffness on the macroscopic stress-strain response.

Chapter 4 reproduces [57]. In this chapter, craze and crack propagation under cyclic mode I loading
for generic brittle and ductile glassy polymers is analysed. The craze model introduced in Chapter 2 is
enhanced by molecular dynamics results from Chapter 3, leading to a molecular dynamics informed
continuum model for crazing. A summary of the crazing model including remarks on the parameter
calibration and efficient numerical implementation inAbaqs via dual number automatic differentiation
is given in Section 4.2. Details on the molecular dynamics based parameter calibration are provided
in Appendix 4.A. Finite element simulations of the mode I boundary value problem are subject of
Sections 4.3 and 4.4. Section 4.3 presents the boundary value problem and the analysis of brittle
glassy polymers. The interaction of crazing and shear yielding in ductile glassy polymers is studied
in Section 4.4. The constitutive model to describe finite strain viscoplastic shear yielding in the bulk
material is briefly summarised in Appendix 4.B.

Chapter 5 concludes this work with a summary and an outlook for potential further research.

In this cumulative dissertation, introductions to the theoretical foundations are omitted. Instead, the
reader is referred to the primary textbooks used in this work for nonlinear continuum mechanics
[40], finite element method and computational plasticity [13, 85], polymer mechanics [14], polymer
physics [88], and molecular dynamics [30]. Throughout this thesis, standard notation is employed, using
boldface symbols to represent vectors and second-order tensors, as well as Cartesian index notation for
their components. Also note, minor editorial adjustments to the original publications have been made
to ensure a more consistent format for this dissertation.
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2. A continuum-micromechanical model for
crazing in glassy polymers under cyclic
loading

This chapter reproduces:*
Laschuetza T and Seelig T. “A continuum-micromechanical model for crazing in glassy polymers under
cyclic loading”. In: Mechanics of Materials. 189: 104901, 2024. doi: 10.1016/j.mechmat.2023.104901

Abstract: A micromechanics-inspired constitutive model is developed to describe the deformation
behaviour of fibrillated material within crazes in glassy polymers subjected to cyclic loading. In a
finite strain setting, the model accounts for the morphology change taking place by the drawing of
material from the intact bulk polymer into craze fibrils and their transition from primitive to mature
fibrils. Building on previous research, fibril drawing is described as a viscoplastic process. A novel
contribution of this study is the incorporation of viscoelastic deformation of existing fibrils, which is
motivated by experimental observations. This new perspective allows for creep recovery, especially
during the unloading phases of cyclic deformation.

A parameter study which pays special attention to the role of the characteristic times scales of fibril
drawing and fibril creep in relation to the imposed loading rate illustrates the performance of the
model. Since the model is designed as an input to cohesive fracture simulations in glassy polymers, its
response under monotonic loading is analysed and compared to existing crazing models. Of primary
interest, however, is the model behaviour under cyclic loading which is investigated for different loading
scenarios up to fibril failure. The study highlights the complex interplay between the two viscous
mechanisms and how they influence the local deformation behaviour of the craze matter as well as the
number of cycles until failure.

Keywords: Craze, Cyclic loading, Micromechanical continuum model, Failure

* Reprinted (adapted) with permission from cited work. ©2023 Published by Elsevier Ltd.

2.1. Introduction

Crazing, i.e. the localized formation and growth of narrow zones of fibrillated matter interspersed with
voids, is the key damage mechanism in glassy thermoplastic polymers. Crazes are typically oriented
normal to the direction of maximum tensile stress and are in shape similar to cracks. Yet, contrary to
cracks, crazes have a significant load carrying capacity owing to a multitude of thin fibrils of stretched
polymer material which bridge the craze surfaces. The mechanical response of this fibrillated craze
matter, hence, is of central interest in the behaviour of crazes. From intense studies over the past decades
– see, e.g. , the reviews in [34, 46, 49] – a reasonable understanding of the involved macromolecular
and continuum-mechanical processes has emerged. For instance, it is nowadays well accepted that the
formation and growth of crazes is governed by two deformation mechanisms: firstly, drawing of new
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2. Continuum-micromechanical model for crazing

material into fibrils at the craze/bulk interface and, secondly, creep of the existing fibrils. Anticipating
a more thorough discussion in later chapters, it may be conjectured already here that the second
mechanism becomes particular important during unloading phases of cyclic loading when the stress
is too low to cause further pulling-in of new material and creep contraction of existing (eventually
stress-free and loose hanging) fibrils is driven by the internal (back-)stress that originates from the
highly stretched molecular chains.

Various theoretical-computational modelling approaches have been followed in order to gain a better
insight into the micromechanics of crazing and also to incorporate the crazing mechanism in failure
analyses (e.g. crack growth) on a larger length scale. In the latter case, and owing to the localized
appearance of crazes, cohesive zone models for crazing – e.g. [26, 80, 97, 99] – have widely been
utilized, but also continuum descriptions have been developed and employed, e.g. [33, 35, 84], for
the simulation of crazing processes. On a smaller length scale the fibrillation process was studied by
means of lattice-type models, e.g. [81], by continuum-mechanical models, e.g. [12, 36, 58], as well as
by molecular dynamics simulations, e.g. [32, 76, 100]. Besides a better understanding of the crazing
process itself along with its macromolecular implications such as disentanglement, another aim of these
small-scale investigations was the determination of the (cohesive) craze response to be used in analyses
on a larger scale, for instance as a traction-separation law in cohesive zone models. A key issue here is,
and this brings us to the aim of the present work, that these computational studies – almost exclusively
– consider crazing under monotonic loading.

Conversely, the craze response to cyclic loading, particularly focusing on fatigue crack propagation,
has been extensively studied in experiments. These studies, from which only a few are mentioned here
for brevity, have established that the highly transient and eventually interrupted crazing process under
cyclic loading is of significant importance. For instance, in a study on several glassy polymers, Skibo et
al. [83] observed that in the range of low loading amplitudes crack advance is likely to take place not
in every cycle but discontinuously by jumps after remaining stationary for hundreds of fatigue cycles.
Könczöl et al. [50] referred to this phenomenon as retarded fatigue crack propagation and reported
a transition from mainly fibril drawing in the early stage to predominantly fibril creep deformation
until jump-like further crack advance when a certain amount of damage by disentanglement might
be reached. The issue of a certain disentanglement time of craze fibrils under cyclic loading was
investigated by Schirrer et al. [79]. Aiming at studying the mechanical response of the craze matter,
Pulos and Knauss [71] computed the normal stress distribution along a craze from the measured opening
displacement profile during various stages of a cyclic loading-unloading process. Such a computation
(performed by several other authors) relies on the numerical evaluation of an integral equation that
governs the behaviour of the surrounding linear elastic medium. It has, however, been shown by
Warren et al. [104] that this approach is ill-conditioned in the sense that small deviations in the input
displacement profile give rise to significant changes in the computed stress. Interesting phenomena
involving the interaction of crazes and shear bands during crack growth in glassy polymers under cyclic
loading have been studied by Takemori [94] and co-workers. Direct measurements of the mechanical
response of the fibrillated matter of existing crazes (i.e. no drawing in of new material) under cyclic
loading were performed by Kambour and Kopp [47] and by Hoare and Hull [38]; both studies indicate
a pronounced viscoelastic behaviour of the craze fibrils.

The aim of this study is to delve into the interplay between the drawing of bulk material into craze
fibrils and the creep deformation of these fibrils under cyclic loading. By simplifying our approach
– for instance, through neglecting the impact of cross-tie fibrils [18] – we examine the behaviour of
a single fibril, treated as a representative element, which undergoes uniaxial tensile deformation after
being drawn from the surrounding bulk material. In a finite strain setting, thereby we account for the
transition from fibril formation into a primitive fibril and further into a mature fibril which corresponds
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to an experimentally observed draw ratio. Fibril drawing is described as a viscoplastic process while
the (creep) deformation behaviour of the existing fibril is taken viscoelastic. The present work focuses
on the model development and its analysis within a detailed parametric study and is meant as a first
step. Subsequent work will utilize the model in a finite element framework to investigate the craze and
crack growth in glassy polymer under cyclic loading while also accounting for shear yielding in the
surrounding bulk material.

The present paper is organized as follows: In the following Section 2.2, the micromechanical model of the
crazing process is developed and the coupling between the fibril behaviour and themacroscopic response
is discussed in detail. The finite strain constitutive equations governing the different components and
mechanisms within the model are presented in Section 2.3, which ends with a summary of the model
and remarks concerning its computational evaluation. Section 2.4 contains a parametric study of the
model, which is evaluated as a unit cell under uniaxial deformation. The study focuses primarily on the
two dimensionless parameters characterising the key mechanisms of fibril drawing and fibril creep. For
a deeper understanding of the effect of these parameters, we first look at the model behaviour under
monotonic loading and thereafter analyse, as the major point of interest, the model response under
cyclic loading up to failure. Conclusions concerning findings from this study and a critical discussion
of the model results compared to experiments and previous simulations from the literature as well as
an outlook towards future extensions and utilizations of the model are discussed in Section 2.5.

2.2. Micromechanical model

The model to be developed builds upon the micromechanical considerations depicted in Figure 2.1.
Following Boyce and coworkers [82, 84], we consider an elementary volume of material referred to as
a micromechanical craze element that undergoes a transition from uncrazed bulk to crazed material.
Prior to craze initiation, the craze element consists solely of bulk material of an initial thickness ℎ0, the
so-called primordial thickness. Upon craze initiation, the craze element comprises layers of fibrillated
matter with the undeformed length 𝜉0 and bulk material with the undeformed length 𝜒0. As fibril
drawing progresses, the fibril length 𝜉0 grows while the bulk length 𝜒0 shrinks. As indicated in Figure 2.1
and following the widely used modelling assumptions (e.g. [53]), the complex craze microstructure is
idealised by neglecting cross-tie fibrils. That is, only string-like fibrils in the direction of the maximum
principal stress, defining the coordinate system in Figure 2.1, are considered. Based on this simplification
and adhering to the principle of mass conservation, the thicknesses of the two phases are related by

ℎ0 = 𝜒0 +
𝜉0

𝜆𝑐
, (2.1)

where 𝜆𝑐 denotes the fibril extension ratio, defined here as the ratio of bulk density 𝜌𝑏 to the density 𝜌𝑐
of the fibrillated craze matter:

𝜆𝑐 =
𝜌𝑏

𝜌𝑐
. (2.2)

Note, that 𝜆𝑐 here describes the maximum density ratio attained during the loading history and is
with respect to the unloaded configuration. This is in some contrast to the extension ratio determined
from experimental measurements (e.g. [52, 53]) or from molecular dynamics simulations (e.g. [76,
102]) quantifying typically the density ratio in the loaded state. However, the definition of 𝜆𝑐 in the
unstressed state considered here appears more practical.
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(a) (b)

bulk material

bulk material

macro stretch 𝜆1
macro stress 𝜎1

1
2
𝜒 (𝑡)
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bulk

Figure 2.1.: Schematic of a boundary value problem of a mode I crack and the craze model with different stages of crazing
process; (a) prior to craze initiation, (b) unloaded state after craze initiation and (c) loaded state after craze initiation.

2.2.1. Morphology change

The crazing process is understood to start from the formation of micro-voids in the bulk material and
comprises a topological transition from isolated voids to an interconnected void space with isolated
fibrils (see, e.g., [52, 53]). The density 𝜌𝑐 of the craze matter and hence the extension ratio 𝜆𝑐 from
(2.2) change continuously from the bulk value to that of a fully developed craze with mature fibrils.
This transition is modelled here by allowing 𝜆𝑐 to evolve with the undeformed fibril length 𝜉0 from
the initial value 𝜆𝑐 (𝜉0 = 0) = 1 to a saturation value 𝜆∗𝑐 , representing the fully developed craze. This
transition is modelled by a simple exponential ansatz depicted in Figure 2 where 𝜉0,max = 𝜆∗𝑐 ℎ0 is the
relaxed fibril length at rupture and 𝛼 defines its fraction upon which mature fibrils exist.

𝜆𝑐 (𝜉0; 𝜆∗𝑐 , 𝛼)

𝜉0
𝜉0,max = 𝜆∗𝑐 ℎ0

𝜆∗𝑐

1

only bulk
material

0 𝛼 𝜉0,max

mature fibrils

fibril rupture

Figure 2.2.: Ansatz for morphology change in continuum model for 𝛼 = 0.1.

It is acknowledged that much research has been devoted to quantifying experimentally the extension
ratio and that it is generally neither constant along the thickness (i.e. along a fibril) nor along the length
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of the craze (e.g. [49]). Nonetheless in favour of simplicity, 𝜆𝑐 is considered here as constant along the
craze thickness.

2.2.2. Micromechanics of fibril-bulk coupling

As indicated in Figure 2.1, the craze microstructure is idealised by neglecting cross-tie fibrils and
considering only string-like fibrils in the direction of the maximum principal stress, which defines
the coordinate system in Figure 2.1. The stress state in the fibrils is hence taken as homogeneous and
uniaxial, yielding

𝝈 𝑓 = 𝜎 𝑓 e1 ⊗ e1, (2.3)

where 𝜎 𝑓 is the true (Cauchy) fibril stress. Likewise, the stress state in the bulk portion of the craze
element

𝝈𝑏 =

3∑︁
𝑖=1

𝜎𝑏𝑖 e𝑖 ⊗ e𝑖 , (2.4)

is assumed to be homogeneous. Homogenisation of the layered bulk-craze structure of the element
yields through the rule of mixtures the macroscopic Cauchy stress �̄� in the deformed state (Figure 2.1,
right) as

�̄� = 𝜎𝑏1 e1 ⊗ e1 +
𝜒

𝜒 + 𝜉

3∑︁
𝑖=2

𝜎𝑏𝑖 e𝑖 ⊗ e𝑖 . (2.5)

Note that changes of principal stress directions are not considered in the deformation process of interest
here, as it would be the case ahead of a mode I crack as illustrated in Figure 2.1.

The overall deformation of the craze element is described by the macroscopic stretch tensor

�̄� =

3∑︁
𝑖=1

𝜆𝑖 e𝑖 ⊗ e𝑖 , (2.6)

which is related to the bulk stretch tensor

𝝀𝑏 =

3∑︁
𝑖=1

𝜆𝑏𝑖 e𝑖 ⊗ e𝑖 (2.7)

and the fibril stretch in e1-direction 𝜆𝑓 = 𝜉/𝜉0 by

𝜆1 =
𝜉 + 𝜒
ℎ0

= 𝜆𝑏1
𝜒0

ℎ0
+ 𝜆𝑓 𝜉0

ℎ0
(2.8)

and
𝜆2 = 𝜆

𝑏
2 , 𝜆3 = 𝜆

𝑏
3 . (2.9)

Note that, analogous to the stress as aforementioned, the deformations in the bulk phase and in the
fibrils are taken as homogeneous.

Force equilibrium in e1-direction between bulk and fibrils reads

𝜎𝑏1𝐴 = 𝜎 𝑓𝐴𝑓 (2.10)
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where 𝐴 and 𝐴𝑓 are the deformed unit cross-sections normal to the e1-plane of bulk and fibril material,
respectively. The undeformed cross-sections are related to each other by the extension ratio 𝜆𝑐 (cf.
(2.2)) as

𝜆𝑐 =
𝐴0

𝐴𝑓 0
(2.11)

and in the bulk material the relation
𝐴 = 𝐴0 𝜆

𝑏
2 𝜆

𝑏
3 (2.12)

holds. For simplicity, the deformation of the fibrils is assumed to be isochoric, yielding

𝐴𝑓 =
𝐴𝑓 0

𝜆𝑓
. (2.13)

Inserting (2.11) - (2.13) into (2.10) yields

𝜎𝑏1 =
𝜎 𝑓

𝜆𝑓 𝜆𝑐 𝜆
𝑏
2 𝜆

𝑏
3
, (2.14)

which by virtue of (2.5) provides a coupling between the fibril stress and the macroscopic stress in
e1-direction.

2.2.3. Fibril behaviour during unloading

The fibril’s string-like microstructure suggests that its load-bearing capacities are essentially limited to
tensile forces:

𝜎 𝑓 ≥ 0. (2.15)

That is, during unloading the fibrils remain traction free up to craze closure at 𝜆1 = 1, and are here
referred to as loose hanging fibrils. This however implies that the fibrils perfectly align during craze
closure, resulting in a vanishing void space between the fibrils at 𝜆1 = 1. The craze element’s compressive
response for 𝜆1 < 1 is identical to the bulk material. Although there is a notion, corroborated by
experimental observations [23], that compression in the craze may already occur in the macroscopic
tensile regime (i.e. 𝜆1 > 1) possibly due to jamming of fibrils; however, there is insufficient theoretical
evidence to warrant a physically motivated refinement.

2.3. Constitutive equations

With the established micromechanical framework for the craze model, the constitutive description
of the bulk and the fibril are discussed alongside with the criteria for craze initiation, fibril drawing
and breakdown. To provide an early overview of the fibril deformation behaviour as well as and the
involved quantities, the rheological model and its physical motivation is depicted in Figure 2.3. The
aim in the following is to use simple constitutive models where possible, while still accounting for
relevant mechanisms. To this end, the most elementary rheological representations of viscoplasticity
and solid-type viscoelasticity, as depicted in Figure 2.3, are employed. Moreover, despite acknowledging
that finite strain flow processes in polymers are markedly nonlinear, a simplified linear description
of the rate-dependencies of fibril drawing (Subsection 2.3.2) and creep deformation (Subsection 2.3.3)
through constant viscosities (𝜂𝑑 and 𝜂𝑐 in Figure 2.3) is adopted. This allows to introduce distinct
characteristic times associated with the two flow mechanisms, which strongly facilitates the parameter
study focusing on their interplay during crazing under cyclic (i.e. highly transient) loading, as conducted
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in Section 2.4. It is noteworthy that the two viscosities, although referring to the same material, are
considered to be unrelated, since the viscosity associated with fibril drawing represents chain-scission
and disentanglement in the active zone. This micro-mechanism is characterised by its own time- (or
rate-)dependence.

bulk polymer

"active
zone"

fibril of
stretched
molecules

𝜎𝑏1

𝜎 𝑓

e1

e2

viscoplastic drawing of
bulk material into craze
(see Subsection 2.3.2)

viscoelastic stretching of craze fibril
(see Subsection 2.3.3)

Constitutive model: (material parameters)
A: 8-chain hyperelasticity: (𝜇𝑓 ,EC, 𝜆𝐿)
B: neo-Hooke hyperelasticity (𝜇𝑓 ,NH)
C: linear viscous flow: (𝜂𝑐 )

𝜎𝑏1 , ¤𝜉0 (𝑡)

𝜎𝑦𝜂𝑑

𝜎𝑏1 , ¤𝜉0 (𝑡)

𝜎 𝑓 , 𝜆𝑓

C 𝜆𝑣

𝜆𝑒

A
B

𝜆𝑓

𝜎 𝑓 , 𝜆𝑓

Figure 2.3.: Fibril model comprising viscoplastic drawing from active zone and viscoelastic fibril deformation.

2.3.1. Bulk deformation behaviour

For many glassy polymers (e.g. polycarbonate) the deformation behaviour prior to yielding or crazing
can be well approximated by isotropic linear elasticity. Upon craze initiation, it is presumed that the
bulk layer continues to deform in the linear elastic regime, given that the majority of deformation is
expected within the much thinner fibrils. To still account for moderate strains of up to a few percent in
that regime, the relation suggested by Anand [3]

𝝈𝑏 = 2𝜇𝑏
(
ln𝝀𝑏 + 𝜈𝑏

1 − 2𝜈𝑏
tr

[
ln𝝀𝑏

]
1
)
, (2.16)

is taken to describe the material behaviour in the bulk portion of the craze element in Figure 2.1, where
𝜇𝑏 and 𝜈𝑏 denote the bulk shear modulus and Poisson’s ratio, respectively.

2.3.2. Craze initiation, fibril drawing and breakdown

There are various craze initiation criteria proposed in the literature, ranging from stress based [86, 87]
to strain based [67] or those involving a characteristic initiation time [6, 7] (for a literature review see,
for instance, [27]). Nonetheless, there is general understanding that the maximum principal stress plays
a key role in the initiation process, since it determines the fibril orientation. Additionally, a certain
consensus exists that hydrostatic tensile stress influences the cavitation process due to facilitation of
microvoid formation. The role of the latter, however, is more ambiguous, so that for simplicity the
craze initiation is associated here exclusively with a critical value of the maximum principal stress 𝜎𝑦 ,
yielding

𝜎𝑏1 = 𝜎𝑦 (2.17)
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as initiation criterion.

Based on the Argon model [5], fibril drawing is often modelled in an Eyring-type fashion, which
displays a stress (or strain-rate) dependent viscosity (e.g. [26, 82, 84, 97]). In contrast, fibril drawing is
described here as a viscoplastic process with a yield threshold 𝜎𝑦 and a linear rate dependence. This
approach preserves the essential feature of the drawing mechanism while simplifying the model. As
initially motivated at the beginning of Section 2.3, a linear rate dependence implies a constant viscosity
and consequently, a unique characteristic time. By making use of the standard notation for viscoplastic
models with the Macaulay bracket ⟨...⟩, fibril drawing is described by

¤𝜉0 =
ℎ0

𝜂𝑑

〈
𝜎𝑏1 − 𝜎𝑦

〉
≥ 0, (2.18)

where 𝜂𝑑 is the drawing viscosity. Note that (2.18) ensures that fibrils originate and grow in the direction
of the maximum principal stress.

Similar to craze initiation, there are a several craze breakdown criteria such as a critical deformed craze
thickness [97] or amoremacroscopical criterionwith an accumulated plastic craze-strain [33]. Following
Boyce and coworkers [82], fibril breakdown is taken here to occur upon complete consumption of the
primordial thickness ℎ0, i.e. at 𝜒0 = 0, which yields

𝜉0,𝑚𝑎𝑥 = 𝜆∗𝑐 ℎ0 (2.19)

and is also depicted in Figure 2.2.

2.3.3. Finite strain fibril deformation behaviour

Experimental evidence by Döll and coworkers, e.g. [50], indicate that the craze thickening process
under cyclic loading is a competition between drawing of new material from the active zone into the
fibrils and fibril creep deformation. The latter is typically neglected in theoretical studies focussing on
monotonic loading by modelling the fibril deformation behaviour as purely elastic, e.g. [26, 82, 84, 97].
Under cyclic loading, however, viscoelastic effects such as relaxation might be of relevance and hence
in the following, the emphasis lies on the discussion of a proper fibril deformation model.

The viscoelastic nature of an existing craze is also corroborated by experiments conducted by Kambour
and Kopp [47], who measured the cyclic stress-strain response of a polycarbonate craze in a quasi-
bilinear, force-controlled loading-unloading programme. The peculiarity of the experiments is that
they first created an isolated craze which was then solely strained uniaxially in such a way that no
new material was drawn in. Thus, the stress-strain results depicted by the black, solid curves in
Figure 2.4 provide a good notion of the fibril deformation behaviour. The craze exhibits a clear non-
linear hysteresis in the first loading cycle and a tendency to a nearly elastic response upon reloading in
the subsequent four cycles. After a long recovery between the 8th and the 9th cycle, the large initial
hysteresis is to a certain degree retrieved. Very similar findings are reported for polystyrene by Hoare
and Hull [38].

An initial hysteresis, the tendency to an elastic response and especially the recovery of the hysteresis,
which is a strong indication of viscoelastic effects, are considered as key features which can be captured
reasonably well by a simple linear viscoelastic Poynting-Thomson model with two elastic moduli 𝐸𝐴
and 𝐸𝐵 and the fibril viscosity 𝜂𝑐

𝜎 𝑓 = (𝐸𝐴 + 𝐸𝐵) 𝜀 𝑓 − 𝐸𝐵𝜀𝑣 , ¤𝜀𝑣 = 𝐸𝐵

𝜂𝑐

(
𝜀 𝑓 − 𝜀𝑣

)
, (2.20)
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Figure 2.4.: Experimentally measured cyclic stress-strain response of polycarbonate craze for 5 successive loading cycles and
additionally reloading after long recovery between 8th and 9th cycle [47] as well as the response of a least-square fitted linear
viscoelastic Poynting-Thomson model.

as shown by the dashed curves in Figure 2.4. Although the initial hysteresis for typical glassy polymers
in the first cycle, i.e. the progressive hardening upon yielding, is not replicated by the Poynting-Thomson
model, in view of cyclic loading the initial behaviour appears to be less important than the subsequent
response, which is approximated reasonably well considering the simplicity of the model.

As the presented crazingmodel is placed in a three-dimensional, finite strain setting, the one-dimensional
linear viscoelastic Poynting-Thomson model needs to be adequately extended, which is addressed in
the following. Recall that the fibril’s stress state is uniaxial and homogeneous (cf. (2.3)) and that the
fibril deformation is considered to be isochoric (cf. (2.13)). The fibril stretch tensor 𝝀 𝑓 thus reads

𝝀 𝑓 = 𝜆𝑓 e1 ⊗ e1 +
3∑︁

𝑖=2

1
√
𝜆𝑓

e𝑖 ⊗ e𝑖 . (2.21)

In accordance with the viscoelastic model shown in Figure 2.3, the fibril stretch is multiplicatively
decomposed

𝜆𝑓 = 𝜆𝑒 𝜆𝑣 , (2.22)

into an elastic 𝜆𝑒 and viscous contribution 𝜆𝑣 , while the fibril stress is additively given by

𝜎 𝑓 = 𝜎
𝑓

EC + 𝜎 𝑓

NH. (2.23)

The network stress 𝜎 𝑓

EC is modelled via the incompressible eight-chain model by Arruda and Boyce
[8]

𝜎
𝑓

EC =
𝜇𝑓 ,EC

𝜆𝐶

L-1(𝜆𝐶/𝜆𝐿)
L-1(1/𝜆𝐿)

(
𝜆𝑓 2 − 1

𝜆𝑓

)
. (2.24)

as it approximates strain hardening under uniaxial loading well [106] and has been widely used for
glassy polymers at large deformations. To approximate the inverse Langevin function L-1(𝑥), the Padé
approximation is used [20]

L-1(𝑥) = 𝑥 3 − 𝑥2

1 − 𝑥2 (2.25)

and the mean chain stretch 𝜆𝐶 simplifies under uniaxial stress and isochoric deformation to

𝜆𝐶 =

√︄
tr

[
𝝀 𝑓 2]
3

=

√︄
1
3

(
𝜆𝑓 2 + 2

𝜆𝑓

)
. (2.26)

Equation (2.24) involves two material parameters, namely the initial shear modulus 𝜇𝑓 ,EC and the limit
stretch 𝜆𝐿 corresponding to the entanglement density of the glassy polymer.
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2. Continuum-micromechanical model for crazing

An additional nonlinear spring in series to the dashpot (Figure 2.3, element B) is modelled to enable a
realistic response upon instantaneous loading. Since large elastic deformations shall be captured, the
stress is given by an incompressible neo-Hookean material model

𝜎
𝑓

NH = 𝜇𝑓 ,NH

(
𝜆𝑒 2 − 1

𝜆𝑒

)
, (2.27)

which introduces a second shear modulus 𝜇𝑓 ,NH as a material parameter.

As motivated at the beginning of Section 2.3, a simplified linear viscous flow model with the constant
fibril creep viscosity 𝜂𝑐 is adopted (Figure 2.3, element C), giving rise to the flow rule

¤𝜆𝑣 = 2
3𝜂𝑐

𝜎
𝑓

NH𝜆
𝑣 . (2.28)

The factor 2/3 stems from the deviatoric part of 𝜎 𝑓

NH arising from isochoric viscous flow.

2.3.4. Model summary and numerical aspects

The model, represented by a system of differential algebraic equations and summarised in Table 2.1, is
analysed within a Python environment by using contemporary computational methods for a rapid
implementation and high variability for model adjustments. To this end, the automatic differentiation
capabilities of the Pytorch module [68] have been harnessed for calculating the tangent. The fsolve
function, a component of the Scipy module [101], has been be utilised to solve the discretized nonlinear
system of equations. In our evaluation, both techniques were effectively employed and both enable fast
implementations of very complex material models. This in combination with the modular structure
of the craze model permits straightforward modifications. Such adjustments include, for example,
incorporating Eyring-type viscous flow models.

The constitutive model has also been implemented as a user material subroutine in the finite element
programmeAbaqs [1]. In that process, a modified version of the dual number automatic differentiation
tool from [107] was successfully utilised, providing benefits akin to those by the Pytorch module.
Although this work does not present any finite element simulations, it is noteworthy that the tool
was successfully employed on the computing cluster bWUniCluster 2.0, making this computational
approach also a valuable tool for large boundary value problems.
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2.4. Parameter study under macroscopic uniaxial strain

Table 2.1.: Summary of equations governing craze model.

Micromechanics and crazing mechanism

mass balance: ℎ0 = 𝜒0 +
𝜉0

𝜆𝑐

extension ratio: 𝜆𝑐 =
𝜌𝑏

𝜌𝑐

kinematics: 𝜆1 =
𝜉 + 𝜒
ℎ0

= 𝜆𝑏1
𝜒0

ℎ0
+ 𝜆𝑓 𝜉0

ℎ0
, 𝜆2 = 𝜆

𝑏
2 , 𝜆3 = 𝜆

𝑏
3

macro stress: �̄� = 𝜎𝑏1 e1 ⊗ e1 +
𝜒

𝜒 + 𝜉
∑3

𝑖=2 𝜎
𝑏
𝑖 e𝑖 ⊗ e𝑖 ,

fibril stress: 𝝈 𝑓 = 𝜎 𝑓 e1 ⊗ e1, 𝜎 𝑓 ≥ 0

force balance: 𝜎𝑏1 =
𝜎 𝑓

𝜆𝑓 𝜆𝑐 𝜆
𝑏
2 𝜆

𝑏
3

morphology change: 𝜆𝑐 (𝜉0; 𝜆∗𝑐 , 𝛼)

craze initiation: 𝜎𝑏1 = 𝜎𝑦

fibril drawing: ¤𝜉0 =
ℎ0
𝜂𝑑

〈
𝜎𝑏1 − 𝜎𝑦

〉
≥ 0

fibril breakdown: 𝜉0,𝑚𝑎𝑥 = 𝜆∗𝑐 ℎ0

Fibril model

𝜆𝑓 = 𝜆𝑒 𝜆𝑣 𝜎 𝑓 = 𝜎
𝑓

EC + 𝜎 𝑓

NH
¤𝜆𝑣 = 2

3𝜂𝑐
𝜎
𝑓

NH𝜆
𝑣

𝜎
𝑓

EC =
𝜇𝑓 ,EC

𝜆𝐶

L-1(𝜆𝐶/𝜆𝐿)
L-1(1/𝜆𝐿)

(
𝜆𝑓 2 − 1

𝜆𝑓

)
𝜎
𝑓

NH = 𝜇𝑓 ,NH

(
𝜆𝑒 2 − 1

𝜆𝑒

)
𝜆𝐶 =

√︄
1
3

(
𝜆𝑓 2 + 2

𝜆𝑓

)
L-1(𝑥) = 𝑥 3 − 𝑥2

1 − 𝑥2

Bulk model

𝝈𝑏 = 2𝜇𝑏
(
ln𝝀𝑏 + 𝜈𝑏

1 − 2𝜈𝑏
tr

[
ln𝝀𝑏

]
1
)

2.4. Parameter study under macroscopic uniaxial strain

The aim of the subsequent parameter study is to derive a clear picture of the model’s mechanisms
and their mutual influence under monotonic and particularly cyclic loading. Within that scope, the
crazing model is evaluated under macroscopic uniaxial strain conditions, i.e. for 𝜆2 = 𝜆𝑏2 = 1 and
𝜆3 = 𝜆𝑏3 = 1, with a prescribed, constant macroscopic stretch rate ¤̄𝜆1. In order to reduce the number
of parameters and obtain results independent of a specific material, the material parameters are
normalised as follows: The stiffness parameters are normalised by means of the total fibril stiffness
𝜇𝑓 := 𝜇𝑓 ,EC + 𝜇𝑓 ,NH. Additionally, the characteristic times associated with fibril creep deformation
𝜏𝑐 = 𝜂𝑐/𝜇𝑓 and fibril drawing 𝜏𝑑 = 𝜂𝑑/𝜇𝑓 are cast along with the characteristic loading time 𝑇0 = 1/ ¤̄𝜆1
into the two dimensionless parameters 𝜏𝑐/𝑇0 and 𝜏𝑑/𝑇0 for creep and drawing, respectively. Increasing
𝜏𝑐/𝑇0 while maintaining 𝜏𝑑/𝑇0 enhances the fibril viscosity, whereas vice versa, elevated values of 𝜏𝑑/𝑇0
characterise a higher resistance to drawing. Increasing or decreasing both in tandem corresponds to
faster or slower loading rate, respectively. The generic parameters of the crazing model are summarised
in Table 2.2 and are used in the following if not indicated differently.
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2. Continuum-micromechanical model for crazing

Table 2.2.: Dimensionless parameters of crazing model.
𝜇𝑏/𝜇𝑓 𝜈𝑏 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 𝜎𝑦/𝜇𝑓 𝜆∗𝑐 𝛼 𝜆𝐿
1 0.3 0.5 0.05 3 0.01 2

2.4.1. Monotonic loading

To investigate the effect of the drawing viscosity 𝜏𝑑/𝑇0 and the fibril creep viscosity 𝜏𝑐/𝑇0 on the craze
element response, Figure 2.5(a) displays the evolution of the macro stress 𝜎1, while Figure 2.5(b) depicts
the progression of the relaxed fibril length 𝜉0, both, evolving with the imposed macro stretch 𝜆1. In
the context of monotonic loading, the drawing viscosity and the fibril viscosity are distinguished
throughout this subsection via colour coding and line style coding, respectively.

The macro stress 𝜎1 (Figure 2.5(a)) undergoes a transition from a linear increase during the first few
percent of strain towards an approximately constant (i.e. steady-state) plateau which depends on
the different viscosities. As expected, higher stress values and accelerated rates of fibril drawing
(Figure 2.5(b)) are obtained for larger viscosities, which corresponds to the response of earlier crazing
models in [26, 33, 84] and observations from molecular dynamics simulations, e.g. [76]. The stress at
the onset of drawing (which is here identical to craze initiation, cf. (2.17)) is indicated in Figure 2.5(a).
Although the initial linear response, reflecting the sole bulk deformation (cf. (2.16)), is strictly speaking
confined to the pre-craze regime, Figure 2.5(a) shows that even after craze initiation the macroscopic
stiffness remains approximately constant up to certain value of the macro stretch of, for instance,
𝜆1 ≈ 1.05 in case of 𝜏𝑑/𝑇0 = 0.5. This threshold corresponds to a critical value of the fibril length 𝜉0/ℎ0
below which its contribution to the overall deformation is negligible - this might be interpreted as a size
effect. This results directly from the craze initiation criterion (2.17), where the complex craze initiation
process has been simplified to occur solely under a critical maximum principal tensile stress.
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Figure 2.5.: Influence of fibril creep viscosity 𝜏𝑐/𝑇0 and drawing viscosity 𝜏𝑑/𝑇0 on (a) normalised macro stress 𝜎1 and (b)
normalised fibril length 𝜉0.

The model encompasses two deformation mechanism to comply with the imposed macro deformation,
namely drawing of material into fibrillated matter of a reduced density (cf. (2.2)) and bulk/fibril de-
formation. For lower drawing viscosities, represented by smaller values of 𝜏𝑑/𝑇0, the craze element
is inclined to comply with the imposed overall deformation by pulling in bulk material, leading to
relatively small deformations in the fibrils. Consequently, the fibril creep viscosity (𝜏𝑐/𝑇0) exerts a
more noticeable impact on the macro stress when 𝜏𝑑/𝑇0 = 0.5 as compared to 𝜏𝑑/𝑇0 = 0.1. In case of
𝜏𝑑/𝑇0 = 0.5, a particular effect of an intermediate fibril creep viscosity (𝜏𝑐/𝑇0 = 1) can also be seen in
Figure 2.5(a): for high (𝜏𝑐/𝑇0 = 100) as well as low (𝜏𝑐/𝑇0 = 0.01) values of the creep viscosity the fibrils
behave essentially elastic (with different stiffnesses) and the stress approaches its steady-state plateau
value in a monotonic fashion. In contrast, the intermediate creep viscosity (𝜏𝑐/𝑇0 = 1) gives rise to a
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2.4. Parameter study under macroscopic uniaxial strain

pronounced viscoelastic fibril behaviour and the non-monotonic stress response in Figure 2.5(a) can be
ascribed to the delayed fibril deformation.

Figure 2.6 provides a closer look at the deformation behaviour of the fibril, showing the evolution of
fibril stress 𝜎 𝑓 (Figure 2.6(a)) and fibril stretch 𝜆𝑓 (Figure 2.6(b)) during the overall deformation of the
craze element for the same parameter values as in Figure 2.5. While the plateau of the fibril stress 𝜎 𝑓 is
essentially determined by 𝜏𝑑/𝑇0 and is fairly independent of 𝜏𝑐/𝑇0, the fibril stretch 𝜆𝑓 shows significant
dependence on the fibril creep viscosity. As the fibril thins due to the continuously increasing fibril
stretch for the intermediate value 𝜏𝑐/𝑇0 = 1, the fibril stress remains approximately constant or even
slightly declines, resulting in a decreasing force exerted by the fibril on the bulk material and therefore a
decreasing macro stress, which appears as stress-softening in Figure 2.5(a). Although this holds true for
both values of the drawing viscosity, the competition between drawing and creep is more pronounced
for 𝜏𝑑/𝑇0 = 0.5, as discussed above.

1 1.5 2 2.5 3
macro stretch λ̄1

0

1

2

fib
ril

st
re

ss
σ
f
/µ

f

(a)

τd/T0 = 0.5

τd/T0 = 0.1

1 1.5 2 2.5 3
macro stretch λ̄1

1

1.5

2

fib
ril

st
re

tc
h
λ
f

(b)

τd/T0 = 0.5

τd/T0 = 0.1

τc/T0

0.01
1
100

Figure 2.6.: Influence of fibril creep viscosity 𝜏𝑐/𝑇0 and drawing viscosity 𝜏𝑑/𝑇0 on (a) normalised fibril stress 𝜎 𝑓 and (b) fibril
stretch 𝜆𝑓 .

Comparing the macro stress plateau values in Figure 2.5(a) to the fibril stress in Figure 2.6(a) and fibril
stretch in Figure 2.5(b) reveals the influence of finite strain modelling on fibril deformation. While the
macro stress for the two 𝜏𝑑/𝑇0 values varies roughly by a factor of 2, the fibril stress varies by a factor
of 4. This indicates, due to force equilibrium, a fibril cross-sectional area difference of a factor of 2,
aligning with the fibril stretch difference (Figure 2.6(b)) given fibril incompressibility.

The morphology change frommicro-voids to mature fibrils is in the model coarsely approximated by the
variation of the extension ratio (cf. Figure 2.2). This variation is determined by the parameter 𝛼 which
controls the rate of the morphology transition. The influence of 𝛼 on the macroscopic stress-stretch
response of the craze element is depicted in Figure 2.7. A slower rate of morphology change (𝛼 = 0.1)
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Figure 2.7.: Influence of rate of morphology change; 𝜏𝑑/𝑇0 = 0.1.
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2. Continuum-micromechanical model for crazing

means a slower rate of fibril thinning and hence gives rise to a stiffer overall response. In case of
the prescribed uniaxial loading of the craze element, the stress in the mature fibril regime remains
essentially unaffected by the preceding morphology change. As a result, the plateau of the macro stress
is nearly independent of 𝛼 and thus, the macro stress converges to the same plateau stress regardless of
the rate of morphology change, as indicated in Figure 2.7. However, the initially higher fibril stress
eventually leads to the tendency for stress-softening, as also visible in Figure 2.7.

2.4.2. Cyclic loading

A cyclic loading pattern is imposed on the craze element by prescribing a macroscopic stretch history,
as depicted in Figure 2.8. The stretch history is characterized by a bi-linear variation between 𝜆1 = 1

𝑡

𝜆1

0 𝑇𝑝 2𝑇𝑝

𝜆1,𝑚𝑎𝑥

¤̄𝜆1

1

Figure 2.8.: Deformation controlled cyclic loading.

(undeformed) and 𝜆1,𝑚𝑎𝑥 as well as the loading period 𝑇𝑝 . The duration of the loading period 𝑇𝑝 is
adjusted to satisfy1

𝑇𝑝 =
2
(
𝜆1,𝑚𝑎𝑥 − 1

)
¤̄𝜆1

= 2
(
𝜆1,𝑚𝑎𝑥 − 1

)
𝑇0, (2.29)

ensuring that the stretch rate ¤̄𝜆1 matches the one imposed under monotonic loading in Subsection 2.4.1.
Since the same normalisation as in Subsection 2.4.1 is adopted, results for fixed parameters are consistent
across the subsections and comparisons can be drawn.

Figure 2.9 shows the temporal variation of the macroscopic stress 𝜎1, the undeformed fibril length 𝜉0,
the fibril stress 𝜎 𝑓 and the fibril stretch 𝜆𝑓 during three consecutive loading cycles for the parameters
𝜏𝑑/𝑇0 = 0.5 and 𝜏𝑐/𝑇0 = 0.1. Since the first loading stage is identical tomonotonic loading (cf. Figure 2.5(a)
for the qualitative evolution), the macro stress initially rises linearly and then transitions towards
a plateau (Figure 2.9(a)). This is accompanied by significant fibril drawing (Figure 2.9(b)) and fibril
deformation (Figure 2.9(d)). The evolution of the fibril stress (Figure 2.9(c)) follows a similar pattern as
the macro stress, but as the cross-sectional area reduces due to the thinning of fibrils, the magnitude

0 1 2 3
time t/Tp

0

0.1

0.2

0.3

m
ac

ro
st

re
ss

σ̄
1/
µ
f(a)

0 1 2 3
time t/Tp

0

0.1

0.2

0.3

fib
.

le
ng

th
ξ 0
/h

0

(b)

cycles
1
2
3

0 1 2 3
time t/Tp

0

1

2

fib
ril

st
re

ss
σ
f
/µ

f(c)

0 1 2 3
time t/Tp

1

1.25

1.5

1.75

fib
ril

st
re

tc
h
λ
f

(d)

Figure 2.9.: Craze element response for three consecutive loading cycles; 𝜏𝑑/𝑇0 = 0.5, 𝜏𝑐/𝑇0 = 0.1.

1 Note, a typographical error in Equation 2.29 of the original publication [56] has been corrected here.
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2.4. Parameter study under macroscopic uniaxial strain

is significantly higher. Upon unloading at time 𝑡 = 0.5𝑇𝑝 , both, the macro stress and the fibril stress
decrease and fibril drawing ceases. This causes the undeformed fibril length 𝜉0 to remain constant
(Figure 2.9(b)). However, during this stage, the fibril stretch declines (Figure 2.9(d)) due to viscoelastic
creep, which even continues once the fibrils are loose hanging, i.e. 𝜎1 = 𝜎 𝑓 = 0. Given the viscous
nature of the drawing and fibril deformation mechanism, fibril drawing is reactivated upon reloading
in successive cycles, causing further fibril growth (Figure 2.9(b)). As a consequence, on the one hand,
the time intervals where fibrils are loose hanging steadily increase, as depicted in Figure 2.9(a) and
Figure 2.9(c). On the other hand, the peak values of the macro stress, fibril stress, and fibril stretch drop
significantly in subsequent loading cycles compared to the first cycle. Correspondingly, the amount of
newly drawn fibril length Δ𝜉0 per loading cycle declines with each cycle, since the macro stretch of the
craze element is prescribed at a constant amplitude.

The data from Figure 2.9 are replotted in Figure 2.10 showing the macroscopic stress-stretch response
of the craze element (Figure 2.10(a)) along with the fibril response (Figure 2.10(b)). The effect of creep
recovery of the loose hanging fibrils can be seen in Figure 2.10 by the offset between unloading and the
subsequent cycles’s reloading. The corresponding hysteresis size and the the peak stress at (constant)
maximum stretch decline with progressing loading cycles, which shows qualitative agreement with
findings by Rabinowitz & Beardmore (cf. Figure 19 in [72])
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Figure 2.10.: Normalised stress vs. stretch for three consecutive loading cycles; 𝜏𝑑/𝑇0 = 0.5, 𝜏𝑐/𝑇0 = 0.1.

2.4.2.1. Influence of drawing viscosity and fibril creep viscosity

The qualitative influence of the drawing viscosity 𝜏𝑑/𝑇0 and the fibril creep viscosity 𝜏𝑐/𝑇0 is presented
through the evolution of the fibril length 𝜉0 in Figure 2.11 and the hysteretic energy dissipation𝑊𝑑

in Figure 2.12 for the first three consecutive cycles. In both figures, the two subplots (a) and (b)
depict a lower and higher drawing viscosity, respectively, whereas different fibril creep viscosities are
indicated via colour coding. In case of the lower viscous drawing resistance (𝜏𝑑/𝑇0 = 0.1) a substantial
amount of fibril (Δ𝜉0 ≈ 0.4ℎ0) is drawn in the first cycle whereas only minor portions are drawn in
subsequent cycles (Figure 2.11(a)). In contrast, a more balanced amount of fibril drawing per cycle is
obtained for the higher drawing viscosity (𝜏𝑑/𝑇0 = 0.5) (Figure 2.11(b)). Remarkably, the amount of
fibril drawn in the second cycle relative to that drawn in the first cycle Δ𝜉2𝑛𝑑

0 /Δ𝜉1𝑠𝑡
0 is largest in case of

the intermediate fibril creep viscosity (𝜏𝑐/𝑇0 = 0.1), being particularly evident for the lower drawing
viscosity (Figure 2.11(a)). Another interesting observation is the cross-over in the evolution of 𝜉0 in case
of 𝜏𝑑/𝑇0 = 0.5 (Figure 2.11(b)), taking place for the fibril creep viscosities 𝜏𝑐/𝑇0 = 0.01 and 𝜏𝑐/𝑇0 = 0.1.
While slightly more fibril has been drawn in the first cycle for 𝜏𝑐/𝑇0 = 0.01, after the second cycle the
fibril length is larger in case of 𝜏𝑐/𝑇0 = 0.1. Given that the switch does not occur in Figure 2.11(a), it
implies that it results not solely from 𝜏𝑐/𝑇0, but rather from the complex interplay of fibril drawing and
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Figure 2.11.: Influence of drawing viscosity 𝜏𝑑/𝑇0 and fibril creep viscosity 𝜏𝑐/𝑇0 on the evolution of fibril length 𝜉0.

fibril creep in the course of craze growth under cyclic loading – at least in the scope of the present
model.

The size of the stress-strain hysteresis𝑊𝑑 after a loading cycle (Figure 2.12) corresponds to the dissipated
work and can be calculated from the macroscopic cyclic stress-stretch response (cf. Figure 2.10(a)).
Under uniaxial deformation, the calculation simplifies to

𝑊𝑑 =

∫
𝜎1

¤̄𝜆1

𝜆1
d𝑡 . (2.30)

For all parameter values, the dissipated work is significantly larger in the first cycle than in subsequent
cycles (cf. hysteresis in Figure 2.10(a)) due to the majority of fibril drawing taking place during the first
cycle under the imposed constant deformation amplitude. This results in a lower stress level which
corresponds to less dissipation per cycle. The predominance of fibril drawing as initial deformation
mechanism also leads to a monotonic increase of𝑊𝑑 with 𝜏𝑑/𝑇0 and 𝜏𝑐/𝑇0 in the first cycle, i.e. higher
viscous resistances give rise to higher stresses and hence larger dissipation. However, particular
interesting is the shift occurring in the second and third cycle where𝑊𝑑 is largest for the intermediate
fibril creep viscosity (𝜏𝑐/𝑇0 = 0.1) for both values of 𝜏𝑑/𝑇0 (cf. Figure 2.12(a) and (b)). This change can be
attributed to the influence of the then well established fibril whose viscoelastic deformation behaviour
is most pronounced for the intermediate creep viscosity.
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Figure 2.12.: Influence of drawing viscosity (a): 𝜏𝑑/𝑇0 = 0.1, (b): 𝜏𝑑/𝑇0 = 0.5 and fibril creep viscosity 𝜏𝑐/𝑇0 (colour coding)
on hysteresis size over three consecutive loading cycles.

2.4.2.2. Influence of morphology change 𝜆𝑐 (𝜉0)

To investigate the effect of the rate of morphology change (parameter 𝛼) over multiple cycles, the
imposed macro-stretch amplitude is here reduced to 𝜆1 = 1.1. According to Figure 2.2, the parameter
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2.4. Parameter study under macroscopic uniaxial strain

𝛼 corresponds to the fraction of ultimate fibril length upon which mature fibrils prevail; in terms of
the normalised fibril length this state is reached at 𝜉0/ℎ0(= 𝛼𝜆∗𝑐 ) = 0.03 for 𝛼 = 0.01 and at 𝜉0/ℎ0 = 0.3
for 𝛼 = 0.1. Figure 2.13 illustrates this effect in terms of normalised quantities over three consecutive
loading cycles. From the evolution of fibril length (Figure 2.13(c)), it can be concluded that for 𝛼 = 0.01
(as considered in previous subsections) the morphology change is completed already during the first
cycle whereas for 𝛼 = 0.1 the morphology change is still ongoing even after the third cycle. While the
effect on the macroscopic stress response (Figure 2.13(a)) is rather small, with slightly higher values for
𝛼 = 0.1 due to the less mature fibrils, a more pronounced influence of the parameter 𝛼 on the evolution
of the fibril length and on the fibril stress and stretch can be seen in Figure 2.13(c) and (b). The stronger
fibril growth (Figure 2.13(c)) for 𝛼 = 0.1 results from the higher macro stress (essentially during the
first two cycles) and hence, as the difference in peak macro stress diminishes, the amount of newly
drawn fibril per cycle becomes independent of 𝛼 . Interestingly, while there is a decline in peak fibril
stress and stretch across cycles for mature fibrils (Figure 2.13(b) with 𝛼 = 0.01), this trend is absent
when morphological changes are still ongoing (𝛼 = 0.1). In the latter case, peak values stay relatively
consistent throughout the three cycles.
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Figure 2.13.: Effect of rate of morphology change on craze element response over three loading cycles; 𝜏𝑑/𝑇0 = 0.5, 𝜏𝑐/𝑇0 = 0.1.

2.4.2.3. Higher cyclic loading

So far, the analyses focused on the initial phases of cyclic loading. However, the response of the
craze element during more advanced loading cycles also presents significant interest. To address this,
the behaviour of the craze element is studied for 1000 consecutive cycles, for which the peak values
(per cycle) of the macro-stress, fibril stress and fibril stretch, as well as the evolution of the fibril
length are presented in Figure 2.14. A broader spectrum of fibril creep viscosities is considered, while
maintaining a fixed drawing viscosity of 𝜏𝑑/𝑇0 = 0.5. Due to the constant deformation amplitude
set at 𝜆1,𝑚𝑎𝑥 = 1.4, the peak macro stress (Figure 2.14(a)) continuously decreases, converging to the
drawing stress 𝜎𝑦 = 0.05𝜇𝑓 . This results in an arrest of fibril drawing, as depicted in Figure 2.14(b).
The decline in peak fibril stress (Figure 2.14(c)) mirrors the drop in macro stress. Both these metrics
become largely unaffected by the fibril creep viscosity (𝜏𝑐/𝑇0) as steady state conditions are approached
for large cycle numbers. Nevertheless, the influence of 𝜏𝑐/𝑇0 remains more pronounced in the fibril
length evolution (Figure 2.14(b)) and the peak fibril stretch value (Figure 2.14(d)). In the high cycle
regime, these quantities converge to two distinct values: one for 𝜏𝑐/𝑇0 = 0.01 and another for all greater
creep viscosities assessed here. The observed effects, combined with the various curve intersections in
Figure 2.14, highlight the complex interplay between craze fibril drawing and creep during cyclic loading.
This complexity persists even under the chosen linearly viscous modelling of these mechanisms.
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Figure 2.14.: Craze element response for 1000 consecutive loading cycles; 𝜏𝑑/𝑇0 = 0.5.

2.4.3. Fibril failure

Cyclic loading with a constant amplitude of the imposed macro-deformation has in the foregoing
analyses lead to a monotonic decrease of the peak macro-stress towards the drawing stress 𝜎𝑦 and
hence to an arrest of fibril drawing prior to reaching its critical length for failure. In order to analyse
failure of the craze element by fibril rupture and its dependence on the modelling parameters, the
cyclic loading programme is now changed to one with a prescribed constant amplitude of macro-stress
𝜎1,max. To maintain comparability with the foregoing analyses, loading is still imposed in terms of a
prescribed macro-strain rate ¤̄𝜆1 = 1/𝑇0, yet varying the macro-stress between zero and 𝜎1,max. Before
looking at failure, the effect of the change in the loading programme is illustrated in Figure 2.15 where
the stress-stretch response of the craze element (Figure 2.15(a)) and the evolution of the fibril length
(Figure 2.15(b)) are depicted for the first four cycles. In contrast to strain-controlled loading (magenta
curves, see also Figure 2.10(a)) cyclic loading with a constant macro-stress amplitude (black curves)
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Figure 2.15.: Effect of stress-controlled vs. strain-controlled loading during first four loading cycles; 𝜏𝑑/𝑇0 = 0.5, 𝜏𝑐/𝑇0 = 0.1.
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2.4. Parameter study under macroscopic uniaxial strain

gives rise to a ratcheting-like response where the hysteresis loops and the amount of newly drawn fibril
length progressively increase with cycle number.

The overall response of the craze model up to ultimate failure is shown in terms of the peak macro-
stretch per cycle and the evolution of fibril length vs. the number of loading cycles in Figure 2.16
for a macro-stress amplitude of 𝜎1,max/𝜇𝑓 = 0.1. It should be kept in mind that failure in our model
occurs upon the complete conversion of bulk material of the primordial thickness ℎ0 into fibrils, i.e.
at 𝜉0/ℎ0 = 𝜆

∗
𝑐 = 3 according to (2.19) and Table 2.2. Again, the influence of the drawing viscosity and

the fibril creep viscosity is compared via the normalised quantities 𝜏𝑑/𝑇0 and 𝜏𝑐/𝑇0 as indicated in the
figures. The general trend shows an increase of the number of cycles up to failure with increasing
values of both viscosities. With regard to the drawing viscosity, this effect is clearly expected owing
to the higher resistance to drawing associated with higher values of 𝜏𝑑/𝑇0. However, the at first sight
surprising finding that higher fibril creep viscosities give rise to larger numbers of cycles up to failure
is a result of the changed loading programme. Moreover, it is worth remarking, that the fibril creep
viscosity 𝜏𝑐/𝑇0 (or the fibril constitutive behaviour in general) has only a small influence on the overall
response in the early stage of the loading programme when the fibril length is still small. This influence
becomes progressively more important as the fibril length, and hence its contribution to the overall
response of the craze element, increases. In other words, the fibril behaviour is only of significant
influence when the fibril length is of the order of the element size (i.e. ℎ0) as can be seen in Figure 2.16.
Although not explicitly illustrated here, comparing with higher values of 𝜎1,max/𝜇𝑓 reveals qualitatively
similar results. The notable distinction is that a larger stress amplitude essentially results in a reduced
number of cycles before failure occurs.
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Figure 2.16.: Peak macro stretch and fibril length evolution 𝜉0 for cyclic loading up to macro stress 𝜎1/𝜇𝑓 = 0.10 (top:
𝜏𝑑/𝑇0 = 0.5, bottom: 𝜏𝑑/𝑇0 = 0.1).
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2. Continuum-micromechanical model for crazing

2.5. Concluding remarks

The material model that has been developed here aims to represent the mechanical response of a certain
macro-element of a craze in glassy polymers under cyclic loading normal to the overall craze plane
(cf. Figure 2.1). Through rigorous continuum-micromechanical considerations the composition of the
craze, encompassing both bulk material and fibrillated matter, is accommodated within a finite strain
setting. The inelastic deformation behaviour of the craze element is governed by two key mechanisms:
firstly, the conversion of bulk polymer into fibrillated matter of lower density by viscoplastic drawing
of fibrils out of the bulk and secondly, the viscoelastic deformation of existing fibrils. Motivated
by experimental findings in the literature, the second mechanism is considered to be particularly
important under cyclic loading, while it is typically neglected in previous crazing models that focus
on monotonic loading conditions. Indeed, the extensive parametric studies in terms of normalised
material parameters within the present work have illustrated the role of fibril viscoelasticity which
gives rise, for instance, to hysteretic dissipation as well as creep recovery during the unloading stages
where drawing is interrupted and at which fibrils are considered loose-hanging and stress-free. The
model has been kept as simple as possible to analyse the effect of cyclic loading on the evolution of
the craze microstructure and its overall response up to failure. To this end, the inelastic mechanisms
have been modelled via simplified linear rate dependencies, i.e. by constant viscosities, though it is
well known that real polymer behaviour is more complex. Nonetheless, more realistic, e.g. Eyring-type,
flow models can easily be incorporated with the discussed computational techniques and the modular
structure of the material model. Further important simplifications in our model concern the negligence
of cross-tie fibrils which might induce a non-uniaxial stress state in the fibrillated matter. Also, the
criterion for craze initiation here involves only the bulk normal stress and ignores the influence of
hydrostatic stress. Nevertheless, according to the parameter studies in the present work, the model
predicts craze failure after a certain number of loading cycles which depends on material parameters
and loading characteristics in a meaningful manner. The study shows that while the fibrils are still small
compared to the primordial thickness ℎ0 of the craze element, the contribution of the viscoelastic fibril
deformation to the macroscopic response is overshadowed by the drawing viscosity 𝜏𝑑/𝑇0. Yet, with
increasing fibril length in the later stages of a loading programme up to failure, the influence of the fibril
constitutive behaviour and hence the competition between drawing and creep becomes progressively
more pronounced. This effect is considered to be independent of the constitutive description of the
fibril model, i.e. the chosen rheological representation.

An apparent shortcoming of this study is the lack of a direct comparison of the presented results to
experimental findings. While this has to be seen in the light of the limited availability of experimental
studies characterising the response of a craze under cyclic loading, it appears necessary to discuss the
qualitative predictive capabilities of the proposed model. Firstly, the findings by Kambour & Kopp [47]
and Hoare & Hull [38], which focus on the behaviour of an existing craze under cyclic stress, motivate
to model the fibrillated craze matter as viscoelastic, as shown in Figure 2.4. Moreover, the decrease
of peak stress in the craze response under cyclic loading with a constant overall strain amplitude in
Figure 2.10(a) corresponds qualitatively to experimental results by Rabinowitz & Beardmore [72] (their
Fig. 19) for the same type of loading. Apart from these rare experimental data, nowadays molecular
dynamics (MD) simulations provide an additional insight into the micromechanics of crazing, yet so
far only under monotonic loading conditions, e.g. [32, 76, 100]. Comparison of their results with our
Figure 2.5(a) shows a qualitative agreement in the constant stress plateau after craze initiation, but the
pronounced stress drop right at craze initiation featured by the MD simulations is not captured by our
model. This is due to the fact that the stress redistribution (essentially from hydrostatic to uniaxial)
during void formation and fibrillation in the neat bulk polymer is not accounted for in the present model.
Unclear, however, is whether this significant stress drop actually occurs in the advance of an existing
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craze, which is understood to proceed by the so-called meniscus-instability ([7]). Concluding, although
the proposed model integrates key mechanisms based on experimental findings, a comprehensive
characterisation of the craze response under cyclic loading, particularly across a wide range of loading
conditions, remains a challenge.

The craze model has been formulated in a way that it can readily be used for the simulation of craze
and crack propagation in glassy polymers under cyclic loading where it can be interpreted as a traction-
separation law of a cohesive zone model. In such a crack propagation study, the finite strain setting of
the model also allows the integration of bulk polymer models describing shear yielding, enabling the
thorough investigation of interesting phenomena arising from the interaction between crazing and
shear yielding during fatigue crack growth in glassy polymers. This study will be addressed in future
work.
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3. Molecular simulations of crazes in glassy
polymers under cyclic loading

This chapter reproduces:*
Laschuetza T, Ge T, Seelig T, and Rottler J. “Molecular Simulations of Crazes in Glassy Polymers under
Cyclic Loading”. In: Macromolecules. 57(23): 10894–10902, 2024. doi: 10.1021/acs.macromol.4c01445

Abstract:

start of cycle
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Craze hysteresis and zoom of craze at indicated stretches

We study with molecular dynamics simulations of a
generic bead-springmodel the cyclic crazing behaviour
of glassy polymers. The aim is to elucidate the mechan-
ical response of sole fibrillated craze matter as well as
its interaction with bulk material. The macroscopic
stress response exhibits a hysteresis, which is quasi
stationary after the first cycle and largely independent
of deformation rate and temperature. It results from
a complex interplay between constraints imposed by
the entanglement network, pore space and pore space
closure. Once the craze fibrils are oriented, stretching
of the covalent backbone bonds leads to a rapid stress
increase. In the initial stages of unloading, a loss in entanglement contact yields a quick stress relaxation
in the backbone. During unloading, the craze fibrils undergo a rigid body (i.e. stress-free) folding motion
due to the surrounding pore space, so that the structural behaviour of craze fibrils during unloading is
most accurately described as string-like. The reloading response depends significantly on the degree
of pore space closure and the enforced intermolecular interaction during unloading. It ranges from a
linear stress increase to a recavitation with a redrawing response. Compared to the bulk stiffness, the
craze stiffness is two orders of magnitude lower and as a result, the macro response of coexisting craze
and bulk matter is governed by the sole fibrillated craze matter.

Keywords: Craze, Cyclic loading, Molecular dynamics simulation

* Reprinted (adapted) with permission from cited work. ©2024 American Chemical Society.

3.1. Introduction

Crazing refers to the dilatant process of localized formation and growth of crack-like defects in
glassy thermoplastic polymers. A craze consists of fibrillated matter with an interconnected void
space. The several tens of nanometre thick fibrils can grow up to a few micrometres in length by
drawing in surrounding bulk material from the so-called active zone [53]. This process is of practical
importance since, unlike cracks, craze fibrils enable a considerable load transfer between the craze
surfaces and substantially enhance the fracture toughness. Therefore, much research has been devoted
to understanding the governing mechanisms, cf. reviews in [34, 46, 48, 49], which includes theoretical
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3. Molecular simulations of crazes

studies on a continuum scale, e.g. [12, 26, 33, 35, 80, 84, 97], as well as on a molecular scale, e.g. [11, 22, 31,
32, 59, 60, 65, 74–76, 98, 100, 102]. However, the focus of those theoretical studies is limited to monotonic
loading conditions. In contrast, extensive experimental research for cyclic (especially fatigue) loading
exists, cf. reviews in [23, 78, 94], providing insight into very interesting fracture processes for several
glassy polymers and at several loading amplitudes: For instance, at low loading amplitudes, Skibo
et al. [83] observed discontinuous crack growth, which was attributed to craze thickening resulting
from a competition of fibril drawing and fibril creep deformation by Könczöl et al. [50]. An increase
in loading amplitude may give rise to the formation of shear bands and their interaction with crazes,
leading to discontinuous epsilon-shaped fatigue cracks as studied by Takemori [94]. Yet, the involved
length scales pose difficulties to explore the driving mechanisms by solely relying on experiments
and without theoretical analyses based on a physically motivated craze model. For this purpose, a
continuum micromechanical model was recently developed by some of us [56] focusing on the cyclic
response of craze matter. The model describes the structural response of craze fibrils as string-like and
accounts for viscoplastic fibril drawing and viscoelastic fibril deformation, where the latter is motivated
by experimental observations [38, 47]. It is designed to be employed as a traction separation law in a
mode I boundary value problem to investigate cyclic craze and crack growth. The continuum scale
also accounts for inelastic shear yielding in the surrounding bulk, which enables the analysis of its
competition with crazing. However, the craze model suffers from two shortcomings arising from a
general knowledge gap of the cyclic craze response: On the one hand, the structural behaviour of craze
fibrils during unloading is uncertain. The correct structural behaviour is important since it impacts the
pictures of the damage mechanism during cyclic (fatigue) loading. On the other hand, there is a lack
in detailed mechanical knowledge regarding the response of craze deformation for a broad range of
loading conditions.

In this paper, the response of a craze under cyclic loading is studied based on molecular dynamics
simulations of a coarse-grained bead-springmodel. In the past, this approach has yielded valuable insight
into many molecular scale mechanisms of crazing, in particular the ones concerning the entanglement
network. General studies of craze nucleation [76], craze fibril drawing [11, 59, 75, 100], and craze
fracture [74] in linear flexible polymers were extended to nanocomposites [98], void nucleation [60],
semiflexible and stiff polymers [22, 65], and assessed the role of the entanglement network in setting
the craze extension ratio [32, 65]. Recent simulations have gone beyond the generic coarse-grained
bead-spring model and used a scale-bridging approach to simulate craze formation in polystyrene [102].
Contrary to the energy landscape and stress level, the central role of the entanglement network in
controlling the structural features of craze fibrils is independent of the degree of coarse graining.

The aim in this work is twofold: First, to the knowledge of the authors, molecular dynamics simulations
have not yet been employed to study the cyclic response of fibrillated craze matter. The access to
molecular scale details allows the simulations to establish the microscopic picture, which is often
assumed in micromechanical models but is difficult to evaluate experimentally. Therefore, this study
aims to elucidate the mechanical behaviour under cyclic loading and the underlying mechanisms leading
to the macroscopic response. To this end, different loading conditions are analysed for sole fibrillated
craze matter as well as for systems where bulk and craze matter coexist. The latter is of interest, since
crazing is a transient process which gains particular relevance during cyclic loading where, for instance,
fibril drawing takes place over multiple cycles. A further focus concerns the structural behaviour of
craze fibrils during unloading, and whether it can be characterised as string-like. Second, findings from
this study aim to be transferred as a bottom-up approach to larger scale models to create, for instance,
a molecular dynamics informed continuum model.

The presented paper is outlined as follows: In Section 3.2, the computational methods featuring the
model, the system setup and the crazing simulation are detailed. The results are presented in Section 3.3
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comprising the cyclic response of sole fibrillated craze matter (Subsection 3.3.1) as well as the cyclic
response of coexisting craze and bulk material for different craze-bulk compositions (Subsection 3.3.2).
Concluding, the key findings are summarised in Section 3.4.

3.2. Model and methods

The generic bead-spring model [54] is employed to study the cyclic craze response. The model setup is
consistent with previous studies on crazing, e.g. [11, 31, 32, 74–76], and is briefly summarised: Each
polymer is modelled as a linear chain of 𝑁 spherical monomers with a mass𝑚. Non-bonded monomers
separated by the distance 𝑟 interact via the truncated and shifted 6-12 Lennard-Jones (LJ) potential

𝑈LJ(𝑟 ) = 4𝑢0
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with a cutoff radius 𝑟𝑐 = 1.5𝑎. The results are expressed in terms of Lennard-Jones units, featuring the
characteristic length 𝑎, energy scale 𝑢0 and a characteristic time 𝜏 = 𝑎
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interact via an attractive finitely extensible nonlinear elastic (FENE) potential with a purely repulsive
second Lennard Jones term (𝑟𝑐 = 21/6𝑎)
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with the parameters 𝑅0 = 1.5𝑎 and 𝑘 = 30𝑢0/𝑎2, allowing entanglements to form [54]. Chain scission is
not considered, since the focus lies on cyclic loading resulting in stress states lower than necessary for
chain scission to occur [76].

The system comprises𝑀 = 1800 chains where each chain consists of 𝑁 = 500 beads with an average
entanglement length of 𝑁𝑒 ≈ 80 beads. Simulations are performed with the LAMMPS molecular
dynamics code [69, 95], where periodic boundary conditions are employed along all three directions.

The melt state was constructed by generating random-walk coils with a subsequent equilibration with
𝑟𝑐 = 1.12𝑎 at temperature 𝑇 = 1𝑢0/𝑘𝑏 . To facilitate equilibration, a double bridging algorithm [10]
is utilized. The temperature was controlled via a Nosé-Hoover thermostat with a damping rate 1𝜏−1.
While retaining the volume, the equilibrated system is then quenched with 𝑟𝑐 = 1.5𝑎 to 𝑇 = 0.49𝑢0/𝑘𝑏 ,
leading to zero pressure. Further quenching to the final target temperature 𝑇 = 0.1𝑢0/𝑘𝑏 takes place
at zero pressure by using a Nosé-Hoover barostat with a damping rate 0.1𝜏−1. The quenched system
has initial box dimensions 𝐿𝑥0 = 94.3𝑎 and 𝐿𝑦0 = 55.8𝑎 in lateral direction and 𝐿𝑧0 = 167.3𝑎 in axial
direction. All directions sufficiently exceed the end-to-end distance of the chains, which reduces finite
size effects [41, 76]. The larger box length along the z-direction minimises further the effects of the
finite box size on the coexistence of the craze fibrils and uncrazed regions. 𝐿𝑧0 being larger than the
active zone size allows better separation of the craze fibrils from the active zone at the same axial
stretch 𝜆𝑧 = 𝐿𝑧/𝐿𝑧0, which is measured with respect to the isotropic glass. The box sizes in the periodic
x- and y-directions are reduced compared to 𝐿𝑧0, so the simulations with the same number of degrees
of freedom can focus on the more interesting z-direction.

Following previous studies, e.g. [32, 74, 76, 102], crazing is induced by subjecting the system to an
affine uniaxial deformation along the 𝑧-axis, i.e. lateral stretches 𝜆𝑥 = 𝜆𝑦 = 1, while 𝜆𝑧 is prescribed via
a constant material strain rate ¤𝜆𝑧 = ¤𝑢/𝐿𝑧0 = 2.6 · 10−4𝜏−1. To simulate cyclic loading conditions, a bi-
linear loading/unloading program is imposed by simply switching the velocity direction upon reaching
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the maximum stretch 𝜆𝑧,𝑚𝑎𝑥 , leading to the loading period 𝑇𝑝 . Throughout the loading program, a
Nosé-Hoover thermostat with a damping rate 1𝜏−1 is applied to the lateral velocities to maintain a
constant temperature.

To study the cyclic response of sole craze material in Subsection 3.3.1, the isotropic glass is deformed
to 𝜆𝑧,𝑚𝑎𝑥 = 10. This ensures complete conversion of bulk material into fibrillated craze matter, which
takes place when the deformation reaches approximately the extension ratio 𝜆𝑐 (i.e. 𝜆𝑧 ≈ 𝜆𝑐 = 𝜌𝑏/𝜌𝑐 ),
describing the ratio of bulk 𝜌𝑏 and craze density 𝜌𝑐 . It also avoids the deformation state where chain
breakage occurs (cf. [76]). In Subsection 3.3.2, the bulk-craze interaction for different bulk-craze
compositions is studied by varying 𝜆𝑧,𝑚𝑎𝑥 . To analyse a broad response range, the unloading magnitude
𝜆𝑧,𝑢 , i.e. the stretch to which the system is unloading, is varied in both studies. In all considered
scenarios, the cycle count and the cycle time 𝜏𝑐 = 𝜏/𝑇𝑝 commences upon reaching 𝜆𝑧,𝑚𝑎𝑥 for the first
time after loading from the isotropic glass.

3.3. Results

3.3.1. Cyclic response of fibrillated craze matter

We first aim to elucidate the mechanical response of sole craze matter by focusing on the macroscopic
behaviour throughout the loading cycles and thereafter analysing the underlyingmechanisms. Figure 3.1
presents the macroscopic response of fibrillated craze matter under cyclic loading for three simulations
to 𝜆𝑧,𝑢 = 1 (dash-dotted line), 𝜆𝑧,𝑢 = 2 (dashed line) and 𝜆𝑧,𝑢 = 5 (solid line). The deformation controlled
cyclic loading program is shown in Figure 3.1(a), and the corresponding macroscopic axial stress 𝜎𝑧 as
function of the macro stretch 𝜆𝑧 is depicted in Figure 3.1(b). The grey dotted line represents the initial
response of the isotropic glass during craze formation and growth, featuring an elastic stress increase,
the subsequent stress drop during cavitation, as well as a constant stress plateau as craze fibrils are
drawn from the bulk. This monotonic crazing process has already been thoroughly studied, e.g. [11, 32,
74, 76]. Here we are interested in the mechanical response of the craze (fibrils) under cyclic loading
(black lines). To provide a better visualisation, Figure 3.1(c) shows a zoom of the stress-stretch response
(red box in Figure 3.1(b)), and the arrows in Figure 3.1(c) show the loading direction. The colour coding
and the roman numerals indicate different craze stages.

Before discussing the different stages of the craze deformation cycle, several key features are briefly
summarised. During unloading from 𝜆𝑧,𝑚𝑎𝑥 = 10 (indicated by the vertical arrow in Figure 3.1(c), the
craze first exhibits a rapid stress decline which transitions into a long, quasi-stress free contraction
of the craze (orange line). Note that this unloading behaviour is identical for all three simulations, i.e.
the solid, dashed, and dash-dotted curves collapse onto each other. When the stretch is reduced below
𝜆𝑧,𝑢 < 2.5, the quasi stress-free contraction becomes compressive, and the magnitude of 𝜎𝑧 significantly
rises as 𝜆𝑧 approaches 𝜆𝑧 = 1 (dash-dotted line), i.e. the macroscopically undeformed state of the initial
isotropic glass. In that particular case, 𝜎𝑧 increases rapidly during reloading and the craze exhibits what
appears to be recavitation and reyielding, while both stress magnitudes remain below the cavitation
and drawing stresses during the initial craze creation (grey dotted line). By contrast, for the case of
𝜆𝑧,𝑢 = 2 (dashed line) and 𝜆𝑧,𝑢 = 5 (solid line), the craze exhibits a plateau stress and a linear increase,
respectively, during reloading (cf. blue dashed and solid line in Figure 3.1(c)). Around 𝜆𝑧 ≈ 𝜆𝑐 , which is
indicated by the vertical line in Figure 3.1(c), the stress rapidly grows and the response becomes nearly
independent of 𝜆𝑧,𝑢 . Moreover, it is notable that all load program variations lead to a hysteresis, which
appears to be neither a thermally activated nor a rate-dependent process and relatively stationary after
the first cycle (cf. Figure 3.B.1 and Figure 3.B.2 in the supporting information).
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Figure 3.1.: Mechanical response during initial craze formation (grey dotted line) and subsequent cyclic loading (black lines)
to various unloading stretches of 𝜆𝑧,𝑢 = 1, 𝜆𝑧,𝑢 = 2 and 𝜆𝑧,𝑢 = 5, represented by black dash-dotted, dashed, and solid lines,
respectively. (a) Schematic loading program, (b) axial stress 𝜎𝑧 as function of axial stretch 𝜆𝑧 with red box indicating zoom
shown in (c). The arrows and colour coding in panel (c) show loading direction and different craze stages, respectively. The
latter are described in the text.

To analyse the driving mechanisms leading to the hysteresis, it is beneficial to distinguish between
different craze stages during the deformation cycle. As aforementioned, the stages are represented by
the colour-coding and the roman numerals in Figure 3.1(c) and can be summarised as follows:

• Stage I (magenta): Stretching and unloading of highly oriented craze fibrils. This is labelled here
as first stage, since the response is essentially independent of the previous loading history.

• Stage II (orange): Quasi stress-free contraction of the craze with a transition to compression
around 𝜆𝑧 = 2.5.

• Stage III (blue): A reloading response which depends on 𝜆𝑧,𝑢 and exhibits either a reyielding
(𝜆𝑧,𝑢 ≤ 2) or a linear (𝜆𝑧,𝑢 ≥ 5) behaviour.

To further enhance the understanding, animations (created with OVITO [89]) of the three simulations
are provided in the supporting information. The following analysis focuses on the 1st cycle as defined
in Figure 3.1(a), if not indicated otherwise.

3.3.1.1. Mechanics during stage I

The mechanics in stage I are discussed first while focusing on the mechanisms leading to the rapid
stress increase during reloading, and the difference between loading and unloading that results in the
hysteresis. The former is investigated through a decomposition of 𝜎𝑧 into its intramolecular 𝜎𝑧,𝑏 and
intermolecular 𝜎𝑧,𝑝 contributions, as shown in Figure 3.2 for 𝜆𝑧,𝑢 = 5. Since the kinetic contribution is
small in the glass, it is omitted here. Stress decompositions for the cases 𝜆𝑧,𝑢 = 2 and 𝜆𝑧,𝑢 = 1 are shown
in Figure 3.B.3 and exhibit qualitatively similar trends. Focusing only on stage I (i.e. right hand-side of
vertical dashed line), it can be concluded that the rapid stress change is governed by 𝜎𝑧,𝑏 and hence, by
the deformation of the polymer backbone.
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Figure 3.2.: Axial stress 𝜎𝑧 decomposition into intermolecular pair 𝜎𝑧,𝑝 and intramolecular bond 𝜎𝑧,𝑏 components during
unloading (dashed lines) and reloading (solid lines) for 𝜆𝑧,𝑢 = 5. Arrows show load direction and roman numerals indicate
craze stages.

Since Figure 3.2 suggests that chain (re)orientation is important, we further analyze the changes in
chain configuration by computing orientation vectors R(𝑁𝑖 , 𝜆1) between 𝑁𝑖 beads along the chains for
a given stretch 𝜆𝑧 . The average orientation of these vectors is conveniently described by

𝑆𝑧 = ⟨𝑃2(cos𝛼𝑧 (𝑁𝑖 , 𝜆𝑧))⟩ , (3.3)

where 𝑃2(𝑥) = (3𝑥2 − 1)/2 is the second Legendre polynomial, 𝛼𝑧 the angle formed by R(𝑁𝑖 , 𝜆1) with
the deformation axis and ⟨...⟩ describes the ensemble average. Figure 3.3 shows a parametric plot of
the stress as function of 𝑆𝑧 for five values of 𝑁𝑖 , where 𝑁𝑖 = 80 coincides with the entanglement length
𝑁𝑒 .
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Figure 3.3.: Axial stress 𝜎𝑧 vs. bond orientation 𝑆𝑧 for several length scales encompassing 𝑁𝑖 monomers. Data is shown
during unloading (dashed lines) and reloading (solid lines) for 𝜆𝑧,𝑢 = 5.

The first notable observation is that 𝑆𝑧 is not an adequate order parameter at any length scale 𝑁𝑖 to
characterise the hysteresis, since the hysteresis loops do not collapse. Second, given that 𝑆𝑧 (𝑁𝑖 =

80) ≈ 𝑆𝑧 (𝑁𝑖 = 170), the orientation seems to be enforced by the entanglement network. Third, before
unloading from 𝜆𝑧,𝑚𝑎𝑥 , the chains are highly oriented, which is essentially retained during the initial
stages of unloading (dashed lines) in which the stress rapidly decays. Lastly, the rapid stress rise during
reloading (solid lines) in regime I is accompanied by a minor change in orientation.

The stretching and relaxing of the backbone bonds is further corroborated by Figure 3.4, which shows
the average resultant tensile bond force ⟨𝐹𝑏⟩ = ⟨ d𝑈FENE(𝑟 )/ d𝑟 ⟩. It closely follows the bond stress 𝜎𝑧,𝑏
derived from the virial stress, and paints the picture that constraints such as the entanglement network
leads to a rise in 𝜎𝑧 once chains become highly oriented. Furthermore, upon unloading, the loss in
entanglement contacts yields a swift stress relaxation in the backbone and thus causes the difference in
loading and unloading.
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Figure 3.4.: Average backbone bond force ⟨𝐹𝑏⟩ vs. stretch 𝜆𝑧 during unloading (dashed lines) and reloading (solid lines) for
𝜆𝑧,𝑢 = 5. Arrows show load direction and roman numerals indicate craze stages.

In conclusion, stage I is governed by the stretching and relaxing of the highly oriented bonds due the
entanglement network. As the bonds form craze fibrils, it equivalently can be stated that this stage is
governed by the deformation of the highly oriented craze fibrils. Given the necessary pre-orientation
in order for the deformation to take place, this stage is essentially independent of the prior unloading
history (i.e. of 𝜆𝑧,𝑢 ).

3.3.1.2. Mechanics during stage II

Stage II focuses on the mechanisms leading to the quasi stress-free contraction of the craze during
unloading as well as the transition to compression for 𝜆𝑧 ≤ 2.5. The data presented so far highlights
two things in this regime: Firstly, the largest reduction in chain orientation occurs during this stage
(cf. Figure 3.3) and secondly, 𝜎𝑧,𝑏 ≈ ⟨𝐹𝑏⟩ ≈ 0 (cf. Figure 3.2 and Figure 3.4). The latter suggests that
the structural behaviour of craze fibrils is string-like rather than beam-like as the craze (pore space
& fibrils) solely exhibits a minor stiffness during contraction. This also implies a negligible bending
stiffness of the craze fibrils, which validates a recent assumption on the structural behaviour of craze
fibrils used in a continuum model [56].

Besides the chain level observables, a further helpful quantity to characterise the response is the particle
motion orthogonal (i.e. in 𝑥𝑦-plane) to the deformation axis (𝑧-axis). Since 𝜆𝑥 = 𝜆𝑦 = 1, any such
motion is nonaffine. The average lateral particle displacement

〈
𝑢𝑥𝑦

〉
is given by〈

𝑢𝑥𝑦
〉
=

〈��r𝑥𝑦 (𝜏𝑐) − r𝑥𝑦 (𝜏𝑐 = 0)
��〉 , (3.4)

where r𝑥𝑦 is the position vector in the 𝑥𝑦-plane and
〈
𝑢𝑥𝑦

〉
is the displacement with respect to 𝜆𝑧,𝑚𝑎𝑥 at

the beginning of the cycle at 𝜏𝑐 = 0. Figure 3.5 displays the evolution of
〈
𝑢𝑥𝑦

〉
(black line) as well as 𝜎𝑧

(magenta line) throughout the loading cycle. During unloading (0 < 𝜏𝑐 ≤ 0.5),
〈
𝑢𝑥𝑦

〉
increases sharply.

That is, the lateral particle movement increases while the bond orientation decreases, which can also
be seen in the supplementary animation as a folding mechanism of the craze fibrils. The pore space
plays a key role as it enables the motion of fibril folding to occur essentially as a rigid body motion, i.e.
stress-free. It is therefore concluded, that as long as pore space exists, the structural behaviour of craze
fibrils is thus most accurately described as string-like.

The compressive stress increase observed for 𝜆𝑧 ≤ 2.5 (cf. Figure 3.1(b)) arises from an increase in 𝜎𝑧,𝑝
(cf. stress decomposition of 𝜆𝑧,𝑢 = 1 and 𝜆𝑧,𝑢 = 2 in Figure 3.B.3). Although the magnitude is quite large
and most likely strongly influenced by the high deformation speed in MD simulations, this behaviour is
not unexpected due to the macroscopically observed dilatant deformation during craze formation and
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Figure 3.5.: Lateral particle displacement
〈
𝑢𝑥𝑦

〉
(left y-axis) and 𝜎𝑧 (right y-axis) vs. cycle time 𝜏𝑐 for 𝜆𝑧,𝑢 = 5.

growth, leading to compressive stress (𝜎𝑧 < 0) during unloading while the macroscopic deformation is
still tensile (𝜆𝑧 > 1). Compression at the crack tip, i.e. where the craze fibrils are the largest, was also
computed using the experimentally measured craze contour as input in a finite element simulation [16,
50].

3.3.1.3. Mechanics during stage III

Stage III features the reloading response, which significantly depends on 𝜆𝑧,𝑢 . The supplementary
animations show that in the case of 𝜆𝑧,𝑢 = 5, the craze morphology is largely retained throughout the
cycles. By contrast, 𝜆𝑧,𝑢 = 2 yields a section-wise unfolding of the craze and 𝜆𝑧,𝑢 = 1 even a redrawing.
The previous data implies that pore space closure and the exerted compression highly influence the
reloading behaviour. To further study the underlying mechanism that contributes especially to the
difference between 𝜆𝑧,𝑢 = 2 and 𝜆𝑧,𝑢 = 1, the simulation box length 𝐿𝑧 is decomposed into regions
associated with the bulk material

𝐿𝑏 =

∫
{𝑧:𝜌 (𝜏𝑐 ,𝑧 )≥𝜌𝑏 }

d𝑧, (3.5)

the craze
𝐿𝑐 =

∫
{𝑧:𝜌 (𝜏𝑐 ,𝑧 )≤𝜌𝑐 }

d𝑧 (3.6)

and an intermediate length

𝐿𝑖 =

∫
{𝑧:𝜌𝑐<𝜌 (𝜏𝑐 ,𝑧 )<𝜌𝑏 }

d𝑧, (3.7)

where 𝜌 (𝜏𝑐 , 𝑧) is the density of a slab d𝑧 at 𝜏𝑐 and 𝜌𝑏 = 0.9𝑎−3 and 𝜌𝑐 = 0.17𝑎−3 are the bulk and
craze density, respectively. The evolution of those craze length components is displayed in Figure 3.6,
including additionally snapshots of the craze (created with OVITO [89]) for the three simulations
compressed to different 𝜆𝑧,𝑢-values, and then restrained to the same 𝜆𝑧 = 5. To further facilitate the
understanding of the approach, the area enclosed by the coloured dashed lines in snapshot Figure 3.6(a)
defines the three contributions associated with 𝐿𝑏 , 𝐿𝑐 and 𝐿𝑖 .

In all three simulations, the simulation box consists solely of crazed material (𝐿𝑐 = 𝐿𝑧) at 𝜏𝑐 = 0. As
the deformation is retracted and the craze unloaded, 𝐿𝑖 increases monotonically to 𝐿𝑧 . In the case of
𝜆𝑧,𝑢 = 1, the high compressive stress eventually leads to a very rapid increase from 𝐿𝑏 = 0 to 𝐿𝑏 = 1 (cf.
green line around 𝜏𝑐 ≈ 0.5 in Figure 3.6(a)). Upon reloading, 𝐿𝑖 quickly rises and subsequently 𝐿𝑏 as
well as 𝐿𝑖 continuously decrease. This is associated with the redrawing of fibrils as can be seen in the
corresponding animation. The small rise of 𝐿𝑖 can be understood as new active zone (magenta area
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Figure 3.6.: Snapshots of crazes during reloading at 𝜆𝑧 = 5 and corresponding evolution of craze length components
throughout cycle for (a) 𝜆𝑧,𝑢 = 1, (b) 𝜆𝑧,𝑢 = 2 and (c) 𝜆𝑧,𝑢 = 5. Colour coding of boxes in snapshot for 𝜆𝑧,𝑢 = 1 indicates three
density regions as specified in the text.

shown in the Figure 3.6(a) snapshot), from which fibrils are drawn. In this context, it is important to
realize that the decrease in 𝐿𝑖 results merely from the normalisation, but is rather a constant active
zone length (see Figure 3.B.5 in a non-normalised plot for 𝐿𝑖 ). We also note that it would be misleading
to characterise this behaviour as healing of the craze, as neither the temperature nor the simulation
time allows for any substantial chain reptation. The response arises rather from the breakage of
intermolecular interactions, which were created during 𝜎𝑧 < 0 (cf. Figure 3.B.3(a)).

This behavior is in strong contrast to 𝜆𝑧,𝑢 ≥ 2, where 𝐿𝑏 remains zero. While the key feature of 𝜆𝑧,𝑢 = 5
is the retention of the craze morphology seen by smooth transitions between 𝐿𝑐 and 𝐿𝑖 in Figure 3.6(c),
𝜆𝑧,𝑢 = 2 is more interesting. With the system reloading from 𝐿𝑖 = 1 at 𝜏𝑐 = 0.5 (Figure 3.6(b)),
recavitation does not occur and the breaking of LJ interactions (cf. Figure 3.B.3(b)) results in a relatively
constant plateau stress (cf. Figure 3.1(c)). The animation shows an unfolding behaviour of the craze,
which can bee seen by the evolution around 0.5 < 𝜏𝑐 < 0.8 in Figure 3.6(b). This becomes even more
evident if the normalisation is omitted and 𝐿𝑖 and 𝐿𝑐 are plotted separately as shown in Figure 3.B.4.
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3.3.2. Bulk-craze interaction

The study so far has focused on the cyclic deformation of fully crazed matter, which has been drawn
from the isotropic glass. Yet, fibril drawing is a transient process and hence it is also interesting to
consider the cyclic response while craze and bulk material coexist. To investigate the role of the
craze length, two configurations are created by deforming the initial glass to 𝜆𝑧,𝑚𝑎𝑥 = 5 as well as
𝜆𝑧,𝑚𝑎𝑥 = 2, leading to craze/bulk length ratios at 𝜆𝑧,𝑚𝑎𝑥 of 𝐿𝑐/𝐿𝑏 = 9.8 and 𝐿𝑐/𝐿𝑏 = 1.3, respectively.
The protocol then follows the previous protocol by commencing the cyclic loading routine to three
different 𝜆𝑧,𝑢-values, leading to the bulk-craze interaction for the nine simulations shown in Figure 3.7.
The deformation has been rescaled by 𝜀𝑧 = (𝜆𝑧 − 1)/(𝜆𝑧,𝑚𝑎𝑥 − 1), resulting in a collapse of the curves
for a given unloading 𝜀𝑧,𝑢 = (𝜆𝑧,𝑢 − 1)/(𝜆𝑧,𝑚𝑎𝑥 − 1).
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Figure 3.7.: Stress-strain curves for two bulk-craze configurations obtained by 𝜆𝑧,𝑚𝑎𝑥 = 5 (black lines) and 𝜆𝑧,𝑚𝑎𝑥 = 2
(magenta lines) as well as the initial craze formation (grey dotted line). Each configuration features three unloading levels
𝜆𝑧,𝑢 .

The bulk-craze interaction leads to a response very similar to the pure craze response in Figure 3.1
even for short crazes such as 𝐿𝑐/𝐿𝑏 ≈ 1. This allows for two important conclusions: Firstly, the macro
deformation is governed by the craze and the bulk plays a minor role in cyclic deformation. This is
attributed to the much higher bulk stiffness 𝐸𝑏 compared to the craze stiffness 𝐸𝑐 . To further elaborate
that, the bulk/craze stiffness can be crudely estimated by their respective secant stiffness with respect
to 𝜆𝑧 while neglecting 3D effects. This yields 𝐸𝑏/𝐸𝑐 ≈ 100, where 𝐸𝑏 is evaluated at 𝜆𝑧 = (1, 1.5) and 𝐸𝑐
for reloading in regime I at 𝜆𝑧 = (9.5, 10) in Figure 3.1(c). It is important to acknowledge that this is
the craze stiffness and not the craze fibril stiffness. Secondly, the stress free contraction occurring also
for shorter craze fibrils corroborates a negligible bending stiffness and hence the string-like structural
response of craze fibrils.

We conclude this section by discussing an estimate of the craze length 𝜉0 at 𝜆𝑧,𝑚𝑎𝑥 . This estimate is
limited to the case without pore space closure (i.e. 𝜀𝑧 ≥ 0.25), which is then motivated by the scaling in
Figure 3.7. While drawing is not exhausted, the craze essentially exhibits a layered bulk-craze structure
at 𝜆𝑧,𝑚𝑎𝑥 in which the deformed craze layer is denoted by 𝜉 and the deformed bulk layer by 𝜒 . They
differ from 𝐿𝑐 and 𝐿𝑏 as 𝜉 and 𝜒 are calculated in the following and not given by the MD simulations.
Using further continuum micromechanical arguments (for details including finite strains see [56])
yields the kinematic coupling between the macro stretch 𝜆𝑧 and the layers 𝜉 and 𝜒 as

𝜆𝑧 =
𝜒 + 𝜉
ℎ0

, (3.8)

where ℎ0 = 𝐿𝑧0 is the primordial thickness. Furthermore, the unloaded bulk 𝜒0 and craze length 𝜉0 are
related by conservation of mass during the drawing process, given by

𝜒0 = ℎ0 − 𝜉0/𝜆𝑐 , (3.9)
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where 𝜆𝑐 is the extension ratio with respect to the unloaded configuration. To combine (3.8) and (3.9)
without proposing constitutive deformation models, we assume small (elastic) deformations of the bulk
and craze, i.e. 𝜒0 ≈ 𝜒 and 𝜉0 ≈ 𝜉 , allowing to derive an estimation for the craze fibril length

𝜉0 = ℎ0(𝜆𝑧,𝑚𝑎𝑥 − 1) 𝜆𝑐

𝜆𝑐 − 1
(3.10)

at 𝜆𝑧,𝑚𝑎𝑥 . Applying (3.10) to 𝜆𝑧,𝑚𝑎𝑥 = 5 and 𝜆𝑧,𝑚𝑎𝑥 = 2 leads to 𝜉0/𝜒0 = 10 and 𝜉0/𝜒0 = 1.3, respectively,
which is in good agreement with 𝐿𝑐/𝐿𝑏 values given by the MD simulations.

As a final remark, it is noteworthy that no continuous drawing is observed on the investigated time
scales, which would be an indication for viscous drawing or viscous deformation effects of the craze
fibril.

3.4. Conclusions

Molecular dynamics simulations were used to study the mechanical response of sole fibrillated craze
matter and the bulk-craze interaction in glassy polymers under cyclic loading. The maximum loading
amplitude 𝜆𝑧,𝑚𝑎𝑥 and unloading magnitude 𝜆𝑧,𝑢 were varied to simulate different bulk-craze composi-
tions and different degrees of pore space closure, respectively. A key finding of this study was that
in all investigated cases, i.e. the sole craze and the craze-bulk system, the macro responses exhibited
a hysteresis, which was found to be quasi stationary after the first cycle and largely independent of
deformation rate and temperature.

Another salient finding was that the hysteresis cannot be simply described by the chain orientation
𝑆𝑧 , but rather resulted from a complex interplay between constraints imposed by the entanglement
network, pore space and pore space closure. Three distinct craze stages were identified to study the
driving mechanism in detail: The first stage focused on the highly oriented bonds and craze fibrils.
Further deformation led to an accelerated increase in stress 𝜎𝑧 (cf. Figure 3.1), which resulted from the
stretching of the covalent backbone bonds. Upon unloading the oriented craze, the bond force ⟨𝐹𝑏⟩
quickly relaxed due to the loss in entanglement contact, yielding a rapid drop in 𝜎𝑧 . The second stage
characterised the stress-free contraction during further unloading, in which the animations showed
that the craze fibrils undergo a folding motion. The folding motion was characterised on the chain and
particle level observables by a decrease in chain orientation and elevated lateral particle movement,
respectively. The surrounding pore space is the essential trait for the folding motion to take place as a
rigid body motion (i.e. stress-free). The third stage described the reloading response, which exhibited a
strong dependency on 𝜆𝑧,𝑢 . It was shown that a key feature is the degree of pore space closure and
the necessary intermolecular interaction to enforce it. Complete pore space closure (𝜆𝑧,𝑢 = 1) was
accompanied by a high level of intermolecular stress, which led to a recavitation and redrawing during
reloading. If the pore space was maintained throughout the cyclic (e.g. 𝜆𝑧,𝑢 = 5), the reloading response
was bi-linear.

The study on the craze-bulk interaction revealed that even short craze fibrils, where 𝐿𝑏 ≈ 𝐿𝑐 , exhibited
the three characteristic stages of sole fibrillated craze matter described above. That is, once a craze
initiates and reaches a certain length, the macroscopic response is governed by the craze. This was
attributed to the significantly lower craze stiffness (with respect to 𝜆𝑧) of 𝐸𝑏/𝐸𝑐 ≈ 100. It also allows to
use continuum micromechanical considerations to estimate the craze-bulk ratio at peak loading.

A further important finding is that there has not been an indication of a macroscopic bending stiffness
during unloading, even in the case of short craze fibrils. The folding motion occurs on the craze fibril
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level which comprises locally stiff craze fibril segments (cf. animations). Therefore, it is likely that the
results qualitatively hold for semiflexible bead-spring models, i.e. with a bending potential.1 While
such models primarily yield a higher entanglement density, the crazing process is still dilatant by
creating pore space and hence, the mechanisms leading to the stress-free contraction of the craze are
still present. Concluding, the macroscopic structural response of craze fibrils during unloading is most
accurately described as string-like, despite locally stiff craze fibril segments. This finding is important,
since a craze fibril bending stiffness would have different implications on the damage mechanisms
during cyclic (fatigue) loading.

The most interesting contribution for future work includes carefully conducted experiments on fibril-
lated craze matter investigating the response under different loading conditions.

Appendix to Chapter 3

This supplementary document provides supporting information for the animations and for some of the
results presented in the main manuscript.

3.A. Animations

Three animations, created with OVITO, are supplemented, featuring a deformation to 𝜆𝑧,𝑚𝑎𝑥 = 10 and
three consecutive loading cycles for

• MS1 (MP4): 𝜆𝑧,𝑢 = 1 where the colour coding displays the increment of the von Mises shear strain
invariant. Additionally, the crazing process from the isotropic glass is shown.

• MS2 (MP4): 𝜆𝑧,𝑢 = 2 where the colour coding also displays the increment of the von Mises shear
strain invariant and

• MS3 (MP4): 𝜆𝑧,𝑢 = 5 where the colour coding displays the lateral particle displacement 𝑢𝑥𝑦 .

The von Mises shear strain is calculated based on the atomic Green-Lagrangian strain tensor and
displays here only the nonaffine deformation of the particles. Note, to enhance the visualisation of the
otherwise small simulation box, the simulation box is replicated three times in lateral direction, which
corresponds to the height in the animations.

1 A later analysis, whichwas not published in [55], on semiflexible bead-springmodels verified the assumption (cf. Section 3.C).
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3.B. Additional data

3.B. Additional data

The additional data presents influence of deformation rate and temperature in Figure 3.B.1,
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Figure 3.B.1.: Influence of deformation rate ¤𝜀𝑧 and temperature on stress 𝜎𝑧 for 𝜆𝑧,𝑢 = 5.

stress evolution for multiple loading cycles in Figure 3.B.2,
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Figure 3.B.2.: Stress evolution for multiple consecutive loading cycles for (a) 𝜆𝑧,𝑢=1, (b) 𝜆𝑧,𝑢=2 and (c) 𝜆𝑧,𝑢=5.

stress decomposition for 𝜆𝑧,𝑢 = 1 and 𝜆𝑧,𝑢 = 2 in Figure 3.B.3
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Figure 3.B.3.: Stress decomposition for (a) 𝜆𝑧,𝑢 = 1 and (b) 𝜆𝑧,𝑢 = 2 into intermolecular pair 𝜎𝑧,𝑝 and intramolecular bond 𝜎𝑧,𝑏
components during unloading (dashed lines) and reloading (solid lines).
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evolution of craze length components for 𝜆𝑧,𝑢 = 2 and 𝜆𝑧,𝑢 = 1 in a non-normalised manner in
Figure 3.B.4 and Figure 3.B.5, respectively.
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Figure 3.B.4.: Evolution of (a) craze length 𝐿𝑐 and (b) intermediate length 𝐿𝑖 (black) throughout the first cycle for 𝜆𝑧,𝑢 = 2,
together with the macro stress 𝜎𝑧 (magenta). For 𝑡/𝑇 > 0.5, 𝐿𝑖 remains constant while 𝐿𝑐 increases indicating the unfolding
of the craze during reloading.
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Figure 3.B.5.: Evolution of 𝐿𝑖 (left axis) and 𝜎𝑧 (right axis) for 𝜆𝑧,𝑢 = 1. The relatively constant plateau at 𝑡/𝑇 > 0.5 indicates
a constant active zone length.

3.C. Cyclic craze response of semiflexible polymer glass

Section 3.C is not included in [55] and presents additional results for semiflexible polymer glass. The
conclusion that craze fibrils are structurally best described as strings during unloading due to a folding
motion was deduced for the flexible bead-spring model in Chapter 3. It was argued that the folding
motion occurs at the craze fibril level rather then at the chain level and hence, the conclusions were
assumed to similarly hold for semiflexible bead-spring models, incorporating a bending potential. This
assumption is investigated in the following.

The semiflexible bead-spring model has the same system size and setup as described in Section 3.2,
with the addition of a standard cosine bond bending potential [10]

𝑈b(𝜃 ) = 𝑘𝑏 (1 − cos𝜃 ), (3.11)

where 𝜃 is the angle between two consecutive bond vectors along a chain, given by cos𝜃 = (r𝑖 − r𝑖−1) ·
(r𝑖+1 − r𝑖), where (r𝑖 − r𝑖−1) and (r𝑖+1 − r𝑖) are the unit vectors of the two consecutive bonds in bond
direction. The bending potential reduces entanglement length 𝑁𝑒 and, consequently, the extension
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3.C. Cyclic craze response of semiflexible polymer glass

ratio 𝜆𝑐 . In the model, the bending stiffness is set to 𝑘𝑏/𝑢0 = 1.5, resulting in 𝑁𝑒 ≈ 30 and 𝜆𝑐 ≈ 4.4
(cf. [32]).

The macroscopic stress response is depicted in Figure 3.C.6 for the initial deformation of the isotropic
glass (grey line) and the two subsequent loading cycles (black and magenta lines). The deformation
protocol follows that outlined in Section 3.2. The results are qualitatively consistent with those observed
for the flexible polymer (cf. Chapter 3). In conclusion, the mechanisms analysed for flexible polymers
appear to be largely independent of the bending potential. An essential result is the quasi stress-
free contraction, which further supports the initial assumption that craze fibrils are most accurately
described as string-like structures during unloading.
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Figure 3.C.6.: (a) Uniaxial deformation controlled cyclic loading programme with (b) stress response of sole fibrillated craze
matter for two loading cycles.
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4. Analysis of mode I crack propagation in
glassy polymers under cyclic loading using a
molecular dynamics informed continuum
model for crazing

This chapter reproduces:*
Laschuetza T and Seelig T. “Analysis of mode I crack propagation in glassy polymers under cyclic
loading using amolecular dynamics informed continuummodel for crazing”. In: Journal of theMechanics
and Physics of Solids. 194: 105901, 2025. doi: 10.1016/j.jmps.2024.105901

Abstract: Craze and crack propagation in glassy polymers under cyclic mode I loading are investigated
by employing a recently developed continuum-micromechanical model for crazing. This model accounts
for the local morphology change from microvoids to fibrils during craze initiation, viscoplastic drawing
of bulk material into fibrils, and viscoelastic creep recovery of the fibrillated craze matter during
unloading. To ensure consistency between the bulk and crazemodel parameters, thematerial parameters
of the craze model are normalised and calibrated based on a hybrid approach integrating experimental
findings from the literature and molecular dynamics results. This yields a generic, yet representative
glassy polymer response.

In the framework of 2D plane strain finite element simulations, we study brittle as well as ductile
glassy polymers and assess the results by drawing comparisons to the experimental and numerical
literature. For brittle materials, characterized by a purely elastic bulk behaviour, the model reproduces
craze characteristics such as the craze opening contour, the craze length-to-width ratio, a double stress
peak at the craze and crack tip, and a non-proportional stress redistribution during loading-unloading
cycles. In ductile glassy polymers, the interaction of shear yielding in the bulk and crazing along the
ligament is analysed. In particular, shear bands emanate from the crack tip in each loading cycle and
arch forward towards the craze. This plastic zone shares resemblance to the so-called epsilon-shaped
deformation zone. The current simulations capture normal fatigue crack propagation, where craze and
crack growth occur near the peak load in every cycle and the craze length remains relatively constant
across the loading cycles. Moreover, findings from this study suggest that plasticity-induced unloading
of the craze adjacent to the crack tip impedes crack growth.

Keywords: Craze, Cyclic loading, Micromechanical continuum model, Fracture, Polymeric material,
Crack tip plasticity

* Reprinted (adapted) with permission from cited work. Open access article published under the CC BY 4.0 license. ©2024 The Authors.
Published by Elsevier Ltd.
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4. Analysis of mode I crack propagation

4.1. Introduction

Crack growth in glassy polymers is typically accompanied by crazing in a narrow zone ahead of the
crack tip. This damage process involves the formation and coalescence of microvoids, fibrillation of the
polymer material in between and drawing of new material into the load-bearing fibrils. By ultimate
rupture of the latter the craze zone locally turns into a crack. The energy dissipated in this process
zone determines the fracture toughness of the material and hence is of practical importance. Crazing
may occur as the sole inelastic deformation process in brittle glassy polymers such as polystyrene (PS),
or it may take place in conjunction with shear yielding of the surrounding material in more ductile
polymers such as polycarbonate (PC). Crazing in the course of crack propagation under monotonic as
well as cyclic (e.g. fatigue) loading conditions has been subject of numerous experimental studies; see,
e.g., the review articles in [34, 46, 48, 49, 66]. Some key findings in case of cyclic loading are as follows:
The fibrillated craze matter displays a pronounced viscoelastic behaviour in terms of deformation and
creep recovery during the loading and unloading stages [38, 47]. Compressive stresses at a crack tip
upon unloading, which are likely to result from folding (or jamming) of the loose-hanging craze fibrils,
are reported e.g. in [70, 79]. Moreover, in the range of low loading amplitudes crack advance may
take place not in every cycle but by jumps after remaining stationary for hundreds of fatigue cycles,
which is referred to as discontinuous or retarded fatigue crack growth, e.g. [50, 83], in contrast crack
advance in each cycle is understood as normal fatigue crack growth. During retarded fatigue crack
growth and between successive crack jumps, the thickening of the craze in the first half of its lifetime
is primarily due to fibril drawing, whereas in the second half it is predominantly influenced by fibril
creep, as reported in [50]. Crack growth in ductile glassy polymers under cyclic loading may exhibit an
interesting interaction of crazing and shear yielding which gives rise to the occurrence of a regularly
spaced 𝜀-shaped plastic zone accompanying the advancing crack tip [63, 93]. Such an interaction is
understood to significantly increase the material’s load bearing capacity under cyclic (fatigue) loading
conditions [94].

Theoretical-computational studies of craze and crack propagation in glassy polymers have followed
various modelling approaches with the majority restricted to monotonic loading conditions. Early
studies employed a Barenblatt-Dugdale type representation of the craze zone ahead of an advancing
crack tip, e.g. [21, 43, 51]. Other approaches, e.g. [15, 71, 99, 103], aimed at determining the mechanical
response of the craze matter by computing the normal stress distribution along a craze in a linear
elastic medium from the measured opening displacement profile (craze contour). It has, however, been
shown in [104] that in this approach small deviations in the input displacement profile give rise to
significant changes in the computed stress. Fatigue crack propagation in polymers was investigated,
e.g., in [61] who utilized a phenomenological cohesive zone model and focused on the overall response
of the fracture process in terms of Paris’ law. A more advanced cohesive zone model that incorporates
physical details of the crazing process such as initiation and drawing of material into fibrils until
ultimate breakdown has been developed by Van der Giessen and co-workers [97]. Utilizing this model,
mode I craze and crack propagation under monotonic loading was studied in brittle (elastic) glassy
polymers by [96] and in ductile glassy polymers by [26] who particularly analysed the interaction of
shear yielding and crazing. The present work is aimed as a continuation of these studies by focusing
on cyclic loading conditions.

Modelling the mechanical response of the fibrillated craze matter under cyclic loading is more involved
than under monotonic loading where it is essentially governed by a (rate-dependent) drawing stress.
For instance, the structural response of the fibrillated craze matter during unloading and reloading
is ambiguous and hence is its proper representation. This includes relaxation and creep recovery
during unloading stages when fibril drawing is interrupted, the occurrence of compressive stresses
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due to fibril jamming as well as cyclic damage accumulation. In order to capture these aspects, a novel
continuum-micromechanical model for crazing has recently been developed in [56]. In a finite strain
setting, the model builds upon micromechanical considerations by Boyce and co-workers [82, 84] to
distinguish between the already fibrillated and the not yet fibrillated bulk portions of a representative
craze element and their conversion in the course of the crazing process. In the present work, this
model serves as a traction separation law in the process zone ahead of a mode I crack initiating and
advancing in a glassy polymer under cyclic loading. However, while the model developed in [56]
aims to capture important physics of the cyclic crazing process through its micromechanical basis,
it still suffers from inconclusive knowledge about the structural response of the craze matter and
insufficient calibration methodologies to estimate an adequate material parameter scope. This is an
issue as insight into both aspects is difficult to obtain from experiments. However, molecular dynamics
simulations might provide remedy. This type of bottom-up computational investigation has in the last
decades significantly contributed to the understanding of the crazing process and its dependence on
macro-molecular characteristics such as the entanglement density; see, e.g. [32, 76, 100]. While these
and other studies so far have focused on monotonic loading conditions, molecular dynamics simulations
of the crazing process under cyclic loading have only recently been conducted in [55]. Insights from
that study verify the structural assumption of string-like craze fibrils in [56]. In this work, we utilise and
extend results from [55] to enrich the original crazing model from [56] by adding additional features,
e.g. fibril jamming, and by using molecular dynamics simulations to calibrate material parameters,
which are not accessible from experiments. The model is then used to study craze and crack growth
under cyclic mode I loading, while comparisons to the aforementioned experiments are drawn.

The present work is organized as follows: In Section 4.2 the micromechanical crazing model is presented
and the methodology of the parameter calibration is discussed as well as some numerical aspects. Details
on the molecular dynamics based calibration are provided in Appendix 4.A. Finite element simulations
of craze and crack growth in glassy polymers under cyclic mode I loading are subject of Sections 4.3
and 4.4. Section 4.3, which also includes the set-up of the boundary value problem and details on the
computational treatment, focuses on brittle glassy polymers where the bulk material surrounding the
craze and crack is considered linear elastic. The interaction of crazing and shear yielding during crack
growth under cyclic loading in ductile glassy polymers is studied in Section 4.4. The constitutive model
utilized to describe finite strain viscoplastic shear yielding in the bulk material is based on the well-
known model by Boyce and co-workers [17] in a setting which is briefly presented in Appendix 4.B.

The notation throughout this paper makes use of the standard symbolic bold face representation of
vectors and second order tensors as well as the Cartesian index notation of their components.

4.2. Continuum-micromechanical model for crazing

The main topic of this paper is the computational investigation of craze and crack growth in glassy
polymers under cyclic mode I loading (cf. Figure 4.1 top). Therefore, a continuum-micromechanical
model for the cyclic craze response developed in [56] is utilized in the present study to provide a
macro-scale traction-separation law. This model considers a representative craze element where an
elementary volume of initial bulk material (Figure 4.1(a)) transitions into crazed material with a current
unloaded and loaded configuration sketched in Figure 4.1(b) and (c), respectively. Details of the model
are briefly summarised in the following three subsections, while details on the parameter calibration,
the model response and the numerical treatment are provided in Subsections 4.2.4, 4.2.5 and 4.2.6,
respectively.
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Figure 4.1.: Schematic of mode I craze and crack growth with different stages of crazing process; (a) prior to craze initiation,
(b) unloaded state after craze initiation and (c) loaded state after craze initiation.

4.2.1. Micromechanical model

Prior to craze initiation, the craze element consists of bulk material of the initial primordial thickness
ℎ0. At some time 𝑡 after craze initiation, the craze element comprises layers of fibrillated matter with
the current unloaded length 𝜉0(𝑡) and bulk material with the current unloaded length 𝜒0(𝑡) as indicated
in Figure 4.1(b); the corresponding lengths in the currently loaded configuration are denoted by 𝜉 (𝑡)
and 𝜒 (𝑡), respectively (cf. Figure 4.1(c)). The complex craze microstructure is idealised by neglecting
cross-tie fibrils and considers only string-like fibrils in the direction e1 of the maximum principal stress
(Figure 4.1). Mass conservation links the thicknesses of the two phases as

ℎ0 = 𝜒0 +
𝜉0

𝜆𝑐
, (4.1)

where 𝜆𝑐 denotes the fibril extension ratio, defined here as the ratio of the constant bulk density 𝜌𝑏 to
the density 𝜌𝑐 of the fibrillated craze matter:

𝜆𝑐 =
𝜌𝑏

𝜌𝑐
. (4.2)

In order to capture the change of 𝜌𝑐 (and hence 𝜆𝑐 ) due to the morphological transition during craze
formation from isolated voids to an interconnected void space with isolated fibrils, the extension ratio
𝜆𝑐 is taken to evolve with the unloaded fibril length 𝜉0 from 𝜆𝑐 = 1 (bulk value) to a saturation value
𝜆𝑐 = 𝜆∗𝑐 that corresponds to mature fibrils. The transition of 𝜆𝑐 (𝜉0) is depicted in Figure 4.2 where
𝜉0,max = 𝜆∗𝑐 ℎ0 is the unloaded fibril length at rupture and 𝛼 defines its fraction upon which mature
fibrils exist.

The stress state in the fibrils is taken as homogeneous and uniaxial, yielding

𝝈 𝑓 = 𝜎 𝑓 e1 ⊗ e1, (4.3)
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Figure 4.2.: Phenomenological ansatz to account for effect of morphology change on evolution of extension ratio 𝜆𝑐 as well
as drawing resistance 𝜎𝑦 with fibril length 𝜉0. Both relations are modelled by similar exponential relations that approximately
connect the limit states. Sketches serve to facilitate interpretation of morphology stages.

where 𝜎 𝑓 is the Cauchy fibril stress. Likewise, the stress state in the bulk portion of the craze element

𝝈𝑏 =

3∑︁
𝑖=1

𝜎𝑏𝑖 e𝑖 ⊗ e𝑖 , (4.4)

is assumed to be homogeneous. Homogenisation of the layered bulk-craze structure of the element
yields through the rule of mixtures the macroscopic Cauchy stress �̄� as

�̄� = 𝜎𝑏1 e1 ⊗ e1 +
𝜒

𝜒 + 𝜉

3∑︁
𝑖=2

𝜎𝑏𝑖 e𝑖 ⊗ e𝑖 . (4.5)

The overall deformation of the craze element is described by the macroscopic stretch tensor

�̄� =

3∑︁
𝑖=1

𝜆𝑖 e𝑖 ⊗ e𝑖 , (4.6)

which is related to the bulk stretch tensor

𝝀𝑏 =

3∑︁
𝑖=1

𝜆𝑏𝑖 e𝑖 ⊗ e𝑖 (4.7)

and the fibril stretch in e1-direction 𝜆𝑓 = 𝜉/𝜉0 by

𝜆1 =
𝜉 + 𝜒
ℎ0

= 𝜆𝑏1
𝜒0

ℎ0
+ 𝜆𝑓 𝜉0

ℎ0
, 𝜆2 = 𝜆

𝑏
2 , 𝜆3 = 𝜆

𝑏
3 . (4.8)

Force equilibrium in e1-direction and the assumption of isochoric fibril deformation yields (for details
see eqs. (10)-(14) in [56])

𝜎𝑏1 =
𝜎 𝑓

𝜆𝑓 𝜆𝑐 𝜆
𝑏
2 𝜆

𝑏
3
, (4.9)

which by virtue of (4.5) provides a coupling between the fibril stress and the macroscopic stress in
e1-direction.

The fibril’s string-like microstructure suggests that its load-bearing capacity is essentially limited to
tension:

𝜎 𝑓 ≥ 0. (4.10)
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The notion of string-like fibrils which are loose hanging when traction free was corroborated by recent
molecular dynamics simulations [55], which are also discussed in Appendix 4.A. Additionally, the
study revealed a macroscopic compressive stress due to fibril jamming prior to reaching macroscopic
compressive deformation, i.e. 𝜎1 < 0 while 𝜆1 > 1, which has also been computed from experimentally
measured craze profiles (cf., e.g., [15]). This is incorporated in the present craze model via the ratio

𝜆1 =
𝜉0 + 𝜒0

ℎ0
, (4.11)

from which the logarithmic Hencky strain

𝜀1 = ln 𝜆1 (4.12)

can be computed, which is utilized below in (4.17). Fibril jamming is then considered for

𝜀1 = ln 𝜆1 < 𝛽𝑐 𝜀1 (4.13)

where 𝛽𝑐 is a material parameter that controls the onset of fibril jamming. The craze element’s
compressive response is modelled by the bulk material.

4.2.2. Craze initiation, fibril drawing and breakdown

Although various more involved craze initiation criteria exist in the literature, e.g. accounting for the
effect of hydrostatic stress, craze initiation in the present work is simply associated with a critical
normal stress

𝜎𝑏1 = 𝜎0
𝑐𝑟 . (4.14)

Upon craze initiation, fibril drawing is described by the flow rule

¤𝜉0 =
ℎ0

𝜂𝑑

〈
𝜎𝑏1 − 𝜎𝑦

〉
≥ 0, (4.15)

which makes use of the standard notation for viscoplastic models with the Macaulay bracket ⟨...⟩ and
where 𝜂𝑑 is the drawing viscosity. The drawing resistance 𝜎𝑦 is taken to decline from an initial value
𝜎0
𝑐𝑟 to a saturation value 𝜎∗𝑐𝑟 in order to model the change in stress state in the course of the morphology
change between craze initiation by cavitation and fibril drawing (see Figure 4.2). This has a similar
effect as a craze initiation criterion involving hydrostatic stress as employed, e.g., in [26, 27, 96]. The
corresponding relation is depicted by the magenta line in Figure 4.2.

Fibril breakdown is taken here to occur upon complete consumption of the primordial thickness ℎ0, i.e.
at 𝜒0 = 0, which yields

𝜉0,𝑚𝑎𝑥 = 𝜆∗𝑐 ℎ0. (4.16)

4.2.3. Constitutive equations of bulk and craze layer

The material behaviour in the bulk portion of the craze element is given by

𝝈𝑏 = 2𝜇𝑏
(
ln𝝀𝑏 + 𝜈𝑏

1 − 2𝜈𝑏
tr

[
ln𝝀𝑏

]
1
)
, (4.17)

where 𝜇𝑏 and 𝜈𝑏 denote the bulk shear modulus and Poisson’s ratio, respectively, and by virtue of (4.13)
ln 𝜆𝑏1 = 𝜀1 − 𝛽𝑐 𝜀1 to account for fibril jamming.
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4.2. Continuum-micromechanical model for crazing

The craze fibrils are modelled as viscoelastic in a three-dimensional finite strain setting. The fibril
deformation is for simplicity considered to be isochoric, yielding the fibril stretch tensor 𝝀 𝑓 as

𝝀 𝑓 = 𝜆𝑓 e1 ⊗ e1 +
3∑︁

𝑖=2

1
√
𝜆𝑓

e𝑖 ⊗ e𝑖 . (4.18)

In accordance with the viscoelastic model shown in Figure 4.3, the fibril stretch is multiplicatively
decomposed

𝜆𝑓 = 𝜆𝑒 𝜆𝑣 (4.19)

into an elastic 𝜆𝑒 and viscous contribution 𝜆𝑣 , while the fibril stress is additively given by

𝜎 𝑓 = 𝜎
𝑓

EC + 𝜎 𝑓

NH. (4.20)

The network stress 𝜎 𝑓

EC is modelled via the incompressible eight-chain model by Arruda and Boyce
[8]

𝜎
𝑓

EC =
𝜇𝑓 ,EC

𝜆𝐶

L-1(𝜆𝐶/𝜆𝐿)
L-1(1/𝜆𝐿)

(
𝜆𝑓 2 − 1

𝜆𝑓

)
, (4.21)

with the inverse Langevin function L-1(𝑥) replaced by the Padé approximation [20]

L-1(𝑥) = 𝑥 3 − 𝑥2

1 − 𝑥2 (4.22)

and the mean chain stretch 𝜆𝐶 simplifies under uniaxial stress and isochoric deformation to

𝜆𝐶 =

√︄
tr

[
𝝀 𝑓 2]
3

=

√︄
1
3

(
𝜆𝑓 2 + 2

𝜆𝑓

)
. (4.23)

Equation (4.21) involves two material parameters, namely the initial shear modulus 𝜇𝑓 ,EC and the limit
stretch 𝜆𝐿 corresponding to the entanglement density of the glassy polymer. An additional nonlinear
spring in series to the dashpot (Figure 4.3, element B) is included to enable a realistic response upon
instantaneous loading. The stress is given by an incompressible neo-Hookean material model

𝜎
𝑓

NH = 𝜇𝑓 ,NH

(
𝜆𝑒 2 − 1

𝜆𝑒

)
, (4.24)

which introduces a second shear modulus 𝜇𝑓 ,NH as a material parameter. The viscous fibril deformation
is described by the flow rule

¤𝜆𝑣 = 2
3𝜂𝑐

𝜎
𝑓

NH𝜆
𝑣 . (4.25)

Figure 4.3 illustrates the arrangement of rheological models of viscoelastic fibril deformation and
viscoplastic fibril drawing. For further details on the craze model and particularly a motivation and
discussion of various constitutive assumptions, e.g. the simplified linear flow models with constant
viscosities in (4.15) and (4.25), the reader is referred to [56].
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4. Analysis of mode I crack propagation
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Figure 4.3.: Fibril model comprising viscoplastic drawing from the active zone and viscoelastic fibril deformation.

4.2.4. Remarks on parameter calibration

We aim to obtain a generic, yet representative craze response for glassy polymers. This presents the
challenge that craze and bulk parameter scopes are not independent as they should describe the same
(generic) material. Unlike the bulk parameters, which can be calibrated from experiments, the craze
parameter calibration is difficult due to the small length scale. We address this issue in several steps to
obtain a physically plausible parameter scope of the craze parameters:

First, we take bulk model parameters from the literature (cf. Appendix 4.B), which are representative
for glassy polymers. This yields the shear modulus 𝜇𝑏 and the Poisson’s ratio 𝜈𝑏 for an elastic bulk
material (cf. Section 4.3) and additionally the initial shear yield strength 𝑠0 for an inelastic bulk material
(cf. Section 4.4).

Second, we normalise the craze parameters with 𝜇𝑏 and 𝑠0 where applicable. With the known bulk
parameters, the craze model encompasses ten additional constants as well as the primordial thickness
ℎ0. We normalise the two characteristic times 𝜏𝑑 = 𝜂𝑑/𝜇𝑏 and 𝜏𝑐 = 𝜂𝑐/𝜇𝑏 , which describe the fibril
drawing and the fibril creep behaviour of the craze element, respectively, with a characteristic loading
time 𝑇0 into the two dimensionless parameters 𝜏𝑑/𝑇0 and 𝜏𝑐/𝑇0. The geometry of the boundary value
problem in Section 4.3 is scaled with ℎ0 and the primordial thickness is set to 2ℎ0 = 1µm, which is
comparable to previous continuum modelling [82]. The primordial thickness can be understood as a
material property which is determined by the (measurable) extension ratio and the (measurable) fibril
length (craze opening displacement) at failure (𝜒0 = 0) according to (4.1).

Third, we use experimental and numerical findings from the literature to deduce representative values
for the extension ratio 𝜆∗𝑐 , the craze initiation stress 𝜎0

𝑐𝑟 , the saturation drawing stress 𝜎∗𝑐𝑟 and the two
viscosities 𝜂𝑑 and 𝜂𝑐 : The extension ratio 𝜆∗𝑐 has been extensively studied in experiments and 𝜆∗𝑐 ≈ 2
is representative of the bulk parameters in Table 4.2 (cf., e.g., [24]). Craze initiation is taken to occur
at a representative stress magnitude for glassy polymers, given by 𝜎𝑦/𝜇𝑓 = 0.11 ≈ 1.2𝑠0/𝜇𝑏 . We set
the saturation drawing stress to 𝜎∗𝑐𝑟 = 2𝜎0

𝑐𝑟/3, which corresponds to 𝜎∗𝑐𝑟 ≈ 0.8𝑠0 as used in [26]. This
facilitates later comparisons under monotonic loading. With set 𝜎0

𝑐𝑟 , the fibril drawing viscosity 𝜂𝑑
significantly influences the crack propagation speed and hence, the macroscopic stress in the far field.
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4.2. Continuum-micromechanical model for crazing

Linear elastic fracture mechanics is used to estimate a far field stress as experimentally observed for
the mode I boundary value problem outlined in Section 4.3. The considered range of values for 𝜏𝑑/𝑇0
and 𝜏𝑐/𝑇0 is given in Subsection 4.3.1 after the boundary value problem has been presented.

Fourth, we employ molecular dynamics (MD) simulations to obtain the parameter scope for the
remaining parameters, including the elastic fibril properties 𝜇𝑓 ,EC and 𝜇𝑓 ,NH, the limit stretch 𝜆𝐿 , the
parameter 𝛽𝑐 controlling fibril jamming and the fraction 𝛼 upon which mature fibrils exist. MD
simulations complement well the micromechanical approach by providing insight into microscale
mechanisms that are otherwise challenging to access experimentally due to their small length scale.
The details of the non-standard molecular dynamics calibration are presented in Appendix 4.A, with
key considerations summarised as follows: The elastic part of the constitutive craze fibril model (cf.
Figure 4.3) is fitted to the stress-strain response of the MD simulations, yielding 𝜇𝑓 ,EC, 𝜇𝑓 ,NH and 𝜆𝐿 .
The parameter scope is further assessed by normalising the quantities with the MD bulk stiffness 𝜇𝑏 ,
leading to 𝜇𝑏/𝜇𝑓 ≈ 10 and 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 ≈ 0.5, where 𝜇𝑓 = 𝜇𝑓 ,EC + 𝜇𝑓 ,NH. According to [55], the fibril length
in the MD simulations is closely linked to the deformation. Combined with (4.13), this correlation
is used to determine the onset of fibril jamming as function of the craze fibril length 𝜉0, resulting in
𝛽𝑐 ≈ 0.15. Similar to the idea of the morphology change depicted in Figure 4.2, the MD simulations
allow to determine the instant after cavitation upon which the mature craze density prevails, leading to
𝛼 ≈ 0.07.

Finally, we investigate different parameter combinations to study their influence on the (generic)
response.

4.2.5. Response of calibrated craze model

To study later the effect of 𝜇𝑏/𝜇𝑓 and 𝜆𝐿 , three materials are selected as shown in Table 4.1. Material 1
utilises 𝜇𝑏/𝜇𝑓 = 1 and a relatively high limit stretch 𝜆𝐿 . By contrast, material 2 takes 𝜇𝑏/𝜇𝑓 = 10
according to the MD findings and material 3 additionally is based on a low 𝜆𝐿 corresponding to the MD
results.

Table 4.1.: Material parameter sets of craze model, where 𝑠0 and 𝜇𝑏 are given by the bulk material in Table 4.2.
set 𝜇𝑏/𝜇𝑓 𝜈𝑏 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 𝜎𝑦/𝜇𝑓 𝜎0

𝑐𝑟/𝜎∗𝑐𝑟 𝜆∗𝑐 𝛼 𝜆𝐿 𝛽𝑐 2ℎ0 [µm]
1 1 0.38 0.5 1.2𝑠0/𝜇𝑏 1.5 2 0.07 2 0.15 1
2 10 0.38 0.5 1.2𝑠0/𝜇𝑏 1.5 2 0.07 2 0.15 1
3 10 0.38 0.5 1.2𝑠0/𝜇𝑏 1.5 2 0.07 1.2 0.15 1

Following the study in [56], the evaluation of the three materials under uniaxial deformation in a strain
controlled bilinear cyclic loading programme is depicted in Figure 4.4. The characteristic loading time𝑇0

is set to the reciprocal of the overall deformation rate𝑇0 = 1/ ¤̄𝜆1. All three materials exhibit qualitatively
similar traits: an initial peak stress followed by a transition to a constant drawing stress plateau, while
during unloading fibrils are stress-free and loose hanging until fibril jamming occurs. Notably during
reloading in the 2nd cycle, material 1 shows the most pronounced hysteresis and fibril creep recovery
while the fibrils are stress-free, which is represented by the offset between unloading and subsequent
reloading in the next cycle (cf. magenta marking in Figure 4.4 for material 1). Except for the curvature
of the unloading-reloading curves, material 2 and 3 behave very similar during cyclic loading. We
conclude that the change in stiffness 𝜇𝑏/𝜇𝑓 exhibits the most pronounced influence on the results and
thus, we use material 2 as the base case in the subsequent study unless indicated otherwise.
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4. Analysis of mode I crack propagation
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Figure 4.4.: Uniaxial strain response of continuum-micromechanical craze model for three consecutive loading cycles and
materials outlined in Table 4.1. (𝜏𝑐/𝑇0 = 0.1, 𝜏𝑑/𝑇0 = 0.1)

4.2.6. Numerical aspects

The craze model is defined by a system of differential algebraic equations and implemented as a user
material subroutine in the finite element programme Abaqs [2]. To compute the tangent directly
within the Newton-Raphson scheme, the Fortran implementation employs dual number automatic
differentiation. To that end, we extended the dual number automatic differentiation tool developed by
Yu and Blair [107] to accommodate the specific operations required in the implementation. Both, the
craze model described in Section 4.2 and the bulk model for shear yielding outlined in Appendix 4.B,
are implemented with this methodology. This computational approach has been successfully deployed
on the high-performance computing platform bWUniCluster 2.0, where both material models have been
simultaneously applied.

4.3. Craze and crack growth in brittle glassy polymers

4.3.1. Model set-up and computational aspects

The 2D plane strain boundary value problem (BVP) of a rectangular plate with an edge crack of
initial length 𝑎0 subjected to mode I loading is depicted in Figure 4.5. Loading is imposed in terms
of a displacement controlled bilinear cyclic loading programme 𝑢𝑦 (𝑡,𝑇 , 𝑅𝑢) with time 𝑡 , period 𝑇 ,
displacement velocity ¤𝑢𝑦 and load ratio 𝑅𝑢 = 𝑢𝑦,𝑚𝑖𝑛/𝑢𝑦,𝑚𝑎𝑥 as sketched in Figure 4.5(b). The notch tip
radius 𝑟𝑡 = 50ℎ0 (see Figure 4.5(c)) is introduced to alleviate mesh distortions and the 𝑟𝑡 magnitude
is comparable to [26, 27]. Mode I symmetry is exploited and one layer of craze elements with initial
thickness ℎ0 is placed along the ligament indicated by the red line in Figure 4.5. All length dimensions
scale with the primordial thickness ℎ0. The BVP is solved with the commercial finite element (FE)
software Abaqs/Explicit [2] to properly capture dynamic effects during potentially unstable crack
growth. In contrast to various other studies, e.g. [26, 96], the occurrence of dynamic effects also has led
us to avoid a small scale yielding BVP. Instead the entire specimen is modelled as shown in Figure 4.5(a).
Both, craze and bulk material are implemented as user material subroutines and craze elements are
removed once the failure criterion of a critical craze thickness 𝜉0 = 𝜉0,max is met (cf. (4.16)). Elements
along the ligament are quadratic in shape with a dimension of ℎ0. The ratio 𝑟𝑡/ℎ0 = 50 provides an
indication of the mesh resolution.1 Since this type of BVP is prone to hourglassing, the finite elements
are fully integrated.

1 The FE mesh is visible in Figure 4.6, showing the situation at some instant after crack initiation.

54



4.3. Craze and crack growth in brittle glassy polymers
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Figure 4.5.: (a) Mode I boundary value problem with (b) displacement controlled cyclic loading history and (c) detail of the
round crack tip.

The maximum displacement𝑢𝑦,𝑚𝑎𝑥 (Figure 4.5(b)) is chosen to yield a realistic far field stress as observed
in experiments. With inelasticity limited to a small region around the crack tip, linear elastic fracture
mechanics arguments are employed to estimate 𝜎𝑦 in the far field. For the current BVP, the stress
intensity factor is 𝐾 𝐼 = 𝐹𝜎𝑦

√
𝜋𝑎0 with a shape factor 𝐹 ≈ 0.9 according to table C10.15 in [29]. We

consider two cases: one for an elastic and one for an inelastic bulk material. In the case of a purely elastic
bulk response, the fracture toughness of glassy polymers typically ranges around 𝐾 𝐼𝑐 ≈ 1MPa

√
m.

This yields a realistic far field stress 𝜎𝑦 ≈ 7.5MPa. The magnitude for more ductile glassy polymers is
deduced from experiments where both crazing and shear yielding take place. According to Takemori
[94], crack tip plastic zones involving a strong interaction of both mechanisms in PC occur in the range
of up to Δ𝐾 𝐼 = 1.3MPa

√
m for 𝑅 = 𝐹𝑚𝑖𝑛/𝐹𝑚𝑎𝑥 = 0.1. This leads to 𝜎𝑦 ≈ 10.5MPa as far field stress.

The fibril drawing viscosity 𝜂𝑑 is chosen so that crack initiation does not take place in the first cycle
while, on the other hand, avoiding a fatigue loading regime where thousands of cycles are necessary.
To compare varying loading periods 𝑇 due to, for instance, different 𝑅𝑢 , the reciprocal of the strain rate
in the far field is used as characteristic time𝑇0 = ℎ/ ¤𝑢𝑦 . This results in 𝜏𝑑/𝑇0 ≈ 10−4. We remark that the
small value arises from the choice of the far field velocity. Rescaling with the ratio of specimen height
and primordial thickness ℎ/ℎ0 = 5 · 104 yields 𝜏𝑑/𝑇0 ≈ 5, which is more comparable to the values given
in Figure 4.4. However, since the far field velocity is more representative in experiments, this rescaling
is omitted. As a normalised measure of the loading magnitude, the far field strain, given by 𝜀𝑦 = 𝑢𝑦/ℎ,
is introduced.

In the following, the evaluation mainly focuses on quantities along the ligament. The craze length
𝑙𝑐 is computed as the longest contiguous craze segment. That is, 𝑙𝑐 neither includes craze sections
separated by a crack nor by un-crazed elements. This method helps to focus on the evolution of the
most dominant, i.e. longest, craze, which is important since crack initiation may not occur at the notch
tip. On the other hand, the crack length 𝑎 is calculated as the cumulative sum of all cracks, i.e. including
separated crack sections.
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4. Analysis of mode I crack propagation

4.3.2. Numerical results

We first study the situation of a purely linear elastic bulk material with craze material 2 (cf. Table 4.1)
and corresponding elastic bulk parameters 𝜇𝑏 and 𝜈𝑏 . Cyclic loading with 𝑅𝑢 = 0 and 𝜀𝑦,𝑚𝑎𝑥 = 2.5 · 10−3

is considered, resulting in an average far field stress of 𝜎𝑦 ≈ 7.6MPa. If not indicated differently,
the normalised drawing and fibril creep viscosities are taken as 𝜏𝑑/𝑇0 = 5 · 10−4 and 𝜏𝑐/𝑇0 = 10−4,
respectively.

Figure 4.6 presents a snapshot of the vertical stress field 𝜎𝑦 along with the finite element mesh close to
the notch tip at peak load in the 31st cycle some time after crack initiation. As annotated in Figure 4.6,
the stress distribution exhibits a double peak at the crack tip and at the craze tip. The craze extends
between those peaks, while elements on the right-hand side of the craze tip have not yet initiated.
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Figure 4.6.: Stress field 𝜎𝑦 at the notch tip at peak load in the 31st cycle.

The stress distribution and the craze opening contour in terms of the fibril length are shown at four
instants throughout the 31st cycle in Figure 4.7 during loading (black line), at peak load (magenta line),
during unloading (green line) and at overall zero displacement (orange line). As the elements on the
right-hand side of the craze tip have not yet initiated, they still exhibit elastic bulk behaviour, resulting
in a quasi-identical stress distribution in stage 1 and stage 3 (Figure 4.7(a)). The double stress peak
is visible in instant 2, where the stress at the crack tip exceeds the stress at the craze tip. In contrast,
in stages 1 and 3 the stress at the craze tip is higher than at the crack tip. Moreover, the stress at the
crack tip during loading (black line) is higher than during unloading (green line), despite the smaller
craze width (cf. Figure 4.7(b)). This effect is attributed to the elongation of the craze fibrils due to
drawing and creep deformation throughout the loading cycle. The relatively constant shift in the craze
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Figure 4.7.: (a) Normalised stress distribution and (b) craze contour in terms of normalised fibril length along ligament at
four loading stages.
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4.3. Craze and crack growth in brittle glassy polymers

contour between stage 1 and 3 (Figure 4.7(b)) suggests uniform drawing along the craze. In contrast,
creep deformation depends on the current (relaxed) fibril length 𝜉0 and becomes more dominant for
longer fibrils (cf. [56]), as prevailing at the crack tip. Consequently, the deviation in crack tip stress
between instant 1 and 3 is attributed to the fibril creep viscosity. Instant 4 displays the influence of
fibril jamming, which is again most pronounced at the crack tip where 𝜉0 reaches its maximum value.
The slight horizontal shift of the stress curves throughout the cycle indicates the small amount of crack
propagation.

The influence of the fibril creep viscosity 𝜂𝑐 on the ligament stress and the evolution of the craze
and crack length is studied over a range of four orders of magnitude of the dimensionless parameter
𝜏𝑐/𝑇0 in Figure 4.8. Higher 𝜏𝑐/𝑇0 values enhance fibril stiffness, resulting in higher stress, which is
most pronounced at the crack tip with the longest craze fibrils 𝜉0 (cf. Figure 4.8(a)). In all cases, craze
initiation occurs at the notch tip at 40% of the peak load during the first loading cycle. Thereafter, the
craze length 𝑙𝑐 monotonically grows over multiple cycles prior to failure, representing cyclic damage
accumulation (cf. Figure 4.8(b)). The inset in Figure 4.8(b) illustrates that craze growth is interrupted by
arrest phases during unloading. Crack initiation also takes place at the notch tip and is delayed from
the 17th to the 23rd loading cycle as 𝜏𝑐/𝑇0 decreases. The correlation between 𝜎𝑦 and 𝜏𝑐/𝑇0 results in a
faster crack propagation after initiation, whereas the craze length 𝑙𝑐 shortens with increasing 𝜏𝑐/𝑇0.
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Figure 4.8.: Influence of fibril creep viscosity in terms of 𝜏𝑐/𝑇0 = [10−5, 10−4, 10−3, 10−2] on (a) stress distribution along
ligament at peak load and on (b) temporal craze length and crack length evolution with a zoom.

The influence of the loading magnitude is analysed by increasing the overall deformation by 20% in
Figure 4.9, allowing for comparisons with experimental findings discussed below. The craze contour at
peak load in cycles with approximately equal crack extensions is shown in Figure 4.9(a). The evolution
of the craze and crack length during the cyclic loading history is depicted in Figure 4.9(b). The craze
width at the crack tip 𝜉 (𝑥 = 𝑎), the craze length 𝑙𝑐 and the crack growth rate all increase with Δ𝑢𝑦 .
However, the most notable difference is the change in the evolution of 𝑙𝑐 , which exhibits a more
pronounced variation for the higher loading amplitude.

4.3.3. Discussion

The simulation results, including the parameter choice, are assessed by drawing comparisons to
experiments and previous numerical analyses from the literature. The double stress peak at the crack tip
and the craze tip is in accordance with previous results for various brittle glassy polymers, e.g. in [15, 71,
99, 103], who calculated the normal stress distribution along a craze based on experimentally measured
craze opening contours and the assumption of a linear elastic bulk response. A non-proportional stress
redistribution along a craze during a loading-unloading cycle similar to Figure 4.7(a) is also reported in
[71]. In addition, the stress profile at unloading computed in [15] shows a compressive stress at the crack
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Figure 4.9.: Influence of load increase by 20% on (a) craze contour and (b) craze and crack length evolution.

tip and a slight tensile stress at the craze tip, which corresponds to the possible effect of fibril jamming at
the unloaded crack tip and agrees well with our result (orange line) in Figure 4.7(a). A further quantity
which has been studied extensively is the craze profile, from which characteristic ratios of craze length
vs. craze opening displacement 𝑙𝑐/(2𝜉𝑚𝑎𝑥 ) can be derived. A representative range for glassy polymers
is 𝑙𝑐/(2𝜉𝑚𝑎𝑥 ) = 10− 20 (cf., e.g., [23]), while the results presented here yield 𝑙𝑐/(2𝜉𝑚𝑎𝑥 ) ≈ 11.3, which is
well within the experimental range. We remark, however, that this ratio is influenced by the choice of
craze parameters, for instance, 𝜆∗𝑐 = 3 yields 𝑙𝑐/(2𝜉𝑚𝑎𝑥 ) ≈ 14. Finally, increasing the loading amplitude
results in an increase in craze length 𝑙𝑐 and craze opening displacement at the crack tip 𝜉 (𝑥 = 𝑎) due to
the modelled viscosities, which also aligns with experimentally observed trends [50].

4.4. Interaction between crazing and shear yielding in ductile glassy
polymers

4.4.1. Modelling aspects

In the following, we study the interaction of crazing and shear yielding under cyclic mode I crack
growth as it may occur in more ductile glassy polymers. This extends the work by Van der Giessen
and co-workers who considered monotonic loading conditions [26, 27]. The objective far field stress
outlined in Subsection 4.3.1 is obtained by the maximum deformation 𝜀𝑦,𝑚𝑎𝑥 = 3.3 · 10−3, resulting in
an average far field stress of 𝜎𝑦 ≈ 10MPa in the simulations. Additionally, following the cyclic loading
conditions outlined by Takemori [94], the load ratio is set to 𝑅𝑢 = 0.1. This load ratio enables to exploit
mode I symmetry, as it mitigates the effect of crack closure due to compression at the crack tip resulting
from the crack tip plastic zone (cf. [73]). The viscoplastic behaviour of the bulk material is described
by a modified version [37] of the standard glassy polymer model by Boyce [17] (see Appendix 4.B for
details). The bulk parameters, which are representative for PC, are outlined in Table 4.2. The analysed
craze materials in this section are given in Table 4.1 and the drawing and fibril creep viscosities are
taken as 𝜏𝑑/𝑇0 = 𝜏𝑐/𝑇0 = 10−4. This choice, in conjunction with the nonlinear Eyring-type viscosity of
the bulk model (cf. Appendix 4.B), guarantees that in the following numerical studies, focusing only
on a generic glassy polymer, all inelastic mechanisms (fibril drawing and creep as well as bulk shear
yielding) are active.
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4.4.2. Numerical results

At first, craze material 2 (cf. Table 4.1) is investigated. The field output for the accumulated plastic strain
𝛾𝑝 , i.e. the plastic zone, is displayed in Figure 4.10 for three instants in the first cycle: just prior to craze
initiation (Figure 4.10(a)), after craze initiation (Figure 4.10(b)) and at load maximum (Figure 4.10(c)). All
instants fall within the first (monotonic) loading stage, allowing for comparisons with previous work
[26]. The grey area along the ligament shows the location of the un-crazed elements, while the black
area indicates craze elements after initiation, i.e. 𝜉0 > 0, and therefore the craze length 𝑙𝑐 . The following
is notable: Craze initiation, occurring at 𝜀𝑦 ≈ 0.4𝜀𝑦,𝑚𝑎𝑥 , is preceded by shear yielding (cf. Figure 4.10(a)
and (b)). Although the overall plastic zone is still small in size and magnitude (cf. Figure 4.10(b) and (c)),
craze initiation takes place at an approximately 20% higher load compared to the elastic bulk response
(cf. Subsection 4.3.2). Additionally, the craze initiates ahead of the notch root at the tip of the plastic
zone where the local stress 𝜎𝑦 attains a maximum (cf. Figure 4.10(b)). Upon initiation, the craze grows
in both directions, towards the notch tip and along the ligament (cf. Figure 4.10(c)), while the plastic
zone develops the characteristic plane strain pattern observed in experiments, e.g. [45], and previous
simulations, e.g. [26, 27]. Craze initiation ahead of a plane strain notch is consistent with experimental
results in PC [44, 45], where the craze initiated at the intersecting shear bands. Furthermore, it aligns
with simulation results reported in [26, 27], where the location of craze initiation shifted from the notch
tip into the bulk material with increasing craze initiation stress.
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Figure 4.10.: Accumulated plastic strain 𝛾𝑝 in first cycle during loading (a) at instant prior to craze initiation, (b) at instant
after craze initiation and (c) at load maximum. Black zone along ligament indicates craze. Data for craze material 2 in Table 4.1.

The response of craze material 2 in the course of continuous cyclic loading is analysed using snapshots
of the plastic zone and craze evolution. For this, Figure 4.11 displays contour plots of 𝛾𝑝 at three
instants: after crack initiation in the 4th cycle (Figure 4.11(a)) and at peak load in the 6th (Figure 4.11(b))
and the 8th cycle (Figure 4.11(c)). To enhance visualisation, the colour bar is capped at 𝛾𝑝 = 1.5, with
the maximum value also indicated. After craze initiation, fibril damage accumulates over three cycles
through fibril drawing, leading to craze breakdown at the outermost intersecting shear band in the
4th cycle (cf. Figure 4.11(a)). To account for the Bauschinger effect in glassy polymers, the shear yielding
model (cf. Appendix 4.B) incorporates kinematic hardening, resulting in a continuous increase in the
𝛾𝑝 magnitude with each loading cycle. Despite the quantitative increase, the plastic zone remains
qualitatively stationary after the 1st cycle (cf. Figure 4.10(c) and Figure 4.11(a)). With further cyclic
loading, the crack propagates in both directions and connects with the notch root (cf. Figure 4.11(c)).
Right at the load maximum in the 6th cycle, thin shear bands form at the right-hand side crack tip
(cf. Figure 4.11(b)). A weaker shear band to its left forms during unloading in the 5th cycle. Both shear
bands arch forward in the direction of the ligament. Each subsequent load cycle is accompanied by the
formation of two additional shear bands originating from the propagating crack tip (cf. Figure 4.11(c)).
The first band forms at the load maximum and a second, less pronounced band during unloading,
leading to the fracture pattern observed in Figure 4.11(c).
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Figure 4.11.: Accumulated plastic strain 𝛾𝑝 (a) at crack initiation in cycle 4 and at load maximum in (b) cycle 6 and (c) cycle 8.
Black zone along ligament indicates craze. Data for craze material 2 in Table 4.1.

The cyclic response is further investigated by examining the evolution of the craze length 𝑙𝑐 and
crack length 𝑎 over eight consecutive loading cycles shown in Figure 4.12(a) and with a detail view
of the 7th cycle shown in Figure 4.12(b). Figure 4.12(a) is supplemented with the normalised loading
programme (green line) and three vertical grey dotted lines indicating the start of craze growth during
loading, the load peak and the end of craze growth during unloading in the 2nd cycle. Similar to the
case of purely elastic bulk material (cf. Figure 4.8(b) and Figure 4.9(b) in Subsection 4.3.2), the craze
length grows continuously until crack initiation. The vertical dotted lines indicate that growth of 𝑙𝑐 is
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Figure 4.12.: Craze length (black) and crack length (magenta) evolution for (a) 8 loading cycles with normalised load (green)
and (b) detailed view of 7th cycle. Data for craze material 2 in Table 4.1.
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4.4. Interaction between crazing and shear yielding in ductile glassy polymers

confined to a range around load maximum prior to crack initiation. However, since the lines are not
equidistantly spaced, 𝑙𝑐 increases asymmetrically with respect to 𝜀𝑦,𝑚𝑎𝑥 . The craze length rapidly drops
at crack initiation, primarily due to the computation methodology of 𝑙𝑐 outlined in Subsection 4.3.1. The
further decline of 𝑙𝑐 in the 5th cycle is indeed associated with a shrinking craze zone of the right-hand
side craze in Figure 4.11(a). After crack initiation, the crack advances continuously with each cycle.
The initial crack growth during the remainder of the 4th cycle is small, as initiation occurs during
unloading. Subsequently, the crack propagates in both directions (cf. Figure 4.11(b)) until it reaches the
notch tip in the 7th cycle. The transition from two propagating crack tips to one combined with an
initially higher crack velocity in the direction of the notch results in a large crack growth increment
Δ𝑎 in the 5th cycle, which thereafter declines. Throughout one cycle, 𝑙𝑐 initially decreases while crack
propagation commences (cf. Figure 4.12(b)). That is, the leading edge of the craze remains stationary
while the trailing edge at the crack tip advances. Coinciding with the formation of the first shear band
at load maximum (cf. Figure 4.11(c)), the leading edge of the craze accelerates, while the crack speed
slightly declines (cf. Figure 4.12(b)). The formation of the second shear band in Figure 4.11(c) occurs
right at the 𝑙𝑐 peak during unloading.

To elucidate the role of the crack tip plastic zone on the crack and craze advancement, craze material 1
(cf. Table 4.1) with 𝜇𝑏/𝜇𝑓 = 1 is investigated in the following. With the bulk parameters remaining the
same, the change in material corresponds to a higher fibril stiffness. Likewise to above, snapshots of
the plastic zone and craze evolution at three instance – featuring crack initiation in the 2nd cycle and
load maxima in the 3rd and 6th cycle – are shown in Figure 4.13. At crack initiation, the plastic zone
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Figure 4.13.: Accumulated plastic strain 𝛾𝑝 (a) at crack initiation in cycle 2 and at load maximum in (b) cycle 3 and (b) cycle
6. Black zone along ligament indicates craze. Data for craze material 1 in Table 4.1.
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4. Analysis of mode I crack propagation

resembles that of the previous material (cf. Figure 4.11(a) and Figure 4.13(a)). Moreover, crack initiation
essentially occurs at the same location. However, the higher fibril stiffness results in higher craze stress
(cf. Figure 4.4), leading to accelerated fibril drawing and, consequently, the earlier crack initiation in
the 2nd cycle. Similarly, this leads to faster crack propagation and elevated plastic activity, resulting in
a much more pronounced plastic zone depicted in Figure 4.13(c).

For material 1, the quantitative evolution of the fracture process over six consecutive loading cycles
is shown in Figure 4.14, displaying the craze length 𝑙𝑐 (black line) and crack length 𝑎 (magenta line)
with a detail view of the 5th cycle. Additionally, Figure 4.14(b) includes three vertical grey dotted lines
indicating the load maximum and two equidistant instants, where the left line marks the instant before
the formation of a plastic zone at the current crack tip. The following traits are qualitatively similar
to those of material 2: First, craze initiation is succeeded by a monotonic increase in 𝑙𝑐 until crack
initiation. Second, the crack propagates continuously in each cycle, with the largest crack increment
occurring in the cycle immediately after initiation. Finally, the trailing and leading edges of the craze
advance at different velocities throughout a cycle, resulting in the non-monotonic variation of 𝑙𝑐 .
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Figure 4.14.: Craze length (black) and crack length (magenta) evolution for (a) 6 loading cycles with normalised load (green)
and (b) detailed view of 5th cycle. Data for craze material 1 in Table 4.1.

The role of the crack tip plastic zone can be deduced from Figure 4.14(b) in combination with Figure 4.15,
which shows snapshots of the plastic zone for the three instants marked by the vertical lines in
Figure 4.14(b). Crack growth starts at 𝜀𝑦 = 0.64𝜀𝑦,𝑚𝑎𝑥 and is primarily confined to the loading stage (i.e.
𝑡/𝑇 < 4.5). The crack propagates initially into an elastic medium (cf. Figure 4.15(a)) and without energy
dissipation of the bulk, the crack growth is comparatively fast. However, it significantly slows down
once a crack tip plastic zone (CTPZ) develops in form of shear bands during loading at 𝜀𝑦 = 0.84𝜀𝑦,𝑚𝑎𝑥 ,
coinciding with the minimum craze length in Figure 4.14(b). The plastic zone continues to develop (cf.
Figure 4.15(b)), while crack growth slows down. Simultaneously, 𝑙𝑐 rapidly increases from 83ℎ0 to 116ℎ0,
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Figure 4.15.: Detail of crack tip plastic zone in 5th cycle (a) instant just prior to crack tip plastic zone formation at 𝑡/𝑇 = 4.4,
(b) at peak load 𝑡/𝑇 = 4.5 and (c) during unloading at 𝑡/𝑇 = 4.6. Vertical lines in Figure 4.14(b) indicate instants. Black zone
along ligament indicates craze. Data for craze material 1 in Table 4.1.
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4.4. Interaction between crazing and shear yielding in ductile glassy polymers

corresponding to a rise of approximately 40% in craze length. Just preceding crack arrest, the crack tip
plastic zone becomes stationary and maintains the shape in Figure 4.15(c). The crack arrests during
unloading at a load level of 𝜀𝑦 = 0.76𝜀𝑦,𝑚𝑎𝑥 , which is nearly 20% higher than the load that initiated
crack growth in that cycle. The pronounced plastic zone prior to 𝜀𝑦,𝑚𝑎𝑥 and the delayed crack growth
behaviour is in contrast to material 2 (cf. Figure 4.11 and Figure 4.12(b)). Hence, we conclude that the
crack tip plastic zone impedes significantly the crack advance.

To investigate the driving mechanism behind the observed delayed crack propagation, the craze contour
is shown in Figure 4.16(a) for material 2 and in Figure 4.16(b) for material 1 at equidistant time intervals
of ±0.1Δ𝑡/𝑇 around peak loading at the indicated load cycle. Note that for material 1 (Figure 4.16(b)),
these time instants correspond to the snapshots in Figure 4.15 and the vertical lines in Figure 4.14(b). The
following trends apply to both materials but are much more pronounced for material 1 (Figure 4.16(b)):
Prior to crack tip plasticity (black lines), the craze width monotonically declines from the crack tip.
Once the crack tip plastic zone forms, the craze contour exhibits a locally confined plateau at the crack
tip (magenta and green lines). This plateau corresponds to a plasticity-induced local unloading of the
craze fibrils, which impedes crack propagation. Further fibril growth is necessary before additional
crack advancement can occur, which is enabled by the increase in craze length 𝑙𝑐 seen in Figure 4.14(b).
The plateau is most pronounced for the largest crack tip plastic zone (green line in Figure 4.16(b)),
where crack propagation is most impeded. Concluding, this analysis suggests that the delayed crack
propagation results from the unloading of the crack tip due to the crack tip plastic zone. Subsequently,
𝑙𝑐 must first grow (cf. Figure 4.14(b)) to reach a critical craze width, which then permits further crack
advance.
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Figure 4.16.: Craze contour at equidistant time intervals around peak loading (±0.1Δ𝑡/𝑇 ) of indicated cycle for (a) craze
material 2 and (b) craze material 1 for which the vertical lines in Figure 4.14(b) indicate instants.

Reducing the limit stretch 𝜆𝐿 in the craze model so it aligns with the MD results (cf. material 3 in
Table 4.1), yields similar results to material 2. For conciseness, results are therefore only presented and
briefly discussed in Appendix 4.C.

4.4.3. Discussion

The name-giving shape of the epsilon crack tip plastic zone where shear bands and a craze emanate
from the crack tip was reported by Mills and Walker [63] and extensively studied by Takemori, e.g. [92,
94], in the context of discontinuous crack growth under cyclic (fatigue) loading. The formation of shear
bands increases the load bearing capacity, which Takemori [94] attributed to a shielding of the craze by
reducing the hydrostatic stress. The simulation results (cf. Figure 4.11 and Figure 4.13) exhibit qualitative

63



4. Analysis of mode I crack propagation

similarity to those presented in Fig. 2 and Fig. 15 of [94]2. In both cases, shear bands initiate at the crack
tip and arch towards the craze. Moreover, the craze length varies in the course of crack propagation
which is a feature also observed in discontinuous crack growth. However, unlike the experimental
observations, our simulations show normal crack growth, i.e. the crack propagates in each cycle and
additionally the craze length varies throughout one cycle. Nonetheless, a noteworthy similarity is
observed in the delayed crack propagation once a pronounced plastic zone forms. The mechanisms
driving this crack deceleration and potential arrest are attributed to local crack tip plasticity-induced
unloading. This provides a physical explanation for the delaying crack propagation, which may be
extended to discontinuous crack growth.

For materials with less crack tip plasticity, such as material 2, the simulation results align well with the
experimental picture obtained from measuring fatigue striations as discussed in the review [23]. In
these cases, the crack advances predominantly near the load maximum. Moreover, the crack growth
precedes craze growth, so that the crack initially propagates into the stationary craze (cf. Figure 4.12(b)).
Once crack and craze growth arrests, the craze length returns approximately to its initial length at the
beginning of the cycle (cf. Figure 4.12(a)). Yet, the simulations provide additional insights, showing that
the craze length rapidly increases and ceases to grow before the crack arrests.

4.5. Concluding remarks

Craze and crack propagation in glassy polymers under cyclic mode I loading were investigated numeri-
cally by employing a recently developed continuum-micromechanical model for crazing. A particular
challenge was the parameter calibration, as craze and bulk parameters need to be chosen consistently to
yield a generic, but representative glassy polymer response. To address this, the bulk model parameters
were based on a glassy polymer calibration from the literature. Subsequently, the craze parameters were
normalised with the bulk parameters accordingly. Parameter scopes of the craze model, which cannot
be obtained from the experimental literature, were identified using molecular dynamics simulations of
the cyclic craze response.

Two types of craze and crack growth simulations were conducted, namely in brittle and in ductile glassy
polymers. The craze model reproduces important craze characteristics from the experimental literature
for brittle glassy polymers. This includes measurements such as the ratio of craze length to craze width,
the craze contour and experimental trends, for instance, the increased crack opening displacement
and craze width with higher load amplitudes due to the modelled viscosities. Moreover, similar to
experimental findings on normal fatigue crack growth, both, crack and craze, grew near load maximum
and arrested during unloading. The simulation results also aligned with previous experimental and
theoretical results, indicating a double stress peak at the crack and craze tips and compression at the
crack tip during unloading. Additionally, building upon work by Van der Giessen and co-workers [26],
the competition of crazing and shear yielding under cyclic loading for ductile glassy polymers was
analysed. The presence of a plastic zone was found to increase the load for craze initiation and, in
accordance with experiments [45] and previous simulations [26], craze and crack initiation occurred
ahead of the notch root. The plastic zone exhibited similarity with the epsilon crack tip plastic zone
observed in cyclic (fatigue) loading. The model replicated the initiation of shear bands at the current
crack tip, which grew and arched towards the craze. A salient finding of this study was the delayed
crack propagation due to crack tip plasticity. This delay was attributed to plasticity-induced unloading
of the craze adjacent to the crack tip, which required additional craze growth prior to further crack

2 See also Figure 1.2 in Section 1.1
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advance. The size of the unloaded area, influencing the delay, correlated to the amount of crack tip
plasticity.

The study faces some limitations: First, the results were obtained using a generic glassy polymer and
hence, limiting the results to qualitative assessment. Second, the simulations do not yet capture the
so-called discontinuous or retarded crack growth, where the crack advances by jumps after remaining
stationary for hundreds of loading cycles. It is hypothesised that thermal fatigue of the craze fibrils
in close vicinity to the crack tip might influence this behaviour (cf., e.g., [23]). We, on the other hand,
considered only isothermal conditions. However, insights from experiments and molecular dynamics
suggest a hysteretic craze response. The associated dissipation could be a source of heating and hence,
adiabatic or coupled thermo-mechanical simulations could offer valuable insight. Yet, this approach
presents significant challenges as it demands accurately determining the mechanical response of crazes
at elevated temperatures.

Concluding, an interesting direction for future work appears to be experimental investigations of the
cyclic craze response. An emphasis on the cyclic uniaxial craze behaviour across various strain rates
and temperatures will be of great value. This data can contribute to (in-)validate the molecular dynamic
results, which would help with additional physically motivated model refinements.

Appendix to Chapter 4

4.A. Parameter calibration via molecular dynamics simulations of
cyclic crazing

The molecular dynamics (MD) based calibration builds upon recent work [55] where a generic bead-
spring model was used to investigate the cyclic craze response in glassy polymers subjected to uniaxial
deformation. The focus here is solely on utilizing the results to estimate the material parameters. Since
the MD model is standard and has been extensively used in previous craze studies (e.g. [32, 76]), the
reader is referred to [55] for details on model and simulation. In the following, the overall stretch and
the axial stress of the MD system is denoted by 𝜆 and 𝜎 , respectively. They correspond to 𝜆1 and 𝜎1
of the craze model in Section 4.2. The loading programme, the stress response and a snapshot of the
craze at peak deformation is shown in Figure 4.A.1. The initially isotropic glass is uniaxially deformed
to a maximum stretch 𝜆𝑚𝑎𝑥 = 10 (grey dotted line in Figure 4.A.1(a) and in favour of visibility only
partially shown in (b)), which leads to a full conversion of bulk material to fibrillated craze matter
(cf. snapshot in Figure 4.A.1). Subsequently, the craze is subjected to a cyclic loading programme with
varying unloading magnitudes 𝜆𝑚𝑖𝑛 = [1, 2, 3, 5, 8], followed by reloading to 𝜆𝑚𝑎𝑥 . The stress response
of the five independent simulations is shown in Figure 4.A.1(b) exhibiting a hysteresis and a reloading
behaviour which depends on 𝜆𝑚𝑖𝑛 . Furthermore, it is noteworthy that the craze exhibits a pronounced
compressive stress (cf. black dashed line Figure 4.A.1(b)) prior to reaching the macroscopic undeformed
state 𝜆 = 1. This stress arises from the intermolecular resistance (cf. [55]) and is macroscopically
interpreted as fibril jamming.3

3 For a detailed analysis of the driving mechanisms leading to this mechanical response, the reader is referred to [55].
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Figure 4.A.1.: Snapshot from MD simulation for craze at 𝜆𝑚𝑎𝑥 = 10 (top) and (a) uniaxial deformation controlled cyclic
loading programme with (b) stress response of sole fibrillated craze matter for five unloading magnitudes 𝜆𝑚𝑖𝑛 .

Additional useful information from the MD simulations is the interaction between bulk and craze
material subjected to uniaxial cyclic loading. Those bulk-craze systems are created by reducing 𝜆𝑚𝑎𝑥 .
Scaling the deformation in terms of the engineering strain of each system with its value at 𝜆𝑚𝑎𝑥 defines
the scaled engineering strain 𝜀𝐸 = (𝜆 − 1)/(𝜆𝑚𝑎𝑥 − 1). The thus rescaled stress-strain response is
depicted in Figure 4.A.2 for sole craze matter (𝜆𝑚𝑎𝑥=10) and two additional bulk-craze systems. To
provide a notion of the bulk-craze composition for 𝜆𝑚𝑎𝑥 = 5 and 𝜆𝑚𝑎𝑥 = 2, snapshots for the two
systems at their respective 𝜆𝑚𝑎𝑥 are also displayed in Figure 4.A.2. An interesting observation is the
quasi-collapse of the stress-strain curves, which implies a scaling of the craze response with 𝜆𝑚𝑎𝑥 . This,
on the other hand, is related to the maximum fibril length as discussed in detail in [55] and which
aligns well with the micromechanical framework of the continuum model.
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Figure 4.A.2.: Quasi-collapse of hysteresis for several bulk-craze compositions 𝜆𝑚𝑎𝑥 when scaled to 𝜀𝐸 (left) and snapshots
for 𝜆𝑚𝑎𝑥 = [2, 5] (right).

Insights from Figure 4.A.1 and Figure 4.A.2 are used in the following to identify the parameters of the
elastic behaviour of the fibrillated craze matter (𝜇𝑏/𝜇𝑓 , 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 and 𝜆𝐿), the deformation at which
fibril jamming occurs during unloading (parameter 𝛽𝑐 in (4.13)) and the fraction upon which mature
fibrils exist (parameter 𝛼 in Figure 4.2).

4.A.1. Elastic craze fibril parameters: 𝜇𝑏/𝜇𝑓 , 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 and 𝜆𝐿

Although 𝜆∗𝑐 is taken from experiments, 𝜆∗𝑐 from the MD simulation is needed to determine the elastic
craze fibril parameters 𝜇𝑏/𝜇𝑓 , 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 and 𝜆𝐿 . Recall that 𝜆𝑐 describes the density-ratio in the unloaded
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4.A. Parameter calibration via molecular dynamics simulations of cyclic crazing

configuration (cf. (4.2)). Hence, the bulk density 𝜌𝑏 is taken as that of the initially undeformed isotropic
glass. In contrast, the craze density 𝜌𝑐 is computed at the instant 𝜎 = 0 during unloading (dashed
lines in Figure 4.A.1(a)), which is assumed to approximately coincide with the unloaded configuration,
yielding a MD based value of 𝜆∗𝑐 ≈ 6.5. This high value is an inherent issue with the MD model, which
poses challenges for transferring information from the MD model to the continuum model. This issue is
addressed by normalising the MD based parameters and investigating a range of parameters associated
with the elastic part of the fibril model in the continuum model (cf. Table 4.1).

With 𝜆∗𝑐 ≈ 6.5, a least square fitting of the elastic craze fibril model is employed for the parameter
calibration. Using only the elastic part of the craze fibril behaviour is based on the following consid-
erations: To separate the bulk and craze response and to avoid potentially transient behaviour while
bulk and craze coexist, e.g. due to fibril drawing, the cyclic MD results for sole fibrillated craze matter
shown in Figure 4.A.1 are used as fitting data. This corresponds to the viscoelastic fibril deformation
behaviour of the continuum model. Furthermore, the hysteresis in Figure 4.A.1(b) exhibits negligible
rate dependencies as discussed in [55]. Combined with the inherently high deformation rates in MD
simulations, we concluded that the dashpot in the craze fibril model is most appropriately taken as stiff
during calibration with the MD data. This reduces the viscoelastic fibril response to the purely elastic
fibril response of two springs in parallel.

For simplicity, the continuummodel is fitted to the results for 𝜆𝑚𝑖𝑛 = 5, which comprises two advantages:
Firstly, fibrils are assumed to be loose hanging for deformations smaller than 𝜆𝑐 = 6.5, which is
sufficiently close to 𝜆𝑚𝑖𝑛 = 5. Secondly, 𝜆𝑚𝑖𝑛 = 5 avoids the complicated case of pore space closure
for 𝜆 ≤ 2, altering significantly the structural craze response (cf. [55]). The result of the fit is shown
in magenta in Figure 4.A.3 with one standard deviation error bars. The black lines represent the MD
result already shown in Figure 4.A.1(b), but with the exception that the case 𝜆𝑚𝑖𝑛 = 1 is dropped to
enhance visibility. The dashed line is the objective data used in the fitting. To obtain the ratio of bulk
and fibril stiffness, the bulk stiffness is calculated as the secant stiffness of the glass prior to cavitation.
This leads to 𝜇𝑏/𝜇𝑓 = 10.7, 𝜇𝑓 ,𝑁𝐻/𝜇𝑓 = 0.48 and 𝜆𝐿 = 1.13.
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Figure 4.A.3.: Least square fit of elastic part of craze fibril model based on MD result for 𝜆𝑚𝑖𝑛 = 5 (dashed line).

4.A.2. Fibril jamming: parameter 𝛽𝑐

Fibril jamming is observed in the MD simulations for 𝜆𝑚𝑖𝑛 ≤ 2 in Figure 4.A.1(b) and more generally
for different craze-bulk compositions below 𝜀𝐸 < 0.2 in Figure 4.A.2. To make use of (4.13), 𝜆𝑚𝑎𝑥 needs
to be related to 𝜉0, which is in the MD simulations the maximum attained craze length throughout
deformation. Likewise to above, it is assumed that the configuration at 𝜎 = 0 during unloading closely
resembles the unloaded configuration and hence, 𝜉0 and 𝜒0 are calculated at 𝜎 = 0. Figure 4.A.2 is
then rescaled with 𝜀1 from (4.12), which defines the scaled Hencky strain 𝜀𝐻 = ln 𝜆/ln 𝜆1, leading to
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4. Analysis of mode I crack propagation

Figure 4.A.4. This relates the deformation to the fibril length 𝜉0 and as additional benefit, it improves
the collapse for 𝜀𝐻 < 0.25, which is the region of interest here.

As described in Subsection 4.2.1, fibril jamming is considered via the elastic bulk response. Therefore,
it is approximated in a simplified linear manner indicated by the orange lines in Figure 4.A.4. The
lines represent the secants connecting 𝜀𝐻 = 0 and the normalised stress 𝜎 = −0.5. Latter comprises
a subjective component and was selected here due to its relevant stress magnitude with respect, for
instance, to the drawing stress plateau. This results in 𝛽𝑐 ≈ 0.15, which is indicated by the black vertical
marker in Figure 4.A.4.
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Figure 4.A.4.: Estimation of fibril jamming parameter 𝛽𝑐 by scaling deformation to 𝜀𝐻 .

4.A.3. Morphology change: parameter 𝛼

To identify 𝛼 depicted in Figure 4.2, the instant upon which mature fibrils exist during craze formation
from the isotropic glass, i.e. where the density reaches 𝜌∗𝑐 = 𝜌𝑏/𝜆∗𝑐 , is identified. For this, the evolution of
the density profile (colour coding) in axial direction (abscissa) as function of the deformation (ordinate)
is shown in Figure 4.A.5. The initial normalised bulk density (𝜌𝑏 ≈ 1) rapidly drops during cavitation. As
assumed in the continuummodel, the MD results show that the creation of mature fibrils is a continuous
process requiring further overall deformation upon cavitation. The instant 𝜌 = 𝜌∗𝑐 is indicated by the
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Figure 4.A.5.: Normalised density distribution (colour coding) along axial simulation box length (abscissa) evolving with
deformation (ordinate). MD snapshot at 𝜆 = 1.3 indicates local density distribution and serves to facilitate plot interpretation.
Black dashed horizontal line marks instant upon which mature fibrils have formed.
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4.B. Constitutive model for shear yielding

black horizontal line. This configuration is then used to calculate 𝛼 via the mass balance: 𝛼 = 1 − 𝜒/ℎ0,
which assumes 𝜒0 ≈ 𝜒 . For a normalised mature craze density of 𝜌∗𝑐 = 0.18, this yields 𝛼 ≈ 0.07.

Similar to experiments, a general difficulty arising from MD simulations is its statistical nature. This
results in a certain subjectivity when selecting thresholds such as the craze density 𝜌∗𝑐 . However, in
this case, the influence of 𝜌∗𝑐 is relatively insensitive as, e.g., 𝜌∗𝑐 = 0.14 leads to 𝛼 = 0.08.

4.B. Constitutive model for shear yielding

Building upon the early work by Boyce et al. [17], there are well established constitutive models
describing finite strain shear yielding in glassy polymers, e.g. [4, 9, 37, 39, 106]. We use the version by
Hempel [37], for which the rheological model and its components are shown in Figure 4.B.6 and which
is briefly summarised in the following. The rheological model leads to the standard multiplicative

A
C

𝝈 , F

F = F𝑒 F𝑝

B
𝝈 , F Constitutive model: (material parameters)

A: neo-Hooke hyperelasticity: (𝜇𝑏 , 𝜈𝑏 )
B: 8-chain hyperelasticity: (𝐶𝑅 , 𝜆𝐿)
C: Eyring-type viscous flow: ( ¤𝛾𝑝0 , 𝐴, 𝑠0, 𝑠𝑠 , ℎ, 𝛼𝑝 )

Figure 4.B.6.: Rheological model for bulk material.

decomposition of the deformation gradient (cf. [4])

F = F𝑒 F𝑝 (4.26)

into an elastic F𝑒 and plastic contribution F𝑝 , yielding the elastic right Ĉ
𝑒
= F𝑒 TF𝑒 and inelastic left

Cauchy-Green tensor b̂𝑝 = F𝑝 F𝑝 T in the intermediate (i.e. relaxed) configuration Ω̂. The velocity
gradient l is then additively split

l = ¤FF−1 = l𝑒 + F𝑒 l̂𝑝F𝑒 −1, (4.27)

where l𝑒 = ¤F𝑒 ¤F𝑒−1 is the elastic velocity gradient in the current configuration Ω and l̂𝑝 is the plastic
component in Ω̂, which can be further decomposed in the symmetric rate of deformation tensor d̂𝑝 and
the skew-symmetric inelastic spin tensor ŵ𝑝 :

l̂𝑝 = sym l̂𝑝 + skw l̂𝑝 = d̂𝑝 + ŵ𝑝 . (4.28)

The constitutive description of the model is placed in the intermediate configuration Ω̂, for which the
isotropic neo-Hooke hyperelasticity is given by the Mandel stress

Σ̂ = 𝜇𝑏 (Ĉ
𝑒 − 1) + 𝜆𝑏 (𝐽 𝑒 − 1) 𝐽 𝑒1, (4.29)

where 𝐽 𝑒 = det F𝑒 andwhich is symmetric due to the assumption that the elastic free energy contribution
𝜓𝑒 and inelastic free energy contribution 𝜓𝑝 are isotropic functions of Ĉ

𝑒 and b̂𝑝 , respectively. The
model features the two Lamé parameters 𝜆𝑏 and the shear modulus 𝜇𝑏 . Note, as the difference is
negligible for small elastic deformations, we omit correcting the elastic bulk constants due to the
different elasticity models in (4.17) and (4.29) for the craze and bulk model, respectively.

The resistance against plastic molecular network deformation is described by the eight-chain model
[8]

𝝉𝑏 =
𝐶𝑅𝜆𝐿

3𝜆𝐶
L-1(𝜆𝐶/𝜆𝐿)b̂𝑝

′
, (4.30)
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4. Analysis of mode I crack propagation

where b̂𝑝
′
is the deviatoric part of b̂𝑝 and 𝜆𝐶 is the the mean chain stretch reading

𝜆𝐶 =

(
tr b̂𝑝

3

)1/2

. (4.31)

Analogous to (4.22), the inverse Langevin function L-1(𝑥) is replaced by the Padé approximation.
Equation (4.30) involves the rubber modulus 𝐶𝑅 and the limit stretch 𝜆𝐿 as material parameters.

In accordance with experimental observations on shear yielding in glassy polymers, the inelastic flow
is modelled incompressible, which is given by

det F𝑝 = 1. (4.32)

Furthermore, the inelastic flow in the intermediate configuration is assumed to be irrotational, i.e.
l̂𝑝 ≡ d̂𝑝 , which yields the update for the inelastic deformation as

¤F𝑝 = d̂𝑝F𝑝 . (4.33)

To comply with the inelastic incompressibility condition in equation (4.32), d̂𝑝 needs to be deviatoric
and hence the flow rule is constitutively prescribed as

d̂𝑝 = ¤𝛾𝑝 Σ̂∗′

∥Σ̂∗′ ∥
, (4.34)

which is a function of the deviatoric driving stress

Σ̂∗′ = Σ̂
′ − 𝝉𝑏

′
. (4.35)

The inelastic shear strain rate in (4.34) is modelled by an Eyring-type flow

¤𝛾𝑝 = ¤𝛾𝑝0
(
exp

[
𝐴

𝑇

(
∥Σ̂∗′ ∥ − 𝑠

)]
− exp

[
−𝐴
𝑇
𝑠

] )
, (4.36)

where ¤𝛾𝑝0 and 𝐴 are material parameters and 𝑇 is the absolute temperature. Note, (4.36) is slightly
different to the original double kink model by Argon [5] by taking the exponent 5/6 as 1 and by
incorporating a second term which ensures ¤𝛾𝑝 = 0 for ∥Σ̂∗′ ∥ = 0. As suggested by Boyce et al. [17],
the pressure dependence of inelastic flow and the softening upon yielding, from an initial value 𝑠0 to a
saturation value 𝑠𝑠 , observed in polymers is incorporated via the yield strength

𝑠 (𝛾𝑝) = 𝑠𝑠 + (𝑠0 − 𝑠𝑠) exp
[
−ℎ𝛾

𝑝

𝑠𝑠

]
−
𝛼𝑝

3
tr Σ̂. (4.37)

The model is implemented as a user material subroutine in the finite element programme Abaqs/Ex-
plicit[2], which requires due to the corotational framework the corotated Cauchy stress 𝝈𝑟 as update.
This is readily obtained by a push-forward operation of Equation 4.29, defined as

𝝈𝑟 =
1
𝐽

RTF𝑒 −TΣ̂F𝑒 𝑇 R, (4.38)

where R is the rotation tensor obtained from the polar decomposition of F.
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4.C. Interaction between crazing and shear yielding for material 3

The model incorporates 10 independent material parameters. We adopt the material parameters for
polycarbonate (PC) at room temperature as characterised in [42] and summarised in Table 4.2.

Table 4.2.: Material parameters of the bulk model, being representative of PC at room temperature.
𝜇𝑏/𝑠0 𝜈𝑏 𝑠𝑠/𝑠0 𝐴𝑠0/𝑇 ℎ/𝑠0 𝛼𝑝 𝜆𝐿 𝐶𝑅/𝑠0 𝑠0 [MPa] ¤𝛾𝑝0 [s−1]
11.3 0.38 0.6 152 0.06 1.64 1.64 0.22 82 1014

4.C. Interaction between crazing and shear yielding for material 3

In craze material 3 (cf. Table 4.1), the limit stretch 𝜆𝐿 is reduced to align with the MD results, which
constraints the overall axial extension of the craze fibril, leading to an essentially quasi-stiff fibril
deformation behaviour. Compared to material 2, this changes under uniaxial deformation primarily the
curvature of the unloading-reloading curve during cyclic loading (cf. Figure 4.4(c)). The evolution of
the craze length (black line) and the crack length (magenta line) with the normalised load programme
(green dashed line) for material 3 is shown in Figure 4.C.7. Similar to before, the craze length grows over
multiple cycles prior to crack initiation. Thereafter, the crack propagates in each cycle. Qualitatively,
the results are very similar to Figure 4.12(a). The key difference is the earlier onset of crack initiation in
the 3rd cycle and the faster crack growth due to the stiffer craze fibril.
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Figure 4.C.7.: Craze length (black) and crack length (magenta) evolution with normalised load (green) for craze material 3 in
Table 4.1.
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5. Conclusion

5.1. Summary

In this dissertation a micromechanics-inspired constitutive model for crazing was developed and
enhanced with results frommolecular dynamics simulations. Themodel was then employed as a traction
separation law along the ligament of a mode I crack propagation problem to analyse the interaction
between crazing and the adjacent bulk material in glassy polymers under cyclic loading. While more
thorough summaries are given at the end of each chapter, the following essential contributions from
this thesis are summed up as:

A novel micromechanical-continuum model in a finite strain framework was developed to realistically
capture the craze response under cyclic loading. Derived through rigorous continuum-micromechanical
considerations and based on polymer physical understanding, the model incorporates several key
features. These include, for instance, (i) craze thickening due to viscoelastic deformation of existing
craze fibrils, (ii) the transient process of viscoplastic conversion of intact bulk material into new
fibrillated craze matter and (iii) premature jamming of the craze fibrils during unloading. The structural
behaviour of craze fibrils is considered string-like, which leads to creep recovery of the fibril deformation
when they are stress-free. This along with the two viscosities enables the modelling of continuous fibril
drawing across loading cycles. The craze is taken to break down at a critical thickness so that the current
craze fibril length can be considered a measure of cyclic damage accumulation. The micromechanical
setting offers access to various physical quantities, such as the fibril stress, which could be incorporated,
e.g., in other failure criteria as new knowledge emerges. Furthermore, it allows for the inclusion
of measurable craze properties, such as the primordial thickness and the extension ratio, thereby
simplifying material parameter calibration. Material parameters were normalised to facilitate model
evaluation through a parameter study focusing on monotonic and cyclic uniaxial deformation. An
essential finding of this study was the complex interplay between drawing viscosity and fibril creep
viscosity. Initially, when craze fibrils are small, the drawing viscosity dominates the macroscopic
response. However, as craze fibril length increases, the mechanisms shift and fibril creep viscosity
exerts a more pronounced influence, particularly on the failure cycle.

A more fundamental study of polymer physics throughmolecular dynamics simulations was undertaken
to enhance the understanding of the crazing process under cyclic loading and to address two significant
uncertainties in the previous study and themodel. The primary uncertainty stemmed from an incomplete
understanding of the crazing mechanisms under cyclic loading. This included the structural behaviour
of craze fibrils, which affects the physical picture of cyclic damage accumulation in crazes. The second
uncertainty arose from the lack of experimental data, posing a twofold challenge by hindering the
overall model validation and by complicating the calibration of material parameters. These issues
were addressed by using molecular dynamics simulations of a flexible generic bead-spring model to
study the mechanical response of sole fibrillated craze matter and the bulk-craze interaction in glassy
polymers under cyclic uniaxial deformation. A salient finding was the complex stress-strain hysteresis
which depends on the unloading magnitude, but was found to be qualitatively independent of the
remaining bulk material and the current craze fibril length. Trough a detailed analysis, the hysteresis
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was attributed to a combination of constraints imposed by the entanglement network, existing pore
space and pore space closure during unloading. Key findings for the continuum model included the
string-like behaviour of craze fibrils during unloading, the very low craze-to-bulk stiffness and the
validation that fibrils prematurely jam during unloading. The low craze stiffness highlights that the
macroscopic response is governed by the craze, whereas the bulk behaves essentially as stiff. The
string-like structural response of craze fibrils is a key finding, as it supports the modelled cyclic damage
mechanism of fibril drawing in crazes. Based on polymer physics arguments, it was deduced that this
result should qualitatively hold even in case of semiflexible bead-spring models. The additional analysis
presented in Section 3.C verified this reasoning.

The essential findings from the molecular dynamics study were transferred to the continuum model
by incorporating mechanisms as well as a molecular dynamics determined parameter scopes for the
experimentally inaccessible material parameters. This molecular dynamics informed continuum model
was then used in the finite element programme Abaqs to analyse craze and crack propagation in
brittle and ductile glassy polymers under cyclic mode I loading. The parameter were normalised and a
parameter scope was investigated to yield generic, but representative glassy polymer responses. The
model, along with the calibration methodology, successfully reproduces important craze, shear band
and failure characteristics reported in the experimental literature. These include, for instance, the craze
contour, the initiation of shear bands at the current crack tip that arch towards the craze and properties
of normal fatigue crack propagation. Particularly notable is the resemblance of the crack tip plastic zone
in the simulations of ductile glassy polymers (cf. Figures 4.13 and 4.11) to the experimentally observed
epsilon-shaped deformation zone depicted in Figure 1.2. A novel insight form this study is the delayed
crack propagation due to plasticity-induced unloading of the craze at the crack tip, which required
further craze growth prior to a continuation of the crack advance.

5.2. Outlook

The most interesting direction for future work involves carefully conducted uniaxial deformation
experiments on isolated, uniformly fibrillated craze matter to study the responses under various loading
conditions. The experimental setup could adopt the configuration outlined by Kambour and Kopp
[47], but enhanced with modern technologies, for instance digital image correlation [91]. Utilizing a
deformation controlled loading programme should allow precise control over pore space closure and
enable a systematic study of the structural response of craze fibrils. This complements the molecular
dynamics simulations presented in this thesis and would allow to (in-)validate the simulation results.
Additionally, it would provide a helpful extension to previous experiments which mainly focused on
the craze initiation stress, craze contour or crack growth rate (cf., e.g., [49]).

If the molecular dynamics results are validated, a craze fibril model could be developed based on the
underlying mechanisms analysed in [57] and aiming to capture the complex craze response and its
hysteresis. In a subsequent step, hysteretic dissipation could be treated as a heat source, which would
allow to accommodate failure due to adiabatic fibril heating under cyclic loading. This approach could
serve as the foundation for investigating the role of fibril heating in discontinuous crack growth as
reported by Döll and Könczöl [23]. Depending on the outcomes, a fully coupled thermomechanical
analysis could provide further insights into the competition between crazing, shear yielding and heat
flow under cyclic loading without confining the analysis to the adiabatic regime. This would present a
combination and continuation of Estevez et al. [28] and this work.
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A B S T R A C T

A micromechanics-inspired constitutive model is developed to describe the deformation behaviour of fibrillated
material within crazes in glassy polymers subjected to cyclic loading. In a finite strain setting, the model
accounts for the morphology change taking place by the drawing of material from the intact bulk polymer into
craze fibrils and their transition from primitive to mature fibrils. Building on previous research, fibril drawing
is described as a viscoplastic process. A novel contribution of this study is the incorporation of viscoelastic
deformation of existing fibrils, which is motivated by experimental observations. This new perspective allows
for creep recovery, especially during the unloading phases of cyclic deformation.

A parameter study which pays special attention to the role of the characteristic times scales of fibril
drawing and fibril creep in relation to the imposed loading rate illustrates the performance of the model.
Since the model is designed as an input to cohesive fracture simulations in glassy polymers, its response under
monotonic loading is analysed and compared to existing crazing models. Of primary interest, however, is the
model behaviour under cyclic loading which is investigated for different loading scenarios up to fibril failure.
The study highlights the complex interplay between the two viscous mechanisms and how they influence the
local deformation behaviour of the craze matter as well as the number of cycles until failure.

1. Introduction

Crazing, i.e. the localised formation and growth of narrow zones
of fibrillated matter interspersed with voids, is the key damage mech-
anism in glassy thermoplastic polymers. Crazes are typically oriented
normal to the direction of maximum tensile stress and are in shape
similar to cracks. Yet, contrary to cracks, crazes have a significant load
carrying capacity owing to a multitude of thin fibrils of stretched poly-
mer material which bridge the craze surfaces. The mechanical response
of this fibrillated craze matter, hence, is of central interest in the be-
haviour of crazes. From intense studies over the past decades – see, e.g. ,
the reviews in Kambour (1973), Kausch (1990) and Haward and Young
(1997) – a reasonable understanding of the involved macromolecular
and continuum-mechanical processes has emerged. For instance, it is
nowadays well accepted that the formation and growth of crazes is
governed by two deformation mechanisms: firstly, drawing of new
material into fibrils at the craze/bulk interface and, secondly, creep
of the existing fibrils. Anticipating a more thorough discussion in
later chapters, it may be conjectured already here that the second
mechanism becomes particular important during unloading phases of
cyclic loading when the stress is too low to cause further pulling-in of
new material and creep contraction of existing (eventually stress-free
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and loose hanging) fibrils is driven by the internal (back-)stress that
originates from the highly stretched molecular chains.

Various theoretical–computational modelling approaches have been
followed in order to gain a better insight into the micromechanics
of crazing and also to incorporate the crazing mechanism in failure
analyses (e.g. crack growth) on a larger length scale. In the latter
case, and owing to the localised appearance of crazes, cohesive zone
models for crazing – e.g. Ungsuwarungsri and Knauss (1988), Tijssens
et al. (2000), Estevez et al. (2000) and Seelig (2008) – have widely
been utilised, but also continuum descriptions have been developed
and employed, e.g. Socrate et al. (2001), Gearing and Anand (2004)
and Helbig et al. (2016), for the simulation of crazing processes.

On a smaller length scale the fibrillation process was studied by
means of lattice-type models, e.g. Sha et al. (1995), by continuum-
mechanical models, e.g. Leonov and Brown (1991), Basu et al. (2005),
Helbig and Seelig (2012), as well as by molecular dynamics simula-
tions, e.g. Rottler and Robbins (2003), Venkatesan and Basu (2015)
and Ge et al. (2017). Besides a better understanding of the crazing
process itself along with its macromolecular implications such as dis-
entanglement, another aim of these small-scale investigations was the
determination of the (cohesive) craze response to be used in analyses
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ABSTRACT: We study with molecular dynamics simulations of a
generic bead−spring model the cyclic crazing behavior of glassy
polymers. The aim is to elucidate the mechanical response of sole
fibrillated craze matter as well as its interaction with bulk material. The
macroscopic stress response exhibits a hysteresis, which is quasi
stationary after the first cycle and largely independent of deformation
rate and temperature. It results from a complex interplay between
constraints imposed by the entanglement network, pore space and pore
space closure. Once the craze fibrils are oriented, stretching of the
covalent backbone bonds leads to a rapid stress increase. In the initial
stages of unloading, a loss in entanglement contact yields a quick stress
relaxation in the backbone. During unloading, the craze fibrils undergo a
rigid body (i.e., stress-free) folding motion due to the surrounding pore
space, so that the structural behavior of craze fibrils during unloading is most accurately described as string-like. The reloading
response depends significantly on the degree of pore space closure and the enforced intermolecular interaction during unloading. It
ranges from a linear stress increase to a recavitation with a redrawing response. Compared to the bulk stiffness, the craze stiffness is 2
orders of magnitude lower and as a result, the macro response of coexisting craze and bulk matter is governed by the sole fibrillated
craze matter.

1. INTRODUCTION

Crazing refers to the dilatant process of localized formation
and growth of crack-like defects in glassy thermoplastic
polymers. A craze consists of fibrillated matter with an
interconnected void space. The several tens of nanometer
thick fibrils can grow up to a few micrometers in length by
drawing in surrounding bulk material from the so-called active
zone.1 This process is of technical importance since, unlike
cracks, craze fibrils enable a considerable load transfer between
the craze surfaces and substantially enhance the fracture
toughness. Therefore, much research has been devoted to
understanding the governing mechanisms, cf. reviews in,2−5

which includes theoretical studies on a continuum scale6−12 as
well as on a molecular scale.13−25 However, the focus of those
theoretical studies is limited to monotonic loading conditions.
In contrast, extensive experimental research for cyclic
(especially fatigue) loading exists, cf. reviews in,26−28 providing
insight into very interesting fracture processes for several glassy
polymers and at several loading amplitudes: For instance, at
low loading amplitudes, Skibo et al.29 observed discontinuous
crack growth, which was attributed to craze thickening
resulting from a competition of fibril drawing and fibril creep
deformation by Könczöl et al.30 An increase in loading
amplitude may give rise to the formation of shear bands and
their interaction with crazes, leading to discontinuous epsilon-
shaped fatigue cracks as studied by Takemori.28 Yet, the

involved length scales pose difficulties to explore the driving
mechanisms by solely relying on experiments and without
theoretical analyses based on a physically motivated craze
model. For this purpose, a continuum micromechanical model
was recently developed by some of us31 focusing on the cyclic
response of craze matter. The model describes the structural
response of craze fibrils as string-like and accounts for
viscoplastic fibril drawing and viscoelastic fibril deformation,
where the latter is motivated by experimental observations.32,33

It is designed to be employed as a traction separation law in a
mode I boundary value problem to investigate cyclic craze and
crack growth. The continuum scale also accounts for inelastic
shear yielding in the surrounding bulk, which enables the
analysis of its competition with crazing. However, the craze
model suffers from two shortcomings arising from a general
knowledge gap of the cyclic craze response: On the one hand,
the structural behavior of craze fibrils during unloading is
uncertain. The correct structural behavior is important since it
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A B S T R A C T

Craze and crack propagation in glassy polymers under cyclic mode I loading are investigated
by employing a recently developed continuum-micromechanical model for crazing. This model
accounts for the local morphology change from microvoids to fibrils during craze initiation,
viscoplastic drawing of bulk material into fibrils, and viscoelastic creep recovery of the
fibrillated craze matter during unloading. To ensure consistency between the bulk and craze
model parameters, the material parameters of the craze model are normalised and calibrated
based on a hybrid approach integrating experimental findings from the literature and molecular
dynamics results. This yields a generic, yet representative glassy polymer response.

In the framework of 2D plane strain finite element simulations, we study brittle as well
as ductile glassy polymers and assess the results by drawing comparisons to the experimental
and numerical literature. For brittle materials, characterised by a purely elastic bulk behaviour,
the model reproduces craze characteristics such as the craze opening contour, the craze length-
to-width ratio, a double stress peak at the craze and crack tip, and a non-proportional stress
redistribution during loading-unloading cycles. In ductile glassy polymers, the interaction of
shear yielding in the bulk and crazing along the ligament is analysed. In particular, shear bands
emanate from the crack tip in each loading cycle and arch forward towards the craze. This
plastic zone shares resemblance to the so-called epsilon-shaped deformation zone. The current
simulations capture normal fatigue crack propagation, where craze and crack growth occur near
the peak load in every cycle and the craze length remains relatively constant across the loading
cycles. Moreover, findings from this study suggest that plasticity-induced unloading of the craze
adjacent to the crack tip impedes crack growth.

1. Introduction

Crack growth in glassy polymers is typically accompanied by crazing in a narrow zone ahead of the crack tip. This damage
process involves the formation and coalescence of microvoids, fibrillation of the polymer material in between and drawing of new
material into the load-bearing fibrils. By ultimate rupture of the latter the craze zone locally turns into a crack. The energy dissipated
in this process zone determines the fracture toughness of the material and hence is of practical importance. Crazing may occur as
the sole inelastic deformation process in brittle glassy polymers such as polystyrene (PS), or it may take place in conjunction with
shear yielding of the surrounding material in more ductile polymers such as polycarbonate (PC). Crazing in the course of crack
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