10th International Conference on Engineering for Waste and Biomass Valorisation

August 20-23, 2024 Sendai, Japan

Integration of Mixed Plastic Waste Pyrolysis into the Chemical Value Chain via Steam Cracking and Gasification

M. Hennig, M. Pillich, N. Netsch, S. Tavakkol, A. Bardow, D. Stapf

Institute for Technical Chemistry

August 22, 2024

Pyrolysis of mixed plastic waste (MPW)

Stallkamp, C., Hennig, M. et al. (2023). J. Ind. Ecol., DOI: 10.1111/jiec.13416.

Integrating pyrolysis into the chemical value chain

Steam cracking for monomer production *Carbon balance*

Carbon recovery > 50 % for Waste-to-Monomer process route

Carbon recycling rates of chemical value chains

The choice of process and product greatly impacts the carbon recycling rate

System definition for Life Cycle Assessment

Comparison of climate change impact

of MPW treatment

Comparison of climate change impact

Syngas production (Oxo and Methanol) shows lowest climate change impact by substituting syngas production from heavy fuel oil

Sensitivity analysis: Electricity mix CO₂ intensity

Thinking ahead

In the short term:

- **Pyrolysis oil from MPW could reduce** $CO₂$ emissions through substitution of heavy fuel oil in gasification
- In the medium term:
	- Reduce byproduct formation in pyrolysis
	- \blacksquare CCS could be used for unavoidable $CO₂$ emissions
- In the long term:
	- **Integration with emerging technologies (CCU,** biomass)

AI generated with Microsoft Designer

Thank you for your attention!

…and the financial support of *THINKTANK Industrielle Ressourcenstrategien* **and the** *Karlsruhe House of Young Scientists (KHYS)*

Literature

- Stallkamp, C., Hennig, M. et al. (2023). Economic and environmental assessment of automotive plastic waste end-of-life options: Energy recovery versus chemical recycling. J of Industrial Ecology, jiec.13416. [https://doi.org/10.1111/jiec.13416.](https://doi.org/10.1111/jiec.13416)
- Zeller, M., Netsch, N. et al. (2021). Chemical Recycling of Mixed Plastic Wastes by Pyrolysis Pilot Scale Investigations. Chemie Ingenieur Technik 93, 1763-1770, <https://doi.org/10.1002/cite.202100102>
- Kusenberg, M., Roosen, M. et al. (2022). Assessing the feasibility of chemical recycling via steam cracking of untreated plastic waste pyrolysis oils: Feedstock impurities, product yields and coke formation. Waste Management. 141, 104-114, <https://doi.org/10.1016/j.wasman.2022.01.033>
- Zhang, C. and Nakatani, J. (2024). Implications of chemical recycling of plastic waste for climate change impacts: A critical review. Sustainable Production and Consumption 48, pp. 301 – 323, <https://doi.org/10.1016/j.spc.2024.05.016>

