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ABSTRACT

In the field of neuroevolution (NE), evolutionary algorithms are

used to update the weights, biases and topologies of artificial neural

networks (ANNs). A recent theoretical work presented the first

runtime analysis of NE in a simple setting, considering a single neu-

ron and intuitive benchmark function classes. However, this work

was limited by the unrealistic settings with regard to activation

functions and fitness measurements.

In this paper, we extend upon this first work by overcoming

the two shortcomings. Firstly, we consider a more realistic setting

in which the NE also evolves a third parameter, termed the bend,

allowing the previous benchmark function classes to be solved

efficiently even in the fixed bias case. This setting mimics rectified

linear unit activation functions, which are common in real-world

applications of ANNs. Secondly, we consider a dynamic fitness

function evaluation paradigm where the weights and biases are

updated after each new sample. Experimental results in both cases

support the presented theoretical results.

CCS CONCEPTS

•Theory of Computation→ Theory of randomized search heuris-

tics.
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1 INTRODUCTION

Neuroevolution (NE) refers to the application of evolutionary com-

putation techniques to artificial neural networks (ANNs), and is

a common approach when backpropagation or network weight

adjustments are inefficient or unavailable. Further, NE techniques

can also adapt network topologies, avoiding a time-consuming
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parameter-setting process. Recent advances in deep neural net-

works have brought NE back to the forefront of research; see recent

surveys [10, 13, 16].

The field of evolutionary algorithms (EAs), a subset of evolu-

tionary computation, considers (typically heuristic) optimisation

techniques inspired by evolutionary paradigms that are applied

across a variety of problems. The theoretical analysis of EAs has

grown from analysing simple algorithms in basic settings (e.g.,

[7]) to considering more complex realistic paradigms, such as the

widely studied NSGA-II algorithm [6, 17]. In fact, the theoretical

analysis of EAs has allowed the design of algorithms that showcase

improvements over the state-of-the-art [3].

Fischer et al. [8] recently presented the first theoretical analysis

of NE. They presented an optimisation setting in which the evo-

lution of the weights and bias terms in the ANN correspond to

seeking a hyperplane within a unit sphere to classify its edge points

as either positive or negative. Further, they considered simple ANN

topologies, where even single neurons with a binary activation func-

tion can be efficient on the benchmark instances they presented. A

two-layer topology further allowed the analysis of multiple neurons.

[8] also showed that the harmonic mutation operator introduced

by [4] led to exponentially smaller runtime bounds compared to

local mutation operators.

In this work, we extend upon the introductory analysis of NE by

[8] by analysing more realistic ANN settings. As a first contribution,

we consider an updated solution representation, which mimics real-

world ANN paradigms using rectified linear unit (ReLU) activation

functions. ReLU functions are common in real-world ANN studies,

and lead to ANN frameworks that can be represented by piecewise

linear functions [1]. This allows the representation of ReLU-based

ANNs as mixed-integer linear programs, meaning robustness can

be analysed and adversarial examples can be quickly generated

[9, 15]. This new solution representation allows the construction

of bended hyperplanes, meaning globally optimal solutions can be

found on the presented benchmark functions that are invariant to

the setting of the bias terms. This also allows the identification of a

Pareto front of optimal solutions; however, for ease of analysis, we

remain in the single objective case.

As a second contribution, we analyse a setting where the fitness

of the solution is calculated in a more realistic way. Whereas pre-

vious research calculated the fitness as a fraction of two volumes

corresponding to two infinite sets, we consider in this work an

online setting which mimics the weights and biases of an ANN

being re-trained after receiving new inputs.

The rest of the paper is structured as follows. In Section 2, we

introduce the considered ANN topology, as well as the proposed ad-

vancements and the benchmark functions. In Section 3, we present
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runtime results for the new NE algorithm, while Section 4 provides

the theoretical analyses for the online fitness setting. We present

experimental results in Section 5 and we conclude with a discussion

and ideas for future analyses. Additional experimental data and

figures can be found in the supplementary material.

2 PRELIMINARIES

We define [𝑁 ] as the set {1, . . . , 𝑁 }.

2.1 ANN Topology

Fischer et al. [8] presented the first runtime analysis of NE ap-

proaches. They presented the (1+1) Neuroevolution algorithm ((1+1)

NA) and a number of variants.

They considered so-called perceptron neurons, with input

weights𝑤1, . . . ,𝑤𝐷 and a threshold parameter 𝑡 . For a given input

𝑥 = (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷 , the neuron outputs 1 if

∑𝐷
𝑖=1𝑤𝑖𝑥𝑖 ≥ 𝑡,

and 0 otherwise. Geometrically, this means that the given point 𝑥

would lie above the hyperplane with normal vector (𝑤1, . . . ,𝑤𝐷 )
and bias 𝑡 . This framework lends itself well to the solution of binary

classification problems, where for a given input, the ANN must de-

cide whether it belongs to a given class (output 1) or not (output 0).

The typical search space for the classification problems considered

by [8] were point sets in the unit hypersphere.

This model extends to ANN topologies with two layers. The

idea behind the (1+1) NA is to optimise the weights and biases of

a neural network with one hidden layer, where each neuron in

the hidden layer is considered as a perceptron-based neuron with

binary (threshold) activation, while the final layer is the output of

the OR function.

Typically, 𝐷 = 2 was used. In their setting, [8] consider the

representation (𝑤1,𝑤2, 𝑡) as a tuple (𝜑 ,b), where 𝜑 corresponds to

the angle of the unit normal vector for the given hyperplane, and

𝑏 is the bias. Geometrically, this topology outputs the union of a

number of 𝐷-dimensional hyperplanes.

In this work, we consider a new topology which we describe

for the case of two dimensions. In this model with three hidden

layers, each of the presented neurons uses a rectified linear unit

(ReLU) activation function (i.e., they output max{0, 𝑠} where 𝑠 =∑𝑘
𝑖=1𝑤𝑖𝑥𝑖 for 𝑘 inputs from the previous layer). We fix the weights

between layers 1 and 2, and between 2 and 3. Let out(·) denote the
output from the neurons in the first layer. Then, the final output

is calculated as 𝑧 := max{0,min{out(𝑛11), out(𝑛12)}}. This new
topology in shown in Figure 1. The use of ReLU activation functions

within NNs incorporates non-linearity, while producing outputs

that are known to be piecewise linear [1]. Hence, for this topology,

we consider the decision boundary no longer as a straight line, but

rather V -shaped. For simplicity, we consider the outputs from such

topologies as a singular neuron (possibly within a standard ANN

topology), which we term ’V -neurons’.

We describe each of the V -neurons by three parameters, namely

the angle of the unit normal vector 𝜑 , the bias 𝑏, and a bending

parameter 𝜃 ∈ [0, 𝜋] (hereafter referred to as the bend, for brevity).

For a given two-dimensional V -neuron with normal vector 𝜑 and

bias 𝑏, let 𝐻 denote the decision boundary (i.e., a hyperplane). Let

𝑃 be the point on 𝐻 that is closest to the origin, and emanate the

normal vector from this point. Then, the area that is positively
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Figure 1: A network with ReLUs which computes a V-shaped

area of positive classifications with angle 𝜃 ∈ [0, 𝜋/2]. The
red neurons compute hyperplanes, the part with the blue

ones computes the minimum of the outputs of the red ones.

That is, the final output is positive iff both red neurons com-

pute something positive (the “continuous version” of AND).

For angles 𝜃 ∈ [𝜋/2, 𝜋], the blue part has to compute the

maximum (i.e., OR) which is achieved by replacing the two

weights −1/2 by +1/2.

𝜃 𝜃
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Figure 2: The grey area shown corresponds to the (bottom

part of) the “wedge” where points are classified 1; (left) for

𝜃 ≤ 𝜋/2, (right) for 𝜃 > 𝜋/2.

classified consists of all points at an angle at most 𝜃 to the right or

left of the normal vector 𝜑 .

Formally, for a given point𝑋 , let 𝛽 ∈ [0, 𝜋] be the angle between
𝜑 and the vector (𝑋 − 𝑃). Then, 𝑋 is positively classified if 𝛽 ≤ 𝜃 .

Figure 2 gives two examples for the case 𝜃 ≤ 𝜋/2 and 𝜃 > 𝜋/2. As a
generalisation to dimensions greater than two, the area of positive

classification would be a multi-dimensional cone.

2.2 Algorithms

As with [8] and other related works, we consider only the adap-

tation of the parameters of the network (and not its topology, as

with classical neuroevolution frameworks, e.g., NEAT [14]). Hence,

for each of the parameters (namely 𝜑𝑖 , 𝑏𝑖 and 𝜃𝑖 for 𝑖 ∈ [𝑁 ]), we
continue the use of the state space {0, . . . , 𝑟 }𝑁 , where 𝑁 is pro-

portional to the number of neurons and 𝑟 is the resolution of the

discretisation of the domain (see e.g., [4]). Since 𝑁 and 𝐷 are as-

sumed constant in this paper, our theoretical runtime results will

only depend on 𝑟 . Clearly, the bigger 𝑟 is, the more accurately an

optimal solution can be represented, but this usually also requires

a larger runtime.

Regarding search operators, we seek a mutation operator that

changes the given parameter by some term chosen from a given

distribution (i.e., by some term ±ℓ/𝑟 ). [8] showed that the harmonic

mutation operator (see e.g., [11]) leads to efficient algorithms, and
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Algorithm 1 (1+1) NA [8]

1: 𝑡 ← 0; select 𝑥0 uniformly at random from {0, . . . , 𝑟 }2𝑁
2: while termination criteria not satisfied do

3: Let 𝑦 = (𝜑1, 𝑏1, . . . , 𝜑𝑁 , 𝑏𝑁 ) ← 𝑥𝑡 ;

4: For all 𝑖 ∈ [𝑁 ], mutate 𝜑𝑖 and 𝑏𝑖 with probability 1/(2𝑁 ),
independently of each other and other indices;

5: Mutation chooses 𝜎 ∈ {−1, 1} u.a.r. and ℓ ∼ Harm(𝑟 ) and
adds 𝜎ℓ to the selected component; the result is taken modulo 𝑟

for angle and modulo 𝑟 + 1 for bias;
6: For 𝑖 ∈ [𝑁 ], set polar angle 2𝜋𝜑𝑖/𝑟 and bias 2𝑏𝑖/𝑟 − 1 for

neuron 𝑖 to evaluate 𝑓 (𝑦);
7: if 𝑓 (𝑦) ≥ 𝑓 (𝑥𝑡 ) then 𝑥𝑡+1 ← 𝑦;

8: else𝑥𝑡+1 = 𝑥𝑡 ;

9: 𝑡 ← 𝑡 + 1;

Algorithm 2 Bias-Invariant (1+1) NA (BINA)

1: 𝑡 ← 0; select 𝑥0 uniformly at random from {0, . . . , 𝑟 }3𝑁
2: while termination criteria not satisfied do

3: Let 𝑦 = (𝜑1, 𝑏1, 𝜃1 . . . , 𝜑𝑁 , 𝑏𝑁 , 𝜃𝑁 ) ← 𝑥𝑡 ;

4: For all 𝑖 ∈ [𝑁 ], mutate𝜑𝑖 ,𝑏𝑖 and 𝜃𝑖 with probability 1/(3𝑁 ),
independently of each other and other indices;

5: Mutation chooses 𝜎 ∈ {−1, 1} u.a.r. and ℓ ∼ Harm(𝑟 ) and
adds 𝜎ℓ to the selected component; the result is taken modulo 𝑟

for angle and modulo 𝑟 + 1 for bias and bend;

6: For 𝑖 ∈ [𝑁 ], set polar angle 2𝜋𝜑𝑖/𝑟 , bias 2𝑏𝑖/𝑟 − 1 and bend
𝜋𝜃𝑖/𝑟 for neuron 𝑖 to evaluate 𝑓 (𝑦);

7: if 𝑓 (𝑦) ≥ 𝑓 (𝑥𝑡 ) then 𝑥𝑡+1 ← 𝑦;

8: else𝑥𝑡+1 = 𝑥𝑡 ;

9: 𝑡 ← 𝑡 + 1;

hence we continue with this choice. We write 𝑋 ∼ Harm(𝑟 ) to de-

note that the random variable 𝑋 follows the harmonic distribution

with parameter 𝑟 , defined by Prob[𝑋 = 𝑗] = 1/( 𝑗𝐻𝑟 ) for 𝑗 ∈ [𝑟 ].
Here 𝐻𝑟 denotes the 𝑟 th harmonic number.

We firstly present the (1+1) Neuroevolution Algorithm ((1+1)

NA) in Algorithm 1.

Alongside harmonic mutation, [8] also presented the following

variants:

• The local (1+1) NA fixes ℓ = 1 (known as unit mutation [4]).

• The (1+1) NA without bias fixes 𝑏𝑖 = 𝑟/2 for 𝑖 ∈ [𝑁 ].
Regarding the local (1+1) NA, [8] showed that theoretically and

empirically it is less efficient than the (1+1) NA with harmonic

mutation at solving the presented benchmark functions. Therefore,

we typically only consider the harmonic mutation operator in this

work. Further, for the BINA approachwe consider, we do not believe

that local mutations are likely to be effective, due to the presence

of larger areas of local optima associated with the extra parameter.

A general analysis of advantageous situations for the local (1+1)

NA would be of interest; we leave this for future work.

We present the algorithm for the new paradigm using V -neurons,

which we term the bias-invariant neuroevolution algorithm (BINA),

in Algorithm 2. We note that for 𝜃𝑖 = 𝑟/2 (for 𝑖 ∈ [𝑁 ]), the bend
becomes 𝜋/2 and BINA reduces to the (1+1) NA.

2.3 Benchmark Functions

Previouswork [8] also considered a number of benchmark problems,

designed to mimic possible structures that can appear in realistic

settings. Analysing algorithms on these benchmark functions will

provide insights into their real-world performance, as well as laying

the foundations for building up a series of analysis tools.

The feasible region of the benchmark functions are points on

the edge of the unit hypersphere. The problems are defined for an

arbitrary number of dimensions𝐷 , but𝐷 = 2 is typically considered

in the analysis:

(1) Half := {𝑥 ∈ R𝐷 | | |𝑥 | |2 = 1 and 𝑥𝐷 ≥ 0}.
(2) Quarter := {𝑥 ∈ R𝐷 | | |𝑥 | |2 = 1 and (𝑥𝐷−1, 𝑥𝐷 ) ≥ (0, 0)}.
(3) TwoQuarters := {𝑥 ∈ R𝐷 | | |𝑥 | |2 = 1 and 𝑥𝐷−1𝑥𝐷 ≥ 0}.

For the problem Half, the optimal setting (when 𝐷 = 2) consists

of a single neuron with angle and bias (𝜋/2, 0) as presented in

Figure 3. However, we note that BINA can identify an optimal

solution for any value of the bias by optimising for 𝜑 = 𝜋/2 and
setting 𝜃 as necessary for the given bias.

𝜃

𝜃

Figure 3: Illustration of Half where the black arc represents

the target area, and the thin green arcs on the surface rep-

resent correctly classified points. The left side shows the

optimal solution of the (1+1) NA. The right side shows two

examples of optimal solutions for BINA: (1) The upper dotted

line shows 𝜑 = 𝜋/2, 𝐵 ≈ 0.5, 𝜃 ≈ 2𝜋/3; (2) The lower dotted

line shows 𝜑 = 𝜋/2, 𝐵 ≈ −0.5, 𝜃 ≈ 𝜋/3.

As a general function class, we also consider

Fraction𝑐 := {𝑥 ∈ R𝐷 | | |𝑥 | |2 = 1 and𝜓𝐷−1 ∈ [0, 𝑐𝜋]; 𝑐 ∈ R+},

where 𝜓𝐷−1 is the polar spherical angle between 𝑥 and the unit

hypersphere in the first 𝐷 − 1 dimensions. The Fraction𝑐 function

class comprises an arc of constant length which must be positively

classified; setting 𝑐 = 1/2 results in Half, while setting 𝑐 = 1/4
results inQuarter. We consider any positive constant 0 < 𝑐 ≤ 1/2.
In the no-bias setting for BINA, the optimal solution has 𝜑 = 𝑐𝜋

and 𝜃 = 𝑐𝜋 , while the (1+1) NA can only find the global optimal

solution (in the no-bias setting) when 𝑐 = 1/2.
Alongside these function classes, we note that BINA lends it-

self well to population-based algorithms and for multi-objective

optimisation, where a Pareto front of non-dominated solutions is

sought. We leave this analysis for future work, and note that this

can be translated to the single objective case by imposing some

limit on 𝜃 , i.e., preferring linear hyperplanes. This would lead to

the same optimal solutions as the (1+1) NA in the case of instances

of Fraction.
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2.4 Discussion on Fitness Function

[8] presented the following fitness function to calculate the pro-

portion of correctly classified points in the unit hypersphere. For a

binary classification with labels in {0, 1}, we define:

• 𝑆𝐷 := {𝑥 ∈ R𝐷 | | |𝑥 | |2 = 1} as inputs to the ANN;

• 𝐶𝐷 as the union of half-spaces above (or on) the hyperplanes

spanned by the 𝑁 neurons (either perceptron or𝑉 -neurons);

• 𝐿𝐷 ⊂ 𝑆𝐷 as the set of points classified as 1;

• 𝐴 = R𝐷 \𝐴 for a given set A;

• vol(·) as the (hyper)volume.

Then, the fitness (true fitness) of a solution 𝑥 is given by

𝑓 (𝑥) = vol(((𝐶𝐷 ∩ 𝐿𝐷 ) ∪ (𝐶𝐷 ∩ 𝐿𝐷 )) ∩ 𝑆𝐷 )
vol(𝑆𝐷 )

.

The sets 𝐿𝐷 and 𝐿𝐷 assume that all possible classifications are

known; that is, we assume that we have access to the correct clas-

sification for any possible input. We refer to this as the standard

setting for fitness evaluations throughout.

However, from the perspective of applied machine learning, this

setting is idealised since this corresponds to training sets of infin-

itely large size in a batch-learning setting.

Hence, in this work, we also consider a fitness function where the

fitness is computed online, based on a finite-size sample from the

(possibly) infinite training set. For simplicity, we assume that in each

step of the neuroevolutionary algorithm (NA), one point from the

training set is sampled uniformly at random and the fitness function

is updated accordingly. This models more closely a practical setting

where a neural network is re-trained after receiving exactly one

input from the training set. In future work, we aim also to consider

a system where sets of points (i.e., more than one) are revealed in

between steps of the NA.

Formally, we consider the fitness as a time-dependent function

𝑓𝑡 , and again consider the unit hypersphere 𝑆𝐷 . We have that 𝐿𝐷 is

the set of points to be classified positively, and define 𝐶
(𝑡 )
𝐷

as the

union of half-spaces above or on the hyperplanes spanned by the

𝑁 neurons at time 𝑡 of the algorithm.

At each time 𝑡 ≥ 0, immediately before the algorithm evaluates

the mutated search point 𝑦 in relation to the current search point

𝑥𝑡 , a point 𝑠𝑡 ∈ 𝑆𝐷 is sampled uniformly at random. Let Σ𝑡 :=

𝑠0 ∪ · · · ∪ 𝑠𝑡 . Then, 𝑓𝑡 is defined as follows:

𝑓𝑡 =
|Σ𝑡 ∩ 𝐿𝐷 ∩𝐶 (𝑡 )𝐷

| + |Σ𝑡 ∩ 𝐿𝐷 ∩𝐶
(𝑡 )
𝐷 |

𝑡 + 1 .

We refer to this throughout the paper as the online version of the

underlying problem (e.g., Half, Quarter, etc.).

In contrast to the previous fitness evaluation, a perfect fitness

of 1 can be achieved for usually more than one setting of the hy-

perplanes(s) maintained by the NA. Note also that 𝑓𝑡 can change

(both increase and decrease) even if the current search point of the

algorithm does not change in an iteration. Therefore, we assume

that the current search points 𝑥𝑡 of the algorithm are re-evaluated

in each fitness comparison of the algorithm before a comparison

with the offspring 𝑦 is made.

3 ANALYSIS OF THE BIAS-INVARIANT NA

In this section, we present runtime analyses of the bias-invariant

(1+1) NA (BINA) across the benchmark functions defined in Sec-

tion 2.3 in the standard setting. As with previous work, we consider

only the case 𝐷 = 2, and the use of harmonic mutation. Through-

out this section, we utilise the following Lemma, which gives the

probability of reaching a sufficiently large area of the search space.

Lemma 3.1 ([8]). Let𝑋 denote the random outcome of the harmonic

mutation operator with parameter 𝑟 , and let 𝑎 < 𝑏 be two positive

integers. Then P(𝑎 < 𝑋 ≤ 𝑏) ≥ (ln(𝑏/𝑎) − 1/𝑎)/𝐻𝑟 .

In particular, when 𝑏−𝑎 = Ω(𝑟 ), there is a probability Ω(1/log 𝑟 )
of hitting the interval (𝑎, 𝑏]; that is, an expected time of O(log 𝑟 ).

3.1 No Bias

We first consider the analysis of BINA in the setting where there is

no bias (i.e., it is fixed at 0 and not mutated). In this case, there is

only one globally optimal solution that BINA can find. Clearly, if

we also fix the bending parameter 𝜃 = 𝜋/2 then BINA reduces to

the (1+1) NA without bias and the results from [8] hold.

We present results for BINA on the generalised function class

Fraction𝑐 . The results presented in this section will hold for Half

and Quarter in particular.

The following Lemma gives an insight into the quality of solu-

tions found by BINA in the no-bias case.

Lemma 3.2. Let 𝑥𝑡 = (𝜑𝑡 , 𝜃𝑡 ) be the current search point of BINA

with 𝑁 = 1 and without bias on Fraction𝑐 (for some 𝑐 > 0), and

assume 𝑓 (𝑥𝑡 ) > 0 and 𝜋𝜃𝑡/𝑟 ≤ 𝜋/2. Let 𝑑 (𝑡 )𝜑 = |2𝜋𝜑𝑡/𝑟 − 𝑐𝜋 | be
the (absolute) difference of the angle from its optimal value, and let

𝑑
(𝑡 )
𝜃

= |𝜋𝜃𝑡/𝑟 − 𝑐𝜋 | be the (absolute) difference of the bend from its

optimal value. Then, it holds for the current fitness that

𝑓 (𝑥𝑡 ) =
1

2𝜋

(
2𝜋 − 2max{𝑑 (𝑡 )𝜑 , 𝑑

(𝑡 )
𝜃
}
)
.

Proof. We are assuming that 𝑓 (𝑥) > 0; that is, at least some of

the points are being (correctly) positively classified. We exploit the

following.

In the two-dimensional unit hypersphere (in the no-bias case), a

displacement of the angle 𝜑𝑡 by 𝛿 will move the decision boundary

a distance of 𝛿 around the circumference of the circle on both sides

(in the same direction). Hence, for 𝑑
(𝑡 )
𝜃

= 0, an area of size 𝑑
(𝑡 )
𝜑

will be misclassified as positive, and an area of size 𝑑
(𝑡 )
𝜑 will be

misclassified as negative. Somewhat similarly, a displacement of the

bend 𝜃𝑡 by 𝛿 will move the decision boundary a distance of 𝛿 around

the circumference of the circle on both sides (in opposite directions).

That is, for 𝑑
(𝑡 )
𝜑 = 0, an area of size 2𝑑

(𝑡 )
𝜃

will be either positively or

negatively classified, depending on the sign (of 𝜋𝜃𝑡/𝑟 − 𝑐𝜋 ). When

both values are non-zero, the areas of misclassified points can be

calculated by the interplay of the two terms. We use this to calculate

the length of the misclassified area in the remainder of the proof.

We distinguish between two cases:

(1) 𝑑
(𝑡 )
𝜑 ≤ 𝑑

(𝑡 )
𝜃

;

(2) 𝑑
(𝑡 )
𝜑 > 𝑑

(𝑡 )
𝜃

.

In the first case, the bend is more displaced than the angle. We

consider again two subcases:
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Figure 4: Illustration of the subcases described by Lemma 3.2

forQuarter (i.e., Fraction
1/4), where the black arc repre-

sents the target area. The thin green arcs on the surface repre-

sented correctly classified points and the thick red arcs on the

surface represent incorrectly classified points. (a) 𝑑
(𝑡 )
𝜑 ≤ 𝑑

(𝑡 )
𝜃

and 𝜋𝜃/𝑟 ≤ 𝑐𝜋 ; (b) 𝑑
(𝑡 )
𝜑 ≤ 𝑑

(𝑡 )
𝜃

and 𝜋𝜃/𝑟 ≥ 𝑐𝜋 ; (c) 𝑑
(𝑡 )
𝜑 > 𝑑

(𝑡 )
𝜃

.

(a) 𝜋𝜃𝑡/𝑟 ≤ 𝑐𝜋

(b) 𝜋𝜃𝑡/𝑟 > 𝑐𝜋 .

In subcase (1a), the offset of the bend is more than the offset of

the angle. Since we are assuming 𝜋𝜃𝑡/𝑟 ≤ 𝜋/2, this means that

although the angle is offset, the bend is small enough such that the

line is correctly classifying all points above it positively (see e.g.,

Figure 4a). However, some positive points are also being incorrectly

classified.

The total length of the misclassified section is given by the sum

of misclassified lengths on either side of the (positively classified)

decision boundary. On one side, this distance will be 𝑑
(𝑡 )
𝜃
+ 𝑑 (𝑡 )𝜑 ,

while on the other side, this distance will be 𝑑
(𝑡 )
𝜃
−𝑑 (𝑡 )𝜑 . Hence, the

total displacement will be 2𝑑
(𝑡 )
𝜃

.

In subcase (1b), we have that the total positive area is being

correctly classified, but some points either side of this area being

incorrectly classified as positive (see e.g., Figure 4b). Nevertheless,

the sum of the lengths of the incorrectly classified areas is also

given by

(𝑑 (𝑡 )
𝜃
+ 𝑑 (𝑡 )𝜑 ) + (𝑑

(𝑡 )
𝜃
− 𝑑 (𝑡 )𝜑 ) = 2𝑑

(𝑡 )
𝜃

.

Note that if 𝑑
(𝑡 )
𝜃

= 𝑑
(𝑡 )
𝜑 , then one side of the decision boundary

will exactly intersect with the boundary between positive and neg-

ative points. In this case, the sums above still hold; i.e., the total

displacement is still 2𝑑
(𝑡 )
𝜃

.

In case (2), the offset of the angle is more than the offset of the

bend. That is, some positive points are being incorrectly classified as

negative, and some negative points are being incorrectly classified

as positive (see e.g., Figure 4c). Again, we consider the summed

length of the two displacements. In this case, the sum amounts to

(𝑑 (𝑡 )𝜑 + 𝑑 (𝑡 )
𝜃
) + (𝑑 (𝑡 )𝜑 − 𝑑 (𝑡 )

𝜃
) = 2𝑑

(𝑡 )
𝜑 .

Hence, combining the two arguments, the total displacement

is given by max{2𝑑 (𝑡 )𝜑 , 2𝑑
(𝑡 )
𝜃
}. The fitness is calculated as the pro-

portion of correctly classified points. Since the total length of the

circumference is 2𝜋 , the length of correctly classified points is given

by 2𝜋 − max{2𝑑 (𝑡 )𝜑 , 2𝑑
(𝑡 )
𝜃
}. Dividing this by 2𝜋 will give the pro-

portion of correctly classified points, i.e., the fitness, which is given

in the theorem statement. □

We now use Lemma 3.2 to prove the efficiency of BINA on the

Fraction𝑐 function class. First, however, we present the following

result regarding the fixed-angle case.

Theorem 3.3. The expected optimisation time of BINA with𝑁 = 1,

without bias (i.e., 𝑏 = 0) and fixed angle 𝜑 = 𝑐𝜋 on Fraction𝑐 is

O(log2 𝑟 ).

The proof of Theorem 3.3 works similarly to that of [8, Theo-

rem 1], i.e., a standard multiplicative drift argument is used (see

e.g., [5]). Theorem 3.4 shows that BINA attains the same runtime

bound when the angle is also variable.

Theorem 3.4. The expected optimisation time of BINA with 𝑁 = 1

and without bias on Fraction𝑐 is O(log2 𝑟 ).

Proof. To prove the result, we consider two cases at a given

time 𝑡 ≥ 0:

(1) 𝑓 (𝑥𝑡 ) > 0 and 𝜋𝜃𝑡/𝑟 ≤ 𝜋/2;
(2) 𝑓 (𝑥𝑡 ) = 0 or 𝜋𝜃𝑡/𝑟 > 𝜋/2.
We firstly consider case 1, in which the conditions of Lemma 3.2

hold. That is, the fitness depends on the maximum of the displace-

ment of the angle and the displacement of the bend. Define 𝑓 (𝑥𝑡 ) as
in Lemma 3.2, and consider the fitness distance 𝑔(𝑥𝑡 ) = 1 − 𝑓 (𝑥𝑡 ).

Let 𝑋𝑡 := 𝑑
(𝑡 )
𝜃

and let 𝑌𝑡 := 𝑑
(𝑡 )
𝜑 . Clearly, the fitness distance can

be reduced by reducing the maximum of the two displacements,

i.e., max{𝑋𝑡 , 𝑌𝑡 }. That is, if 𝑋𝑡 > 𝑌𝑡 , then we improve by reducing

𝑋𝑡 until the opposite holds. Likewise, if 𝑋𝑡 < 𝑌𝑡 , we improve by

reducing 𝑌𝑡 until the opposite holds. That is, BINA makes progress

by either reducing the displacement of the angle or the displacement

of the bend. In either case, both terms must be reduced to zero,

which happens simultaneously.

Although the reduction of the angle term and the bend term are

not independent, we note that only one of the two processes (i.e.,

displacement reductions) is active at a given time. For example, if

the bend is being reduced, the angle displacement can be ignored

until the bend displacement has been sufficiently reduced to be the

lower term (note that the angle displacement could increase in this

period, so long as it remains the lower term).

We now consider the term 𝑍𝑡 = 2𝑋𝑡 + 𝑌𝑡 . We consider 𝑍𝑡 as a

potential function and analyse the drift on the term 𝑍𝑡 by the sum

of the drifts of its inherent summands. Clearly, once 𝑍𝑡 reaches 0,

the globally optimal solution has been found.

For the drift on the term 𝑌𝑡 , we note that this term can either

increase (to some value less than𝑋𝑡 ), decrease towards 0, or change

its sign (i.e., a jump of size at least 𝑌𝑡 + 1 and at most 𝑋𝑡 +𝑌𝑡 ) if the
bend parameter is selected with probability 1/2. Then, we obtain

E[𝑌𝑡 − 𝑌𝑡+1 | 𝑌𝑡 ] =
1

2

©­«−
𝑋𝑡−𝑌𝑡∑︁
𝑗=1

𝑗

𝑗𝐻𝑟
+

𝑌𝑡∑︁
𝑗=1

𝑗

𝑗𝐻𝑟
+

𝑋𝑡+𝑌𝑡∑︁
𝑗=𝑌𝑡+1

2𝑌𝑡 − 𝑗

𝑗𝐻𝑟

ª®¬
=

1

2

©­«2𝑌𝑡 − 𝑋𝑡

𝐻𝑟
− 𝑋𝑡

𝐻𝑟
+

𝑋𝑡∑︁
𝑗=1

2𝑌𝑡

(𝑌𝑡 + 𝑗)𝐻𝑟

ª®¬
≥ 2𝑌𝑡 − 𝑋𝑡

2𝐻𝑟
.

For the drift of 𝑋𝑡 , we consider any decrease in 𝑋𝑡 , noting a

possible change in sign. Hence, we have

E[𝑋𝑡 − 𝑋𝑡+1 | 𝑋𝑡 ] =
1

2

©­«
𝑋𝑡∑︁
𝑗=1

𝑗

𝑗𝐻𝑟
+

2𝑋𝑡∑︁
𝑗=𝑋𝑡+1

2𝑋𝑡 − 𝑗

𝑗𝐻𝑟

ª®¬ ≥ 𝑋𝑡

2𝐻𝑟
,
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Hence, summing these terms gives

E[𝑍𝑡 − 𝑍𝑡+1 | 𝑍𝑡 ] ≥
𝑋𝑡 + 2𝑌𝑡
2𝐻𝑟

≥
𝑋𝑡 + 1

2
𝑌𝑡

2𝐻𝑟
=

𝑍𝑡

4𝐻𝑟
= Ω(𝑍𝑡 ),

which gives the stated runtime bound via a multiplicative drift

argument (see e.g., [5]).

We finally consider case 2. In this case, in order to reach the

situation described in case 1, it suffices to jump (i.e., mutate the

angle and bend simultaneously) to a position where

• 2𝜋𝜑𝑡/𝑟 ∈ [𝑐𝜋/4, 3𝑐𝜋/4]; i.e., 𝜑 ∈ [𝑐𝑟/8, 3𝑐𝑟/8] (of size Ω(𝑟 ));
• 𝜋𝜃/𝑟 ∈ [0, 𝜋/(2𝑐)]; i.e., 𝜃 ∈ [0, 𝑟/(2𝑐)] (of size Ω(𝑟 )).

Hence, by Lemma 3.1, the expected time to reach case 1 from

case 2 is O(log2 𝑟 ), which combined with the runtime from case 1

gives the theorem statement. □

Theorem 3.4 shows that BINA without bias can match the run-

time bound of the (1+1) NA on Half and maintains the same per-

formance for every instance of Fraction𝑐 . The (1+1) NA, how-

ever, cannot solve any instance of Fraction𝑐 to optimality when

0 < 𝑐 < 1/2. However, by an extension of [8, Theorem 1], it can

find a local optimum quickly in time O(log2 𝑟 ) in expectation. For

Quarter, it requires variable bias and expected time O(log3 𝑟 )
to find the optimal; we expect similar performance for a general

instance of Fraction𝑐 with 0 < 𝑐 < 1/2.

3.2 Further Discussion

We firstly discuss the general case where the bias is fixed (i.e., 𝑏 ∈
(−1, 1)) but not necessarily fixed to 0. In this case, it can be shown

that for a general instance of Fraction𝑐 , the optimal solution of

BINA attains 𝜑 = 𝑐𝜋 and 𝜃 = arctan

(
sin(𝑐𝜋 )
−𝑏+cos(𝑐𝜋 )

)
. In this setting,

the optimisation process will mirror that in the no-bias case. That

is, BINA will simultaneously reduce the distance of the bend and

the angle to their globally optimal positions and a similar drift

argument will hold. Hence, we posit that the expected runtime in

the fixed-bias case will also be O(log2 𝑟 ) and omit a formal proof.

Secondly, we briefly discuss the variable bias case. As above,

we posit that BINA can find the globally optimal solution in time

O(log2 𝑟 ) if the bias does notmutate in any iteration. If the bias term

is mutated, the distances of the bend and angle from their optimal

settings will change. However, any mutation of the bias which

results in a lower fitness will be rejected, and hence any accepted

mutation of the bias term will increase the fitness, bringing at least

one of the bend or angle closer to its optimal position for the given

bias, while not affecting the other too much (i.e., it would reduce

the term max{𝑋𝑡 , 𝑌𝑡 }). Again, we posit a similar upper bound on

the expected runtime of O(log2 𝑟 ) and omit a formal proof.

Finally, we also discuss the case of multiple neurons. Clearly,

BINA can fall into the same locally optimal positions as the (1+1) NA

on the example function TwoQuarters, whereby one hyperplane

impedes the progress of the other [8]. Therefore, we assume a

similar situation whereby an efficient runtime can be proved with

constant probability, noting such a result is likely for any fixed or

variable bias setting.We furthermention one interesting point. For a

bias value of 𝑏 < −1, BINA can find solutions to the TwoQuarters

problem with fitness arbitrarily close to 1 (with 𝑁 = 1) for 𝑏 → −∞.
In Figure 5, we illustrate the setting with 𝑏 = −4.

Figure 5: Near-optimal solution of BINA to TwoQuarters

with one neuron (𝑏 = −4).

4 ONLINE FITNESS FUNCTION CALCULATION

In this section, we analyse the (1+1) NA in the online setting as

described in Section 2.4 for the first time. That is, we are considering

a time-dependent fitness function where exactly one new input

from the training set, drawn uniformly at random, is added at each

time step. Throughout, we assume 𝐷 = 2 and 𝑁 = 1.

We start with a general observation on the size of local optima in

this setting. Note that at time 𝑡 − 1, only 𝑡 points drawn uniformly

from the unit circle have been revealed. Consider these points in

a clockwise direction. The expected distance between a point and

its successor in this direction is well known to be 2𝜋/𝑡 and the

maximum distance of two subsequent points has an expected value

of O(log 𝑡/𝑡). This follows from a straightforward reduction to the

stochastic experiment of uniformly choosing 𝑡 − 1 points from the

unit interval and modelling the circle as the unit interval wrapped

around at its limits, which represent the extra point. Further, the

distance 𝐷 of any two subsequent points of the circle satisfies

the distribution Prob[𝐷 ≥ 𝑎] = (1 − 𝑎/(2𝜋))𝑡 (i. e., a scaled Beta

distribution with parameters 1 and 𝑡 ), so the maximum distance is

O(log 𝑡/𝑡) with probability 1 −𝑂 (1/𝑡); see David and Nagaraja [2,

Chapter 6.4].

As a consequence, if the two intersections of the hyperplane

formed by the (1+1) NAwith the unit circle lie roughly in the middle

between two of the sample points, then a local step of size 1/𝑟 may

not change the set of points lying on one side of a hyperplane and

are fitness neutral. Only random walks may lead to further progress

in this situation. Hence, it makes sense to analyse the algorithm only

from time 𝑡 ≥ 𝑐𝑟 onward, where 𝑐 is a sufficiently large constant.

This idea will be used in the proof of the following theorem. Note

that it bounds an “expected time with high probability”, which

means that the expected time is bounded conditional on an event

that occurs with high probability.

Theorem 4.1. The expected optimisation time of the local (1+1) NA

without bias on the online version of Half is bounded by O(𝑟 log 𝑟 )
with probability 1 − O(1/𝑟 ).

Proof. Consider the algorithm at time 4𝜋𝑟 ln 𝑟 and the sampled

points in clockwise order. By the argumentation above, the proba-

bility of a distance between two adjacent points exceeding 1/𝑟 is
at most (1 − 1/(2𝜋𝑟 ))4𝜋𝑟 ln 𝑟 ≤ 1/𝑟2. By a union bound over all 𝑟

distances, with high probability of at least 1 − 1/𝑟 , the maximum

distance between two adjacent points is bounded from above by 1/𝑟 .
In the following, we assume such a maximum distance to hold.

The rest of the proof picks up the argumentation for the analysis

of the local (1+1) NA without bias on Half from [8, Theorem 3.1],

where the aim is to reach the optimal angle of 𝜋/2. Let𝜙𝑡 denote the
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current representation of angle in the (1+1) NA at time 𝑡 ≥ 4𝜋𝑟 ln 𝑟 ,

i. e., the actual angle is 2𝜋𝜙𝑡/𝑟 , and let 𝜉𝑡 = min{|𝑟/4 − 𝜙𝑡 |, 5𝑟/4 −
1−𝜙𝑡 }, i. e., the smallest distance of 𝜙𝑡 from its optimum 𝑟/4 in the

representation with wrap-around, where 0 is a neighbor of 𝑟 − 1.
If 𝜉𝑡 = 𝑖 > 0 (corresponding, e. g., to an angle 2𝜋𝑖/𝑟 + 𝜋/2), then
incrementing or decrementing 𝜙𝑡 by 1 (modulo 𝑟 ) will improve the

fitness. This holds since two samples have a maximum distance

of at most 1/𝑟 by assumption, so moving the angle by an amount

of 2𝜋/𝑟 closer to its optimumvaluewill move at least one incorrectly

classified point to the other side of the hyperplane.

As argued in [8], whether increasing or decreasing (or both)

improves the fitness depends on whether 𝜙𝑡 < 3𝑟/4. The local

(1+1) NA chooses the improving direction for the angle with proba-

bility at least 1/2 and reduces 𝜉𝑡 by 1 with probability at least 1/2.
Altogether, the probability of improving is at least 1/4. Since at

most 𝑟/2 improvements are sufficient, the expected number of steps

spent after time 4𝜋𝑟 ln 𝑟 until reaching the optimum angle is at most

(𝑟/2) · 4 = O(𝑟 ). Together with the time 4𝜋𝑟 ln 𝑟 that we spend at

the beginning, the expected time is O(𝑟 log 𝑟 ) in this case. □

As shown in [8, Theorem 3.1], the runtime bound for the (1+1) NA

without bias on Half becomes O(log2 𝑟 ) if the Harmonic mutation

operator is used. This analysis is based on multiplicative drift anal-

ysis [5]. It exploits heavily that if the error of the angle denoted by

𝜉𝑡 above satisfies 𝜉𝑡 = 𝑖 > 0, then all steps decreasing 𝑖 will be ac-

cepted and all steps increasing 𝑖 rejected. In particular, the expected

improvement is bounded from below by

∑𝑖
𝑗=1 𝑗 ·

1

𝑗𝐻𝑟
= Ω(𝑖/log 𝑟 )

then, where 1/( 𝑗𝐻𝑟 ) is the probability of a step of size 𝑗 . Now, if

only time Θ(log2 𝑟 ) has elapsed, then there will be adjacent points

on the circle that have an expected gap of Ω(𝑟/log2 𝑟 ) in the chosen

representation on {0, . . . , 𝑟 }, and there must exist at least one gap of

this size. Considering the above sum, this can invalidate the terms

for 𝑗 ≤ 𝑟/ln2 𝑟 . Hence, after the distance to the optimum has be-

come O(𝑟/log2 𝑟 ) in the representation (O(1/log2 𝑟 ) in the actual

angle), we have no guarantee for further fitness improvements by

large jumps and the algorithm may have to rely on a random walk

on a plateau. However, if the distance is still larger than 𝑐𝑟/ln2 𝑟
for a sufficiently large constant, then we can still exploit the ability

of the Harmonic mutation performing large jumps similar to the

original setting. This gives rise to the following theorem.

Theorem 4.2. The expected time until the (1+1) NA with harmonic

mutation and without bias on the online version of Half achieves a

solution of additive error O(1/log 𝑟 ) is bounded by O(log2 𝑟 ) with
probability 1 − O(1/𝑟 ).

Proof. Similarly to the proof of Theorem 4.1, we start our con-

sideration only after 𝑐 ln2 𝑟 steps (for some sufficiently large con-

stant 𝑐 > 0) have elapsed. Then using a union bound and the bound

on a single gap from above, the largest gap between two adjacent

points is at most 𝑑∗ B 2 ln 𝑟/ln2 𝑟 = O(1/log 𝑟 ) with probabil-

ity 1 − O(1/𝑟 ), which we assume to happen. In the representation

space, the gap is at most (𝑟/(2𝜋))𝑑∗.
As in the proof of Theorem 4.1, we consider the quantity 𝜉𝑡 .

Given the current search point with distance 𝜉𝑡 = 𝑖 > (2𝑟/𝜋)𝑑∗ in
the representation space (i. e., 4 times the maximum gap) between

adjacent samples), all step sizes 𝑗 ∈ (𝑟/(2𝜋))𝑑∗, ..., 𝑖 − (𝑟/(2𝜋))𝑑∗
can increase the 𝑥𝑡 -value. The aim is to analyze the time until

𝜉𝑡 ≤ (𝑟/𝜋)𝑑∗. This corresponds to an approximation error, i. e.,

an additive deviation of the angle from its optimum value, that is

bounded by O(1/log 𝑟 ). Plugging in the probability for a step of

size 𝑗 , we obtain a drift of

E[𝜉𝑡 − 𝜉𝑡+1 | 𝜉𝑡 ] ≥
𝑖−𝑟𝑑∗/(2𝜋 )∑︁
𝑗=𝑟𝑑∗/(2𝜋 )

𝑗 · 1

𝐻𝑟
=
(𝑖 − 𝑟𝑑∗/𝜋)

𝐻𝑟
≥ 𝑖

2𝐻𝑟

by our assumption on 𝑖 . Applying the multiplicative drift theorem

[5] on the 𝜉-process with 𝜉0 ≤ 𝑟 , drift parameter 𝛿 = 1/(2𝐻𝑟 ) and
a minimum state of (𝑟/𝜋)𝑑∗ gives an expected time of O(log2 𝑟 ) to
reach the target. □

We discuss how the (1+1) NA with Harmonic mutation could

achieve smaller approximation errors. The challenge is that a gap

of size Θ(1/log 𝑟 ) between two points corresponds to a step of size

Θ(𝑟/log 𝑟 ) in the representation space. In a worst-case situation,

a step of that size might be the only possible strict improvement

and it has a probability only Θ((log 𝑟 )/(𝑟𝐻𝑟 )) = Θ(1/𝑟 ), so the

expected time for it to happen would be Θ(𝑟 ). This would be ex-

ponentially larger than the time bound of Theorem 4.2 for the

O(1/log 𝑟 )-approximation. Random walk arguments would also

result in exponential (in log 𝑟 ) time bounds like Θ((𝑟/log 𝑟 )2) to
bridge the distance. Hence, we do not see any immediate room for

improvement of Theorem 4.1.

Summing up, the online fitness calculation does not substan-

tially change the results from the earlier paper [8], which implicitly

considered an infinite point set by calculating the proportion of

correctly classified points on the unit hypersphere. We think that

the analyses of the (1+1) NA on Quarter, where mutations chang-

ing the bias were crucial, do not change substantially either. Again,

in the polylogarithmic time span O(log3 𝑟 ) considered in [8, Theo-

rem 3.4], an error of O(1/log2 𝑟 ) must be taken into account, which

corresponds to the expected maximum distance of two points on

the hypersphere. Such results are likely generalisable to instances

of Fraction𝑐 for 0 < 𝑐 < 1/2.
As a final point, we expect respectively similar results to hold

for BINA in the online setting. We note that for non-zero fixed

biases, different requirements on the number of points required to

have a sufficiently small gap between adjacent points with high

probability will be required. However, this is required only for a

formal proof; experimental results presented in the next section

show its efficient performance.

5 EXPERIMENTAL RESULTS

We now present experimental results for the algorithms presented

in this paper. Firstly, we present an analysis of BINA in the standard

fitness setting and compare it to the (1+1) NA across a number of

different settings for the bias terms. Secondly, we present a series of

simulations analysing the performance of the (1+1) NA and BINA

in the online fitness setting. Harmonic mutation is used in both

cases.

5.1 Standard Fitness Setting

We firstly present a comparison of the two algorithms in the stan-

dard fitness setting for two settings for the bias: no bias and variable

bias. Figure 6 presents results for the Half andQuarter benchmark
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Figure 6: Average number of iterations to solve the bench-

mark problems at different resolutions (𝑥-axis).

functions (i.e., special instances of the general Fraction function).

Each result shows the median and quartiles taken from 100 runs.

On Half, the (1+1) NA in the no-bias setting is the fastest as it

is only evolving one parameter. However, it cannot solve Quarter

to global optimality so we consider it as an idealised setting. The

(1+1) NA with variable bias is slower than each setting for BINA

across both functions. BINA in the variable bias setting attains

a similar performance to both fixed settings, even being faster

for larger resolutions on Quarter. This suggests that due to its

generality and comparable efficiency, the variable bias setting may

be most favourable. However, a fixed-bias setting is also suitable,

which we see in the next section.

5.2 Online Fitness Setting

We now consider the online fitness setting, which was implemented

as follows. The algorithms run in rounds, whereby at each round, a

new point is given uniformly at random according to the function

(up to a total of 𝑘 points). The algorithm runs until all but one points

are correctly classified (up to a maximum of 10𝑟 log 𝑟 steps, but

possibly none if the new point is already correctly classified). This

is due to the algorithms having difficulty (in practice) separating

two areas with alternating classifications on instances of Fraction

with the setting 𝑟 = 2𝑘 , i.e., the borders between the positive and

negatively classified inputs. Note that the resolution is chosen to

be double the number of data points to allow for finer adjustments

in the decision boundary at larger problem sizes.

In Table 1, we present the average results for (1+1) NA and the

fixed-bias BINA onQuarter from 100 runs, varying the number

(1+1) NA (Harmonic Mutation)

Points Res. Mean Stdev. # Correct True Fitness

200 400 1848 4424 199.25 0.9888

400 800 3447 4657 399.41 0.9950

600 1200 6830 7013 599.30 0.9964

800 1600 8030 8614 799.27 0.9969

1000 2000 9421 8221 999.33 0.9979

1200 2400 11466 11934 1199.29 0.9982

1400 2800 14085 14141 1399.34 0.9985

1600 3200 15193 13111 1599.31 0.9986

1800 3600 17282 18460 1799.36 0.9989

2000 4000 19402 19238 1999.33 0.9990

BINA (No Bias, Harmonic Mutation)

Points Res. Mean Stdev. # Correct True Fitness

200 400 693 826 198.58 0.9853

400 800 1218 1856 398.44 0.9924

600 1200 1221 632 598.56 0.9952

800 1600 1825 1574 798.46 0.9960

1000 2000 1868 1109 998.53 0.9970

1200 2400 2327 1661 1198.56 0.9976

1400 2800 2345 998 1398.50 0.9980

1600 3200 2728 1267 1598.41 0.9980

1800 3600 3009 1154 1798.57 0.9984

2000 4000 3462 1688 1998.55 0.9986

Table 1: Summarised results for the (1+1) NA and BINA on

Quarter.

of points from 200 to 2000. We also present the mean and standard

deviation of the runtime alongside the number of correctly classified

points and the true fitness. Overall, we see howmuchmore effective

BINA is than the (1+1) NA. This is supported by the theoretical and

experimental results presented thus far.

6 CONCLUSIONS

In this work, we have extended upon the first framework for the

runtime analysis of neuroevolutionary algorithms in two ways.

Firstly, we considered more realistic topologies making use of recti-

fied linear unit activation functions. This resulted in an algorithm

that performs much more efficiently on the studied benchmarks.

The second advancement was to consider an online fitness setting,

which more closely resembles real-world neural network training.

While we have made advancements in the theoretical analysis

of neuroevolution, there are still clear pathways for future research.

From the perspective of runtime analysis, self-adapting mutation

operators could lead to speedups of the presented algorithms. Sec-

ondly, this work only considers adapting the weights and biases,

whereas traditional neuroevolutionary algorithms also update the

topology. A more general framework combining this strand of re-

search with those analysing updating topologies (e.g., [12]) would

be beneficial.
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